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Dual formulations in critical state problems

JOHN W. BARRETT†

Department of Mathematics, Imperial College, London SW7 2AZ, UK

AND

LEONID PRIGOZHIN‡

Department of Solar Energy and Environmental Physics,
J. Blaustein Institute for Desert Research,

Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Israel

[Received 27 September 2005]

Similar evolutionary variational inequalities appear as convenient formulations for continuous
models for sandpile growth, magnetization of type-II superconductors, and evolution of some other
dissipative systems characterized by the multiplicity of metastable states, long-range interactions,
avalanches, and hysteresis. The origin of this similarity is that these are quasistationary models in
which the multiplicity of metastable states is a consequence of a unilateral condition of equilibrium
(critical-state constraint). Existing variational formulations for critical-state models of sandpiles and
superconductors are convenient for modeling only the “primary” variables (evolving pile shape and
magnetic field, respectively). The conjugate variables (the surface sand flux and the electric field)
are also of interest in various applications. Here we derive dual variational formulations, which have
some similarities to mixed variational inequalities in plasticity, for the sandpile and superconductor
models. We then approximate them by fully practical finite element methods based on the lowest
order Raviart–Thomas element. We prove convergence of these approximations, and hence existence
of a solution, to these dual formulations. Finally, we present some numerical experiments.
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1. Introduction

Sandpiles and type-II superconductors are examples of spatially extended open dissipative systems
which have infinitely many metastable states; but, driven by the external forces, tend to organize
themselves into a marginally stable “critical state” and are then able to demonstrate almost
instantaneous long-range interactions. The evolution of such systems is often accompanied by
sudden collapses, like sandpile avalanches, and hysteresis. Although these are dissipative systems of
a different nature, their continuous models are equivalent to similar variational (or quasivariational)
inequalities (see [14] and the references therein). The origin of this similarity is that these models are
quasistationary models of equilibrium and the multiplicity of metastable states is a consequence of
a unilateral equilibrium condition. The rate with which such a system adjusts itself to the changing
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external conditions is determined implicitly and appears in the model as a Lagrange multiplier.
Typically, the multiplier is eliminated in transition to a variational formulation written in terms of
a “primary” variable (surface of a sandpile, magnetic field in a superconductor, stress tensor in
elastoplasticity, etc.) In many situations, however, the Lagrange multiplier or, equivalently, a “dual”
variable (sand flux upon the pile surface, electric field, and strain tensor, respectively) also has
to be found. We present, for both the sandpile and the superconductivity problem, the variational
formulations written for the dual variables. On discretization these formulations yield an efficient
algorithm to compute the dual and primal variables simultaneously. Only the simplest version of
each problem is considered.

We remark that these dual formulations have some similarities to mixed variational inequalities
in elastoplasticity [10]. We note also that the sandpile model is strongly related to the Monge–
Kantorovich problem of optimal mass transportation with linear cost, and our algorithm can be used
(see [15]) for the numerical approximation of this classical problem too.

Sandpiles

Let sand be poured out onto a rigid support surface,y = w0(x), given in a bounded open subset
Ω of R2 with a Lipschitz boundary∂Ω. If the support boundary is open, a model for pile surface
evolution can be written as

∂tw + ∇ . q = f, w|t=0 = w0, w|∂Ω = w0
|∂Ω , (1.1)

wherew(x, t) is the unknown pile surface,f (x, t) > 0 is the given source density,q(x, t) is the
unknown horizontal projection of the flux of sand pouring down the pile surface. If the support has
no slopes steeper than the sand angle of repose,k = tanα, and|∇w0

| 6 k, the simplest constitutive
relations for this model read: (i) the fluxq is directed towards the steepest decent of the surface,
(ii) the surface slope cannot exceed the critical angleα, and (iii) the flux is zero upon subcritical
slopes. Equivalently, one can writeq = −m∇w and show thatm(x, t) > 0 is the Lagrange

multiplier related to the constraint|∇w| 6 k and satisfiesm(|∇w|
2

− k2) = 0. The above model,
which we denote by (E), can be reformulated as a variational inequality of the first kind forw:

(P) Findw ∈ L∞(0, T ;Kw0(k)) ∩H 1(0, T ;L2(Ω))∫ T

0
(∂tw − f, η − w)dt > 0 ∀η ∈ L∞(0, T ;Kw0(k)), (1.2)

whereKw0(k) := {η ∈ W1,∞(Ω) : |∇η| 6 k a.e. andη|∂Ω = w0
|∂Ω} and(·, ·) is the standard

L2(Ω) inner product.

If f ∈ L2(ΩT ), whereΩT := Ω × (0, T ), andw0
∈ Kw0(k), then existence and uniqueness of a

solution to (P) is proved in [13]. Moreover, it is shown there that (P) is equivalent to the following
weak formulation of (E):

(E1) Findw ∈ L∞(0, T ;Kw0(k)) ∩H 1(0, T ;L2(Ω)) andm ∈ [L∞(ΩT )]∗ such thatw(0) = w0

and∫ T

0
(∂tw − f, η)dt + 〈m,∇w . ∇η〉L∞(ΩT ) = 0 ∀η ∈ L∞(0, T ;W

1,∞
0 (Ω)), (1.3a)

〈m,φ〉L∞(ΩT ) > 0 ∀φ ∈ L∞(ΩT ) with φ > 0, (1.3b)

〈m, |∇w|
2
− k2

〉L∞(ΩT ) = 0. (1.3c)



DUAL FORMULATIONS 351

Here [· ]∗ denotes the corresponding dual space and〈·, ·〉V the duality pairing on [V ]∗ ×V . We note
that the same model of sand surface evolution was independently derived and studied in [1].

Simple analytical solutions of the inequality problem (P) describe piles generated on open
supports withw0

≡ 0. For the point sourcef = aδ(x − x0), a conical pile with critical slopes
grows until its base touches the domain boundary∂Ω; the surface flux can also be easily calculated
[12]. Then there appears a runway connecting the cone apex with the boundary and the pile growth
stops: all additional sand just follows the runway and leaves the system. On the other hand, iff > 0
everywhere inΩ, the final stationary shape of the pile is different:w(x) = k dist(x, ∂Ω).

