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Similar evolutionary variational inequalities appear as convenient formulations for continuous
models for sandpile growth, magnetization of type-Il superconductors, and evolution of some other
dissipative systems characterized by the multiplicity of metastable states, long-range interactions,
avalanches, and hysteresis. The origin of this similarity is that these are quasistationary models in
which the multiplicity of metastable states is a consequence of a unilateral condition of equilibrium
(critical-state constraint). Existing variational formulations for critical-state models of sandpiles and
superconductors are convenient for modeling only the “primary” variables (evolving pile shape and
magnetic field, respectively). The conjugate variables (the surface sand flux and the electric field)
are also of interest in various applications. Here we derive dual variational formulations, which have
some similarities to mixed variational inequalities in plasticity, for the sandpile and superconductor
models. We then approximate them by fully practical finite element methods based on the lowest
order Raviart—-Thomas element. We prove convergence of these approximations, and hence existence
of a solution, to these dual formulations. Finally, we present some numerical experiments.
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1. Introduction

Sandpiles and type-Il superconductors are examples of spatially extended open dissipative systems
which have infinitely many metastable states; but, driven by the external forces, tend to organize
themselves into a marginally stable “critical state” and are then able to demonstrate almost
instantaneous long-range interactions. The evolution of such systems is often accompanied by
sudden collapses, like sandpile avalanches, and hysteresis. Although these are dissipative systems of
a different nature, their continuous models are equivalent to similar variational (or quasivariational)
inequalities (seé [14] and the references therein). The origin of this similarity is that these models are
quasistationary models of equilibrium and the multiplicity of metastable states is a consequence of

a unilateral equilibrium condition. The rate with which such a system adjusts itself to the changing

" E-mail: jwb@ic.ac.uk
IE-maiI: leonid@cs.bgu.ac.il

(© European Mathematical Society 2006



350 J. W. BARRETT AND L. PRIGOZHIN

external conditions is determined implicitly and appears in the model as a Lagrange multiplier.
Typically, the multiplier is eliminated in transition to a variational formulation written in terms of

a “primary” variable (surface of a sandpile, magnetic field in a superconductor, stress tensor in
elastoplasticity, etc.) In many situations, however, the Lagrange multiplier or, equivalently, a “dual”
variable (sand flux upon the pile surface, electric field, and strain tensor, respectively) also has
to be found. We present, for both the sandpile and the superconductivity problem, the variational
formulations written for the dual variables. On discretization these formulations yield an efficient
algorithm to compute the dual and primal variables simultaneously. Only the simplest version of
each problem is considered.

We remark that these dual formulations have some similarities to mixed variational inequalities
in elastoplasticity[[10]. We note also that the sandpile model is strongly related to the Monge—
Kantorovich problem of optimal mass transportation with linear cost, and our algorithm can be used
(see([15]) for the numerical approximation of this classical problem too.

Sandpiles

Let sand be poured out onto a rigid support surfaces w®(x), given in a bounded open subset
£ of R? with a Lipschitz boundary £2. If the support boundary is open, a model for pile surface
evolution can be written as

dw+V.g=f who=v’ whe=u’he, (1.1)

wherew(x, t) is the unknown pile surfacef,(x,#) > 0 is the given source density(x, ) is the
unknown horizontal projection of the flux of sand pouring down the pile surface. If the support has
no slopes steeper than the sand angle of refiosetana, and|Vw?| < k, the simplest constitutive
relations for this model read: (i) the fluxis directed towards the steepest decent of the surface,
(i) the surface slope cannot exceed the critical angland (iii) the flux is zero upon subcritical
slopes. Equivalently, one can write = —mVw and show thain(x,7) > 0 is the Lagrange

multiplier related to the constraifVw| < k and satisfies:(|Vw|? — k%) = 0. The above model,
which we denote by (E), can be reformulated as a variational inequality of the first kimd for

(P) Findw € L*®(0, T; K, 0(k)) N HYO, T; L?(£2))
T
/ Gw—fin—w)dt =0 VneL®0O,T; K,o(k)), 1.2
0
whereK o(k) :={n € Wl (2):|Vn| < k a.e. andy|ye = w030} and(:, -) is the standard

L?(£2) inner product.

If f e L%(27), where27 := 2 x (0, T), anduw® € K ,0(k), then existence and uniqueness of a
solution to (P) is proved in [13]. Moreover, it is shown there that (P) is equivalent to the following
weak formulation of (E):

(E1) Findw € L*®(0, T; K,0(k)) N HX(O, T; L?(£2)) andm e [L*°($27)]* such thatw(0) = w°
and

T
/; @rw — fym)df + (m, Yw . Vn) ooy =0 Ve L2, T; W&’Oo(.s?)), (1.3a)
(m, )2, =0 Vo e L®(R2r)withg >0, (1.3b)
(m, |Yw|? — k%) L@y = 0. (1.3¢)



DUAL FORMULATIONS 351

Here [-]* denotes the corresponding dual space@ngy the duality pairing onV]* x V. We note
that the same model of sand surface evolution was independently derived and studied in [1].

Simple analytical solutions of the inequality problem (P) describe piles generated on open
supports withw® = 0. For the point sourc¢ = ad(x — Xg), a conical pile with critical slopes
grows until its base touches the domain bounda®y the surface flux can also be easily calculated
[12]. Then there appears a runway connecting the cone apex with the boundary and the pile growth
stops: all additional sand just follows the runway and leaves the system. On the other lfand)if
everywhere inf2, the final stationary shape of the pile is differemntx) = k dist(x, 952).

