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Optimal transportation networks as flat chains
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We provide a model of optimization of transportation networks (e.g. urban traffic lines, subway
or railway networks) in a geographical area (e.g. a city) with given density of population and
that of services and/or workplaces, the latter being the destinations of everyday movements of the
former. The model is formulated in terms of the Federer—Fleming theory of currents, and allows us
to get both the position and the necessary capacity of the optimal network. Existence and some
qualitative properties of solutions to the relevant optimization problem are studied. Also, in an
important particular case it is shown that the model proposed is equivalent to another known model
of optimization of a transportation network, the latter not using the language of currents.

1. Introduction

Let o, ¢~ stand for finite Borel measures with compact suppoiRfnand of equal total mass
eT(R") = ¢~ (R"), the former representing the density of population, the latter the density of
workplaces or services in some geographical area (e.g. a city). The aim of this paper is to provide
a reasonable model of choosing a “transportation network” (e.g. the set of subway, or, generally
speaking, urban traffic lines) in a city characterized by the distributighsThe network to be
chosen has to facilitate the transportation of the population to the services. The model we consider
is based primarily on the Monge—Kantorovich theory of optimal mass transport, but is expressed in
terms of the Federer—Fleming theory of currents. Apart from the fact that the language of currents,
as we will show later, is extremely natural for such urban planning problems, it also allows one to
formulate the models which take into consideration the degree to which the pattern of behaviour
of the population is “individualistic”. Such models allow one as well to find naturally not only the
position of the network to be constructed, but also the network capacity which is intrinsic in the
model. Below we discuss in more detail the formulations of the models studied in this paper.
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1.1 Transport problems

The classical Monge—Kantorovich optimal transportation problem consists in finding the “optimal”
way of transportings™ to ¢~. One of the many equivalent formulations of the problem reads as
follows [8,[1]: find a finite Borel measurgqp: (called a transport density) and a Borel measurable
unit vectorfieldvoptin R” (called a field of transportation directions) which minimizes the total mass
w(R™) among all couplesgu, v) as above satisfying the Monge—Kantorovich transport equation

diviuy =" — ¢~

in the sense of distributions.

One might easily reformulate this problem using the language of the Federer—Fleming theory
of currents. In this case we identify®™ with zero-dimensional flat chains. The corresponding
formulation would readfind a flat chainTop minimizing the total mas®(7) among all one-
dimensional real flat chaing satisfying

aTZ(p+—g0_. (1)

Clearly, once one find9opt = Tryy A UTpps 1€ Tryy IS the orientatio_n OfTopt While Koy 1S
the underlying measure, one getgpt = K Topt andvopt = Topts and, vice versa, if one knows
([/Lopt, Uopt), then one getgopt = Uopt AN [/Lopt.

X1 X1

X2 X2

(@) (b)

Fic. 1. Solutions to the Monge—Kantorovich transport problem with:= 8x, +8x, andep™ = 28, inthe case (ay = 1
and (b)x < 1.

The above Monge—Kantorovich problem formulated in terms of currents admits a far reaching
generalization in which one minimizes a generitnassM* (for some givern € [0, 1]) of the
currentT instead ofVl. The general formulation reads as folloviisd a flat chainTop; minimizing
the-massM®(7') among all one-dimensional real flat chaifisof finite mass satisfyinff). The
background idea of this generalization is given by the following exampleptet= §,, + 8, be
the sum of two Dirac masses apd := 2§, be just one Dirac mass where the poipisx, andy
are positioned as in Figufg 1. Then the solution of the classical problem (i.exwitli) is given
by the one-dimensional real polyhedral chain in Fiddre 1(a), i.e. the transportation occurs along
the segments connecting the source paintandx, with the destinatiory. However, the solution
for @ < 1 looks as in Figurg]1(b). In other words, the role of the parameisrto make it more
convenient for people leaving the source points to make together part of their trip to the destination
instead of moving “individually”. If one interprets the solutidigy: as an optimal transportation
network which provides the movementwf to ¢, then clearly it contains information on both the
directions of the movement and on the capacity of the network at each point.
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In discrete settings such models were introduced and studied for communication networks
in [14], for pipelines in [[6] and for drainage networks in_[15]. They are quite natural in fluid
mechanics (and therefore also in the traffic flow models based on it) when modeling the flow of
liquids in tubes subject to Poiseuille’s law which implies the increase of resistance as the tube
becomes thinnef [11, 16| 5, 4]. In continuous settings such models were introduiced in [23] and in a
different though equivalent formulation in [16].

1.2 Optimal transportation networks

We now propose a more general model for choosing the optimal transportation network. In fact,
suppose that one has to provide a set of fast transportation routes (i.e. a subway and/or a set of
urban transportation lines) in a given city. We henceforth call such routes a transportation network.
The flow of people moving along these routes will be modelled by a one-dimensional real flat
chains$, while the flow of people moving without the use of those routes will be modelled by a one-
dimensional real flat chaiffi. It is reasonable to suppose that the cost of using the transportation
network (for example the time spent for the travel) is proportionalittS) with coefficientB > 0
and with some giver8 € [0, 1], while the cost of movement of the population without using the
network is proportional t&1¢ (T") with coefficientA > 0 and with some givea € [0, 1]. Then the
number

W(T, S) := AM*(T) + BMP(S)

represents the overall cost of everyday movement of the population. Clearly, the parameatdrs
B model the degree to which the behaviour of the population is “individualistic” (i.e. when both are
equal to one, one may assume that the behaviour is completely individualistic, while the smaller
they are, the more convenient it is for people to make part of their itinerary together). It is further
reasonable to assume that the cost of construction of the transportation network depends only on
M?(S) (in simplest applications one would even have- 0, i.e. the cost of construction depends
only on the length of the network) according to some given nondecreasing futtin™ — R™.
Therefore, the number

F(T.S) = W(T. S) + HM(S)) 2

represents the total expenses of everyday movement of the population together with the cost of
building the transportation network. One also assumes that the total flow of the popdlatich
transportsy™ to ¢, that is,

T+ =9t —¢. (3)

The following quite natural minimization problem describes the optimal choice of the transportation
network.

ProBLEM 1 Find a coupl&Topt, Sopy) Of one-dimensional real flat chains minimizi§gmong all
couples(7, S) of real one-dimensional flat chains of finite mass, satisfyjig (3).

Note that in the particular casB > A Problem[1 reduces to the version of the Monge-
Kantorovich problem studied in [23] and mentioned in Subse¢tign 1.1. Some qualitative properties
of particular solutions to such a transportation problem (namely those which can be obtained as
limits of solutions to appropriate approximating discrete problems) have been studied inl[25, 24].

In this paper we study the existence (Theofenh 8.1) as well as qualitative properties of solutions
of Problem[1 like acyclicity (Theorefn 10.1), rectifiability (Theorm 10.2) and properties of the
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support (Theorein 10.4). In particular, we provide conditions under which the relevant solutions are
rectifiable and have some subtler regularity properties, namely, when the c8ygergpresenting
the transportation network to be constructed may be represented as a rectifiable current concentrated
on a closed set (which gives the position of the optimal network) and with an u.s.c. density
(representing network capacity) strictly greater than some nonnegative threshold (Theojem 10.7).
As an illustration of the results obtained, we summarize in the theorem below the assertions
regarding Problem|1 under particular, though rather general conditions on problem data, which we
consider to be most interesting for applications.

THEOREM1.1 LetA > 0,a € [0,1), B > 0, H: [0, +00) — [0, +00) strictly increasing,
strictly concave and unbounded (iE(/) — +o0o asl — +o0), 8 € [0, a). Let alsoB € [0, «]

with A > B if B = «. Finally, suppose™ are finite positive Borel measures with compact support
in R* and such thap™(R") = ¢~ (R"). Then Problelﬁ]l admits a solution, i.e. there exists a pair
(Topt: Sopt) Of real one-dimensional flat chains which minimizes the functional

F(T, S) = AMY(T) + BMP(S) + H(M?(S))

among all pairgT, S) of flat chains with finite mass and such thar 4 ) = ¢+ — ¢~. Moreover
every such optimal paiiTopt, Sopt) €njoys the following properties:

() Sopt is a rectifiable current representable 8gpt = Osoul Zoptll, Where Zopt is a
compact and countablgH®, 1)-rectifiable set, and the density,, (x) is u.s.c. and satisfies
infxegopt OSopt(x) =0y > 0.

(i) Toptis arectifiable current disjoint frorfiypt in the sense that the measures, andugom are
mutually singular. Moreover sypg. 0r,,(x) < 6o, wheredr,, is the density offgpt.

(i) Topt+ Soptis acyclic.

Note that some of the above results are quite natural. In fact, consider for simplicity the case
whenH (1) = CI for some constant > 0. Then it is easy to observe that Prob[gm 1 reduces to the
version of the Monge—Kantorovich problem from Subsedtiof 1.1, but with the hi&ssstead of
M, where

g(t) 1= At A (Bt + C19).

In fact, if Roptis a flat chain solving this problem, then it is rectifiable due to the general rectifiability
theorem from([2R2], hencBqpt = 0 ] for some countablyH1, 1)-rectifiable set”, and therefore

M (Rop) = Af 6% di* + B/ 0F dH + c/ 0° dat
{xeX :0(x)<d} {xeX :0(x)>d} {xeX:0(x)>d}
= AM*(T) + BMP(S) + HM’(S)) = Z(T, S), (4)

whered > 0 is the unique number such th&t!* = Bd? + Cd’, and
T :=Ropi{x € ¥:0(x) <d}, §:=Rop{xeX:0(x)=>d}.

Conversely, if a pai(7, S) “almost” solves Problerp]1 (in the sense ti&T", S) is close to the
infimum of § on the class of admissible pairs of flat chains), then one can show that up to decreasing
the functional§ even more, one may assume b@tlandsS rectifiable, while denotin®® :=T + S,

one hask = #[ £] for some countablyH?*, 1)-rectifiable setZ, and

T=R{xeX:0(x)<d}, S=Rifi{xeX:0(x)=>d}
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(of course, with technical details omitted for the moment), and hence
ME(R) = (T, S).

Thus once the existence of a minimizeyy: for Mé on the class of real one-dimensional flat chains
R of finite mass satisfyingR = ¢+ — ¢~ is established (which can be done, for instance, using
the machinery developed in [23] fof* instead ofM#), we get the existence of a soluti¢f, S)

to Problenj 1L given by {4). The threshalgifrom Theoreni 1]1 is then given I8y := d. Of course,

the qualitative properties of the solution (e.g. thahay be assumed to be concentrated on a closed
set and have an u.s.c. density) are slightly more delicate even in this simple case.

We also show that in the particular case wher= 8 = 1 andé = 0 Problen{ ] is naturally
equivalent to a particular case of the problem studiedlin [9] of optimizing a transportation network
under the condition that the prices per unit distance of travelling with and without the help of the
transportation network are constant.

The background idea we use in most of the results is the representation of normal one-
dimensional currents through measures over the appropriately metrized set of Lipschitz-continuous
paths inR" (further calledtransporty. The idea of using such a representation when dealing
with one-dimensional currents goes back(tol [19], although in a different context such measures
were already used inl[7]. In the context of transportation and urban problems such measures were
employed in[[10[ 9] and, implicitly, also in [16] 5]. In fact, the description of mass transportation
through transports happens to be more precise than through currents.

2. Notation and preliminaries
2.1 Measures

Unless otherwise explicitly stated, all the measures we will be dealing with are nonnegative Borel
measures oR". We denote by A ¢y the maximum nonnegative Borel measursatisfyingu(e) <
¥ (e) A (e) for all Borele C R”. If ¢ is a signed measure, we denotedyits positive and negative
parts respectively.

We will say that a sequence of signed Radon measpiyeasonvergesn the narrow sens¢o
a signed Radon measugeif fRn fdo, — fR,, fd¢p asv — oo for every bounded continuous
function : R" — R.

Let®; (u, x) and®y.(u, x) stand for the upper and lowkrdimensional density of the measure
u atx € R”, that is,

w(By(x))

. , (By(x))
OF (1, x) :==lim sup% o oF

. O, x) = liminf
p—0F Wi P p—0%

2.2 Currents

For basic notation on currents we refer(tol[17, 18]. Here we recall rather briefly some principal facts
we will use. We will always deal with real currents, i.e. currents with real coefficients.i#f a
current, for every opety C R" we set

pr(U) = SupT (@) : suppw C U, [@]L= < 1}.
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We also seM(T') := ur (R") and call this quantity thenassof T'. It is well known that ifM(T) <
400, thenur defines a finite Radon measure dnds representable & = t7 A uy for some unit
simplek-vector fieldzr, in the sense that

T(w) = /R (tr (%), @(x)) dur (x)
for every regular differentiat-form w. In this case we set, for evetye L1(R"; 1),
T A6 (w) 2=/R 0(x)(tr(x), @ (x)) dur (x),

and7T.A = T A 14, where 14 stands for the characteristic function of a Borel deC R”. We

. . F .
say that a sequence of curreffisconverges to a currerft in the flat norm(written 7, — T) if
F(T, — T) — 0, where

F(T) = inf{(M(A) + M(B) : T = A + dB}.

Clearly, the topology induced by the flat norm is stronger than the weak topology of currents. We
say thatT" is anormal currentif M((T) < +o00 andM(dT) < +oo, andT is aflat chainif there is

a sequencér, } of normal currents such thd, Kl T.

