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Optimal transportation networks as flat chains

EMANUELE PAOLINI †

Dipartimento di Matematica “U. Dini”, Universit̀a di Firenze,
viale Morgagni 67/A, 50134 Firenze, Italy

AND

EUGENE STEPANOV‡

Dipartimento di Matematica “L. Tonelli”, Universit̀a di Pisa,
via Buonarroti 2, 56127 Pisa, Italy

[Received 30 May 2005 and in revised form 24 June 2006]

We provide a model of optimization of transportation networks (e.g. urban traffic lines, subway
or railway networks) in a geographical area (e.g. a city) with given density of population and
that of services and/or workplaces, the latter being the destinations of everyday movements of the
former. The model is formulated in terms of the Federer–Fleming theory of currents, and allows us
to get both the position and the necessary capacity of the optimal network. Existence and some
qualitative properties of solutions to the relevant optimization problem are studied. Also, in an
important particular case it is shown that the model proposed is equivalent to another known model
of optimization of a transportation network, the latter not using the language of currents.

1. Introduction

Let ϕ+, ϕ− stand for finite Borel measures with compact support inRn and of equal total mass
ϕ+(Rn) = ϕ−(Rn), the former representing the density of population, the latter the density of
workplaces or services in some geographical area (e.g. a city). The aim of this paper is to provide
a reasonable model of choosing a “transportation network” (e.g. the set of subway, or, generally
speaking, urban traffic lines) in a city characterized by the distributionsϕ±. The network to be
chosen has to facilitate the transportation of the population to the services. The model we consider
is based primarily on the Monge–Kantorovich theory of optimal mass transport, but is expressed in
terms of the Federer–Fleming theory of currents. Apart from the fact that the language of currents,
as we will show later, is extremely natural for such urban planning problems, it also allows one to
formulate the models which take into consideration the degree to which the pattern of behaviour
of the population is “individualistic”. Such models allow one as well to find naturally not only the
position of the network to be constructed, but also the network capacity which is intrinsic in the
model. Below we discuss in more detail the formulations of the models studied in this paper.
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1.1 Transport problems

The classical Monge–Kantorovich optimal transportation problem consists in finding the “optimal”
way of transportingϕ+ to ϕ−. One of the many equivalent formulations of the problem reads as
follows [8, 1]: find a finite Borel measureµopt (called a transport density) and a Borel measurable
unit vectorfieldνopt in Rn (called a field of transportation directions) which minimizes the total mass
µ(Rn) among all couples(µ, ν) as above satisfying the Monge–Kantorovich transport equation

divµν = ϕ+
− ϕ−

in the sense of distributions.
One might easily reformulate this problem using the language of the Federer–Fleming theory

of currents. In this case we identifyϕ± with zero-dimensional flat chains. The corresponding
formulation would read:find a flat chainTopt minimizing the total massM(T ) among all one-
dimensional real flat chainsT satisfying

∂T = ϕ+
− ϕ−. (1)

Clearly, once one findsTopt = τTopt ∧ µTopt, i.e. τTopt is the orientation ofTopt while µTopt is
the underlying measure, one getsµopt = µTopt and νopt = τTopt, and, vice versa, if one knows
(µopt, νopt), then one getsTopt = νopt ∧ µopt.
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FIG. 1. Solutions to the Monge–Kantorovich transport problem withϕ+ := δx1 + δx2 andϕ− := 2δy in the case (a)α = 1
and (b)α < 1.

The above Monge–Kantorovich problem formulated in terms of currents admits a far reaching
generalization in which one minimizes a genericα-massMα (for some givenα ∈ [0,1]) of the
currentT instead ofM. The general formulation reads as follows:find a flat chainTopt minimizing
theα-massMα(T ) among all one-dimensional real flat chainsT of finite mass satisfying(1). The
background idea of this generalization is given by the following example. Letϕ+ := δx1 + δx2 be
the sum of two Dirac masses andϕ− := 2δy be just one Dirac mass where the pointsx1, x2 andy
are positioned as in Figure 1. Then the solution of the classical problem (i.e. withα = 1) is given
by the one-dimensional real polyhedral chain in Figure 1(a), i.e. the transportation occurs along
the segments connecting the source pointsx1 andx2 with the destinationy. However, the solution
for α < 1 looks as in Figure 1(b). In other words, the role of the parameterα is to make it more
convenient for people leaving the source points to make together part of their trip to the destination
instead of moving “individually”. If one interprets the solutionTopt as an optimal transportation
network which provides the movement ofϕ+ to ϕ−, then clearly it contains information on both the
directions of the movement and on the capacity of the network at each point.
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In discrete settings such models were introduced and studied for communication networks
in [14], for pipelines in [6] and for drainage networks in [15]. They are quite natural in fluid
mechanics (and therefore also in the traffic flow models based on it) when modeling the flow of
liquids in tubes subject to Poiseuille’s law which implies the increase of resistance as the tube
becomes thinner [11, 16, 5, 4]. In continuous settings such models were introduced in [23] and in a
different though equivalent formulation in [16].

1.2 Optimal transportation networks

We now propose a more general model for choosing the optimal transportation network. In fact,
suppose that one has to provide a set of fast transportation routes (i.e. a subway and/or a set of
urban transportation lines) in a given city. We henceforth call such routes a transportation network.
The flow of people moving along these routes will be modelled by a one-dimensional real flat
chainS, while the flow of people moving without the use of those routes will be modelled by a one-
dimensional real flat chainT . It is reasonable to suppose that the cost of using the transportation
network (for example the time spent for the travel) is proportional toMβ(S) with coefficientB > 0
and with some givenβ ∈ [0,1], while the cost of movement of the population without using the
network is proportional toMα(T ) with coefficientA > 0 and with some givenα ∈ [0,1]. Then the
number

W(T, S) := AMα(T )+ BMβ(S)

represents the overall cost of everyday movement of the population. Clearly, the parametersα and
β model the degree to which the behaviour of the population is “individualistic” (i.e. when both are
equal to one, one may assume that the behaviour is completely individualistic, while the smaller
they are, the more convenient it is for people to make part of their itinerary together). It is further
reasonable to assume that the cost of construction of the transportation network depends only on
Mδ(S) (in simplest applications one would even haveδ = 0, i.e. the cost of construction depends
only on the length of the network) according to some given nondecreasing functionH : R+

→ R+.
Therefore, the number

F(T , S) := W(T, S)+H(Mδ(S)) (2)

represents the total expenses of everyday movement of the population together with the cost of
building the transportation network. One also assumes that the total flow of the populationT + S

transportsϕ+ to ϕ−, that is,
∂(T + S) = ϕ+

− ϕ−. (3)

The following quite natural minimization problem describes the optimal choice of the transportation
network.

PROBLEM 1 Find a couple(Topt, Sopt) of one-dimensional real flat chains minimizingF among all
couples(T , S) of real one-dimensional flat chains of finite mass, satisfying (3).

Note that in the particular caseB > A Problem 1 reduces to the version of the Monge–
Kantorovich problem studied in [23] and mentioned in Subsection 1.1. Some qualitative properties
of particular solutions to such a transportation problem (namely those which can be obtained as
limits of solutions to appropriate approximating discrete problems) have been studied in [25, 24].

In this paper we study the existence (Theorem 8.1) as well as qualitative properties of solutions
of Problem 1 like acyclicity (Theorem 10.1), rectifiability (Theorem 10.2) and properties of the
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support (Theorem 10.4). In particular, we provide conditions under which the relevant solutions are
rectifiable and have some subtler regularity properties, namely, when the currentSopt representing
the transportation network to be constructed may be represented as a rectifiable current concentrated
on a closed set (which gives the position of the optimal network) and with an u.s.c. density
(representing network capacity) strictly greater than some nonnegative threshold (Theorem 10.7).

As an illustration of the results obtained, we summarize in the theorem below the assertions
regarding Problem 1 under particular, though rather general conditions on problem data, which we
consider to be most interesting for applications.

THEOREM 1.1 LetA > 0, α ∈ [0,1), B > 0, H : [0,+∞) → [0,+∞) strictly increasing,
strictly concave and unbounded (i.e.H(l) → +∞ as l → +∞), δ ∈ [0, α). Let alsoβ ∈ [0, α]
with A > B if β = α. Finally, supposeϕ± are finite positive Borel measures with compact support
in Rn and such thatϕ+(Rn) = ϕ−(Rn). Then Problem 1 admits a solution, i.e. there exists a pair
(Topt, Sopt) of real one-dimensional flat chains which minimizes the functional

F(T , S) = AMα(T )+ BMβ(S)+H(Mδ(S))

among all pairs(T , S) of flat chains with finite mass and such that∂(T + S) = ϕ+
−ϕ−. Moreover

every such optimal pair(Topt, Sopt) enjoys the following properties:

(i) Sopt is a rectifiable current representable asSopt = θSopt[[Σopt]], where Σopt is a
compact and countably(H1,1)-rectifiable set, and the densityθSopt(x) is u.s.c. and satisfies
infx∈Σopt θSopt(x) = θ0 > 0.

(ii) Topt is a rectifiable current disjoint fromSopt in the sense that the measuresµTopt andµSopt are
mutually singular. Moreover supx∈Rn θTopt(x) 6 θ0, whereθTopt is the density ofTopt.

(iii) Topt + Sopt is acyclic.

Note that some of the above results are quite natural. In fact, consider for simplicity the case
whenH(l) = Cl for some constantC > 0. Then it is easy to observe that Problem 1 reduces to the
version of the Monge–Kantorovich problem from Subsection 1.1, but with the massMg instead of
Mα, where

g(t) := Atα ∧ (Btβ + Ctδ).

In fact, ifRopt is a flat chain solving this problem, then it is rectifiable due to the general rectifiability
theorem from [22], henceRopt = θ [[Σ ]] for some countably(H1,1)-rectifiable setΣ , and therefore

Mg(Ropt) = A

∫
{x∈Σ : θ(x)<d}

θα dH1
+ B

∫
{x∈Σ : θ(x)>d}

θβ dH1
+ C

∫
{x∈Σ : θ(x)>d}

θ δ dH1

= AMα(T )+ BMβ(S)+H(Mδ(S)) = F(T , S), (4)

whered > 0 is the unique number such thatAdα = Bdβ + Cdδ, and

T := Roptx{x ∈ Σ : θ(x) < d}, S := Roptx{x ∈ Σ : θ(x) > d}.

Conversely, if a pair(T , S) “almost” solves Problem 1 (in the sense thatF(T , S) is close to the
infimum ofF on the class of admissible pairs of flat chains), then one can show that up to decreasing
the functionalF even more, one may assume bothT andS rectifiable, while denotingR := T + S,
one hasR = θ [[Σ ]] for some countably(H1,1)-rectifiable setΣ , and

T = Rx{x ∈ Σ : θ(x) < d}, S = Rx{x ∈ Σ : θ(x) > d}
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(of course, with technical details omitted for the moment), and hence

Mg(R) = F(T , S).

Thus once the existence of a minimizerRopt for Mg on the class of real one-dimensional flat chains
R of finite mass satisfying∂R = ϕ+

− ϕ− is established (which can be done, for instance, using
the machinery developed in [23] forMα instead ofMg), we get the existence of a solution(T , S)
to Problem 1 given by (4). The thresholdθ0 from Theorem 1.1 is then given byθ0 := d. Of course,
the qualitative properties of the solution (e.g. thatS may be assumed to be concentrated on a closed
set and have an u.s.c. density) are slightly more delicate even in this simple case.

We also show that in the particular case whenα = β = 1 andδ = 0 Problem 1 is naturally
equivalent to a particular case of the problem studied in [9] of optimizing a transportation network
under the condition that the prices per unit distance of travelling with and without the help of the
transportation network are constant.

The background idea we use in most of the results is the representation of normal one-
dimensional currents through measures over the appropriately metrized set of Lipschitz-continuous
paths inRn (further calledtransports). The idea of using such a representation when dealing
with one-dimensional currents goes back to [19], although in a different context such measures
were already used in [7]. In the context of transportation and urban problems such measures were
employed in [10, 9] and, implicitly, also in [16, 5]. In fact, the description of mass transportation
through transports happens to be more precise than through currents.

2. Notation and preliminaries

2.1 Measures

Unless otherwise explicitly stated, all the measures we will be dealing with are nonnegative Borel
measures onRn. We denote byφ∧ψ the maximum nonnegative Borel measureµ satisfyingµ(e) 6
ψ(e)∧φ(e) for all Borele ⊂ Rn. If ϕ is a signed measure, we denote byϕ± its positive and negative
parts respectively.

We will say that a sequence of signed Radon measuresφν convergesin the narrow senseto
a signed Radon measureφ if

∫
Rn f dφν →

∫
Rn f dφ asν → ∞ for every bounded continuous

functionf : Rn → R.
LetΘ∗

k (µ, x) andΘk∗(µ, x) stand for the upper and lowerk-dimensional density of the measure
µ atx ∈ Rn, that is,

Θ∗

k (µ, x) := lim sup
ρ→0+

µ(Bρ(x))

ωkρk
, Θk∗(µ, x) := lim inf

ρ→0+

µ(Bρ(x))

ωkρk
.

2.2 Currents

For basic notation on currents we refer to [17, 18]. Here we recall rather briefly some principal facts
we will use. We will always deal with real currents, i.e. currents with real coefficients. IfT is a
current, for every openU ⊂ Rn we set

µT (U) := sup{T (ω) : suppω ⊂ U, ‖ω‖L∞ 6 1}.
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We also setM(T ) := µT (Rn) and call this quantity themassof T . It is well known that ifM(T ) <
+∞, thenµT defines a finite Radon measure andT is representable asT = τT ∧µT for some unit
simplek-vector fieldτT , in the sense that

T (ω) =

∫
Rn

〈τT (x), ω(x)〉 dµT (x)

for every regular differentialk-formω. In this case we set, for everyθ ∈ L1(Rn;µT ),

T ∧ θ(ω) :=
∫

Rn
θ(x)〈τT (x), ω(x)〉 dµT (x),

andT xA := T ∧ 1A, where 1A stands for the characteristic function of a Borel setA ⊂ Rn. We

say that a sequence of currentsTν converges to a currentT in the flat norm(written Tν
F
⇀ T ) if

F(Tν − T ) → 0, where

F(T ) := inf{M(A)+ M(B) : T = A+ ∂B}.

Clearly, the topology induced by the flat norm is stronger than the weak topology of currents. We
say thatT is anormal currentif M(T ) < +∞ andM(∂T ) < +∞, andT is aflat chainif there is

a sequence{Tν} of normal currents such thatTν
F
⇀ T .

We callT a rectifiable currentif there exists a countably(Hk, k)-rectifiable setΣ ⊂ Rn and
a functionθ ∈ L1(HkxΣ) (called themultiplicity or densityof T ) such thatT = τT ∧ θHkxΣ ,
while the unit simplek-vectorτT : Σ → Rn is anorientationof Σ , in the sense that forHk-a.e.
x ∈ Σ the vectorτT (x) defines the approximate tangent plane toΣ atx. In this case we also write
T = θ [[Σ ]] when an orientation onΣ is prescribed. One can show that ifT is a flat chain with
M(T ) < +∞, thenT is a rectifiable current if and only if for some countably(Hk, k)-rectifiable
setΣ ⊂ Rn one hasT = T xΣ , or, in other words,µT = µT xΣ (see [3, Theorem 4.5]).

A k-dimensionalsimplicial current is a rectifiable current [[Σ ]], where Σ ⊂ Rn is a k-
dimensional simplex (i.e. a convex envelope ofk + 1 points, in particular, a segment ifk = 1).
Finally, we say that a currentT is apolyhedral chainif it can be written as a finite linear combination
of simplicial currents supported on simplices with mutually disjoint interiors. Polyhedral chains (and
hence rectifiable currents) are a dense subset of flat chains with respect to the flat norm.

