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The convergence of solutions of anisotropic Allen—Cahn equations is studied when the interface
thickness parameter (denoted by tends to zero. It is shown that the convergence to a level
set solution of the corresponding anisotropic interface equations is uniform with respect to the
derivatives of a surface energy density function. As an application the crystalline motion of interfaces
is shown to be approximated by the anisotropic Allen—Cahn equations.
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1. Introduction

In this paper we consider the anisotropic Allen—Cahn equation with kinetic term. The convergence
of solutions of anisotropic Allen—Cahn equations is already proved in [EIS1] (in case the kinetic
term is isotropic),[[EIPS], and [EI$2]. However, their estimate of the convergence depends on the
derivative of the surface energy density function which expresses the anisotropy of the equilibrium
form of interfaces. In this paper we obtain a uniform estimate of the convergence with respect to the
derivatives of the surface energy density function. One of applications of our result is approximation
of the crystalline motion of interfaces by anisotropic Allen—Cahn equations.

The anisotropic Allen—Cahn equation is proposed in [MWBCS]. We consider a functional of the
form

1 , 1
Fe(v) = v (Vu)*+ = (W(v) — erfo) | dx.
Rn 2 82
Herey e C?(R"™ \ {0}) is positive onS"~1, convex, positively homogeneous of degree one.

Moreover, we assume tha€ is strictly convex. The functiov is a double-well potential of the
form W (v) = (v2 — 1)2/2. The quantity: is a normalized constant determinedWy The quantity
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f is a given constant. We consider the weighiggradient flow of this functional, and obtain the
anisotropic Allen—Cahn equation. Its explicit form is

B(Vv)d,v — divy (Vv)E(Vv) + S—J-Z(W/(v) —erf)=0. 1.1

Herep e C(R" \ {0}) is positive ons”~! and positively homogeneous of degree zero, and
Dy = @p,v(p),...,8,¥(p)) for p = (p1,..., px). A formal asymptotic analysis provided
by [MWBCS], [WM] and [BP1] (the cas@ = 1) says that the internal transition layer pf {1.1)
approximates the evolving interfa¢g; }; >0 under the evolution law of the form

BMV = —y(m{div, §(n) + f} onI;, 1.2)

wheren denotes the outer unit normal vector field Gf V denotes the normal velocity in the
direction of n, and div, is the surface divergence afj. The constant is taken so that the
multiplicative constant in front off in (I.2) equals one. Physically, the functignis called the
surface energy densitwhich expresses the anisotropy of the equilibrium form of interfaces. The
functioné is called theCahn—Hoffman vectoiThe functiong expresses the anisotropy of kinetics.
The quantityf is a driving force of the evolution. The quantigy g is calledmobility.

If the initial datav(x, 0) of (1)) is positive in a regior0g enclosed byl and negative in
R™ \ (Og U Ip), then one expects that

(1.3)

SN +1 inaregionO, enclosed by},
=1 inR"\(O;N 1),

locally uniformly ase — 0. This fact is rigorously proved i [EIS1] locally in time at least if the
initial interface is smooth. Using a level set method dué to [CGG1]land [ES] the authors of [EIPS]
and [EIS2] proved (1]3) globally-in-time by interpretitiy as a generalized solution ¢f (1L.2). They
introduced a signed anisotropic distance function fignas outlined in[[BPR2] (see Section 3). By
using this distance, they constructed a sub- and supersoluti¢n df (1.1) to prove the convergence
@3).

We note that the convergence results(in [EIS2] depend on the smoothngsghef way to
determinee for the estimate to obtairf (3.3) depends at least on the second derivatiyes of
Physically, however, it may happen thats not smooth so that the equilibrium form of the interface
of (1.7) may have a flat portion called a facet. If one tries to consider such a situatjon by (1.1) with
¥, approximating nonsmootp, their results are not enough.

In this paper we will show that the convergence of the internal transition layers is in some sense
‘uniform’ with respect to the derivatives of provided thaty, 1/y, 8, and X8 on the unit sphere
are bounded. No control of the derivatives)ofs necessary. This gives a way to approximate the
crystalline motion[[T],[[AG] in the plane by an anisotropic Allen—Cahn type equation in conjunction
with a general level set method for nondifferentiaplén [GG4], [GG5]. This will be explained
in 82.5 as an application of our main result. [n [BGN] the anisotropic Allen—Cahn equation with
crystalliney andg = 1 in R? is considered, and it is extended to the probleriRinfor n > 2
in [BN]. They derived even a convergence rate of the internal layer of the Allen—Cahn equation
when the limit evolution is a crystalline motion. By the assumpgo= 1, (2.8) is considered as a
variational inequality. (Several examples of solutions are proposéed in [TC].) Although we mollify
andg, one advantage of our theory is that anisotrgp@an be handled. We approximate nonsmooth
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y by smoothery™ while [BGN] studied the Allen—Cahn equation with nonsmogtlioy using a
subdifferential.

The difficulty in treating[(T.JL) directly is thdt(].1) does not enjoy a comparison principle. This is
caused by singularities &v = 0 which are due to the nonconstant kinetic fagtof his difficulty is
overcome in[[EIS2] by adjusting a definition of solution to have a comparison principle. In this paper
we overcome the difficulty caused by singularitiesgoin another way. We introduce a modified
equation in place of (1]1) to remove singularities. The advantage of our idea is that the usual theory
of viscosity solutions is available for the modified equation. We prove that the solution of the
modified equation satisfief (1.3) and the convergence is ‘uniform’ with respect to the derivatives
of y.

The basic strategy of the proof ¢f (1.3) is a combination of the method of| [ESS] and [EIS2].
However, we need to estimate the time derivative of the anisotropic distance function in a different
way. We construct a viscosity supersolution[of[1.1) for an estimate to obtain the convergence result
by combining three ingredients: a distance function induced by Finsler geometrylas in [BPZ2], its
truncation as iN[ESS] and the traveling wave a$ in [BSS]. The key reason why we are able to prove
the uniform convergence result with respect to the modulus of the derivativeésodin estimate of
the time derivative of the distance function frafp. Although the time derivative is estimated in
[EIS2], their bound depends on the second derivativeg oh $”~1. In this paper we will prove
such an estimate by using a duality betweeand the support function dp € R"*; y(p) < 1} so
that no derivatives of are involved.

Recently, [BS] and [BDL] provided the geometrical approach to approximating the motion of
interfaces. However, their method does not provide our uniform convergence.

Finally, we note that, for the isotropic casg&(p) = 1, y(p) = |p|), the convergence problem
has been extensively studied in various contexts, e.gl, [BK], [DS$], [CII[ESS].[BSSI. 1], [So], etc.

2. Main result
2.1 Equations

We now recall the anisotropic mean curvature flow. {84, be a family of closed hypersurfaces
in R"”. We consider the evolution law fdr; of the form

BV = —y(m{divy, §(n) + f} onl, (2.1)

whereV denotes the normal velocity of the surfaCeandn denotes the outer unit normal vector
field of 3. In this paper we assume that

(B1) p € CR"\ {0},

(B2) B is positively homogeneous of degree 0,

(B3) there exists a positive constafg satisfyingA/g1 < B < AgonsiL,

(y1) y € C3R"\ {0},

(y2) y is positively homogeneous of degree 1,

(y3) there exists a positive constamy satisfyingA;* <y < 4, ons"1,

(y4) y is convex,

(v5) « := y2/2 s strictly convex,

(f1) fisagiven constant satisfyirigf| < Ay with someA; > 0,

(e1) € € (0, &), wheree is such that the functioa — W'(c) — eA Ay has exactly three zeros,
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where $"~1 is a unit sphere. The vector field is the gradient field ofy, i.e., & = Dy =
@p¥s -5 0p,¥), Op;y = 0y/dpi, 1 < i < n. The divergence operator ia (P.1) is the surface
divergence orT;. In this paper, we only consider the driving force tefnthat is constant.

A level set formulation for[(Z]1) gives a generalized notion of the motioh;ofsee [CGGL],
[CGGZ], [G1]). We introduce an auxiliary functiant R" x [0, T) — R and define

Iy ={x eR"; u(x,t) =0}. (2.2)
The level set equation obtained from (2.1) is of the form
B(Vu)dru —y (Vu){divE(Vu) + f} =0 inR" x (O, T). (2.3)

Here div denotes the divergence RI', and V denotes the spatial derivatives, i.8/p =
Oy, v, ..., dx,v), SO We distinguish between the differential operddaand the spatial derivative.
We say that{I}}co,7) is a generalized solutiomf (2.1) if I} is given by [2.2) for an auxiliary
functionu € C(R" x [0, T)) which is a viscosity solution of (2.3).

We are interested in the motion @, which starts from some compacty, in a finite time
interval (0, T'). Then, since any viscosity solution ¢f (2.3) with continuous initial data is continuous,
we may assume that there exists a big cﬂggl[aj, b;] satisfying I C H;lzl[aj, bl fort €
[0, T). Therefore we consider the equation with the periodic boundary condition, i.e., the equality
u(x + (b; — aj)ej,t) = u(x,t) holds for(x,r) € R*” x [0,7) andj = 1,...,n. We now set
™ = ]'[;’:1 R/(bj — aj)Z. We consider[(2]3) offi” x (0, T), i.e.,

B(Vu)dru — y (Vu){divE(Vu) + f} =0 inT" x (0, T) (2.4)

with initial data
u(-,0 =ug(-) onT". (2.5)

Since [(2.4) is degenerate parabolic and geometric, it is well known that, for periodic initial data,

there exists a unique global periodic viscosity solutiorj of|(2.4) (see [CGGI], [GGIS] or [G2]).
There is another way to analyze the motion/®f In fact, there is the approximation & by

the internal transition layer of an anisotropic Allen—Cahn type equation introduced in [MWBCS].