For f > 0, the general stationary solution and an integral representation formula for the
corresponding Lagrange multiplierm, determining the surface sand fluxq, have also been obtained
recently in [6]. It is, however, not easy to compute the Lagrange multiplier using this formula. In the
non-stationary case, determining the surface fluxq remains difficult even if the unique solutionw
to (1.2) is found. To compute both these variables, we now derive a dual variational formulation
of the evolutionary problem. Below, for later developments (sand problems with obstacles and
superconductivity problems), we allowk to be possibly piecewise constant in space; that is,

k(x) = k(i) ∈ R+
∀x ∈ Ω(i), i = 1 → I, (1.4)

whereΩ(i) are disjoint open subsets ofΩ with Lipschitz boundaries andΩ ≡
⋃I
i=1Ω

(i).
Let {w, q} satisfy the relations (i)–(iii) in (E) above. Then, for any test fieldv,

∇w . (v − q) > −|∇w| |v| − ∇w . q = −|∇w| |v| + k|q| > −k|v| + k|q|. (1.5)

Hence we have

(∇w, v − q) >
I∑
i=1

k(i)
∫
Ω(i)

|q| −

I∑
i=1

k(i)
∫
Ω(i)

|v|. (1.6)

Since

(∇w, v − q) = −(w,∇ . (v − q))+

∮
∂Ω

w0(vn − qn), (1.7)

wherevn is the normal component ofv on ∂Ω, we have

I∑
i=1

k(i)
∫
Ω(i)

|v| −

I∑
i=1

k(i)
∫
Ω(i)

|q| − (w,∇ . (v − q))+

∮
∂Ω

w0(vn − qn) > 0. (1.8)

Let Ω(i)
T := Ω(i)

× (0, T ) andΦ be the Banach space of vector functionsφ :
⋃I
i=1Ω

(i)
T → R2

such that for eachi the restrictionφ|
Ω
(i)
T

is continuous and can be extended to a function from

[C(Ω(i)
T )]

2. The elements of the dual spaceM := [Φ]∗ can be represented asv = (v(1), . . . , v(I )),

wherev(i) ∈M(Ω
(i)
T ) := [[C(Ω(i)

T )]
2]∗ is a vector Radon measure,‖v‖M :=

∑I
i=1 ‖v(i)‖M(Ω

(i)
T )

,

and〈φ, v〉Φ :=
∑I
i=1〈φ|

Ω
(i)
T

, v(i)〉
[C(Ω(i)

T )]2
. To simplify our notation, below we will write

〈k, |v|〉 :=
I∑
i=1

〈k(i), |v(i)|〉
C(Ω

(i)
T )
.



352 J. W. BARRETT AND L. PRIGOZHIN

Noting from (1.1) that

w(t) = w0
+

∫ t

0
f (r)dr − ∇ .

(∫ t

0
q(r)dr

)
(1.9)

and using (1.8), we finally obtain our dual formulation of (P), the following variational inequality
of the second kind forq:

(Q) Findq ∈ VM(div) such that∫ T

0

[(
∇ .

(∫ t

0
q(r)dr

)
,∇ . (v − q)

)
+ F(v − q)

]
dt + 〈k, |v|〉 − 〈k, |q|〉 > 0 (1.10)

for all v ∈ V̂M(div).

HereF(v) :=
∮
∂Ω
w0vn − (w0

+
∫ t

0 f (r)dr,∇ . v) and

VM(div) := {v ∈M : div v ∈ L2(ΩT )}. (1.11)

In addition, the test space is defined as

V̂M(div) := the strong closure of [C∞(ΩT )]
2 with respect to the norm

‖v‖VM(div) := ‖v‖M + ‖∇ . v‖L2(ΩT )
. (1.12)

As [C∞(ΩT )]2 is dense inV 2(div) := {v ∈ [L2(ΩT )]2 : ∇ . v ∈ L2(ΩT )} (recall [17, p. 13]), we
clearly haveV 2(div) ⊆ V̂M(div) ⊆ VM(div). This choice of test space is discussed in more detail
at the end of this section.

Given f ∈ L2(ΩT ) andw0
∈ K0(k), we will prove (see Theorem 3.1 below) the existence

of a solution to (Q). In addition, we will show (see Theorem 3.2 below) that the correspondingw,
defined via (1.9), is such thatw ∈ L∞(0, T ;K0(k)) and solves the primal variational inequality
(P), withKw0(k) replaced byK0(k), and is therefore unique. Moreover, we will show that (Q) is
equivalent to the following weak formulation of (E):

(E2) Findw ∈ L∞(0, T ;K0(k)) ∩H 1(0, T ;L2(Ω)) andq ∈ VM(div) such thatw(0) = w0 and∫ T

0
(∂tw + ∇ . q − f, η)dt = 0 ∀η ∈ L2(ΩT ), (1.13a)

with ∫ T

0
(w,∇ . q)dt = 〈k, |q|〉. (1.13b)

We note that (1.13b) is another (weaker) formulation of the constitutive relation. Indeed, ifq is

regular enough (belongs to [[L∞(ΩT )]2]∗) then (1.13b) andw ∈ L∞(0, T ;K0(k)) imply that
q = −m∇w, wherem ∈ [L∞(ΩT )]∗ and satisfies (1.3b)–(1.3c).

Superconductors

Phenomenologically, the magnetic field penetration into type-II superconductors can be understood
as a nonlinear eddy current problem. Let a long cylindrical superconductor with a simply connected
cross-sectionΩ be placed into a non-stationary uniform external magnetic fieldhe(t) parallel to the
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cylindrical generators. According to Faraday’s law, time variations of this field induce in a conductor
an electric fielde leading to a currentj parallel to the cross-section plane; this current induces a
magnetic fieldh(x, t) parallel tohe. Omitting the displacement current in Maxwell’s equations and
scaling the magnetic permeability to be unity, we obtain the following model:

∂t (h+ he)+ curle = 0, curlh = j, h|t=0 = h0(x), h|∂Ω = 0, (1.14)

where curlu = ∂x1u2 − ∂x2u1 and curlu = (∂x2u,−∂x1u)
T . Instead of the usual Ohm law, a multi-

valued current-voltage relation (the Bean model) is often employed for type-II superconductors. It
is postulated that (i) the electric fielde and the current densityj have the same direction, (ii) the
current densityj(x, t) cannot exceed some critical value,jc(x), and (iii) if the current is subcritical,
the electric field is zero. One can writee = ρj and show that the effective resistivity,ρ(x, t) > 0,
is the Lagrange multiplier related to current density constraint|j(x, t)| 6 jc(x). Using conditions

(i)–(iii) we can eliminate the electric field from the model. This yields, for givenh0
∈ K0(jc) and

he ∈ H 1(0, T ,R), the variational inequality of the first kind forh:

• Findh ∈ L∞(0, T ;K0(jc)) ∩H 1(0, T ;L2(Ω)) such thath(0) = h0 and∫ T

0
(∂t (h+ he), η − h)dt > 0 ∀η ∈ L∞(0, T ;K0(jc)). (1.15)

This inequality forh can be approximated numerically and even solved analytically in some cases.
However, computing the electric fielde remains difficult. One approach is to approximate the multi-
valued Bean current-voltage relation by the power law,|e| = e0(|curlh|/jc)p with p � 1 (see
[5, 4]). While such an approach can be efficient for computing the primal variable,h, the calculation
of e using this formula may be unstable and smoothing ofh is needed ifp is large; see [5] for the
details. Recently, a numerical algorithm based on optimal control theory, requiring the integration
along paths of the magnetic flux penetration, has been proposed in [2]. Here we consider a dual
variational formulation which can be derived similarly to that for the sandpile model. The dual
formulation can be employed to find both fields simultaneously, the algorithm is stable, even if
the electric field is singular, and requires neither the determination of the penetration paths nor
the integration along them. In addition, the dual formulation can be extended to general three-
dimensional configurations [14].