Given a rectifiable currentT = θ [[Σ ]] and a concave nondecreasing functiong: R+
→ R+

satisfyingg(0) = 0, we define theg-massof T by the formula

Mg(T ) :=
∫
Σ

g(θ(x))dHk(x).

In particular, ifg(t) := tα for givenα ∈ [0,1], then the above expression defines theα-massof T ,
namely,

Mα(T ) :=
∫
Σ

θα(x)dHk(x).

The functionalMg (in particular,Mα) is lower semicontinuous on rectifiable currents with respect to
the flat norm convergence (this fact can be proven by a technique used in the proof of Lemma 3.2.14
from [13]). Hence it can be extended to a lower semicontinuous functional defined on all flat chains.
In what follows, as is customary,we will writeM instead ofM1 (and call it simplymass).
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The following easy consequence of the rectifiability theorem due to White [22, Theorem 8.1]
depends on the fact that there exist no nonconstant continuous curveθ : [0,1] → R having finite
α-length defined by the formula

θ 7→

∫ 1

0
(|θ ′(t)| + |θ ′(t)|α)dt

whenα ∈ [0,1).

THEOREM 2.1 (White) LetT be a current such thatM(T ) < +∞ andMα(T ) < +∞ for some
α ∈ [0,1). ThenT is rectifiable.

3. Subcurrents of flat chains

We will be frequently using the notion of a subcurrent of a given current as introduced in the
definition below.

DEFINITION 3.1 We say thatS is a subcurrentof T , and writeS 6 T , whereT andS arek-
dimensional currents, whenever

M(T − S)+ M(S) 6 M(T ).

We now provide a series of remarks concerning the above definition.

REMARK 3.2 Since the inequality

M(T − S)+ M(S) > M(T )

is always true,S is a subcurrent ofT if and only if equality holds.

REMARK 3.3 If S 6 T andR 6 S, thenR 6 T . In fact,

M(T ) > M(S)+ M(T − S) > M(R)+ M(S − R)+ M(T − S) > M(R)+ M(T − R),

because of the triangle inequalityM(T − R) 6 M(T − S)+ M(S − R).

REMARK 3.4 LetT be a current with finite mass and lete ⊂ Rn be a Borel set. ThenT xe 6 T .
In fact,

M(T ) = µT (Rn) = µT (e)+ µT (Rn \ e) = M(T xe)+ M(T − T xe).

REMARK 3.5 Notice thatS 6 T in generaldoes notimply

Mα(T ) = Mα(T − S)+ Mα(S)

whenα ∈ [0,1) (take for exampleT 6= 0, S = T/2). However, ifS = T xe for some Borel set
e ⊂ Rn, then the above relationship holds wheneverMα(T ) < +∞ andM(T ) < +∞. In fact,
in this case,T turns out, in view of Theorem 2.1, to be a rectifiable currentT = θ [[Σ ]] for some
(Hk, k)-rectifiable setΣ ⊂ Rn and someθ ∈ L1(H1xΣ). Then

Mα(T ) =

∫
Σ

|θ |α dHk
=

∫
Σ\e

|θ |α dHk
+

∫
Σ∩e

|θ |α dHk
= Mα(T − S)+ Mα(S).
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REMARK 3.6 If T is a current with finite mass andS 6 T , then for every Borel sete ⊂ Rn one
hasSxe 6 T xe. In fact, by the triangle inequality

M(T xe) 6 M((T − S)xe)+ M(Sxe),

M(T xRn \ e) 6 M((T − S)xRn \ e)+ M(SxRn \ e),

for every Borele ⊂ Rn, while if we sum the above inequalities, then as a result we get an equality
sinceS 6 T . Hence the above inequalities are in fact equalities for all Borele ⊂ Rn. In particular,
this also implies

µT = µT−S + µS, (5)

and henceµS 6 µT . On the other hand, if (5) holds, thenS 6 T since

M(S)+ M(T − S) = µS(Rn)+ µT−S(Rn) = µT (Rn) = M(T ).

The following lemma gives an easy characterization of subcurrents of flat chains of finite mass.

LEMMA 3.7 Let a currentT have finite mass and assumeS 6 T . Then the representationT =

τT ∧ µT implies S = τT ∧ σµT , µS = σµT for some Borel functionσ : Rn → R satisfying
0 6 σ 6 1 (in other words,S = T ∧ σ ). In particular, ifT is a rectifiable flat chain, then so isS.
Further, ifT is a flat chain, thenMα(S) 6 Mα(T ) for all α ∈ [0,1]. If, moreover,M(T − S) 6= 0
andMα(T ) < +∞ for someα ∈ [0,1], thenMα(S) < Mα(T ).

Proof. By Remark 3.6 one hasµS 6 µT and henceµS = σµT for some Borel functionσ satisfying
0 6 σ 6 1. Since according to the same remark,µT−S = µT −µS , we also getµT−S = (1−σ)µT .
Representing thenS = τS ∧ µS andT − S = τT−S ∧ µT−S , we get

τT ∧ µT = T = τS ∧ µS + τT−S ∧ µT−S = (στS + (1 − σ)τT−S) ∧ µT .

Hence,τT = στS + (1 − σ)τT−S , and sinceτT , τS andτT−S are unit vectors, we observe that
wheneverσ(x) > 0 one hasτS(x) = τT (x). In particularστS = στT and henceτS ∧ µS =

τS ∧ σµT = τT ∧ σµT . This concludes the proof of the first claim.
If T is a rectifiable flat chain, thenµT = σHkxΣ for some countably(Hk, k)-rectifiableΣ ⊂

Rn and someθ ∈ L1(Σ; Hk), while τT (x) orients the approximate tangent plane toΣ at x for
Hk-a.e.x ∈ Σ . One then hasS = τT ∧ σθHkxΣ , which means thatS is still rectifiable.

Finally, let T be a flat chain of finite mass. Supposeα < 1 (otherwise the conclusion follows
trivially from the definition of a subcurrent) andMα(T ) < +∞ (otherwise there is nothing to
prove). Then by Theorem 2.1, we know thatT is rectifiable, i.e.T = τT ∧ θHkxΣ with Σ , θ and
τT as above. Then

Mα(T ) =

∫
Σ

|θ |α dHk.

But thenS = τT ∧ σθHkxΣ and hence

Mα(S) =

∫
Σ

|σθ |α dHk 6 Mα(T )

since|σ | 6 1. Moreover, ifMα(T ) < +∞, thenMα(S) = Mα(T ) only whenσ = 1 Hk-a.e.
overΣ , which meansT = S and henceM(T − S) = 0. 2
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REMARK 3.8 If S 6 T thenS 6 T +S. In fact, by Lemma 3.7, one hasS = τT ∧σµT and hence
T + S = τT ∧ (1 + σ)µT so thatµT+S = (1 + σ)µT , which means thatT 6 T + S and hence
S 6 T + S.

LEMMA 3.9 LetA andB be subcurrents ofT . ThenA 6 A + B and consequentlyB 6 A + B.
If, moreover,µA ∧ µB = 0, thenA+ B 6 T .

Proof. By Lemma 3.7 we haveA = τT ∧σAµT andB = τT ∧σBµT with 0 6 σA 6 1, 06 σB 6 1.
ThenA+ B = τT ∧ (σA + σB)µT and henceµA+B = µA + µB , which meansA 6 A+ B.

If we also supposeµA∧µB = 0, we will haveσA+σB 6 1. HenceµT−A−B = (1−σA−σB)µT .
Therefore,µA+B + µT−A−B = µT , which meansA+ B 6 T . 2

LEMMA 3.10 Let{Sν}, {Tν} be sequences of currents withSν 6 Tν , and suppose that bothSν ⇀ S

andTν ⇀ T weakly as currents asν → ∞, while M(Tν) → M(T ). ThenM(T ) < +∞ implies
thatS 6 T andM(Sν) → M(S).

Proof. Consider the sequence{Tν − Sν} which converges toT − S weakly in the sense of currents.
By the lower semicontinuity ofM we know that

M(S)+ M(T − S) 6 lim inf
k→∞

M(Sν)+ lim inf
k→∞

M(Tν − Sν)

6 lim inf
k→∞

[M(Sν)+ M(Tν − Sν)] 6 lim inf
k→∞

M(Tν) = M(T ), (6)

i.e. S 6 T . Since we also haveM(T ) 6 M(S) + M(T − S), the inequalities in (6) are actually
equalities. Also, sinceM(T − S) 6 lim inf ν M(Tν − Sν) we obtainM(S) = lim inf ν M(Sν). This
is also true for every subsequence ofSν , hence we have full convergence of the sequenceM(Sν) to
M(S) asν → ∞. 2

We now give the following definition which will be crucial in what follows.

DEFINITION 3.11 LetT be a current withM(T ) < +∞. We say thatC is acycleof a currentT
if C 6 T and∂C = 0. We say thatT is acyclic if C = 0 is the only cycle ofT .

We are now able to prove the existence of a “maximum cycle” of every currentT with finite
mass, i.e. a cycle such thatT − C is acyclic.

PROPOSITION3.12 Every currentT with finite mass contains a cycleC such thatT −C is acyclic.

Proof. Let
ξ = sup{M(C) : C is a cycle ofT }.

Clearlyξ < +∞ sinceM(C) 6 M(T ) for every cycleC of T . Also ξ > 0 sinceC = 0 is always a
cycle ofT .

Step 1. We claim that there exists a cycleC of T such thatM(C) = ξ . In fact, by definition ofξ ,
there exists a sequence{Cν} of cycles ofT such that

M(Cν) > ξ − 1/ν.

ClearlyM(Cν) 6 M(T ) andM(∂Cν) = 0 so, up to a subsequence, the currentsCν converge to a
limit C with ∂C = 0. By Lemma 3.10 (applied withTν := T ) the currentC is itself a cycle ofT
andM(C) = limν M(Cν) = ξ .
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Step 2. We only have to prove thatT −C is acyclic. LetD be any cycle ofT −C. SinceD 6 T −C

andC 6 T we also haveT −C−D 6 T −C andT −C 6 T so we get (Remark 3.3)T −C−D 6 T

andC +D 6 T . Hence we actually have

M(T )− M(C) = M(T − C) = M(D)+ M(T − C −D) = M(D)+ M(T )− M(C +D),

i.e. M(C)+ M(D) = M(C +D), which readsC 6 C +D. SinceC +D is a cycle ofT we have
M(C +D) 6 ξ and asM(C) = ξ we haveM(D) = 0, i.e.D = 0. Since this is true for every cycle
D of T − C, we conclude thatT − C is acyclic. 2

Finally, the following easy assertion will be used.

LEMMA 3.13 LetT be a polyhedralk-dimensional chain and letS 6 T be its subcurrent such that
∂S 6 ∂T . ThenS is itself polyhedral.

Proof. One hasT =
∑k
i=1 θi [[Σi ]], whereΣi ∈ Rn are pairwise disjointk-simplices andθi ∈ R.

SinceS 6 T , by Lemma 3.7 one hasS = T ∧ σ for some Borel functionσ satisfying 06 σ 6 1.
Now σ is constant over each simplexΣi , since otherwise one would not have∂S 6 ∂T . Hence,
S =

∑k
i=1 θiσi [[Σi ]], whereσi is the value ofσ overΣi , or, in other words,S is still polyhedral.2

4. Concave functionals on flat chains

The following definition will be crucial.

DEFINITION 4.1 We say that the functionalT 7→ F(T ) ∈ [0,+∞] defined onk-dimensional real
flat chains with finite mass is

(i) concave(resp.strictly concave) if the functionf : [−1,+∞) → R defined by

f (t) := F(T + tS)

is concave (resp. strictly concave) wheneverF(T ) < +∞, S 6 T , S 6= 0;
(ii) nondecreasingif

F(S) 6 F(T )

wheneverS 6 T , S 6= T . We say thatF is strictly increasingif under the same hypotheses we
get a strict inequality.

Notice that the above definition of concavity of the functionalF can be viewed as the usual
concavity ofF in the directions given by subcurrents. As an example notice thatMα will be proven
to be concave in this sense, but not in the usual sense; in fact one clearly has

Mα

(
1

2
T +

1

2
(−T )

)
= Mα(0) = 0<

1

2
Mα(T )+

1

2
Mα(−T ) for everyT 6= 0.

REMARK 4.2 SupposeF is a concave (resp. strictly concave) functional defined on real flat chains
of finite mass. IfH : [0,+∞] → [0,+∞] is a concave (resp. strictly concave) function, then the
functionalT 7→ H(F(T )) is concave (resp. strictly concave). In fact, assumeF(T ) < +∞, S 6 T .
If the functionf : [−1,+∞) → R defined by the formulaf (t) := F(T + tS) is concave (resp.
strictly concave) andH is itself concave (resp. strictly concave) then so isH ◦ f .



OPTIMAL TRANSPORTATION NETWORKS AS FLAT CHAINS 403

REMARK 4.3 Clearly, a sum of concave functionals is still concave, and is strictly concave once
at least one of the summands is concave.

The following result shows that the functionalMα is concave forα ∈ [0,1] and strictly concave
for α ∈ (0,1).

LEMMA 4.4 Letα ∈ [0,1], let T be ak-dimensional real flat chain satisfyingM(T ) < +∞,
Mα(T ) < +∞ and assumeS 6 T . Consider the functionf : [−1,+∞) → R defined by

f (t) := Mα(T + tS).

The following properties hold:

(i) f is concave;
(ii) if S 6= 0 andα ∈ (0,1), thenf is strictly concave;

(iii) if α = 0, thenf is constant on(−1,+∞);
(iv) if α = 1, thenf is affine;
(v) if S = 0, thenf is constant.

Proof. By Lemma 3.7 one hasS = σT for some Borel functionσ satisfying 06 σ 6 1. For
t > −1 one has 1+ tσ > 0 andµT+tS = (1 + tσ )µT , so that

M(T + tS) = M((1 + tσ )T ) =

∫
Rn

|1 + tσ | dµT =

∫
Rn
(1 + tσ )dµT = M(T )+ tM(S),

which proves the claim forα = 1. If furtherα ∈ [0,1) andMα(T ) < +∞, then by Theorem 2.1,
T = τT ∧θHkxΣ for some countably(Hk, k)-rectifiableΣ ⊂ Rn and someθ ∈ L1(HkxΣ), while
τT (x) orients the approximate tangent plane toΣ atx for Hk-a.e.x ∈ Σ . Then, fort > −1, we get

Mα(T + tS) =

∫
Σ

|(1 + tσ )θ |α dHk
=

∫
Σ

(1 + tσ )α|θ |α dHk,

which is concave int for all α ∈ (0,1), and strictly concave ifS 6= 0. Finally, for the caseα = 0
we have

f (t) = M0(T + tS) =

∫
Σ

φ((1 + tσ )θ)dHk
=

∫
Σ

φ(1 + tσ )φ(θ)dHk,

where

φ(s) :=

{
0, s = 0,

1, s > 0,

and hence

f (t) =

{
M0(T − S), t = −1,

M0(T ), t > −1,

which is constant fort > −1 and concave fort > −1. 2

In the following lemmata, it is convenient to represent the functionalF in Problem 1 asF(T , S) :=
F(T )+G(S), where

F(T ) := AMα(T ), G(S) := BMβ(S)+H(Mδ(S)).

