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We consider two well known variational problems associated with the phenomenon of phase
separation: the isoperimetric problem and minimization of the Cahn—Hilliard energy. The two
problems are related through a classical resulf’ieonvergence and we explore the behavior of
global and local minimizers for these problems in the periodic setting. More precisely, we investigate
these variational problems for competitors defined on the flat 2- or 3-torus. We view these two
problems as prototypes for periodic phase separation. We give a complete analysis of stable critical
points of the 2-d periodic isoperimetric problem and also obtain stable solutions to the 2-d and 3-d
periodic Cahn—Hilliard problem. We also discuss some intriguing open questions regarding triply
periodic constant mean curvature surfaces in 3-d and possible counterparts in the Cahn—Hilliard
setting.

1. Introduction

Many physical systems exhibit a phase separation that, according to experiments, can be described
roughly as follows:

e The phase separation is periodic on some fixed scale (ofteesascopiscale much less than
the sample size).
o Within a period cell, the structure appears to minimize surface area between the two phases.

Macroscopic phase separation (sometimes dulspétbdal decompositioni.e. phase separation

on a scale comparable to the system size, has been the topic of extensive mathematical study (see
for examplel[17], 26, 36], and the references therein). A simple model, in the spirit of van der Walls
and Landau, was proposed in 1958 by Cahn and Hilliard [9]. The model is based upon minimizing
the free energy

2
fg(%wuﬁ n W(u)) dr, (1.2)

where the order parameterepresents the relative concentration of one of the two phases and obeys
the mass conservatiof), u dx fixed; W is a nonnegative double-well preferring pure phases (e.g.
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W (+1) = 0); and the small parameterepresents the interfacial thickness at a transition between
the phases. It is straightforward to see that the minimum enerdy df (1Qjdsand hence it is
natural to scale (T}1) by/&. With this rescaling, it has been shown rigorously (cf. [36, 53]) that
minimizers of [1.1) converge to minimizers of a sharp-interface, pure perimeter problem. Because
of the conservation of the total mass for the order parameter, the limit probleniseerimetric
problemin which solutions possess phase boundaries of constant mean curvature (CMC). Hence,
a natural approach to stugheriodic phase separation is via tperiodic Cahn—Hilliard (PCH) and
isoperimetric problems (PIP) whereby the physical domain is taken to be-timensional flat

torus.

One would expect these problems on a flat torus to be well understood. However, many questions
remain open. Moreover, while the periodic isoperimetric problem has been the focus of much
attention in the geometry community (se€el[29].1[49] and the references therein), to our knowledge,
the associated periodic Cahn—Hilliard problem, in particular the study of complex triply periodic
local minimizers, has been ignor@dﬁhis is particularly surprising given that, as we shall argue,
the possible geometric structure of (local) minimizers in 3-d is far more complex and vast than with
other well studied boundary conditions.

A physical paradigm for periodic phase separation is provided by microphase separation of
diblock copolymers (cf.[[5,16, 56]). A diblock copolymer is a linear-chain molecule consisting of
two sub-chains joined covalently to each other. One of the sub-chains is made of monomers of type
A and the other of type B. Below a critical temperature, even a weak repulsion between unlike
monomers A and B induces a strong repulsion between the sub-chains, causing the sub-chains to
segregate. A macroscopic segregation, whereby the sub-chains detach from one another, cannot
occur because the chains are chemically bonded: rather, a phase separation on a mesoscopic scale
with A and B-rich domains emerges. The observed mesoscopic domains, illustrated in Figure 1,
are highly regular periodic structures; for example lamellas, spheres, cylindrical tubes, and single
and double gyroids (see for example, [6] and the references therein). These, and many of the other
observed structures, strongly resemble triply periodic constant mean curvature (CMC) surfaces.
This fact is well documented in both the science and mathematics literature (¢f. [5] 6] 30, 49, 56]).
Hence, focusing on one periodic cell, one may naturally regard (PCH) and (PIP) as toy problems
for microphase separation of diblock copolymers.

On the other hand, it would seem that any model for these polymer configurations cannot
simply be based solely on minimization of A-B monomer interfaces. Indeed, a density functional
theory, first proposed by Ohta and Kawasakil [42], entails the minimizationnainédocal Cahn—

Hilliard like energy (cf. [11] 40]) whereby the standard Cahn—Hilliard free energy is augmented
by a long-range interaction term—associated with the connectivity of the sub-chains in the diblock
copolymer macromolecule. This term is proportional to an interaction material parameter related
to the length of the copolymer chain. We refer to this nonlocal counterpart amtitecal Cahn—
Hilliard problem (see formula[(6.37)) and its sharp interface version asitimbocal isoperimetric
problem (see [(6.3B)). We will discuss them briefly in Section 6, but a subsequent paper [12] is
devoted entirely to their study. We stress two important facts concerning these nonlocal functionals.
When the interaction parameter is sufficiently large, energetic competitions between the perimeter
and nonlocal terms sets a nemesoscopidength scale (smaller than the physical domain size)

for minimizers. Moreover, heuristic, numerical, and analytical results suggest that minimizers are

1in [18], the authors pursue an interesting analysis of the two-dimensional periodic Cahn—Hilliard problem, but from the
standpoint of bifurcation theory in a much different vein than is taken here.



PERIODIC PHASE SEPARATION 373

double double
spheres cylinders gyroid  diamond  lamellae

0-21% 21-33% 33 -37% 37 - 50%

increasing volume fraction of minority phase polymer

FiG. 1. Periodic phase separation. Cartoon from Edwin Thomas' talk at MSRI 1999—taken from referénce [49].

nearly periodic (on this smaller length scale), regardless of the boundary conditions adopted on
the physical domain (cf[2,]3, 10, 39,142,144] 55| 60]). As for the geometry of minimizers, it is
well known (cf. [34,[52]) that vanishing first variation of the area functional with respect to the
volume constraint reduces to constant mean curvature for the phase boundary. On the other hand,
with the nonlocal term, vanishing first variation does not imply CMC (5ek [12] for a full treatment
of the first and second variations) and so not surprisingly, there are local minimizers which do
not have CMC (cf.[[39]_45]). Nonetheless, accepting both the validity of nonlocal model and the
many experimental observations, it would seem that the effect of the nonlocal interactions within
a period cell is minimal; rather, surface tension is the driving force (numerical evidence supports
this claim—cf. [55]). Hence, in addition to being of interest in their own right, the local periodic
problems focused on in the present article seem quite pertinent to the diblock problem as well.