For cylindrical superconductors and on assuming, similarly to (1.4), thatjc is piecewise
constant, this formulation reads:

• Find e ∈ VM(curl) := {v ∈M : curlv ∈ L2(ΩT )} such that∫ T

0

[(
curl

(∫ t

0
e(r)dr

)
, curl(v − e)

)
+ F(v − e)

]
dt + 〈jc, |v|〉 − 〈jc, |e|〉 > 0

∀v ∈ V̂M(curl). (1.16)

HereF(v) = (he(t) − he(0) − h0, curlv) andV̂M(curl) is defined similarly tôVM(div) (recall
(1.12)), with div replaced by curl. The primary variable,h, is then found from the analogue of (1.9),

h(t) = h0
+ he(0)− he(t)− curl

(∫ t

0
e(r)dr

)
. (1.17)
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The simple transformationR : e = (e1, e2)
T

7→ (e2,−e1)
T mapsVM(div) to VM(curl),

V̂M(div) to V̂M(curl), and enables us to apply the same theory and numerical approximation
for the dual sandpile model (Q), (1.10), to the dual superconductor model (1.16).

The outline of this paper is as follows. In the next section we introduce a fully discrete finite
element approximation, (Qh,τε ), of the dual formulation, (Q), of the sandpile model. It is based
on smoothing the non-differentiable functional〈k, |v|〉 by introducing |v|ε := (|v|2 + ε2)1/2,
and employing the lowest order Raviart–Thomas element for the spatial discretization with vertex
sampling on the non-linear term. We then establish stability bounds on this approximation,
independent of the mesh parameters,h and τ , and the regularization parameter,ε. In Section 3
we prove subsequence convergence of this approximation, and hence existence of a solution to (Q).
As stated above all these results for the dual formulation, (Q), of the sandpile model carry over
to the corresponding superconductor model via the transformationR. Finally, in Section 4 we
present some numerical experiments based on the discretization (Qh,τ

ε ) for both the sandpile and
superconductor models.

We end this section with a few remarks about the notation employed in this paper. Above
and throughout we adopt the standard notation for Sobolev spaces, denoting the norm ofW `,r(D)

(` ∈ N, r ∈ [1,∞]) by ‖ · ‖`,r,D and the seminorm by| · |`,r,D. Of course,| · |0,r,D ≡ ‖ · ‖0,r,D. We
extend these norms and seminorms in the natural way to the corresponding spaces of vector-valued
functions. Forr = 2,W `,2(D) will be denoted byH `(D) with the associated norm and seminorm
written as, respectively,‖ · ‖`,D and| · |`,D. The measure ofD will be denoted by|D|.

LetC(D) denote the space of continuous functions onD. As one can identifyL1(D) as a closed
subspace ofM(D), it is convenient to adopt the notation∫

D

|µ| ≡ ‖µ‖M(D) := sup
η∈C(D)

|〈µ, η〉C(D)|

|η|0,∞,D

< ∞. (1.18)

We note that if{µj }j>0 is a bounded sequence inM(D), then there exist a subsequence{µj`}j`>0
and aµ ∈M(D) such that asj` → ∞,

µj` → µ weakly inM(D), i.e. 〈µj` − µ, η〉C(D) → 0 ∀η ∈ C(D). (1.19)

In addition,

lim inf
j`→∞

∫
D

|µj` | >
∫
D

|µ|; (1.20)

see e.g. [7, p. 5] and [9, p. 223].
For our proof of the existence of a solution to (Q) (see Theorem 3.1 below), we require the

following density result for our test space: any elementv can be approximated by a sequence
{vj }j>0, wherevj ≡

∑I
i=1 v

(i)
j with v(i)j ∈ [C∞(ΩT )]2, i = 1 → I , such that

lim sup
j→∞

∫
ΩT

|v
(i)
j | 6

∫
Ω
(i)
T

|v(i)|, i = 1 → I, (1.21a)

and asj → ∞,

〈v
(i)
j , φ〉[C(ΩT )]2

→ 〈v(i), φ〉
[C(Ω(i)

T )]2
∀φ ∈ [C0(ΩT )]

2, i = 1 → I, (1.21b)

∇ . vj → ∇ . v weakly inL2(ΩT ). (1.21c)
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Such a result is non-trivial for the Banach spaceVM(div) as it is not of local type; that is,v ∈

VM(div) andφ ∈ C∞(ΩT ) does not imply thatφv ∈ VM(div) and so the use of cut-off functions,
as in the proof of Proposition 1.3 in [17], is not possible. On extending anyv ∈ VM(div) by
zero and applying mollifiers it is a simple matter to establish (1.21a,b); but thenL2(ΩT ) in (1.21c)
has to be replaced byL2(ω) for any open setω such thatω ⊂ ΩT . Clearly, the results (1.21a–c)
are trivially true for the choicêVM(div) in (1.12). Of course one could weaken the closure in
(1.12) and these results would remain true. However, unless one can show that the corresponding
V̂M(div) ≡ VM(div), which we are unable to do, there is no real gain in such a choice.

Finally, throughoutC denotes a generic constant independent of the mesh parameters,h andτ ,
and the regularization parameter,ε.

2. Numerical approximation of (Q)

In order to avoid the difficulty of traces onVM(div) (recall (1.10)), we will restrict the discussion
in this paper tow0

|∂Ω = 0. In addition, the results in this paper could, in principle, be extended
to piecewise smoothk, but once again for ease of exposition we will restrict the discussion here to
piecewise constantk.

Firstly, we gather together our assumptions on the data.

(A1) Ω ⊂ R2 with a Lipschitz boundary∂Ω, k satisfying (1.4),w0
∈ K0(k) andf ∈ L2(ΩT ).

We then introducef : [0, T ] → L2(Ω), wheref (t) = w0
+

∫ t
0 f (r)dr. Then our dual formulation,

(1.10), of (P) becomes:

(Q) Findq ∈ VM(div) such that∫ T

0

(
∇ .

(∫ t

0
q(r)dr

)
− f ,∇ . (v − q)

)
dt + 〈k, |v|〉 − 〈k, |q|〉 > 0 ∀v ∈ V̂M(div).