The explicit form of the equation is

B(Vv)d,v — div{y (Vv)E(Vv)} + Eiz(W’(v) —erf)=0 inT" x (0, T), (2.6)

with initial data
v(-,0) =vg(:) onT". 2.7)

HereW is a double-well potential of the fori (¢) = (62 — 1)2/2, andx is a constant determined
by W, in our case. = 2/3. We choose a suitabig to approximate an interface moving iy (2.1). See
Section 2.4 and Theorgm 2.2 for the choice®fThe internal transition layers ¢f (2.6) approximate
the motion ofl;. This fact is already established rigorouslylin [EISL], [EIPS] and [EIS2].

Our aim in this paper is to prove that an estimate of the convergence of internal transition layers
is uniform with respect to the modulus of derivatives/ofFFor this purpose, we have to specify the
quantities which determine the speed of the convergence of internal transition layers.

Traditionally as in[[EISR] or[[ESS], we construct a supersolution and a subsolutipn pf (2.6) to
estimate the convergence. The key tool of this method is the comparison principle for viscosity
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solutions. Unfortunately, however (2.6) has singularities so that we cannot apply the usual
comparison principle for viscosity solutions. To overcome this difficulty, we modify the equation.
We introduce a cut-off function € C*°(J0, o0)) satisfying

(1 ifo<1/2
g“((’r)—{o if o > 3/4,

and¢’ < 0. LetB be a function defined by

B(p) = (L—c(UpD)B(p) + Apt(IpD. (2.8)

We replace the coefficiemt(Vv) of 8,v in (2.8) by f(Vv), i.e.,
B(Vv)d,v — div{y (Vv)E(Vv)} + giz(w’(v) —eAf)=0 inT" x (0, 7). (2.9)

The same type of modification appears[in [EIPS]. The main advantafe pf (2.9) oVer (2.6) is that the
singularity atVv = 0 in the term involvingg is removed. Sincé is positive and continuous on

R", we can apply the usual theory of viscosity solutions, in particular the comparison principle (see
[CGGI] or [G2]). We treat[(Z2]9) as an approximate model of an anisotropic mean curvature flow
instead of[(Z.B). The solvability df (3.9) with initial data € C(T") is already established in [EIS2,
Section 2.3 and Theorem 2.8] (see also [IL.SU]).

2.2 Anisotropic distance function

We now recall the anisotropidistancefunction induced by a Finsler (Minkowski) metric as in
[BP2]. The distance is useful to construct an initial datum(for] (2.4) of (2.9).
We define thesupport functiory® of the convex setp € R"; y(p) < 1} by

y°(p) = sup(p.q): y(q) <1}

Note thaty° € CZ(R" \ {0}), andy° is convex, positively homogeneous of degree 1. Moreover, for
p € R"\ {0}, there exists a uniqug € {p € R"; y(p) < 1} satisfyingy°(p) = (p, q) sincey?
is strictly convex. Properties of° important for studying[(2]6) of (2.9) are obtained[in [BP2]. We
shall list some of them in Section 3.

We define aranisotropic distanceZ’ by

Ex,y)=y°(x —y).

We remark that only the symmetry in the definition of distance does not hol8 fincey° is not
assumed to be symmetric. For a subSet R” we define

Ex, N =inf{E(x,y);, ye '}

The following argument also applies to the reversed version of the anisotropic distance function of
the formZ (I, x).
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2.3 Traveling wave

To derive an estimate for the convergence of the internal transition layler pf (2.9), it is convenient to
introduce a traveling wave solution ¢f (P.9) with initial data which has a layer ardyrich general,
we consider a solution of (3.9) of the fornix, r) = Q(x - e — ct) for the functionQ, constant
and fixede € $"~1. Then we observe th&? satisfies some ordinary differential equation. However,
here it suffices to consider the equation®for the isometric case as in [BSS].

Now we introduce a generalized notion of a traveling wave. We shall consider the double-well
potential of the form (¢') — zo for z € R. Forz with |z| < 4v/3/9, the functions — W'(0) — z
has exactly three zeros. We shall denote themh by= 4_(z), ho = ho(z) andhy = h(z), where
h_ < hg < hy. We assume thatsatisfiesz| < 4v/3/9, and set

m(z) = hy(z) —h_(2),
c(z) = 2ho(z2) — (hy(2) + h_(2)),

B m(z)
Q(o,2) =h_(2) + 1+ expl—m(z) (o — og(2))}’

whereop(z) is taken so thap satisfiesQ(0, z) = ho(z). Sinceh+ andhg are smooth, we observe
thatQ € C®(R x (—4+/3/9, 44/3/9)) and it solves

Q00(0,2) +¢(2)Q0(0,2) = W(Q(0,2)) =z foro eR,

im 00,0 =hi(@, 00,2 =ho(a). (210
Moreover,
hi(z) =41+ 0(), ho(z) =0+ 0(2),
m(z) =24 0(z%), inparticular V3 < m(z) < 2,
S T S N UM SO
. WO \wra " wr=1 =73 )
asz — 0.

In our case we fix = eAf and setQ (o) = Q(o, eAf). Hereafter we omit the dependence on
z whenz = sAf, and we writeQ’(0) = Qs (0, sAf) and Q" (o) = Qs (0, erf). We list some
properties of these functions.

PrROPOSITION2.1 Assume thaf satisfieq f1) ande satisfiege1). Then:

@) limg_o SURfi<a, le/e + fl = 0,
(ii) limq_osu|Q(o) —tanho|; o € R, f € [-Af, Af]} =0,
(i) inf{Q'(0); 0 € [-D,b], e € (0,&), f e[—Af, Af]} > Oforb > 0,
(iv) there exist constaniS;, C; andCs, which depend only o ¢, satisfying

|0(0)% — 1] < Crexp(—Calo|) + Cae, (2.11)
Q' (0)], 10" ()| < Crexp(—C2lo)). (2.12)
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2.4 Main result

We now determine the interfaces moving py [2.1). Dgtbe an open subset ifi* and Iy = 9 Op.
Let dp be a signed anisotropic distance function from an initial interfgcdefined by

E(x, I) if x € OgU I,

—EZ(x,Ip) otherwise. (2.13)

do(x) = {
We note thatly is continuous ofi” and spatially periodic. Lat be a periodic viscosity solution of
(2:4) with initial dataug = dp. Then we obtain a generalized solutiohof (2.7) starting from/,
defined by[(Z.R).
We assume thdt, # ¢ fort € [0, T). We define a signed anisotropic distance functior” x
[0, T) — R from I} by

Ex, I;) ifxef{yeT uly,t) >0},

—Ex,I}) ifxe {y € T" u(y,t) <0} (214)

d(x,t) = {

We are now in a position to state our main result.

THEOREM2.2 Assume thatg, y, f, and e satisfy @1)-(83), (y1)—(5), (f1), and €1)
respectively. LetDg be an open set ifi” and o = 9 Og. Letdp, d(x, t) be the anisotropic signed
distance functions fronip, I'; defined by[(2.13)[(2.14), respectively. Lebe a viscosity solution
of (2.9) satisfying[(ZJ8) with initial datag(x) = Q(do(x)/¢) for e < . For6 > 0, there exist
positive constants = §(8), e1 = €1(0, Ag, A,, Ay) andC = C(6, Ag, A, Ay) satisfying

C26
vix, 1) < —1+C1exp<——2) + Ce (2.15)
e

if (x,7) € {(y,s) € T" x (0, T); d(y,s) < —0} provided thate € (0, e1), whereC1 andC, are
numerical constants.

This result is a refined version of [EIS2] since the constéahtsC,, C ande; are independent
of the first and second derivatives pf This is useful to treat the approximating problem[of}2.4)
and [2.9) for nonsmooth.
The main strategy of the proof comes frdm [EESS] and [EIS2]. We construct a functieny, s
satisfying:
(i) for 6 > 0, there exist positive constants= §(6) andC = C(0, Ag, A,) such thaty (x, 1)
satisfies[(2.15) fotx, 1) € {(y,s) € T" x (0, T); d(y,s) < —0},
(i) for this 5, there exists a positive constasntsuch thaty is a supersolution of (2.9) provided
thate € (0, ¢g),
(i) ¥ (x,0) > Q(do(x)/e).
Then, by the comparison principle, we obtain Thedrem 2.2. Unfortunately the construction bf [ESS]
and [EIS2] is suitable only to construct a supersolution of the unmodified equation (2.6), but not of
(229). To clarify the difficulty in obtaining (i) we shall give a formal calculation. Set

. 1
Re = B(VY) —div{y (VY)E(VY)} + ;(W’(W) —&erf),

- ~ ) 1
Re = B(Vy) —diviy (ViNE(VY)) + ;(W’(lﬁ) —&rf).
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Clearly the first quantityr, is easy to calculate. However, we have to calculteWe observe that
Ry = Re + (Ag — B(VY))C(IVY DI Y.