We call T arectifiable currentif there exists a countablgH*, k)-rectifiable setz ¢ R” and
a functiong e L1(H*_X) (called themultiplicity or densityof T') such thatl' = 7 A 3¢ %,
while the unit simplek-vectorzr: ¥ — R” is anorientationof X, in the sense that fdtck-a.e.

x € X the vectorrr (x) defines the approximate tangent planéitat x. In this case we also write
T = 6[ X] when an orientation or¥ is prescribed. One can show thatTifis a flat chain with
M(T) < +oo, thenT is a rectifiable current if and only if for some countalfi, k)-rectifiable
setY c R" one hasl = TLX, or, in other wordspuy = urL X (seel[3, Theorem 4.5]).

A k-dimensionalsimplicial currentis a rectifiable current '], where ¥ < R" is a k-
dimensional simplex (i.e. a convex envelopekot 1 points, in particular, a segmentif = 1).
Finally, we say that a currefitis apolyhedral chairif it can be written as a finite linear combination
of simplicial currents supported on simplices with mutually disjoint interiors. Polyhedral chains (and
hence rectifiable currents) are a dense subset of flat chains with respect to the flat norm.

Given a rectifiable currerlf = 6[ X] and a concave nondecreasing functgnR* — R™
satisfyingg(0) = 0, we define thg-massof T by the formula

ME(T) ::/Eg(Q(x))dek(x).

In particular, ifg(¢) := ¢t for givena € [0, 1], then the above expression definesdhmassof T,
namely,

M*(T) := /Eea(x) dH* (x).

The functionaMé (in particularM®) is lower semicontinuous on rectifiable currents with respect to
the flat norm convergence (this fact can be proven by a technique used in the proof of Lemma 3.2.14
from [13]). Hence it can be extended to a lower semicontinuous functional defined on all flat chains.
In what follows, as is customary,we will wrifel instead ofMI* (and call it simplymass.
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The following easy consequence of the rectifiability theorem due to White [22, Theorem 8.1]
depends on the fact that there exist no nonconstant continuous&uf@el] — R having finite
a-length defined by the formula

1
9'—>/O (16'®)| +16"(1)|*) dr

whena € [0, 1).

THEOREM 2.1 (White) LetT be a current such thifl(7) < 4+oco andM*(T) < +oo for some
a € [0, 1). ThenT is rectifiable.

3. Subcurrents of flat chains

We will be frequently using the notion of a subcurrent of a given current as introduced in the
definition below.

DEFINITION 3.1 We say thafS is asubcurrentof 7, and writeS < T, whereT and S arek-
dimensional currents, whenever

M(T — §) + M(S) < M(T).
We now provide a series of remarks concerning the above definition.
REMARK 3.2 Since the inequality
M(T — S) + M(S) > M(T)
is always true S is a subcurrent of’ if and only if equality holds.
REMARK 3.3 If S < T andR < S, thenR < T. In fact,
M(T) = M(S) + M(T — §) = M(R) + M(S — R) + M(T — S) > M(R) + M(T — R),

because of the triangle inequal(T — R) < M(T — S) + M(S — R).

REMARK 3.4 LetT be a current with finite mass and letc R” be a Borel set. ThefiLe < T.
In fact,
M(T) = ur(R") = pr(e) + ur (R \ e) = M(Te) + M(T — T e).

REMARK 3.5 Notice thatS < T in generaldoes noimply
M*(T) = M*(T — S) + M*(S)

whena € [0, 1) (take for examplel" # 0, S = T/2). However, ifS = T.e for some Borel set
e C R", then the above relationship holds wheneVE(T) < +oo andM(T) < +oc. In fact,
in this case T turns out, in view of Theorefn 2.1, to be a rectifiable currEnt o[ X] for some
(HF, k)-rectifiable sett ¢ R" and som& € L1(H1 X). Then

M"‘(T):/ 16]% d* =/ |9|“d}ck+/ 16]% dHK = MY(T — S) + MY(S).
P X\e XNe
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REMARK 3.6 If T is a current with finite mass aSd< T, then for every Borel set ¢ R" one
hasSLe < TLe. In fact, by the triangle inequality

M(Tvre) < M(T — S)Le) + M(Sce),
M(T R" \ e) < M((T — S)LR" \ e) + M(SLR" \ ¢),

for every Borele ¢ R", while if we sum the above inequalities, then as a result we get an equality
sinceS < T. Hence the above inequalities are in fact equalities for all BorelR". In particular,
this also implies

UT = pur—-s + us, ()
and hencecs < pr. On the other hand, if5) holds, thén< T since

M(S) +M(T — 8) = us(R") + ur—s(R") = pr (R") = M(T).

The following lemma gives an easy characterization of subcurrents of flat chains of finite mass.

LEMMA 3.7 Let a currenf have finite mass and assurfie< 7. Then the representatidh =
7 A ur impliesS = 17 A our, us = our for some Borel functiorr : R” — R satisfying
0 < o < 1 (inotherwordsS = T A o). In particular, ifT is a rectifiable flat chain, then so $5
Further, if T is a flat chain, the*(S) < M*(T) for all « € [0, 1]. If, moreoverM(T — S) # 0
andM%(T) < +oo for somex € [0, 1], thenM®(S) < M%(T).

Proof. By Remarl3.p one hass < ur and hencews = o ur for some Borel functiows satisfying
0 < o < 1. Since according to the same rematk, s = ur —us, we alsogeiur—s = (1—o)ur.
Representing thefi = 7 A ugand7 — S = t7_g A ur—s, we get

T Apur =T =15 Apus +r—s Apur—s = (0ts + (L — 0)Tr-5) A AT

Hence,z7 = ots + (1 — o)tr_s, and sincerr, s andty_g are unit vectors, we observe that
whenevero (x) > 0 one hasts(x) = 77(x). In particularots = orr and hencers A ug =
s Aour = tr A our. This concludes the proof of the first claim.

If T is a rectifiable flat chain, them;r = o H*L X for some countablyH*, k)-rectifiableX c
R" and som& e LY(X; H*), while 7 (x) orients the approximate tangent planeXoat x for
H*-a.e.x € X.Onethen has = 7 A 00X X, which means thas is still rectifiable.

Finally, let T be a flat chain of finite mass. Suppase< 1 (otherwise the conclusion follows
trivially from the definition of a subcurrent) ardl*(7) < +oo (otherwise there is nothing to
prove). Then by Theore@.l, we know thais rectifiable, i.eT = 17 A 0HFL X with X, 0 and
t7 as above. Then

M*(T) = / 101 dHK.
X
But thenS = 17 A 00H*_ ¥ and hence
MY(S) =/ lo0|* dH* < M(T)
)

sincelo| < 1. Moreover, ifM*(T) < +oo, thenM®(S) = M*(T) only whenos = 1 H*-a.e.
over X, which meang” = S and hencé(T — S) = 0. |
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REMARK 3.8 If § < T'thenS < T + S. In fact, by Lemm& 3]7, one h&s= 77 Ao ur and hence
T+ S =1 A(A+o)ur sothaturys = (1+ o)ur, which means that' < T + S and hence
SLT+S.

LEMMA 3.9 LetA andB be subcurrents df. ThenA < A + B and consequentlp < A + B.
If, moreover,us A ug =0,thenA + B < T.

Proof. By Lemmg 3.} we hava = tr Acaur andB = tr Aogur WithO < o4 <1,0< 0p < 1.
ThenA + B = 11 A (04 + op)ur and henceuayp = s + up, which meansA < A + B.

If we also supposgaAupg = 0, we willhaveos+op < 1.Henceur_a_p = (1—os—op)ur.
Thereforeyua+p + ur—a—p = pr, whichmeansA + B < T. O

LEMMA 3.10 Let{S,}, {T)} be sequences of currents with < T;,, and suppose that boffy — §
andT, — T weakly as currents as — oo, while M(T},) — M(T). ThenM(T) < +oo implies
thatS < T andM(S,) — M(S).

Proof. Consider the sequen¢&, — S, } which converges t@ — S weakly in the sense of currents.
By the lower semicontinuity afl we know that
M(S) + M(T — S) < liminf M(S,) + liminf M(T, — S,)
k—o00 k—o00
< liminf[M(S,) + M(T, — S,)] < liminf M(T,) = M(T), (6)
k— 00 k—o00
i.e. S < T. Since we also havbI(T) < M(S) + M(T — S), the inequalities in[(6) are actually
equalities. Also, sinc®(T — §) < liminf, M(T, — S,) we obtainMI(S) = liminf, M(S,). This

is also true for every subsequenceSpf hence we have full convergence of the sequévi¢s, ) to
M(S) asy — oo. |

We now give the following definition which will be crucial in what follows.

DEFINITION 3.11 LetT be a current wittM(7') < 4o00. We say thatC is acycleof a currentl’
if C < T andaC = 0. We say that is acyclicif C = 0 is the only cycle off".

We are now able to prove the existence of a “maximum cycle” of every cuftemith finite
mass, i.e. a cycle such that— C is acyclic.

PrRoOPOSITION3.12 Every currenT with finite mass contains a cyotgésuch thaf” — C is acyclic.

Proof. Let

& =supgM(C) : C is a cycle ofT'}.
Clearlyé < +oo sinceM(C) < M(T) for every cycleC of T. Also& > 0 sinceC = 0 is always a
cycle of T.

Step 1. We claim that there exists a cydeof T such thatM(C) = . In fact, by definition of,
there exists a sequengé, } of cycles of T such that
M(CU) 2 E - 1/1)

ClearlyM(C,) < M(T) andM(aC,) = 0 so, up to a subsequence, the currgntsonverge to a
limit C with 9C = 0. By Lemmg 3.1 (applied witll, := T') the currentC is itself a cycle ofT
andM(C) = lim, M(C,) = &.
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Step 2. We only have to prove thgt—C is acyclic. LetD be any cycle off —C. SinceD < T-C
andC < Twealsohavd —C—D < T—CandT —C < T sowe get(Remafk3.3)-C—-D < T
andC + D < T. Hence we actually have

M(T) — M(C) = M(T — C) = MI(D) + M(T — C — D) = M(D) + M(T) — M(C + D),

i.e. M(C) + M(D) = M(C + D), which read<C < C + D. SinceC + D is a cycle ofT we have
M(C + D) < £ and aM(C) = & we haveM(D) = 0, i.e.D = 0. Since this is true for every cycle
D of T — C, we conclude thal' — C is acyclic. O

Finally, the following easy assertion will be used.

LEMMA 3.13 LetT be a polyhedrat-dimensional chain and It < T be its subcurrent such that
95 < aT. ThenS is itself polyhedral.

Proof. One hasl" = Zle 6;[ Z:], where X; € R”" are pairwise disjoink-simplices and; € R.
SinceS < T, by Lemmg 3.] one ha$ = T A o for some Borel functiom satisfying 0< o < 1.
Now o is constant over each simple®;, since otherwise one would not ha®8 < dT. Hence,
S = Zle 0;0;[ Z:], wherego; is the value ot over X, or, in other wordss is still polyhedral.C]

4. Concave functionals on flat chains
The following definition will be crucial.

DEFINITION 4.1 We say that the function@ — F(T) € [0, +oc] defined onk-dimensional real
flat chains with finite mass is

(i) concavgresp.strictly concaveif the function f: [—1, +00) — R defined by
f@):=F(T +1S)

is concave (resp. strictly concave) whenelgl) < +o0, S < T, S # 0;
(ii) nondecreasindgf
F(S) < F(T)

whenevers < T, S # T. We say thatF' is strictly increasingf under the same hypotheses we
get a strict inequality.

Notice that the above definition of concavity of the functiofatan be viewed as the usual
concavity of F' in the directions given by subcurrents. As an example noticeéMifawill be proven
to be concave in this sense, but not in the usual sense; in fact one clearly has

1 1 1 1
M“(ET + E(_T)> =M*0) =0< EM"‘(T) + EM“(—T) for everyT # 0.

REMARK 4.2 Supposé is a concave (resp. strictly concave) functional defined on real flat chains
of finite mass. IfH : [0, +00] — [0, +0o0] is a concave (resp. strictly concave) function, then the
functionalT +— H(F(T)) is concave (resp. strictly concave). In fact, assuni€) < +oo, S < T.

If the function f: [—1, +00) — R defined by the formulgf (t) := F(T + ¢S) is concave (resp.
strictly concave) and{ is itself concave (resp. strictly concave) then sélis f.
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REMARK 4.3 Clearly, a sum of concave functionals is still concave, and is strictly concave once
at least one of the summands is concave.

The following result shows that the functior¥dl” is concave forx € [0, 1] and strictly concave
fora € (0, 1).

LEMMA 4.4 Leta € [0, 1], let T be ak-dimensional real flat chain satisfyifgd(7) < +oo,
M¥(T) < +o0 and assumé < T. Consider the functiorf: [—1, +00) — R defined by

f@) :=MXNT +15).
The following properties hold:

(i) fisconcave;
(ii) if S # 0andx € (0, 1), thenf is strictly concave;
(ii) if @ =0, thenyf is constant or{—1, +00);
(iv) if « = 1, thenf is affine;
(v) if § =0, thenf is constant.