We have in mind two primary goals in our investigation of the periodic Cahn—Hilliard and
isoperimetric problems:

(i) Address the issue ajlobal minimizerdn two and three space dimensions. We will document
what is known for the periodic isoperimetric problem, and with the todl'afonvergence (cf.

[Z]), we will exploit the work of geometers to easily obtain analogous stable solutions to the
periodic Cahn—Hilliard problem. While these results are not difficult to prove, as far as we are
aware, they have not been previously observed in the vast literature on the subject.

(i) A more novel goal pertains tbcal minimizers For the periodic isoperimetric problem, we
address the possibility that strict stability (e.g. an appropriate positive lower bound on the
second variation) implies an appropriate notion of strict local minimality with respect to small
L perturbations. A similar conjecture in the strongértopology and with Dirichlet boundary
conditions is addressed in [18]. As we describe in Section 5, there is a wealth of complex
triply periodic stable surfaces. Many physics papers (see for example [1, 4] 5,1%6] 13—-15)
allude to these surfaces and many papers in geometry (see for examplel [33, 50]) are devoted
to their study. The natural question arises as to whether their structure is seen at the diffuse
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interface (Cahn—Hilliard) level. One route to a positive answer rests on proving this connection
between strict stability and strict local minimality in three dimensions. Here we address the
conjecture in two dimensions. We exhaust the list of all possible critical points to see which
are unstable, which are stable and which Afelocal minimizers. We work in such a weak
topology due to our wish to invoké&-convergence results in drawing conclusions about the
Cahn—Hilliard setting. Of course, in two dimensions, criticality alone leads immediately to
curves with constant curvature (i.e. circles and lines), thus severely limiting the number of
possible candidates. In the future, we hope to address whether in 3-d, some form of strict
stability implies strictZ1-local minimality. While this will naturally require an entirely new
machinery, our work here in 2-d lends support to the conjecture that the answer is indeed yes.

From a geometer’s point of view, one might argue as to the relevance and virtue of the
diffuse interface version. To this viewpoint, however, we respond that numerics are not easily
performed with sharp interface energetic formulations, while a standard gradient flow approach
to the diffuse interface energy gives a parabolic PDE (the well known Cahn—Hilliard equation), for
which numerical algorithms are fairly well developed. In the same vein, one can view the periodic
Cahn—Hilliard problem as a kind of regularization of the sharp interface problem, with the hope that
the diffuse problem might shed light on some of the many remaining open questions regarding the
3-d periodic isoperimetric problem. In any event, we hope that this article will stimulate interest
in both these important geometric and analytical problems, and, in particular, their interaction. The
paper is organized as follows. In Section 2, we review some basic concepts from geometric measure
theory. In Section 3 we formally introduce the problems, and note their connection via the theory
of I'-convergence. Global minimizers are addressed in Section 4 and local minimizers in Section 5.
In Section 6, we briefly address the nonlocal analogues but only in the case where the nonlocalities
are small. We conclude in Section 7 with some remarks.

2. Some preliminaries

We will require a few preliminaries from geometric measure theory. For further background, we
refer the reader to [16, 20, 52].

Forn > 1 (usuallyn = 2,3), letT" (n = 2 or 3) denote the:-dimensionalflat torus In
particular we identify two point§xs, ..., x,) = (y1, ..., yu) iff x; = y; + k; for some integers;.

Let H1(T") denote the Sobolev space obtained by taking the closure under the Sobolev norm
on(—1/2,1/2)" of periodicC* (R") functions, i.e. functiong which satisfy

o(x1+k1,...,x, +ky) = @(x1,...,x,) forallintegersk;,i =1,...n. (2.2)

Let BV (T") denote the set of all1(T") functionsu such that the total variation

/ |Vu| :=sup| udivo dx < oo, (2.3)
T o JTn

where the supremum is taken over all vector fietds C1(R”, R") whose components each satisfy
(2.2), and such that | < 1.

If S ¢ T", one saysS is of finite perimeteiin T" if the characteristic function of, g, lies in
BV (T"). Then one defines theerimeterof S as

P(S,T") I=./T IVxsl.



PERIODIC PHASE SEPARATION 375

When we wish to be specific about functions on the torus, it is often convenient to give
coordinates td™ via the cube

0, :=[-1/2,1/2" c R", (2.4)

but note that the spacésl(’ﬂ‘") andBV (T") are not simpIyHl(Q,,) andBV (Q,) respectively.

A setE c T" of finite perimeter is of course only defined up to a set of Lebesgue measure zero.
In order to identify a useful representative for such an equivalence class, we introd utzn ity
of E at a pointx given by the limit

|E N B(x,r)]

2.5
|B(x, 1)l 29)

D(E, x) = lim
r—0
Here B(x, r) denotes thei-dimensional ball centered atof radiusr. One defines theneasure-
theoretic interiorof a setE of finite perimeter as the set of all thosefor which D(E, x) = 1.
Similarly, themeasure-theoretic exterids taken to be the set of all thosdor which D(E, x) = 0.
Then themeasure-theoretic boundanf E, denoted by, E, consists of those for which either
0 < D(E,x) < 1 or the limit in [2.5) fails to exist. Clearlyyyy E C 9E, wheredE denotes the
topological boundary. When necessary, in this paper we will choose the measure-theoretic interior
of E as its representative.
Denoting(n — 1)-dimensional Hausdorff measure B 1, it is well known that

E is of finite perimeter if and only if H" 13y E) < oo
and that
P(E,T") = H" H0u E) = H' ' (3*E),

whered*E is thereduced boundargf E, consisting of all those boundary points®fpossessing a
measure-theoretic normal (cf. |16, Section 4.5]). Furthermore, the rectifiability 6f means that
one has the useful decomposition

o
wmE=]Jr; (2.6)
j=0

whereH"1(Ip) = 0 andr; is the image of a Lipschitz map fgr > 1. As thel; are boundary
components, it can then be shown for the case 2 that, in particular, the’; are given by closed
Lipschitz curves forj > 1 ([18, 4.2.25]).