Thus it suffices to derive a suitable estimatedap to calculater,.
We summarize the way of constructigg

(i) (83.1 and 83.2) We verify that the anisotropic signed distance funectios a viscosity
supersolution of[(2]4) if(x,7) € R" x (0,T); d(x,r) > 0}. We also give an estimate of
0,d.

(ii) (83.3) For fixeds, we introduce a truncating functiopas in [ES$S] and consider = n(d).
We give an estimate @f(Vw)d;w — div{y (Vw)é(Vw)}. We also give an estimate 6fw.

(iii) (84) We construct a functiory by usingw. We verify that, fors, there exists a positive
constantsg = &o(8, Ag, A,) such thaty is a viscosity supersolution df (2.6) provided that
e € (0, o).

(iv) (84) We verify that, fors, there exists a positive constant= ¢1(8, Ag, A, ) such thaty is
a viscosity supersolution df(2.9) provided tlat (0, e1).

We give the proof of Theorefn 3.2 in §5.
Hereafter, we often use another representation of the second tefms of (2]4), (2[6)]and (2.9), i.e.,

div{E(Vu)} = tr{D%y (Vu)V2u},  div{y(Vv)&(Vv)} = tr{D?a(Vv)V2v},

wherea(p) = y(p)?/2. We remark that is positively homogeneous of degree 2.

Finally, we remark that we only estimate solutions from above. This is because estimation from
below is essentially the same by considering](2.6) (2.9 AGh = B(—p), &(p) = a(—p),
W(o) = W(—o), andf = —f instead of8(p), a(p), W(o), and f, respectively. By a standard
argument, Theorefn 3.2 and this remark yigld](1.3).

2.5 Application

We now give an application of Theor¢gmP.2. Our result is useful to approximate solutipns of (2.1) by
(2:9) even wher is not differentiable provided thdt (2.4) fulfills the following convergence ansatz.

CONVERGENCE ANSATZ Assume thap® € C(R" \ {0}), y* € C?(R" \ {0}) are positive and

fT € R. Assume thaig® andy® are positively homogeneous of degree 0 and 1, respectively.
Assume that/? is convex. (We do not assume the differentiabilityyoj Assume thap® — g,

y® — 7 locally uniformly in R” \ {0} and f* — f ast — 0. Letu® be the periodic viscosity
solution of

BE(VuH)ou® — y (VuH){divET(Vu') + fF} =0 inR" x (0, T),
with continuous periodic initial data” (x, 0) = uj(x), where§™ = Dy . Assume that the period is
independent of . Assume thatij — ug uniformly inIR". Thenu* convergestda € C(R" x[0, c0))
which “solves” [22) withg = B, y = 7 andii(x,0) = ug(x). The convergence is uniform in
R" x [0, T] for everyT > O.
If we further assume that there exists a functiére C(S"~1; S,), whereS, denotes the space

of real symmetria: x n matrices, such thabé” — H on $"~1, theny is C2(s"~1) andD&¢ = H.
In this case, the convergence of a solutidnto (2.4) withg = g%,y = y" and f = f* is well
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known (cf. [CGG1],[[Ca], and [GG5]). However, if we do not assume the convergence of derivatives
of y7, the convergence ansatz has recently been proved {012 in [GG4] and [GG5]. Note that

the meaning of a solution tp (2.4) is not clear at all for nondifferentigtdince the term dig(Vu)

is not well defined even for smooth The papers [GC4] and [GG5] provide a proper notion of
solution. Note that the notion is consistent with the more restrictive notion of [GG1]; the proof is
based on an elementary comparison principlé in [GGul].

THEOREM 2.3 ([GG4], [GG5]) Assume that = 2, y |1 is C? except at finitely many point® =
{P;}i"4, and the angular second derivatives/¢f. are bounded o8®\ P. Then the convergence
ansatz is satisfied.

This is a very special version of the results|in [GG4]lor [GG5], where level set equations for
more general equations of the folfh= g(n, — divr, (n)) are studied. The main idea of the proof is
to reduce the problem to graph-like solutions[of|2.1) which are studiédin][GG2] and [GG3]. If the
convergence ansatz is fulfilled, by a standard argument, Thgorém 2.2 yields:

THEOREM 2.4 Assume that the convergence ansatz is true. Assumgthat™ and f* satisfy
(BLH—(BI), (yD—(¥5), (f1) and(el) with B = g7,y = yT andf = f7, uniformly int. Letv®
be a solution of (Z19) witl8 = B*, y = y* and f = f* with initial datav® (x, 0) = Q(d(x, 0)/e¢).
Then

if x e {y e R"; u(y,t) > 0},

. 1
vi(x, 1)~ {—1 ifxef{y eR" u(y,t) <0},

ast, e — 0. Hereu is a solution of[(2}4) wittg andy .
Of course, there is always a way to approximatey y; having required properties.

LEMMA 2.5 Lety: R" — R be a function satisfying2)—(@4). Then there exists a sequence
{yr}ce,7) Of functions satisfying 1)—(/5) such thaty, — y ast — 0 locally uniformly.
Moreover, a positive constant, in (y3) for y; can be taken independentof (0, ).

REMARK 2.6 The assumption op in Lemma[2.b covers cases whépm; y(p) = 1} contains
nondifferentiable points and/or flat portions. For examplgp) = max|p;|; j = 1,...,n} or
y(p) = Z;le |pj| satisfies the assumptions of Lemma 2.5.

One can find a way to smoothgrin Theorem 3.3.1 0t [Sc]. In general, however, approximations
to y which are obtained by that method do not satigfg). In fact, fory (p) = max|p;l; j =
1, ..., n}and smalkg, we have

ve(p) = /Rn Y +1plg)e(q))dg = y(p)

in some small neighborhood @t, 0, ..., 0), whereg;: [0,00) — [0, c0) is a function as in
Theorem 3.3.1 of [Sc] with supp, C [7/2, T].

Proof of Lemmd 2]5. Here we take the heat kernél(p, r) = (4w t)~"/2exp(—|p|?/4r) and
define

y(p, 1) = *G(,1))(p) = fRn Y(@)G(p—q,71)dg.

We gety € C®°(R" x (0, 00)) andy (-, ) — y ast — 0 locally uniformly by standard arguments.
Moreovery is strictly convex, and even moré&y2y (p, t)&, &) > 0 for (p, 1) € R” x (0, 00) and
& € R"\ {0}. In fact, we obtain the strict convexity gf by the convexity ofy sinceG > 0.
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To see(V%y(p, 7)€, &) > O for (p, 1) € R* x (0,00) andé € R* \ {0}, we definep(p, 7) =
(V29 (p,T)E, &) = (y * %ZTQ(-, 7))(p). We shall assume that there exist®, 19) € R" x (0, c0)
with ¢ (po, 10) = 0 and derive a contradiction. We observe thas a solution of the heat equation
and¢ > 0inR”" x (0, o0). Using the strong maximum principle for the heat equation, weget0
for R" x (0, 70]. This implies that the functios — 7 (p + o&, 1) is linear fort € (0, to], which
contradicts the strict convexity ¢f.

The sequencéy (-, T)} gives an approximation of. However, unfortunately (-, t) is not
positively homogeneous of degree 1. By usipgwe shall produce a function which satisfies
(y1)-(y5) and approximateg. We taket > 0 satisfying 0e F,; \ dF; for t < 7, where
Fr: ={p; y(p, t) < 1}. We define

ye(p) =inf{r; r >0, p/r € Fi}.

As we shall see latey;, is as desired, i.e., it has propertieslj—(5), there exists a uniform bound
A, in (y3)for yz, andy; — y ast — 0 locally uniformly.

The homogeneity)2) and the convexity)4) easily follow from the definition of; .

The smoothness/() follows from an estimate oDy on d.F;. Sincey is strictly convex and
y(0,7) < 1fort < 7, we get|Dy(p, t)| # 0, in particular,(Dy(p, t), p) > 0 for (p,1) €
9F, x (0, T). We defineg(r, ¢) = y(rq, t) — 1 forr > 0 andg € $*~1, and get

Gl 1

2(r.q) = (D (p. 7). p) > O
r r

for p = rq € 3F,. This implies that there exists a smooth functior= ¢(g) for ¢ € §*~1 with

g(p(q), q) = 0 sothatp(q)g € 0F; sincedF; = {p; y(p,7) = 1} = {p; y:(p) = 1}. This

yieldsy; (p) = |pl(¢(p/Ip]))~1 so thaty, is smooth outside the origin.

Property {5) follows from the strict convexity aof ;. In fact, these two conditions are equivalent
(seel[G2, Remark 1.7.5]). We indicate here the proof that the strict convexily infiplies the strict
convexity ofy2. By (y4) we get{p: y:(p) < c} = {cp; y:(p) < 1} = {cp; 7(p.7) < 1) for
¢ > 0. This andD?7 > 0 yield

(Re D%y;(p)Ren.n) > 0 for p,n € R"\ {0} with (£, ) =0,
where& = Dy, (p) andR; = I — (¢ ® £)/|&|%. SinceRgn = n we obtain

(Re D%y (p)Ren, n) = (D (p)n — €172 ® £ D%y (p)n, )
= (D2 (p)n, ) — €172, D%y (p)n) (&, ) = (D?ye(p)n, 0),

i.e., (D% (p)n,n) > 0 for p,n € R™\ {0} with (¢, ) = 0. By using this inequality we get
Ker D%y, (p) = Rp = {cp; ¢ € R} (see[G2, Remark 1.7.5]). In fact, we obtdify, (p)p = 0
sincey; is positively homogeneous of degree 1. To see B&r, (p) = Rp we shall assume that
there exists; € Ker D2y, (p) with (p, ¢) = 0 and derive a contradiction. We set= — (&, ¢)p +
ve(p)g = —(&,q)p + (£, p)g. Then we obtainr # 0, (£, x) = 0 andD?y,(p)x = 0. However,
(D?y.(p)x, x) > 0 since(&, x) = 0. This is a contradiction.