Proof. By Lemma[3.} one ha§ = o T for some Borel functionr satisfying 0< o < 1. For
t > —1onehas % to > 0andury;s = (14 to)ur, so that

M(T +tS) = M((1+ to)T) :/ 11+ to| dur =/ (1+ to) dugr = M(T) + tM(S),
Rn Ril

which proves the claim fax = 1. If furthere € [0, 1) andM*(T) < +oo, then by Theorerp 2]1,
T = 7 AOH¥L X for some countablyH*, k)-rectifiableX ¢ R” and some& e L1(H . X), while
7 (x) orients the approximate tangent planeta@t x for H*-a.e.x € X. Then, forr > —1, we get

M“(T+IS):/ |(1+ta)0|"‘dﬂ{k=/(1+to)°‘|9|°‘dﬂf",
X X

which is concave in for all « € (0O, 1), and strictly concave i§ % 0. Finally, for the case = 0
we have

f(t):MO(T+tS)=/ d((L+10)0) dﬂ{":/ ¢+ 10)p(H) dFH*,
P )

where
0, s=0,
() 1= {1, s > 0,
and hence
MYT —8), t=-1,
f(t) = 0( )
M™(T), t> -1,
which is constant for > —1 and concave far > —1. O

In the following lemmata, it is convenient to represent the functignial Problenf 1 ag(7, S) :=
F(T) + G(S), where

F(T) := AM*(T), G(S) := BMP(S) + H(M(S)).

We first formulate a very easy auxiliary result regarding concavity of the functiofiadsd G
defined above.
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LEMMA 4.5 The functionalF' is concave and nondecreasing. It is strictly concave whea O

anda € (0, 1). The functionalG is concave and nondecreasing (resp. strictly concave) whenever
either H is concave o8 = O (resp. eitheB # 0 andg € (0,1), oré € (0,1) and H is strictly
increasing and concave).

Proof. The assertion regardingfollows from Lemma 4.}4(i),(ii). By the same lemma the functional

S ~ BMPA(S) is concave (resp. strictly concave whéh % 0 and g € (0, 1)). Further,

if H is concave (resp. strictly concave and strictly increasing whea (0, 1)) we see from
Lemma[4.4(i),(il) and Remark 4.2 (recalling that is assumed to be nondecreasing) that the
functional S +— H(M?(S)) is concave (resp. strictly concave). Finally, §f = 0, then by
Lemmd 4.4(iii) the latter functional is constant. Putting all these facts together proves the assertion
onG. O

LEMMA 4.6 Let F and G be two concave, nondecreasing functionals on currents, and let
F(T,S) := F(T)+ G(S). LetT andS be real one-dimensional flat chains of finite mass such that
F(T, S) < +o0 and eitherT or S is rectifiable. Then there are two real one-dimensional flat chains
T’ andS’ of finite mass such thd’ +S' = T+ S, ur Aus = 0, supT’+S’) C suppT UsuppS
andg (7', ") < §(T, S).

If, moreover,T and S are not disjoint (in the sense thaf A us # 0) and eitherF or G is
strictly concave and strictly increasing, then one has the strict ineq@ality S') < (7, S).

Proof. Suppose first thaf is rectifiable, i.eT = 7 A7 HIL X7 (note thats; C R” is countably
(31, 1)-rectifiable, whilery (x) orients the approximate tangent planetatx for H{'-a.e.x € X).
Leto := ur A us. If o # 0 (otherwise one may just tak& := T, S’ := ), then there is a Borel
setY c X7 (henceX is also countablyJ(*, 1)-rectifiable) on whichs is concentrated. Observe
thato (X' \ Xg) = 0, because

ns(Z\ Xs) < us(Xr \ Xs) =0,

the latter equality being valid in view of the fact tha§(E \ Xs) = 0 for every countablyH?, 1)-
rectifiable sett ¢ R". Hence, we may assume without loss of generdlity- X's. We also have
o = O0HI X, whered = 01 A 6.
Set now
Yri={(x e X:15(x) = trr(x)).

SinceSL X is rectifiable, so isS_ X, which impliesH1(X \ (£*t U ¥7)) = 0. Hence, ag <«
Hl ¥, we get
o(Z\(ZTuxr)=0.

We first focus our attention o'~ and show that one may assume without loss of generality
thato (X ~) = 0. In fact, ifo (X ~) > 0, then setting? := 17 A KX, one getsk +# 0, while,
clearly,R < T and—R < S.Setnowl’ := T—R, S := S+R, and note thal +8 = T+S5. Further,
sinceT < T, we haveF(T) < F(T), and sinceS < S, we haveG(S) < G(S), and at least one of
the above inequalities is strict if eithéror G is strictly increasing. Thus we g&t(T', S) < F(T, S)
(with strict inequality if eitherF or G is strictly increasing). Hence, if one substitu®@gor 7' and
S for S, one will find that, by constructiom; (¥ ) = 0. Therefore, from now on we assume that
is concentrated o' ™, and thaty = X .

For each € [0, 1] define

i '=T+S Y —t(T' X+85%), S =S+TY—-A-)(T . X+S85.%)
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and notice thaf; + S, = T + S. AlsoT_.X + S. X is a subcurrent of botl + SL X andS +T_X.
Applying Lemma[4.J (withT + S.X instead of7, S + T.X instead ofS and 7T X + S.¥
instead ofR), we find thatt — (T}, S;) is concave (resp. strictly concave if eith€ror G is). It
follows thatr € [0, 1] — §(T;, S;) attains its minimum (resp. strict minimum) at eithee 0 or
=1 LetT' =T; 8 = S. ThenF(T',5) < F(T,S) (resp.5(T’, S") < F(T, S) under either
of the conditions (i)—(v) of Lemmp 4.7 and whéh. ¥ + S.¥ # 0, the latter being true when
ur A us > 0). To conclude the proof of the statement for rectifidb)eve only have to check that
ur A ng = 0. This is true by construction: in fact,if= 0, then

T'=T+S.Y, S=5-8SX

which means that g is concentrated oR” \ X, while T/ (R" \ X) = T, S'L(R" \ X¥) = § and
hence

pnr Ay < (e R\ 2)) A (gt R\ X)) = (7 R\ 2) A (pse (R"\ X)) =0.
The case = 1 is completely analogous, since then
T'=T-T.Y, S =S+T.%,

and henceu is concentrated outside af, while T/L(R" \ X) =T, S'L(R" \ X) = S.
The case whers is rectifiable, whileT may be arbitrary, is considered in a completely
symmetric way. |

LEMMA 4.7 LetF andG be two concave functionals defined on real flat chains with finite mass
and let§(T, S) := F(T) + G(S). Suppose thdf, S, R are given real flat chains of finite mass such
thatR < T andR < S. Then the function

0,15t (T —tR,S—(L—1)R)

is concave. Moreover this function is strictly concav® i~ 0 and eithelF or G is strictly concave.

In particular, if § is defined as in Problefr] 1, then the corresponding function is concave if either
H is concave, 08 = 0. In this case this function is strictly concaveRf # 0 and either of the
following conditions hold:

(i) §=0,x € (0,1) andA # 0,
(i) §=0,8€(0,1) andB # 0,
(iif) H is concaveg € (0,1) andA # 0,
(iv) H isconcaveg € (0,1) andB # 0,
(v) H is strictly increasing and concave, while= (0, 1).

Proof. From Definitior{ 4.1 we know that both the functions
t— F(T —tR) and t+— G(S —(1—-1R)

are concave for € [0, 1]. It suffices to refer now to Remdrk 4.3. The case wgiénas in Problern]1
follows then from Lemm&4l5. O
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5. Auxiliary lemmata
We will need the following auxiliary assertions on convergence of measures and currents.

LEMMA 5.1 Letg be a signed finite Borel measure with compact suppdiinand¢ (R") = 0.
Then there exists a sequer(@g} of finite weighted sums of Dirac measures such that

oF — =, ¢(R") =0.

Proof. Consider two sequencég '}, {y, } of finite weighted sums of Dirac measungg — ¢+
andy,” — ¢~ in thex-weak sense of measures with— oo (note that here;" andy,~ do not
denote the positive and negative parts of some signed megagsubat just some positive measures;
in fact, it may happen thagt," A v, # 0).

Consider the quantity, := ¢, (R") — ¢.F (R") and set

U=k b U=y if 1, > .
Ut =y, Uy =V, — A0 otherwise

In this way we havel;H (R") = ¢ (R"), while both measureg® are still nonnegative. Moreover
we notice thak, — 0 because/f(R") — ¢*(R") asv — oo andgp~ (R") — ¢+ (R") = ¢(R") =
0. In particular),60 — 0 and henc:sz}’}vi — ¢T x-weakly in the sense of measuresias> cc.

We now modi1‘y1/~fvi into ¢ so thatp A ¢, = 0. To achieve this result we defing, :=
¥, A Y, and

¢y = — .
Given anyx-weakly convergent (in the sense of measures) subsequefige}ofor its limit .« one
hasu < ¢* becauseu, < ¥F andyt — ¢* x-weakly in the sense of measuresias> oo.
Therefore, sincé* A ¢~ = 0, one hat = 0. Henceu, — 0, which implies thap™ — ¢+
x-weakly in the sense of measuresias> oo. On the other hand, by constructiapy A ¢, = 0
and hence the measuge = ¢;" — ¢, haqugE as the positive and negative parts. Moreover we
easily find that 3 3
oR") = ¢;FR") — ¢, R") = ¥,F R") — ¥, (R") =0,

concluding the proof. O

LEMMA 5.2 Lety, be signed measures @&’ such thaty,, — 0 x-weakly in the sense of
measures ag — oo, suppy, C K € R”, ¢,(R") =0 andi/ij(R”) < +o0. Then there exists a
real flat chaink, such thab R, = ¢, andM(R,) — 0 asv — oo. Moreover, ify, is a finite sum
of signed Dirac masses, then one may cha®seolyhedral.

Proof. Let R, provide the minimum off — M(T) among all flat chaing" satisfyingoT = .

In other words,R, solves the classical Monge—Kantorovich optimal transportation problem of
transportingy,” toy,” as stated in Subsecti@.l. THER,) is the Wasserstein distance between
¥.F to ¥, which metrizes the-weak topology of measures on the set of finite nonnegative Borel
measures over the compdactc R”. Hence M(R,) — 0 whenevety,, — 0 x-weakly in the sense

of measures as — oo. Itis also well known that if, is a finite sum of signed Dirac masses, then
R, is polyhedral. |

LEMMA 5.3 LetT be a one-dimensional real normal current. Then there is a sequence of one-
dimensional real polyhedral chaiffs which converges in the flat norm ®, and alsaVI(7,) —

M(T) and (3T,)* — (3T)* x-weakly in the sense of measuresias> oco. Moreover, if T is
acyclic, then one can choo%g to be acyclic too.
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Proof. Let{¢,} be a sequence of finite Borel measures constructed by means of lenjma 5.1 applied

. . . . F
to¢ := 0T. LetalsoS, be one-dimensional real polyhedral chains satisfging~ 7 andM(S,) —
M(T) asv — oo. By Lemmd5.P applied t¢, := ¢, — 35, there is a sequence of one-dimensional
real polyhedral chain®, with R, = y», andM(R,) — 0. Then the curreri, := S, + R, satisfies

the first part of the assertion. In fad, Ed T asv — oo andM(T,) < M(S,) + M(R,). Passing
to the limit we obtairMI(T) < lim, M(T,) < lim, M(S,) = M(T), and henc®(T,) — M(T) as
v — o0o. Also (3T,)* = ¢* — (3T)* asv — oo by construction.

If T is acyclic, we modifyT, in the following way. LetC, be the cycle ofT, given by

L . . F
Proposition) 3.12 such that, := T, — C, is acyclic. Up to a subsequenag, — C asv — oc.
Hence, by Lemmp 3.10(C,) — M(C) asv — oo andC is a cycle ofT'. Since the only cycle of

. . F
T is 0 we conclude tha¥l(C,) — 0, which means thaf, —~ 7 andM(7,)) — M(T) asv — oo.
It remains to observe thatl;) = 97, = ¢,, while by Lemma 3.137; is still polyhedral. O

6. Currents versus transports

We call two Lipschitz-continuous curves, 62: [0, 1] — R” equivalentif there is a continuous
surjective nondecreasing function (usually called “reparameterizatfori®, 1] — [0, 1] such that

61(1) = éz(qb (t)) for all r € [0, 1]. Let then® stand for the set of equivalence classes of Lipschitz-
continuous paths. In this way eaéhe ©@ can be clearly identified with some directed rectifiable
curve. We will frequently slightly abuse the language, identifying the elements @f. directed
rectifiable curves) with their parameterizations (i.e. Lipschitz-continuous paths parameterizing such
curves), when it cannot lead to a confusion. We consider th@ $etbe equipped with the distance

de (61, 62) = inf{ rr[15:1>1<] 161(1) — H2(1)| : 6; a parameterization &, i = 1, 2}, (7)
t€[0,

where| - | is the Euclidean norm ifR”". It is easy to see th&, — 0 in @ implies the Hausdorff
convergence of the respective traces, though the converse is clearly not true. It is further important to
mention that every subset 6f made by all paths with uniformly bounded length is clearly compact
with respect to the introduced topology. This implies that the whole metric gpaser-compact
(i.e. a countable union of compact sets).