We first formulate a very easy auxiliary result regarding concavity of the functionalsF andG
defined above.
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LEMMA 4.5 The functionalF is concave and nondecreasing. It is strictly concave whenA 6= 0
andα ∈ (0,1). The functionalG is concave and nondecreasing (resp. strictly concave) whenever
eitherH is concave orδ = 0 (resp. eitherB 6= 0 andβ ∈ (0,1), or δ ∈ (0,1) andH is strictly
increasing and concave).

Proof. The assertion regardingF follows from Lemma 4.4(i),(ii). By the same lemma the functional
S 7→ BMβ(S) is concave (resp. strictly concave whenB 6= 0 and β ∈ (0,1)). Further,
if H is concave (resp. strictly concave and strictly increasing whenδ ∈ (0,1)) we see from
Lemma 4.4(i),(ii) and Remark 4.2 (recalling thatH is assumed to be nondecreasing) that the
functional S 7→ H(Mδ(S)) is concave (resp. strictly concave). Finally, ifδ = 0, then by
Lemma 4.4(iii) the latter functional is constant. Putting all these facts together proves the assertion
onG. 2

LEMMA 4.6 Let F and G be two concave, nondecreasing functionals on currents, and let
F(T , S) := F(T )+G(S). Let T andS be real one-dimensional flat chains of finite mass such that
F(T , S) < +∞ and eitherT or S is rectifiable. Then there are two real one-dimensional flat chains
T ′ andS′ of finite mass such thatT ′

+S′
= T +S,µT ′ ∧µS′ = 0, supp(T ′

+S′) ⊂ suppT ∪suppS
andF(T ′, S′) 6 F(T , S).

If, moreover,T andS are not disjoint (in the sense thatµT ∧ µS 6= 0) and eitherF or G is
strictly concave and strictly increasing, then one has the strict inequalityF(T ′, S′) < F(T , S).

Proof. Suppose first thatT is rectifiable, i.e.T = τT ∧ θTH1xΣT (note thatΣT ⊂ Rn is countably
(H1,1)-rectifiable, whileτT (x) orients the approximate tangent plane toΣ atx for H1-a.e.x ∈ Σ).
Let σ := µT ∧ µS . If σ 6= 0 (otherwise one may just takeT ′ := T , S′ := S), then there is a Borel
setΣ ⊂ ΣT (henceΣ is also countably(H1,1)-rectifiable) on whichσ is concentrated. Observe
thatσ(Σ \ΣS) = 0, because

µS(Σ \ΣS) 6 µS(ΣT \ΣS) = 0,

the latter equality being valid in view of the fact thatµS(E \ΣS) = 0 for every countably(H1,1)-
rectifiable setE ⊂ Rn. Hence, we may assume without loss of generalityΣ ⊂ ΣS . We also have
σ = θH1xΣ , whereθ = θT ∧ θS .

Set now
Σ± := {x ∈ Σ : τS(x) = ±τT (x)}.

SinceSxΣS is rectifiable, so isSxΣ , which impliesH1(Σ \ (Σ+
∪ Σ−)) = 0. Hence, asσ �

H1xΣ , we get
σ(Σ \ (Σ+

∪Σ−)) = 0.

We first focus our attention onΣ− and show that one may assume without loss of generality
thatσ(Σ−) = 0. In fact, ifσ(Σ−) > 0, then settingR := τT ∧ θH1xΣ−, one getsR 6= 0, while,
clearly,R 6 T and−R 6 S. Set nowT̃ := T−R, S̃ := S+R, and note that̃T+S̃ = T+S. Further,
sinceT̃ 6 T , we haveF(T̃ ) 6 F(T ), and sincẽS 6 S, we haveG(S̃) 6 G(S), and at least one of
the above inequalities is strict if eitherF orG is strictly increasing. Thus we getF(T̃ , S̃) 6 F(T , S)
(with strict inequality if eitherF orG is strictly increasing). Hence, if one substitutesT̃ for T and
S̃ for S, one will find that, by construction,σ(Σ−) = 0. Therefore, from now on we assume thatσ

is concentrated onΣ+, and thatΣ = Σ+.
For eacht ∈ [0,1] define

Tt := T + SxΣ − t (T xΣ + SxΣ), St := S + T xΣ − (1 − t)(T xΣ + SxΣ)
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and notice thatTt +St = T +S. AlsoT xΣ +SxΣ is a subcurrent of bothT +SxΣ andS+T xΣ .
Applying Lemma 4.7 (withT + SxΣ instead ofT , S + T xΣ instead ofS and T xΣ + SxΣ
instead ofR), we find thatt 7→ F(Tt , St ) is concave (resp. strictly concave if eitherF orG is). It
follows thatt ∈ [0,1] 7→ F(Tt , St ) attains its minimum (resp. strict minimum) at eithert̄ = 0 or
t̄ = 1. Let T ′

= Tt̄ , S
′
= St̄ . ThenF(T ′, S′) 6 F(T , S) (resp.F(T ′, S′) < F(T , S) under either

of the conditions (i)–(v) of Lemma 4.7 and whenT xΣ + SxΣ 6= 0, the latter being true when
µT ∧ µS > 0). To conclude the proof of the statement for rectifiableT , we only have to check that
µT ′ ∧ µS′ = 0. This is true by construction: in fact, ift̄ = 0, then

T ′
= T + SxΣ, S′

= S − SxΣ

which means thatµS′ is concentrated onRn \ Σ , while T ′x(Rn \ Σ) = T , S′x(Rn \ Σ) = S and
hence

µT ′ ∧ µS′ 6 (µT ′x(Rn \Σ)) ∧ (µS′x(Rn \Σ)) = (µT x(Rn \Σ)) ∧ (µSx(Rn \Σ)) = 0.

The casēt = 1 is completely analogous, since then

T ′
= T − T xΣ, S′

= S + T xΣ,

and henceµT ′ is concentrated outside ofΣ , while T ′x(Rn \Σ) = T , S′x(Rn \Σ) = S.
The case whenS is rectifiable, whileT may be arbitrary, is considered in a completely

symmetric way. 2

LEMMA 4.7 LetF andG be two concave functionals defined on real flat chains with finite mass
and letF(T , S) := F(T )+G(S). Suppose thatT , S,R are given real flat chains of finite mass such
thatR 6 T andR 6 S. Then the function

[0,1] 3 t 7→ F(T − tR, S − (1 − t)R)

is concave. Moreover this function is strictly concave ifR 6= 0 and eitherF orG is strictly concave.
In particular, ifF is defined as in Problem 1, then the corresponding function is concave if either
H is concave, orδ = 0. In this case this function is strictly concave ifR 6= 0 and either of the
following conditions hold:

(i) δ = 0,α ∈ (0,1) andA 6= 0,
(ii) δ = 0,β ∈ (0,1) andB 6= 0,

(iii) H is concave,α ∈ (0,1) andA 6= 0,
(iv) H is concave,β ∈ (0,1) andB 6= 0,
(v) H is strictly increasing and concave, whileδ ∈ (0,1).

Proof. From Definition 4.1 we know that both the functions

t 7→ F(T − tR) and t 7→ G(S − (1 − t)R)

are concave fort ∈ [0,1]. It suffices to refer now to Remark 4.3. The case whenF is as in Problem 1
follows then from Lemma 4.5. 2
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5. Auxiliary lemmata

We will need the following auxiliary assertions on convergence of measures and currents.

LEMMA 5.1 Letφ be a signed finite Borel measure with compact support inRn, andφ(Rn) = 0.
Then there exists a sequence{φν} of finite weighted sums of Dirac measures such that

φ±
ν ⇀ φ±, φν(Rn) = 0.

Proof. Consider two sequences{ψ+
ν }, {ψ−

ν } of finite weighted sums of Dirac measuresψ+
ν ⇀ φ+

andψ−
ν ⇀ φ− in the∗-weak sense of measures withν → ∞ (note that hereψ+

ν andψ−
ν do not

denote the positive and negative parts of some signed measureψν , but just some positive measures;
in fact, it may happen thatψ+

ν ∧ ψ−
ν 6= 0).

Consider the quantityλν := ψ−
ν (Rn)− ψ+

ν (Rn) and set

ψ̃+
ν := ψ+

ν + λνδ0, ψ̃−
ν := ψ−

ν if λν > 0,

ψ̃+
ν := ψ+

ν , ψ̃−
ν := ψ−

ν − λνδ0 otherwise.

In this way we havẽψ+
ν (Rn) = ψ̃−

ν (Rn), while both measures̃ψ±
ν are still nonnegative. Moreover

we notice thatλν → 0 becauseψ±
ν (Rn) → φ±(Rn) asν → ∞ andφ−(Rn)−φ+(Rn) = φ(Rn) =

0. In particular,λνδ0 ⇀ 0 and hencẽψ±
ν ⇀ φ±

∗-weakly in the sense of measures asν → ∞.
We now modifyψ̃±

ν into φ±
ν so thatφ+

ν ∧ φ−
ν = 0. To achieve this result we defineµν :=

ψ̃+
ν ∧ ψ̃−

ν and
φ±
ν := ψ̃±

ν − µν .

Given any∗-weakly convergent (in the sense of measures) subsequence of{µν}, for its limit µ one
hasµ 6 φ± becauseµν 6 ψ̃±

ν andψ̃±
ν ⇀ φ±

∗-weakly in the sense of measures asν → ∞.
Therefore, sinceφ+

∧ φ−
= 0, one hasµ = 0. Hence,µν ⇀ 0, which implies thatφ±

ν ⇀ φ±

∗-weakly in the sense of measures asν → ∞. On the other hand, by construction,φ+
ν ∧ φ−

ν = 0
and hence the measureφν := φ+

ν − φ−
ν hasφ±

ν as the positive and negative parts. Moreover we
easily find that

φν(Rn) = φ+
ν (R

n)− φ−
ν (R

n) = ψ̃+
ν (R

n)− ψ̃−
ν (R

n) = 0,

concluding the proof. 2

LEMMA 5.2 Let ψν be signed measures onRn such thatψν ⇀ 0 ∗-weakly in the sense of
measures asν → ∞, suppψν ⊂ K b Rn, ψν(Rn) = 0 andψ±

ν (Rn) < +∞. Then there exists a
real flat chainRν such that∂Rν = ψν andM(Rν) → 0 asν → ∞. Moreover, ifψν is a finite sum
of signed Dirac masses, then one may chooseRν polyhedral.

Proof. Let Rν provide the minimum ofT 7→ M(T ) among all flat chainsT satisfying∂T = ψν .
In other words,Rν solves the classical Monge–Kantorovich optimal transportation problem of
transportingψ+

ν toψ−
ν as stated in Subsection 1.1. ThenM(Rν) is the Wasserstein distance between

ψ+
ν to ψ−

ν which metrizes the∗-weak topology of measures on the set of finite nonnegative Borel
measures over the compactK ⊂ Rn. Hence,M(Rν) → 0 wheneverψν ⇀ 0 ∗-weakly in the sense
of measures asν → ∞. It is also well known that ifψν is a finite sum of signed Dirac masses, then
Rν is polyhedral. 2

LEMMA 5.3 LetT be a one-dimensional real normal current. Then there is a sequence of one-
dimensional real polyhedral chainsTν which converges in the flat norm toT , and alsoM(Tν) →

M(T ) and (∂Tν)± ⇀ (∂T )± ∗-weakly in the sense of measures asν → ∞. Moreover, ifT is
acyclic, then one can chooseTν to be acyclic too.
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Proof. Let {φν} be a sequence of finite Borel measures constructed by means of Lemma 5.1 applied

toφ := ∂T . Let alsoSν be one-dimensional real polyhedral chains satisfyingSν
F
⇀ T andM(Sν) →

M(T ) asν → ∞. By Lemma 5.2 applied toψν := φν−∂Sν there is a sequence of one-dimensional
real polyhedral chainsRν with ∂Rν = ψν andM(Rν) → 0. Then the currentTν := Sν+Rν satisfies

the first part of the assertion. In fact,Tν
F
⇀ T asν → ∞ andM(Tν) 6 M(Sν) + M(Rν). Passing

to the limit we obtainM(T ) 6 limν M(Tν) 6 limν M(Sν) = M(T ), and henceM(Tν) → M(T ) as
ν → ∞. Also (∂Tν)± = φ± ⇀ (∂T )± asν → ∞ by construction.

If T is acyclic, we modifyTν in the following way. LetCν be the cycle ofTν given by

Proposition 3.12 such thatT ′
ν := Tν − Cν is acyclic. Up to a subsequence,Cν

F
⇀ C asν → ∞.

Hence, by Lemma 3.10,M(Cν) → M(C) asν → ∞ andC is a cycle ofT . Since the only cycle of

T is 0 we conclude thatM(Cν) → 0, which means thatT ′
ν

F
⇀ T andM(T ′

ν) → M(T ) asν → ∞.
It remains to observe that∂T ′

ν = ∂Tν = φν , while by Lemma 3.13,T ′
ν is still polyhedral. 2

6. Currents versus transports

We call two Lipschitz-continuous curveŝθ1, θ̂2: [0,1] → Rn equivalentif there is a continuous
surjective nondecreasing function (usually called “reparameterization”)φ: [0,1] → [0,1] such that
θ̂1(t) = θ̂2(φ(t)) for all t ∈ [0,1]. Let thenΘ stand for the set of equivalence classes of Lipschitz-
continuous paths. In this way eachθ ∈ Θ can be clearly identified with some directed rectifiable
curve. We will frequently slightly abuse the language, identifying the elements ofΘ (i.e. directed
rectifiable curves) with their parameterizations (i.e. Lipschitz-continuous paths parameterizing such
curves), when it cannot lead to a confusion. We consider the setΘ to be equipped with the distance

dΘ(θ1, θ2) := inf{ max
t∈[0,1]

|θ̂1(t)− θ̂2(t)| : θ̂i a parameterization ofθi, i = 1,2}, (7)

where| · | is the Euclidean norm inRn. It is easy to see thatθν → θ in Θ implies the Hausdorff
convergence of the respective traces, though the converse is clearly not true. It is further important to
mention that every subset ofΘ made by all paths with uniformly bounded length is clearly compact
with respect to the introduced topology. This implies that the whole metric spaceΘ is σ -compact
(i.e. a countable union of compact sets).

We will also use the following notions. We say thatσ ∈ Θ is containedin a givenθ ∈ Θ if for
some parameterizations ofσ andθ and for some affine nondecreasingφ : [0,1] → [0,1] one has
θ(φ(t)) = σ(t) for all t ∈ [0,1], which means thatσ represents a “piece” ofθ . Finally, we call
θ ∈ Θ anarc if it is injective.

To eachθ ∈ Θ we associate the integral one-dimensional current [[θ ]] defined by the formula

[[θ ]](ω) :=
∫ 1

0
〈θ̇ (t), ω(θ(t))〉 dt

(note that the integral does not depend on the parameterization ofθ so it is well defined on
equivalence classesθ ∈ Θ). We also define theparametric lengthof θ as

`(θ) :=
∫ 1

0
|θ̇ (t)| dt.
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Clearly,
M([[θ ]]) = sup{[[θ ]](ω) : ‖ω‖∞ 6 1} 6 `(θ).

The following rather simple assertion is valid.

LEMMA 6.1 The mapθ ∈ Θ 7→ [[θ ]] is a continuous embedding of each subset of curves fromΘ

with uniformly bounded lengths into the space of integral one-dimensional currents endowed with
the weak topology of currents.