(2.1)

The aim of this paper is to prove existence of, and approximate, solutions to (Q).
For anyε ∈ R+, we regularise the non-differentiable non-linearity| · | by introducing the strictly

convex function| · |ε : R2
→ R+ defined by

|a|ε := (|a|2 + ε2)1/2. (2.2)

We note that for alla, b ∈ R2,

∂|a|ε

∂ai
=

ai

|a|ε
,

∂2
|a|ε

∂ai∂aj
=
δij

|a|ε
−
aiaj

|a|3ε
and so

2∑
i,j=1

∂2
|a|ε

∂ai∂aj
bibj >

ε2

|a|3ε
|b|2. (2.3)

Hence it follows that

a

|a|ε
. (a − b) > |a|ε − |b|ε. (2.4)

For ease of exposition, we assume that
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(A2) Ω andΩ(i), i = 1 → I , are polygonal. Let{T h}h>0 be a regular family of partitionings
of Ω into disjoint open simplicesσ with hσ := diam(σ ) andh := maxσ∈T h hσ , so that
Ω =

⋃
σ∈T h σ . In addition, for allσ ∈ T h, we havek|σ = kσ ∈ {k(i)}Ii=1; and letT hi ⊂ T h

be such that

Ω(i) =

⋃
σ∈T hi

σ , i = 1 → I. (2.5)

We note that there is a clash of notation betweenh, the mesh length above, and the component
of the magnetic field in (1.14). However, we want to keep the standard notation for these quantities;
the meaning ofh will always be clear from the context.

Let nσ be the outward unit normal toσ . We then introduce

V h := {vh ∈ [L∞(Ω)]2 : vh|σ = aσ + bσx, aσ ∈ R2, bσ ∈ R ∀σ ∈ T h and

vh . nσ is continuous across simplex boundaries}

⊂ {v ∈ [L∞(Ω)]2 : ∇ . v ∈ L2(Ω)}, (2.6a)

Sh := {ηh ∈ L∞(Ω) : ηh|σ = cσ ∈ R ∀σ ∈ T h}. (2.6b)

In order for our finite element approximation to be practical, we introduce(v, z)h :=
∑
σ∈T h(v, z)

h
σ

with

(v, z)hσ := 1
3|σ |

3∑
j=1

v(P σj ) . z(P
σ
j ) ∀v, z ∈ [C(σ)]2, ∀σ ∈ T h, (2.7)

where{P σj }
3
j=1 are the vertices ofσ . Hence(v, z)h averages the integrandv . z over each simplex

σ at its vertices and hence is exact ifv . z is piecewise linear over the partitioningT h. We note for
anyvh ∈ V h and anyσ ∈ T h that |vh(x)| 6

∑3
j=1 |vh(P σj )|λ

σ
j (x) on σ , where{λσj }

3
j=1 are the

standard linear hat functions onσ satisfyingλσj (P
σ
i ) = δij , i, j = 1 → 3; and so

∫
σ

|vh| 6 (|vh|,1)hσ := 1
3|σ |

3∑
j=1

|vh(P σj )|. (2.8)

In addition, let 0= t0 < t1 < · · · < tN−1 < tN = T be a partitioning of [0, T ] into possibly
variable time stepsτn := tn − tn−1, n = 1 → N . We setτ := maxn=1→N τn. Our fully practical
approximation of (Q) byV h, on employing (2.2) and (2.7), is then:

(Qh,τε ) Forn > 1, findQn
ε ∈ V h such that

τn(∇ . Qn
ε ,∇ . vh)+

(
kQn

ε

|Qn
ε |ε
, vh

)h
= (Gnε ,∇ . vh) ∀vh ∈ V h, (2.9a)

whereGnε := f
n

− ∇ . Un−1
ε , f

n
:= f (tn), n > 1, and

Un−1
ε :=

n−1∑
`=1

τ`Q
`
ε, n > 2, and U0

ε := 0. (2.9b)
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One can then recover an approximation tow(tn), n = 1 → N , by findingW n
ε ∈ Sh such that

(W n
ε , η

h) = (f
n

− ∇ . Unε , η
h) ∀ηh ∈ Sh. (2.10)

LEMMA 2.1 Let the assumptions (A1) and (A2) hold. Then givenGnε , for all ε > 0, for all regular
partitioningsT h of Ω, and for allτn > 0 there exists a unique solutionQn

ε ∈ V h, andW n
ε ∈ Sh, to

thenth step of (Qh,τε ).

Proof. On noting (2.3), we see that (2.9a) is the Euler–Lagrange equation for the strictly convex
minimization problem

min
vh∈V h

{1
2τn|∇ . vh|20,Ω + (k|vh|ε,1)h − (Gnε ,∇ . vh)

}
. (2.11)

The desired existence and uniqueness results forQn
ε andW n

ε follow from this and (2.10). 2

We note that for alla ∈ R2,

|a| 6 |a|ε 6 |a| + ε and |a| 6
|a|2 + ε|a|

|a|ε
6

|a|2

|a|ε
+ ε. (2.12)

In addition, it follows that for alla, b ∈ R2,(
a

|a|ε
−

b

|b|ε

)
. a >

|a|ε|b|ε − |a| |b|

|b|ε
−

ε2

|a|ε
> ε2

[
1

|b|ε
−

1

|a|ε

]
. (2.13)

THEOREM 2.1 Let the assumptions (A1) and (A2) hold. Then for allε > 0, for all regular
partitioningsT h of Ω, and for all time partitions{τn}Nn=1, the unique solution{Qn

ε }
N
n=1 to (Qh,τε ) is

such that
N∑
n=1

τn|∇ . Qn
ε |

2
0,Ω 6 4|k|0,∞,Ωε|Ω| +

∫ T

0
|f (t)|20,Ω dt, (2.14a)

max
n=1→N

|∇ . Unε |
2
0,Ω +

N∑
n=1

|∇ . (Unε − Un−1
ε )|20,Ω + 2

N∑
n=1

τn|kQ
n
ε |0,1,Ω

6 4|k|0,∞,ΩεT |Ω| + 2
N∑
n=1

τn[|f
n
|
2
0,Ω + |∇ . Qn

ε |
2
0,Ω ]. (2.14b)

Proof. Forn > 2, (2.9a) can be rewritten as

τn(∇ . Qn
ε ,∇ . vh)+

(
kQn

ε

|Qn
ε |ε

−
kQn−1

ε

|Qn−1
ε |ε

, vh
)h

=

(∫ tn

tn−1

f (t)dt,∇ . vh
)

∀vh ∈ V h. (2.15)

Choosingvh = Qn
ε in (2.15), and noting (2.13), implies forn > 2 that

τn|∇ . Qn
ε |

2
0,Ω + ε2(k|Qn−1

ε |
−1
ε ,1)h

6 ε2(k|Qn
ε |

−1
ε ,1)h +

1
2τn|∇ . Qn

ε |
2
0,Ω +

1
2τ

−1
n

∣∣∣∣∫ tn

tn−1

f (t)dt

∣∣∣∣2
0,Ω

6 ε2(k|Qn
ε |

−1
ε ,1)h +

1
2τn|∇ . Qn

ε |
2
0,Ω +

1
2

∫ tn

tn−1

|f (t)|20,Ω dt. (2.16)
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Similarly, choosingvh = Q1
ε in (2.9a) forn = 1 yields, on noting (2.8) and (2.12),