We will also use the following notions. We say thakt @ is containedn a givend € © if for
some parameterizations efand6 and for some affine nondecreasipng [0, 1] — [0, 1] one has
0(¢(t)) = o(¢) for all r € [0, 1], which means thaé represents a “piece” dof. Finally, we call
6 € © anarcif it is injective.

To eachh € © we associate the integral one-dimensional curréiidefined by the formula

1

[6] (@) = fo 6(0), 0@ (1)) dr

(note that the integral does not depend on the parameterizationsof it is well defined on
equivalence classése ©). We also define thparametric lengttof 6 as

1
200) = / 16(2)| dr.
0
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Clearly,
M([e]) = sup[f]() : lwllee < 1} < £(6).
The following rather simple assertion is valid.

LEmMMA 6.1 The map € © — [6] is a continuous embedding of each subset of curves fBom
with uniformly bounded lengths into the space of integral one-dimensional currents endowed with
the weak topology of currents.

Proof. Let 6, € ® be curves with uniformly bounded length, i.&9,) < C < +oo for all
v € N. One has to prove th&, — 6 € ® asv — oo implies [0,] (w) — [0] (w) for everyC>
1-form w. Consider the parameterizations&fwith 16, < Cforalls e [0, 1]. Sinced, (), for
allr € [0,1] andv € N, are contained in some neighbourhoodothe sequenc®, } is weakly
compact inW1-2([0, 1]; R"). Hence, up to a subsequenég,— o weakly in W1-2([0, 1]; R") as
v — oo for somes € W12([0, 1]; R"), which in particular means that = 6, and hencé, — 6
weakly in L2([0, 1]; R") asv — oc. Hence,

1 1
[6.](w) = fo (6u(1), w6, (1)) dt — /0 (1), 0O @))) dt = [60] ()

asv — oo. O

Given a transporf on @ we define a functional}, on 1-forms as follows:

Ty(@) = /O [6] @) dn(®). ®)

The following theorem shows thd, is a normal current under natural assumptiongon

THEOREM®6.2 Lety be a finite Borel measure a® satisfying

[ 1D ane) <+
Then [8) defines a normal one-dimensional cur@rt 7, onRR" with
T = n(1) — n(0), where 5G):= )4, ;(0):=60G), i=0,1
In particular, ifn(1) A n(0) = 0, then
@) =nD), @T)” =n0).

Furthermore, for all Borel setsC R”",
Hr () < [@ M([6]e) dn(6). ©)

Proof. We have to prove thal' = T, is continuous ort*> 1-forms, has finite mass and finite
boundary mass. According to the definition of mass

M(T) :=suT (w) : lw(x)| < 1forallx € R"}
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and hence
M(T) < / M([61) dn () < +oc.
®

Analogously, the relationships

ur(U) =supT () : |o(x)| < 1, suppw C U for all x € R"},
M([0]LU) = sup[6] (») : |w(x)] < 1, suppw C U for all x € R"},

for every open saV C R” imply
wro< [ O] e n(®)
(4

for every open saet C R”, and hence, for every Borel setc R". Finally, the computation of the
boundary

1
aT(f)=T(df>=/ (/0 <Vf<9<r>>,9'<r>>dr) dn(6)

C

14
=/ (/ d—f09dt> dn(9)=/[f(9(1))—f(9(0))]dn(9)
o Of ®

(]

Z/Of(tl(Q)) dn(9)—f0f(to(9))dn(9)=/Rn J(x)d(n(1) —n(0))

concludes the proof. O
It is worth mentioning that the inequality ip](9) may be strict, as the following example shows.

EXAMPLE 1 Lete;, i = 1,2, stand for the unit vectors along axisin R2, and let®; c © be
a set of pathg in Q := [0, 1] x [0, 1] admitting a parameterizatidgi(t) = (z, x2), ¢t € [0, 1], for
somexs € [0, 1]. Definen by the formula

ni(e) == H(to(e N O1))

for all Borele C ©, whererg(9) := 0(0). Clearly,T;,, = e1 A L2_Q. Analogously, letting9> ¢ ©
be a set of pathg admitting a parameterizatiaint) = (x1, 1), ¢ € [0, 1], for somex; € [0, 1], and
definingn, by the formula

n2(e) == H(to(e N O2))

for all Borele C ©, we getT;, = e2 A L2 Q. Now, setting) := n1+n2, one hasly, = T,, + Ty, =
(e1 + e2) A L2LQ, and henc@(T;,) = +/2, while

/, M) dy = / M6]) dns + / M) drp = 2 > M(T,).
e ©1 ©2

We now prove a converse statement, i.e. that given a normal real one-dimensional €urrent
there is a transport satisfying?T = T,,.
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THEOREM6.3 Given a one-dimensional acyclic real normal curfiemtith compact support, there
exists a Borel measutgover ® such thatl’ = T;, as defined by[ {8) and

W) = [ Mo dn). (10)
Moreover, one can choogeso that
n(D) = @ON)*, n0 =@OT", (11)

where(dT)* are the positive and negative parts of the measiireespectively, while-a.e.0 € ©
is an arc.

REMARK 6.4 In view of Theorer 6]2, the claifn ([10) is equivalent to a formally weaker one,
M) > [ MAs) o).
e

Apart from the claim[(T}1), which is indeed used in what follows, the above theorem is in fact
contained (though in quite different terminology) in Theorem C from [19]. Since the relationship
between one-dimensional flat chains of finite mass and transports is of utmost importance in this
paper, we provide a complete and independent proof of this result.

Before proving the above Theor¢m6.3 in the general case, we need to prove a similar assertion
valid only for one-dimensional reg@blyhedralchains.

LEMMA 6.5 LetT be a one-dimensional real polyhedral chain. Then there exists a Borel measure
n over® such thatl' = T,, and

M(T) = /O M([6]) dn(6) = /O £0) dn(®) (12)

andn-a.e.d is supported on supp. Further, ifT is also acyclic, then one can choogeo that
n()=@7)". 90 =(@T)". (13)

If one does not requir¢ (13), one can chops® as to havé(1(9) < diam supd for y-a.e.f € ©.

Proof. Every one-dimensional real polyhedral chdirtan be written as a finite sum
T=Y 6T,
v

wheref, > 0 are real multiplicities, and’, are currents associated to oriented segm@&pnts=
[a., b,] (further callededgesof T') with nonoverlapping interiors.

Step 1. If T is a generic one-dimensional real polyhedral chain, consider the Lipschitz eyrves
defined byo, (¢) := (1 — t)a, + b, forall ¢ € [0, 1], and set

ni= 6,
v
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whereé,, is the Dirac measure concentratedagne ©. Clearly,
r@=3 [ fo-t.-a) =Y alalw = [ [ o). (14)
~ Jo, ” 5
i.e.T = T,. By construction one also h&é([c]) = £(o) for n-a.e.c € ©, and hence

M) = Y- by =l = [ @) i), (15)

while n-a.e.0 ¢ © is a segment) c suppT’, and hencé(1(9) < diam supg'.

Step 2 To consider the case of an acyclic we introduce some extra notation. We say that an
ordered finite collectiotT,,, ..., T,,) of edges, wher&,, := [a,,,b,;], i = 1,..., N, is apath
inT if b, = a,,, fori =1,...,N — 1. We say that such a path é¢tosedif also b,, = a,,.
Choosingdp > 0 to be the minimum of,, over allv, we notice that the current

N
Z 60T,
i=1

is a subcurrent of'. An acyclicT therefore contains no closed paths. Finally, given a path,in
we can extend iforward if there exists an edgg, of T such that:, = b,,,, andbackwardif there
exists an edg#, such thab, = a,,.

Let T be acyclic. We consider a path with a single edyesuch that; = 6p. We extend this
path as much as possible forward and backward. At each extension step the path is not closed,
hence the path is composed by different edges. Since there are only a finite number of dtiges in
this extension process must terminate in a finite number of steps. We obtain in thismagmaal

pathcontainingT;. Let(7,,, ..., T,,) be this maximal path and consider the corresponding current
N
Py = ZQOTV;'
i=1

Clearly, Py is a subcurrent of’ andd P = [b,,] — [a.,]. Since this path is maximal, there is no
edgeT, with endpointb, = a,,, and thus f,,] is a subcurrent ofd7)~. Analogously p,,] is a
subcurrent ofd7)*. One has

Po(w) = /Ol[cr]l (w) dno(o),

whereno = 6ods, is the Dirac measure with magg concentrated on the curv < ©,
representing the polygonal lineq, b1] o - - - o [an, by] (Starting ata; and ending aby). Hence
no(1) = (3 Po)* andno(0) = (3 Po) ™.

The currentT’ = T — Py is itself a polyhedral acyclic current with strictly fewer edges tifan
has, because the ed@gis not included in7’. Repeating the previous construction within place
of T we find a subcurrenP; representing a path ifi’ and such that

Pi(o) = [ [01@ dna(@)
[C)
with n1(1) = (3P)™ andn1(0) = (3P1)~. A finite number of such steps will clearly exhaust

and yield a decompositiofl = Zf:o P; such that the corresponding measyre= Zf:o P; has
the required properties. O
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We are now able to prove the general Theofer 6.3.
Proof of Theorerp 6]3. We divide the proof into two steps.

Step 1. Given an arbitrary one-dimensional real flat ch&irwe consider a sequen¢g, } of one-
dimensional polyhedral chains which convergesrtin the flat norm andvi(7,) — M(T) as
v — o0, hence in particulaM(7,) < M(7T) + 1 for all sufficiently largev € N. By Lemmg6.5,
for eachT, we find a transport, satisfying

Ty(w) = /O [61(@) @),  M(T) = fo M([6T) diy (6) = /O (@) dn )  (16)

for all > 1-formsw. SinceT is acyclic, we choosd, according to Lemma 5.3, i.e. so that
in addition (37,)* — (37)* in the x-weak sense of measures when— oo. In this case by
Lemmg 6.5 one can choose a transpprsatisfying additionally

m(l) = (8TU)+7 m(0) = (0T,)". (17)

In particular, the total masses(®) are uniformly bounded.
In view of (18) we have the estimate

/ £(0) dny = M(T,) < M(T) + 1.
@

Further, without loss of generality we may assume that the traces-afe.60 € ® are supported
on some compac2 C R". We may therefore invoke Lemnja §.7 below, showing that up to a
subsequence;, — n in the narrow sense of measures for some finite Borel meaguaad
moreover, that one may let — oo on both sides of the first relationship ¢f {16) obtaining
T (w) = T,(w) for eachC> 1-form w, and hence&l’ = T,. One shows in addition that ([11) is
valid by passing to the limit as — oo on both sides of (7).

Furthermore, note that

M(r,) = [ e dn.©) (18)
)
by the second relationship ¢f (16). Hence, as the functiéoral® — M([6]) is |.s.c., and hence

the integral in (18) is |.s.c. with respect to the narrow convergeneg,diy passing to the limit on
both sides of[(1I8) as — oo, we deduce

M(T) = lim M(7,) = lim f M[6T) diny (6) > / M6T) dn(®).
v v Je 2]

which provides[(T0) once one recalls Renfark 6.4.
We also consider for further use the functionsl: ® — R defined by

M’ () 2=/@€(9)dn. (19)

It is I.s.c. with respect to the narrow convergence of measures (because the parametrié(length
is l.s.c. in®). Hence, noting tha¥’(n,) = M(T,,) for eachy, by construction, we geM’(n) <
M(T) < +o0.
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Step 2 Finally, for T acyclic, we consider an minimizing M’ over the sef of all transports;’
satisfyingT = T,,, as well as[(T10) and (11). To prove the existence of sucprawcall that the latter
set of transports is nonempty in view of Step 1. Consider now a minimizing seq{erce E
for M’. By the final remark of Step 1 one h&&(n,) < C < +oo for someC > 0. Further, without
loss of generality we may assume that the traceg, ad.e.6 € @ are supported on some compact
£ c R". Hence by Lemmp 6|7, the sequerige} admits a subsequence (as usual, not relabelled)
converging to some transportin the narrow sense of measures, while= 7,,, — T, in the weak
sense of currents as— oo, and thusl' = T;,. Since by the same lemmga (i) — n(i),i =0, 1,
in the narrow sense of measures, alsd (11) holdg farile acting as in Step 1, we get the validity
of (IJ) for n. Summing up, we ge} € E. Recalling thatM’ is |.s.c. with respect to the narrow
convergence of measures, we infer thas a minimizer ofM’ overE.

Let f: ® — ® andg: ® — O be given by Lemm@}G below. Théh,, is a cycle ofT’ = T,.
Hence, T, = 0. This means f(0)] = O for n-a.e.6 € ©. We thus have §(0)] = [6] for n-a.e.
6 € ©®.HenceT,,, =T, =T andgsn € E, SO

M/ (g4m) = / €(2(0) dn(®) < / €0) dn(6).
@] e
Therefore, by the minimality of for M’, we geté(g(9)) = €(9), hencen-a.e.f € © is an arc,
which concludes the proof. O
The following technical assertions have been used in the proof of Th¢orgm 6.3.
LEMMA 6.6 (i) Thereis a mag: ® — © measurable with respect to all transports such that
f(0) is aloop (i.e. a simple closed curve) contained ia ® such that
1
L(f(0)) > > supé(o) : o is aloop contained iA}.
(i) Thereisamag: ® — ©® measurable with respect to all transports such that fér all® one
hast = g(@) U £(0) (as traces),{] = [g®)] + [ £ (], while
£(g(0)) < L)
unless is an arc, and finallyg(9) = 6 if and only if 6 is an arc.