Proof. Let θν ∈ Θ be curves with uniformly bounded length, i.e.`(θν) 6 C < +∞ for all
ν ∈ N. One has to prove thatθν → θ ∈ Θ asν → ∞ implies [[θν ]](ω) → [[θ ]](ω) for everyC∞

1-form ω. Consider the parameterizations ofθν with |θ̇ν | 6 C for all t ∈ [0,1]. Sinceθν(t), for
all t ∈ [0,1] andν ∈ N, are contained in some neighbourhood ofθ , the sequence{θν} is weakly
compact inW1,2([0,1]; Rn). Hence, up to a subsequence,θν ⇀ σ weakly inW1,2([0,1]; Rn) as
ν → ∞ for someσ ∈ W1,2([0,1]; Rn), which in particular means thatσ = θ , and hencėθν ⇀ θ̇

weakly inL2([0,1]; Rn) asν → ∞. Hence,

[[θν ]](ω) =

∫ 1

0
〈θ̇ν(t), ω(θν(t))〉 dt →

∫ 1

0
〈θ̇ (t), ω(θ(t))〉 dt = [[θ ]](ω)

asν → ∞. 2

Given a transportη onΘ we define a functionalTη on 1-forms as follows:

Tη(ω) :=
∫
Θ

[[θ ]](ω)dη(θ). (8)

The following theorem shows thatTη is a normal current under natural assumptions onη.

THEOREM 6.2 Letη be a finite Borel measure onΘ satisfying∫
Θ

M([[θ ]])dη(θ) < +∞.

Then (8) defines a normal one-dimensional currentT = Tη onRn with

∂T = η(1)− η(0), where η(i) := (ti)#η, ti(θ) := θ(i), i = 0,1.

In particular, ifη(1) ∧ η(0) = 0, then

(∂T )+ = η(1), (∂T )− = η(0).

Furthermore, for all Borel setse ⊂ Rn,

µT (e) 6
∫
Θ

M([[θ ]]xe)dη(θ). (9)

Proof. We have to prove thatT = Tη is continuous onC∞ 1-forms, has finite mass and finite
boundary mass. According to the definition of mass

M(T ) := sup{T (ω) : |ω(x)| 6 1 for all x ∈ Rn}
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and hence

M(T ) 6
∫
Θ

M([[θ ]])dη(θ) < +∞.

Analogously, the relationships

µT (U) = sup{T (ω) : |ω(x)| 6 1, suppω ⊂ U for all x ∈ Rn},
M([[θ ]]xU) = sup{[[θ ]](ω) : |ω(x)| 6 1, suppω ⊂ U for all x ∈ Rn},

for every open setU ⊂ Rn imply

µT (e) 6
∫
Θ

M([[θ ]]xe)dη(θ)

for every open sete ⊂ Rn, and hence, for every Borel sete ⊂ Rn. Finally, the computation of the
boundary

∂T (f ) = T (df ) =

∫
Θ

(∫ 1

0
〈∇f (θ(t)), θ̇ (t)〉 dt

)
dη(θ)

=

∫
Θ

(∫ 1

0

d

dt
f ◦ θ dt

)
dη(θ) =

∫
Θ

[f (θ(1))− f (θ(0))] dη(θ)

=

∫
Θ

f (t1(θ))dη(θ)−

∫
Θ

f (t0(θ))dη(θ) =

∫
Rn
f (x)d(η(1)− η(0))

concludes the proof. 2

It is worth mentioning that the inequality in (9) may be strict, as the following example shows.

EXAMPLE 1 Let ei , i = 1,2, stand for the unit vectors along axisxi in R2, and letΘ1 ⊂ Θ be
a set of pathsθ in Q := [0,1] × [0,1] admitting a parameterizationθ(t) = (t, x2), t ∈ [0,1], for
somex2 ∈ [0,1]. Defineη1 by the formula

η1(e) := H1(t0(e ∩Θ1))

for all Borele ⊂ Θ, wheret0(θ) := θ(0). Clearly,Tη1 = e1 ∧ L2xQ. Analogously, lettingΘ2 ⊂ Θ

be a set of pathsθ admitting a parameterizationθ(t) = (x1, t), t ∈ [0,1], for somex1 ∈ [0,1], and
definingη2 by the formula

η2(e) := H1(t0(e ∩Θ2))

for all Borele ⊂ Θ, we getTη2 = e2∧L2xQ. Now, settingη := η1+η2, one hasTη = Tη1 +Tη2 =

(e1 + e2) ∧ L2xQ, and henceM(Tη) =
√

2, while∫
Θ

M([[θ ]])dη =

∫
Θ1

M([[θ ]])dη1 +

∫
Θ2

M([[θ ]])dη2 = 2> M(Tη).

We now prove a converse statement, i.e. that given a normal real one-dimensional currentT ,
there is a transportη satisfyingT = Tη.
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THEOREM 6.3 Given a one-dimensional acyclic real normal currentT with compact support, there
exists a Borel measureη overΘ such thatT = Tη as defined by (8) and

M(T ) =

∫
Θ

M([[θ ]])dη(θ). (10)

Moreover, one can chooseη so that

η(1) = (∂T )+, η(0) = (∂T )−, (11)

where(∂T )± are the positive and negative parts of the measure∂T respectively, whileη-a.e.θ ∈ Θ

is an arc.

REMARK 6.4 In view of Theorem 6.2, the claim (10) is equivalent to a formally weaker one,

M(T ) >
∫
Θ

M([[θ ]])dη(θ).

Apart from the claim (11), which is indeed used in what follows, the above theorem is in fact
contained (though in quite different terminology) in Theorem C from [19]. Since the relationship
between one-dimensional flat chains of finite mass and transports is of utmost importance in this
paper, we provide a complete and independent proof of this result.

Before proving the above Theorem 6.3 in the general case, we need to prove a similar assertion
valid only for one-dimensional realpolyhedralchains.

LEMMA 6.5 LetT be a one-dimensional real polyhedral chain. Then there exists a Borel measure
η overΘ such thatT = Tη and

M(T ) =

∫
Θ

M([[θ ]])dη(θ) =

∫
Θ

`(θ)dη(θ) (12)

andη-a.e.θ is supported on suppT . Further, ifT is also acyclic, then one can chooseη so that

η(1) = (∂T )+, η(0) = (∂T )−. (13)

If one does not require (13), one can chooseη so as to haveH1(θ) 6 diam suppT for η-a.e.θ ∈ Θ.

Proof. Every one-dimensional real polyhedral chainT can be written as a finite sum

T =

∑
ν

θνTν,

whereθν > 0 are real multiplicities, andTν are currents associated to oriented segmentsTν =

[[aν, bν ]] (further callededgesof T ) with nonoverlapping interiors.

Step 1. If T is a generic one-dimensional real polyhedral chain, consider the Lipschitz curvesσν
defined byσν(t) := (1 − t)aν + tbν for all t ∈ [0,1], and set

η :=
∑
ν

θνδσν ,
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whereδσν is the Dirac measure concentrated onσν ∈ Θ. Clearly,

T (ω) =

∑
ν

∫
σν

θν ω · (bν − aν) =

∑
ν

θν [[σν ]](ω) =

∫
Θ

[[σ ]](ω)dη(σ ), (14)

i.e.T = Tη. By construction one also hasM([[σ ]]) = `(σ ) for η-a.e.σ ∈ Θ, and hence

M(T ) =

∑
ν

|θν | · |bν − aν | =

∫
Θ

`(σ )dη(σ ), (15)

while η-a.e.θ ⊂ Θ is a segment,θ ⊂ suppT , and henceH1(θ) 6 diam suppT .

Step 2. To consider the case of an acyclicT , we introduce some extra notation. We say that an
ordered finite collection(Tν1, . . . , TνN ) of edges, whereTνi := [[aνi , bνi ]], i = 1, . . . , N , is apath
in T if bνi = aνi+1 for i = 1, . . . , N − 1. We say that such a path isclosedif also bνN = aν1.
Choosingθ0 > 0 to be the minimum ofθν over allν, we notice that the current

N∑
i=1

θ0Tνi

is a subcurrent ofT . An acyclicT therefore contains no closed paths. Finally, given a path inT ,
we can extend itforward if there exists an edgeTν of T such thataν = bνN , andbackwardif there
exists an edgeTν such thatbν = aν1.

Let T be acyclic. We consider a path with a single edgeTν̄ such thatθν̄ = θ0. We extend this
path as much as possible forward and backward. At each extension step the path is not closed,
hence the path is composed by different edges. Since there are only a finite number of edges inT ,
this extension process must terminate in a finite number of steps. We obtain in this way amaximal
pathcontainingTν̄ . Let (Tν1, . . . , TνN ) be this maximal path and consider the corresponding current

P0 :=
N∑
i=1

θ0Tνi .

Clearly,P0 is a subcurrent ofT and∂P0 = [[bνN ]] − [[aν1]]. Since this path is maximal, there is no
edgeTν with endpointbν = aν1, and thus [[aν1]] is a subcurrent of(∂T )−. Analogously [[bνN ]] is a
subcurrent of(∂T )+. One has

P0(ω) =

∫
Θ

[[σ ]](ω)dη0(σ ),

where η0 := θ0δσ0 is the Dirac measure with massθ0 concentrated on the curveσ0 ∈ Θ,
representing the polygonal line [a1, b1] ◦ · · · ◦ [aN , bN ] (starting ata1 and ending atbN ). Hence
η0(1) = (∂P0)

+ andη0(0) = (∂P0)
−.

The currentT ′
= T − P0 is itself a polyhedral acyclic current with strictly fewer edges thanT

has, because the edgeTν̄ is not included inT ′. Repeating the previous construction withT ′ in place
of T we find a subcurrentP1 representing a path inT ′ and such that

P1(ω) =

∫
Θ

[[σ ]](ω)dη1(σ )

with η1(1) = (∂P1)
+ andη1(0) = (∂P1)

−. A finite number of such steps will clearly exhaustT
and yield a decompositionT =

∑k
i=0Pi such that the corresponding measureη :=

∑k
i=0Pi has

the required properties. 2
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We are now able to prove the general Theorem 6.3.

Proof of Theorem 6.3. We divide the proof into two steps.

Step 1. Given an arbitrary one-dimensional real flat chainT , we consider a sequence{Tν} of one-
dimensional polyhedral chains which converges toT in the flat norm andM(Tν) → M(T ) as
ν → ∞, hence in particularM(Tν) 6 M(T ) + 1 for all sufficiently largeν ∈ N. By Lemma 6.5,
for eachTν we find a transportην satisfying

Tν(ω) =

∫
Θ

[[θ ]](ω)dην(θ), M(T ) =

∫
Θ

M([[θ ]])dην(θ) =

∫
Θ

`(θ)dην(θ) (16)

for all C∞ 1-formsω. SinceT is acyclic, we chooseTν according to Lemma 5.3, i.e. so that
in addition (∂Tν)± ⇀ (∂T )± in the ∗-weak sense of measures whenν → ∞. In this case by
Lemma 6.5 one can choose a transportην satisfying additionally

ην(1) = (∂Tν)
+, ην(0) = (∂Tν)

−. (17)

In particular, the total massesην(Θ) are uniformly bounded.
In view of (16) we have the estimate∫

Θ

`(θ)dην = M(Tν) 6 M(T )+ 1.

Further, without loss of generality we may assume that the traces ofην-a.e.θ ∈ Θ are supported
on some compactΩ ⊂ Rn. We may therefore invoke Lemma 6.7 below, showing that up to a
subsequence,ην ⇀ η in the narrow sense of measures for some finite Borel measureη, and
moreover, that one may letν → ∞ on both sides of the first relationship of (16) obtaining
T (ω) = Tη(ω) for eachC∞ 1-form ω, and henceT = Tη. One shows in addition that (11) is
valid by passing to the limit asν → ∞ on both sides of (17).

Furthermore, note that

M(Tν) =

∫
Θ

M([[θ ]])dην(θ) (18)

by the second relationship of (16). Hence, as the functionalθ ∈ Θ 7→ M([[θ ]]) is l.s.c., and hence
the integral in (18) is l.s.c. with respect to the narrow convergence ofην , by passing to the limit on
both sides of (18) asν → ∞, we deduce

M(T ) = lim
ν

M(Tν) = lim
ν

∫
Θ

M([[θ ]])dην(θ) >
∫
Θ

M([[θ ]])dη(θ),

which provides (10) once one recalls Remark 6.4.
We also consider for further use the functionalM ′ : Θ → R+ defined by

M ′(η) :=
∫
Θ

`(θ)dη. (19)

It is l.s.c. with respect to the narrow convergence of measures (because the parametric length`(·)

is l.s.c. inΘ). Hence, noting thatM ′(ην) = M(Tν) for eachην by construction, we getM ′(η) 6
M(T ) < +∞.
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Step 2. Finally, forT acyclic, we consider anη minimizingM ′ over the setE of all transportsη′

satisfyingT = Tη′ , as well as (10) and (11). To prove the existence of such anη recall that the latter
set of transports is nonempty in view of Step 1. Consider now a minimizing sequence{ην} ⊂ E

forM ′. By the final remark of Step 1 one hasM ′(ην) 6 C < +∞ for someC > 0. Further, without
loss of generality we may assume that the traces ofην-a.e.θ ∈ Θ are supported on some compact
Ω ⊂ Rn. Hence by Lemma 6.7, the sequence{ην} admits a subsequence (as usual, not relabelled)
converging to some transportη in the narrow sense of measures, whileT = Tην → Tη in the weak
sense of currents asν → ∞, and thusT = Tη. Since by the same lemmaην(i) ⇀ η(i), i = 0,1,
in the narrow sense of measures, also (11) holds forη, while acting as in Step 1, we get the validity
of (10) for η. Summing up, we getη ∈ E. Recalling thatM ′ is l.s.c. with respect to the narrow
convergence of measures, we infer thatη is a minimizer ofM ′ overE.

Let f : Θ → Θ andg: Θ → Θ be given by Lemma 6.6 below. ThenTf#η is a cycle ofT = Tη.
Hence,Tf#η = 0. This means [[f (θ)]] = 0 for η-a.e.θ ∈ Θ. We thus have [[g(θ)]] = [[θ ]] for η-a.e.
θ ∈ Θ. Hence,Tg#η = Tη = T andg#η ∈ E, so

M ′(g#η) =

∫
Θ

`(g(θ))dη(θ) 6
∫
Θ

`(θ)dη(θ).

Therefore, by the minimality ofη for M ′, we get`(g(θ)) = `(θ), henceη-a.e.θ ∈ Θ is an arc,
which concludes the proof. 2

The following technical assertions have been used in the proof of Theorem 6.3.

LEMMA 6.6 (i) There is a mapf : Θ → Θ measurable with respect to all transports such that
f (θ) is a loop (i.e. a simple closed curve) contained inθ ∈ Θ such that

`(f (θ)) >
1

2
sup{`(σ ) : σ is a loop contained inθ}.

(ii) There is a mapg : Θ → Θ measurable with respect to all transports such that for allθ ∈ Θ one
hasθ = g(θ) ∪ f (θ) (as traces), [[θ ]] = [[g(θ)]] + [[f (θ)]], while

`(g(θ)) < `(θ)

unlessθ is an arc, and finally,g(θ) = θ if and only if θ is an arc.

Proof. We construct a mapf : Θ → Θ satisfying claim (i) as follows. For everyθ ∈ Θ andx ∈ θ

we letC(θ, x) stand for the set of curves contained inθ starting and ending atx in the sense that

C(θ, x) = {θ̃ ∈ Θ : θ̃ (t) = θ((1 − t)s1 + ts2)

for some 06 s1 6 s2 6 1, θ(s1) = θ(s2) = x}.