τ1|∇ . Q1
ε |

2
0,Ω 6 −

(
k|Q1

ε |
2

|Q1
ε |ε

,1

)h
+ |∇w0

|0,∞,Ω |Q1
ε |0,1,Ω +

1
2τ1|∇ . Q1

ε |
2
0,Ω +

1
2

∫ t1

t0

|f (t)|20,Ω dt

6 2|k|0,∞,Ωε|Ω| +

∫ t1

t0

|f (t)|20,Ω dt. (2.17)

Then summing (2.16) forn = 2 → N and combining with (2.17) yields the desired result (2.14a).
Choosingvh = Qn

ε in (2.9a), and noting (2.9b), gives forn = 1 → N that

(∇ . Unε ,∇ . (Unε − Un−1
ε ))+ τn

(
k|Qn

ε |
2

|Qn
ε |ε

,1

)h
= τn(f

n
,∇ . Qn

ε ). (2.18)

Summing (2.18) fromn = 1 → `, and recalling the simple identity

2a(a − b) = (a2
− b2)+ (a − b)2, (2.19)

shows for̀ = 1 → N that

1
2|∇ . U `ε|

2
0,Ω +

1
2

∑̀
n=1

|∇ . (Unε − Un−1
ε )|20,Ω +

∑̀
n=1

τn

(
k|Qn

ε |
2

|Qn
ε |ε

,1

)h
=

1
2|∇ . U0

ε |
2
0,Ω +

∑̀
n=1

τn(f
n
,∇ . Qn

ε ) 6 1
2

∑̀
n=1

τn[|f
n
|
2
0,Ω + |∇ . Qn

ε |
2
0,Ω ]. (2.20)

Hence the desired result (2.14b) follows from (2.20), (2.12) and (2.8). 2

3. Convergence ofQh,τε —existence theory for(Q)

Let

Q+
ε (t) := Qn

ε , U+
ε (t) := Unε , W+

ε (t) := W n
ε , f

+
(t) := f

n
t ∈ (tn−1, tn], n > 1.

(3.1)

It follows from (3.1) and (2.9b) that fort ∈ (tn−1, tn], n > 1,∣∣∣∣∇ .

(
U+

ε (t)−

∫ t

0
Q+
ε (r)dr

)∣∣∣∣
0,Ω

=

∣∣∣∣∫ tn

t

∇ . Q+
ε (r)dr

∣∣∣∣
0,Ω

6 (τn)
1/2

(∫ tn

tn−1

|∇ . Q+
ε |

2
0,Ω dt

)1/2

. (3.2)

Similarly, we have

|f
+
(t)− f (t)|0,Ω 6 (τn)

1/2
(∫ tn

tn−1

|f |
2
0,Ω dt

)1/2

for t ∈ (tn−1, tn], n > 1. (3.3)
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Adopting the notation (3.1), (Qh,τε ) can be restated as:∫ T

0

[
(∇ . U+

ε − f
+
,∇ . vh)+

(
kQ+

ε

|Q+
ε |ε

, vh
)h]

dt = 0 ∀vh ∈ L∞(0, T ;V h); (3.4a)∫ T

0
(W+

ε − f
+

+ ∇ . U+
ε , η

h)dt = 0 ∀ηh ∈ L∞(0, T ; Sh). (3.4b)

THEOREM 3.1 Let the assumptions (A1) and (A2) hold. For all regular partitioningsT h ofΩ, and
for all time partitions{τn}Nn=1 and for allε > 0 such thatτ, ε → 0 ash → 0, the unique solution
{Qn

ε }
N
n=1 to (Qh,τε ) is such that there exists a subsequence of{Q+

ε }h, whereQ+
ε solves (Qh,τε ), and a

q ∈ VM(div) such that ash → 0,

Q+
ε |
Ω
(i)
T

→ q(i) weakly in [M(Ω
(i)
T )]

2, i = 1 → I, (3.5a)

∇ . Q+
ε → ∇ . q weakly inL2(ΩT ), (3.5b)

∇ . U+
ε → ∇ . u weak-? in L∞(0, T ;L2(Ω)), (3.5c)

W+
ε → w weak-? in L∞(0, T ;L2(Ω)), (3.5d)

where

∇ . u(t) := ∇ .

(∫ t

0
q(r)dr

)
and w(t) :=

∫ t

0
f (r)dr + w0

− ∇ . u(t). (3.6)

Moreover,q solves (Q), (2.1).

Proof. The bounds (2.14a,b) yield, on noting (3.1) and (1.4),

‖∇ . Q+
ε ‖

2
L2(ΩT )

+ ‖Q+
ε ‖L1(ΩT )

+ ‖∇ . U+
ε ‖L∞((0,T ),L2(Ω)) 6 C(T , k, |Ω|)[1 + ‖f ‖

2
L2(ΩT )

].

(3.7)

The subsequence convergence results (3.5a–d) then follow immediately from (3.7), (1.19), (3.2),
(3.4b) and (3.3).

Let Ih : [H 1(Ω)]2 → V h be the generalised interpolation operator satisfying∫
∂iσ

(v − Ihv) . n∂iσ = 0, i = 1 → 3, ∀σ ∈ T h, (3.8)

where∂σ ≡
⋃3
i=1 ∂iσ is the boundary ofσ andn∂iσ are the corresponding outward unit normals

on ∂iσ . It follows (see e.g. [16, 553]) that for allσ ∈ T h,

|v − Ihv|0,σ 6 Ch|v|1,σ , (3.9a)

and ifv is sufficiently smooth,

|∇ . (v − Ihv)|0,σ 6 Ch|∇ . v|1,σ and |Ihv|1,σ 6 C‖v‖2,σ . (3.9b)
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In addition, we note from (2.3) and (2.7) that for allσ ∈ T h,∣∣∣∣∫
σ

|v|ε − (|Ihv|ε,1)
h
σ

∣∣∣∣ 6
∫
σ

| |v|ε − |Ihv|ε| +

∣∣∣∣∫
σ

|Ihv|ε − (|Ihv|ε,1)
h
σ

∣∣∣∣
6 |v − Ihv|0,1,σ + Ch|σ | | |Ihv|ε|1,∞,σ

6 |v − Ihv|0,1,σ + Ch|Ihv|1,1,σ . (3.10)