For f > 0, the general stationary solution and an integral representation formula for the
corresponding Lagrange multiplier, determining the surface sand flgxhave also been obtained
recently in[6]. It is, however, not easy to compute the Lagrange multiplier using this formula. In the
non-stationary case, determining the surface fluremains difficult even if the unique solutian
to (I.3) is found. To compute both these variables, we now derive a dual variational formulation
of the evolutionary problem. Below, for later developments (sand problems with obstacles and
superconductivity problems), we allowto be possibly piecewise constant in space; that is,

k(x) =kD e R VxeQ® i=1-1, 1.4)

where2 are disjoint open subsets af with Lipschitz boundaries an® = | J/_, 2©.
Let{w, ¢} satisfy the relations (i)—(iii) in (E) above. Then, for any test field

VYw.(@—-¢q) = —IVw||v| - Vw.g = —|Vw||v| + klg| > —k[v| + kIg]|. (1.5)
Hence we have
1 ) 1 )
CONEIED LN TR SVl (16)
T = 0 = 3 20

Since
Vw,v—¢)=-w,V.(v-9q)+ jgg wl(vy — gn), (1.7)

whereu,, is the normal component efon 82, we have

1
lv| — Zk@/ gl — . Y. (v—q)) +f w(vy — gn) > 0. (1.8)
@) = 382

1
|
i=1 ' Q0O =

2

Let 2’ := 2@ x (0,T) and@ be the Banach space of vector functigns | J|_; 2} — R?
such that for each the restricti0n¢|9(,-> is continuous and can be extended to a function from
- T

[C(Q_(T"))]Z. The elements of the dual spasé := [®]* can be represented as= (v, ..., v,
wherev® e M(2\) := [[C(2{")]]* is a vector Radon measutig| v = Y1, [lv®
and(¢, v)e = 3i_a (@l go- 1)

To simplify our notation, below we will write

[c@"?

1

(ko) = 360 D, o
1=
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Noting from [1.]) that

t t
w(t) = w® +/ fr)ydr—V. </ q(r) dr> (1.9)
0 (o
and using[(1.8), we finally obtain our dual formulation of (P), the following variational inequality
of the second kind fog:
(Q) Findg € V aq(div) such that

T t
/0 [(Z-(/O g(r)dr>,2.(y—g))+f(y—g)]dt+<k,|y|>—(k,|g|> > 0 (1.10)

forall v € V o (div).
Here F(v) := ¢, wO, — (w® + fé f(r)dr,V.v)and
Vmdiv) = {v e M :divy e L2(27)). (1.11)
In addition, the test space is defined as

fM(div) = the strong closure of™ (£27)]? with respect to the norm
lvlly p@ivy = llullm + 1V vl 20 (1.12)

As [C®(27)]? is dense iV o(div) := (v € [L?(27)]%: V. v € L?(27)} (recall [17, p. 13]), we
clearly haveV >(div) C _VM(div) C V pm(div). This choice of test space is discussed in more detail
at the end of this section.

Given f € L?(27) andu® e Ko(k), we will prove (see Theorefn 3.1 below) the existence
of a solution to (Q). In addition, we will show (see Theorem 3.2 below) that the correspomding
defined via[(1.9), is such that € L*(0, T; Ko(k)) and solves the primal variational inequality
(P), with K 0(k) replaced byKo(k), and is therefore unique. Moreover, we will show that (Q) is
equivalent to the following weak formulation of (E):

(E2) Findw € L>®(0, T; Ko(k)) N HX(0, T; L3(£2)) andq € V x,(div) such thatw(0) = w® and
T
/ @Qw+V.qg—find=0 v € L%(27), (1.13a)
0 1
with

T
/0 . Y. q)d = (k. Iql). (1.13b)

We note that@b) is another (weaker) formulation of the constitutive relation. Indegds if
regular enough (belongs toI[f°(£27)]1%]*) then 1.13b) andv € L*(0, T; Ko(k)) imply that
q = —mNw, wherem € [L*(£2r)]* and satisfies @1.}b3c).

Superconductors

Phenomenologically, the magnetic field penetration into type-Il superconductors can be understood
as a nonlinear eddy current problem. Let a long cylindrical superconductor with a simply connected
cross-sectio? be placed into a non-stationary uniform external magnetic fig{d) parallel to the
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cylindrical generators. According to Faraday'’s law, time variations of this field induce in a conductor
an electric fielde leading to a currenj parallel to the cross-section plane; this current induces a
magnetic fielda(x, r) parallel tok,. Omitting the displacement current in Maxwell’s equations and
scaling the magnetic permeability to be unity, we obtain the following model:

o (h+he)+curle=0, culh=j, hli—o=hr", hlse =0, (1.14)
where curle = 9y, up — dy,u1 and_curk = (9y,u, —axlu)T. Instead of the usual Ohm law, a multi-
valued current-voltage relation (the Bean model) is often employed for type-Il superconductors. It
is postulated that (i) the electric fietldand the current density have the same direction, (ii) the
current densityj (x, f) cannot exceed some critical valyg(x), and (iii) if the current is subcritical,
the electric field is zero. One can wrige= pj and show that the effective resistivigy(x, 1) > 0,
is the Lagrange multiplier related to current density constigift, 1)| < j.(x). Using conditions
(i)—(iii) we can eliminate the electric field from the model. This yields, for gi¥8re Ko(j.) and
h. € HY(0, T, R), the variational inequality of the first kind far.

