
Interfaces and Free Boundaries8 (2006), 317–348

On a uniform approximation of motion by anisotropic curvature
by the Allen–Cahn equations
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Mathematisches Institut der Eberhard-Karls-Universität Tübingen,
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The convergence of solutions of anisotropic Allen–Cahn equations is studied when the interface
thickness parameter (denoted byε) tends to zero. It is shown that the convergence to a level
set solution of the corresponding anisotropic interface equations is uniform with respect to the
derivatives of a surface energy density function. As an application the crystalline motion of interfaces
is shown to be approximated by the anisotropic Allen–Cahn equations.
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1. Introduction

In this paper we consider the anisotropic Allen–Cahn equation with kinetic term. The convergence
of solutions of anisotropic Allen–Cahn equations is already proved in [ElS1] (in case the kinetic
term is isotropic), [ElPS], and [ElS2]. However, their estimate of the convergence depends on the
derivative of the surface energy density function which expresses the anisotropy of the equilibrium
form of interfaces. In this paper we obtain a uniform estimate of the convergence with respect to the
derivatives of the surface energy density function. One of applications of our result is approximation
of the crystalline motion of interfaces by anisotropic Allen–Cahn equations.

The anisotropic Allen–Cahn equation is proposed in [MWBCS]. We consider a functional of the
form

Fε(v) =

∫
Rn

[
1

2
γ (∇v)2 +

1

ε2
(W(v)− ελf v)

]
dx.

Here γ ∈ C2(Rn \ {0}) is positive onSn−1, convex, positively homogeneous of degree one.
Moreover, we assume thatγ 2 is strictly convex. The functionW is a double-well potential of the
formW(v) = (v2

− 1)2/2. The quantityλ is a normalized constant determined byW . The quantity
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f is a given constant. We consider the weightedL2-gradient flow of this functional, and obtain the
anisotropic Allen–Cahn equation. Its explicit form is

β(∇v)∂tv − div γ (∇v)ξ(∇v)+
1

ε2
(W ′(v)− ελf ) = 0. (1.1)

Hereβ ∈ C(Rn \ {0}) is positive onSn−1 and positively homogeneous of degree zero, andξ =

Dγ = (∂p1γ (p), . . . , ∂pnγ (p)) for p = (p1, . . . , pn). A formal asymptotic analysis provided
by [MWBCS], [WM] and [BP1] (the caseβ ≡ 1) says that the internal transition layer of (1.1)
approximates the evolving interface{Γt }t>0 under the evolution law of the form

β(n)V = −γ (n){divΓt ξ(n)+ f } onΓt , (1.2)

wheren denotes the outer unit normal vector field ofΓt , V denotes the normal velocity in the
direction of n, and divΓt is the surface divergence onΓt . The constantλ is taken so that the
multiplicative constant in front off in (1.2) equals one. Physically, the functionγ is called the
surface energy density, which expresses the anisotropy of the equilibrium form of interfaces. The
functionξ is called theCahn–Hoffman vector. The functionβ expresses the anisotropy of kinetics.
The quantityf is a driving force of the evolution. The quantityγ /β is calledmobility.

If the initial datav(x,0) of (1.1) is positive in a regionO0 enclosed byΓ0 and negative in
Rn \ (O0 ∪ Γ0), then one expects that

v →

{
+1 in a regionOt enclosed byΓt ,
−1 in Rn \ (Ot ∩ Γt ),

(1.3)

locally uniformly asε → 0. This fact is rigorously proved in [ElS1] locally in time at least if the
initial interface is smooth. Using a level set method due to [CGG1] and [ES] the authors of [ElPS]
and [ElS2] proved (1.3) globally-in-time by interpretingΓt as a generalized solution of (1.2). They
introduced a signed anisotropic distance function fromΓt as outlined in [BP2] (see Section 3). By
using this distance, they constructed a sub- and supersolution of (1.1) to prove the convergence
(1.3).

We note that the convergence results in [ElS2] depend on the smoothness ofγ : the way to
determineε for the estimate to obtain (1.3) depends at least on the second derivatives ofγ .
Physically, however, it may happen thatγ is not smooth so that the equilibrium form of the interface
of (1.2) may have a flat portion called a facet. If one tries to consider such a situation by (1.1) with
γa approximating nonsmoothγ , their results are not enough.

In this paper we will show that the convergence of the internal transition layers is in some sense
‘uniform’ with respect to the derivatives ofγ provided thatγ , 1/γ , β, and 1/β on the unit sphere
are bounded. No control of the derivatives ofγ is necessary. This gives a way to approximate the
crystalline motion [T], [AG] in the plane by an anisotropic Allen–Cahn type equation in conjunction
with a general level set method for nondifferentiableγ in [GG4], [GG5]. This will be explained
in §2.5 as an application of our main result. In [BGN] the anisotropic Allen–Cahn equation with
crystallineγ andβ ≡ 1 in R2 is considered, and it is extended to the problem inRn for n > 2
in [BN]. They derived even a convergence rate of the internal layer of the Allen–Cahn equation
when the limit evolution is a crystalline motion. By the assumptionβ ≡ 1, (2.6) is considered as a
variational inequality. (Several examples of solutions are proposed in [TC].) Although we mollifyγ

andβ, one advantage of our theory is that anisotropicβ can be handled. We approximate nonsmooth
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γ by smootherγ τ while [BGN] studied the Allen–Cahn equation with nonsmoothγ by using a
subdifferential.

The difficulty in treating (1.1) directly is that (1.1) does not enjoy a comparison principle. This is
caused by singularities at∇v = 0 which are due to the nonconstant kinetic factorβ. This difficulty is
overcome in [ElS2] by adjusting a definition of solution to have a comparison principle. In this paper
we overcome the difficulty caused by singularities ofβ in another way. We introduce a modified
equation in place of (1.1) to remove singularities. The advantage of our idea is that the usual theory
of viscosity solutions is available for the modified equation. We prove that the solution of the
modified equation satisfies (1.3) and the convergence is ‘uniform’ with respect to the derivatives
of γ .

The basic strategy of the proof of (1.3) is a combination of the method of [ESS] and [ElS2].
However, we need to estimate the time derivative of the anisotropic distance function in a different
way. We construct a viscosity supersolution of (1.1) for an estimate to obtain the convergence result
by combining three ingredients: a distance function induced by Finsler geometry as in [BP2], its
truncation as in [ESS] and the traveling wave as in [BSS]. The key reason why we are able to prove
the uniform convergence result with respect to the modulus of the derivative ofγ is an estimate of
the time derivative of the distance function fromΓt . Although the time derivative is estimated in
[ElS2], their bound depends on the second derivatives ofγ on Sn−1. In this paper we will prove
such an estimate by using a duality betweenγ and the support function of{p ∈ Rn; γ (p) 6 1} so
that no derivatives ofγ are involved.

Recently, [BS] and [BDL] provided the geometrical approach to approximating the motion of
interfaces. However, their method does not provide our uniform convergence.

Finally, we note that, for the isotropic case (β(p) ≡ 1, γ (p) = |p|), the convergence problem
has been extensively studied in various contexts, e.g., [BK], [DS], [C], [ESS], [BSS], [I], [So], etc.

2. Main result

2.1 Equations

We now recall the anisotropic mean curvature flow. Let{Γt }t>0 be a family of closed hypersurfaces
in Rn. We consider the evolution law forΓt of the form

β(n)V = −γ (n){divΓt ξ(n)+ f } onΓt , (2.1)

whereV denotes the normal velocity of the surfaceΓt andn denotes the outer unit normal vector
field of Γt . In this paper we assume that

(β1) β ∈ C(Rn \ {0}),
(β2) β is positively homogeneous of degree 0,
(β3) there exists a positive constantΛβ satisfyingΛ−1

β 6 β 6 Λβ onSn−1,

(γ1) γ ∈ C2(Rn \ {0}),
(γ2) γ is positively homogeneous of degree 1,
(γ3) there exists a positive constantΛγ satisfyingΛ−1

γ 6 γ 6 Λγ onSn−1,
(γ4) γ is convex,
(γ5) α := γ 2/2 is strictly convex,
(f 1) f is a given constant satisfying|f | 6 Λf with someΛf > 0,
(ε1) ε ∈ (0, ε̄), whereε̄ is such that the functionσ 7→ W ′(σ )− ελΛf has exactly three zeros,
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where Sn−1 is a unit sphere. The vector fieldξ is the gradient field ofγ , i.e., ξ = Dγ =

(∂p1γ, . . . , ∂pnγ ), ∂piγ = ∂γ /∂pi , 1 6 i 6 n. The divergence operator in (2.1) is the surface
divergence onΓt . In this paper, we only consider the driving force termf that is constant.

A level set formulation for (2.1) gives a generalized notion of the motion ofΓt (see [CGG1],
[CGG2], [G1]). We introduce an auxiliary functionu : Rn × [0, T ) → R and define

Γt = {x ∈ Rn; u(x, t) = 0}. (2.2)

The level set equation obtained from (2.1) is of the form

β(∇u)∂tu− γ (∇u){div ξ(∇u)+ f } = 0 in Rn × (0, T ). (2.3)

Here div denotes the divergence inRn, and ∇ denotes the spatial derivatives, i.e.,∇v =

(∂x1v, . . . , ∂xnv), so we distinguish between the differential operatorD and the spatial derivative∇.
We say that{Γt }t∈[0,T ) is a generalized solutionof (2.1) if Γt is given by (2.2) for an auxiliary
functionu ∈ C(Rn × [0, T )) which is a viscosity solution of (2.3).

We are interested in the motion ofΓt , which starts from some compactΓ0, in a finite time
interval(0, T ). Then, since any viscosity solution of (2.3) with continuous initial data is continuous,
we may assume that there exists a big cube

∏n
j=1[aj , bj ] satisfyingΓt ⊂

∏n
j=1[aj , bj ] for t ∈

[0, T ). Therefore we consider the equation with the periodic boundary condition, i.e., the equality
u(x + (bj − aj )ej , t) = u(x, t) holds for (x, t) ∈ Rn × [0, T ) and j = 1, . . . , n. We now set
Tn =

∏n
j=1 R/(bj − aj )Z. We consider (2.3) onTn × (0, T ), i.e.,

β(∇u)∂tu− γ (∇u){div ξ(∇u)+ f } = 0 in Tn × (0, T ) (2.4)

with initial data
u(·,0) = u0(·) onTn. (2.5)

Since (2.4) is degenerate parabolic and geometric, it is well known that, for periodic initial data,
there exists a unique global periodic viscosity solution of (2.4) (see [CGG1], [GGIS] or [G2]).

There is another way to analyze the motion ofΓt . In fact, there is the approximation ofΓt by
the internal transition layer of an anisotropic Allen–Cahn type equation introduced in [MWBCS].
The explicit form of the equation is

β(∇v)∂tv − div{γ (∇v)ξ(∇v)} +
1

ε2
(W ′(v)− ελf ) = 0 in Tn × (0, T ), (2.6)

with initial data
v(·,0) = v0(·) onTn. (2.7)

HereW is a double-well potential of the formW(σ) = (σ 2
− 1)2/2, andλ is a constant determined

byW , in our caseλ = 2/3. We choose a suitablev0 to approximate an interface moving by (2.1). See
Section 2.4 and Theorem 2.2 for the choice ofv0. The internal transition layers of (2.6) approximate
the motion ofΓt . This fact is already established rigorously in [ElS1], [ElPS] and [ElS2].