Given anyv ∈ [C∞(ΩT )]2, we choosevh ≡ Q+
ε − Ihv in (3.4a). Hence, on noting (2.4), we

have∫ T

0
[(∇ . U+

ε − f
+
,∇ . [Ihv])+ (k|Ihv|ε,1)

h] dt

>
∫ T

0
[(∇ . U+

ε − f
+
,∇ . Q+

ε )+ (k|Q+
ε |ε,1)

h] dt. (3.11)

It follows immediately from (3.5b,c), (3.9b) and (3.3) that

∫ T

0
[(∇ . U+

ε − f
+
,∇ . [Ihv])+ (f

+
,∇ . Q+

ε )] dt

→

∫ T

0
[(∇ . u− f ,∇ . v)+ (f ,∇ . q)] dt ash → 0. (3.12)

Next we note from (2.5), (2.12), (2.8), (3.5a) and (1.20) that fori = 1 → I ,

lim inf
h→0

∫ T

0

∑
σ∈T hi

(|Q+
ε |ε,1)

h
σ dt > lim inf

h→0

∫ T

0

∑
σ∈T hi

(|Q+
ε |,1)hσ dt

> lim inf
h→0

∫
Ω
(i)
T

|Q+
ε | >

∫
Ω
(i)
T

|q(i)|. (3.13)

It follows from (2.5), (2.12), (3.10) and (3.9a,b) that fori = 1 → I ,

lim
h→0

∫ T

0

∑
σ∈T hi

(|Ihv|ε,1)
h
σ dt =

∫
Ω
(i)
T

|v|. (3.14)

Let

U ε(t) :=
tn − t

τn
Un−1
ε +

t − tn−1

τn
Unε , t ∈ [tn−1, tn], n = 1 → N. (3.15)

Similarly to (3.2), it follows from (3.1), (2.9b) and (3.7) that∫ T

0
|∇ . (U+

ε − U ε)|
2
0,Ω 6 Cτ2 and ∂tU ε = Q+

ε a.e. in ΩT . (3.16)
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Hence from (3.16), (3.7), (2.9b), (3.5c) and (3.6) we have

lim inf
h→0

∫ T

0
(∇ . U+

ε ,∇ . Q+
ε )dt = lim inf

h→0

∫ T

0
(∇ . U ε,∇ . Q+

ε )dt =
1
2 lim inf

h→0
|∇ . U ε(T )|

2
0,Ω

> 1
2|∇ . u(T )|20,Ω =

∫ T

0
(∇ . u,∇ . q)dt. (3.17)

Combining (3.11)–(3.14) and (3.17), we see thatq solves (2.1) holds for anyv ∈ [C∞(ΩT )]2.

The desired result, thatq solves (2.1) for anyv ∈ V̂M(div), then follows from the density results

(1.21a,c) which clearly hold for̂VM(div). 2

THEOREM 3.2 Let the assumptions of Theorem 3.1 hold. Thenw defined by (3.6) is such that
w ∈ L∞(0, T ;K0(k)) ∩ H 1(0, T ;L2(Ω)) with w(0) = w0. Moreover,w solves (P), (1.2) with
Kw0(k) replaced byK0(k), and is therefore unique. In addition,w and the solutionq ∈ VM(div)
of (2.1) satisfy (1.13a,b).

Finally, the possible non-uniqueness inq is restricted to the following: If there were two
solutionsq

`
, ` = 1,2, then

∇ . (q
1
− q

2
) = 0 a.e. in ΩT and 〈k, |q

1
|〉 = 〈k, |q

2
|〉. (3.18)

Proof. It follows from (3.6) and (3.5b) thatw ∈ H 1(0, T ;L2(Ω)) satisfiesw(0) = w0 and (1.13a).
Combining (2.1) and (3.6) yields

〈k, |v|〉 − 〈k, |q|〉 −

∫ T

0
(w,∇ . (v − q))dt > 0 ∀v ∈ V̂M(div). (3.19)

Let J (v) := 〈k, |v|〉 −
∫ T

0 (w,∇ . v)dt . From (3.19) we obtain

J (q) 6 J := inf
v∈V̂M(div)

J (v) 6 J (0) = 0. (3.20)

If J < 0 then, for any minimizing sequence{vj }, we obtainJ (2vj ) → 2J < J , which is a

contradiction. HenceJ = 0, and so〈k, |v|〉 >
∫ T

0 (w,∇ . v)dt for anyv ∈ V̂M(div). Since this is
true also for−v, we obtain∣∣∣∣∫ T

0
(w,∇ . v)dt

∣∣∣∣ 6 〈k, |v|〉 ∀v ∈ V̂M(div). (3.21)

It immediately follows from (3.21) thatw ∈ L∞(0, T ;K0(k)).
Given anyη ∈ L∞(0, T ;K0(k)), we introduce, for anyδ ∈ (0, δ0),

ηδ(x, t) := ψδ(t)([η(x, t)− δ]+ − [η(x, t)+ δ]−) for a.e.(x, t) ∈ ΩT , (3.22)

whereψδ ∈ C∞

0 (0, T ), 0 6 ψδ 6 1 andψδ(t) = 1 if t ∈ (δ, T − δ). It follows that ηδ ∈

L∞(0, T ;K0(k)) with compact support inΩT such that

|∇ηδ(x, t)| 6 |∇η(x, t)| for a.e.(x, t) ∈ ΩT and lim
δ→0

∫ T

0
‖η − ηδ‖1,Ω dt = 0. (3.23)
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In addition, on extendingq(i), i = 1 → I , by zero and applying mollifiers, one can construct

{q
j
}j>0, whereq

j
≡

∑I
i=1 q

(i)
j

with q(i)
j

∈ [C∞(ΩT )]2, i = 1 → I , such that

∫
ΩT

|q(i)
j

| 6
∫
Ω
(i)
T

|q(i)|, i = 1 → I, (3.24a)

∇ . q
j

→ ∇ . q weakly inL2(ω) for anyω ⊂ ΩT . (3.24b)

Combining (3.23) and (3.24a,b), for anyη ∈ L∞(0, T ;K0(k)) we have∫ T

0
(∇ . q, η)dt =

∫ T

0
[−(q

j
,∇ηδ)+ (∇ . (q − q

j
), ηδ)+ (∇ . q, η − ηδ)] dt

6
I∑
i=1

k(i)
∫
Ω
(i)
T

|q(i)| +

∣∣∣∣∫ T

0
(∇ . (q − q

j
), ηδ)dt

∣∣∣∣ + C

∫ T

0
‖η − ηδ‖1,Ω dt

→ 〈k, |q|〉 asj → ∞, δ → 0. (3.25)

Applying (3.25) forη ≡ w and noting thatJ (q) 6 0 yield the desired result (1.13b). Hencew and
the solutionq ∈ VM(div) of (2.1) satisfy (1.13a,b).