e Findh € L®(0, T; Ko(j.)) N HL(0, T; L2(£2)) such that:(0) = #° and

T
/ (@ (h+he),n—h)dt >0 ¥n e L™(0, T; Ko(jo)) (1.15)
0

This inequality fork can be approximated numerically and even solved analytically in some cases.
However, computing the electric fiekdremains difficult. One approach is to approximate the multi-
valued Bean current-voltage relation by the power law,= eg(|curli|/j.)? with p > 1 (see
[5]14]). While such an approach can be efficient for computing the primal variatiee calculation
of e using this formula may be unstable and smoothing &f needed ifp is large; see_ [5] for the
details. Recently, a numerical algorithm based on optimal control theory, requiring the integration
along paths of the magnetic flux penetration, has been proposed in [2]. Here we consider a dual
variational formulation which can be derived similarly to that for the sandpile model. The dual
formulation can be employed to find both fields simultaneously, the algorithm is stable, even if
the electric field is singular, and requires neither the determination of the penetration paths nor
the integration along them. In addition, the dual formulation can be extended to general three-
dimensional configurations [14].

For cylindrical superconductors and on assuming, similarly[o] (1.4), thas piecewise
constant, this formulation reads:

e Finde € V pq(curl) := {v € M : curlv € L?(£27)} such that

T t
/ [(CU”</ e(r) df”), curl(v — é)) +F— é)} dr + (e, Ivl) = (je. lel) =2 0
0 0

Vv eV (curh.  (1.16)

Here F(v) = (h.(t) — h.(0) — h°, curlv) and:VM(curl) is defined similarly tofM(div) (recall
(1.12)), with div replaced by curl. The primary variabke js then found from the analogue pf ([L.9),

h(t) = h° + ho(0) — ho(t) — curI(/l e(r) dr). (2.17)
0
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The simple transformatioR : ¢ = (e1,e2)” — (e2, —e1)” mapsV rq(div) to V r(cur),
V pm(div) to V \(curl), and enables us to apply the same theory and numerical approximation
for the dual sandpile model (Q), (1]10), to the dual superconductor njode] (1.16).

The outline of this paper is as follows. In the next section we introduce a fully discrete finite
element approximation, (&F), of the dual formulation, (Q), of the sandpile model. It is based
on smoothing the non-differentiable functiondl, |v|) by introducing v, = ([v]? + 22,
and employing the lowest order Raviart—-Thomas element for the spatial discretization with vertex
sampling on the non-linear term. We then establish stability bounds on this approximation,
independent of the mesh parametérsand z, and the regularization parameter,In Sectior[ 8
we prove subsequence convergence of this approximation, and hence existence of a solution to (Q).
As stated above all these results for the dual formulation, (Q), of the sandpile model carry over
to the corresponding superconductor model via the transformaioRinally, in Sectiof } we
present some numerical experiments based on the discretizatidn) (@ both the sandpile and
superconductor models.

We end this section with a few remarks about the notation employed in this paper. Above
and throughout we adopt the standard notation for Sobolev spaces, denoting the Wty 6f)

(¢ eN,re[l,c0]) by || - |le.r.p and the seminorm by- |, . p. Of course| - |0, p = | - lo.rp. We

extend these norms and seminorms in the natural way to the corresponding spaces of vector-valued
functions. For- = 2, W&2(D) will be denoted byH ! (D) with the associated norm and seminorm
written as, respectively, - |l¢.p and| - |¢,p. The measure ab will be denoted by D|.

Let C(D) denote the space of continuous functiongnrAs one can identify.1(D) as a closed
subspace aM (D), it is convenient to adopt the notation

M e
/ lul = lullmepy == sup D) (1.18)
D neC(D) |n|0,oo,D

We note that ifit;};>0 is a bounded sequence.M (D), then there exist a subsequengs, };, >0
and au € M(D) such that ag, — oo,

j, = n weakly inM(D), i.e. (wj, —pu,nep —> 0 Vne c(D). (1.19)

In addition,
iminf [ g 1> [ Jul (1.20)
Je—=>© JpD D

see e.g.l7, p. 5] and][9, p. 223].
For our proof of the existence of a solution to (Q) (see Thedrein 3.1 below), we require the
following density result for our test space: any elementan be approximated by a sequence

(v;)j0, wherev; = Y°/_; vf" with v € [C*(27)]2,i = 1 — I, such that
limsup [ |v'7] g/ ®), i=1-1, (1.21a)
jooo Jor b

and asj — oo,

@) _ @) — 2 . _
(QJ 7£>[C(.QT)]2 - (El 39)[6,(9’(;))]2 V? € [CO(‘QT)] , L= 1 - 19 (121b)

V.v,—>V.v weakly in L?(27). (1.21c)



DUAL FORMULATIONS 355

Such a result is non-trivial for the Banach spacg(div) as it is not of local type; that ig; €
V m(div) andg e C°(27) does not imply thapv € V r4(div) and so the use of cut-off functions,
as in the proof of Proposition 1.3 in_[17], is not possible. On extendingwary V 4 (div) by
zero and applying mollifiers it is a simple matter to establish (1.21a,b); butithedr) in (1.21¢)
has to be replaced bi?(w) for any open sei such thaw c $2r. Clearly, the resultd (1.2]la—c)
are trivially true for the choice’ ,(div) in (1.13). Of course one could weaken the closure in
@) and these results would remain true. However, unless one can show that the corresponding
V s (div) = V A (div), which we are unable to do, there is no real gain in such a choice.
Finally, throughoutC denotes a generic constant independent of the mesh paramegecss,
and the regularization parameter,

2. Numerical approximation of (Q)

In order to avoid the difficulty of traces o (div) (recall [1.10)), we will restrict the discussion
in this paper taw®|3 = 0. In addition, the results in this paper could, in principle, be extended
to piecewise smooth, but once again for ease of exposition we will restrict the discussion here to
piecewise constaiit

Firstly, we gather together our assumptions on the data.