Proof. We construct a map: ® — © satisfying claim (i) as follows. For eveyye ® andx € 6
we letC (6, x) stand for the set of curves containedistarting and ending atin the sense that

CO,x)={0e®:6(0)=0((1-1)s1+1s2)
for some 0< s1 < s2 < 1, O(s1) = 0(s2) = x}.

In casex ¢ 0 we defineC(6, x) to consist of just a single curv& given byé,(¢) := x for all
t € [0, 1], i.e. of a constant curve whose trace reduces to the single pditte thaty, € C (6, x)
for all x € R". Defined in this way, the multivalued map

@,x)e®xR"—> COH,x) CO

is u.s.c. (as a multivalued map), and hence Borel measurable. Therefore, recallibigéhat R
is I.s.c. one gets the Borel measurability of the single-valued map

A0 e®— supsupl(o):oeC@,x)}eR.

xeR7
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Clearly, 1 (9) is the supremum of the lengths of the loops contained Finally, we define

FiocO {o el Jcw. b > k(é))/Z} ce.
xeb
By the von Neumann—Aumann measurable selection theorern ([12, Theorems II1.22 and 111.23] or
[20, Corollary 5.5.8]) one can find a selectigh ® — © of the multivalued mapF which is
measurable with respect to all transportlearly, f () is as required.
Define nowg: ® — ® as a union of two curvilinear segments, by setting

8(0) :=[0(0), @) (O] o [f(O)(D),6(D)].

Clearly, g(9) is obtained by “cancelling” the loog (9) from 6. The properties o announced
in claim (ii) follow immediately sincef(g(0)) < €(6) — A(0)/2, while g(6) = 6 if and only if
f(0) =0, for somex € 6, i.e. whery is an arc. (]

LEMMA 6.7 Let{n,} be a sequence of nonnegative finite Borel measures®@wgith uniformly
bounded total masses, and $gt:= T;,. Assume that for some one-dimensional real flat clfain
with M((T) < +oo one hasl,, — T weakly in the sense of current(7,,) — M(T) asv — oo,
and

M' () 1=/ £@)dn, <C < +oo forallv eN,
6

and there is a compa& c R” such that for each € N, the traces of;,-a.e.f0 € @ are supported
in £2. Then there exists a transpartsuch that up to a subsequengg, —~ n (and in particular,
(i) — n@@),i =0, 1) in the narrow sense of measures. Furtiies: T;, if either of the following
two conditions hold:

(i) all n, are concentrated on some compact subsét (hdependent of), or
(i) T isacyclicand
M(T,) = f M([6]) dn,(#) forallv e N.
2)

Proof. Since for every > 0 one has

M'(ny) = /O @) dny = eny({€0) > c}),

we conclude
n({€@) > c}) < C/e.

Recalling now thafd € ® : £(0) < ¢, 6 C £2} is a compact subset éf, we see that the sequence
ny IS tight in the sense of measures. Hence, up to a subsequgnee;; asv — oo in the narrow
sense of measures for some finite Borel meagureer®. The convergence, (i) — n(i),i =0, 1,
asv — oo follows from the fact that a push-forward operator by means of a continuous function is
continuous with respect to the narrow convergence of measures.

In the case when (i) holds, i.e. ajl, are concentrated on some compact subseb pbne
immediately gets

T () = /OI[9]| (@) dny (0) — /OI[G]I () dn(0) = T)(®) asv — oo,

and hencd = T;,.
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Consider now the case when (ii) holds, and in particulagre not necessarily concentrated on
some (unique) compact subset®f We show first that

¢ (k) := limsup £©)dn,(®) — 0 ask — oo. (20)
v {£©0)>k)
In fact, otherwise there existsca> 0 such that for a subsequencegf(not relabelled) one has

/ £(6) dn, (0) > c.
(€©®)>v)

Consider them;, := 1,.{¢(6) > v}, andS, := T, . By Remar 6.p below, eac$, is a subcurrent
of T,,, and hence by Lemnja 3]10, up to a subsequefice; S weakly in the sense of currents as
v — oo, WhereS is a subcurrent of andM(S) > ¢. On the other hand, sineg — 0,

38, =n,(1) —n,(0)0 =0

weakly in the sense of measuresvas> oo, henced S = 0 and, by acyclicity off’, one getsS = 0,
giving a contradiction. Hence, the claim {20) is proven.
Fix now an arbitrary regular 1-forme, and for eacl® € ®, k € N set

[6](w), €6 <k,
0, otherwise

Ji (@) = :

One gets

/ [6] (@) dn, 8) — / fkw)dnv(e)‘ _ ‘ / [ﬂ(w)dnu(e)'
© e {€(0)>k}
< olloc / M([6]) diry (6)
{£(60)>k}

< lollso / £(6) dn, (6)
{€(0)>k}

= [lollco® (k).
Since for each fixed, by Lemmg®6.]L,

/@ fie(0) dn, () — /@ fe(@)dn(0) asv — oo,
we arrive at the estimate
[ £ 8®) ~ 100t < iminf [ 161 dn, (@) < imsup [ {61 i 6)
< [ @6 + ol ®.
Lettingk — oo in the above estimate and taking into acco[inf (20), we get
T)(w) — Szljp/@ fe(©) dn(0) = f@l[f?]l (w)dn(0) = Ty(w) asv — oo,

which yieldsT = T,,. O
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It is worth remarking that the requirement of acyclicity of the “limit currefitin (ii) of the above
Lemmd 6. is essential, as shown in the example below.

EXAMPLE 2 Consider the sequence of curvesRA admitting the parameterizatiofy, (r) =
(1+41¢/v)(cog2rvt), sin(2rve)), t € [0, 1], and definey, := (1/v)dp, be the transport concentrated
ond, € ® and having total mass/i. Define alsd(r) := (cog2xt), sin(2rt)) and lety := 8 be
the transport concentrated émvith unit total mass. Clearly, — 0 in the narrow sense of measures

. F ,
asy — oo (in fact, n,(®) = 1/v). On the other handl,,, — T, # 0 asv — oo. However, this
does not contradict Lemnjia §.7 because cleafly= 0, i.e.T, is a cycle.

We now concentrate our attention on the restriction to a given Borel set of the currents of the
formT =T,.

PROPOSITIONG6.8 LetT be a normal one-dimensional current anble a transport such that =
T, and

M(T) = /O M(I6]) dn ). (21)
Thenur = puge] ® n, i.e.
ur(e) = /O M8 e) dn(®). (22)
and moreover,
TLe(w) = fo [6] e(w) dn (@), (23)

for every Borel set C R”, where

[6] () = / {00, @) di

0=1(e)
(note that the latter integral is independent of the choice of a parameterizatipn of

REMARK 6.9 The relationshig (21) also implies that for every Beret ® the currentS := T,
is a subcurrent of . In fact, in this cas@ — S = T, .c, wheree‘ := ©\e¢, and thus, by Theore@.z,

M(S) < /o M([e]) dne®), M(T —9) < /O M([6]) dne ().
Hence, summing the above inequalities, one gets
M(S) + M(T = §) < /@M(I[Q]I) dn(0) = M(T).
Proof of Proposition 6.8. The claim [22) follows immediately since by Theorgm|6.2 one has
prie < [ Me1e dno)

for every Borel sek C R”, and according to[ (21) the latter estimate becomes an equality for
e .=R",
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Sinceur = pupey ® n, the convergencg, — g in LY(ur) asv — oo implies f, — g in
Ll(MM) for n-a.e.0 € @. We use this observation to prove the last cldinj (23). For this purpose let
{f,} be a sequence of smooth functions which converge io L1(u7) asv — oo. Sinceur has
finite total mass7 Le(w) = lim, T (f, A w). But

T(quw)=/O|[9]|(quw)dn(9) Z/o</e fu(E)(w(E),Te(é))dule](é)) dn(6).

As we just observed, foj-a.e.0 one has

f@fu(é)(w(é), (&) duge §) — /em (@(8), 70(8)) dugey (§) =: [0]ce(w)

asv — oo. Moreover,

ngu(é)(w(é),fe(é»du[e] (S)‘ < Ileloo'/efu dugel

and forn-a.e.f one hasfe fvdugey — wep(e) asy — oo. Hence,

< 2| ollooeper (e)-

’/@fu(é)@(é),f@(é))du[el

Since
/U upo (€ dn(9) < /U M([6]) din(6) < M(T),

the functionst — |f9 fulw, 1) dupey| are also bounded by a function in'(n). Hence by the
Lebesgue convergence theorem, we obtain the desired fegult (23). O

7. Mass estimates

We first state the following technical lemma which is practically contained in the proof of the
rectifiability theorem for currents.

LEMMA 7.1 LetT be ak-dimensional real flat chain with finite mass, and set
Or(x) == OF(ur,x), X7 :={xeR":0<6r(x) <400}
Then X7 is countably(H*, k)-rectifiable, and fof{*-a.e.x € ¥ one has
Op (U, x) = Oy (ur, X),

while
ur X = QT:}{kI_(ET nx)

for every countablyJ*, k)-rectifiable sets c R”.
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Proof. We first claim
g{kl_ET L@i=pur Xr.

In fact, ife C X7, then
00 . .
e= Uef, where e/ :={x € e: OF(ur,x) > 1/j},
j=1

and thusur (e) = 0 implies by [2, Theorem 2.56] the estimate
He)) < jur(e!) < jur(e) =0,

hencel*(e) = 0, proving the claim.
Assume now thate c X7 is purely (H*, k)-unrectifiable. Thenur(e) = 0 by [21,
Theorem 3.1], and hende* (e) = 0, which proves the countabié(*, k)-rectifiability of 7.
Observe now thap = 1x, ur, and hence
9B )
ur (Br(x))

asr — Ot for ur-a.e.x € Xr, and hence also fdi*-a.e.x € Xr. Since

e(Br(x)) _ @B, (x)) pur(B(x))

ok T ur(Br (1) aprk
we get
Of (9, x) = Of (ur,x) and O (@, x) = O(ur, X) (24)
for Hk-a.ex € X7.
We now claim
o < H zr. (25)

In fact, ife C X7, then
o0
e= Uej, where ¢; :={x ee: O (ur,x) < j}.
j=1

Hence J(*(e) = 0 implies by [2, Theorem 2.56] the estimate
ur(e) < 2 jit (e < 2 jotk(e) =0,

and thereforeu7 (¢) = 0, provingy <« H*L X7.
Since [25) implies/ (¢, x) = O« (e, x) for H*-a.ex € X7, we deduce fron{ (24) that

OF (ur, x) = Os(ur,x) for Hr-aex e Ir.

Finally, to show the last claim of the statement being proven, it is enough to prove it for an
arbitrary countably ¥, k)-rectifiable setC c R” satisfying*(X) < +oc. Clearly,

Lr(ZNEr) = (%) = / or dI~. (26)

Xr
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We now write
pur(Z\ Zr) = pur (X N{OF (ur, x) = +00}) + ur (X N{O; (ur, x) = 0}).

But

WO (ur, ) = oo = (V1O (wr. ) > j)) = inf HE(OF (er. ) > )
j=1

.1 N . . ne
< Irjlf ;MT({@k (ur,x) = jh < |?fMT(R )/j =0,

henceur{®} (ur, x) = +00})) = 0 by (25). On the other hand,

Hr(E N1{OF (ur, %) = 0) = pur((Jx € T 1 Of (ur, 1) < 1/j))

j=1
2k
=infur({x € 2 : 6} (ur,x) < 1/j}) <inf =H*(2) = 0.
J J ]
Putting the above estimates together, weiget> N X1) = 0, which together witH (36) concludes

the proof of the last claim. O
Given a transporf, we define theransiting masdunctiona, : R" — R by setting

ap(x) ==n({0 € ® 1 x € 6}).
In other wordsg,(x) measures the number of people passing through the painR”. We may
now state the following result.

LEMMA 7.2 LetT be a one-dimensional real flat chain with compact supporfMif) < +oo.
Let n be given by Theorein §.3 and & be defined as in Lemnja T.1. Then

(i) a,isu.s.c;
(i) if T is acyclic, therdr (x) = a,(x) for K -a.e.x € R™.

Proof. For eachy € R" define the function 1: ® — R by the formula

1 ifxeo,

1, = .
@) {O otherwise

Clearly, 1, is u.s.c. To prove (i), it is therefore enough to observe that

a(x) = /O 1. (o) dn(o)

and to apply Fatou’s lemma.
To prove (ii), it is enough to show that for an acyclicone has

(A) for each countablyH?, 1)-rectifiable setc ¢ R” one ha®)r (x) = ay(x) for Hlaexe X;
(B) Or(x) > a,(x)/2 for K -a.ex € R™.
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In fact, the set¥r is countably(H?, 1)-rectifiable by Lemml, and henég(x) = a,(x) for
H'-a.e.x € X7 by (A). On the other hand, fai!-a.e.x ¢ X7 one ha¥r(x) = 0, and hence
a,(x) = 0 by (B), which shows (ii).