Forx # 0, we setx = c1p + c2q for p,q € R" andci, c2 € R with (p,g) = 0 and shall
prove that(D?y, (p)2x, x) > 0. If ¢ = 0, then(D2%y, (p)2x, x) = 20%)/, (p)2 > 0.1f c2 # 0, then
(D?y(p)x, x) > c3(D?y:(p)q, q) > 0 since KetD?y; (p) = Rp. We have thus establisheg).

The uniform bound¥3) and the locally uniform convergenge — y ast — 0 easily follow
from the locally uniform convergendg(-, t) — y ast — 0 and the homogeneity of each function.
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3. Properties of the anisotropic distance function

In this section, we derive some properties of the anisotropic distance function, which follow from
those of the support function. Most of them have already been proved in [BP2] for the support
function and in[[EISP] for the anisotropic distance function. However, we need to refine some of
them for our purpose. Especially, a refined version of an estimaigia$ crucial for the proof of
our uniform convergence result.

We list some properties gf°:

y(Dy°(p) =y°(Dy(p)) =1 forp #0, (3.1)
y(p)Dy°(Dy(p)) = y°(p)Dy(Dy°(p)) = p forp #0, (3.2)
D?y°(p)Dy(Dy°(p)) = D*y(p)Dy°(Dy(p)) =0 for p # 0. (3.3)

We only give a few remarks on the proof; see [BP2] for the details.

Since{p € R"; y(p) < 1} is convex, we see thdl°)° = y by convex analysis. The first
equalities of [[31)£(3]3) easily follow from this duality formula. Moreover, the identity of (3.3)
follows from (3:1) by differentiation. I [BE2], to provg (3.1), one needs to assume that,#00,
there exists a unigug € {p € R"; y(p) < 1} satisfyingy°(p) = (p, ¢). In our situation, this is
the case since? is strictly convex.

3.1 Properties ofd
We state the general properties of the anisotropic distance from a sulet in

LEMMA 3.1 Assume thay satisfies ¢1)—(y5). LetI” C R” be a closed subset. Defiadgx) =
Z(x, I'). Thend is a viscosity supersolution of

y(Vd) =1, —y(Vd) =1

—(V2dDy (Vd), Dy (Vd)) = o} in {x € R"; d(x) > 0}.

Lemmd 3.1 comes fronj (3.1) and the derivative[of](3.1) in the diredlipitVd). Fortunately,
however, we can prove the first equation without the differentiability lo§ using viscosity notions.
We shall give the proof for completeness. In the theory of viscosity solutions, we often consider the
upper and lower semicontinuous envelopes of functions to show that they are a viscosity subsolution
and supersolution of an equation, respectively. However, since

—y°(y—x) <dx) —d(@y) <y°(x—y) forallx,yeR",

d is Lipschitz continuous. Therefore we do not have to consider a lower semicontinuous envelope.
Proof of Lemma 3|1. Fix xo € {x; d(x) > 0}. Letp € C3(R") satisfy

d(x) — p(x) = d(xp) — ¢(x0) forx e R".
Sincer is closed, there exists) € I" satisfying
d(x0) = y°(x0 — yo).

Then
Ye(x —yo) — @(x) = d(x) — @(x) = d(xo) — ¢(x0) = y°(x0 — yo) — ¢(x0).
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We first show the first equation of the lemma. Sigcis strictly convex, for every there exists

a unique vectoy, € {p; y(p) < 1} satisfying
y(x —yo) = {(x —yo.qx) and y(gs) =1

We setgo = gx,. Theng, — go asx — xg by taking a subsequence ff, } if necessary. By a
calculation we find that

(x =0, gx) — @(x) = y°(x — yo) — ¢(x) = y°(x0 — yo) — ¢(x0) = {x0 — Yo, gx) — P(x).
Thus

(x —x0, gx) = ¢(x) — @(x0) = (x — x0, Vo(x0)) + o(|lx — xol)

as|x — xo| — 0. We now divide byjx — xo| and letx — xq to find, fore € §"~1,

(e, q0 — Vo(x0)) = 0.

Thusgo = Ve(xg). Fromy (go) = 1, we obtain

y(Vo(xo) 21 and —y(Ve(x) > -1

Next we show the second equation. We differentiatd (3.1) in the direftjofDy°(p)) to get
(D%y°(p)Dy(Dy°(p)), Dy (Dy°(p))) =0 for p # 0.
Herexg € {x; d(x) > 0} impliesxg # yo. We can now calculate the derivatives)of(- — yg) atxg
and obtain
Dy°(xo — y0) = Vo(x0),  D?°(x0 — yo) > Vo (x0).
We thus get

—(V2p(x0) Dy (Vg (x0)), Dy (Ve (x0)))
> (D?y°(x0 — yo) Dy (Dy°(x0 — y0)), Dy (Dy°(x0 — y0))) = 0,

which yields the second equation. O

We remark that fod (x) = Z (I, x), we obtain a similar result. However, the signvaf is reversed,
i.e., the reversed version of the distance is a viscosity supersolutipG-¥d) = 1, —y(—Vd) =
—1, and—(V2d Dy (—Vd), Dy(—Vd)) = 0. Note that we do not treat the reversed version of the
distance in this paper.

We next obtain properties of anisotropic distance functions from the moving intdrface

LEMMA 3.2 Assume thaB, y and f satisfy $1)—(83), (v1)—(5), and (f1), respectively. Let
u be a viscosity solution of (24) with initial daia(x, 0) = do(x). Letd(x, r) be an anisotropic
distance function defined by

Zx, ) forx e{u(x,t) >0},

d(x,f)= {_E(x,n) forxe{u(x,f) <0}’

wherel; = {x € R"; u(x,t) = 0}. Thend is a viscosity supersolution of (2.4) ifix,t) €
R" x (0,7T); d(x,t) > 0}.

This lemma is already proved in_[EIS2, Lemma 3.3]. Their lemma has an error term
C(A,)|Vd|d. However this term disappearsffis independent of the space variable
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3.2 Estimate ofd;d
In this section we prepare an estimate)ef which is useful to construct our supersolution.

LEMMA 3.3 Assume thag, y and f satisfy (81)-(83), (¥1)—(@5) and (f1), respectively. Let/
be the anisotropic distance function defined in Lerimp 3.2.

(i) Let u be the function defined by (o) = fa’ s/(1+ s)ds. Then
w(d(x, 1) = p(d(x,1)) — Lp f(t — 1)

for (£, 1), (£,7) € {(x,1); d(x,1) > O} provided that 0< 7 < ¢ < T, whereLg  is a positive
constant depends only an Ag, andAy.
(ii) The anisotropic distance functiahis a viscosity supersolution of

0;d = —ng,f<1+ 3) in{(x,); d(x,t) > 0}.

This lemma is a refined version of that in [E]S2]. In particular, the condtgntis independent
of any derivatives ofy. This is the main advantage ovér [EIS2] so that we obtain our uniform
convergence result.

Proof. Fix (X,7) € {(x,1); d(x,t) > 0} and letf = d(&, ). We define the function: R" x
[0,T) > Rby
2(x, 1) = u(F) — Lt — 1) — p(y° (& — x)),

whereL is a positive constant to be determined later. Sipeec C2(R" \ {0}) we observe that
z € C2LH(R"\ {x}) x [0, T)) n CLI(R" x [0, T)). By a straightforward calculation we obtain

alz(xs t) = _La

Vz(x, 1) = W(y°(@)Dy°(Q),

V22(x, 1) = =" (¥°(@)Dy°(@) ® Dy°(@) — W (y° @) D*y°(@)
for x # %, wherej = & — x. We observe that ¢ CLL(R” x [0, T)) andVz(%, 1) = 0.
In the following argument, we shall verify thatis a viscosity subsolution of (4.4). For this

purpose, we give an estimate of the second terr of (2.4) foovided thatt — x # 0. First we
remark thaix’ > 0 onR. Then we obtain

y(V2) = i1 (y°(@)y(Dy°(@) = 1’ (¥°(§)),
Dy (Vz) = Dy(Dy°(q)),
1 .
D% (Vz) = ————D?(Dy°(§)).
w'(y°(@q))
Therefore, by straightforward calculation,
try (V2) D%y (V2)V22} = 1" (v°(@)(D%y (Dy°(§) Dy ° (@), Dy° (@)
+ 1/ (y°(@) div{Dy (Dy°(9))}. (3.4)
By calculating the derivative of the second equality[of(3.1), we obtain

D%y (p)Dy°(Dy(p)) =0 for p # 0.
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Takingp = Dy°(g) yields
D?y(Dy°(§)Dy°(Dy(Dy°(§)) = 0.
By (3:9) and sinceDy° is positively homogeneous of degree 0, we obtain
D?y(Dy°(§)Dy°@) =0,

i.e., the first term on the right hand side pf{3.4) vanishes. Moreover, (3.2) andysirise
positively homogeneous of degree 1, we obtain

div Dy (Dy°(p)) = div( p ) _ny°(p) = (p, Dy°(p)) _ n—1

veip)) y°(p)? —re(p)

Combining these and’(0) = o/(1 + o) gives

trly (V2) D2 (V) V22) = —p/ (@) s = ——
v°(@) 1+y°(@q)

We are now in a position to verify thatis a viscosity subsolution of (3.4). First we verify this
in R"\ {x}) x (0, T). By (3.8) and since.’ < 1 we obtain

> —(n—1). (3.5)

B(Vz)0z — tr{y(Vz)Dzy(Vz)sz} —y(Vo) f < —Aiﬁ +n—=1+]f].