At times, it will also be useful to us to view a set of finite perimeerc R? as a 2-current of
multiplicity one. Recall that a 2urrentis simply a bounded linear functional acting on 2-forms.
Themassof ak-current defined on a s&2 is given by

M(T) = sup [T (o)l (2.7)
(peD (@2):1¢I<1)

whereD¥ (£2) denotes the set of smooth, compactly suppoktéorms ons2. Theboundaryof an
k-currentT, denoted by T, is the(k — 1)-current defined by the relation

AT (p) = T(dp) forallp € D*1(£2),

wheredg represents the-form obtained by exterior differentiation gf
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For a 1-currentl’, we also wish to recall the notion of the slice of a current by a Lipschitz
function f : 2 — R (cf. [52, p. 155)). IfT is described by a 1-rectifiable sEt a tangent vector
£ : I' - RZ and a multiplicitym : I' — Z, then thesliceof T by f at a value € R, denoted by
(T, f.1), is a O-current defined fal-a.e.r € RL. Letting V! f denote the gradient of relative
tolandl'y = {x € I" : [V f(x)| > 0}, the slice is supported on the countable set of points
f~Y(r) N Iy, carries orientation:1 according to the relatioa(x) = V' f(x)/|V' f(x)|, and
carries multiplicitym | I'".. Of most significance to our purposes is the inequality

/ M(T. f.1))di < sup|V" f(x)|M(T). (2.8)

xel”

3. The connection between (PCH) and (PIP) vid -convergence

We first formulate the two problems. Fere LY(T"), m e (-1, 1), ande > 0, we define the
Cahn—Hilliard energyas

i 2 _1)2 S 2> i 1m0 _
Bow) = /u<4€(u 1) +2|Vu| dv ifu e H(T"), [pnu=m, (3.9)

400 otherwise
By the Periodic Cahn—Hilliard Problenwe mean
(PCH Minimize E. (u) over allu € L*(T").
We also define, forg = 2+/2/3, a limit energy of the form

Eo(u) = coP({x :u(x)=1},T" ifue bj’V(T"), lul =1ae, [p.u=nm, (3.10)
+o00 otherwise,
and introduce the associated sharp interface minimization problem:

(PIPY  Minimize Eo(u) over allu € L*(T").

Itis sometimes more convenient to rephrase the limit problem in terms of sets of finite perimeter.
To a giverug € BV (T", {+1}) with fT,, uop = m, one naturally associates a set of finite perimeter

m+1

A={xeT iupix) =1}, |Al=a:= — (3.11)
Conversely, to a given set of finite perimetérwith |A| = a, one naturally associates) <
BV (T", {£1}) given by
1 ifxeA,
uox) = { 1 ifx e AC (3.12)

Clearly [, uo = m = 2a — 1. Thus (PIP) is equivalent to what is known as theeriodic
Isoperimetric Problem

(PIP  Minimize P(A, T") overA c T" with finite perimetefA| = a.
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We note that through the (weak) compactness and lower semicontinuity properfiégTf)
and BV (T"), global minimizers of both (PCH) and (PIP) are easily obtained via the direct method
in the calculus of variations. Propositipn 3.1 supplies the well known connection between the two
problems vial"-convergence.

PROPOSITION3.1 The sequenck, I'-converges tdg in L1(T") (cf. [7]). That is,

for everyv € LY(T") and every sequende,} converging tov in L*
one has IimgntES(vs) > Eg(v) (3.13)
E—>

and
for everyw e LY(T") there exists a sequenge,} c L(T") such that

w, — win L*and IingEg(u)g) = Eo(w). (3.14)
E—>

Consequently, for any sequenge.;} of minimizers of (PCH), there exists a subsequence (not
relabeled) such that
—up in LT,

Ue;

whereug is a minimizer of (PIP)

Proof. The factthatt, I'-converges t& follows directly from the Modica—Mortola theorem ([36,
37]). Moreover, the usual compactness argument also applies directly to produce a subseguence
converging inL1(T") to a limit ug € BV (T") with |ug| = 1 a.e. andfw uo dx = m. Finally, for
anyw € LY(T") condition ) guarantees the existence of a sequepceonverging tow in
LY(T") such that

lim E., (we;) = Eo(w).

Hence by|[(3.18) we have
Eo(uo) < liminf E¢; (ue;) < liminf E¢; (we;) = Eo(w),

SOug is a minimizer ofEj. O

We also wish to explore the possibility of local minimizers to (PCH) and (PIP) and to investigate
their relationship to each other via-convergence. By ah!-local minimizerof (PCH) we mean an
admissible (finite energy) functian with the property that there existsfa> 0 such that

Ee(ue) < Ec(v) forall admissiblev with 0 < Jlue — vl 1) < 8. (3.15)

Of course, such a functian. will automatically locally minimize in the strongei 1-topology and
will in particular satisfy the Euler—Lagrange equation associated with criticality.

By an L1-local minimizerof (PIPY we mean an admissible (finite energy) functigywith the
property that there existséa> 0 such that

Eo(uo) < Eo(v) for all admissiblev with 0 < [lug — v|l j1n) < 8. (3.16)

In either case, if the inequality for the energies is strict, we use theiselatedZ *-local minimizer
The main result of[[35] asserts that near isolatédlocal minimizers ofEg one can find local
minimizers of E, (the different boundary conditions are irrelevant here). Unfortunately, in light
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of the translation invariance of the periodic isoperimetric problem, the local minimizers we will
consider ar@everisolated. Hence, we must invoke this slight generalization of the result frdm [35].
In what follows, we usel; 1(v, S) to denote the.! distance between a functiane L1(T") and a
sets ¢ LY(T"), i.e.
dLl('U, S) = inf ||U - M“Ll(Tn).
ues

PROPOSITION3.2 Suppose c L1(T") is a set of locally minimizing critical points dfy in the
sense that there exist positive numb&fsinds such that for all: € S one has

Eo(v) > Eo(u) =M whenever 0O<d;i(v,S) <34. (3.17)

Suppose furthermore thatis compact inL1(T"); that is, for every sequenda;} C S suppose
there exists a subsegenigg, } converging inL! to a limitu € S. Then there exists a valug > 0

and, for alle < &g, a family of L1-local minimizers{u,} of E, such that/(u,, S) — 0 ase — 0.