(A1) 2 c R?with a Lipschitz boundary 2, k satisfying [(1.#)1° € Ko(k) and f € L2(27).

We then introduce’ : [0, T] — L2(£2), wheref (1) = w0+fé f(r)dr. Then our dual formulation,
(I:10). of (P) becomes:

(Q) Findg € V A (div) such that

T t
[ (Z- (/ Q(r)dr) - V.- q)) dt + (k, [v]) — (k, Ig]) =0 Vv eV, (div).
0 0~ - -
(2.1)
The aim of this paper is to prove existence of, and approximate, solutions to (Q).

For anye € R, we regularise the non-differentiable non-linearityby introducing the strictly
convex functior| - |, : R? — R* defined by

lale == (la|* + &5, (2.2)
We note that for allz, b € R?,
2
dale @i Plale |y g gog oy Plaley o a0 g
da;  lale  9aida;  lals lal? 152 daida; lal?
Hence it follows that
a
— . (a —b) > lal: — |b]e. (2.4)
lale

For ease of exposition, we assume that
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(A2) 2 and2®,i = 1 — I, are polygonal. Le{7"},-0 be a regular family of partitionings
of §2 into disjoint open simplices with 4, = diam(c) andh := max,.z» hs, SO that
2 = U, eqn @ In addition, for allc € 7", we havek|, = k, € {k}/_,; and letZ;" c T"
be such that

V= |J7 i=1->1 (2.5)

We note that there is a clash of notation betwiethe mesh length above, and the component
of the magnetic field i (1.14). However, we want to keep the standard notation for these quantities;
the meaning of: will always be clear from the context.

Letn, be the outward unit normal i®. We then introduce

V=" e [L®@2)]%: v, =a, + box, a, € R?, b, € RVo € T" and

v . n is continuous across simplex boundayies

Clue[L®@)]?:V.ve LA2)), (2.68)
Shi= (" e L®R2) : 9" = ¢y € RVo € T"}. (2.6b)

In order for our finite element approximation to be practical, we introduce)” := 3", 74 (v, 2)!
with

3
@, 2 = 3lo1 Y _u(P7).2(P) Vv, z€[CE), Yo eTh, 2.7)
j=1
Where{P]f’}?:1 are the vertices of . Hence(v, g)h averages the integrand. z over each simplex
o atits vertices and hence is exacbif z is piecewise linear over the partitioniig’. We note for

anyv” € V" and anyo € 7" that|v" (x)| < 2}11 " (P7)IA7 (x) ong, Where{/\;.’}f:1 are the
standard linear hat functions msatisfying/\;’(Pi“) =4;j,i,j =1— 3;and so

3
[ < v = Bl Y . (2.8)
(e j=1
In addition, let 0= 19 < 1 < --- < ty—1 < ty = T be a partitioning of [07] into possibly

variable time steps, :=t, —t,-1,n = 1 - N. We setr := max,—1—n 7,,. Our fully practical
approximation of (Q) by", on employing[(22) and (2.7), is then:
(Q"7) Forn > 1, find Q" € V" such that

kO" h
rn<z.g:,z.yh>+(|Q%,yh) =(G", V. W eV (2.9a)
el

whereG” .= " —v.U" L, ' := f(t,),n > 1, and

n—1
Urti=) w0 n>2 and U2:=0 (2.96)
(=1
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One can then recover an approximationu@,), n = 1 — N, by findingW/ e S" such that
W™y =(f"-=¥.ULn") vn"esh (2.10)

LEMMA 2.1 Letthe assumptions (A1) and (A2) hold. Then giggh for all ¢ > 0, for all regular
partitionings7” of £2, and for allz, > O there exists a unique soluti@{ € V", andW? e $", to
then!™ step of (@'7).

Proof. On noting [(2.8), we see thdt (2]9a) is the Euler—Lagrange equation for the strictly convex
minimization problem

min {371V 01§ o + k"l D" = (G ¥ )} (2.11)
v'ey '
The desired existence and unigueness result@foand W;' follow from this and ). O
We note that for alk € R?,
2 2
lal <lal <lal+¢ and |o < L (2.12)
lale lale

In addition, it follows that for alkz, b € R?,

_ 2
( a _g)w lalelBl. — lal b] _e_%z[ 11 ] 015
lale 1Dl 1ble lale 1ble lale

THEOREM2.1 Let the assumptions (Al) and (A2) hold. Then for all> 0, for all regular
partitionings7 ™" of £2, and for all time partitiongz, }"'_,, the unique solutionQ?}_,; to (Q"7) is
such that

N T
S V. 071 o < Alklo 0612 + /0 O o, (2.14a)
n=1
N N
2 —-1,,2
max |V.Uilfg+) IV. Wi =Ui g +2) wlkQilore
n=1 n=1
al =n
< Akloco.26TIR1+2Y nll/" G o +1V. 0!8l (2.14b)
n=1