We takeL > O satisfying—L/Ag +n — 14| f]| < 0, which shows that is a viscosity subsolution
of 2.4) in(R" \ {x}) x (0, T). Here we takd. = Ag(n + Ay) =: Lg 5.

Next we verify that; is a viscosity subsolution in a neighborhood #f x (0, T). Lets € (0, T)
and letp € C2(R" x (0, T)) satisfy

z2(x, 1) —p(x, 1) < z(%,5) —p(x,5) for(x,t) e R" x (0, T)\ {(%, 5)}.
ThenVe(%, §) = Vz(%, §) = 0. Fixe € $"~1 and define
@r(x, 1) = @(x, 1) + (e, x).
Then, for sufficiently smalt > 0, there exists; € {x; d(x, s) > 0} satisfying

z(-,8) — (-, ) < z(x7,8) — o (x7,5) insome neighborhood d,
x; # x andx; — x ast — 0.

We only verify thatx; # . If x; = X, thenVo, (x;, §) = Vo(x, §) + te = te # 0. However, also
Vo, (x¢,8) = Vz(x¢, §) = Vz(x,§) = 0. This is a contradiction.
We now observe that

9z(x¢, §) = 9,2(X,58) = 3t€0(£, 5),
Vgof(-x‘[vg) - V¢(xAs§)’ ast — O
V2p: (x7,8) > V(% §)
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Moreover, Vo, (x;, §) = Vz(xe, §) and V2, (x7,5) > VZ2z(x;, §) sincez — ¢ (-, §) attains its
maximum att. Therefore

[B(V9)dip — tr{y (Vo) D%y (Vo) V29} — ¥ (V) (£, §)
< Im[B(Ver)diz — trly (Vo) D2y (Vo) Ve ) — y (Vor) f1(xr, §)

< im [B(V2)diz - tr{y (V2) D?y (V2)V?2} — ¥ (V2) f1(x¢, §) < O.

We conclude that is a viscosity subsolution of (4.4) iR" x (0, 7).

We now verify []). From [CGGIL], we know that,j(x, t) := min(kmaxu(x,t),0),1) is a
viscosity solution of[(Z2}4) fok > O sinceu(x,t) is a viscosity solution of[(2]4). Moreover,
u®(x, 1) == xu=0(x, 1) = limg_ oo inf{u;.r(y, $); |y —x|+1|s —t| < 1/k, j > k}, is a viscosity
supersolution of (2]4) (see [CIL, Lemma 6.1]). We now consider th&/set{x; y°(x — x) < F}.
Then we obtain

2(x,1) = p(F) — p(y° (X — x)) < u(F) = p(Hu>(x,1) forxeU
sincep > 0 andd(x, 7) > 0 forx € U. Moreover, for(x, t) € dU x [, T),
2(x, 1) =—Lp gt —1) <O< pu(Fu>(x,1).
Therefore, by the comparison principle,
2(x, 1) < uPu®>(x, 1) for (x,1) e U x [, T).
Fort € [, T), fix § € R" satisfyingu(9,t) = 0 andd (%, 1) = y°(& — 3). If § € U, then

0=pnMu> @, 1) 229, 1) = pu(F) = Lp gt —1) — pu(y° (& = 3))

or
nd(x, 1) = u(d®, 1) — Lg, p(t —1).

If § ¢ U, then
pw(d(,0) = p(y° & —9) = u) = pd&, 1) > pdE, 1) — Lp gt — 1),

which yields [j).
Finally, we verify [ii). Let(xo. f0) € {(x,1); d(x,) > O} and letp € C?(R" x (0, T)) satisfy

d(x,1) —o(x,t) > d(xg, to) — @(x0,20) =0 for(x,1) e R" x (0, T).
From [i) we observe that(x, ¢) is left continuous in time in the sense that

lim limd(x, t) = d(xo, to)

X—=>X0 ttg
(seel[EIS2, Proposition 3.5]). Then there exists a constand satisfying

d(xo,t) >0 fort e (tg—r, to].
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By using []) we see that

u(p(xo, t10)) = p(d(xo, t0)) = pu(d(xo, 1)) — Lg s(to — 1) = pu(e(xo, t)) — Lg r(to — 1),
or

1(p(xo, 10)) — (p(x0. 1))
fo—t -

Lﬁ’f
Lettingr — 1o yields
1 ((x0, 10))3:¢(x0, t0) = —Lpg, .

Sinceg(xo, tg) = d(xo, tp) andu’(o) = o /(1 + o) we obtain

1
0, Jto) > —Lg r|14+—). O
¢ (x0, 10) ﬂ,f( +d(x0, t0)>

3.3 Truncated anisotropic distance function

In this section we shall prepare several estimates of truncated anisotropic distance functions to
construct our supersolution having a uniform estimate.

We first recall a function introduced in[[ESS]. We fi¥ € (0, 1) and we consider a function
n € C*°(R) satisfying

_Jo—=6 ifo>4/2
n) = { 5 ifo <8/4, (3-6)
0< ' <Gy I < Cy/é, (3.7

whereC), is a constant independent@fands.
We now introduce a truncated anisotropic distance functionulle¢ a viscosity solution of
(2:4) with initial dataug(x) = do(x), wheredy is the anisotropic signed distance function defined

by (2.13). We set

0; = {x e R"; u(x,t) > 0},
D; ={x eR"; u(x,t) <0},
Iy ={x e R"; u(x,t) =0}

We now define the anisotropic signed distance functioR” x [0, T) — R from the moving
interfacel; by

E(x, Iy) if x € O; U I3,

d(xvt):{_E(x’n) ifoDt~

Thetruncated anisotropic distance functian R" x [0, T) — R is defined by

w(x,t) =n(dx,1)).

Now we state some propertiesof
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LEMMA 3.4 Assume thaB, y and f satisfy 81)—(83), (¥1)—(¥5) and (f1), respectively. Then
the truncated anisotropic distance functiotx, r) = n(d(x, t)) is a viscosity supersolution of

B(Vw)d,w — tr{D%a(Vw)VZw) — y (Vo) f = —C,/8

in R" .
Vel = —C, } in x (0, T), (3.8)

whereC,, is a positive constant depending only dp. Moreoverw is a viscosity supersolution of

B(Vw)dw — tr{D?a(Vw)V2w} — y (Vo) f =0

+y (Vo) = :I:l} in{(x,1); d(x,t) > §/2}. (3.9)

We remark that the equation in Lemina]3.4 is different frbm](2.4). We replace the second term
of (2.4) by that of the Allen—Cahn equatidn (2.6) to §et](3.8] or](3.9). This modification is useful to
construct a supersolution fgr (2.9).

Proof. Let (xq, 10) € R” x (0, T) and letyp € C2(R" x (0, T)) satisfy
w(x,t) —e(x,1) > w(x, to) — ¢(x0,20) Whenevenx, t) # (xo, fo).

We divide the argument into two cas@sxo, o) > 0 andd (xg, fp) < O.

Case 1. Assume that/(xg, o) > 0. Lett € (0, 1) be a small parameter. We introduce a function
n, approximating;, defined by

ne(0) =n(o) + o.

Then there exists a neighborhobd= U (xo, fo) of (xg, to) and(x;, t;) € U satisfying

Ne(d(x, 1) — o(x, 1) = ne(d(xe, 1)) — p(xe, t7)  for(x, 1) e U,
(X7, t;) — (x0,%0) ast — 0.

Sincen. =n' 4+t >t > 0, there existp, = (1,)"* andp. > 0. Define

O (x, 1) = p(@(x, 1) — @(xe, 1) + N (d(xe, 17))).

Then
dx,t) — ¢ (x,1) > d(x¢, t;) — @r(x,t;) =0  for(x,t) e U.