Our aim in this paper is to prove that an estimate of the convergence of internal transition layers
is uniform with respect to the modulus of derivatives ofγ . For this purpose, we have to specify the
quantities which determine the speed of the convergence of internal transition layers.

Traditionally as in [ElS2] or [ESS], we construct a supersolution and a subsolution of (2.6) to
estimate the convergence. The key tool of this method is the comparison principle for viscosity
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solutions. Unfortunately, however, (2.6) has singularities so that we cannot apply the usual
comparison principle for viscosity solutions. To overcome this difficulty, we modify the equation.
We introduce a cut-off functionζ ∈ C∞([0,∞)) satisfying

ζ(σ ) =

{
1 if σ 6 1/2,
0 if σ > 3/4,

andζ ′ 6 0. Let β̃ be a function defined by

β̃(p) = (1 − ζ(|p|))β(p)+Λβζ(|p|). (2.8)

We replace the coefficientβ(∇v) of ∂tv in (2.6) byβ̃(∇v), i.e.,

β̃(∇v)∂tv − div{γ (∇v)ξ(∇v)} +
1

ε2
(W ′(v)− ελf ) = 0 in Tn × (0, T ). (2.9)

The same type of modification appears in [ElPS]. The main advantage of (2.9) over (2.6) is that the
singularity at∇v = 0 in the term involvingβ is removed. Sincẽβ is positive and continuous on
Rn, we can apply the usual theory of viscosity solutions, in particular the comparison principle (see
[CGG1] or [G2]). We treat (2.9) as an approximate model of an anisotropic mean curvature flow
instead of (2.6). The solvability of (2.9) with initial datav0 ∈ C(Tn) is already established in [ElS2,
Section 2.3 and Theorem 2.8] (see also [LSU]).

2.2 Anisotropic distance function

We now recall the anisotropicdistancefunction induced by a Finsler (Minkowski) metric as in
[BP2]. The distance is useful to construct an initial datum for (2.4) or (2.9).

We define thesupport functionγ ◦ of the convex set{p ∈ Rn; γ (p) 6 1} by

γ ◦(p) = sup{〈p, q〉; γ (q) 6 1}.

Note thatγ ◦
∈ C2(Rn \ {0}), andγ ◦ is convex, positively homogeneous of degree 1. Moreover, for

p ∈ Rn \ {0}, there exists a uniqueq ∈ {p ∈ Rn; γ (p) 6 1} satisfyingγ ◦(p) = 〈p, q〉 sinceγ 2

is strictly convex. Properties ofγ ◦ important for studying (2.6) or (2.9) are obtained in [BP2]. We
shall list some of them in Section 3.

We define ananisotropic distanceΞ by

Ξ(x, y) = γ ◦(x − y).

We remark that only the symmetry in the definition of distance does not hold forΞ sinceγ ◦ is not
assumed to be symmetric. For a subsetΓ ⊂ Rn we define

Ξ(x, Γ ) = inf{Ξ(x, y); y ∈ Γ }.

The following argument also applies to the reversed version of the anisotropic distance function of
the formΞ(Γ, x).
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2.3 Traveling wave

To derive an estimate for the convergence of the internal transition layer of (2.9), it is convenient to
introduce a traveling wave solution of (2.9) with initial data which has a layer aroundΓ0. In general,
we consider a solution of (2.9) of the formv(x, t) = Q(x · e − ct) for the functionQ, constantc
and fixede ∈ Sn−1. Then we observe thatQ satisfies some ordinary differential equation. However,
here it suffices to consider the equation ofQ for the isometric case as in [BSS].

Now we introduce a generalized notion of a traveling wave. We shall consider the double-well
potential of the formW(σ)− zσ for z ∈ R. Forz with |z| < 4

√
3/9, the functionσ 7→ W ′(σ )− z

has exactly three zeros. We shall denote them byh− = h−(z), h0 = h0(z) andh+ = h+(z), where
h− < h0 < h+. We assume thatz satisfies|z| < 4

√
3/9, and set

m(z) = h+(z)− h−(z),

c(z) = 2h0(z)− (h+(z)+ h−(z)),

Q(σ, z) = h−(z)+
m(z)

1 + exp{−m(z)(σ − σ0(z))}
,

whereσ0(z) is taken so thatQ satisfiesQ(0, z) = h0(z). Sinceh± andh0 are smooth, we observe
thatQ ∈ C∞(R × (−4

√
3/9,4

√
3/9)) and it solves

Qσσ (σ, z)+ c(z)Qσ (σ, z) = W ′(Q(σ, z))− z for σ ∈ R,
lim

σ→±∞
Q(σ, z) = h±(z), Q(0, z) = h0(z).

(2.10)

Moreover,

h±(z) = ±1 +O(z), h0(z) = 0 +O(z),

m(z) = 2 +O(z2), in particular
√

3< m(z) 6 2,
c(z)

z
=

2

W ′′(0)
−

(
1

W ′′(1)
+

1

W ′′(−1)

)
+O(z) = −

1

λ
+O(z),

asz → 0.
In our case we fixz = ελf and setQ(σ) = Q(σ, ελf ). Hereafter we omit the dependence on

z whenz = ελf , and we writeQ′(σ ) = Qσ (σ, ελf ) andQ′′(σ ) = Qσσ (σ, ελf ). We list some
properties of these functions.

PROPOSITION2.1 Assume thatf satisfies(f 1) andε satisfies(ε1). Then:

(i) lim ε→0 sup|f |6Λf |c/ε + f | = 0,
(ii) lim ε→0 sup{|Q(σ)− tanhσ |; σ ∈ R, f ∈ [−Λf ,Λf ]} = 0,

(iii) inf {Q′(σ ); σ ∈ [−b, b], ε ∈ (0, ε̄), f ∈ [−Λf ,Λf ]} > 0 for b > 0,
(iv) there exist constantsC1, C2 andC3, which depend only onΛf , satisfying

|Q(σ)2 − 1| 6 C1 exp(−C2|σ |)+ C3ε, (2.11)

|Q′(σ )|, |Q′′(σ )| 6 C1 exp(−C2|σ |). (2.12)
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2.4 Main result

We now determine the interfaces moving by (2.1). LetO0 be an open subset inTn andΓ0 = ∂O0.
Let d0 be a signed anisotropic distance function from an initial interfaceΓ0 defined by

d0(x) =

{
Ξ(x, Γ0) if x ∈ O0 ∪ Γ0,

−Ξ(x, Γ0) otherwise.
(2.13)

We note thatd0 is continuous onTn and spatially periodic. Letu be a periodic viscosity solution of
(2.4) with initial datau0 = d0. Then we obtain a generalized solutionΓt of (2.1) starting fromΓ0,
defined by (2.2).

We assume thatΓt 6= ∅ for t ∈ [0, T ). We define a signed anisotropic distance functiond : Tn×

[0, T ) → R from Γt by

d(x, t) =

{
Ξ(x, Γt ) if x ∈ {y ∈ Tn; u(y, t) > 0},

−Ξ(x, Γt ) if x ∈ {y ∈ Tn; u(y, t) < 0}.
(2.14)

We are now in a position to state our main result.

THEOREM 2.2 Assume thatβ, γ , f , and ε satisfy (β1)–(β3), (γ1)–(γ5), (f 1), and (ε1)
respectively. LetO0 be an open set inTn andΓ0 = ∂O0. Let d0, d(x, t) be the anisotropic signed
distance functions fromΓ0, Γt defined by (2.13), (2.14), respectively. Letv be a viscosity solution
of (2.9) satisfying (2.8) with initial datav0(x) = Q(d0(x)/ε) for ε < ε̄. For θ > 0, there exist
positive constantsδ = δ(θ), ε1 = ε1(θ,Λβ ,Λγ ,Λf ) andC = C(θ,Λβ ,Λγ ,Λf ) satisfying

v(x, t) 6 −1 + C1 exp

(
−
C2δ

ε

)
+ Cε (2.15)

if (x, t) ∈ {(y, s) ∈ Tn × (0, T ); d(y, s) 6 −θ} provided thatε ∈ (0, ε1), whereC1 andC2 are
numerical constants.

This result is a refined version of [ElS2] since the constantsC1, C2, C andε1 are independent
of the first and second derivatives ofγ . This is useful to treat the approximating problem of (2.4)
and (2.9) for nonsmoothγ .

The main strategy of the proof comes from [ESS] and [ElS2]. We construct a functionψ = ψε,δ
satisfying:

(i) for θ > 0, there exist positive constantsδ = δ(θ) andC = C(θ,Λβ ,Λγ ) such thatψ(x, t)
satisfies (2.15) for(x, t) ∈ {(y, s) ∈ Tn × (0, T ); d(y, s) < −θ},

(ii) for this δ, there exists a positive constantε0 such thatψ is a supersolution of (2.9) provided
thatε ∈ (0, ε0),

(iii) ψ(x,0) > Q(d0(x)/ε).

Then, by the comparison principle, we obtain Theorem 2.2. Unfortunately the construction of [ESS]
and [ElS2] is suitable only to construct a supersolution of the unmodified equation (2.6), but not of
(2.9). To clarify the difficulty in obtaining (i) we shall give a formal calculation. Set

Rε = β(∇ψ)− div{γ (∇ψ)ξ(∇ψ)} +
1

ε2
(W ′(ψ)− ελf ),

R̃ε = β̃(∇ψ)− div{γ (∇ψ)ξ(∇ψ)} +
1

ε2
(W ′(ψ)− ελf ).
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Clearly the first quantityRε is easy to calculate. However, we have to calculateR̃ε. We observe that

R̃ε = Rε + (Λβ − β(∇ψ))ζ(|∇ψ |)∂tψ.

Thus it suffices to derive a suitable estimate for∂tψ to calculateR̃ε.
We summarize the way of constructingψ :

(i) (§3.1 and §3.2) We verify that the anisotropic signed distance functiond is a viscosity
supersolution of (2.4) in{(x, t) ∈ Rn × (0, T ); d(x, t) > 0}. We also give an estimate of
∂td.

(ii) (§3.3) For fixedδ, we introduce a truncating functionη as in [ESS] and considerω = η(d).
We give an estimate ofβ(∇ω)∂tω − div{γ (∇ω)ξ(∇ω)}. We also give an estimate of∂tω.

(iii) (§4) We construct a functionψ by usingω. We verify that, forδ, there exists a positive
constantε0 = ε0(δ,Λβ ,Λγ ) such thatψ is a viscosity supersolution of (2.6) provided that
ε ∈ (0, ε0).

(iv) (§4) We verify that, forδ, there exists a positive constantε1 = ε1(δ,Λβ ,Λγ ) such thatψ is
a viscosity supersolution of (2.9) provided thatε ∈ (0, ε1).

We give the proof of Theorem 2.2 in §5.
Hereafter, we often use another representation of the second terms of (2.4), (2.6) and (2.9), i.e.,

div{ξ(∇u)} = tr{D2γ (∇u)∇2u}, div{γ (∇v)ξ(∇v)} = tr{D2α(∇v)∇2v},

whereα(p) = γ (p)2/2. We remark thatα is positively homogeneous of degree 2.
Finally, we remark that we only estimate solutions from above. This is because estimation from

below is essentially the same by considering (2.6) and (2.9) withβ̃(p) = β(−p), α̃(p) = α(−p),
W̃ (σ ) = W(−σ), andf̃ = −f instead ofβ(p), α(p), W(σ), andf , respectively. By a standard
argument, Theorem 2.2 and this remark yield (1.3).