Furthermore, for any sequenee— 0, there exists a subsequerieg} and an element of S such
thatu,, — win L

If the hypothesis of Propositign 3.2 holds, we aali strict L-local minimizer

Proof. This modification of the result from_[35] is fairly well known but for the sake of self-
containment, we sketch its proof here. We begin by fixing any positive nufber § and for
eache > 0 we define:, as any solution to the minimization problem

inf E.(v).
{v:d (v,5) <51}
The existence of such a minimizer follows via the direct method by utilizing standard compactness
and lower semicontinuity properties. Suppose, by way of contradiction, that there exists a
subsequencg,; } and a positive number < 1 such that

d(us;, $) > y.

Invoking the usual compactness property for sequences of functions of uniformly bounded Cahn—
Hilliard energy, we can pass to drt-convergent subsequence (still denoted:py:

u;; — v forsomev e L.

Furthermore, the conditiop < d(u.;, S) < 1 and the compactness §fimply that there exists a
functionw € Swith0 < y < [lv — w1 < 81. Then, invoking[(3.113) and (3.114), we have

Eo(v) < liminf Eq, (ue,) < lim Eq, (wg;) = Eo(w),

contradicting[(3.1]7).

The final claim of this proposition follows readily from the compactness. of a

We conclude this section with a remark about regularity for local minimizers of (RtR$ well
known that any minimizer of (PIP), in fact ary*-local minimizer, must have a regular boundary.
This is stated more precisely in the following result of Gonzalez, Massari, and Tamanini [21]. The
presence of periodic boundary conditions here makes no difference in their proof.
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THEOREM3.3 Letn < 8. If ug is anL-local minimizer of (PIP)with associated set of finite
perimeter, the A is an analytiqn — 1)-dimensional manifold.

A similar result holds in higher space dimension except for a singular set with Hausdorff
dimension at most — 8 (cf. [21]). With the regularity in hand, a classical calculation (see for
examplel[34, 52]) implies that the phase boundary associated with’atocal minimizer of (PIP)
has constant mean curvature—a direct consequence of vanishing first variation.

4. Global minimizers of (PCH) and (PIP)
4.1 Global minimizers in 2-d

The following theorem is surely classical. We present the proof given by Howards, Hutchings and
Morgan in [31].

THEOREM4.1 Letn = 2. The minimizers of (PIP) are either a disc or a strip (i.e. the region
enclosed by two parallel 1-tori). In fact, the minimizer is

e adiscifeitherO<a <1l/mrorl—1/mr <a<l;
e astrip (two parallel 1-d tori) if Ir <a <1—1/7.

Proof. That a minimizer must exist follows by the direct method of the calculus of variations, in
particular the weak compactness property of the sgakeand the weak lower semicontinuity of

the total variation. Consider such a minimizer. By Theofem 3.3, its boundary must be regular, and
hence must be of constant mean curvature. In two dimensions this forces the boundary to consist
of either a (finite) union of circles or of line segments. In the case of circles, there can only be
one; otherwise one could translate one circle towards another, without changing the perimeter or the
enclosed area, until the two circles touch. This would produce a singular minimizer which violates
the regularity. For the case of line segments, it is clear that the optimal situation occurs when the
boundary consists of exactly two parallel line segments. The regimes for the two cases are obtained
by considering the two critical values of when 2t /a/7 = 2 and when 2/(1 —a)/7 = 2. O

We can now argue that far small, the minimizers of (PCH) must exhibit a profile asymptotic to
the solutions of (PIP). To this end, we introduce functieps: T? — RY, uf : T? — Rl and

up - T? — R? taking valuest1 on the set and its complement solving (PIP). (The subsgript
stands for lamellas anB stands for disc.) Specifically, we define

(. y) = +1 f0O<x<@m+1)/dor(3—m)/d<x <1, (4.18)
HEEY T 1 it mt D /A< x < B—m)/4, '
+ )+ i > V(A =m)/2m,
DOV =N i eyl < VT2, (419
= (e y) = +1 if |(x, y)| < /(m+1)/27, (4.20)
R B [(x, )| > /(m +1)/2r. '

Then we can establish
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COROLLARY 4.2 Let{u.} denote any sequence of minimizers of (PCH).
o If2/m —1<m < 1-2/m,then there exists a sequer{eg} of numbers between1/2 and %2
and a sequendg,} with k. € {0, 1} such that
e —> uyp in Ll(’]I‘z)
whereii, (x, y) := us(R* ((x, y) + c¢(1, 0))) and R represents a clockwise rotation by?2.
e If —1 <m < 2/m — 1, then there exists a sequeri¢e., y.)} C T? such that
fie — up in LY(T?)
whereiig (x, ) i=ilg(x — Xg, y — Ye)-
e If1 —2/7 <m < 1, then there exists a sequeri¢e., y.)} ¢ T? such that
il — uf, in LY(T?)
whereii, (x, y) 1= fio(x — x,, y — yL.).
Proof. The three cases are all handled in a similar manner. We will present the second case. The

argument proceeds by contradiction, so we suppose there exists a numbérand a sequence
{e;} — O such that

inf ||ugj (=, y/)) - uBHLl(TZ) = 4. (4.21)
(x',y)€T?

In light of the compactness result of Proposition 3.1 there is a further subsequence (which we still
denote by{s;}) and anL!-function v minimizing Eo such thatu,, — v in LY(T?). Form e
(—1, 2/ — 1), Theorenj 4]l says thatmust take the form

+1 if [(x,y) — (x0, yo)| </ (m +1)/2m,
=1 if |(x,y) — (x0, y0)| > /(m +1)/2m,

for some(xo, yo) € T2. But then since(x, y) = up(x — xo, y — yo), we have

vx, y) =

llue; (- + (x0, y0)) — uplipacrzy = O,

contradicting[(4.21). O

4.2 Global minimizers in 3-d

Surprisingly enough, there are few rigorous results yielding the solution to the three-dimensional
periodic isoperimetric problem. Indeed, we know of only the following two results.

THEOREM 4.3 (Hadwigerl[2/7]) lfa = 1/2 then any minimizer of (PIP) must be either a horizontal
or vertical strip, i.e. two parallel 2-tori.