We now prove (A) and (B). To show (A), recall that due to Theoferh 6.3;a®.0’ € @ is an
arc, for allo € ® one has

ur(o) = fo M([o'] o) dn(o”) = fo H o' No)dn(o’) = fo ( / Le(o”) dﬂ{lm) dn(o”)

2/(/ 1. (c") dn(a')) dﬂ{l(x)zfa,, drct.
o [C)] o

On the other hand, by Lemra7.1,

pr(o) = / Or dJ{t,

/GTdi}Clzfa,,diHl

for every Lipschitz curve . This clearly implies (A).
To prove (B) fixx € R" and lets > 0. Consider the sets

which proves

A(x):={c €® :x ea},
Ap(x) == {o € A(x) : M([o]LB,(x)) = p},
AL (x) == Ax) \ A, (x),
Cr(x):={0 €O :0(0) € B,(x)},
C,x) = {ce®:0() € By(x)},
Co(x) :=CF(x)NC, (x).

One has)(C5 (x)) = (fo,1)#n(B,(x)) = (0T)*(B,(x)) and hence
N(Cp(x)) < BT)T(By(x)) A (AT)(By(x)) — 0 asp — 0F.

In particular there exists > 0 such that)(C,(x)) < ¢ for everyp < 4.

In view of Theorenj 63y-a.e.c € © is an arc. Hence fon-a.e.oc € A(x) if eithero(0) ¢
B,(x) oro(1) ¢ B,(x) thenM([o].B,(x)) > p. This proves thai;(A;(x) \ C,(x)) = 0. Hence
n(A},(x)) < ¢, and consequently(A, (x)) = n(A(x)) — n(A,(x)) > ay(x) —¢.

To conclude, note that

M(T.B 1 1
M@B, () _ —/ M([o]cB,(x)) dn(o) > —/ M([o]cB,(x)) dn(o)
2p 20 Jo 20 Ja, )
S play(x) —¢)

2 = (an(x) —€)/2,

so that forK!-a.e.x € R" one ha®r(x) > (a,(x) — €)/2, and since this is true for evegy> 0,
the conclusion (B) follows. O
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THEOREM 7.3 If T is an acyclic one-dimensional normal current, then
1 1
07 (x) < EM(BT) for H*-a.e.x € R".

Proof. If T is an acyclic normal current, then from Theorferr| 6.3 onefhasT;, for some transport
1 such thai(0) = (3T)*. Then, asE7 is countably(J(*, 1)-rectifiable by Lemma 7|1, it follows
from Lemm(ii) thady (x) = a,(x) for H*-a.e.x € Ir. But

1
ay(x) < (@) < nOR") = ZM@OT).

and thus9r (x) < M(37T)/2 for H'-a.e.x € X7. On the other handi{!-a.e. onR" \ X7 one has
0r = 0 (since it has been shown in the proof of Le 7.1 A0 = +o0}) = 0), which
concludes the proof. |

The assertion below may be regarded as a version of the Sobolev—Roinequality for one-
dimensional real flat chains.

THEOREM 7.4 LetT be an acyclic one-dimensional real flat chain of finite mass and assume that
S < T.Then

MP(S) < Zﬁi_aMa(S)M(aT)ﬂ*“ foralla €[0,1], B € [o, 1].

In particular,
1
M(S) < 21—_aM“(S)M(8T)1_“ for everya € [0, 1].

Proof. By Theorenj 7.3 the claim is easily proven wheis rectifiableandT is normal. In fact, in
this case one may consid&r C X7, 6s < 0r. Therefore

0 B
MPA (S :/ 08 d = (M(@T 25/ <—S> drt
) 5 S (M(T)/2) 5 \M@7)/2

s (b N gao Ly pa
< (M(T)/2) /zs <M(8T)/2> dH! = zﬂiaM ($HM(@T)P~.

To prove the claim in the general case, it is enough to note that we may agsunmeotherwise
there is nothing to prove), and then the hypoth®8{§") < +oo providesM(S) < +o0, and hence,
by Theoren{ 2]LS is rectifiable. One may also suppdSHdT) < +oo (otherwise there is still
nothing to prove), which guarantees tliats normal. Hence the assertion follows. a

8. Existence of solutions

To illustrate the developed technique we prove the existence of solutions to Prgblem 1 in an
important particular case wheftf(-) is concave.

THEOREMS8.1 Let ¢* be finite nonnegative Borel measures with compact supporR’in
satisfyinge™ (R") = ¢~ (R"). Assume also the functioH to be concave, and (/) — +oo as

[ - 400, A >0, < 1, and eitherr > B Vv §,ora = 8 > §, butA > B. Then the functional
§ attains its minimum value on the set of paiis, S) of one-dimensional real flat chains of finite
mass which satisfy {3). In other words, in this case Proljlem 1 admits solutions.
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Proof. Assume the existence of a paifp, So) of one-dimensional real flat chains of finite mass
such thad(To + So) = ¢ — ¢~ and

$(To, So) < +o0

(otherwisef = +o0, and hence there is nothing to prove). Here and below for the sake of brevity
we denotep := ¢ — ¢~.

We may also assume thAt # +oo on (0, +00). In fact, in the opposite case Problgn 1 admits
a trivial solution(T, 0), whereT is a real flat chain minimizin§I* among all one-dimensional real
flat chains of finite mass satisfyirdd" = ¢.

We divide the proof into several steps.

Step 1 We first show the existence of a minimizing sequefi@, S,)} for the functional§ of
pairs of real rectifiable currents which satisfy the conditjgn (1), have uniformly bounded masses and
also satisfy conditiomr, A s, = 0.

Let {(T}, S})} be an arbitrary minimizing sequence ®which satisfies[{1). The§ (7}, S,) <
+00. In view of the assumption ol we haveM?(S/) < +oo, and hence one may apply
Theorenj 102 below, which gives rectifiability §§. SinceM®(7}) < +o0, according to the same
theorem alsd@, is rectifiable. In view of Lemm6 we may assume without loss of generality that

ur; A ps, = 0. In other words, for every € N there is a Borel sef, C R" such that
T,=T, E, S,=S,.(R"\E)).

According to Propositioh 3.12 there is a cy€le < T, + S, such that the currerft) + S;, — C, is
acyclic. Setting
T, =T,—CyLE,, S,:=8,—C,L.(R"\E,),

we getT, + S, =T, + S, — C,, and hence

3Ty +S,) = (T, +S) = ¢.
On the other hand, fror@, < T, + S|, one gets

Cy E, < (T, + S))LE, =T,.

Due to Remark 3|6, one h& < 7. Analogously,S, < S, and hence, applying Lemria B.7,
we getF(Ty, Sy) < F(T7, S)), i.e. {(T,, Sy)} is still a minimizing sequence for Probldﬁ]'n 1. Let
R, =T, + S,. Inview of acyclicity of R, we may apply Theorefn 7.4 to get

1 — 1 o n —Q
M(T,) < S M (TIM@R)'™ < S M (T)IgI R, (27)
taking into account thavl®(7,) < M*(7;) by Lemmg 3., sinc&, < T, and thatM(dR,) =
|[¢|(R™). In the same way we get the estimate

1 / ny1—
M(S)) < S5 MU (S)IRIRD . (28)

On the other hand, sing¥7,, S,) < §(To, So), for someC’ > 0 and for allv € N we have the
estimates
M*(T)) < C', M (S) <,
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becauset > 0 and the functoiff is unbounded. Combining the above estimates \ith (27)[ard (28),
we conclude that botli, andsS,, and hence alsf&,,, have uniformly bounded masskk

Step 2 Foreveryd > 0 and every real flat chaiR we let
Sa(R) == RL(XrN{Or =2 d}), Tu(R):=R—S4(R).

If C e [er(I\\/JI‘S(S)), H' (MP(S))], where H/_ are the left and right derivatives @f respectively,
and/ > 0, we also define

F[1, C)(R) := M*(T4(R)) + BMP (S4(R)) + H () + C(M’(S4(R)) — I).

Letd > 0be such thatir* > Bt? +C1® whenr € (d, +00), andAr® < Bt +Ct® whenr € (0, d)
(here and below we assuni@ d) := ¢ if d = 0). Then clearly

S(T4(R), S4(R)) = FIM’(S4(R)), CI(R), (29)

while
F(T4(R), S4(R)) < F[I,CI(R) foralll > 0. (30)

Consider a minimizing sequence for the functiogatonstructed in Step 1. Note that singe
is concentrated on some ball R", one may assume that &, and S, (and hence als®,) are
concentrated on the same ball (otherwise, projecting the latter currents to this ball will not change
the boundary of their sum while not increasing any of the mabk&es. € [0, 1], and hence, not
increasing the value ). Since the masséd (R, ) are uniformly bounded, anglR, = ¢, up to a

F . . L
subsequence we hawg, — R asv — oo for some real one-dimensional flat chainsatisfying
AR = ¢.

Setl, := M?(S,), and choose an arbitrary, [H} (1)), H (1,)]. Observe thaC, # 0 due to
the assumption oi/. Without loss of generality we may assume that up to a subsequgnee/
andC, — C for somel € [0, +o0] andC € [0, +o0] asv — oo. We consider separately two
possible situations.

Casel > 0. ThenC < +oo. Note that the numbers are uniformly bounded, since otherwise
up to a subsequencél(l,) — +o0, and hence(T,, S,) — +oo0 asv — oo, contrary to the
estimateg (7, S,) < §(To, So) < +oo for all sufficiently largev (because the sequen@d,, S,)}
is minimizing). Therefore] < +o0, which also implies tha€ > 0 (otherwiseH’, (/) = 0, which
would mean, in view of concavity off, that H(r) = H(l) for all ¢+ > [, contrary to the assumption
on unboundedness @f). We finally remark that e [H/ (I), H' (1)], since the functiongi} are
lower and upper semicontinuous respectively.

In view of Lemmg 10.p we may assume without loss of generality that

Os,(x) = Og, (x) > d, forHlaex e s,
Or,(x) = Og,(x) <d, forHl-aexe >,
where the numberg, > 0 depend only ow, 8, §, A, B andC,, and satisfy the relationships

At® < BtP + %, t€(0,d,),

31
At* > BiP + C,1%,  t e (dy, +0). 1)
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In other words, in view of rectifiability of, one has§, = Sz, (R,), and hencd,, = Ty, (R,). Thus,

by (29),
liminf F(T,. S,) = liminf F(T, (Ru). Sa, (R,)) = liminf F[L,, C](R,). (32)

In view of rectifiability of 7,,, S, andR,, and becausgr, A us, = 0, one can write

F[ly, C))(Ry) AB% (x) dH (x)

/‘ER], N{br, (x)<dy}

4 / (BOE (x) + €6}, (0) dH () + H(ly) — ol
ZRyNOR, (x) 2dy}

/ 2v(Or, (x)) A (x) + H(1,) — Cola, (33)

v

where
gu(t) i= (A1) A (BIP + Cy1%),

sincef,(t) .= At* — BtP — C,1% > Owhenr > d,, and f, (1) < O whent € (0, d,).
For alle > 0 and sufficiently large € N one has

g (@) = g°(1) = (At*) A (BtP + (C — )t®) forallt > 0.

Therefore,

liminf F[l,, C,](Ry) = liminf / g% (O, (x)) dHL(x) + H () — Cl. (34)
v v ERU

Since fore € [0, C) the functiong®: Rt — R is nondecreasing and concave, afi¢0) = 0, the
functional

R+ / g (Or(x)) dH (),
2R

defined on rectifiable currents, defines an |.s.c. (in the flat norm topology) funclitfain the set
of real flat chains according to the formula

M2 (R) := inf{liminf / g% (O, (X)) dﬂ-(l(x)},
Vv ERU

where the infimum is taken over all sequenfRs} of real polyhedral chains converging &in the
flat norm. Then

M2 (R) :/ g5 (Or(x)) dFH*(x)
R

if R is rectifiable[22]. By definition oMz,

M8 (R) < liminf / g% (O, (x)) dH (x). (35)
v ke
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In view of (34), we get

liminf F[ly, C,J(Ry) > M (R) + H(l) — ClI. (36)

From [36) and[(32) one gets the inequality

liminf 3(T,, S,) > M#& (R) + H(l) — CI, (37)

which, in particular, impliesM8" (R) < +o0. Also,

M(R) < liminf M(R,) = liminf (M(T,) + M(S,)) < +oo,

since allT, and S, have uniformly bounded masses. Therefore, from the general theorem on
rectifiability of flat chainsl[2R], recalling the definition gf and thatx < 1, we get the rectifiability
of R. Thus,M#* (R) = f2R 2% (Br(x)) dH1(x), and hence the inequality (37) can be rewritten as

liminf (T, S,) >/ g5 (Or(x)) dH (x) + H() — Cl. (38)
v P
Observe that the limif := lim, d, exists and satisfies

At* < BtP + Ct®, 1€ (0,d),

(39)
AtY > BtP +C®, te(d, +00).

In fact, denoting by the limit of an arbitrary subsequendg (not relabelled), and passing to the
limit in (B9), we get
At* < BtP + Ct®, 1€ (0,s),

At® > BtP +C1%, 1€ (s, +00),

and hence = d. Note also that/ > 0 in view of Lemmd_10J6 below.
Denote byd, a number such that

At® < BtP +(C —e)®, 1€(0,d),
At* > BtP +(C —o)1®, t e (d., +00).