2.5 Application

We now give an application of Theorem 2.2. Our result is useful to approximate solutions of (2.1) by
(2.9) even whenγ is not differentiable provided that (2.4) fulfills the following convergence ansatz.

CONVERGENCE ANSATZ. Assume thatβτ ∈ C(Rn \ {0}), γ τ ∈ C2(Rn \ {0}) are positive and
f τ ∈ R. Assume thatβτ and γ τ are positively homogeneous of degree 0 and 1, respectively.
Assume thatγ τ is convex. (We do not assume the differentiability ofγ .) Assume thatβτ → β̂,
γ τ → γ̂ locally uniformly in Rn \ {0} andf τ → f̂ asτ → 0. Let uτ be the periodic viscosity
solution of

βτ (∇uτ )∂tu
τ

− γ τ (∇uτ ){div ξ τ (∇uτ )+ f τ } = 0 in Rn × (0, T ),

with continuous periodic initial datauτ (x,0) = uτ0(x), whereξ τ = Dγ τ . Assume that the period is
independent ofτ . Assume thatuτ0 → u0 uniformly in Rn. Thenuτ converges tôu ∈ C(Rn×[0,∞))

which “solves” (2.4) withβ = β̂, γ = γ̂ and û(x,0) = u0(x). The convergence is uniform in
Rn × [0, T ] for everyT > 0.

If we further assume that there exists a functionH ∈ C(Sn−1
; Sn), whereSn denotes the space

of real symmetricn× n matrices, such thatDξ τ → H onSn−1, thenγ isC2(Sn−1) andDξ = H .
In this case, the convergence of a solutionuτ to (2.4) withβ = βτ , γ = γ τ andf = f τ is well
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known (cf. [CGG1], [Ca], and [GG5]). However, if we do not assume the convergence of derivatives
of γ τ , the convergence ansatz has recently been proved forn = 2 in [GG4] and [GG5]. Note that
the meaning of a solution to (2.4) is not clear at all for nondifferentiableγ since the term divξ(∇u)
is not well defined even for smoothu. The papers [GG4] and [GG5] provide a proper notion of
solution. Note that the notion is consistent with the more restrictive notion of [GG1]; the proof is
based on an elementary comparison principle in [GGu].

THEOREM 2.3 ([GG4], [GG5]) Assume thatn = 2, γ |S1 isC2 except at finitely many pointsP =

{Pi}
m
i=1, and the angular second derivatives ofγ |S1 are bounded onS1

\ P . Then the convergence
ansatz is satisfied.

This is a very special version of the results in [GG4] or [GG5], where level set equations for
more general equations of the formV = g(n,− divΓt (n)) are studied. The main idea of the proof is
to reduce the problem to graph-like solutions of (2.1) which are studied in [GG2] and [GG3]. If the
convergence ansatz is fulfilled, by a standard argument, Theorem 2.2 yields:

THEOREM 2.4 Assume that the convergence ansatz is true. Assume thatβτ , γ τ andf τ satisfy
(β1)–(β3), (γ1)–(γ5), (f 1) and(ε1) with β = βτ , γ = γ τ andf = f τ , uniformly in τ . Let vτ

be a solution of (2.9) withβ = βτ , γ = γ τ andf = f τ with initial datavτ (x,0) = Q(d(x,0)/ε).
Then

vτ (x, t) →

{
1 if x ∈ {y ∈ Rn; u(y, t) > 0},

−1 if x ∈ {y ∈ Rn; u(y, t) < 0},

asτ , ε → 0. Hereu is a solution of (2.4) withβ andγ .

Of course, there is always a way to approximateγ by γτ having required properties.

LEMMA 2.5 Letγ : Rn → R be a function satisfying (γ2)–(γ4). Then there exists a sequence
{γτ }τ∈(0,τ0) of functions satisfying (γ1)–(γ5) such thatγτ → γ as τ → 0 locally uniformly.
Moreover, a positive constantΛγ in (γ3) for γτ can be taken independent ofτ ∈ (0, τ0).

REMARK 2.6 The assumption onγ in Lemma 2.5 covers cases when{p; γ (p) = 1} contains
nondifferentiable points and/or flat portions. For example,γ (p) = max{|pj |; j = 1, . . . , n} or
γ (p) =

∑n
j=1 |pj | satisfies the assumptions of Lemma 2.5.

One can find a way to smoothenγ in Theorem 3.3.1 of [Sc]. In general, however, approximations
to γ which are obtained by that method do not satisfy (γ5). In fact, forγ (p) = max{|pj |; j =

1, . . . , n} and smallτ0, we have

γτ (p) =

∫
Rn
γ (p + |p|q)ϕτ (|q|)dq = γ (p)

in some small neighborhood of(1,0, . . . ,0), whereϕτ : [0,∞) → [0,∞) is a function as in
Theorem 3.3.1 of [Sc] with suppϕτ ⊂ [τ/2, τ ].

Proof of Lemma 2.5. Here we take the heat kernelG(p, τ) = (4πτ)−n/2 exp(−|p|
2/4τ) and

define

γ̃ (p, τ ) := (γ ∗G(·, τ ))(p) =

∫
Rn
γ (q)G(p − q, τ )dq.

We getγ̃ ∈ C∞(Rn×(0,∞)) andγ̃ (·, τ ) → γ asτ → 0 locally uniformly by standard arguments.
Moreoverγ̃ is strictly convex, and even more,〈∇

2γ̃ (p, τ )ξ, ξ〉 > 0 for (p, τ ) ∈ Rn × (0,∞) and
ξ ∈ Rn \ {0}. In fact, we obtain the strict convexity of̃γ by the convexity ofγ sinceG > 0.
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To see〈∇
2γ̃ (p, τ )ξ, ξ 〉 > 0 for (p, τ ) ∈ Rn × (0,∞) andξ ∈ Rn \ {0}, we defineφ(p, τ) :=

〈∇
2γ̃ (p, τ )ξ, ξ〉 = (γ ∗

∂2G

∂ξ2 (·, τ ))(p). We shall assume that there exists(p0, τ0) ∈ Rn × (0,∞)

with φ(p0, τ0) = 0 and derive a contradiction. We observe thatφ is a solution of the heat equation
andφ > 0 in Rn× (0,∞). Using the strong maximum principle for the heat equation, we getφ ≡ 0
for Rn × (0, τ0]. This implies that the functionσ 7→ γ̃ (p + σξ, τ ) is linear forτ ∈ (0, τ0], which
contradicts the strict convexity of̃γ .

The sequence{γ̃ (·, τ )} gives an approximation ofγ . However, unfortunatelỹγ (·, τ ) is not
positively homogeneous of degree 1. By usingγ̃ , we shall produce a function which satisfies
(γ1)–(γ5) and approximatesγ . We takeτ̄ > 0 satisfying 0 ∈ F τ \ ∂Fτ for τ 6 τ̄ , where
Fτ = {p; γ̃ (p, τ ) 6 1}. We define

γτ (p) = inf{r; r > 0, p/r ∈ Fτ }.

As we shall see later,γτ is as desired, i.e., it has properties (γ1)–(γ5), there exists a uniform bound
Λγ in (γ3) for γτ , andγτ → γ asτ → 0 locally uniformly.

The homogeneity (γ2) and the convexity (γ4) easily follow from the definition ofγτ .
The smoothness (γ1) follows from an estimate ofDγ̃ on ∂Fτ . Sinceγ̃ is strictly convex and

γ̃ (0, τ ) < 1 for τ < τ̄ , we get|Dγ̃ (p, τ)| 6= 0, in particular,〈Dγ̃ (p, τ), p〉 > 0 for (p, τ ) ∈

∂Fτ × (0, τ̄ ). We defineg(r, q) = γ̃ (rq, τ )− 1 for r > 0 andq ∈ Sn−1, and get

∂g

∂r
(r, q) =

1

r
〈Dγ̃ (p, τ), p〉 > 0

for p = rq ∈ ∂Fτ . This implies that there exists a smooth functionϕ = ϕ(q) for q ∈ Sn−1 with
g(ϕ(q), q) = 0 so thatϕ(q)q ∈ ∂Fτ since∂Fτ = {p; γ̃ (p, τ ) = 1} = {p; γτ (p) = 1}. This
yieldsγτ (p) = |p|(ϕ(p/|p|))−1 so thatγτ is smooth outside the origin.

Property (γ5) follows from the strict convexity ofFτ . In fact, these two conditions are equivalent
(see [G2, Remark 1.7.5]). We indicate here the proof that the strict convexity ofFτ implies the strict
convexity ofγ 2

τ . By (γ4) we get{p; γτ (p) 6 c} = {cp; γτ (p) 6 1} = {cp; γ̃ (p, τ ) 6 1} for
c > 0. This andD2γ̃ > 0 yield

〈RξD
2γτ (p)Rξη, η〉 > 0 for p, η ∈ Rn \ {0} with 〈ξ, η〉 = 0,

whereξ = Dγτ (p) andRξ = I − (ξ ⊗ ξ)/|ξ |2. SinceRξη = η we obtain

〈RξD
2γτ (p)Rξη, η〉 = 〈D2γτ (p)η − |ξ |−2ξ ⊗ ξD2γτ (p)η, η〉

= 〈D2γτ (p)η, η〉 − |ξ |−2
〈ξ,D2γτ (p)η〉〈ξ, η〉 = 〈D2γτ (p)η, η〉,

i.e., 〈D2γτ (p)η, η〉 > 0 for p, η ∈ Rn \ {0} with 〈ξ, η〉 = 0. By using this inequality we get
KerD2γτ (p) = Rp = {cp; c ∈ R} (see [G2, Remark 1.7.5]). In fact, we obtainD2γτ (p)p = 0
sinceγτ is positively homogeneous of degree 1. To see KerD2γτ (p) = Rp we shall assume that
there existsq ∈ KerD2γτ (p) with 〈p, q〉 = 0 and derive a contradiction. We setx := −〈ξ, q〉p +

γτ (p)q = −〈ξ, q〉p + 〈ξ, p〉q. Then we obtainx 6= 0, 〈ξ, x〉 = 0 andD2γτ (p)x = 0. However,
〈D2γτ (p)x, x〉 > 0 since〈ξ, x〉 = 0. This is a contradiction.

For x 6= 0, we setx = c1p + c2q for p, q ∈ Rn andc1, c2 ∈ R with 〈p, q〉 = 0 and shall
prove that〈D2γτ (p)

2x, x〉 > 0. If c2 = 0, then〈D2γτ (p)
2x, x〉 = 2c2

1γτ (p)
2 > 0. If c2 6= 0, then

〈D2γ (p)2x, x〉 > c2
2〈D

2γτ (p)q, q〉 > 0 since KerD2γτ (p) = Rp. We have thus established (γ5).
The uniform bound (γ3) and the locally uniform convergenceγτ → γ asτ → 0 easily follow

from the locally uniform convergencẽγ (·, τ ) → γ asτ → 0 and the homogeneity of each function.
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3. Properties of the anisotropic distance function

In this section, we derive some properties of the anisotropic distance function, which follow from
those of the support function. Most of them have already been proved in [BP2] for the support
function and in [ElS2] for the anisotropic distance function. However, we need to refine some of
them for our purpose. Especially, a refined version of an estimate of∂td is crucial for the proof of
our uniform convergence result.