By straightforward calculation we obtain

& @r = p;(K)dr, (3.10)
Vr = p,(k)Vg, (3.11)
V25 = p] ()Y ® Vo + p' () V39, (3.12)

wherex =k (x,1) = @(x, 1) — @(x¢, tz) + N (d (e, 17)).
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By Lemmag 3.]l and 3.2,
y (V) =1, in particular,Vg, # 0
B(VG) @ — tr{y (V@) D2y (V@) V25, } — y (V@) f =0

where we do not need to consider the place where the gradient of the unkngwn pf (3.13) equals zero
sinceVg, # 0 at(x,, tr). By calculating the term including trace and using Lenimé 3.1, we obtain

tr{y (V@) D?y (V§:) V2@, } = tr1{D?a(V§:) V2@, ) — (V25 Dy (V@,), Dy (V)
> tr{D%a(V$:) V3@, ).

at (x¢, t7), (3.13)

From [3.I3) it now follows that
B(VE)d@r —tr{D?a(Ve:)V2g:) = y(Vér) f >0 atlxe, fr). (3.14)
By the homogeneity of, y anda we obtain
B(VEr) = B(Ve),  y(Vgr) = p,()y(Ve), D?*a(Vgr) = D*a(Vy).
Combining [3-IP)+(3:12) and the above, we deduce ffom(3.14) that

B(V@)drp — tr{D%a(Ve)V2p) — y (Vo) f > Z—Eg tr{D%a(Ve)Ve ® Vo)  at(x;. tr).

Sincew is positively homogeneous of degree 2, we obtain
tr{D?a(Ve)Ve ® Vo) = (D?a(Vp) Ve, Vo) = 2a(Ve) =y (Vg)*.
Moreover,p; ()/ p; (k) = =1/} (pz (k) 0} (k) = =1}/ () p} (). Hence

P (1)

) tr{D%a(Vp) Ve ® Vol = —n (@) (0, (K)y (V9))?

= =17 @)y (Vor)* = = (@0).
Combining these, we obtain

B(V@)drp — tr{D%a(V)V2p) — y (Vo) f = —n (@)  at(xr, 7). (3.15)

Case 1.1. We verify (3.8) for(xo, t0) € {(x, 1); d(x, t) > 0}. By (3.7) we obtain
7 (@) = —Cy/8  at(xe, 7).
We apply this estimate tp (3.]15) and tet> 0 to find that
B(Vp)dg — tr(D?a(Ve)Vop) — y (Vo) f > —Cy /8 at(xo, fo).
Moreover, by[(3.1B),

_ - Vo [Vl
1=y(Vg,) = |V¢r|V< Al ) > at(xg, t).
V| Ay
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By definition we haveVy| = |V, |/p. (k) and ¥ p.(-) = . (p-(-)) < C, + 7. Thus
Vol < (Cy + DIV < (Cp+1)Ay  at(xe, 7).
We lett — 0O to conclude that
IVp| < CyAy, =:C,  at(xo, 10).
Case 1.2. We verify (3.9). Sincel is lower semicontinuous, there exists a positive consiast 0
such that < o impliesd(x;, t;) > §/2. Sincen)(c) = 0 foro > §/2, we obtain
My (@r (X7, 12)) = n7(d(x7, 1)) =0 forz < 1.
We apply this equality td (3.15) and let— O to deduce that
B(Vp)dp —tr{D?a(Ve)V2p) — y (Vo) f >0  at(xo, 10).

Moreover, sinc&/¢ = 1, (¢;)V@: = (1+ 1)V, by (3:13) we obtain

v
1= ;/(—‘p) at(x;, 7).
141

Lettingt — Ovyieldsy (Vg) = 1 at(xo, to).

Case 2. Assume thatl(xg, fg) < 0. Sinced is left continuous in time in the sense that

lim limd(x, t) = d(xo, to),
X—>X0 1o

there exist a positive constartand a neighborhootip(xg) of xg satisfying
d(x,t) < §/4 for(x,t) € Up(xo) X (to — ro, to).
For (x, t) € Up(xo) x (to — ro, to) We havew(x, t) = —4, i.e.,w is constant there. This implies
dip(x0,10) 20,  Ve(xo,10) =0, V3¢ (xo,10) <O.

SinceVo(xo, 10) = 0, we need to take the upper semicontinuous envelope of the equation (3.8).
We observe that

B(p)dp >0, —tr{D?a(p)V3p(xo,10)} >0 forp #0,
sinceg > 0 andy? is strictly convex. We have lim,oy(p)f = 0. Therefore

[8(V9)d,¢ — tr{D?%a (Vo)V} — ¥ (Vo) f1* (x0. o)

> lim [B(p)d;¢(x0, 10) — tr{D%a(p)VZp(x0, 10)} — y(p) f1 = 0> —C,/8.
p—0

Moreover,|Vo(xo, t0)| = 0 < C,,. O

We next give an estimate éfw by using Lemma 3]3.
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LEMMA 3.5 Assume thag, y and f satisfy 81)—(83), (¥1)—(¥5), and (f 1), respectively. There
exists a positive constartig s which depends only om, Ag, and Ay such that the truncated
anisotropic distance functian(x, t) = n(d(x, t)) is a viscosity supersolution of

dhw=—Cp /8 INR"x (0,7). (3.16)

Proof. We continue to use the notations of the proof of Lenimé 3.4.

Case 1. Assume thati(xg, f0) > §/8. Sinced is lower semicontinuous, there exists a positive
constantr; > 0 satisfying
d(x;,t;) >8/8 fort < 11.

Then Lemma3]3 shows that
0rpr > _Lﬂ,f(l +1/d) at(xe, t).
Sinced; ¢, = p. (k)¢ andd (x., 1) > §/8, we obtain

ﬁ(l §> o _OLp Ul +1)
P} (1) - 5

8[(0 2 - at(xfﬂt‘[)a

8

where we have invoked that € (0, 1) and$ € (0,1). We takeCg r = 9Lg ¢(Cy + 1) and let
t — 0to reach the desired conclusion{ixx, ¢); d(x,t) > §/8}.

Case 2. Assume that/(xo, fo) < §/8. By a similar argument to Case 2 in the proof of Lenjima 3.4,
we obtain, in particular,
do(xo.10) = 0> —Cg f/8. 0

4. Construction of supersolutions for estimating the internal layer

In this section we construct a supersolution for estimating a solution df (2.9). The basic strategy
follows the construction of [ESS].

Let u be a viscosity solution off (214) with initial data(x,0) = do(x). The setl}? =
{x; u(x,r) = —28} is also a generalized solution ¢f (2.1). So we introduce an anisotropic signed
distance functiors(x, t) defined by

_JE@. ) ifx ey uly.n > -28),
ds(x, 1) = {—E(x, Py if x e {y; u(y, 1) < —25).
By the definition ofds the properties in 83 still hold fafs andws = n(d;).
Combining this and the traveling wave of §82.3 we introduce a candidate for our viscosity
supersolution fof{(2]9). We define a functign: R" x (0, T) — R by

(wa(x,t) +Klt>
&

ws(xvt)ZQ +‘9K27

where K1 and K> are positive constants to be determined later. We shall verify the following
propositions.
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ProPOSITION4.1 Assume thap, y, f ande satisfy 81)—(83), (v1)-(5), (f1) and €1),
respectively. Then, fo§ > 0, there exist positive constanks, = K1(8), K2 = K2(8, Ag, Ay)
andeg = €0(8, Ag, Ay, Ar) such thaty, is a viscosity supersolution of

: 1 Kgs.r o on
BVYe) 0 e — diviy (Vire)E(Vie)} + 8—2(W (We) —erf) = B inR" x (0, T)

provided that € (0, eg), whereKpg s, ¢ is a numerical positive constant depending only/gn Ay
ands.

This proposition says not only thék, is a viscosity supersolution df (2.6) but also that the left
hand side of[(2]6) withh = . increases teroo like 1/s.

Proof. We shall takezg small seven times in our proof: in (4.5), (4110), (4.1f), (#.12), (4.[4),]4.18),

and [4.19). It suffices to take the minimum of these choices to obtain the conclusion.
Let (xg, ;) € R" x (0, T) and letp € C2(R" x (0, T)) satisfy

Ve(x, 1) —@(x, 1) > Ye(xe, te) — @(xe, 1) =0 whenevelx, 1) # (xe, te).
SinceQ’ > 0inR we haveQ ! € C*(R) and(Q 1)’ > 0. Set
G(x, 1) =0 M p(x,1) — eK2) — Kut.
Theng € C2L(R" x (0, T)) and

ws(x,1) — @(x, 1) = ws(xe, te) — P(xe, L) for (x,1) € R" x O, 1),

p(x, 1) + Kat
o0, 1) = Q(*"(x)fl) ek
By straightforward calculation we obtain

1 -

do = EQ/(h)(azsa + K1), (4.1)
1

Vo = =0'(h)Vg, (4.2)
&
1 1

Vi = 50" (Ve ® VG + =0/ )V, (4.3)

whereh = h(x,t) = (¢(x, 1) + K1t)/e. Moreover,
W () = W (p) = W (Q(h) + eKoW'(Q(h) + O(e2K2)  at(xe, 1) (4.4)
ase — 0. We now takesg = ¢g(K>2) small so that

leKo| <1 provideds € (0, gg). (4.5)

Case 1. We assume thdi,, t,) satisfiesss (x,, z.) > §/2. By Lemmg 3.4 we have

y(V@) = 1, in particularvg # 0,

at (xg, te). 4.6
B(V§)0G — tr{D2a(V§)V2G) — y (V@) f > o} g 9
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We observe thaV¢ # 0 sinceVg # 0. We set

1
Re = Re(x, 1) = B(V)dg — tr{D?a (V) Vp) + S W' (W) —erf). 4.7)

Our aim is to show that there exists a positive constps, r, which depends only omg, Ay
ands, satisfyingR, > Kg s /€ at(x,, te).
By the homogeneity of, y anda,