THEOREM4.4 (see, for example, Theorem 18 and the comments which follow inN_[Rbs [49]) For
the valuez sufficiently small, any minimizer of (PIP) must be a sphere (ball).

A full result characterizing all minimizers of (PIP) for differemtremains an open problem in
classical geometry. For our cubic flat torli3, the following conjecture is well accepted and well
tested (cf.[[29, 49]):
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CONJECTURE4.5 If n = 3, minimizers of (PIP) are—in terms of the phase boundaries—either a
sphere, (quotient of) a cylinder, or two parallel flat tori (i.e. lamellas).

For more general flat 3-tori, the conjecture is less clear and experiments using Brakke’s Surface
Evolver [8] suggest that there may well exist nonstandard global minimizers (A. Ros, personal
correspondence, and [29]). We should mention that Ritore has shown that for any rectangular torus
in 3-d and for any fixed volume fraction, the global minimizer must be one of five candidates
including the three candidates listed above and two other CMC surfaces, a Lawson surface and
a Schwarz surface (see [49, Section 1.5]).

Combining Theorends 4.3 afd 4.4 with Proposifior} 3.1 we have the following results for the 3-d
(PCH). For(x, y, z) € Q3, let

(x ) = +1 if-1/2<x<-1/4orl/4 <x <1/2,
Urz\x,y,z) .= 1 i _1/4 L 1/4,
wtx, y.z) = +1 if |(x, ¥, 2] = @/7(L—m)Y3/2,
s\, y,2) .= -1 if [(x,y,2)| < (3/7-[(1 _ m))l/3/2’
.z e | 7L G2 > G/ m) T2
ug(x,y,z) = +1 if|(x,y,2)| < (3/7r(1+m))1/3/2,

COROLLARY 4.6 Let{u.} denote any sequence of minimizers of (PCH).

e If m = 0 (@ = 1/2), then there exists a sequericg} of numbers betweer1/2 and 2 and a
sequencé¢Rr,} of rotations such that

iie — up, in LY(T)

whereii.(x, y,z) := us (Re ((x, y,2) + c:(1, 0,0))) and R, is either the identity, a rotation of
Q3 by /2 with respect to the-axis, or a rotation ofD3 by 7 /2 with respect to the-axis.

e If m is sufficiently close to 1 (hence is sufficiently close to 1) then there exists a sequence
{(xe, yer ze)} € T2 such that

it — uf in LYT?)

Whereﬁé‘(x’ Yy, Z) = ﬁé‘(x —Xgy Y — Ve, T — Zg).
o If m is sufficiently close to-1 (henceu is sufficiently close to 0), then there exists a sequence
{(x, ¥}, 2z,)} C T3 such that

fie —ug in LYT?)
whereiig (x, y, 2) i= dle(Xx — X, ¥y = Vg, 2 — 2p)-

Proof. The proof is analogous to the proof of Corollary]4.2. |

5. Local minimizers of (PCH) and (PIP)

We have already defined the notion of ah-local minimizer. A notion closely related to local
minimality is stability, i.e. positivity of the second variation. Since for (PIP) this is usually phrased
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in terms of the phase boundary, we define the notion sthhle surfaceLetrn = 2 or 3. For any
smooth €2) (n — 1)-surfaceX in T”, we let By denote the second fundamental form so that

n—1
IBs1? =" k2, wherexs,...,«, 1 are the principal curvatures.
i=1

Given a setd c T" with smooth boundary’, we sayX is astable surfacéf it minimizes the area
up to second order under the volume constrainéaning that

(i) X has constant mean curvature (CMC),
(i) Q(f, f) = 0forany functionf in the Sobolev spacH(X) satisfying . f dH"~1 = 0. Here
Q denotes the quadratic form

of. f) = /E (Vs f1? = [|Bx2f2) dHL, (5.22)

andVy f denotes the gradient gf relative toX.

Conditions (i) and (ii) above are direct consequences of vanishing first and nonnegative second
variations respectively (cfl_[34,52]). In light of the regularity theory laid out in Thedrefn 3.3, it
follows from a direct calculation of the second variation that local minimizers of (PIP) have stable
boundaries.

The natural question arises as to whether positive second variation (stability) implies local
minimality with respect to small perturbations in some topology (€9.C1, ¢, or L1). This
question has been well explored in the context of minimal surfaces (see for exaniple [41]). In the
present context of the volume constraint, it has been addressed by Grosse-Brauc¢krnann [22] who,
building on work of White [[59], shows local minimality with respect @-close perturbations.

Here we are concerned with'-perturbations since it is through this topology that we can make a
connection with the diffuse interface problem (cf. Pfop] 3.2).

In three dimensions, there exist a remarkable collection of nonstandard CMC surfaces which
have been shown to be stable on various 3-tori. Such surfaces include Schwarz’ P and D surfaces
and Schoen’s gyroid surface (df. [23+25] 33,/49-51]). Though exhaustive work has yet to be done
for stable CMC surfaces, it is known that such surfaces must have genus at most 4! (cfl [48, 49]).
These surfaces and related questions on stability have also appeared in the physics literature (see
for example [[1/ 4| 5, 13-15] and the references therein). Determining whether or not there exist
corresponding diffuse-interface local minimizers to the Cahn—Hilliard problem rests on showing, in
dimension three, that stable surfaces (or more precisely strictly stable with an appropriate positive
lower bound on the second variation) correspond to stritelocal minimizers of (PIP) in the sense
of Propositiorj 3.2. We believe they do but are not yet able to prove this.

In two dimensions, the situation is considerably simplified by the fact that the CMC condition
reduces the consideration of eligible phase boundaries to either circles or lines. In the following two
propositions we argue that a single horizontal strip and a single disc always locally minimize (PIP)
in a sense strong enough to allow application of Propoditign 3.2.

PROPOSITION5.1 LetAg c T2 denote the strip whose restriction to the unit cybgoccupies
the set{(x, y) : —a/2 < y < a/2} for somea € (0, 1). ThenAg is a local minimizer of (PIP) in
the sense that for some positiv®ne has the condition

P (Ao, T?) < P(A, T?) (5.23)
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for all sets of finite perimeted ¢ T? satisfying
|[Ag A Al <8 and |A| = |Ag|l =a. (5.24)

Furthermore, equality holds i@]ZS) only whardiffers from Ag by a translation.