We list some properties ofγ ◦:

γ (Dγ ◦(p)) = γ ◦(Dγ (p)) = 1 for p 6= 0, (3.1)

γ (p)Dγ ◦(Dγ (p)) = γ ◦(p)Dγ (Dγ ◦(p)) = p for p 6= 0, (3.2)

D2γ ◦(p)Dγ (Dγ ◦(p)) = D2γ (p)Dγ ◦(Dγ (p)) = 0 for p 6= 0. (3.3)

We only give a few remarks on the proof; see [BP2] for the details.
Since{p ∈ Rn; γ (p) 6 1} is convex, we see that(γ ◦)◦ = γ by convex analysis. The first

equalities of (3.1)–(3.3) easily follow from this duality formula. Moreover, the identity of (3.3)
follows from (3.1) by differentiation. In [BP2], to prove (3.1), one needs to assume that, forp 6= 0,
there exists a uniqueq ∈ {p ∈ Rn; γ (p) 6 1} satisfyingγ ◦(p) = 〈p, q〉. In our situation, this is
the case sinceγ 2 is strictly convex.

3.1 Properties ofd

We state the general properties of the anisotropic distance from a subset inRn.

LEMMA 3.1 Assume thatγ satisfies (γ1)–(γ5). LetΓ ⊂ Rn be a closed subset. Defined(x) =

Ξ(x, Γ ). Thend is a viscosity supersolution of

γ (∇d) = 1, −γ (∇d) = −1
−〈∇

2dDγ (∇d),Dγ (∇d)〉 = 0

}
in {x ∈ Rn; d(x) > 0}.

Lemma 3.1 comes from (3.1) and the derivative of (3.1) in the directionDγ (∇d). Fortunately,
however, we can prove the first equation without the differentiability ofd by using viscosity notions.
We shall give the proof for completeness. In the theory of viscosity solutions, we often consider the
upper and lower semicontinuous envelopes of functions to show that they are a viscosity subsolution
and supersolution of an equation, respectively. However, since

−γ ◦(y − x) 6 d(x)− d(y) 6 γ ◦(x − y) for all x, y ∈ Rn,

d is Lipschitz continuous. Therefore we do not have to consider a lower semicontinuous envelope.

Proof of Lemma 3.1. Fix x0 ∈ {x; d(x) > 0}. Letϕ ∈ C2(Rn) satisfy

d(x)− ϕ(x) > d(x0)− ϕ(x0) for x ∈ Rn.

SinceΓ is closed, there existsy0 ∈ Γ satisfying

d(x0) = γ ◦(x0 − y0).

Then
γ ◦(x − y0)− ϕ(x) > d(x)− ϕ(x) > d(x0)− ϕ(x0) = γ ◦(x0 − y0)− ϕ(x0).
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We first show the first equation of the lemma. Sinceγ is strictly convex, for everyx there exists
a unique vectorqx ∈ {p; γ (p) 6 1} satisfying

γ (x − y0) = 〈x − y0, qx〉 and γ (qx) = 1.

We setq0 = qx0. Thenqx → q0 asx → x0 by taking a subsequence of{qx} if necessary. By a
calculation we find that

〈x − y0, qx〉 − ϕ(x) = γ ◦(x − y0)− ϕ(x) > γ ◦(x0 − y0)− ϕ(x0) > 〈x0 − y0, qx〉 − ϕ(x).

Thus
〈x − x0, qx〉 > ϕ(x)− ϕ(x0) = 〈x − x0,∇ϕ(x0)〉 + o(|x − x0|)

as|x − x0| → 0. We now divide by|x − x0| and letx → x0 to find, fore ∈ Sn−1,

〈e, q0 − ∇ϕ(x0)〉 > 0.

Thusq0 = ∇ϕ(x0). Fromγ (q0) = 1, we obtain

γ (∇ϕ(x0)) > 1 and −γ (∇ϕ(x0)) > −1.

Next we show the second equation. We differentiate (3.1) in the directionDγ (Dγ ◦(p)) to get

〈D2γ ◦(p)Dγ (Dγ ◦(p)),Dγ (Dγ ◦(p))〉 = 0 for p 6= 0.

Herex0 ∈ {x; d(x) > 0} impliesx0 6= y0. We can now calculate the derivatives ofγ ◦(· − y0) atx0
and obtain

Dγ ◦(x0 − y0) = ∇ϕ(x0), D2γ ◦(x0 − y0) > ∇ϕ(x0).

We thus get

−〈∇
2ϕ(x0)Dγ (∇ϕ(x0)),Dγ (∇ϕ(x0))〉

> 〈D2γ ◦(x0 − y0)Dγ (Dγ
◦(x0 − y0)),Dγ (Dγ

◦(x0 − y0))〉 = 0,

which yields the second equation. 2

We remark that ford(x) = Ξ(Γ, x), we obtain a similar result. However, the sign of∇d is reversed,
i.e., the reversed version of the distance is a viscosity supersolution ofγ (−∇d) = 1, −γ (−∇d) =

−1, and−〈∇
2dDγ (−∇d),Dγ (−∇d)〉 = 0. Note that we do not treat the reversed version of the

distance in this paper.
We next obtain properties of anisotropic distance functions from the moving interfaceΓt .

LEMMA 3.2 Assume thatβ, γ andf satisfy (β1)–(β3), (γ1)–(γ5), and (f 1), respectively. Let
u be a viscosity solution of (2.4) with initial datau(x,0) = d0(x). Let d(x, t) be an anisotropic
distance function defined by

d(x, t) =

{
Ξ(x, Γt ) for x ∈ {u(x, t) > 0},

−Ξ(x, Γt ) for x ∈ {u(x, t) < 0},

whereΓt = {x ∈ Rn; u(x, t) = 0}. Thend is a viscosity supersolution of (2.4) in{(x, t) ∈

Rn × (0, T ); d(x, t) > 0}.

This lemma is already proved in [ElS2, Lemma 3.3]. Their lemma has an error term
C(Λγ )|∇d|d. However this term disappears iff is independent of the space variablex.
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3.2 Estimate of∂td

In this section we prepare an estimate of∂td which is useful to construct our supersolution.

LEMMA 3.3 Assume thatβ, γ andf satisfy (β1)–(β3), (γ1)–(γ5) and (f 1), respectively. Letd
be the anisotropic distance function defined in Lemma 3.2.

(i) Let µ be the function defined byµ(σ) =
∫ σ

0 s/(1 + s)ds. Then

µ(d(x̂, t)) > µ(d(x̂, t̂))− Lβ,f (t − t̂ )

for (x̂, t), (x̂, t̂) ∈ {(x, t); d(x, t) > 0} provided that 06 t̂ 6 t < T , whereLβ,f is a positive
constant depends only onn,Λβ , andΛf .

(ii) The anisotropic distance functiond is a viscosity supersolution of

∂td = −Lβ,f

(
1 +

1

d

)
in {(x, t); d(x, t) > 0}.

This lemma is a refined version of that in [ElS2]. In particular, the constantLβ,f is independent
of any derivatives ofγ . This is the main advantage over [ElS2] so that we obtain our uniform
convergence result.

Proof. Fix (x̂, t̂) ∈ {(x, t); d(x, t) > 0} and let r̂ = d(x̂, t̂). We define the functionz : Rn ×

[0, T ) → R by
z(x, t) = µ(r̂)− L(t − t̂ )− µ(γ ◦(x̂ − x)),

whereL is a positive constant to be determined later. Sinceγ ◦
∈ C2(Rn \ {0}) we observe that

z ∈ C2,1((Rn \ {x̂})× [0, T )) ∩ C1,1(Rn × [0, T )). By a straightforward calculation we obtain

∂tz(x, t) = −L,

∇z(x, t) = µ′(γ ◦(q̂))Dγ ◦(q̂),

∇
2z(x, t) = −µ′′(γ ◦(q̂))Dγ ◦(q̂)⊗Dγ ◦(q̂)− µ′(γ ◦(q̂))D2γ ◦(q̂)

for x 6= x̂, whereq̂ = x̂ − x. We observe thatz ∈ C1,1(Rn × [0, T )) and∇z(x̂, t) = 0.
In the following argument, we shall verify thatz is a viscosity subsolution of (2.4). For this

purpose, we give an estimate of the second term of (2.4) forz provided thatx̂ − x 6= 0. First we
remark thatµ′ > 0 onR. Then we obtain

γ (∇z) = µ′(γ ◦(q̂))γ (Dγ ◦(q̂)) = µ′(γ ◦(q̂)),

Dγ (∇z) = Dγ (Dγ ◦(q̂)),

D2γ (∇z) =
1

µ′(γ ◦(q̂))
D2γ (Dγ ◦(q̂)).

Therefore, by straightforward calculation,

tr{γ (∇z)D2γ (∇z)∇2z} = −µ′′(γ ◦(q̂))〈D2γ (Dγ ◦(q̂))Dγ ◦(q̂),Dγ ◦(q̂)〉

+µ′(γ ◦(q̂))div{Dγ (Dγ ◦(q̂))}. (3.4)

By calculating the derivative of the second equality of (3.1), we obtain

D2γ (p)Dγ ◦(Dγ (p)) = 0 for p 6= 0.
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Takingp = Dγ ◦(q̂) yields

D2γ (Dγ ◦(q̂))Dγ ◦(Dγ (Dγ ◦(q̂))) = 0.

By (3.2) and sinceDγ ◦ is positively homogeneous of degree 0, we obtain

D2γ (Dγ ◦(q̂))Dγ ◦(q̂) = 0,

i.e., the first term on the right hand side of (3.4) vanishes. Moreover, from (3.2) and sinceγ ◦ is
positively homogeneous of degree 1, we obtain

divDγ (Dγ ◦(p)) = div

(
p

γ ◦(p)

)
=
nγ ◦(p)− 〈p,Dγ ◦(p)〉

γ ◦(p)2
=
n− 1

γ ◦(p)
.

Combining these andµ′(σ ) = σ/(1 + σ) gives

tr{γ (∇z)D2γ (∇z)∇2z} = −µ′(γ ◦(q̂))
n− 1

γ ◦(q̂)
= −

n− 1

1 + γ ◦(q̂)
> −(n− 1). (3.5)

We are now in a position to verify thatz is a viscosity subsolution of (2.4). First we verify this
in (Rn \ {x̂})× (0, T ). By (3.5) and sinceµ′ < 1 we obtain

β(∇z)∂tz− tr{γ (∇z)D2γ (∇z)∇2z} − γ (∇z)f 6 −
L

Λβ
+ n− 1 + |f |.

We takeL > 0 satisfying−L/Λβ + n− 1+ |f | 6 0, which shows thatz is a viscosity subsolution
of (2.4) in(Rn \ {x̂})× (0, T ). Here we takeL = Λβ(n+Λf ) =: Lβ,f .

Next we verify thatz is a viscosity subsolution in a neighborhood of{x̂}× (0, T ). Let ŝ ∈ (0, T )
and letϕ ∈ C2(Rn × (0, T )) satisfy

z(x, t)− ϕ(x, t) < z(x̂, ŝ)− ϕ(x̂, ŝ) for (x, t) ∈ Rn × (0, T ) \ {(x̂, ŝ)}.

Then∇ϕ(x̂, ŝ) = ∇z(x̂, ŝ) = 0. Fix e ∈ Sn−1 and define

ϕτ (x, t) = ϕ(x, t)+ τ 〈e, x〉.