Proof. Forn > 2, (2.94) can be rewritten as

k n k n—1 h th
Qe _ 281 ,yh) =</ f(t)dt,2.2h> v e V. (2.15)
|22|8 |Q?7 le In-1

Choosingv" = @ in (2.18), and noting (2.13), implies far> 2 that
WY Q85 o + &2k Qr M P

mz.gz,z.th(

t 2

" rde

-1

Iy
<ez<k|g;|;1,1>h+%rn|z.g’;|3g+%/ | f (0[5 dr. (2.16)

-1

<LKk D + JulY. Qi o + 37"

0,2
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Similarly, choosing = Q% in (2.93) forn = 1 yields, on noting{(2]8) anfl (2]12),

kIQH? \" 1
nlY. Qoo < —( | Q—f| ,1) +1Vulloo,2|Qore + 31lV. QM3 o + 3 f, | £ ()]G, ot
=cele 0
11 2
< 2lklo.c0.28192] + / | f ()1 ¢ d. (2.17)
fo

Then summm@G) for = 2 — N and combining with[(2.17) yields the desired result (2 14a).
Choosing = Q" in -) and notmb) gives far= 1 — N that

k2P
|Q%1e
Summing[(2.1B) from = 1 — ¢, and recalling the simple identity

h
<z.g';,z.<t_/z—z_/z—1»+rn( ,1) (LY. O, (2.18)

2a(a — b) = (@® — b?) + (a — b)?, (2.19)

shows for¢ =1 — N that

V Ué n n—1 le}‘;‘l'Z l "
31V |09+22|v U =Ur o+ ol ——,

4
=%|z.l_/2|ag+2rn<f",z.gz> < %Z wllf 6o +IY. QG ol (220)
n=1

n=1

Hence the desired reslt (2.14b) follows frdm (2.20), (R.12) (2.8). a

3. Convergence ofY/*—existence theory for(Q)
Let

Orw =01 Ufn:=U" Wro):=w' F@&:=F tetrrtl n>L

(3.1)
It follows from (3:7) and[(2-9p) that far € (t,—1,7,], n > 1
t Iy
‘z. (y:a)—/ 0 (r) dr) - / V.0 () dr
0o~ 0,02 t - 0,0
tn 1/2
< (rn)1/2< / V. Q715 q dt> : (3.2)
th—1

Similarly, we have

tn 1/2
1770 = Floe < (rn>1/2< / 1f15.0 dt) forre (t-1.t). n =1 (3.3)
1,

n—1
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Adopting the notatior] (3]1), (&) can be restated as:

T 4 kQ+ h
/ [(Z.Q:—f ,z.yh>+(|Q—j| ,yh) }dt=o Vo' € L%, T; V"); (3.4a)
0 Ye le

T
/ WH—F V.U n"de =0 Vo' eL®0,T;s"). (3.4b)
0

THEOREM3.1 Let the assumptions (A1) and (A2) hold. For all regular partitioniiysf £2, and

for all time partitions{rn}f;’:1 and for alle > 0 such that, e — 0 ash — 0, the unique solution
{QUIN_ to (Q'7) is such that there exists a subsequencgf},, whereQ; solves (@'7), and a
q € V pm(div) such that ag — 0,

0,0 — ¢ weaklyin (M(2{)]% i=1- 1, (3.5a)
Eeloph = 4
V.Qf > V.q weaklyinL?(%27), (3.5b)
V.Ul - V.u weakxin L®(0, T; L3(2)), (3.5¢)
W — w weak+ in L>(0, T; L2(£2)), (3.5d)
where
t t
V.u@)=V. (/ q(r)dr) and w(r) ::/ fr) dr—i—wo—z.g(t). (3.6)
0~ 0
Moreover,g solves (Q),E}l).

Proof. The bounds[(2.14a,b) yield, on notitig (3.1) gnd](1.4),

IV Q5 120, + 195 i1y + IV - Ul o122 < C(T k12D + 11 £11220,]-
3.7)

The subsequence convergence res[ilts|(3.5a—d) then follow immediately fram[(3.7), (1.19), (3.2),
(3.48) and[(3B).

LetI" : [H1(£2)]?> — V" be the generalised interpolation operator satisfying

@—1"v).ny,=0 i=1->3 VYoeT" (3.8)

3,‘0

wheredo = U?:l d;o is the boundary o& andn,_, are the corresponding outward unit normals
ony;o. It follows (see e.g[[16, 553]) that for al € 7",

lv— I"vl0s < Chlvl1,, (3.9a)
and if v is sufficiently smooth,

IV.(@—1"v)os <ChIY .vl1, and [I"v]1, < Clull2e. (3.9b)
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In addition, we note fron (2]3) anfl (2.7) that for allc 77,

/ lwle — (1"v]e, DA
o

/ 1l — (11", 1))
o

< —1"vjo16 + Chlo| | [I"v]e]1,00.0
<lw—1"vo1o + ChlI"v|11,. (3.10)

< / ole — 170)e] +
o

Given anyv € [C*(227)]%, we choose” = QF — I"v in (3.4a). Hence, on notin.4), we
have

fOT[(Z U =71V UMD + Kz, 1M dr
> /OT[(Z.Qj — 7Y 0 + (KIS |, D dr. (3.11)
It follows immediately from[(3.5b,c)[ (3:9b) and (B.3) that
fOT[@.l_fj — LY M + (P v ghdr
- /OT[(Z.Z—f,y.y)Jr(f,Z.c_])]dt ash — 0. (3.12)
Next we note from[(2]5)[ (2-12), (2.8), (3]5a) ahd (1.20) thai ferl — 1,