Choosingη ≡ ξ −w in (1.13a) withξ ∈ L∞(0, T ;K0(k)) and noting (3.25) and (1.13b) shows
thatw solves the primal variational inequality (P), (1.2) withKw0(k) replaced byK0(k), and is
therefore unique.

Finally, combining the uniqueness ofw and (3.6) implies that if there were two solutionsq
`

∈

VM(div) solving (Q), then the first result in (3.18) holds. The second result in (3.18) then follows
from the first, the uniqueness ofw and (1.13b). 2

We end this section by noting a consequence of (E2), and its discrete analogue. Firstly, (E2) implies,
on choosingη = w in (1.13a) and combining with (1.13b), that the following equality holds over
the time interval [0, T ]:

1
2|w(·, T )|20 + 〈k, |q|〉 =

1
2|w0

|
2
0 +

∫ T

0
(f,w)dt. (3.26)

Of course, one can deduce that a similar equality holds over any time interval [T1, T2] ⊂ [0, T ].
We now derive a discrete analogue of this result. One deduces from (2.10) and (2.9b) that forn =

1 → N , (
W n
ε −W n−1

ε

τn
, ηh

)
=

(
1

τn

∫ tn

tn−1

f (r)dr − ∇ . Qn
ε , η

h

)
∀ηh ∈ Sh, (3.27a)

where we have naturally definedW0
ε ∈ Sh by the projection(W0

ε −w0, ηh) = 0 for all ηh ∈ Sh. On
choosingvh = Qn

ε in (2.9a), and noting (2.9b) and (2.10), we see that forn = 1 → N ,

(
k
|Qn

ε |
2

|Qn
ε |ε
,1

)h
= (f

n
− ∇ . Unε ,∇ . Qn

ε ) = (W n
ε ,∇ . Qn

ε ). (3.27b)
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Therefore (3.27a,b) are the discrete analogues of (1.13a,b). Finally, choosingηh = W n
ε in (3.27a)

and combining with (3.27b) implies forn = 1 → N that

1
2[|W n

ε |
2
0 + |W n

ε −W n−1
ε |

2
0] + τn

(
k
|Qn

ε |
2

|Qn
ε |ε
,1

)h
=

1
2|W n−1

ε |
2
0 +

(∫ tn

tn−1

f (r)dr,W n
ε

)
, (3.28)

which is the discrete analogue of (3.26).

4. Numerical experiments

At each time leveln, the resulting non-linear algebraic system (2.9a) was solved iteratively using
the following successive over-relaxation algorithm:

GivenQn,0
ε ∈ V h, for j > 0 findQn,j+1/2

ε ∈ V h such that

τn(∇ . Qn,j+1/2
ε ,∇ . vh)+

(
kQ

n,j+1/2
ε

|Q
n,j
ε |ε

, vh
)h

= (Gnε ,∇ . vh) ∀vh ∈ V h, (4.1a)

and set

Qn,j+1
ε = γQn,j+1/2

ε + (1 − γ )Qn,j
ε . (4.1b)

Clearly the above is a well-posed algorithm, involving the solution of a symmetric positive definite
linear system at each iteration. When the iterations converged up to a prescribed tolerance, we set
Qn
ε = Q

n,j+1
ε and then recovered the primary variableW n

ε explicitly from (2.10). Forn > 1,
we choseQn,0

ε = Qn−1
ε and observed good convergence properties of this algorithm. In all of our

simulations we setε = 10−7; the relaxation parameterγ = 1.3; and performed the iteration (4.1a,b)
until either|Qn,j+1

ε −Q
n,j
ε |0,∞ 6 tol or |Qn,j+1

ε −Q
n,j
ε |0,∞/|Q

n,j+1
ε |0,∞ 6 tol, wheretol is either

10−4 or 10−5. Typically, approximately fifty iterations per time step were sufficient. However, if the
solution changed drastically during a particular time step, then more iterations could be required to
meet the prescribed tolerance. Neither the solution nor the number of iterations were sensitive to
the value ofε. In all of the examples below we assumed a zero initial state and used a fixed time
stepτ ∈ [0.0125,0.05]. The Matlab PDE Toolbox [11] was employed for the domain triangulation;
domains with curved boundaries were approximated by polygons. We refer to [3] for the Matlab
implementation of the Raviart–Thomas element of the lowest order.

In contrast to algorithms based on primal variational formulations of critical-state problems, the
dual formulation allows one to approximate both the primal and dual variables simultaneously.
Moreover, our numerical simulations (see below) seem to indicate that, although different
algorithms can be employed to solve the arising variational problems, even the primal variables
are possibly easier to compute using the dual formulation. For these primal variables comparison
with the analytical solution, if known, showed first order convergence in bothh and τ in the
L∞(ΩT ) norm. The first two examples illustrate known analytical solutions of the sand problem
(see Section 1); here we setk ≡ 1.

Numerical simulation of a growing conical pile is presented in Fig. 1, whereΩ is a unit
square; a regular 60× 60 grid was used for its triangulation. The surface fluxq in this example

has a|x|−1 singularity before the discharge time, when the conical pile meets the boundary, and
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a

b

c

FIG. 1. Pile on a square open support growing under a point sourcef = 0.2δ(x − x0). The cone grows (a) until its base
touches the support boundary, (b) just before this moment. Then a runway appears and the pile growth stops, (c) after this
moment. Shown: left—sand flux|Qε |, right—the pile surface computed using (2.10).

is a measure concentrated along the runway when the latter appears. We note that our stability
and convergence analysis in the previous sections assumes thatf ∈ L2(ΩT ), and thus does
not cover the case of a point source. Nevertheless, the numerical approximation (Qh,τ

ε ) is still
well-defined, when the point source is placed in the interior of an element and we placed the
source at the center of an element. The resulting numerical solution is qualitatively very good: as
can be seen in Fig. 1,Qε captures the singular behavior inq remarkably well, and is inversely
proportional to the mesh size in the neighborhood of these singularities. The accuracy of the
primal variable,Wε, is easy to calculate; forτ = 0.025 and the stated mesh we found that
{maxn |w(·, tn) − Wε(·, tn)|0,∞,Ω}/|w|0,∞,ΩT 6 0.014. Since the surfaceWε is found from the
surface fluxQε, using (2.10), this indirectly characterizes also the error inQε.

As stated above, after the discharge time the conical pile,w, remains steady and the fluxq
is singular along the straight runway. In addition, one has

∫
Ω

|q| = (f,w), which can also be
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FIG. 2. Contour plots of|Qε | in a neighborhood of the runway, numerical simulation on two different grids. Smearing of the
runway is weaker for the regular mesh (left) than for the general mesh not adapted to the runway (right).

deduced from (3.26). We note that the use of a regular grid helps in the approximation ofq at
this stage, as the finite elements are aligned with the runway. Computing on a non-regular mesh
with the same number of elements resulted in the runway being smeared across several elements
(see Fig. 2); the error inWε was also doubled on this non-regular mesh. We note from (3.28) that
although the runway may be smeared, the strength of the singularity is still well approximated. This
mesh-determined smearing effect is clearly seen in two other numerical examples below (see Figs. 5
and 9) in which the dual variable is a vectorial measure partly supported on a subset of dimension
one, to which the mesh is not specially adapted. Nevertheless, qualitatively the singular behavior of
this variable is satisfactory captured also in these examples. Of course, adaptive mesh refinement
would increase the accuracy of the computed solution, and this will be an area of future study.