Then, for sufficiently smallτ > 0, there existsxτ ∈ {x; d(x, ŝ) > 0} satisfying

z(·, ŝ)− ϕτ (·, ŝ) 6 z(xτ , ŝ)− ϕτ (xτ , ŝ) in some neighborhood of̂x,

xτ 6= x̂ andxτ → x̂ asτ → 0.

We only verify thatxτ 6= x̂. If xτ = x̂, then∇ϕτ (xτ , ŝ) = ∇ϕ(x̂, ŝ)+ τe = τe 6= 0. However, also
∇ϕτ (xτ , ŝ) = ∇z(xτ , ŝ) = ∇z(x̂, ŝ) = 0. This is a contradiction.

We now observe that

∂tz(xτ , ŝ) → ∂tz(x̂, ŝ) = ∂tϕ(x̂, ŝ),

∇ϕτ (xτ , ŝ) → ∇ϕ(x̂, ŝ),

∇
2ϕτ (xτ , ŝ) → ∇

2ϕ(x̂, ŝ)

 asτ → 0.
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Moreover,∇ϕτ (xτ , ŝ) = ∇z(xτ , ŝ) and∇
2ϕτ (xτ , ŝ) > ∇

2z(xτ , ŝ) sincez − ϕτ (·, ŝ) attains its
maximum atx̂. Therefore

[β(∇ϕ)∂tϕ − tr{γ (∇ϕ)D2γ (∇ϕ)∇2ϕ} − γ (∇ϕ)f ]∗(x̂, ŝ)

6 lim
τ→0

[β(∇ϕτ )∂tz− tr{γ (∇ϕτ )D
2γ (∇ϕτ )∇

2ϕτ } − γ (∇ϕτ )f ](xτ , ŝ)

6 lim
τ→0

[β(∇z)∂tz− tr{γ (∇z)D2γ (∇z)∇2z} − γ (∇z)f ](xτ , ŝ) 6 0.

We conclude thatz is a viscosity subsolution of (2.4) inRn × (0, T ).
We now verify (i). From [CGG1], we know thatu+

k (x, t) := min(kmax(u(x, t),0),1) is a
viscosity solution of (2.4) fork > 0 sinceu(x, t) is a viscosity solution of (2.4). Moreover,
u∞(x, t) := χ{u>0}(x, t) = limk→∞ inf{u+

j (y, s); |y − x| + |s − t | < 1/k, j > k}, is a viscosity
supersolution of (2.4) (see [CIL, Lemma 6.1]). We now consider the setU = {x; γ ◦(x̂ − x) < r̂}.
Then we obtain

z(x, t̂) = µ(r̂)− µ(γ ◦(x̂ − x)) 6 µ(r̂) = µ(r̂)u∞(x, t̂) for x ∈ U

sinceµ > 0 andd(x, t̂) > 0 for x ∈ U . Moreover, for(x, t) ∈ ∂U × [ t̂ , T ),

z(x, t) = −Lβ,f (t − t̂ ) 6 0 6 µ(r̂)u∞(x, t).

Therefore, by the comparison principle,

z(x, t) 6 µ(r̂)u∞(x, t) for (x, t) ∈ U × [ t̂ , T ).

For t ∈ [ t̂ , T ), fix ŷ ∈ Rn satisfyingu(ŷ, t) = 0 andd(x̂, t) = γ ◦(x̂ − ŷ). If ŷ ∈ U , then

0 = µ(r̂)u∞(ŷ, t) > z(ŷ, t) = µ(r̂)− Lβ,f (t − t̂ )− µ(γ ◦(x̂ − ŷ))

= µ(d(x̂, t̂))− Lβ,f (t − t̂ )− µ(d(x̂, t)),

or
µ(d(x̂, t)) > µ(d(x̂, t̂))− Lβ,f (t − t̂ ).

If ŷ /∈ U , then

µ(d(x̂, t)) = µ(γ ◦(x̂ − ŷ)) > µ(r̂) = µ(d(x̂, t̂)) > µ(d(x̂, t̂))− Lβ,f (t − t̂ ),

which yields (i).
Finally, we verify (ii). Let(x0, t0) ∈ {(x, t); d(x, t) > 0} and letϕ ∈ C2(Rn × (0, T )) satisfy

d(x, t)− ϕ(x, t) > d(x0, t0)− ϕ(x0, t0) = 0 for (x, t) ∈ Rn × (0, T ).

From (i) we observe thatd(x, t) is left continuous in time in the sense that

lim
x→x0

lim
t↑t0

d(x, t) = d(x0, t0)

(see [ElS2, Proposition 3.5]). Then there exists a constantr > 0 satisfying

d(x0, t) > 0 for t ∈ (t0 − r, t0].
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By using (i) we see that

µ(ϕ(x0, t0)) = µ(d(x0, t0)) > µ(d(x0, t))− Lβ,f (t0 − t) > µ(ϕ(x0, t))− Lβ,f (t0 − t),

or
µ(ϕ(x0, t0))− µ(ϕ(x0, t))

t0 − t
> −Lβ,f .

Letting t → t0 yields

µ′(ϕ(x0, t0))∂tϕ(x0, t0) > −Lβ,f .

Sinceϕ(x0, t0) = d(x0, t0) andµ′(σ ) = σ/(1 + σ) we obtain

∂tϕ(x0, t0) > −Lβ,f

(
1 +

1

d(x0, t0)

)
. 2

3.3 Truncated anisotropic distance function

In this section we shall prepare several estimates of truncated anisotropic distance functions to
construct our supersolution having a uniform estimate.

We first recall a functionη introduced in [ESS]. We fixδ ∈ (0,1) and we consider a function
η ∈ C∞(R) satisfying

η(σ ) =

{
σ − δ if σ > δ/2,
−δ if σ 6 δ/4,

(3.6)

0 6 η′ 6 Cη, |η′′
| 6 Cη/δ, (3.7)

whereCη is a constant independent ofσ andδ.
We now introduce a truncated anisotropic distance function. Letu be a viscosity solution of

(2.4) with initial datau0(x) = d0(x), whered0 is the anisotropic signed distance function defined
by (2.13). We set

Ot = {x ∈ Rn; u(x, t) > 0},

Dt = {x ∈ Rn; u(x, t) < 0},

Γt = {x ∈ Rn; u(x, t) = 0}.

We now define the anisotropic signed distance functiond : Rn × [0, T ) → R from the moving
interfaceΓt by

d(x, t) =

{
Ξ(x, Γt ) if x ∈ Ot ∪ Γt ,

−Ξ(x, Γt ) if x ∈ Dt .

Thetruncated anisotropic distance functionω : Rn × [0, T ) → R is defined by

ω(x, t) = η(d(x, t)).

Now we state some properties ofω.
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LEMMA 3.4 Assume thatβ, γ andf satisfy (β1)–(β3), (γ1)–(γ5) and (f 1), respectively. Then
the truncated anisotropic distance functionω(x, t) = η(d(x, t)) is a viscosity supersolution of

β(∇ω)∂tω − tr{D2α(∇ω)∇2ω} − γ (∇ω)f = −Cη/δ

−|∇ω| = −Cγ

}
in Rn × (0, T ), (3.8)

whereCγ is a positive constant depending only onΛγ . Moreover,ω is a viscosity supersolution of

β(∇ω)∂tω − tr{D2α(∇ω)∇2ω} − γ (∇ω)f = 0

±γ (∇ω) = ±1

}
in {(x, t); d(x, t) > δ/2}. (3.9)

We remark that the equation in Lemma 3.4 is different from (2.4). We replace the second term
of (2.4) by that of the Allen–Cahn equation (2.6) to get (3.8) or (3.9). This modification is useful to
construct a supersolution for (2.9).

Proof. Let (x0, t0) ∈ Rn × (0, T ) and letϕ ∈ C2(Rn × (0, T )) satisfy

ω(x, t)− ϕ(x, t) > ω(x0, t0)− ϕ(x0, t0) whenever(x, t) 6= (x0, t0).

We divide the argument into two cases:d(x0, t0) > 0 andd(x0, t0) 6 0.

Case 1. Assume thatd(x0, t0) > 0. Letτ ∈ (0,1) be a small parameter. We introduce a function
ητ approximatingη, defined by

ητ (σ ) = η(σ )+ τσ.

Then there exists a neighborhoodU = U(x0, t0) of (x0, t0) and(xτ , tτ ) ∈ U satisfying

ητ (d(x, t))− ϕ(x, t) > ητ (d(xτ , tτ ))− ϕ(xτ , tτ ) for (x, t) ∈ U,

(xτ , tτ ) → (x0, t0) asτ → 0.

Sinceη′
τ = η′

+ τ > τ > 0, there existsρτ = (ητ )
−1 andρ′

τ > 0. Define

ϕ̄τ (x, t) = ρτ (ϕ(x, t)− ϕ(xτ , tτ )+ ητ (d(xτ , tτ ))).

Then

d(x, t)− ϕ̄τ (x, t) > d(xτ , tτ )− ϕ̄τ (xτ , tτ ) = 0 for (x, t) ∈ U.

By straightforward calculation we obtain

∂t ϕ̄τ = ρ′
τ (κ)∂tϕ, (3.10)

∇ϕ̄τ = ρ′
τ (κ)∇ϕ, (3.11)

∇
2ϕ̄τ = ρ′′

τ (κ)∇ϕ ⊗ ∇ϕ + ρ′(κ)∇2ϕ, (3.12)

whereκ = κ(x, t) = ϕ(x, t)− ϕ(xτ , tτ )+ ητ (d(xτ , tτ )).
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By Lemmas 3.1 and 3.2,

γ (∇ϕ̄τ ) = 1, in particular,∇ϕ̄τ 6= 0

β(∇ϕ̄τ )∂t ϕ̄τ − tr{γ (∇ϕ̄τ )D
2γ (∇ϕ̄τ )∇

2ϕ̄τ } − γ (∇ϕ̄τ )f > 0

}
at (xτ , tτ ), (3.13)

where we do not need to consider the place where the gradient of the unknown of (3.13) equals zero
since∇ϕ̄τ 6= 0 at(xτ , tτ ). By calculating the term including trace and using Lemma 3.1, we obtain

tr{γ (∇ϕ̄τ )D
2γ (∇ϕ̄τ )∇

2ϕ̄τ } = tr{D2α(∇ϕ̄τ )∇
2ϕ̄τ } − 〈∇

2ϕ̄τDγ (∇ϕ̄τ ),Dγ (∇ϕ̄τ )〉

> tr{D2α(∇ϕ̄τ )∇
2ϕ̄τ }.

From (3.13) it now follows that

β(∇ϕ̄τ )∂t ϕ̄τ − tr{D2α(∇ϕ̄τ )∇
2ϕ̄τ } − γ (∇ϕ̄τ )f > 0 at(xτ , tτ ). (3.14)

By the homogeneity ofβ, γ andα we obtain

β(∇ϕ̄τ ) = β(∇ϕ), γ (∇ϕ̄τ ) = ρ′
τ (κ)γ (∇ϕ), D2α(∇ϕ̄τ ) = D2α(∇ϕ).

Combining (3.10)–(3.12) and the above, we deduce from (3.14) that

β(∇ϕ)∂tϕ − tr{D2α(∇ϕ)∇2ϕ} − γ (∇ϕ)f >
ρ′′
τ (κ)

ρ′
τ (κ)

tr{D2α(∇ϕ)∇ϕ ⊗ ∇ϕ} at (xτ , tτ ).