1
BVe) =BV,  y(Vg) = =0y (V§), D?a(Vg) = D%a (V).
By (.7)-{4.3) we now obtain
8t§0 -+ K]_

B(Vp)dp = B(VE) Q' (h) ———

and
Q QW p2(vg)vs, V¢>+Q—(’”tr{Dza<V¢)v2¢}

Q ©y w2 + L0 w1029 v2).

tr{ D%« (Vo) V2p} =

Here we have invoked the property tha2a(p) p, p) = 2a(p) = y(p)2for p # 0 sincea is
positively homogeneous of degree 2. Combin[ng](4.4) and the above, we conclude that

1 1 2

R, = ;1—24- -1_1+ O(K5),

I_2 = —0"(W)y(V§)? + W (Q(h)) — erf, (4.8)
I-1 = KoW'(Q(h) + Q' (W[B(VP) K1+ BV, — tr{D?a(VF)VZH)]. (4.9)

By (2.10) and sincer (V@) = 1,
[2==0"(h)+ W' (Qh) —erf =cQ'(h).
Then, by using[(4]6), we obtain

1
R. = g(zKZVV’/(Q(h)) + Q’(h)[f + g + B(VP)K1
+ B(VP),¢ — tr{D*a(VF)V>G) — y(V@fD + O(K2)

1|: : / < C Kl)] 2
z —[KWH(Qh) + O ()| f+ -+ +O(K3)  atxe, ).
€ e Ag

We now determine;. We take
1)
Ki=—.
YZoar
The reason for this choice is clarified in Case 2. By Proposjtiof]2.1(i) we dgke eo(s, Ay)

smaller so that K s
C 1 .
= rovided 0, £9). 4.10
I 52 24, = T8ar P ¢c 0 (4.10)
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Then we obtain
1
R > E[KzW”(Q(h)) + Q'(h)Cgs] + 0(K22) at (xg, ),

whereCg s = 8/(8AgT).

Now we determineks. It will enable us to estimat®, in the case thaW”(Q(h)) < 0. The
basic strategy comes from the fact tiato) — tanho uniformly with respect tar € R and f
satisfying (f1) ass — 0, W’(tanho) > 0 for large enoughv |, and we have a local uniform bound
of Q' from below with respect tg ande satisfying (f1) and ¢1).

By Propositiorj 2 J(ji) we takeg = eo(Ay) smaller so that

|Q(0) — tanho| < %(1 — %2) =:v foro € R provideds € (0, o). (4.11)

We takeb = — supo; tanho + v < —1/4/2} = inf{o; tanho — v > 1/+/2} and let

K> = _azCﬁ,a’
2a1

ap=| inf W), a2=inf{Q'(0); |o| <b, &€ (0,8, |fl < Ar}.
lo|<1+v '

We remark that, > 0 exists by Propositidn 2[L{iii). Moreoveg = ¢o(K>2) implies thatso depends
ong, AgandAy.
We consider two subcases.

Case 1.1. Assume thatx,, z.) € {(x,1); |h(x, )| < b}. ThenQ(h(x,,t;)) < 1. Therefore

+ O(K3) at(xe,te).

1 2 aZCﬂ,S
R, > g(—chl]_ +azCgs) + O(K5) = >

£

This is why we takeK, as above. We now takg = £qo(8, Ag, Ay) smaller so that
leO(K3)| < axCps/4 provideds € (0, ep). (4.12)

Then we obtain
azCp s

R > >0 at(xg, ). (4.13)

Case 1.2. Assume thatx,, t,) € {(x, 1); |h(x, )| > b}. ThenW"(Q(h(x¢, t;))) > 1 and
Re > Ka/e + O(K3)  at(xe, 1),
We now takesg = eo(8, Ag, Ay) smaller so that
lsO(K3)| < K2/2 provideds € (0, o). (4.14)

Then we obtain

K
R. > 2—2 >0 at(xe,f). (4.15)
£
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Case 2. We assume thai,, 7;) € {(x, 1); ds(x, 1) < §/2}. By Lemmg 3.4 we have

V@ (xe, te)| < Cya

o 2 o2~ . (4.16)
[B(V9)0:¢ —tr{D°a(VP)Vg} — y (V@) fI" (xe, t:) = —Cp /8.
We first observe that
K )
h(xe. 1) = U(da(xe, te)) + Kite < _@ <0, (417)
&

i.e.,h - —ooase — 0. This is why we tak& 1 as in [4.1D). Therefore we take = ¢o(5) smaller
so that

(xXe, 1) € {(x,1); W'(Q(h(x,1)) =1} for (xg, 1) € {(x,1); ds(x, 1) <8/2} (4.18)
providede € (0, &9).
Case 2.1. Assume thaV¢(x,, t.) # 0. By the same argument as in Case 1.1, it suffices to see

1

1
Re= 1o+ L1+ OKS > Ksp /5 at(x,te),

where R., I_» and I_; are defined by[(4]7)[(4.8), anf_(#.9), respectively. We remark that
y(V@(xe, te)) # 1inthis case. Therefore

I2=—=Q0 "W (y(V)? —1) +cQ'(h).

Then we observe fronfi (4.]L6)

1 /" ~\2 1 / ~ CU
Ry 2 — ;Q My (Vo) =1 + " Ko+ Q' (W) Cps+ (Vo) =D f — 3
+ O(K3) at(xe,1e).

By the homogeneity of we obtain

L - (Vo
y(Vo) = |V‘P|V<w> <CpA,  at(xg, ).

Therefore
_ 1 2 42 " 1 _ / 2
Re > ;(CVAV + D0 (W] + E{Kz CpyslQ (W} + O(K5)  at(xe, 1),

whereCg ,, s := Cp s + (C, Ay, + 1| f| + C, /8 is a constant. By (2.12) and (4]17),

C§A2 +1

1
Re > E{Kz = (cﬂ,y,s + TV)cl exp(—c2|h|>} + 0(K)

1 CyA% +1 Co8 2
Z K= |\ Cpys + ——— JCaexp— =) + O(K3) - atlxe, ze).
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We takesg = €o(8, Ag, A, Ay) smaller so that

C2A%2 +1 Cos K
‘(Cﬁ,y,é + L)Clexp(__z)’ < _2
€ 4e 4 provideds € (0, gg). (4.19)
K>

0(K?)| <
leO(K5)] 2

Then we obtain X
R: > 2—2 >0 at(xe, ). (4.20)
£

Case 2.2. Assume thaV¢(x,, t.) = 0. We need to cgnsider the equations in weak sense. We now
seté, = Ye(xe, te), Se = 0r (X, 1), Ias = Vo, t:), Xe = Vzw(xs’ t;), and

_ J— 1
Re = Tm (B(p)s — r(D%a(p)X} + 5 (W'(0) = £31);
o —Gel <r, Is =3l <r [p—pel <r, |X = Xe| <1},
We shall proveR, > Kg 5, /8. By (4.18) there exists a sequer(¢e;, g;, Yj)}22, satisfying
i (5. 4;. Y)) = @19 (5. 1), 0. VG (. 1),
g #0, lim |g;| < Cy,
J—>00

Jlim [(a;)5; —t{D%a(qY;} = (4 f1 > 0.

We now set R
0j = Q(h(xe, te)) + K2 = 0y,
1 N
sj = gQ’(h(xs, 1)) (tj + K1) — Se.,
1, . (4.21)
pj=720 (h(xe, te)qj — 0= ps,
1 1 N
Xj= ;Q”(h(xg, 1e))q; ® qj + EQ/(h(xs» 1)Y; —> Xe,
where the limits are taken gs— oo. Moreover, let
) 1
R = B(pj)s; — tr{D%a(p;)X;} + 8—2(W/(q/) — erf).
From the arguments in Case 2.1 it follows that
_ . . K
Re> lim R/ > 22> 0. (4.22)
j—o0 2e

SetKp s, r = Min{K2/2, a>Cp s/4}. Then we conclude fronp (4.1.3), (4]15), (4.20), gnd (4.22) that

Kps,f
&

[ﬂ(w)atw — tr{D%a (Vo) V2p) + Eiz(vv’(wg) —sm} (Xe, 1) = ~0. 0O (4.23)

We are now in a position to show thét is a viscosity supersolution df (2.9).
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ProOPOSITION4.2 Assume thap, y, f ande satisfy 81)—(83), (v1)-(5), (f1) and €1),
respectively. Then, fo > 0, there exists a positive constant = ¢1(8, Ag, A4,, Ay) such that
Y, is a viscosity supersolution df (2.9) R" x (0, T) provided that € (0, £1).

Proof. We continue the proof from Propositipn ##.1. We firstdix < &o. In this proof, we take1
twice, in (4.25) and (4.26). It suffices to take their minimum.

Case 1. We assume thatx,, ;) € {(x,?); ds(x,t) > §/2}. Sincey (V@) = 1 we haveVp # 0.
We now set 1
Re = B(V9)dhp — 1{D?a(Vo)V2p} + = (W'(g) = £hf). (4.24)

=B
Our aim is to showk, > 0 at(x,, 7,). By straightforward calculation we obtain

~ ~ Kﬂ,ﬁ,f ~
Re =R+ Re — Re > T BNVe) — B(Vp))drp

1
= E[Kﬂ,é,f + Q' ME(VeD(Ag — B(V@)) (3§ + K1) at (xe, o).