T T
Iiminf/ > 10 e D) de > Iiminf/ > 1051 D) dr
h—0 Jo oeTh - h—0 Jo oeTh -

> liminf 1> / @), 3.13
migt [, 10412 [, 1a"! (3.13)
It follows from (2.8), [2:12),[(3:10) and (319a,b) that for 1 — 1,

H T h h

im [ 3ttt vha= [ (3.14)

067; T
Let
I, —t t—1t,_
Uet) = 2—U" 14+ ="yt eltuental, n=1- N. (3.15)
T, T,

Similarly to (3:2), it follows from[(3.L),[(Z2.9b) anfi (3.7) that

T
/ IV. (U —Uolg o <Ct? and U, = Q) ae.ins2r. (3.16)
5 9
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Hence from[(3.16)[ (3] 7). (2.9b], (3]5c) apd {3.6) we have

T T
Iiminf/ (V.U V. Qj)dt:liminf/ (V.U V.0Hd = Sliminf V. U3 o
h—0 Jo - h—0 Jo - h—0 ’

T
> V. u g = fo (V.u, V. ). (3.17)

Combining {3.11)4(3.14) andl (3]17), we see thatolves ) holds for any € [C*°(227)]2.
The desired result, that solve) for any € V ,,(div), then follows from the density results
(1.21a,c) which clearly hold fo¥ ), (div). O

THEOREM3.2 Let the assumptions of Theorém|3.1 hold. Thedefined by[(3]6) is such that
w € L®(0, T; Ko(k)) N HL(O, T; L2(£2)) with w(0) = w®. Moreover,w solves (P),[(1]2) with
K ,0(k) replaced byKo(k), and is therefore unique. In additiom,and the solutioy € V r(div)

of (2.1) satisfy[(1.13a,b).
Finally, the possible non-uniqueness gnis restricted to the following: If there were two
solutionsg ,, £ = 1, 2, then

V.(g,-49,)= 0 aeinf2r and (k, lg,1) = (k. lg,l). (3.18)

Proof. It follows from (3.6) and[(3.5b) that € H1(0, T; L2(£2)) satisfiesn(0) = w® and [1.13p).
Combining [2.1) and (3]6) yields

T
(k, |ul) = (k. 1g1) —/ w.Y.@—g)dt >0 VueV,(div. (3.19)
1 0 1

Let J(v) := (k, [v]) — fOT(u),Z.y) dt. From ) we obtain

J@<J:= _inf J@ <JO =0 (3.20)
- VeV pq(div)
If J < 0 then, for any minimizing sequende; }, we obtainJ(Zgj) — 29 < J, whichis a

contradiction. Hencg/ = 0, and sok, |v|) > fOT(w,y .v) dr foranyv € YM(div). Since this is
true also for—v, we obtain

T
/ W, V. 0)di| < (k. ul) Vo eV div). (3.21)
0

It immediately follows from[(3.2}1) thab € L>(0, T; Ko(k)).
Given anyn € L*°(0, T; Ko(k)), we introduce, for any < (0, §p),

ns(x, 1) = Ys(O(n(x, 1) — 8]y — [n(x,t)+6]-) fora.e.(x,t) e 2r, (3.22)

whereys € C3°(0,7), 0 < s < landys(r) = 1ift € (5, T — §). It follows thatns €
L*(0, T; Ko(k)) with compact support i27 such that

T
IVns(x, )| < |Vn(x,1)| forae.x,?) e 27 and 3””3/ In —nslli,edt =0.  (3.23)
—YJo
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In addition, on extendin@(i), i = 1 — I, by zero and applying mollifiers, one can construct
la,}j>0, whereg, = > g](_") with c_]j(,i) e [C®(27)]% i =1 — I, such that

/ gt </ g®l =11, (3.24a)
er oy =
V.q,—Y.q weaklyin L%(w) for anyw C Q7. (3.24b)
Combining |(3.2B) and (3.2#4a,b), for anye L*°(0, T; Ko(k)) we have
T T
/O V.g,mdt = /O [—(g;. Yns) + (V.. (g —g,).m5) + (V.. q. 1 —ms)] dt

1 T
< 0 0 g —
<Yk fgmg | @
i=1 T

— (k.lql) asj— o0, —0. (3.25)

T
+C/ In — nsll,e df
0

the solutiong € V o4 (div) of ) satisfy a,b).

Choosingy =& —win ) withs € L=(0, T; Ko(k)) and noting[(3.25) andl (1.1Bb) shows
thatw solves the primal variational inequality (P)), (1.2) wikh, (k) replaced byKo(k), and is
therefore unique.

Finally, combining the uniqueness afand ) implies that if there were two solutiops €
V am(div) solving (Q), then the first result i ) holds. The second rest in](3.18) then follows
from the first, the uniqueness ofand [1.13D). O

Applying @) forn = w and noting that/ (¢) < 0 yield the desired resub). Hengeand

We end this section by noting a consequence of,(@&d its discrete analogue. FirstlypjEmplies,
on choosing; = w in (1.134) and combining with (1.1Bb), that the following equality holds over
the time interval [0 T7]:

T
Sw(, DG+ (k. lq]) = %|w°|%+/o (f, w) dt. (3.26)

Of course, one can deduce that a similar equality holds over any time int&ivab] c [0, T].
We now derive a discrete analogue of this result. One deduces|from (2.10) arjd (2.9b) that for
1—- N,

wn — Wn—l 1 ty
(4, n”) = (—/ frydr—v.Q", nh> vyt e st (3.27a)
Tn -1 -

Tn

where we have naturally definéd® e S” by the projection W2 — w?, ") = 0 for ally" € s". On

choosingy = Q7 in (2.94), and notind (2.9b) and (2]10), we see thatfer 1 — N,

907 \" _ "y o "y o
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Therefore|(3.27a,b) are the discrete analoguef of (1.13a,b). Finally, chadsiag” in (3.272)

and combining with[(3.27b) implies far= 1 — N that

o:° 1>h
1Q% e
which is the discrete analogue pf (3.26).