Sinceα is positively homogeneous of degree 2, we obtain

tr{D2α(∇ϕ)∇ϕ ⊗ ∇ϕ} = 〈D2α(∇ϕ)∇ϕ,∇ϕ〉 = 2α(∇ϕ) = γ (∇ϕ)2.

Moreover,ρ′′
τ (κ)/ρ

′
τ (κ) = −η′′

τ (ρτ (κ))ρ
′
τ (κ)

2
= −η′′

τ (ϕ̄τ )ρ
′
τ (κ)

2. Hence

ρ′′
τ (κ)

ρ′
τ (κ)

tr{D2α(∇ϕ)∇ϕ ⊗ ∇ϕ} = −η′′
τ (ϕ̄τ )(ρ

′
τ (κ)γ (∇ϕ))

2

= −η′′
τ (ϕ̄τ )γ (∇ϕ̄τ )

2
= −η′′

τ (ϕ̄τ ).

Combining these, we obtain

β(∇ϕ)∂tϕ − tr{D2α(∇ϕ)∇2ϕ} − γ (∇ϕ)f > −η′′
τ (ϕ̄τ ) at (xτ , tτ ). (3.15)

Case 1.1. We verify (3.8) for(x0, t0) ∈ {(x, t); d(x, t) > 0}. By (3.7) we obtain

−η′′
τ (ϕ̄τ ) > −Cη/δ at (xτ , tτ ).

We apply this estimate to (3.15) and letτ → 0 to find that

β(∇ϕ)∂tϕ − tr{D2α(∇ϕ)∇2ϕ} − γ (∇ϕ)f > −Cη/δ at (x0, t0).

Moreover, by (3.13),

1 = γ (∇ϕ̄τ ) = |∇ϕ̄τ |γ

(
∇ϕ̄τ

|∇ϕ̄τ |

)
>

|∇ϕ̄τ |

Λγ
at (xτ , tτ ).
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By definition we have|∇ϕ| = |∇ϕ̄τ |/ρ
′
τ (κ) and 1/ρ′

τ (·) = η′
τ (ρτ (·)) 6 Cη + τ . Thus

|∇ϕ| 6 (Cη + τ)|∇ϕ̄τ | 6 (Cη + τ)Λγ at (xτ , tτ ).

We letτ → 0 to conclude that

|∇ϕ| 6 CηΛγ =: Cγ at (x0, t0).

Case 1.2. We verify (3.9). Sinced is lower semicontinuous, there exists a positive constantτ0 > 0
such thatτ < τ0 impliesd(xτ , tτ ) > δ/2. Sinceη′′

τ (σ ) = 0 for σ > δ/2, we obtain

η′′
τ (ϕτ (xτ , tτ )) = η′′

τ (d(xτ , tτ )) = 0 for τ < τ0.

We apply this equality to (3.15) and letτ → 0 to deduce that

β(∇ϕ)∂tϕ − tr{D2α(∇ϕ)∇2ϕ} − γ (∇ϕ)f > 0 at(x0, t0).

Moreover, since∇ϕ = η′
τ (ϕ̄τ )∇ϕ̄τ = (1 + τ)∇ϕ̄τ , by (3.13) we obtain

1 = γ

(
∇ϕ

1 + τ

)
at (xτ , tτ ).

Letting τ → 0 yieldsγ (∇ϕ) = 1 at(x0, t0).

Case 2. Assume thatd(x0, t0) 6 0. Sinced is left continuous in time in the sense that

lim
x→x0

lim
t↑t0

d(x, t) = d(x0, t0),

there exist a positive constantr0 and a neighborhoodU0(x0) of x0 satisfying

d(x, t) 6 δ/4 for (x, t) ∈ U0(x0)× (t0 − r0, t0).

For (x, t) ∈ U0(x0)× (t0 − r0, t0) we haveω(x, t) = −δ, i.e.,ω is constant there. This implies

∂tϕ(x0, t0) > 0, ∇ϕ(x0, t0) = 0, ∇
2ϕ(x0, t0) 6 0.

Since∇ϕ(x0, t0) = 0, we need to take the upper semicontinuous envelope of the equation (3.8).
We observe that

β(p)∂tϕ > 0, − tr{D2α(p)∇2ϕ(x0, t0)} > 0 for p 6= 0,

sinceβ > 0 andγ 2 is strictly convex. We have limp→0 γ (p)f = 0. Therefore

[β(∇ϕ)∂tϕ − tr{D2α(∇ϕ)∇2ϕ} − γ (∇ϕ)f ]∗(x0, t0)

> lim
p→0

[β(p)∂tϕ(x0, t0)− tr{D2α(p)∇2ϕ(x0, t0)} − γ (p)f ] > 0 > −Cη/δ.

Moreover,|∇ϕ(x0, t0)| = 0 6 Cγ . 2

We next give an estimate of∂tω by using Lemma 3.3.
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LEMMA 3.5 Assume thatβ, γ andf satisfy (β1)–(β3), (γ1)–(γ5), and (f 1), respectively. There
exists a positive constantCβ,f which depends only onn, Λβ , andΛf such that the truncated
anisotropic distance functionω(x, t) = η(d(x, t)) is a viscosity supersolution of

∂tω = −Cβ,f /δ in Rn × (0, T ). (3.16)

Proof. We continue to use the notations of the proof of Lemma 3.4.

Case 1. Assume thatd(x0, t0) > δ/8. Sinced is lower semicontinuous, there exists a positive
constantτ1 > 0 satisfying

d(xτ , tτ ) > δ/8 for τ < τ1.

Then Lemma 3.3 shows that

∂t ϕ̄τ > −Lβ,f (1 + 1/d) at (xτ , tτ ).

Since∂t ϕ̄τ = ρ′
τ (κ)∂tϕ andd(xτ , tτ ) > δ/8, we obtain

∂tϕ > −
Lβ,f

ρ′
τ (κ)

(
1 +

8

δ

)
> −

9Lβ,f (‖η′
‖∞ + 1)

δ
at (xτ , tτ ),

where we have invoked thatτ ∈ (0,1) andδ ∈ (0,1). We takeCβ,f = 9Lβ,f (Cη + 1) and let
τ → 0 to reach the desired conclusion in{(x, t); d(x, t) > δ/8}.

Case 2. Assume thatd(x0, t0) 6 δ/8. By a similar argument to Case 2 in the proof of Lemma 3.4,
we obtain, in particular,

∂tϕ(x0, t0) > 0 > −Cβ,f /δ. 2

4. Construction of supersolutions for estimating the internal layer

In this section we construct a supersolution for estimating a solution of (2.9). The basic strategy
follows the construction of [ESS].

Let u be a viscosity solution of (2.4) with initial datau(x,0) = d0(x). The setΓ δt =

{x; u(x, t) = −2δ} is also a generalized solution of (2.1). So we introduce an anisotropic signed
distance functiondδ(x, t) defined by

dδ(x, t) =

{
Ξ(x, Γ δt ) if x ∈ {y; u(y, t) > −2δ},
−Ξ(x, Γ δt ) if x ∈ {y; u(y, t) < −2δ}.

By the definition ofdδ the properties in §3 still hold fordδ andωδ = η(dδ).
Combining this and the traveling wave of §2.3 we introduce a candidate for our viscosity

supersolution for (2.9). We define a functionψε : Rn × (0, T ) → R by

ψε(x, t) = Q

(
ωδ(x, t)+K1t

ε

)
+ εK2,

whereK1 andK2 are positive constants to be determined later. We shall verify the following
propositions.



MOTION BY ANISOTROPIC CURVATURE 337

PROPOSITION4.1 Assume thatβ, γ , f and ε satisfy (β1)–(β3), (γ1)–(γ5), (f 1) and (ε1),
respectively. Then, forδ > 0, there exist positive constantsK1 = K1(δ), K2 = K2(δ,Λβ ,Λf )

andε0 = ε0(δ,Λβ ,Λγ ,Λf ) such thatψε is a viscosity supersolution of

β(∇ψε)∂tψε − div{γ (∇ψε)ξ(∇ψε)} +
1

ε2
(W ′(ψε)− ελf ) =

Kβ,δ,f

ε
in Rn × (0, T )

provided thatε ∈ (0, ε0), whereKβ,δ,f is a numerical positive constant depending only onΛβ ,Λf
andδ.

This proposition says not only thatψε is a viscosity supersolution of (2.6) but also that the left
hand side of (2.6) withv = ψε increases to+∞ like 1/ε.

Proof. We shall takeε0 small seven times in our proof: in (4.5), (4.10), (4.11), (4.12), (4.14), (4.18),
and (4.19). It suffices to take the minimum of these choices to obtain the conclusion.

Let (xε, tε) ∈ Rn × (0, T ) and letϕ ∈ C2(Rn × (0, T )) satisfy

ψε(x, t)− ϕ(x, t) > ψε(xε, tε)− ϕ(xε, tε) = 0 whenever(x, t) 6= (xε, tε).

SinceQ′ > 0 in R we haveQ−1
∈ C∞(R) and(Q−1)′ > 0. Set

ϕ̃(x, t) = εQ−1(ϕ(x, t)− εK2)−K1t.

Thenϕ̃ ∈ C2,1(Rn × (0, T )) and

ωδ(x, t)− ϕ̃(x, t) > ωδ(xε, tε)− ϕ̃(xε, tε) for (x, t) ∈ Rn × (0, T ),

ϕ(x, t) = Q

(
ϕ̃(x, t)+K1t

ε

)
+ εK2.

By straightforward calculation we obtain

∂tϕ =
1

ε
Q′(h)(∂t ϕ̃ +K1), (4.1)

∇ϕ =
1

ε
Q′(h)∇ϕ, (4.2)

∇
2ϕ =

1

ε2
Q′′(h)∇ϕ̃ ⊗ ∇ϕ̃ +

1

ε
Q′(h)∇2ϕ̃, (4.3)

whereh = h(x, t) = (ϕ̃(x, t)+K1t)/ε. Moreover,

W ′(ψε) = W ′(ϕ) = W ′(Q(h))+ εK2W
′′(Q(h))+O(ε2K2

2) at (xε, tε) (4.4)

asε → 0. We now takeε0 = ε0(K2) small so that

|εK2| 6 1 providedε ∈ (0, ε0). (4.5)

Case 1. We assume that(xε, tε) satisfiesdδ(xε, tε) > δ/2. By Lemma 3.4 we have

γ (∇ϕ̃) = 1, in particular∇ϕ̃ 6= 0,

β(∇ϕ̃)∂t ϕ̃ − tr{D2α(∇ϕ̃)∇2ϕ̃} − γ (∇ϕ̃)f > 0

}
at (xε, tε). (4.6)
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We observe that∇ϕ 6= 0 since∇ϕ̃ 6= 0. We set

Rε = Rε(x, t) = β(∇ϕ)∂tϕ − tr{D2α(∇ϕ)∇2ϕ} +
1

ε2
(W ′(ψε)− ελf ). (4.7)

Our aim is to show that there exists a positive constantKβ,δ,f , which depends only onΛβ , Λf
andδ, satisfyingRε > Kβ,δ,f /ε at (xε, tε).