We observe that
0'(M¢ (Ve (Ag — B(Vp)K1 = 0.
Moreover, from Lemmp_3]5 we obtain

C
Q' (W¢(IVe)(Ag — BVONHG = —Q (Wt (IVe))(Ap — ﬂ(W))Tﬂ
/ 1\Ss
> -0 (h)C(IVwI)(A,s — A—)7 at (xe, ).
B
Thus 1
Re > “[Kps.5 = Mg sQ'(WE(IVe)]  at(xe, te),

whereMpg s .= (Ag — 1/Ag)Cg/8. We now studyR, in two cases.

Case 1.1. Assume thatx,, ;) € {(x,1); MgsQ'(h(x,1)) < Kg s ¢/2}. In this case it is easy to
see that X
Ro> Lt
2¢
Case 1.2. Assume thatx,, t.) € {(x,1); Mg sQ'(h(x,1)) > Kg s r/2}. We remark thafVe| =
Q'(h)|V@|/e. Sincey (V@) = 1 we obtain

>0 at(xg, ).

Vol > 1/Ay at (xg, ).

Hence ')V X
% B4, f
Vo| = > at(xg, 1;).
Vol 257, My (xe, Ie)
We takesy = £1(8, Ag, Ay) smaller so that
Kﬁ,,syf .
>1 providedes € (0, &1). (4.25)

2e AgMg s
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Then we obtainVe| > 1> 3/4,i.e.,(|Vp|) = 0 at(x., t;). Thus

- K
R, > il LIV >0 at(xg,t).
&

Case 2. We assume thatx., ;) € {(x,1); ds(x,t) < §/2}. By (4.I7) there existg; =
€1(8, Ag, Ay) satisfying

(xe, 1) € {(x,1); MpsQ'(h(x,1)) < Kgs r/2} providede € (0, £1). (4.26)

We takee; satisfying [(4.2B).

Case 2.1Assume thaVe(x., t.) # 0. From the same argument as in Case 1.1 of this proof we
obtain <
Re > —E0S

e = >0 at(xg, ).
2¢

Case 2.2 Assume thatVe(x,,t,) = 0. Sincelim;_, R > Kg.s, /€, there exists a positive
numberN; € N satisfying
. 7Kﬂ 8 f
RJ 2 50,
€ 8¢

forj > N
by taking a subsequence {cR! } if necessary. Set
s 1
Rl = B(pj)sj = (D*(p)X;} + 5 (W'(0)) = &rf),
whereo;, sj, pj andX; are as in[(4.21). By (4.21) there exists a positive nuniee N satisfying

5K}3y,;’f

for j > N
8 J 2

1
Q' (h(xe, ts))§(|Pj|)<Aﬂ - A—ﬁ)q Z -

sincet; — 9;¢(x;, 1) asj — oo and by [[4.25). Then

.. S . 1(/7Kgs. 1 Kp.s,
Rg=Rg+Rg—Rg>;( ’; f+Q’<h<xg,rg)>§<|p,-|><Aﬂ—A—ﬂ)r,)> ng >0

for j > N = max{N1, No}. We thus conclude that

- — . _ K
(Re)*(xe, te) > Tm RI > =221 S o, O
j—o00 4e

5. Uniform estimate

In this section, we shall prove Theor¢m|2.2.

Proof of Theorenj 2]2. Let v be a solution of[(2]9) withy(x,0) = Q(do(x)/¢), andy, be as
defined in 84. We first verify that, far > 0,

Ye(x,0) > v(x,0) forx e R", (5.1)
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We remark thatos(x, 0) = n(ds(x, 0)) > do(x). Lety € F(;S be such thatls(x,0) = y°(x — y).
Then

do(x) —do(y) < y°(x —y) = ds(x, 0).
By the definition ofl}¢, we havedg(y) = —25. Thus

ds(x,0) > do(x) + 26.
If ds(x,0) > §/2, then
n(ds(x, 0)) = ds(x,0) — & > do(x) + 8 > do(x).
If ds(x,0) < §/2, then

do(x) <ds(x,0) — 26 < —35/2 < =8 < n(ds(x,0)).

Yo(x, 0) = Q(‘”‘S(z’ °)> beKy > Q(dof‘)) — u(x.0).

By the comparison principle and (5.1) we obtain, §or 0,

Thus

Ye(x,t) = v(x,t) for(x,t) e R" x (0, T).
Fix 6 > 0. We takes satisfyingds(x, t) < 0if d(x, r) < —6. We recall[[4.1I]), that is,

ws. 1) + Kat —4% for (x, 1) € {(x, 1); ds(x,1) < 8/2).

&

Therefore[(Z.1]1) yields

Yelr, 1) = Q(—‘”‘S(x’ ks K”) +eKo

5 Cos
<0(—) +eko < —1+ Crexp( ——2 ) + (K2 + Ca)
4e 4e

for (x,1) € {(x,1); d(x,1) < —0}. Combining all the above inequalities, we obtain

v(x,r) < -1+ Clexp(—%) 4+ Ce for(x,t) € {(x,1); d(x,1) < —06},

providedes € (0, £1), whereC1 andC» are numerical constant§,= K, + C3 is a positive constant
depending only om g ands, ande1 is a positive constant depending only 4, A,,, Ay ands.J

6. Concluding remarks

We now explain the difference between [EIS2] and our paper and also discuss some remaining
problems. We keep our notatioasy, 8 and f, which correspond td, B, g andu in [EIS2].
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(i) (Essential difference) If we assume the driving forgeis constant in[[EIS2], several
propositions of ours have something in common with those of [EIS2], for example our Lemma
3.2 and[[EIS2, Lemma 3.3]. The crucial difference is found in the proof of our Lemma 3.3 and
[EIS2, Lemma 3.4]. IN[EIS2] the authors show that, fiip, X) = —y (p){tr(D?y (p) X)+ f},

F(p, 1) < C(A,)(A+|pl) forp #0, (6.1)

whereC(4,) is a constant depending ofy, := 17 lc2(B,(0)\ By/2(0))- BY USiNg this estimate
they prove that: = z(x,r) in the proof of our Lemma 3.3 is a viscosity subsolution of
(2:4), and consequently determidie In the casef is a constant, this dependence Iofon

the second derivatives ¢f is the crucial reason why the estimate of convergence depends on
the derivatives ofy. In our paper, without using the estimafe {6.1), we rather calculate the
quantity

o 2.0 n—1
F(Dy"(p), D*y"(p)) = ——
y°(p)
by using convex analysis, and determine the constanfrom this formula. Evidently, this
calculation is independent of the second derivativeg.of
(ii) (Technical difference) There is a difference in the strategies of [EIS2] and oufs. In [EIS2] the
authors consider the approximation of each problem to clarify the relatipn of (2.6) ahd (2.4). In
our paper we introduce a modified Allen—Cahn equafiori (2.9) inste@d f (2.6) to remove some
technical difficulties. However, since we require a detailed estimate rather than the convergence
result, we need a more detailed computation.
(i) (Inhomogeneity) If the driving forcef depends on the spatial variables even if the
dependence i€2, the method of our paper is not enough to achieve our goal. In fact, in the case
f = f(x), the traveling waveQ in 82.3 depends on the spatial variabld.e., 0 = Q(o, x).
Then we obtain formally

Vy = %Vw + Ox,

Qo0

g2

—f forp#0,

VY =

1
Vo ® Vo + E(an Q@ Vo + Q0xs @ Vo) + Oxx.

We cannot use the homogeneityqf8 andy to estimater, or R, because of the form 67+.
Moreover, it is not clear how to estimate thel-term of V2y. In [EISZ] the authors assume
that the highest order derivativeswfs andy are Lipschitz continuous, and calculate that, for
example,

D?a(Vy) = ;—Ll)?a(va)) +0(1) ase— 0.

The bound of the last term depends on the Lipschitz constabfef

(iv) (Time-dependent driving force) It is easy to apply our methods to estimate the internal layer
with time-dependent driving forcg(r) satisfying, for examplef € C1([0, T]). Essentially,
to apply our method for the problem with driving forg¢ér), we need the following properties:

(@ Q= 0(o,1), 0 Yo, 1) € CXR x [0, T)),
(©) 19: 1l Lo ®x[0, 1) < °0,
(c) the convergences as in Proposifiorj[2.1[(i), (ii) are uniform with respect {®, 7.
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By the equatior[(2.10) the traveling wage= Q(o, t) with f € C([0, T]) satisfies the above
conditions. In the proof of the propositions, we should be careful with the limiting procedure
for sequences of times, in particular, in the proof of Proposifiorjs 4.L ahd 4.2.

Fortunately, when we verify thaf. is a viscosity supersolution of (2.6) and (2.9), this
generalization yields only one extra term of the time derivativg ofi.e.,

0t e = %(fhwa + K1) + Q.

The last term is included only in the term of ordérof R,.

(v) (Application for the driving forcef = f(r)) We remark that an application in §2.5 is still
valid for f = f(¢) depending on. Suppose thafp is continuous. It is easy to approximate
fo by a smooth functiory™ converging tofp locally uniformly. That the convergence ansatz
extends to this situation is proved [n [GG4] ahd [GG5]. However, by remark (iv), we need the
bound of|| £l ¢1o, 77 to Verify that our functionj. is a viscosity supersolution df (2.9) by the
method developed in this paper. Another method seems to be necessary to prove our uniform
convergence foy = f () without a bound ory’.
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