In casex 6∈ θ we defineC(θ, x) to consist of just a single curveθx given byθx(t) := x for all
t ∈ [0,1], i.e. of a constant curve whose trace reduces to the single pointx. Note thatθx ∈ C(θ, x)

for all x ∈ Rn. Defined in this way, the multivalued map

(θ, x) ∈ Θ × Rn 7→ C(θ, x) ⊂ Θ

is u.s.c. (as a multivalued map), and hence Borel measurable. Therefore, recalling that` : Θ → R
is l.s.c. one gets the Borel measurability of the single-valued map

λ : θ ∈ Θ 7→ sup
x∈Rn

sup{`(σ ) : σ ∈ C(θ, x)} ∈ R.
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Clearly,λ(θ) is the supremum of the lengths of the loops contained inθ . Finally, we define

F : θ ∈ Θ 7→

{
σ ∈

⋃
x∈θ

C(θ, x) : `(σ ) > λ(θ)/2
}

⊂ Θ.

By the von Neumann–Aumann measurable selection theorem ([12, Theorems III.22 and III.23] or
[20, Corollary 5.5.8]) one can find a selectionf : Θ → Θ of the multivalued mapF which is
measurable with respect to all transportsη. Clearly,f (θ) is as required.

Define nowg : Θ → Θ as a union of two curvilinear segments, by setting

g(θ) := [θ(0), f (θ)(0)] ◦ [f (θ)(1), θ(1)].

Clearly, g(θ) is obtained by “cancelling” the loopf (θ) from θ . The properties ofg announced
in claim (ii) follow immediately sincè (g(θ)) 6 `(θ) − λ(θ)/2, while g(θ) = θ if and only if
f (θ) = θx for somex ∈ θ , i.e. whenθ is an arc. 2

LEMMA 6.7 Let{ην} be a sequence of nonnegative finite Borel measures overΘ with uniformly
bounded total masses, and setTν := Tην . Assume that for some one-dimensional real flat chainT

with M(T ) < +∞ one hasTν ⇀ T weakly in the sense of currents,M(Tν) → M(T ) asν → ∞,
and

M ′(ην) :=
∫
Θ

`(θ)dην 6 C < +∞ for all ν ∈ N,

and there is a compactΩ ⊂ Rn such that for eachν ∈ N, the traces ofην-a.e.θ ∈ Θ are supported
in Ω. Then there exists a transportη such that up to a subsequence,ην ⇀ η (and in particular,
ην(i) ⇀ η(i), i = 0,1) in the narrow sense of measures. Further,T = Tη if either of the following
two conditions hold:

(i) all ην are concentrated on some compact subset ofΘ (independent ofν), or
(ii) T is acyclic and

M(Tν) =

∫
Θ

M([[θ ]])dην(θ) for all ν ∈ N.

Proof. Since for everyc > 0 one has

M ′(ην) =

∫
Θ

`(θ)dην > cην({`(θ) > c}),

we conclude
ην({`(θ) > c}) 6 C/c.

Recalling now that{θ ∈ Θ : `(θ) 6 c, θ ⊂ Ω} is a compact subset ofΘ, we see that the sequence
ην is tight in the sense of measures. Hence, up to a subsequence,ην ⇀ η asν → ∞ in the narrow
sense of measures for some finite Borel measureη overΘ. The convergenceην(i) ⇀ η(i), i = 0,1,
asν → ∞ follows from the fact that a push-forward operator by means of a continuous function is
continuous with respect to the narrow convergence of measures.

In the case when (i) holds, i.e. allην are concentrated on some compact subset ofΘ, one
immediately gets

Tν(ω) =

∫
Θ

[[θ ]](ω)dην(θ) →

∫
Θ

[[θ ]](ω)dη(θ) = Tη(ω) asν → ∞,

and henceT = Tη.
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Consider now the case when (ii) holds, and in particular,ην are not necessarily concentrated on
some (unique) compact subset ofΘ. We show first that

φ(k) := lim sup
ν

∫
{`(θ)>k}

`(θ)dην(θ) → 0 ask → ∞. (20)

In fact, otherwise there exists ac > 0 such that for a subsequence ofην (not relabelled) one has∫
{`(θ)>ν}

`(θ)dην(θ) > c.

Consider thenη′
ν := ηνx{`(θ) > ν}, andSν := Tη′

ν
. By Remark 6.9 below, eachSν is a subcurrent

of Tν , and hence by Lemma 3.10, up to a subsequence,Sν ⇀ S weakly in the sense of currents as
ν → ∞, whereS is a subcurrent ofT andM(S) > c. On the other hand, sinceη′

ν ⇀ 0,

∂Sν = η′
ν(1)− η′

ν(0) ⇀ 0

weakly in the sense of measures asν → ∞, hence∂S = 0 and, by acyclicity ofT , one getsS = 0,
giving a contradiction. Hence, the claim (20) is proven.

Fix now an arbitrary regular 1-formω, and for eachθ ∈ Θ, k ∈ N set

fk(θ) :=

{
[[θ ]](ω), `(θ) 6 k,

0, otherwise.

One gets ∣∣∣∣∫
Θ

[[θ ]](ω)dην(θ)−

∫
Θ

fk(θ)dην(θ)

∣∣∣∣ =

∣∣∣∣∫
{`(θ)>k}

[[θ ]](ω)dην(θ)

∣∣∣∣
6 ‖ω‖∞

∫
{`(θ)>k}

M([[θ ]])dην(θ)

6 ‖ω‖∞

∫
{`(θ)>k}

`(θ)dην(θ)

= ‖ω‖∞φ(k).

Since for each fixedk, by Lemma 6.1,∫
Θ

fk(θ)dην(θ) →

∫
Θ

fk(θ)dη(θ) asν → ∞,

we arrive at the estimate∫
Θ

fk(θ)dη(θ)− ‖ω‖∞φ(k) 6 lim inf
ν

∫
Θ

[[θ ]](ω)dην(θ) 6 lim sup
ν

∫
Θ

[[θ ]](ω)dην(θ)

6
∫
Θ

fk(θ)dη(θ)+ ‖ω‖∞φ(k).

Lettingk → ∞ in the above estimate and taking into account (20), we get

Tν(ω) → sup
k

∫
Θ

fk(θ)dη(θ) =

∫
Θ

[[θ ]](ω)dη(θ) = Tη(ω) asν → ∞,

which yieldsT = Tη. 2
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It is worth remarking that the requirement of acyclicity of the “limit current”T in (ii) of the above
Lemma 6.7 is essential, as shown in the example below.

EXAMPLE 2 Consider the sequence of curves inR2 admitting the parameterizationθν(t) :=
(1+t/ν)(cos(2πνt), sin(2πνt)), t ∈ [0,1], and defineην := (1/ν)δθν be the transport concentrated
on θν ∈ Θ and having total mass 1/ν. Define alsoθ̄ (t) := (cos(2πt), sin(2πt)) and letη := δθ̄ be
the transport concentrated onθ̄ with unit total mass. Clearlyην ⇀ 0 in the narrow sense of measures

asν → ∞ (in fact,ην(Θ) = 1/ν). On the other hand,Tην
F
⇀ Tη 6= 0 asν → ∞. However, this

does not contradict Lemma 6.7 because clearly∂Tη = 0, i.e.Tη is a cycle.

We now concentrate our attention on the restriction to a given Borel set of the currents of the
form T = Tη.

PROPOSITION6.8 LetT be a normal one-dimensional current andη be a transport such thatT =

Tη and

M(T ) =

∫
Θ

M([[θ ]])dη(θ). (21)

ThenµT = µ[[θ ]] ⊗ η, i.e.

µT (e) =

∫
Θ

M([[θ ]]xe)dη(θ), (22)

and moreover,

T xe(ω) =

∫
Θ

[[θ ]]xe(ω)dη(θ), (23)

for every Borel sete ⊂ Rn, where

[[θ ]]xe(ω) =

∫
θ−1(e)

〈θ̇ (t), ω(θ(t))〉 dt

(note that the latter integral is independent of the choice of a parameterization ofθ ).

REMARK 6.9 The relationship (21) also implies that for every Borele ⊂ Θ the currentS := Tηxe
is a subcurrent ofT . In fact, in this caseT −S = Tηxec , whereec := Θ\e, and thus, by Theorem 6.2,

M(S) 6
∫
Θ

M([[θ ]])dηxe(θ), M(T − S) 6
∫
Θ

M([[θ ]])dηxec(θ).

Hence, summing the above inequalities, one gets

M(S)+ M(T − S) 6
∫
Θ

M([[θ ]])dη(θ) = M(T ).

Proof of Proposition 6.8. The claim (22) follows immediately since by Theorem 6.2 one has

µT (e) 6
∫
Θ

M([[θ ]]xe)dη(θ)

for every Borel sete ⊂ Rn, and according to (21) the latter estimate becomes an equality for
e := Rn.
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SinceµT = µ[[θ ]] ⊗ η, the convergencefν → g in L1(µT ) asν → ∞ implies fν → g in
L1(µ[[θ ]] ) for η-a.e.θ ∈ Θ. We use this observation to prove the last claim (23). For this purpose let
{fν} be a sequence of smooth functions which converge to 1e in L1(µT ) asν → ∞. SinceµT has
finite total mass,T xe(ω) := limν T (fν ∧ ω). But

T (fν ∧ ω) =

∫
Θ

[[θ ]](fν ∧ ω)dη(θ) =

∫
Θ

(∫
θ

fν(ξ)〈ω(ξ), τθ (ξ)〉 dµ[[θ ]] (ξ)

)
dη(θ).

As we just observed, forη-a.e.θ one has∫
θ

fν(ξ)〈ω(ξ), τθ (ξ)〉 dµ[[θ ]] (ξ) →

∫
θ∩e

〈ω(ξ), τθ (ξ)〉 dµ[[θ ]] (ξ) =: [[θ ]]xe(ω)

asν → ∞. Moreover,∣∣∣∣∫
θ

fν(ξ)〈ω(ξ), τθ (ξ)〉 dµ[[θ ]] (ξ)

∣∣∣∣ 6 ‖ω‖∞

∣∣∣∣∫
θ

fν dµ[[θ ]]

∣∣∣∣
and forη-a.e.θ one has

∫
θ
fν dµ[[θ ]] → µ[[θ ]] (e) asν → ∞. Hence,∣∣∣∣∫
θ

fν(ξ)〈ω(ξ), τθ (ξ)〉 dµ[[θ ]]

∣∣∣∣ 6 2‖ω‖∞µ[[θ ]] (e).

Since ∫
Θ

µ[[θ ]] (e)dη(θ) 6
∫
Θ

M([[θ ]])dη(θ) 6 M(T ),

the functionsθ 7→ |
∫
θ
fν〈ω, τθ 〉 dµ[[θ ]] | are also bounded by a function inL1(η). Hence by the

Lebesgue convergence theorem, we obtain the desired result (23). 2

7. Mass estimates

We first state the following technical lemma which is practically contained in the proof of the
rectifiability theorem for currents.

LEMMA 7.1 LetT be ak-dimensional real flat chain with finite mass, and set

θT (x) := Θ∗

k (µT , x), ΣT := {x ∈ Rn : 0< θT (x) < +∞}.

ThenΣT is countably(Hk, k)-rectifiable, and forHk-a.e.x ∈ ΣT one has

Θ∗

k (µT , x) = Θk∗(µT , x),

while

µT xΣ = θTHkx(ΣT ∩Σ)

for every countably(Hk, k)-rectifiable setΣ ⊂ Rn.
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Proof. We first claim
HkxΣT � ϕ := µT xΣT .

In fact, if e ⊂ ΣT , then

e =

∞⋃
j=1

ej , where ej := {x ∈ e : Θ∗

k (µT , x) > 1/j},

and thusµT (e) = 0 implies by [2, Theorem 2.56] the estimate

Hk(ej ) 6 jµT (e
j ) 6 jµT (e) = 0,

henceHk(e) = 0, proving the claim.
Assume now thate ⊂ ΣT is purely (Hk, k)-unrectifiable. ThenµT (e) = 0 by [21,

Theorem 3.1], and henceHk(e) = 0, which proves the countable(Hk, k)-rectifiability ofΣT .
Observe now thatϕ = 1ΣT µT , and hence

ϕ(Br(x))

µT (Br(x))
→ 1

asr → 0+ for µT -a.e.x ∈ ΣT , and hence also forHk-a.e.x ∈ ΣT . Since

ϕ(Br(x))

ωkrk
=

ϕ(Br(x))

µT (Br(x))
·
µT (Br(x))

ωkrk
,

we get
Θ∗

k (ϕ, x) = Θ∗

k (µT , x) and Θk∗(ϕ, x) = Θk∗(µT , x) (24)

for Hk-a.e.x ∈ ΣT .
We now claim

ϕ � HkxΣT . (25)

In fact, if e ⊂ ΣT , then

e =

∞⋃
j=1

ej , where ej := {x ∈ e : Θ∗

k (µT , x) 6 j}.

Hence,Hk(e) = 0 implies by [2, Theorem 2.56] the estimate

µT (ej ) 6 2kjHk(ej ) 6 2kjHk(e) = 0,

and thereforeµT (e) = 0, provingϕ � HkxΣT .
Since (25) impliesΘ∗

k (ϕ, x) = Θk∗(ϕ, x) for Hk-a.e.x ∈ ΣT , we deduce from (24) that

Θ∗

k (µT , x) = Θk∗(µT , x) for Hk-a.e.x ∈ ΣT .

Finally, to show the last claim of the statement being proven, it is enough to prove it for an
arbitrary countably(Hk, k)-rectifiable setΣ ⊂ Rn satisfyingHk(Σ) < +∞. Clearly,

µT (Σ ∩ΣT ) = ϕ(Σ) =

∫
ΣT

θT dHk. (26)
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We now write

µT (Σ \ΣT ) = µT (Σ ∩ {Θ∗

k (µT , x) = +∞})+ µT (Σ ∩ {Θ∗

k (µT , x) = 0}).

But

Hk({Θ∗

k (µT , x) = +∞}) = Hk
( ∞⋂
j=1

{Θ∗

k (µT , x) > j}
)

= inf
j

Hk({Θ∗

k (µT , x) > j})

6 inf
j

1

j
µT ({Θ

∗

k (µT , x) > j}) 6 inf
j
µT (Rn)/j = 0,

henceµT {Θ∗

k (µT , x) = +∞})) = 0 by (25). On the other hand,

µT (Σ ∩ {Θ∗

k (µT , x) = 0}) = µT

( ∞⋂
j=1

{x ∈ Σ : Θ∗

k (µT , x) 6 1/j}
)

= inf
j
µT ({x ∈ Σ : Θ∗

k (µT , x) 6 1/j}) 6 inf
j

2k

j
Hk(Σ) = 0.

Putting the above estimates together, we getµT (Σ ∩ΣT ) = 0, which together with (26) concludes
the proof of the last claim. 2

Given a transportη, we define thetransiting massfunctionaη : Rn → R by setting

aη(x) := η({θ ∈ Θ : x ∈ θ}).

In other words,aη(x) measures the number of people passing through the pointx ∈ Rn. We may
now state the following result.

LEMMA 7.2 LetT be a one-dimensional real flat chain with compact support andM(T ) < +∞.
Let η be given by Theorem 6.3 and letθT be defined as in Lemma 7.1. Then

(i) aη is u.s.c.;
(ii) if T is acyclic, thenθT (x) = aη(x) for H1-a.e.x ∈ Rn.

Proof. For eachx ∈ Rn define the function 1x : Θ → R by the formula

1x(σ ) :=

{
1 if x ∈ σ ,

0 otherwise.