By the homogeneity ofβ, γ andα,

β(∇ϕ) = β(∇ϕ̃), γ (∇ϕ) =
1

ε
Q′(h)γ (∇ϕ̃), D2α(∇ϕ) = D2α(∇ϕ̃).

By (4.1)–(4.3) we now obtain

β(∇ϕ)∂tϕ = β(∇ϕ̃)Q′(h)
∂t ϕ̃ +K1

ε
,

and

tr{D2α(∇ϕ)∇2ϕ} =
Q′′(h)

ε2
〈D2α(∇ϕ̃)∇ϕ̃,∇ϕ̃〉 +

Q′(h)

ε
tr{D2α(∇ϕ̃)∇2ϕ̃}

=
Q′′(h)

ε2
γ (∇ϕ̃)2 +

Q′(h)

ε
tr{D2α(∇ϕ̃)∇2ϕ̃}.

Here we have invoked the property that〈D2α(p)p, p〉 = 2α(p) = γ (p)2 for p 6= 0 sinceα is
positively homogeneous of degree 2. Combining (4.4) and the above, we conclude that

Rε =
1

ε2
I−2 +

1

ε
I−1 +O(K2

2),

I−2 = −Q′′(h)γ (∇ϕ̃)2 +W ′(Q(h))− ελf, (4.8)

I−1 = K2W
′′(Q(h))+Q′(h)[β(∇ϕ̃)K1 + β(∇ϕ̃)∂t ϕ̃ − tr{D2α(∇ϕ̃)∇2ϕ̃}]. (4.9)

By (2.10) and sinceγ (∇ϕ̃) = 1,

I−2 = −Q′′(h)+W ′(Q(h))− ελf = cQ′(h).

Then, by using (4.6), we obtain

Rε =
1

ε

(
K2W

′′(Q(h))+Q′(h)

[
f +

c

ε
+ β(∇ϕ̃)K1

+ β(∇ϕ̃)∂t ϕ̃ − tr{D2α(∇ϕ̃)∇2ϕ̃} − γ (∇ϕ̃)f

])
+O(K2

2)

>
1

ε

[
K2W

′′(Q(h))+Q′(h)

(
f +

c

ε
+
K1

Λβ

)]
+O(K2

2) at (xε, tε).

We now determineK1. We take

K1 =
δ

4T
.

The reason for this choice is clarified in Case 2. By Proposition 2.1(i) we takeε0 = ε0(δ,Λf )

smaller so that

f +
c

ε
> −

K1

2Λβ
= −

δ

8ΛβT
providedε ∈ (0, ε0). (4.10)
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Then we obtain

Rε >
1

ε
[K2W

′′(Q(h))+Q′(h)Cβ,δ] +O(K2
2) at (xε, tε),

whereCβ,δ = δ/(8ΛβT ).
Now we determineK2. It will enable us to estimateRε in the case thatW ′′(Q(h)) < 0. The

basic strategy comes from the fact thatQ(σ) → tanhσ uniformly with respect toσ ∈ R andf
satisfying (f 1) asε → 0,W ′(tanhσ) > 0 for large enough|σ |, and we have a local uniform bound
of Q′ from below with respect tof andε satisfying (f 1) and (ε1).

By Proposition 2.1(ii) we takeε0 = ε0(Λf ) smaller so that

|Q(σ)− tanhσ | 6
1

2

(
1 −

1
√

2

)
=: ν for σ ∈ R providedε ∈ (0, ε0). (4.11)

We takeb = − sup{σ ; tanhσ + ν 6 −1/
√

2} = inf{σ ; tanhσ − ν > 1/
√

2} and let

K2 =
a2Cβ,δ

2a1
,

a1 = | inf
|σ |61+ν

W ′′(σ )|, a2 = inf{Q′(σ ); |σ | 6 b, ε ∈ (0, ε̄), |f | 6 Λf }.

We remark thata2 > 0 exists by Proposition 2.1(iii). Moreover,ε0 = ε0(K2) implies thatε0 depends
on δ,Λβ andΛf .

We consider two subcases.

Case 1.1. Assume that(xε, tε) ∈ {(x, t); |h(x, t)| 6 b}. ThenQ(h(xε, tε)) 6 1. Therefore

Rε >
1

ε
(−K2a1 + a2Cβ,δ)+O(K2

2) >
a2Cβ,δ

2ε
+O(K2

2) at (xε, tε).

This is why we takeK2 as above. We now takeε0 = ε0(δ,Λβ ,Λf ) smaller so that

|εO(K2
2)| 6 a2Cβ,δ/4 providedε ∈ (0, ε0). (4.12)

Then we obtain

Rε >
a2Cβ,δ

4ε
> 0 at(xε, tε). (4.13)

Case 1.2. Assume that(xε, tε) ∈ {(x, t); |h(x, t)| > b}. ThenW ′′(Q(h(xε, tε))) > 1 and

Rε > K2/ε +O(K2
2) at (xε, tε).

We now takeε0 = ε0(δ,Λβ ,Λf ) smaller so that

|εO(K2
2)| 6 K2/2 providedε ∈ (0, ε0). (4.14)

Then we obtain

Rε >
K2

2ε
> 0 at(xε, tε). (4.15)
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Case 2. We assume that(xε, tε) ∈ {(x, t); dδ(x, t) 6 δ/2}. By Lemma 3.4 we have

|∇ϕ̃(xε, tε)| 6 Cγ ,

[β(∇ϕ̃)∂t ϕ̃ − tr{D2α(∇ϕ̃)∇2ϕ̃} − γ (∇ϕ̃)f ]∗(xε, tε) > −Cη/δ.
(4.16)

We first observe that

h(xε, tε) =
η(dδ(xε, tε))+K1tε

ε
6 −

δ

4ε
< 0, (4.17)

i.e.,h → −∞ asε → 0. This is why we takeK1 as in (4.10). Therefore we takeε0 = ε0(δ) smaller
so that

(xε, tε) ∈ {(x, t); W ′′(Q(h(x, t))) > 1} for (xε, tε) ∈ {(x, t); dδ(x, t) < δ/2} (4.18)

providedε ∈ (0, ε0).

Case 2.1. Assume that∇ϕ̃(xε, tε) 6= 0. By the same argument as in Case 1.1, it suffices to see

Rε =
1

ε2
I−2 +

1

ε
I−1 +O(K2

2) > Kδ,β,f /δ at (xε, tε),

where Rε, I−2 and I−1 are defined by (4.7), (4.8), and (4.9), respectively. We remark that
γ (∇ϕ̃(xε, tε)) 6= 1 in this case. Therefore

I−2 = −Q′′(h)(γ (∇ϕ̃)2 − 1)+ cQ′(h).

Then we observe from (4.16)

Rε > −
1

ε2
Q′′(h)(γ (∇ϕ̃)2 − 1)+

1

ε

[
K2 +Q′(h)

{
Cβ,δ + (γ (∇ϕ̃)− 1)f −

Cη

δ

}]
+O(K2

2) at (xε, tε).

By the homogeneity ofγ we obtain

γ (∇ϕ̃) = |∇ϕ̃|γ

(
∇ϕ̃

|∇ϕ̃|

)
6 CγΛγ at (xε, tε).

Therefore

Rε > −
1

ε2
(C2
γΛ

2
γ + 1)|Q′′(h)| +

1

ε
{K2 − Cβ,γ,δ|Q

′(h)|} +O(K2
2) at (xε, tε),

whereCβ,γ,δ := Cβ,δ + (CγΛγ + 1)|f | + Cη/δ is a constant. By (2.12) and (4.17),

Rε >
1

ε

{
K2 −

(
Cβ,γ,δ +

C2
γΛ

2
γ + 1

ε

)
C1 exp(−C2|h|)

}
+O(K2

2)

>
1

ε

{
K2 −

(
Cβ,γ,δ +

C2
γΛ

2
γ + 1

ε

)
C1 exp(−

C2δ

4ε
)

}
+O(K2

2) at (xε, tε).
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We takeε0 = ε0(δ,Λβ ,Λγ ,Λf ) smaller so that∣∣∣∣(Cβ,γ,δ +
C2
γΛ

2
γ + 1

ε

)
C1 exp

(
−
C2δ

4ε

)∣∣∣∣ 6
K2

4

|εO(K2
2)| 6

K2

4

 providedε ∈ (0, ε0). (4.19)

Then we obtain

Rε >
K2

2ε
> 0 at(xε, tε). (4.20)

Case 2.2. Assume that∇ϕ̃(xε, tε) = 0. We need to consider the equations in weak sense. We now
setσ̂ε = ψε(xε, tε), ŝε = ∂tϕ(xε, tε), p̂ε = ∇ϕ(xε, tε), X̂ε = ∇

2ϕ(xε, tε), and

R̄ε = lim
r→0

{β(p)s − tr{D2α(p)X} +
1

ε2
(W ′(σ )− ελf );

|σ − σ̂ε| < r, |s − ŝε| < r, |p − p̂ε| < r, |X − X̂ε| < r},

We shall proveR̄ε > Kβ,δ,f /δ. By (4.16) there exists a sequence{(τj , qj , Yj )}
∞

j=1 satisfying

lim
j→∞

(τj , qj , Yj ) = (∂t ϕ̃(xε, tε),0,∇
2ϕ̃(xε, tε)),

qj 6= 0, lim
j→∞

|qj | 6 Cγ ,

lim
j→∞

[β(qj )τj − tr{D2α(qj )Yj } − γ (qj )f ] > 0.

We now set 

σj = Q(h(xε, tε))+ εK2 = σ̂ε,

sj =
1

ε
Q′(h(xε, tε))(τj +K1) → ŝε,

pj =
1

ε
Q′(h(xε, tε)qj → 0 = p̂ε,

Xj =
1

ε2
Q′′(h(xε, tε))qj ⊗ qj +

1

ε
Q′(h(xε, tε))Yj → X̂ε,

(4.21)

where the limits are taken asj → ∞. Moreover, let

Rjε := β(pj )sj − tr{D2α(pj )Xj } +
1

ε2
(W ′(σj )− ελf ).

From the arguments in Case 2.1 it follows that

R̄ε > lim
j→∞

Rjε >
K2

2ε
> 0. (4.22)

SetKβ,δ,f = min{K2/2, a2Cβ,δ/4}. Then we conclude from (4.13), (4.15), (4.20), and (4.22) that[
β(∇ϕ)∂tϕ − tr{D2α(∇ϕ)∇2ϕ} +

1

ε2
(W ′(ψε)− ελf )

]∗

(xε, tε) >
Kβ,δ,f

ε
> 0. 2 (4.23)

We are now in a position to show thatψε is a viscosity supersolution of (2.9).
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PROPOSITION4.2 Assume thatβ, γ , f and ε satisfy (β1)–(β3), (γ1)–(γ5), (f 1) and (ε1),
respectively. Then, forδ > 0, there exists a positive constantε1 = ε1(δ,Λβ ,Λγ ,Λf ) such that
ψε is a viscosity supersolution of (2.9) inRn × (0, T ) provided thatε ∈ (0, ε1).

Proof. We continue the proof from Proposition 4.1. We first fixε1 < ε0. In this proof, we takeε1
twice, in (4.25) and (4.26). It suffices to take their minimum.