173
SIWRE+ W — W8] + 1, (k Jwr g+ (f f(r)dr, W;’), (3.28)
th-1

4. Numerical experiments

At each time leveh, the resulting non-linear algebraic systgm (P.9a) was solved iteratively using
the following successive over-relaxation algorithm:

Given Q7% e " forj >0 findgg"ﬁl/2 € V" such that

inz,j+l/2 h
(V. QU2 v ohy + (—En—j,gh> =(Gp. V.0 w'ev'  (41a)
- Qe e
and set
QT =y it 4 (1 y) Q. (4.1b)

Clearly the above is a well-posed algorithm, involving the solution of a symmetric positive definite
linear system at each iteration. When the iterations converged up to a prescribed tolerance, we set
o7 = _2””1 and then recovered the primary variag' explicitly from ). Forn > 1,

we chosegg"o = QQ*l and observed good convergence properties of this algorithm. In all of our
simulations we set = 10~ ; the relaxation parametger= 1.3; and performed the iteratila,b)

until either|g’§’j+l—g;"j|om < tol or |QZ‘j+1—QZ”jIo,oo/IQg’Hllo,oo < tol, whererol is either

10~ or 10°°. Typically, approximately fifty iterations per time step were sufficient. However, if the
solution changed drastically during a particular time step, then more iterations could be required to
meet the prescribed tolerance. Neither the solution nor the number of iterations were sensitive to
the value ofes. In all of the examples below we assumed a zero initial state and used a fixed time
stepr € [0.0125 0.05]. The Matlab PDE Toolbox[11] was employed for the domain triangulation;
domains with curved boundaries were approximated by polygons. We refer to [3] for the Matlab
implementation of the Raviart-Thomas element of the lowest order.

In contrast to algorithms based on primal variational formulations of critical-state problems, the
dual formulation allows one to approximate both the primal and dual variables simultaneously.
Moreover, our numerical simulations (see below) seem to indicate that, although different
algorithms can be employed to solve the arising variational problems, even the primal variables
are possibly easier to compute using the dual formulation. For these primal variables comparison
with the analytical solution, if known, showed first order convergence in bo#imd r in the
L*°(£27) norm. The first two examples illustrate known analytical solutions of the sand problem
(see Sectiof]1); here we set= 1.

Numerical simulation of a growing conical pile is presented in Flg. 1, wherés a unit
square; a regular 68 60 grid was used for its triangulation. The surface fiuin this example

has alx|~! singularity before the discharge time, when the conical pile meets the boundary, and
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FiG. 1. Pile on a square open support growing under a point sofiree0.28(x — xg). The cone grows (a) until its base
touches the support boundary, (b) just before this moment. Then a runway appears and the pile growth stops, (c) after this
moment. Shown: left—sand flu). |, right—the pile surface computed usir@.lO).

is a measure concentrated along the runway when the latter appears. We note that our stability
and convergence analysis in the previous sections assumeg tkatL?(£27), and thus does
not cover the case of a point source. Nevertheless, the numerical approximafid) i§Qstill
well-defined, when the point source is placed in the interior of an element and we placed the
source at the center of an element. The resulting numerical solution is qualitatively very good: as
can be seen in Fig] 1Q. captures the singular behavior gnremarkably well, and is inversely
proportional to the mesh size in the neighborhood of these singularities. The accuracy of the
primal variable,W,, is easy to calculate; fot = 0.025 and the stated mesh we found that
{max, lw(-, t,) — We(, t)0.00,2}/1Wl0,00.2, < 0.014. Since the surfac®, is found from the
surface fluxQ,, using ), this indirectly characterizes also the err@p n

As stated above, after the discharge time the conical pileremains steady and the flux

is singular along the straight runway. In addition, one ligdg| = (f, w), which can also be
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Fic. 2. Contour plots of Q| in a neighborhood of the runway, numerical simulation on two different grids. Smearing of the
runway is weaker for the regular mesh (left) than for the general mesh not adapted to the runway (right).

deduced from 6). We note that the use of a regular grid helps in the approximatoatof

this stage, as the finite elements are aligned with the runway. Computing on a non-regular mesh
with the same number of elements resulted in the runway being smeared across several elements
(see Fig[ R); the error ifi, was also doubled on this non-regular mesh. We note ffom](3.28) that
although the runway may be smeared, the strength of the singularity is still well approximated. This
mesh-determined smearing effect is clearly seen in two other numerical examples below ($ée Figs. 5
and[9) in which the dual variable is a vectorial measure partly supported on a subset of dimension
one, to which the mesh is not specially adapted. Nevertheless, qualitatively the singular behavior of
this variable is satisfactory captured also in these examples. Of course, adaptive mesh refinement
would increase the accuracy of the computed solution, and this will be an area of future study.

The second example illustrates the distributed source case (seg]Fig. 3 for the geometric
configuration). The growing pile is a truncated cone until its base first touches the domain boundary;
the growth ends when all points in the supportfobecome connected to the border by a straight
transport ray through which the discharged sand leaves the systefn| (Fig. 4).