Clearly, 1x is u.s.c. To prove (i), it is therefore enough to observe that

aη(x) =

∫
Θ

1x(σ )dη(σ )

and to apply Fatou’s lemma.
To prove (ii), it is enough to show that for an acyclicT one has

(A) for each countably(H1,1)-rectifiable setΣ ⊂ Rn one hasθT (x) = aη(x) for H1-a.e.x ∈ Σ ;
(B) θT (x) > aη(x)/2 for H1-a.e.x ∈ Rn.
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In fact, the setΣT is countably(H1,1)-rectifiable by Lemma 7.1, and henceθT (x) = aη(x) for
H1-a.e.x ∈ ΣT by (A). On the other hand, forH1-a.e.x 6∈ ΣT one hasθT (x) = 0, and hence
aη(x) = 0 by (B), which shows (ii).

We now prove (A) and (B). To show (A), recall that due to Theorem 6.3, asη-a.e.σ ′
∈ Θ is an

arc, for allσ ∈ Θ one has

µT (σ ) =

∫
Θ

M([[σ ′]]xσ)dη(σ ′) =

∫
Θ

H1(σ ′
∩ σ)dη(σ ′) =

∫
Θ

(∫
σ

1x(σ
′)dH1(x)

)
dη(σ ′)

=

∫
σ

(∫
Θ

1x(σ
′)dη(σ ′)

)
dH1(x) =

∫
σ

aη dH1.

On the other hand, by Lemma 7.1,

µT (σ ) =

∫
σ

θT dH1,

which proves ∫
σ

θT dH1
=

∫
σ

aη dH1

for every Lipschitz curveσ . This clearly implies (A).
To prove (B) fixx ∈ Rn and letε > 0. Consider the sets

A(x) := {σ ∈ Θ : x ∈ σ },

Aρ(x) := {σ ∈ A(x) : M([[σ ]]xBρ(x)) > ρ},

A′
ρ(x) := A(x) \ Aρ(x),

C+
ρ (x) := {σ ∈ Θ : σ(0) ∈ Bρ(x)},

C−
ρ (x) := {σ ∈ Θ : σ(1) ∈ Bρ(x)},

Cρ(x) := C+
ρ (x) ∩ C−

ρ (x).

One hasη(C±
ρ (x)) = (t0,1)#η(Bρ(x)) = (∂T )±(Bρ(x)) and hence

η(Cρ(x)) 6 (∂T )+(Bρ(x)) ∧ (∂T )−(Bρ(x)) → 0 asρ → 0+.

In particular there existsδ > 0 such thatη(Cρ(x)) < ε for everyρ < δ.
In view of Theorem 6.3,η-a.e.σ ∈ Θ is an arc. Hence forη-a.e.σ ∈ A(x) if either σ(0) 6∈

Bρ(x) or σ(1) 6∈ Bρ(x) thenM([[σ ]]xBρ(x)) > ρ. This proves thatη(A′
ρ(x) \ Cρ(x)) = 0. Hence

η(A′
ρ(x)) 6 ε, and consequentlyη(Aρ(x)) = η(A(x))− η(A′

ρ(x)) > aη(x)− ε.
To conclude, note that

M(T xBρ(x))

2ρ
=

1

2ρ

∫
Θ

M([[σ ]]xBρ(x))dη(σ ) >
1

2ρ

∫
Aρ (x)

M([[σ ]]xBρ(x))dη(σ )

>
ρ(aη(x)− ε)

2ρ
= (aη(x)− ε)/2,

so that forH1-a.e.x ∈ Rn one hasθT (x) > (aη(x) − ε)/2, and since this is true for everyε > 0,
the conclusion (B) follows. 2
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THEOREM 7.3 If T is an acyclic one-dimensional normal current, then

θT (x) 6
1

2
M(∂T ) for H1-a.e.x ∈ Rn.

Proof. If T is an acyclic normal current, then from Theorem 6.3 one hasT = Tη for some transport
η such thatη(0) = (∂T )+. Then, asΣT is countably(H1,1)-rectifiable by Lemma 7.1, it follows
from Lemma 7.2(ii) thatθT (x) = aη(x) for H1-a.e.x ∈ ΣT . But

aη(x) 6 η(Θ) 6 η(0)(Rn) =
1

2
M(∂T ),

and thusθT (x) 6 M(∂T )/2 for H1-a.e.x ∈ ΣT . On the other hand,H1-a.e. onRn \ ΣT one has
θT = 0 (since it has been shown in the proof of Lemma 7.1 thatH1({θT = +∞}) = 0), which
concludes the proof. 2

The assertion below may be regarded as a version of the Sobolev–Poincaré inequality for one-
dimensional real flat chains.

THEOREM 7.4 LetT be an acyclic one-dimensional real flat chain of finite mass and assume that
S 6 T . Then

Mβ(S) 6
1

2β−α
Mα(S)M(∂T )β−α for all α ∈ [0,1], β ∈ [α,1].

In particular,

M(S) 6
1

21−α
Mα(S)M(∂T )1−α for everyα ∈ [0,1].

Proof. By Theorem 7.3 the claim is easily proven whenS is rectifiableandT is normal. In fact, in
this case one may considerΣS ⊂ ΣT , θS 6 θT . Therefore

Mβ(S) =

∫
ΣS

θ
β
S dH1

= (M(∂T )/2)β
∫
ΣS

(
θS

M(∂T )/2

)β
dH1

6 (M(∂T )/2)β
∫
ΣS

(
θS

M(∂T )/2

)α
dH1

=
1

2β−α
Mα(S)M(∂T )β−α.

To prove the claim in the general case, it is enough to note that we may assumeα < 1 (otherwise
there is nothing to prove), and then the hypothesisM(T ) < +∞ providesM(S) < +∞, and hence,
by Theorem 2.1,S is rectifiable. One may also supposeM(∂T ) < +∞ (otherwise there is still
nothing to prove), which guarantees thatT is normal. Hence the assertion follows. 2

8. Existence of solutions

To illustrate the developed technique we prove the existence of solutions to Problem 1 in an
important particular case whenH(·) is concave.

THEOREM 8.1 Let ϕ± be finite nonnegative Borel measures with compact support inRn,
satisfyingϕ+(Rn) = ϕ−(Rn). Assume also the functionH to be concave, andH(l) → +∞ as
l → +∞, A > 0, α < 1, and eitherα > β ∨ δ, or α = β > δ, butA > B. Then the functional
F attains its minimum value on the set of pairs(T , S) of one-dimensional real flat chains of finite
mass which satisfy (3). In other words, in this case Problem 1 admits solutions.
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Proof. Assume the existence of a pair(T0, S0) of one-dimensional real flat chains of finite mass
such that∂(T0 + S0) = ϕ+

− ϕ− and

F(T0, S0) < +∞

(otherwiseF ≡ +∞, and hence there is nothing to prove). Here and below for the sake of brevity
we denoteφ := ϕ+

− ϕ−.
We may also assume thatH 6≡ +∞ on (0,+∞). In fact, in the opposite case Problem 1 admits

a trivial solution(T ,0), whereT is a real flat chain minimizingMα among all one-dimensional real
flat chains of finite mass satisfying∂T = φ.

We divide the proof into several steps.

Step 1. We first show the existence of a minimizing sequence{(Tν, Sν)} for the functionalF of
pairs of real rectifiable currents which satisfy the condition (1), have uniformly bounded masses and
also satisfy conditionµTν ∧ µSν = 0.

Let {(T ′
ν, S

′
ν)} be an arbitrary minimizing sequence forF which satisfies (1). ThenF(T ′

ν, S
′
ν) <

+∞. In view of the assumption onH we haveMδ(S′
ν) < +∞, and hence one may apply

Theorem 10.2 below, which gives rectifiability ofS′
ν . SinceMα(T ′

ν) < +∞, according to the same
theorem alsoT ′

ν is rectifiable. In view of Lemma 4.6 we may assume without loss of generality that
µT ′

ν
∧ µS′

ν
= 0. In other words, for everyν ∈ N there is a Borel setEν ⊂ Rn such that

T ′
ν = T ′

νxEν S′
ν = S′

νx(R
n

\ Eν).

According to Proposition 3.12 there is a cycleCν 6 T ′
ν + S′

ν such that the currentT ′
ν + S′

ν − Cν is
acyclic. Setting

Tν := T ′
ν − CνxEν, Sν := S′

ν − Cνx(Rn \ Eν),

we getTν + Sν = T ′
ν + S′

ν − Cν , and hence

∂(Tν + Sν) = ∂(T ′
ν + S′

ν) = φ.

On the other hand, fromCν 6 T ′
ν + S′

ν one gets

CνxEν 6 (T ′
ν + S′

ν)xEν = T ′
ν .

Due to Remark 3.6, one hasTν 6 T ′
ν . Analogously,Sν 6 S′

ν , and hence, applying Lemma 3.7,
we getF(Tν, Sν) 6 F(T ′

ν, S
′
ν), i.e. {(Tν, Sν)} is still a minimizing sequence for Problem 1. Let

Rν := Tν + Sν . In view of acyclicity ofRν we may apply Theorem 7.4 to get

M(Tν) 6
1

21−α
Mα(Tν)M(∂Rν)1−α 6

1

21−α
Mα(T ′

ν)|φ|(Rn)1−α, (27)

taking into account thatMα(Tν) 6 Mα(T ′
ν) by Lemma 3.7, sinceTν 6 T ′

ν , and thatM(∂Rν) =

|φ|(Rn). In the same way we get the estimate

M(Sν) 6
1

21−δ
Mδ(S′

ν)|φ|(Rn)1−δ. (28)

On the other hand, sinceF(Tν, Sν) 6 F(T0, S0), for someC′ > 0 and for allν ∈ N we have the
estimates

Mα(T ′
ν) 6 C′, Mδ(S′

ν) 6 C′,
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becauseA > 0 and the functonH is unbounded. Combining the above estimates with (27) and (28),
we conclude that bothTν andSν , and hence alsoRν , have uniformly bounded massesM.

Step 2. For everyd > 0 and every real flat chainR we let

Sd(R) := Rx(ΣR ∩ {θR > d}), Td(R) := R − Sd(R).

If C ∈ [H ′
+(Mδ(S)),H ′

−(Mδ(S))], whereH ′
± are the left and right derivatives ofH respectively,

andl > 0, we also define

F [l, C](R) := Mα(Td(R))+ BMβ(Sd(R))+H(l)+ C(Mδ(Sd(R))− l).

Let d > 0 be such thatAtα > Btβ+Ctδ whent ∈ (d,+∞), andAtα < Btβ+Ctδ whent ∈ (0, d)
(here and below we assume(0, d) := ∅ if d = 0). Then clearly

F(Td(R), Sd(R)) = F [Mδ(Sd(R)), C](R), (29)

while
F(Td(R), Sd(R)) 6 F [l, C](R) for all l > 0. (30)

Consider a minimizing sequence for the functionalF constructed in Step 1. Note that sinceφ
is concentrated on some ball inRn, one may assume that allTν andSν (and hence alsoRν) are
concentrated on the same ball (otherwise, projecting the latter currents to this ball will not change
the boundary of their sum while not increasing any of the massesMλ, λ ∈ [0,1], and hence, not
increasing the value ofF). Since the massesM(Rν) are uniformly bounded, and∂Rν = φ, up to a

subsequence we haveRν
F
⇀ R asν → ∞ for some real one-dimensional flat chainR satisfying

∂R = φ.
Setlν := Mδ(Sν), and choose an arbitraryCν ∈ [H ′

+(lν),H
′
−(lν)]. Observe thatCν 6= 0 due to

the assumption onH . Without loss of generality we may assume that up to a subsequence,lν → l

andCν → C for somel ∈ [0,+∞] andC ∈ [0,+∞] as ν → ∞. We consider separately two
possible situations.

CASE l > 0. ThenC < +∞. Note that the numberslν are uniformly bounded, since otherwise
up to a subsequence,H(lν) → +∞, and henceF(Tν, Sν) → +∞ asν → ∞, contrary to the
estimateF(Tν, Sν) 6 F(T0, S0) < +∞ for all sufficiently largeν (because the sequence{(Tν, Sν)}

is minimizing). Therefore,l < +∞, which also implies thatC > 0 (otherwiseH ′
+(l) = 0, which

would mean, in view of concavity ofH , thatH(t) = H(l) for all t > l, contrary to the assumption
on unboundedness ofH ). We finally remark thatC ∈ [H ′

+(l),H
′
−(l)], since the functionsH ′

± are
lower and upper semicontinuous respectively.

In view of Lemma 10.5 we may assume without loss of generality that

θSν (x) = θRν (x) > dν for H1-a.e.x ∈ ΣSν ,

θTν (x) = θRν (x) < dν for H1-a.e.x ∈ ΣTν ,

where the numbersdν > 0 depend only onα, β, δ, A, B andCν and satisfy the relationships

Atα < Btβ + Cν t
δ, t ∈ (0, dν),

Atα > Btβ + Cν t
δ, t ∈ (dν,+∞).

(31)
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In other words, in view of rectifiability ofSν one hasSν = Sdν (Rν), and henceTν = Tdν (Rν). Thus,
by (29),

lim inf
ν

F(Tν, Sν) = lim inf
ν

F(Tdν (Rν), Sdν (Rν)) = lim inf
ν

F [lν, Cν ](Rν). (32)

In view of rectifiability ofTν , Sν andRν , and becauseµTν ∧ µSν = 0, one can write

F [lν, Cν ](Rν) =

∫
ΣRν∩{θRν (x)<dν }

AθαRν (x)dH1(x)

+

∫
ΣRν∩{θRν (x)>dν }

(Bθ
β
Rν
(x)+ Cνθ

δ
Rν
(x))dH1(x)+H(lν)− Cν lν

=

∫
ΣRν

gν(θRν (x))dH1(x)+H(lν)− Cν lν, (33)

where
gν(t) := (Atα) ∧ (Btβ + Cν t

δ),

sincefν(t) := Atα − Btβ − Cν t
δ > 0 whent > dν , andfν(t) < 0 whent ∈ (0, dν).

For all ε > 0 and sufficiently largeν ∈ N one has

gν(t) > gε(t) := (Atα) ∧ (Btβ + (C − ε)tδ) for all t > 0.

Therefore,

lim inf
ν

F [lν, Cν ](Rν) > lim inf
ν

∫
ΣRν

gε(θRν (x))dH1(x)+H(l)− Cl. (34)

Since forε ∈ [0, C) the functiongε: R+
→ R+ is nondecreasing and concave, andgε(0) = 0, the

functional

R 7→

∫
ΣR

gε(θR(x))dH1(x),

defined on rectifiable currents, defines an l.s.c. (in the flat norm topology) functionalMgε on the set
of real flat chains according to the formula

Mgε (R) := inf

{
lim inf

ν

∫
ΣRν

gε(θRν (x))dH1(x)

}
,

where the infimum is taken over all sequences{Rν} of real polyhedral chains converging toR in the
flat norm. Then

Mgε (R) =

∫
ΣR

gε(θR(x))dH1(x)

if R is rectifiable [22]. By definition ofMgε ,

Mgε (R) 6 lim inf
ν

∫
ΣRν

gε(θRν (x))dH1(x). (35)
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In view of (34), we get

lim inf
ν

F [lν, Cν ](Rν) > Mgε (R)+H(l)− Cl. (36)

From (36) and (32) one gets the inequality

lim inf
ν

F(Tν, Sν) > Mgε (R)+H(l)− Cl, (37)

which, in particular, impliesMgε (R) < +∞. Also,

M(R) 6 lim inf
ν

M(Rν) = lim inf
ν

(M(Tν)+ M(Sν)) < +∞,

since allTν and Sν have uniformly bounded masses. Therefore, from the general theorem on
rectifiability of flat chains [22], recalling the definition ofgε and thatα < 1, we get the rectifiability
of R. Thus,Mgε (R) =

∫
ΣR
gε(θR(x))dH1(x), and hence the inequality (37) can be rewritten as

lim inf
ν

F(Tν, Sν) >
∫
ΣR

gε(θR(x))dH1(x)+H(l)− Cl. (38)

Observe that the limitd := limν dν exists and satisfies

Atα < Btβ + Ctδ, t ∈ (0, d),

Atα > Btβ + Ctδ, t ∈ (d,+∞).
(39)

In fact, denoting bys the limit of an arbitrary subsequencedν (not relabelled), and passing to the
limit in (39), we get

Atα < Btβ + Ctδ, t ∈ (0, s),

Atα > Btβ + Ctδ, t ∈ (s,+∞),

and hences = d. Note also thatd > 0 in view of Lemma 10.6 below.
Denote bydε a number such that

Atα < Btβ + (C − ε)tδ, t ∈ (0, dε),

Atα > Btβ + (C − ε)tδ, t ∈ (dε,+∞).