The second example illustrates the distributed source case (see Fig. 3 for the geometric
configuration). The growing pile is a truncated cone until its base first touches the domain boundary;
the growth ends when all points in the support off become connected to the border by a straight
transport ray through which the discharged sand leaves the system (Fig. 4).

0 1
0

1

FIG. 3. Triangular support was divided into 4080 finite elements (maximal element diameterh = 0.0167). The source:
f = 1 inside the ellipse andf = 0 outside.

Suppose now the support domain is partly surrounded by a vertical impermeable wall. Then on
the closed part of the support boundary, the open boundary condition in (1.1) should be replaced
by the conditionqn = 0. The wall presents an obstacle to the sand flow and the fluxq can become
a measure concentrated partly along the obstacle boundary [8]; this can happen even if the source
is distributed. Similarly to [15], we can transform this situation into our framework by extending
the domain beyond the wall and settingk = ∞, or to be very large, in this extension. In our next
example (see Fig. 5, left),k = 1 inside a multiply connected domain (white area). The grey area is
the extension of this domain beyond the closed part of its boundary and there we setk = 106. The
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FIG. 4. Pile growing on a triangular support under a distributed source (see Fig. 3). The pile shape stabilises when all points
in supp(f ) become connected to the border by a transport ray. Shown: left—sand flux|Qε |, right—the pile surfaceWε .

FIG. 5. Pile on a support partly surrounded by a wall. Left—the domain (white region) is extended beyond the impermeable
part of its boundary (grey regions). The extended domain is the unit square divided into 10055 finite elements (maximal
element diameterh = 0.025). The sourcef is uniform inside the white circle and zero outside,

∫
Ω f = 1. Computed with

τ = 0.05: middle—the final stationary pile surfaceWε ; right—levels of the corresponding stationary surface flux,|Qε |.
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FIG. 6. Magnetization of homogeneous superconductive cylinders of different cross-sections. Upper row—the levels of the
electric field|Eε |, lower row—the levels of the magnetic fieldHε and the current contours (shown fort = 0.3).

total domainΩ is the unit square, and the source is constant in time and uniform inside its support
(the white circle). The final pile shape (Fig. 5, middle) is shown jointly with the corresponding
surface flux (right).

As was noted above, the simple transformationR : e = (e1, e2)
T

7→ (e2,−e1)
T enables us to

use the same Raviart–Thomas element as in the sandpile problem for the superconductivity problem.
The parameters in the numerical simulations below were chosen on assuming that the dimensionless
variables(x, t, . . . ) were obtained from the original variables(x′, t ′, . . . ) as follows:

x =
x′

L
, t =

t ′

t0
, j =

j ′

j0
, h =

h′

Lj0
, e =

e′t0

L2j0
,

whereL is the characteristic cross-section size (the maximal horizontal extension in the plots
below), andj0 is the critical current densityjc or its maximal value if the sample is not
homogeneous. For superconductivity problems the sourcef = −dhe(t)/dt does not depend onx.
In the examples below we assumed thatf < 0 is constant andt0 is chosen to makef = −1.

If the superconductor is homogeneous, i.e.jc does not depend onx, and the domainΩ is simply
connected, the magnetic fieldh can be found analytically (see, e.g., [4]). For a growing external
field he(t) = t andh0(x) = 0, as in our next example, we geth(x, t) = − min(dist(x, ∂Ω), t).
In Fig. 6, the electric and magnetic field approximationsEε andHε, were computed numerically
from the approximations of (1.16) and (1.17), respectively, for three different cross-sections. We
note that the algorithm worked well also in the case of a non-Lipschitz domain with cusps. Even
results obtained on a crude mesh were reasonably accurate. For the rectangular cross-section, using
a regular 80×48 grid andτ = 0.0125, we obtained the magnetic field with an error inL∞(ΩT ) not
exceeding 1%. For full penetration, the electric field in superconductors with a rectangular cross-
section has been found analytically in [5]; comparison showed that the electric field computed on
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such a mesh has an error inL∞(Ω) of about 2%. In this case, also for the electric field we observed
first order convergence in bothh andτ in theL∞(Ω) norm.

The next example shows magnetization of a non-homogeneous superconductor (the config-
uration is shown in Fig. 7). Clearly, the easy pathways of magnetic field penetration into the

FIG. 7. Inhomogeneous superconductor. Grey region:jc = 1, white regions:jc = 1/3. Triangulation used: 7120 elements
with the maximal diameter 0.02.

superconductor go through the regions of lower critical current density; the electric field is strongest
along these pathways (Fig. 8).

FIG. 8. Magnetization of inhomogeneous superconductor. Shown fort = 0.3: left—the electric fieldEε and the current
contours; middle – the levels of|Eε |; right—the levels of the magnetic fieldHε .

To model magnetization of a superconductor with a multiply connected cross-section, one
can “fill” the holes and setjc = 0 there. It is, however, well known that eddy-current problems
determine the electric field only inside conductors: the field in isolators remains non-unique (unlike
the magnetic field, which is determined everywhere). Indeed, the stationary charges in isolators
cannot influence the induced currents and, hence, the electric field in the conductors; the field
in the isolators depends on the distribution of these charges. Our theoretical analysis also holds
only for positive values ofjc. To deal with this complication it is possible to define a very small
critical current densityjc = δ > 0 in the holes; our simulations show that the electric field in a
superconductor is not sensitive to the value ofδ. In our last example (see Fig. 9), we setδ = 10−7

for the circular hole and used 5394 elements with the maximal diameter 0.035. As the external field
starts to grow, the magnetic field penetrates the superconductor from its boundary, at first as if there
were no hole in the cross-section. However, when the zone of penetration reaches the hole boundary,
the magnetic field begins to penetrate the hole via an infinitely thin channel, similar to the runway
in Fig. 1, and the electric field becomes singular. We note that the appearance of such a channel
had been predicted by Badı́a-Majós and Ĺopez [2], but they were unable to simulate it using their
numerical method.
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FIG. 9. Cylindrical superconductor with a hole. Shown fort = 0.6: left—the electric fieldEε and the current contours,
middle—the level contours of|Eε |, right—the levels ofHε . Note the “runway” (red region in the|Eε | level plot, see pdf
file) through which the magnetic field penetrates the hole and where the electric field is the strongest.
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