1

0
0 1

FIG. 3. Triangular support was divided into 4080 finite elements (maximal element diametef.0167). The source:
f = linside the ellipse angd = 0 outside.

Suppose now the support domain is partly surrounded by a vertical impermeable wall. Then on
the closed part of the support boundary, the open boundary conditipn jn (1.1) should be replaced
by the conditiory,, = 0. The wall presents an obstacle to the sand flow and the;ftan become
a measure concentrated partly along the obstacle bouridary [8]; this can happen even if the source
is distributed. Similarly to[[15], we can transform this situation into our framework by extending
the domain beyond the wall and settihg= oo, or to be very large, in this extension. In our next
example (see Fif]5, left}, = 1 inside a multiply connected domain (white area). The grey area is
the extension of this domain beyond the closed part of its boundary and there ive- 6. The
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FiG. 4. Pile growing on a triangular support under a distributed source (se@ Fig. 3). The pile shape stabilises when all points
in sup f) become connected to the border by a transport ray. Shown: left—san@fixight—the pile surfacév,.
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7 = 0.05: middle—the final stationary pile surfa®#.; right—levels of the corresponding stationary surface i@ |.
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> - 4+

FiG. 6. Magnetization of homogeneous superconductive cylinders of different cross-sections. Upper row—the levels of the
electric field| E, |, lower row—the levels of the magnetic fieldk and the current contours (shown fot 0.3).

total domaing2 is the unit square, and the source is constant in time and uniform inside its support
(the white circle). The final pile shape (F{g. 5, middle) is shown jointly with the corresponding
surface flux (right).

As was noted above, the simple transformatione = (e1, e2)” — (e2, —e1)” enables us to
use the same Raviart—-Thomas element as in the sandpile problem for the superconductivity problem.
The parameters in the numerical simulations below were chosen on assuming that the dimensionless
variables(x, ¢, ...) were obtained from the original variablés, ¢/, .. .) as follows:

¢ Jj n e't
) t=_3 ]::7 h:—., £= —29’
T Jo Ljo L= jo

&:

1=

where L is the characteristic cross-section size (the maximal horizontal extension in the plots
below), and jo is the critical current densityj. or its maximal value if the sample is not
homogeneous. For superconductivity problems the sofiree—dh,(¢)/dt does not depend an

In the examples below we assumed tliat 0 is constant and is chosen to mak¢ = —1.

If the superconductor is homogeneous, j.edoes not depend on and the domais is simply
connected, the magnetic fieldcan be found analytically (see, e.d.} [4]). For a growing external
field h.(r) = + andh®(x) = 0, as in our next example, we getx, 1) = — min(dist(x, 8£2), 1).

In Fig.@, the electric and magnetic field approximatidhsand H,, were computed numerically

from the approximations of (1.16) and (1}17), respectively, for three different cross-sections. We
note that the algorithm worked well also in the case of a non-Lipschitz domain with cusps. Even
results obtained on a crude mesh were reasonably accurate. For the rectangular cross-section, using
a regular 8648 grid andr = 0.0125, we obtained the magnetic field with an errof.#(£27) not
exceeding 1%. For full penetration, the electric field in superconductors with a rectangular cross-
section has been found analytically in [5]; comparison showed that the electric field computed on
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such a mesh has an errorfif®(£2) of about 2%. In this case, also for the electric field we observed
first order convergence in bothandzt in the L°°(£2) norm.

The next example shows magnetization of a non-homogeneous superconductor (the config-
uration is shown in Fig[]7). Clearly, the easy pathways of magnetic field penetration into the

FIG. 7. Inhomogeneous superconductor. Grey regjen= 1, white regions;. = 1/3. Triangulation used: 7120 elements
with the maximal diameter 0.02.

superconductor go through the regions of lower critical current density; the electric field is strongest
along these pathways (F[g. 8).

FiG. 8. Magnetization of inhomogeneous superconductor. Shown $or0.3: left—the electric fieldE, and the current
contours; middle — the levels ¢E |; right—the levels of the magnetic field, .

To model magnetization of a superconductor with a multiply connected cross-section, one
can “fill” the holes and sej. = 0 there. It is, however, well known that eddy-current problems
determine the electric field only inside conductors: the field in isolators remains non-unique (unlike
the magnetic field, which is determined everywhere). Indeed, the stationary charges in isolators
cannot influence the induced currents and, hence, the electric field in the conductors; the field
in the isolators depends on the distribution of these charges. Our theoretical analysis also holds
only for positive values ofji.. To deal with this complication it is possible to define a very small
critical current densityj. = § > 0 in the holes; our simulations show that the electric field in a
superconductor is not sensitive to the valué.oh our last example (see F@. 9), we set 10~/
for the circular hole and used 5394 elements with the maximal diameter 0.035. As the external field
starts to grow, the magnetic field penetrates the superconductor from its boundary, at first as if there
were no hole in the cross-section. However, when the zone of penetration reaches the hole boundary,
the magnetic field begins to penetrate the hole via an infinitely thin channel, similar to the runway
in Fig.[1, and the electric field becomes singular. We note that the appearance of such a channel
had been predicted by BaedMajos and lbpez [2], but they were unable to simulate it using their
numerical method.
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FiG.9. Cylindrical superconductor with a hole. Shown fo 0.6: left—the electric fieldE, and the current contours,
middle—the level contours diE, |, right—the levels ofH,. Note the “runway” (red region in thgE, | level plot, see pdf
file) through which the magnetic field penetrates the hole and where the electric field is the strongest.
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