Clearly,d, < d. Moreoverd, > 0if ¢ € [0, C), due to Lemm& 10}6, while, as just proven above,
d. — d ase — 0T. With the above notation

/z g (Or(x)) drt(x) = AM* (T, (R)) + BMﬂ(SdS(R)) +(C - 8)M8(Sdg(R)), (40)
R
and hence

/Z 8°(Or (x)) dH (x) = AM*(Ty(R)) + BMP (S4(R)) + (C — &)M’(S4(R))
R

— AM*(RLA) + BMP(RLA,) + (C — e)MP(RLA,),  (41)
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whereA, ;= {x € R" : d, < 0r(x) < d}. Using [38), we get
liminf §(T,, S,) > F[l, C](R) — AM®(RLA,) + BMP(RLA,)
%

+(C — &)M?(RLA,) — eM°(S4(R)), (42)
because
F[l, C](R) = AM*(T4(R)) + BMP(S4(R)) + CM’(S4(R)) + H(l) — Cl.
Finally, by {30), we get fron] (42) the inequality
liminf §(7,. Su) > F(Ta(R), Sa(R)) — AM*(RLA,) + BMP(RLA,)

+(C — &)M*(RLA,) — eMP®(S4(R))
= S§(Ta(R), Sa(R)) — / (ABR (x) — 305(30 - C9}sg(x)) dHt(x)

Ae

—i—s/ 05 (x) dH1(x)
{Or (x)>d:)

= 8(Ta(R), S4(R)) — . (AG3(x) — BOR(x) — COR(x))

+ dH (x) 4+ eM® (84, (R)). (43)
The estimates supg,¢) M# (R) < +oc and [40) imply

AM*(T4(R)) = sup AM*(Ty,(R)) < +oo,
£€(0,0)

as well asBM# (S,, (R)) < +oo and sinceC > 0, alsoM?®(Sy, (R)) < +oo for all ¢ € (0, C).
Therefore, one may let— 0% in (@3), arriving at

liminf §(7, Sv) = F(Ta(R), Sa(R)),

which shows that the paiff; (R), S;(R)) is a minimizer of the functiong§.

CAsel = 0. In other words], = M%(S,) — 0 asv — oo. Sinces, < R, anddR, = ¢, and all
the currentR, are acyclic by construction, whie< « according to the assumptions, Theoien 7.4
yieldsM“(S,) — 0 asv — oo. Thus

liminf §(7,,, $,) = liminf (AM®(T,) + BMP(S,) + HM’(S,)))
> liminf(AM*(T,) + H (M’ (5,)))
= lim inf (AM* (R,) + H(M(S,)) — AMY(S,)),
and taking into account that
HM(S,)) — AM*(S,) = H(l,) — AM*(S,) — 0
asv — oo, we get
liminf (7, S,) > liminf AM®(R,) > AM®(R) = §(R. 0).

Therefore, in this case the pair, 0) is a minimizer of the functionaf, which concludes the
proof. O
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9. Reduction to known problems

In this section we consider a particular case of Proljlem 1 avith = 1 ands = 0 and show that

such a problem is equivalent to the classical problem of finding an optimal transportation network
formulated without using the language of Federer—Fleming currents (such a formulation is studied
in [9]).

Under the assumptions= g = 1 ands = 0 Problenj L can be stated in the following way.

PrROBLEM 2 Find a couple(Topt, Sopt) Of one-dimensional real flat chains minimizing the
functional§ defined by the formula

(T, S) = AM(T) + BM(S) + HMC(S)),

among all couplesT, S) of real one-dimensional flat chains of finite mass, satisfyjiig (3).

We now define a new functional over couplesn, X'), wheren is a transport (i.e. a nonnegative
finite Borel measure o®) and X C R” is a Borel set. Namely, we set

G, X) = / (AFL6 \ X) + BHY(6 N X)) dn(6). (44)
e

The meaning o5 (n, ¥) may be explained as follows. Suppose that a single citizen chooses a path
6 € O in his everyday movement. Assume ti#atstands for the transportation network, so that for

a citizen choosing the routethe cost of using this network would be proportionallté(® N %)

(i.e. to the length of the part of the route made with the help of the network) with coeffigien0.

For the same citizen, moving without the use of the network by distaisceassumed to costs for

a givenA > 0. Therefore the integrand ip_(44) gives the individual cost of moving along the route
6. If the transport) describes the collective behaviour of the population, so that, heuristigédly,

gives the number of people choosing the rauta their everyday movements, théhn, X) gives

the total cost of transportation of the population to services or workplaces. Clearjtdalescribe

the pattern of behaviour of the population in the above sense, one has to require

n0) =9, D) =¢". (45)

Clearly, the population as a whole chooses the way of transportation (i.e. the tramsporas
to minimize G (-, £) among all transports satisfying (45) (further calldimissible transporjsin
other words, the number

MK (", 9™, ¥) :=inf{G(n, ¥) : n a transport satisfying (45)

gives the cost of everyday movement of the population from their places of residence to workplaces
and/or services.

We now describe another way of obtaining the same &0&t(¢™*, ¢, X) which is more often
used in the theory of optimal transportation. Namely, rather than using transports, it is customary to
describe the behaviour of the population by so-caltadsport plansi.e. by finite positive Borel
measurey overR” x R”, so that, heuristicallyy (x, y) gives the number of people moving from
to y. Note that in this sense a transport plangives much less information on the movement of the
population than the transpayt namely, it says nothing about the routes people are choosing, but
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just describes the source and destination points of the movement. Clearly, a transpprhpi&to
satisfy the requirement on marginals
iy =9, (46)

wherer*(xt, x7) := x* (such transport plans will further be calladmissiblg.

Under the assumptions on the cost of movement made above, it is quite reasonable to suppose
that each single citizen moving fromto y would choose the route € ® minimizing the total cost
of movement, and therefore would spend

ds(x,y) = Inf{ARYO\ 2) + BHLO N Z):0 € O, 0(0) = x, (1) = y}.

If the behaviour of the population is described by a transport plasatisfying [[46), then the total
cost of transportation of the population is given by

é(y, X)) :=/

In [10] it has been shown that the problem of minimizing the €ost X) among all admissible
transport plans is in fact equivalent to that of minimizing the aG¢t, ) among admissible
transport plans. The precise meaning of this assertion is given by the statement below.

dz(x,y)dy(x, y). (47)

oy

ProrPoOSITION9.1 For each Borel sef ¢ R” one has
MK (¢*, 9™, X) =inf{G(y, ¥) : y atransport plan satisfyinfj (46)

Further, there is an admissible transpgit= »'(X) and a transport plag’ = y'(X) (both
depending or¥’) such that

MK (9", 97, 2) =G, 2) =G/, %).

Moreover,n’-a.e.6 € © is a simple arc. Finally, ify’ is an admissible transport such that
MK (pt, 0™, X¥) = G(1/, X), then one can takg’ := (po x p1)#n’. Conversely, there is a Borel
measurable functiog: R” x R" — © such that ify’ is an admissible transport plan such that
MK (pt, 9=, ¥) = G(y', ¥), then one can takg = gxy'.

It is important to mention that sineg; is easily verified to satisfy the triangle inequality, then
it is well known that

MK(pt, 97, 2) = MK(@",¢~,X) whenever 9" —¢~ =¢T —¢.

Supposing now that the total cost which determines the transportation network is given by the
cost of everyday movement of the populatithk (¢ ™, ¢, ¥) and of the cost of constructing the
network given byH (H1(X)) (i.e. depending only on the lengfti'(X) of the network), we get the
following natural minimization problem to find the optimal transportation network

ProBLEM 3 Find a Borel seEqpt C R” minimizing the functional
I MK(p". 9™, 2) + HHY(D))

among all Borel set&’ c R”.
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In view of the definition of MK (¢, ¢~, ¥) and Propositior@]l, we see that each solution
Zopt C R" to Problenﬂs together with the corresponding optimal transpgft:= n'(Zopy (resp.
the optimal transport plagopt := ¥’ (Zopt)) also solves the following problem.

PROBLEM 4 Find a coupl&nopt, Zopt) (resp.(yopt: Zopt)) Minimizing the functionalr (resp.F)
defined by

F(n, %) =G, 2)+HEHND) (esp.F(y,¥) =Gy, £)+ HEHY(D))

among all couplegy, X) (resp.(y, X)), wheren is an admissible transport (respis an admissible
transport plan) and& c R" is a Borel set.

Conversely, if a couplénopt, Zopt) (resp.(vopt, Zopt)) Solves the above Proble@ 4, thehypt
solves Problerﬁ]s. Clearly, a soluti@fopt, Zopt) (resp.(yopt: Zopt)) t0 Problen[]!l gives both the
optimal transportation networEqp; and the optimal pattern of behaviour of the populatigp:
(resp.yopt)- Note also that once one knowspt (resp.yopt), 0ne can findspt (resp.ngpt) as indicated
in Propositior 9.1L.

We now show that Problefij 4 with linear functioAsand B is in fact equivalent to Problefr] 2
in the sense specified by the statement below. For the sake of brevity we will limit ourselves to the
caseA > B. The caseA < B is quite analogous once one observes that under this condition

mmm>A/&ﬁmm=Gmm,
e
and every optimal paif7opt, Sopt) Solving Problen[]Z haSopt = 0, since
F(T, S) = AM(T) + BM(S) + HMO(S)) > AM(T + S) = (T + S, 0)

whenevers # 0.
THEOREM9.2 LetA > B.

(1) Suppos&Topt, Sopt) SOIves Probler|2, whilg 7, A 15, = O (the existence of such an optimal
pair is ensured by Proposition 1D.3). Let= n7,,+s,, as defined by Theorem 6.3 and let
Y = Xg,y ThenX solves Problem|3. Further, the couplg X) solves Problem|4 with
ot — ¢t A ¢~ instead ofp™®. In particular, ifgT ande~ are mutually singular, thef, X)
solves Problernl4.

(i) Conversely, let(nopt, Zopt) SOlve ProblerE]4. LeR := T,,, as defined by the relationship (8),
and letS := R.Xqpt, T := R — S. Then(T, ) solves Problerﬁ]z.

(i) Finally, F(nopt, Zopt) = T (Topt: Sopt-

REMARK 9.3 It is worth mentioning that once the existence of solutions to Proplem 1 (hence
in particular to Problemi]2) is proven by Theorém|8.1, then the above Thgorém 9.2 would give
immediately the existence of solutions to Probfgm 3.

Proof of Theorem 9.2. Suppose thaj is an admissible transport such thyad.e.0 € © is a simple
arc (note that by Propositign 9.1 this is the case whenener) solves Problerp|4) andl' c R” is
a Borel set. Then, letting := T;, as defined by[(8)§ := R.¥ andT := R — S, we see that the
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couple(T, S) of flat chains satisfie§|(3) in view of Theor¢m|6.2. Further, by the same theorem,
M(S) = ur(X) < /O M([6]c2) dn(®) = /O HHO N ) dn@),
M(T) = pr(R" \ ) < /OM(I[Q]IL(R” \ X)) dn(®) = /O FHO \ ) dn (o),

and henceAM(T) + BM(S) < G(n, X). On the other handM(S) < H1(X), and hence
S(T,$) < F(n, X).

Suppose now that the coupl€, S) of flat chains of finite mass satisfigs (3), and further that
is rectifiable and that botfi, S andT + S are acyclic, whileuy andus are mutually singular (note
that according to Theorerfis 1.1 4nd 10.2, the solutions to Pr¢hlem 2 belong exactly to this class of
couples of flat chains). Thep:= nr,s as defined by Theoren 6.3 satisfies

n0) =BT+ =9 ¢ rep™,
D) =@T+9)" =¢ —¢" rne™.
Let ¥ := Xy as defined by Lemnja 7.1. Then is concentrated o&'. Hence, settingR := T + S,

one getsS = RLX, T = RL(R" \ X). Lettingn be such thaR = T, as defined by Theorefn 6.3,
we deduce from Propositign 6.8 that

M(S) = pr(E) = /O 36160 N £) di(6),

M(T) = ur(R" \ X) = )%1(9 \ X)dn(0),
@
and henceG(n, ¥) = AM(T) + BM(S). Further, from the definition o one hasM®(§) =
HL(®), and hence (n, X) = F(T, S), which concludes the proof. |

10. Qualitative properties of optimal currents

Here and below we always suppose the existence of a c@lipl®) of real one-dimensional flat
chains of finite mass satisfyinp](3) such t&f, S) < +oo (which means that the minimization
Probleni 1 is nontrivial). We further also suppose that either the penalization fudti®ooncave,
or§ =0.

10.1 Acyclicity
One may now state the following easy result.

THEOREM10.1 Let(T, S) be a pair of one-dimensional real flat chains of finite mass. Then there
isapair(T’, ") ofacyclic currentssuchthd? < 7,8 < §,3(T', S") < F(T, S)andd(T'+S') =
d(T + S). Moreover,

() if A > 0andT is not acyclic, the§(T’, S') < (T, S);
(ii) if either B > 0 or H is strictly increasing, and is not acyclic, the§(T’, S') < (T, S);
(iii) if A > 0, and eitheB > 0 or H is strictly increasing, whilg + S is not acyclic, thelf’ + §’
is acyclic, ands (7', S’) < §(T, S).
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In particular, if the pair7, S) solves Problerfi]1, thea > 0 implies acyclicity ofT, and either
B > 0 or strict monotonicity off imply acyclicity of S, while if both A > 0, and eitheB > 0 or
H is strictly increasing, thef + S is acyclic.