Equivalently, ifug : T> — R is given by
)1 if (x,y) € Ao,
uolx, y) = { =1 if (x,y) € A, (5.25)
andsS; ¢ L1(T?) is given by
S1={uo(x,y—c):ce[-1/2,1/2]}, (5.26)

then for allu € S; one has

Eo(v) > Eo(u) =2 provided V= / uo and O<d;1(v, S1) <.
T2 T2

Proof. Let A be a set of finite perimeter satisfyirjg (524) andlet= min{a/4,1/2(1 — a/2)}.
We will first argue that in a neighborhood of the top of the sttip the boundary oA must project
almost fully onto the boundary ofg. To this end, we introduce the setc (—1/2, 1/2) given by

S:={xe(-1/2,1/2) : (x,y) € Iy A forsomey € (a/2— r,a/2+ A)}.

Now for everyx ¢ S note that the vertical segmefit} x (a/2 — A, a/2 + 1) either lies entirely
within A or entirely outside ofd. In either case, half of the line segment lies within the symmetric
differenceAg A A. Consequently we have

IAHM(-1/2,1/2)\ ) < |Ao & A] < 8. (5.27)
At this point we choosé = 12/8 to conclude that
HYS) > 1— 25/ =1—A/4 (5.28)

From here, our strategy will be to show that in the{set- 0}, the setA has at least perimeter 1.
Combining this with a similar argument {ry < 0} will lead to the desired conclusion that the strip
has least perimeter among nearby competitors

To pursue this, we quantify the number of intersections betwgehand horizontal lines above
y =1/2 — ) and belowy = a/2 — A. We introduce the s&t’ € (0, 1/2) given by

S ={ye @ MNU@R/2—-1,1/2) : (x,y) € 0y A for somex € (—1/2,1/2)},
and distinguish two cases: either
HY(S) = 1/2 (5.29)

or
HY(S) < 1/2. (5.30)

First suppose that (5.29) occurs. Then combiring {5.28)[and| (5.29) we sé¢'taatA N {y > 0})
> 141/4 > 1. Assuming|[(5.30) holds, consider the collection of all cuie the decomposition
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) ofdy A suchthatx, y) € I'j forsomex € S. Using the definition of” it must then be the case
that anyI; in this set is a closed curve df that avoids the sets < 1/2} and{y > 1/2 — 1/2}.
If I'; is homotopically trivial then its length must be at least double its projection {onte a/2}.
Furthermore, if all curved; in this collection are homotopically trivial, then by this reasoning
condition [5.28) would imply that the total length of these curves would exceedi22 > 1.
Finally, if at least onel’; in this collection fails to be homotopically trivial, then it would have
to span the unit squar@», from left to right, making its total length greater than 1 (unless it was
parallel toy = a/2, in which case its length would equal 1).

The upshot of pursuing these two cases is that necessarily the total perimdten tiie set
{y > 0} exceeds 1 unless, A consists of a horizontal segment, making its length exactly 1. Since
the same line of reasoning holds fiy; A N {y < 0}, we conclude thaP (A, T?) > P(Ag, T?) = 2
unlessA is a translate ofig. O

COROLLARY 5.2 There exists a valug > 0 and a sequende.} of local minimizers ofE, such
thatd;1(u., S1) — 0 ase — 0, where the sef; is given by [5.2B). Furthermore, for any sequence
{e;} — 0, there exists a subsequerieg} and an element of S; such tha‘ugjk — uin L.

Proof. The corollary follows immediately from Propositigns 3.2 5.1. O

REMARK 5.3 The proof ofL1-local minimality of a single horizontal, or for that matter, vertical

strip given in Propositiop 5|1 can be immediately adapted to the case where thecsetsists of a

finite number of horizontal or vertical strips. This is due to the fact that the argument is entirely local.
More precisely, one could simply pick any particular componem®and then select the tolerance

3 to be sufficiently small in terms of the distance from this one strip to the next nearest strip and
argue along the lines just presented. However, we hasten to add that through such an argument we
would only conclude that this union of strip satisfies the condition§ (523)—(5124). For multi-
component sets of strips, it is no longer the case that the only nearby competitors with the same
perimeter are translates af as it is now possible to shrink one strip while expanding another so as

to preserve the enclosed area. This extra freedom precludes the formation of a compact set analogous
to the set of translate$; given by [5.26) and so one cannot apply Propos[tioh 3.2 to obtain diffuse
counterparts in the Cahn—Hilliard setting to arbitrary collections of horizontal or vertical strips. We
presume that this is not simply an indication of the failure of the method but that indeed no such
local minimizers exist to Cahn—Hilliard.

REMARK 5.4 Within the class of critical points for the 2-d periodic isoperimetric problem having
zero curvature, the only other case to consider would bessetsI'? having boundary consisting of

a finite union of parallel but not necessarily vertical or horizontal line segments. This is because if
the boundary segments are not all parallel, singularities must be present given the periodicity of the
torus. Even for competitors with parallel boundary segments, the slopes would have to be rational
for such a configuration to be smooth and have finitely many components. Since its boundary has
curvature identically zero, it is again immediately seen to be stable (cf. (5.22)). One could then also
argue as in Proposition 5.1 that such a collection of strips will b&&focal minimizer of (PIP).

The extra step here not present in the case of horizontal or vertical strips, however, is the observation
that the onlyL! close competitors will be collections of parallel strips with boundary slopes equal to
that of the collection in question. Otherwise, inevitably such a competitor would possess a different
number of components, making it far away firt. We also mention that for slanted strips with
multiple components, we cannot apply Proposition 3.2 (see Remark 5.3 above).