Clearly,dε 6 d. Moreover,dε > 0 if ε ∈ [0, C), due to Lemma 10.6, while, as just proven above,
dε → d asε → 0+. With the above notation∫

ΣR

gε(θR(x))dH1(x) = AMα(Tdε (R))+ BMβ(Sdε (R))+ (C − ε)Mδ(Sdε (R)), (40)

and hence∫
ΣR

gε(θR(x))dH1(x) = AMα(Td(R))+ BMβ(Sd(R))+ (C − ε)Mδ(Sd(R))

−AMα(Rx∆ε)+ BMβ(Rx∆ε)+ (C − ε)Mδ(Rx∆ε), (41)



426 E. PAOLINI AND E . STEPANOV

where∆ε := {x ∈ Rn : dε 6 θR(x) < d}. Using (38), we get

lim inf
ν

F(Tν, Sν) > F [l, C](R)− AMα(Rx∆ε)+ BMβ(Rx∆ε)

+ (C − ε)Mδ(Rx∆ε)− εMδ(Sd(R)), (42)

because

F [l, C](R) = AMα(Td(R))+ BMβ(Sd(R))+ CMδ(Sd(R))+H(l)− Cl.

Finally, by (30), we get from (42) the inequality

lim inf
ν

F(Tν, Sν) > F(Td(R), Sd(R))− AMα(Rx∆ε)+ BMβ(Rx∆ε)

+ (C − ε)Mδ(Rx∆ε)− εMδ(Sd(R))

= F(Td(R), Sd(R))−

∫
∆ε

(AθαR(x)− Bθ
β
R(x)− Cθ δR(x))dH1(x)

+ ε

∫
{θR(x)>dε}

θ δR(x)dH1(x)

= F(Td(R), Sd(R))−

∫
∆ε

(AθαR(x)− Bθ
β
R(x)− Cθ δR(x))

+ dH1(x)+ εMδ(Sdε (R)). (43)

The estimates supε∈(0,C) Mgε (R) < +∞ and (40) imply

AMα(Td(R)) = sup
ε∈(0,C)

AMα(Tdε (R)) < +∞,

as well asBMβ(Sdε (R)) < +∞ and sinceC > 0, alsoMδ(Sdε (R)) < +∞ for all ε ∈ (0, C).
Therefore, one may letε → 0+ in (43), arriving at

lim inf
ν

F(Tν, Sν) > F(Td(R), Sd(R)),

which shows that the pair(Td(R), Sd(R)) is a minimizer of the functionalF.

CASE l = 0. In other words,lν = Mδ(Sν) → 0 asν → ∞. SinceSν 6 Rν and∂Rν = φ, and all
the currentsRν are acyclic by construction, whileδ 6 α according to the assumptions, Theorem 7.4
yieldsMα(Sν) → 0 asν → ∞. Thus

lim inf
ν

F(Tν, Sν) = lim inf
ν

(AMα(Tν)+ BMβ(Sν)+H(Mδ(Sν)))

> lim inf
ν

(AMα(Tν)+H(Mδ(Sν)))

= lim inf
ν

(AMα(Rν)+H(Mδ(Sν))− AMα(Sν)),

and taking into account that

H(Mδ(Sν))− AMα(Sν) = H(lν)− AMα(Sν) → 0

asν → ∞, we get

lim inf
ν

F(Tν, Sν) > lim inf
ν

AMα(Rν) > AMα(R) = F(R,0).

Therefore, in this case the pair(R,0) is a minimizer of the functionalF, which concludes the
proof. 2
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9. Reduction to known problems

In this section we consider a particular case of Problem 1 withα = β = 1 andδ = 0 and show that
such a problem is equivalent to the classical problem of finding an optimal transportation network
formulated without using the language of Federer–Fleming currents (such a formulation is studied
in [9]).

Under the assumptionsα = β = 1 andδ = 0 Problem 1 can be stated in the following way.

PROBLEM 2 Find a couple(Topt, Sopt) of one-dimensional real flat chains minimizing the
functionalF defined by the formula

F(T , S) = AM(T )+ BM(S)+H(M0(S)),

among all couples(T , S) of real one-dimensional flat chains of finite mass, satisfying (3).

We now define a new functionalG over couples(η,Σ), whereη is a transport (i.e. a nonnegative
finite Borel measure onΘ) andΣ ⊂ Rn is a Borel set. Namely, we set

G(η,Σ) :=
∫
Θ

(AH1(θ \Σ)+ BH1(θ ∩Σ))dη(θ). (44)

The meaning ofG(η,Σ) may be explained as follows. Suppose that a single citizen chooses a path
θ ∈ Θ in his everyday movement. Assume thatΣ stands for the transportation network, so that for
a citizen choosing the routeθ the cost of using this network would be proportional toH1(θ ∩ Σ)

(i.e. to the length of the part of the route made with the help of the network) with coefficientB > 0.
For the same citizen, moving without the use of the network by distancet is assumed to costAt for
a givenA > 0. Therefore the integrand in (44) gives the individual cost of moving along the route
θ . If the transportη describes the collective behaviour of the population, so that, heuristically,η(θ)

gives the number of people choosing the routeθ in their everyday movements, thenG(η,Σ) gives
the total cost of transportation of the population to services or workplaces. Clearly, forη to describe
the pattern of behaviour of the population in the above sense, one has to require

η(0) = ϕ+, η(1) = ϕ−. (45)

Clearly, the population as a whole chooses the way of transportation (i.e. the transportη) so as
to minimizeG(·,Σ) among all transports satisfying (45) (further calledadmissible transports). In
other words, the number

MK(ϕ+, ϕ−,Σ) := inf{G(η,Σ) : η a transport satisfying (45)}

gives the cost of everyday movement of the population from their places of residence to workplaces
and/or services.

We now describe another way of obtaining the same costMK(ϕ+, ϕ−,Σ) which is more often
used in the theory of optimal transportation. Namely, rather than using transports, it is customary to
describe the behaviour of the population by so-calledtransport plans, i.e. by finite positive Borel
measuresγ overRn × Rn, so that, heuristically,γ (x, y) gives the number of people moving fromx
to y. Note that in this sense a transport plansγ gives much less information on the movement of the
population than the transportη, namely, it says nothing about the routes people are choosing, but
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just describes the source and destination points of the movement. Clearly, a transport planγ has to
satisfy the requirement on marginals

π±

# γ = ϕ±, (46)

whereπ±(x+, x−) := x± (such transport plans will further be calledadmissible).
Under the assumptions on the cost of movement made above, it is quite reasonable to suppose

that each single citizen moving fromx to y would choose the routeθ ∈ Θ minimizing the total cost
of movement, and therefore would spend

dΣ (x, y) := inf{AH1(θ \Σ)+ BH1(θ ∩Σ) : θ ∈ Θ, θ(0) = x, θ(1) = y}.

If the behaviour of the population is described by a transport plansγ satisfying (46), then the total
cost of transportation of the population is given by

Ĝ(γ,Σ) :=
∫

Rn×Rn
dΣ (x, y)dγ (x, y). (47)

In [10] it has been shown that the problem of minimizing the costG(·,Σ) among all admissible
transport plans is in fact equivalent to that of minimizing the costĜ(·,Σ) among admissible
transport plans. The precise meaning of this assertion is given by the statement below.

PROPOSITION9.1 For each Borel setΣ ⊂ Rn one has

MK(ϕ+, ϕ−,Σ) = inf{Ĝ(γ,Σ) : γ a transport plan satisfying (46)}.

Further, there is an admissible transportη′
= η′(Σ) and a transport planγ ′

= γ ′(Σ) (both
depending onΣ) such that

MK(ϕ+, ϕ−,Σ) = G(η′,Σ) = Ĝ(γ ′,Σ).

Moreover, η′-a.e. θ ∈ Θ is a simple arc. Finally, ifη′ is an admissible transport such that
MK(ϕ+, ϕ−,Σ) = G(η′,Σ), then one can takeγ ′ := (p0 × p1)#η

′. Conversely, there is a Borel
measurable functionq : Rn × Rn → Θ such that ifγ ′ is an admissible transport plan such that
MK(ϕ+, ϕ−,Σ) = Ĝ(γ ′,Σ), then one can takeη′ := q#γ

′.

It is important to mention that sincedΣ is easily verified to satisfy the triangle inequality, then
it is well known that

MK(ϕ+, ϕ−,Σ) = MK(ϕ̃+, ϕ̃−,Σ) whenever ϕ+
− ϕ−

= ϕ̃+
− ϕ̃−.

Supposing now that the total cost which determines the transportation network is given by the
cost of everyday movement of the populationMK(ϕ+, ϕ−,Σ) and of the cost of constructing the
network given byH(H1(Σ)) (i.e. depending only on the lengthH1(Σ) of the network), we get the
following natural minimization problem to find the optimal transportation networkΣ .

PROBLEM 3 Find a Borel setΣopt ⊂ Rn minimizing the functional

Σ 7→ MK(ϕ+, ϕ−,Σ)+H(H1(Σ))

among all Borel setsΣ ⊂ Rn.
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In view of the definition ofMK(ϕ+, ϕ−,Σ) and Proposition 9.1, we see that each solution
Σopt ⊂ Rn to Problem 3 together with the corresponding optimal transportηopt := η′(Σopt) (resp.
the optimal transport planγopt := γ ′(Σopt)) also solves the following problem.

PROBLEM 4 Find a couple(ηopt,Σopt) (resp.(γopt,Σopt)) minimizing the functionalF (resp.F̂ )
defined by

F(η,Σ) := G(η,Σ)+H(H1(Σ)) (resp.F̂ (γ,Σ) := Ĝ(γ,Σ)+H(H1(Σ)))

among all couples(η,Σ) (resp.(γ,Σ)), whereη is an admissible transport (resp.γ is an admissible
transport plan) andΣ ⊂ Rn is a Borel set.

Conversely, if a couple(ηopt,Σopt) (resp.(γopt,Σopt)) solves the above Problem 4, thenΣopt
solves Problem 3. Clearly, a solution(ηopt,Σopt) (resp.(γopt,Σopt)) to Problem 4 gives both the
optimal transportation networkΣopt and the optimal pattern of behaviour of the populationηopt
(resp.γopt). Note also that once one knowsηopt (resp.γopt), one can findγopt (resp.ηopt) as indicated
in Proposition 9.1.

We now show that Problem 4 with linear functionsA andB is in fact equivalent to Problem 2
in the sense specified by the statement below. For the sake of brevity we will limit ourselves to the
caseA > B. The caseA < B is quite analogous once one observes that under this condition

G(η,Σ) > A

∫
Θ

H1(θ)dη = G(η,∅),

and every optimal pair(Topt, Sopt) solving Problem 2 hasSopt = 0, since

F(T , S) = AM(T )+ BM(S)+H(M0(S)) > AM(T + S) = F(T + S,0)

wheneverS 6= 0.

THEOREM 9.2 LetA > B.

(i) Suppose(Topt, Sopt) solves Problem 2, whileµTopt∧µSopt = 0 (the existence of such an optimal
pair is ensured by Proposition 10.3). Letη := ηTopt+Sopt as defined by Theorem 6.3 and let
Σ := ΣSopt. ThenΣ solves Problem 3. Further, the couple(η,Σ) solves Problem 4 with
ϕ±

− ϕ+
∧ ϕ− instead ofϕ±. In particular, ifϕ+ andϕ− are mutually singular, then(η,Σ)

solves Problem 4.
(ii) Conversely, let(ηopt,Σopt) solve Problem 4. LetR := Tηopt as defined by the relationship (8),

and letS := RxΣopt, T := R − S. Then(T , S) solves Problem 2.
(iii) Finally, F(ηopt,Σopt) = F(Topt, Sopt).

REMARK 9.3 It is worth mentioning that once the existence of solutions to Problem 1 (hence
in particular to Problem 2) is proven by Theorem 8.1, then the above Theorem 9.2 would give
immediately the existence of solutions to Problem 3.

Proof of Theorem 9.2. Suppose thatη is an admissible transport such thatη-a.e.θ ∈ Θ is a simple
arc (note that by Proposition 9.1 this is the case whenever(η,Σ) solves Problem 4) andΣ ⊂ Rn is
a Borel set. Then, lettingR := Tη as defined by (8),S := RxΣ andT := R − S, we see that the
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couple(T , S) of flat chains satisfies (3) in view of Theorem 6.2. Further, by the same theorem,

M(S) = µR(Σ) 6
∫
Θ

M([[θ ]]xΣ)dη(θ) =

∫
Θ

H1(θ ∩Σ)dη(θ),

M(T ) = µR(Rn \Σ) 6
∫
Θ

M([[θ ]]x(Rn \Σ))dη(θ) =

∫
Θ

H1(θ \Σ)dη(θ),

and henceAM(T ) + BM(S) 6 G(η,Σ). On the other hand,M0(S) 6 H1(Σ), and hence
F(T , S) 6 F(η,Σ).

Suppose now that the couple(T , S) of flat chains of finite mass satisfies (3), and further thatS

is rectifiable and that bothT , S andT + S are acyclic, whileµT andµS are mutually singular (note
that according to Theorems 10.1 and 10.2, the solutions to Problem 2 belong exactly to this class of
couples of flat chains). Thenη := ηT+S as defined by Theorem 6.3 satisfies

η(0) = (∂(T + S))+ = ϕ+
− ϕ+

∧ ϕ−,

η(1) = (∂(T + S))− = ϕ−
− ϕ+

∧ ϕ−.

LetΣ := ΣS as defined by Lemma 7.1. ThenµS is concentrated onΣ . Hence, settingR := T +S,
one getsS = RxΣ , T = Rx(Rn \ Σ). Lettingη be such thatR = Tη as defined by Theorem 6.3,
we deduce from Proposition 6.8 that

M(S) = µR(Σ) =

∫
Θ

H1(θ ∩Σ)dη(θ),

M(T ) = µR(Rn \Σ) =

∫
Θ

H1(θ \Σ)dη(θ),

and henceG(η,Σ) = AM(T ) + BM(S). Further, from the definition ofΣ one hasM0(S) =

H1(Σ), and henceF(η,Σ) = F(T , S), which concludes the proof. 2

10. Qualitative properties of optimal currents

Here and below we always suppose the existence of a couple(T , S) of real one-dimensional flat
chains of finite mass satisfying (3) such thatF(T , S) < +∞ (which means that the minimization
Problem 1 is nontrivial). We further also suppose that either the penalization functionH is concave,
or δ = 0.

10.1 Acyclicity

One may now state the following easy result.