Case 1. We assume that(xε, tε) ∈ {(x, t); dδ(x, t) > δ/2}. Sinceγ (∇ϕ̃) = 1 we have∇ϕ 6= 0.
We now set

R̃ε = β̃(∇ϕ)∂tϕ − tr{D2α(∇ϕ)∇2ϕ} +
1

ε2
(W ′(ϕ)− ελf ). (4.24)

Our aim is to showR̃ε > 0 at(xε, tε). By straightforward calculation we obtain

R̃ε = Rε + R̃ε − Rε >
Kβ,δ,f

ε
+ (β̃(∇ϕ)− β(∇ϕ))∂tϕ

=
1

ε
[Kβ,δ,f +Q′(h)ζ(|∇ϕ|)(Λβ − β(∇ϕ))(∂t ϕ̃ +K1)] at (xε, tε).

We observe that
Q′(h)ζ(|∇ϕ|)(Λβ − β(∇ϕ))K1 > 0.

Moreover, from Lemma 3.5 we obtain

Q′(h)ζ(|∇ϕ|)(Λβ − β(∇ϕ))∂t ϕ̃ > −Q′(h)ζ(|∇ϕ|)(Λβ − β(∇ϕ))
Cβ

δ

> −Q′(h)ζ(|∇ϕ|)

(
Λβ −

1

Λβ

)
Cβ

δ
at (xε, tε).

Thus

R̃ε >
1

ε
[Kβ,δ,f −Mβ,δQ

′(h)ζ(|∇ϕ|)] at (xε, tε),

whereMβ,δ := (Λβ − 1/Λβ)Cβ/δ. We now studyR̃ε in two cases.

Case 1.1. Assume that(xε, tε) ∈ {(x, t); Mβ,δQ
′(h(x, t)) < Kβ,δ,f /2}. In this case it is easy to

see that

R̃ε >
Kβ,δ,f

2ε
> 0 at(xε, tε).

Case 1.2. Assume that(xε, tε) ∈ {(x, t); Mβ,δQ
′(h(x, t)) > Kβ,δ,f /2}. We remark that|∇ϕ| =

Q′(h)|∇ϕ̃|/ε. Sinceγ (∇ϕ̃) = 1 we obtain

|∇ϕ̃| > 1/Λγ at (xε, tε).

Hence

|∇ϕ| =
Q′(h)|∇ϕ̃|

ε
>

Kβ,δ,f

2εΛγMβ,δ

at (xε, tε).

We takeε1 = ε1(δ,Λβ ,Λf ) smaller so that

Kβ,δ,f

2εΛβMβ,δ

> 1 providedε ∈ (0, ε1). (4.25)
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Then we obtain|∇ϕ| > 1 > 3/4, i.e.,ζ(|∇ϕ|) = 0 at(xε, tε). Thus

R̃ε >
Kβ,δ,f

ε
> 0 at(xε, tε).

Case 2. We assume that(xε, tε) ∈ {(x, t); dδ(x, t) 6 δ/2}. By (4.17) there existsε1 =

ε1(δ,Λβ ,Λf ) satisfying

(xε, tε) ∈ {(x, t); Mβ,δQ
′(h(x, t)) < Kβ,δ,f /2} providedε ∈ (0, ε1). (4.26)

We takeε1 satisfying (4.26).

Case 2.1.Assume that∇ϕ(xε, tε) 6= 0. From the same argument as in Case 1.1 of this proof we
obtain

R̃ε >
Kβ,δ,f

2ε
> 0 at(xε, tε).

Case 2.2.Assume that∇ϕ(xε, tε) = 0. Sincelimj→∞ R
j
ε > Kβ,δ,f /ε, there exists a positive

numberN1 ∈ N satisfying

Rjε >
7Kβ,δ,f

8ε
for j > N1

by taking a subsequence of{R
j
ε } if necessary. Set

R̃jε = β̃(pj )sj − tr{D2α(pj )Xj } +
1

ε2
(W ′(σj )− ελf ),

whereσj , sj , pj andXj are as in (4.21). By (4.21) there exists a positive numberN2 ∈ N satisfying

Q′(h(xε, tε))ζ(|pj |)

(
Λβ −

1

Λβ

)
τj > −

5Kβ,δ,f
8

for j > N2

sinceτj → ∂t ϕ̃(xε, tε) asj → ∞ and by (4.26). Then

R̃jε = Rjε + R̃jε − Rjε >
1

ε

(
7Kβ,δ,f

8
+Q′(h(xε, tε))ζ(|pj |)

(
Λβ −

1

Λβ

)
τj

)
>
Kβ,δ,f

4ε
> 0

for j > N = max{N1, N2}. We thus conclude that

(R̃ε)
∗(xε, tε) > lim

j→∞
Rjε >

Kβ,δ,f

4ε
> 0. 2

5. Uniform estimate

In this section, we shall prove Theorem 2.2.

Proof of Theorem 2.2. Let v be a solution of (2.9) withv(x,0) = Q(d0(x)/ε), andψε be as
defined in §4. We first verify that, forδ > 0,

ψε(x,0) > v(x,0) for x ∈ Rn. (5.1)
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We remark thatωδ(x,0) = η(dδ(x,0)) > d0(x). Let y ∈ Γ δ0 be such thatdδ(x,0) = γ ◦(x − y).

Then
d0(x)− d0(y) 6 γ ◦(x − y) = dδ(x,0).

By the definition ofΓ δ0 , we haved0(y) = −2δ. Thus

dδ(x,0) > d0(x)+ 2δ.

If dδ(x,0) > δ/2, then

η(dδ(x,0)) = dδ(x,0)− δ > d0(x)+ δ > d0(x).

If dδ(x,0) < δ/2, then

d0(x) 6 dδ(x,0)− 2δ < −3δ/2< −δ 6 η(dδ(x,0)).

Thus

ψε(x,0) = Q

(
ωδ(x,0)

ε

)
+ εK2 > Q

(
d0(x)

ε

)
= v(x,0).

By the comparison principle and (5.1) we obtain, forδ > 0,

ψε(x, t) > v(x, t) for (x, t) ∈ Rn × (0, T ).

Fix θ > 0. We takeδ satisfyingdδ(x, t) < 0 if d(x, t) < −θ . We recall (4.17), that is,

ωδ(x, t)+K1t

ε
< −

δ

4ε
for (x, t) ∈ {(x, t); dδ(x, t) < δ/2}.

Therefore (2.11) yields

ψε(x, t) = Q

(
ωδ(x, t)+K1t

ε

)
+ εK2

6 Q

(
−
δ

4ε

)
+ εK2 6 −1 + C1 exp

(
−
C2δ

4ε

)
+ ε(K2 + C3)

for (x, t) ∈ {(x, t); d(x, t) < −θ}. Combining all the above inequalities, we obtain

v(x, t) 6 −1 + C1 exp

(
−
C2δ

4ε

)
+ Cε for (x, t) ∈ {(x, t); d(x, t) < −θ},

providedε ∈ (0, ε1), whereC1 andC2 are numerical constants,C = K2 +C3 is a positive constant
depending only onΛβ andδ, andε1 is a positive constant depending only onΛβ ,Λγ ,Λf andδ.2

6. Concluding remarks

We now explain the difference between [ElS2] and our paper and also discuss some remaining
problems. We keep our notationsα, γ , β andf , which correspond toA, B, β andu in [ElS2].
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(i) (Essential difference) If we assume the driving forcef is constant in [ElS2], several
propositions of ours have something in common with those of [ElS2], for example our Lemma
3.2 and [ElS2, Lemma 3.3]. The crucial difference is found in the proof of our Lemma 3.3 and
[ElS2, Lemma 3.4]. In [ElS2] the authors show that, forF(p,X) = −γ (p){tr(D2γ (p)X)+f },

F(p, I) 6 C(Λ̃γ )(1 + |p|) for p 6= 0, (6.1)

whereC(Λ̃γ ) is a constant depending oñΛγ := ‖γ ‖C2(B2(0)\B1/2(0)). By using this estimate
they prove thatz = z(x, t) in the proof of our Lemma 3.3 is a viscosity subsolution of
(2.4), and consequently determineL. In the casef is a constant, this dependence ofL on
the second derivatives ofγ is the crucial reason why the estimate of convergence depends on
the derivatives ofγ . In our paper, without using the estimate (6.1), we rather calculate the
quantity

F(Dγ ◦(p),D2γ ◦(p)) = −
n− 1

γ ◦(p)
− f for p 6= 0,

by using convex analysis, and determine the constantLβ from this formula. Evidently, this
calculation is independent of the second derivatives ofγ .

(ii) (Technical difference) There is a difference in the strategies of [ElS2] and ours. In [ElS2] the
authors consider the approximation of each problem to clarify the relation of (2.6) and (2.4). In
our paper we introduce a modified Allen–Cahn equation (2.9) instead of (2.6) to remove some
technical difficulties. However, since we require a detailed estimate rather than the convergence
result, we need a more detailed computation.

(iii) (Inhomogeneity) If the driving forcef depends on the spatial variablesx, even if the
dependence isC2, the method of our paper is not enough to achieve our goal. In fact, in the case
f = f (x), the traveling waveQ in §2.3 depends on the spatial variablex, i.e.,Q = Q(σ, x).
Then we obtain formally

∇ψ =
Qσ

ε
∇ω +Qx,

∇
2ψ =

Qσσ

ε2
∇ω ⊗ ∇ω +

1

ε
(Qσx ⊗ ∇ω +Qxσ ⊗ ∇ω)+Qxx .

We cannot use the homogeneity ofα, β andγ to estimateRε or R̃ε because of the form of∇ψ .
Moreover, it is not clear how to estimate theε−1-term of∇2ψ . In [ElS2] the authors assume
that the highest order derivatives ofα, β andγ are Lipschitz continuous, and calculate that, for
example,

D2α(∇ψ) =
1

ε
D2α(∇ω)+O(1) asε → 0.

The bound of the last term depends on the Lipschitz constant ofD2α.
(iv) (Time-dependent driving force) It is easy to apply our methods to estimate the internal layer

with time-dependent driving forcef (t) satisfying, for example,f ∈ C1([0, T ]). Essentially,
to apply our method for the problem with driving forcef (t), we need the following properties:

(a) Q = Q(σ, t),Q−1(σ, t) ∈ C2,1(R × [0, T ]),
(b) ‖Qt‖L∞(R×[0,T ]) < ∞,
(c) the convergences as in Proposition 2.1(i), (ii) are uniform with respect tot ∈ [0, T ].



346 Y. GIGA ET AL .

By the equation (2.10) the traveling waveQ = Q(σ, t) with f ∈ C1([0, T ]) satisfies the above
conditions. In the proof of the propositions, we should be careful with the limiting procedure
for sequences of times, in particular, in the proof of Propositions 4.1 and 4.2.
Fortunately, when we verify thatψε is a viscosity supersolution of (2.6) and (2.9), this
generalization yields only one extra term of the time derivative ofψε, i.e.,

∂tψε =
Qσ

ε
(∂tωδ +K1)+Qt .

The last term is included only in the term of orderε0 of Rε.
(v) (Application for the driving forcef = f (t)) We remark that an application in §2.5 is still

valid for f = f (t) depending ont . Suppose thatf0 is continuous. It is easy to approximate
f0 by a smooth functionf τ converging tof0 locally uniformly. That the convergence ansatz
extends to this situation is proved in [GG4] and [GG5]. However, by remark (iv), we need the
bound of‖f ‖C1([0,T ]) to verify that our functionψε is a viscosity supersolution of (2.9) by the
method developed in this paper. Another method seems to be necessary to prove our uniform
convergence forf = f (t) without a bound onf ′.
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