Next we show the desired local minimality property holds for any dis@@n
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PROPOSITION5.5 ForanyR < 1, the discB(0, R) is a local minimizer of (PIP) iff2 in the sense
that for some positivé one has the condition

P(B(O, R), T?) < P(A, T? (5.31)
for all sets of finite perimeted ¢ T? satisfying
|B(O,R) A Al <8 and |A| =|B(0, R)| = n R>. (5.32)

Furthermore, equality holds i@m) only whardiffers from B(0, R) by a translation.
Equivalently, ifug : T?> — Rl is given by

1 if (x,y) € B(O, R),
uo(x, y) = { -1 if (x,y) € B(O, R),

andS, c LY(T?) is given by
So = {uo(x —c1,y —¢2) 1 c1,c2 € [-1/2,1/2]}, (5.33)

then for allu € So one has
Eo(v) > Eo(u) =2 provided v =/ uo and O<d;i(v, S2) <§.
T? T2

Proof. Let A be a set of finite perimeter satisfyirjg (5.32). Our first goal is to argue that necessarily,
A has perimeter nearly72R in the thin annulusd, = {#,0) : 1 —a)R <r < 1+ a)R,0 <
0 < 2r}, providede ands are chosen sufficiently small. To this end, we introduce the st

S:={0€[0,27):(r,0) € dyA forsomer € (1 — )R, (L + @)R)}.

Then for anyy ¢ S, the entire segment of poings, ) with » € ((1 — @)R, (1 + «)R) either lies
entirely in A or entirely in its complement. Hence half of such a segment lig&(® R) A A and

from (5.32) we find
aRHY([0,27) — S) < |B(O, R) A A| < 8.

Consequently,

HYS) > 27 — L (5.34)
oR

Inequality [5.3%) says that id,, 9, A projects almost fully ontd B(0, R).

With (5.34) in hand, it is intuitively clear thaty; A must have nearly2R in perimeter when
restricted to the annulud,,. This can be established rigorously by, for example, viewiras a 2-
current and then viewing@y A restricted to the annulud, as a 1-current, say. Inequality [5.34)
says thaby, A intersects most level sets of the functif(r, 0) := 6 within the thin annulus. Phrased
in terms of currents, this means that the mass of the sliGelf f, denoted byM ((T, f, 9)), is at
least 1 ford € S. Then we invoke the inequalitm.S), noting that sup. 4, IV f| = 1/(1 — @) R,
along with [5.34) to conclude that

HYOpuANAy) =M(T) > 27rR(1—a) — g (5.35)
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Next we argue that the perimeter afwill exceed 2Zr R if 957 A meets a substantial fraction of
the circlesa B(0, r) for r > (1 + «)R. For example, suppose to the contrary, that for say half of
ther-values in the intervall + @) R < r < 1, one has the conditiody; A N dB(0, r) # @. Then
necessarily

HYOMAN{(r0) : A+ R <r <1) > 11— L+ a)R). (5.36)

(This estimate can also be established by slices as was done in obthinirjg (5.35), though one would
use circular slices wittf above replaced by(r, 0) = r.) Let us now make the choices

1 \(1-R .

There is of course flexibility in selecting ands, but with these values, one can sym (5.35) and
(5.38) to conclude after a little algebra that

P(A, T > HX Oy AN Ay) + HXOuAN{(0) : A+ a)R <r < 1})
> 27 R + %(1— R) > P(B(O, R), T?).

We are left to examine the situation wherg A fails to intersect at least half of the circles
of radiusr € ((1 + a)R,1). In this case, there must exist a raditgswith (1 + )R < rg <
1- %[1 — (1+ o)R] such thatdy; A N dB(0, ro) = ¥. Furthermore, one must have the condition
ANadB(0, rg) = ¥ as well. Otherwisej,s A would have to intersect most rays, 0) 1 ro < r < 1}
in order to keep the measure of the symmetric differeB¢& R) A A small and this would in turn
drive the perimeter oft above 2r R when combined with (5.35).

Examining the conditiongt N 9B(0, rg) = dyA N dB(0, rg) = @, we can now consider the
components ofA within and outside of the circlé B(0, rp) separately. If there are no components
of A outside this circle, then we are reduced to the standard isoperimetric inequality on the plane
and so the only competitof matching the perimeter @ (0, R) would be a nearby translate of the
ball. If, on the other hand4 has components outside of the cir8lB(0, ro), then [5.3R) forces the
measure oft N (T2\ B(0, rg)) to be small. Again, in this case one knows a better competitor outside
of B(0, rp) would be a ball of measute N (T2 \ B(0, )| SO we can lower perimeter by replacing
A outside ofB(0, rg) with such a small ball. Likewise, since the componentd @re separated by
the circled B(0, ro) one can improve the competitar inside the ball by replacing it with a ball,
say centered at the origin, whose area equals B(0, rp)|. But clearly the single balB(0, R) has
less perimeter than the total perimeter of two balls whose total measure is RfsaVe have now
exhausted all possibilities and the proof is complete. O

COROLLARY 5.6 There exists a valug > 0 and a sequenda.} of local minimizers ofE, such
thatd;1(u., S2) — 0 ase — 0, where the sef; is given by [5.3B). Furthermore, for any sequence
{e;} — 0, there exists a subsequerieg} and an element of S, such tha‘ugjk — uin LL.

Proof. The corollary follows immediately from Propositigns|3.2 &nd 5.5. O

REMARK 5.7 Besides collections of strips, a case that has been completely exhausted through
Propositiorf 5.J1 and Remarks p.3 5.4, the only other critical points of the 2-d (PIP) we have not
yet discussed are sets consisting of two or more congruent discs. It is elementary to check that these
critical points are never stable, and therefore certainly not local minimizers. For example, one can
choosef in the second variatiof (5.22) to be 1 on one boundary component (circle} hod any
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other to yield a negative second variation. In fact, this type of reasoning goes to show that a stable
phase boundary must be connected unless its curvature is everywhere zero in any dimension (see
Remark 7.2).

To sum up, through Propositions 5.1, 5.5 and Remarks 5.3, 5.4 and 5.7, we have found all stable
critical points of (PIP) in 2-d. They are all found to Bé-local minimizers in the sense of (3.16).
Except for the case of more multi-component strips, these local minimizers are in fact strict in the
sense of Proposition 3.2 , thus leading to diffuse analogues.

As we have indicated, the situation in 3-d is far more complicated. The case of 2-d multi-
component strips suggests that in 3-d, stability alone will again not be sufficient to guarantee a
strict L-local minimizer in the sense of Proposition 3.2. It is therefore quite likely that we will
need some notion of strict stability, e.g. a second variation with a positive lower bound for non-
translational variations.