THEOREM 10.1 Let(T , S) be a pair of one-dimensional real flat chains of finite mass. Then there
is a pair(T ′, S′) of acyclic currents such thatT ′ 6 T , S′ 6 S, F(T ′, S′) 6 F(T , S) and∂(T ′

+S′) =

∂(T + S). Moreover,

(i) if A > 0 andT is not acyclic, thenF(T ′, S′) < F(T , S);
(ii) if either B > 0 orH is strictly increasing, andS is not acyclic, thenF(T ′, S′) < F(T , S);

(iii) if A > 0, and eitherB > 0 orH is strictly increasing, whileT +S is not acyclic, thenT ′
+S′

is acyclic, andF(T ′, S′) < F(T , S).
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In particular, if the pair(T , S) solves Problem 1, thenA > 0 implies acyclicity ofT , and either
B > 0 or strict monotonicity ofH imply acyclicity ofS, while if bothA > 0, and eitherB > 0 or
H is strictly increasing, thenT + S is acyclic.

Proof. If T (resp.S) is acyclic, it is enough to setT ′ := T (resp.S′ := S). Otherwise in view
of Proposition 3.12,T (resp.S) contains a cycleC 6= 0 such that the currentT ′ := T − C (resp.
S′ := S − C) is acyclic. By Lemma 3.7 one hasMλ(T ′) < Mλ(T ) (resp.Mλ(S′) < Mλ(S)) for
all λ ∈ (0,1]. Therefore, as∂T ′

= ∂T (resp.∂S′
= ∂S), we get∂(T ′

+ S′) = ∂(T + S), and
F(T ′, S′) 6 F(T , S) (with strict inequality in cases (i) and (ii)).

We now prove (iii). According to Lemma 4.6 one may assume without loss of generality that
µT ∧ µS = 0, i.e. there is a Borel setE ⊂ Rn such that

T = T xE, S = Sx(Rn \ E).

If T + S is not acyclic, then by Proposition 3.12 there is a cycleC 6= 0,C 6 T + S, such that the
currentT + S − C is acyclic. Denoting

T ′ := T − CxE, S′ := S − Cx(Rn \ E),

we getT ′
+ S′

= T + S − C, and hence∂(T ′
+ S′) = ∂(T + S). On the other hand,C 6 T + S

implies
CxE 6 (T + S)xE = T .

By Remark 3.6 one hasT ′ 6 T . In the same way,S′ 6 S, and hence, in view of Lemma 3.7,
F(T ′, S′) < F(T , S). 2

It is worth remarking that with the help of Theorem 7.4 one can easily find estimates on the masses
of solutions to Problem 1.

10.2 Rectifiability

The following result is an easy consequence of Theorem 2.1.

THEOREM 10.2 Let(T , S) be a pair of real one-dimensional flat chains of finite mass satisfying
F(T , S) < +∞. Then the following assertions hold:

(i) if A 6= 0 andα < 1, thenT is rectifiable;
(ii) if either B 6= 0 andβ < 1, orH is unbounded andδ < 1, thenS is rectifiable.

In particular, the above assertions are valid for every optimal pair solving Problem 1.

Proof. We haveF(T , S) < +∞. WhenA 6= 0 one therefore hasMα(T ) < +∞, and hence (i)
follows from Theorem 2.1. Analogously, ifB 6= 0, thenMβ(S) < +∞, so that rectifiability ofS
follows from Theorem 2.1 whenβ < 1. Finally, ifH is unbounded, thenMδ(S) < +∞, and hence
rectifiability of S follows again from Theorem 2.1 whenδ < 1. 2

10.3 Properties of support

We first show the existence of minimizing couples(T , S) solving Problem 1 such thatT andS
are concentrated on disjoint sets. Here and below solvability of Problem 1 will always be tacitly
assumed.
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PROPOSITION10.3 There is a minimizing couple(T , S) solving Problem 1 suchµT ∧µS = 0. In
particular,H1(ΣT ∩ΣS) = 0. Further, if either of the conditions (i)–(v) of Lemma 4.7 holds, then
the above property is true for every minimizing couple(T , S) solving Problem 1.

Proof. Follows immediately from Lemma 4.6. 2

We are now able to prove the following assertion which says that whenever the penalizationH is
concave, then there is an optimal pair(T , S) of flat chains solving Problem 1 as follows: there is
a thresholdd > 0 such thatT is concentrated on{x : θT+S < d}, while S is concentrated on
the set{x : θT+S > d}, and in certain cases every optimal pair satisfies such a condition. In other
words, recalling thatS stands for the flow of people using the transportation network, whileT stands
for that of people moving by their own means, it means that the transportation network has to be
constructed in the set of points where the densityθT+S of the total flow of people is greater than the
thresholdd.

THEOREM 10.4 (Bathtub principle) Assume thatH is concave and unbounded, and let(T ′, S′) be
any solution to Problem 1 havingµT ′ ∧ µS′ = 0 (once Problem 1 is solvable, the existence of such
a pair is guaranteed by Proposition 10.3). Then there exists an optimal pair(T , S) of flat chains
solving Problem 1 such thatµT ∧µS = 0 and under either of the conditions (i)–(iv) of Lemma 10.6
(with C := H ′

−(Mδ(S′)), whereH ′
− stands for the left derivative ofH ),

θS(x) = θT+S(x) > d for H1-a.e.x ∈ ΣT+S,

θT (x) = θT+S(x) < d for H1-a.e.x ∈ ΣT+S,

for some constantd > 0 (moreover,d > 0 under either of the conditions (i′)–(iii ′) of Lemma 10.6
below). In particular, ifS is rectifiable, thenS is concentrated on{x : θT+S(x) > d} andT is
concentrated on the set{x : θT+S(x) < d}. Moreover, the above properties hold for all optimal
pairs(T , S) satisfyingµT ∧ µS = 0 if in addition one assumes thatH is strictly concave.

Proof. We first note that we may restrict ourselves to the caseS′
6= 0, since otherwise it is enough

to chooseT = T ′, S = S′ andd := M(∂T )/2 in view of Theorem 7.3. Now the existence of an
optimal pair of flat chains solving Problem 1 follows immediately from Lemma 10.5 below (for
the assertion in the case of rectifiableS one has just to note that in this case one may considerS

concentrated onΣS ⊂ ΣT+S). 2

The following assertions have been used in the above proof.

LEMMA 10.5 Let(T , S), S 6= 0, be a pair of flat chains of finite mass satisfyingµT ∧ µS = 0,
and suppose the functionH is concave. Under either of the conditions (i)–(iv) (resp. (i′)–(iii ′)) of
Lemma 10.6 there is a constantd > 0 (resp.d > 0), depending only onα, β, δ, A, B andC ∈

[H ′
+(Mδ(S)),H ′

−(Mδ(S))], whereH ′
± stand for the left and right derivatives ofH respectively, and

there is a pair of flat chains(T ′, S′), such thatT ′
+S′

= T +S,µT ′ ∧µS′ = 0,F(T ′, S′) 6 F(T , S),
and

θS′(x) = θT ′+S′(x) > d for H1-a.e.x ∈ ΣT ′+S′ ,

θT ′(x) = θT ′+S′(x) < d for H1-a.e.x ∈ ΣT ′+S′ .
(48)

Moreover, ifT (resp.S) is rectifiable, then so isT ′ (resp.S′).
Furthermore, if the functionH is strictly concave, and one of the properties (48) does not hold

for T , S in place ofT ′, S′, then one can find a pair(T ′, S′) as above withF(T ′, S′) < F(T , S).
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Proof. In view of the assumption onC we have

H(Mδ(S)+ t) 6 H(Mδ(S))+ Ct for all t > −Mδ(S),

with strict inequality whent 6= 0 andH is strictly concave (note that in the latter caseC 6= 0
in view of the strict concavity ofH ). Consider the functionf : R+

→ R defined by the formula
f (t) := Atα − Btβ − Ctδ. By Lemma 10.6 there is ad > 0 such thatf (t) > 0 whent > d, and
f (t) < 0 whent ∈ (0, d). Moreover,d > 0 if either of conditions (i′)–(iii ′) of Lemma 10.6 holds.
Consider the sets

Σ+ := {x ∈ ΣT+S : θT (x) > d}, Σ− := {x ∈ ΣT+S : 0< θS(x) < d}

(with Σ− := ∅ if d = 0). Since the densitiesθT andθS are Borel functions,Σ± are Borel sets so
that the currents

R+
= T xΣ+, R−

= SxΣ−,

T ′
= T − R+

+ R−, S′
= S − R−

+ R+

are well defined, andT ′
+ S′

= T + S. Observe that the rectifiablity ofT ′ (resp.S′) follows from
that ofT (resp.S) since bothR+ andR− are rectifiable in view of Lemma 7.1. We now show that
F(T ′, S′) 6 F(T , S), with strict inequality ifH is strictly concave, and one of the properties (48)
does not hold forT , S in place ofT ′, S′ (all the other announced properties of the pair(T ′, S′) are
immediate). SinceR+ 6 T , R− 6 S, whileµT ∧ µS = 0, we have

Mα(T ′) = Mα(T − R+
+ R−) = Mα(T )− Mα(R+)+ Mα(R−),

Mβ(S′) = Mβ(S − R−
+ R+) = Mβ(S)− Mβ(R−)+ Mβ(R+),

Mδ(S′) = Mδ(S − R−
+ R+) = Mδ(S)− Mδ(R−)+ Mδ(R+),

and therefore

F(T ′, S′) 6 F(T , S)− AMα(R+)+ AMα(R−)

−BMβ(R−)+ BMβ(R+)− CMδ(R−)+ CMδ(R+). (49)

Recalling that by Lemma 7.1 the setsΣ± are countably(H1,1)-rectifiable, we get

F(T ′, S′) 6 F(T , S)−

∫
Σ+

(AθαT (x)− Bθ
β
T (x)− Cθ δT (x))dH1(x)

+

∫
Σ−

(AθαS (x)− Bθ
β
S (x)− Cθ δS(x))dH1(x)

= F(T , S)−

∫
Σ+

f (θT (x))dH1(x)+

∫
Σ−

f (θS(x))dH1(x) 6 F(T , S). (50)

Moreover, if the first property of (48) does not hold forT , S in place of T ′, S′, then∫
Σ− f (θS(x))dH1(x) < 0, and hence the second inequality of (50) is strict. Further, if the second

property of (48) does not hold forT , S in place ofT ′, S′, then either

H1({x ∈ ΣT+S : θT (x) > d}) > 0,
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or else
H1({x ∈ ΣT+S : θT (x) = d}) > 0.

In the former case
∫
Σ+ f (θT (x))dH1(x) > 0, and hence again the second inequality of (50) is

strict. In the latter case one still hasR+
6= 0, and we may consider without loss of generality

H1(Σ−) = 0 (since otherwise the strict inequalityF(T ′, S′) < F(T , S) has already been proven),
so thatR−

= 0. Therefore the inequality in (49) becomes strict whenH is strictly concave (because
Mδ(R+) 6= 0), and hence the first inequality of (50) is strict, which concludes the proof. 2

LEMMA 10.6 Letf : [0,+∞) → R be defined by

f (t) := Atα − Btβ − Ctδ

with α, β, δ ∈ [0,1] andA,B,C > 0. Suppose also that either of the following conditions hold:

(i) α > β ∨ δ;
(ii) α = β > δ andA > B;

(iii) α = δ > β andA > C;
(iv) α = β = δ andA > B + C.

Then there is ad > 0 such that

f (t) > 0 if and only if t > d or t = 0.

Moreover,d > 0 under either of the following conditions:

(i′) (i) holds and eitherB 6= 0 orC 6= 0;
(ii ′) (ii) holds andC 6= 0;

(iii ′) (iii) holds andB > 0.

Proof. Case (i). Supposeβ > δ (the other case being symmetric). Dividing bytδ, we get

f (t) > 0 if and only if g(s) := Asσ − Bs − C > 0,

wheres := tβ−δ, σ := (α − δ)/(β − δ). Noticing thatσ > 1 in the case we are considering, we
see that the derivativeg′(s) = Aσsσ−1

− B is nondecreasing (resp. strictly increasing ifA > 0).
Hence,g is convex (resp. strictly convex), and asg(0) = −C 6 0 andg′(0) = −B 6 0, we get the
existence of somēs > 0 such thatg(s) > 0 if and only if s > s̄, while s̄ > 0 if eitherC > 0 or
B > 0. It is then enough to setd := s̄1/(β−δ).

Case (ii). Dividing by tδ, we infer thatf (t) > 0 if and only if

(A− B)tα/δ − C > 0,

which means that one may taked := Cδ/α/(A− B).

Case (iii). This is completely analogous to case (ii).

Case (iv). Dividing by tδ, we find thatf (t) > 0 if and only if

(A− B − C)tα > 0,

which meansd = 0. 2



OPTIMAL TRANSPORTATION NETWORKS AS FLAT CHAINS 435

Now we are able to prove that under natural conditions on problem data, the optimal currentS can
be chosen to be concentrated on a closed set.

THEOREM 10.7 Suppose thatH is concave and unbounded and condition (ii) of Theorem 10.2
holds. Under either of the conditions (i) or (ii) of Lemma 10.6 there exists an optimal pair(T , S)

solving Problem 1 such thatS is a rectifiable current representable asS = θ [[Σ ]], whereΣ ⊂ Rn
is a closed countably(H1,1)-rectifiable set andθ ∈ L1(H1xΣ) is u.s.c. withθ(x) > d for H1-a.e.
x ∈ Σ and for somed > 0. Further, if either of the conditions (i)–(v) of Lemma 4.7 holds, whileH
is strictly concave, then the above assertions are true for all optimal pairs(T , S) solving Problem 1.

Proof. Let the pair(T ′, S′) solve Problem 1, whileµT ′ ∧ µS′ = 0 (once Problem 1 is solvable,
the existence of such a pair is guaranteed by Proposition 10.3). We may assumeS′

6= 0 (otherwise
there is nothing to prove, since we may take, for instance,S := S′, θ ≡ 1 andΣ := ∅). Note now
that since the assumptions (i) or (ii) of Lemma 10.6 hold, whileC := H ′

−(Mδ(S′)) > 0 in view of
the assumptions onH , by Theorem 10.4 combined with Theorem 10.2 we know that there exists a
d > 0 and an optimal pair(T , S) solving Problem 1 and satisfyingµT ∧ µS = 0, such thatS is
rectifiable and concentrated on the setΣS = {x : θT+S(x) > d}.

Let η be given by Theorem 6.3 so thatT + S = Tη. By Lemma 7.2(ii), taking into account the
acyclicity ofT + S one has

H1({x : θT+S(x) 6= aη(x)}) = 0.

HenceH1(ΣS 4Σ) = 0 whereΣ := {x ∈ Rn : aη(x) > d}, andΣ is closed sinceaη is u.s.c. by
Lemma 7.2(i). ThereforeS = aη[[Σ ]], as desired. To conclude the proof, it remains to observe that
under either of the conditions (i)–(v) of Lemma 4.7 every optimal pair(T , S) solving Problem 1
satisfiesµT ∧µS = 0, while ifH is strictly concave, then every such pair will haveS concentrated
on {x : θT+S(x) > d}, and hence will satisfy the desired conditions. 2

It is worth mentioning that Theorem 10.7 is only valid under concavity assumptions onH . In fact,
in [9] it has been shown that even whenA = 1,B = 0, but

H(t) :=

{
0, t 6 l,

+∞, otherwise,

then for some measuresϕ+, ϕ− Problem 3 may admit no solutionsΣ which are closed sets. In view
of Theorem 9.2 this means that no solution(T , S) to Problem 1 withα = β = 1, δ = 0 andA, B
andH as above has the property stated in Theorem 10.7, i.e.S = θ [[Σ ]], whereΣ ⊂ Rn is a closed
countably(H1,1)-rectifiable set, andθ(x) > 0 for H1-a.e.x ∈ Σ .
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