Proof. If T (resp.S) is acyclic, it is enough to set’ := T (resp.S’ := §). Otherwise in view
of Propositior] 3.127 (resp.S) contains a cycle” # 0 such that the curret’ := T — C (resp.
§' := § — C) is acyclic. By Lemmaq 3|7 one hag" (') < M*(T) (resp.M*(S") < M*(S)) for
all » € (0, 1]. Therefore, a®T’' = aT (resp.dS’ = 3S), we getd(T' + S’) = (T + S), and
3T, 8" < F(T, S) (with strict inequality in cases (i) and (ii)).

We now prove (iii). According to Lemmja 4.6 one may assume without loss of generality that
ur A us =0, i.e. there is a Borel séf C R" such that

T=T.E, S=S.(R"\E).

If T + S is not acyclic, then by Propositi¢n 3]12 there is a cy€les 0, C < T + S, such that the
currentT 4+ § — C is acyclic. Denoting

T':=T—-C.E, S :=S—C.R"\E),
wegetl’'+S8 =T+ S —C,and henced (T’ + §') = 9(T + S). On the other hand; < T + S

implies
CLE<L(T+S).E=T.

By Remarl{ 3.p one hag’ < T. In the same ways’ < S, and hence, in view of Lemnja 3.7,
(T, 8 <J(T,S). 0

It is worth remarking that with the help of Theorém]|7.4 one can easily find estimates on the masses
of solutions to Problerl 1.

10.2 Rectifiability
The following result is an easy consequence of Thegrein 2.1.

THEOREM10.2 Let(7T, S) be a pair of real one-dimensional flat chains of finite mass satisfying
F(T, S) < +oo. Then the following assertions hold:

() if A=£0anda < 1, thenT is rectifiable;
(ii) if either B # 0 andB < 1, or H is unbounded anél < 1, thens is rectifiable.

In particular, the above assertions are valid for every optimal pair solving Problem 1.

Proof. We have§(T, S) < +oo. WhenA # 0 one therefore ha¥[*(T) < +o0, and hence (i)
follows from Theorem 2[1. Analogously, B # 0, thenM?(S) < 400, so that rectifiability of§
follows from Theorem 2/1 whefi < 1. Finally, if H is unbounded, thehI’(S) < +o0o, and hence
rectifiability of S follows again from Theorefn 2.1 wheén< 1. |

10.3 Properties of support

We first show the existence of minimizing coupl@s, S) solving Problenj |1 such that and §
are concentrated on disjoint sets. Here and below solvability of Prdblem 1 will always be tacitly
assumed.
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PROPOSITION10.3 There is a minimizing coupld’, S) solving Problem ]l suchzr A s = 0. In
particular, {1 (X7 N Zg) = 0. Further, if either of the conditions (i)—(v) of Lema 4.7 holds, then
the above property is true for every minimizing cougile S) solving Problen 1.

Proof. Follows immediately from Lemnia 4.6. O

We are now able to prove the following assertion which says that whenever the penaliZason
concave, then there is an optimal péit, S) of flat chains solving Problefr] 1 as follows: there is

a thresholdd > 0 such thatT" is concentrated ofix : 075 < d}, while S is concentrated on

the set{x : 6745 > d}, and in certain cases every optimal pair satisfies such a condition. In other
words, recalling that stands for the flow of people using the transportation network, Whi&ands

for that of people moving by their own means, it means that the transportation network has to be
constructed in the set of points where the dengitys of the total flow of people is greater than the
thresholdd.

THEOREM 10.4 (Bathtub principle) Assume thatis concave and unbounded, and(&t, S’) be
any solution to Probleifn| 1 having A us = 0 (once Problerfi|1 is solvable, the existence of such
a pair is guaranteed by Proposition 10.3). Then there exists an optimalZpaly of flat chains
solving Problen [l such thatr A s = 0 and under either of the conditions (i)—(iv) of Lemma 0.6
(with C := H (M’(S")), whereH’_ stands for the left derivative df),

Os(x) = Orp5(x) >d for Hr-a.ex € Zr.g,

07 (x) = Op4s(x) <d for Hl-a.ex € Ty,

for some constant > 0 (moreoverd > 0 under either of the conditions (i) of Lemmg 10.p
below). In particular, ifS is rectifiable, thenS is concentrated ofix : 674s5(x) > d} andT is
concentrated on the sét : 0r,.5(x) < d}. Moreover, the above properties hold for all optimal
pairs(T, S) satisfyingur A us = 0 if in addition one assumes that is strictly concave.

Proof. We first note that we may restrict ourselves to the cisg 0, since otherwise it is enough

to choosel = 7', § = S’ andd = M(3T)/2 in view of Theorenj 7]3. Now the existence of an
optimal pair of flat chains solving Problenm 1 follows immediately from Lenima]10.5 below (for
the assertion in the case of rectifialleone has just to note that in this case one may consider
concentrated o'y C X745). O

The following assertions have been used in the above proof.

LEMMA 10.5 Let(7,S), S # 0, be a pair of flat chains of finite mass satisfyjng A us = 0,
and suppose the functiafi is concave. Under either of the conditions (i)—(iv) (resp—(iii’)) of
Lemma 10.b there is a constaht> 0 (resp.d > 0), depending only ow, B, §, A, B andC €
[HL(M?(S)), H (M?(5))], whereH, stand for the left and right derivatives &f respectively, and
there is a pair of flat chaing”’, §"), suchthat’ + 8 =T+ S, ur Aus = 0,3(T', ") < F(T, S),
and
O/ (x) = Oy 5(x) =d for Hl-aex € Ty, 8)

07/ (x) = O g (x) <d for Hl-a.ex € Tpipg.
Moreover, if T (resp.S) is rectifiable, then so i%’ (resp.Ss’).

Furthermore, if the functiof is strictly concave, and one of the properties (48) does not hold
for T, S in place ofT”’, §’, then one can find a paif”’, S’) as above witt§(T’, S') < F(T, S).
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Proof. In view of the assumption o@ we have
HM(S) +1) < HM(S)) + Ct forallt > —M’(S),

with strict inequality wherr # 0 and H is strictly concave (note that in the latter caSe# 0
in view of the strict concavity off). Consider the functiorf: R* — R defined by the formula
f(@t) := Ar® — BtP — Cr®. By Lemmd 10. there is@ > 0 such thatf(r) > 0 whens > d, and
f(t) < 0whent € (0,d). Moreoverd > O if either of conditions ()—(iii’) of Lemmg 10.p holds.
Consider the sets

Sti=(xeZrys:0r(x) >d}), X ={xeXris:0<0s(x)<d}

(with ¥~ := @ if d = 0). Since the densitie® andds are Borel functionsy* are Borel sets so
that the currents
Rt =T.XF, R =S5.%",
T"=T—-R*"+R°, S=S—-R +RT

are well defined, and@” + S’ = T + S. Observe that the rectifiablity df’ (resp.S’) follows from
that of T (resp.S) since bothR™ and R~ are rectifiable in view of Lemnfa 7.1. We now show that
F(T', 8" < F(T,S), with strict inequality ifH is strictly concave, and one of the properties| (48)
does not hold fofT’, S in place ofT’, S’ (all the other announced properties of the gdif, S") are
immediate). Sinc&R™ < T, R~ < S, while u7 A us = 0, we have

M*(T") = M%(T — Rt + R™) = M¥%(T) — M*(R™") + M¥(R"),

MA(S") = MP(S — R~ + RT) = MP(S) — MP(R™) + MP(R™),

M?(S) =M*(S — R~ + RT) = M%(S) - M*(R™) + M*(R™),

and therefore

(T, 8 <J(T,S) — AM*(RT) + AM*(R")

— BMP(R™) + BMP(RT) — CM®(R™) + CM?(R™). (49)

Recalling that by Lemr’r@.l the sefs" are countably (1, 1)-rectifiable, we get
FT,S)<F(T,S) - / (ABF(x) — BOF(x) — COP(x)) dH (x)
>+

+ | (A6 x) — BOL (x) — COY(x)) dH (x)
I
=J(T,S) — /E S Or(0) dH) + /2  f0s() dHH ) < F(T.S).  (50)
Moreover, if the first property of[(48) does not hold fat, S in place of 7/, §’, then

fz, f(6s(x))dH(x) < 0, and hence the second inequality[of](50) is strict. Further, if the second
property of [48) does not hold fd, S in place ofT’, ', then either

H((x € Zrys 1 0r(x) > d}) > 0,



434 E. PAOLINI AND E. STEPANOV
or else
Hi({x € Zrys:07(x) =d}) > 0.

In the former casey.. f(0r(x)) dH1(x) > 0, and hence again the second inequality{ of (50) is
strict. In the latter case one still ha&" # 0, and we may consider without loss of generality
H1(X~) = 0 (since otherwise the strict inequal@7’, S') < F(T, S) has already been proven),
so thatR~ = 0. Therefore the inequality iff (#9) becomes strict wiigrs strictly concave (because
MO (R*) # 0), and hence the first inequality 6T {50) is strict, which concludes the proof. O

LEMMA 10.6 Letf: [0, +00) — R be defined by
f@) = At — Bt — C1°

with , 8,8 € [0, 1] andA, B, C > 0. Suppose also that either of the following conditions hold:

() a >B VS

(i) « =8 >35andA > B;
(i) « =68 > pandA > C;
(iv) «a =p=38andA > B+ C.

Then there is @ > 0 such that
f@®) >0 ifandonlyif t>dort=0.

Moreover,d > 0 under either of the following conditions:

(i") (i) holds and eitheB # 0 or C # O;
(ii”) (ii) holds andC # 0;
(ii”) (iii) holds andB > 0.

Proof. Case (i). Supposes > § (the other case being symmetric). Dividing By we get
f(@) >0 ifandonlyif g(s):=As® — Bs—C >0,

wheres := 1#7% ¢ 1= (« — 8)/(B — 8). Noticing thate > 1 in the case we are considering, we
see that the derivativg/(s) = Aos®~1 — B is nondecreasing (resp. strictly increasingiif> 0).
Hence,g is convex (resp. strictly convex), and @€) = —C < 0 andg’(0) = —B < 0, we get the
existence of some > 0 such thaig(s) > 0 if and only ifs > 5, whiles > 0 if eitherC > 0 or

B > 0. Itis then enough to set:= §1/(=9,

Case (ii). Dividing by ¢?, we infer thatf (r) > 0 if and only if
(A—By*>—C >0,

which means that one may take= C%% /(A — B).
Case (iii). This is completely analogous to case (ii).
Case (iv). Dividing by 7%, we find thatf (r) > 0 if and only if

(A—B—0C)* >0,

which means! = 0. O
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Now we are able to prove that under natural conditions on problem data, the optimal ducamt
be chosen to be concentrated on a closed set.

THEOREM10.7 Suppose thald is concave and unbounded and condition (ii) of Thedrem|10.2
holds. Under either of the conditions (i) or (ii) of Lemina J0.6 there exists an optima(pafh)
solving Probleni [l such thatis a rectifiable current representablesas- 6[ ], where ¥ c R”

is a closed countablg?, 1)-rectifiable set anéd € L1(H1LX) is u.s.c. withd(x) > d for H1-a.e.

x € ¥ and for somel > 0. Further, if either of the conditions (i)—(v) of Leminal4.7 holds, witile

is strictly concave, then the above assertions are true for all optimal(#ais§ solving Problenfi [1.

Proof. Let the pair(7’, ') solve ProbIen[]l, whileerr A ug = 0 (once Problerﬁ]l is solvable,
the existence of such a pair is guaranteed by Propositioh 10.3). We may aSsgnte(otherwise
there is nothing to prove, since we may take, for insta§ce; S, 0 = 1 andX := (). Note now
that since the assumptions (i) or (ii) of Lem@O.G hold, while= H' (M?®(S")) > 0 in view of
the assumptions oA, by Theorenj 10]4 combined with Theorgm 10.2 we know that there exists a
d > 0 and an optimal pai(7’, S) solving Problenf L and satisfyingr A us = 0, such thatS is
rectifiable and concentrated on the 88t= {x : O7.5(x) > d}.

Let » be given by Theorein §.3 so that+ S = T7,. By Lemmd 7.R(ii), taking into account the
acyclicity of T + S one has

FH({x 2 0715 (x) # ay(x)}) = 0.

HenceH(Zs A ¥) = 0 whereX := {x € R": ay(x) > d}, and X is closed since,, is u.s.c. by
Lemmd7.2(i). Thereford = a,[ ¥'], as desired. To conclude the proof, it remains to observe that
under either of the conditions (i)—(v) of Lemrpa}4.7 every optimal p&irS) solving Problenj [L
satisfiesur A us = 0, while if H is strictly concave, then every such pair will ha/eoncentrated
on{x : Or4s(x) > d}, and hence will satisfy the desired conditions. O

It is worth mentioning that Theorem 10.7 is only valid under concavity assumptiofs ém fact,
in [9] it has been shown that even whan= 1, B = 0, but

.0, t <,
H@® = {—i—oo, otherwise
then for some measures’, ¢~ ProblenﬂS may admit no solutiors which are closed sets. In view
of Theorenj 9.P this means that no soluti@h S) to Problenf L withw = 8 = 1,8 = 0 andA, B
andH as above has the property stated in The 10.% e[ X], where X c R" is a closed
countably(H?, 1)-rectifiable set, anél(x) > 0 for H1-a.e.x € X.
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