6. Small nonlocal perturbations

Following our discussions in Section 1, we formally introduce the nonlocal analogues of (PCH) and
(PIP). Here, we will simply note the relationships between the local and nonlocal problems when
the relevant parameters are small.

Fore > 0 andm € (-1, 1), we define

1(1—u?)? .
/ (§|Vu|2+—%+%wv|2>dx if u e HL(T") and [, u = m,
n €

ey = (6.37)

+o00 otherwise

wherecg is a positive constant. Heleis related ta: andm via
—Av=u—m onT", / v(x)dx = 0.

Note that the third term i7) represents a compact perturbation with respect to theasic
(or LY) topology. Hence it easily follows (cf._[43]) from the definition bf-convergence (cf[[7])
that thel"-limit is

14 2 :
co [Vu| + =|Vu| )dx ifu e BV(T"), ul=1a.e.,[ru=m,
oy = /< 2 Jr (6.38)

400 otherwise
Thenonlocal Cahn—Hilliardandisoperimetric problemare defined as follows:

(NLCH) Minimize &, (u) over allu € L}(T"),
(NLIP) Minimize &, (u) over allu € LY(T").

The coefficientg plays no role and in what follows we s&t = 1.

Following the discussion of the introduction (see the references therein)] (6.37) and (6.38)
can be viewed as models for periodic phase separation induced by long and short-range energetic
competitions. As with (PCH) and (PIP), we have chosen to adopt periodic boundary conditions, and
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hence any minimizer can still be regarded as periodic with period one. However, in this instance,
the choice is simply for convenience. As regap#siodicity, what is significant here is that for

y sufficiently large, a smaller scale is enforced as a weak constraint via interactions between
the perimeter and the nonlocal terms. One conjectures (see the discussion in the introduction)
that minimizers are nearly periodic, and it is this inherer@soscopic peridocitwhich makes

this functional of interest. Here we are interested in the regime of smadind the connection

with (PCH) and (PIP)—this is naturally facilitated by the universal adoption of periodic boundary
conditions.

For smally, one would expect the effect of the nonlocal term to be minimal. In fact, this has
been confirmed by Ren and Wei (see for examplé[[45-47]), where in 24 $onall, it has been
shown that some simple solutions to (PCH) and (PIP) are still stable (for example, a circular disc).
In the same spirit, we note that one can easily obtain the following asymptotic result.

PROPOSITIONG6.1 Letn =2,3and—1 <m < 1. Letn > 0. There existg > 0 andyp > 0 such
that for alle < g andy < yp, if uc , is a minimizer of (NLCH) then

inf flue, (- —y) —u”ll 12y <0, (6.39)
yeTn

whereu™* is a minimizer of (PIP).
An analogous result to Propositipn 5.1 also holdsifbiocal minimizers.

Proof. Suppose[(6.39) is false. Then there exigt- 0 and sequences;}, {yx} tending to 0 such
that

Nt i =) = lgaeny =m0 Vi k. (6.40)
)7

It is trivial to verify that
&,y I'-converges tdpo asy — 0.

Note that£o o is simply Eg as defined in (3.10). Hence, for every- 0, there existy (1) such that
forall y < y () andv, minimizing &y, , one has

|nf ”"Uy(' — y) — u*”Ll(Tl‘l) S n. (641)
}'ET"

Now fix k such thaty < y(no/2). Since for anyy,
&,y I'-convergestdp, ase — 0,
there existj andv; minimizing & ,, such that
lue;,y; — vkllLarey < m0/2. (6.42)

With these choices df andj, (6.41) and[(6.42) contradidt (6140). O

Naturally, the interesting regimes will be for large and it will be here that a mesoscopic
scale for the periodicity (alluded to above and in the introduction) is weakly enforced by energetic
competitions. This regime is the focus bf [2] andl[12].
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7. Remarks
7.1 Open problems

Returning to (PCH) and (PIP), we summarize some important remaining questions mentioned in
this article.

(i) Conjecturd 46 remains a basic assertion regarding the classification of global minimizers of
(PIP) according to the volume constraint for the cubic flat 3-torus. For other flat 3-tori, one
would like to have similar characterizations.

(i) If one could establish a general principle stating that sets possessing (strictly) stable CMC
boundaries must necessarily locally minimize (PIP) in fiesense of Propositi.2 then it
would open the door to a rich new collection of local minimizers of the 3-d (PCH). Along with
this, we would like a better understanding of which stable surfaces are isolated in the sense
of Propositior] 3.p. Perhaps a natural approach to this problem would becalibeation-like
method whereby one foliates a neighborhood of a stable surface with CMC surfaces. Needless
to say, one would benefit from a more exhaustive study of triply periodic stable surfaces,
especially within the context of notions of strict stability.

7.2 Connectivity of the phase boundary

Returning to the model problem of microphase separation of diblock copolymers, many structures
have been observed which have discontinuous phase boundaries. An interesting case in point is
the double gyroid (cf.[]6._19, 28]). A similar structure with a diffuse interface has also been
observed in numerical simulations for minimizers of (NLCH) (€f.1[55]). It is worth noting that
these structures are not stable solutions of (PIP). This follows immediately from consideration of
the second variation. Indeed, as long|d#s || # 0, any multi-component surfacé = X U X»

would be unstable, as can be seen by substituting

Fe 1 onxy,
| -H Y () /HH(Z) on X,

into (5.22). One might also ask whether local minimizers of (PCH) can have multi-component
transition layers where say. ~ 0. For the case of Neumann boundary conditions in convex
domains, the answer was shown to be nd_if [54] and we suspect the same is true in this periodic
setting but we have not checked the detalils.

7.3 Varifolds and convergence of the phase boundaries

We are grateful to Y. Tonegawa for commenting that in the spirit of [32, 57, 58], one should be able
to use the notion of aassociated varifoldcf. [52]) to prove a stronger result on the convergence

of phase boundaries. Loosely speaking, a varifold associated to a minimizing segueh@CH)

is a weighted average of the level setsupf concentrating around the transition layer. There are
many advantages to this type of convergence, for example it yields information on the distribution
of energy as well as geometric and analytic information about the transition layer (5gel[32, 57, 58]
for more details).
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