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We consider the evolution of a polycrystalline material with three or more phases, in the presence of
an even crystalline anisotropy. We analyze existence, uniqueness, regularity and stability of the flow.
In particular, if the flow becomes unstable at a finite time, we prove that an additional segment (or
even an arc) at the triple junction may develop in order to decrease the energy and make the flow
stable at subsequent times. We discuss some examples of collapsing situations that lead to changes
of topology, such as the collision of two triple junctions.
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1. Introduction

Several models in phase transitions treat phenomena in which two or more phases of the same
material, or the same phase of a crystal with different orientations, can coexist without mixing.
A curve or a surfacé™ bounding different regions is called a surface boundary, or interface, and is
moving in a nonequilibrium state. In some cases the motioh dbes not depend on the physical
situation in the various phases but only on its geometry, and is described by geometric equations
relating, for instance, the normal velocity of the interface to its curvatures. The crystalline curvature
flow in two dimensions is the formal gradient flow of the energy functional

Fp(I') := / @°(v) dH?, (1.1)
r
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wherev is a unit normal vector field té” and the energy densigy’ : R2 — [0, +00), sometimes
called surface tension, is a crystalline (i.e. piecewise linear) norm. Whénisotropic the energy
functional [1.1) is proportional to the length of the interfaces and the resulting geometric parabolic
equation is the curvature flow (at least in the simplest case whisrthe boundary of an open set).
However, when dealing with crystalline and polycrystalline materigflds anisotropic and neither
smooth nor strictly elliptic; in addition, multi-phase boundaries with more than two phases occur.

To our knowledge, J. E. Taylor [31], [33],_[34], [36] (see al&o [5] ahd [9]) was the first to
introduce the notion of crystalline geometry and to determine the crystalline flow of curves with
triple junctions, in particular to compute the motion of the triple junction. The analysis of the
evolution of grain boundaries has been pursued also by other authors: see for instance [5]-[8],
[11], [12], [23], [25], [2€], [28]. See alsa [4][[6].[11][[22] for related physical models of crystal
growth, and([1],[[2],[10],113],114],[116],[[17],[19]+[21] 124] [ 127]_[29]L[30] for related results.

In the present paper we consider the evolution of a polycrystalline material with three or more
phases for a crystalling” whose one-sublevel sé}, := {¢° < 1} (theFrank diagran) is a regular
polygon ofx sides. The dual functiop : R2 — R defined byp(&) := sup& - n : ¢°(n) < 1} is
crystalline too andV,, := {¢ < 1} is called thewulff shapeWe are particularly interested in the
motion by crystalline curvature of special planar networks called elementary triods, namely regular
three-phase boundaries given by the union of three Lipschitz curves, the interfaces, intersecting at a
point called a triple junction. Each interface is the union of a segment of finite length and a half-line,
corresponding to two consecutive sides/df.

We analyze local and global existence and stability of the flow. In general, the flow may become
unstable at a finite time. If this occurs, we prove that at subsequent times a regular flow can be
constructed, by adding a new segment (or even an arc with zero crystalline curvature) at the triple
junction. In all flows we exhibit, the crystalline curvature remains bounded (even if a segment
appears or disappears) and has a jump discontinuity at the time of instability only in the case of
the disappearance of a segment. We also discuss some examples of collision of two triple junctions.
These examples (as well as the local in time existence result) show one of the advantages of
crystalline flows with respect, for instance, to the usual mean curvature flow: explicit computations
can be performed to some extent, and in case of nonunigueness, a comparison between the energies
of different evolutions (difficult in the euclidean case) can be made.

The rigorous definition of crystalline curvature for networks has been introduced in [3]; we will
see that the corresponding flow essentially agrees with the one suggested in [34]. Finally, we stress
that Taylor already predicted the emergence of new edges and zero weighted curvature curves from a
triple junction, wrote a computer prograim [32] adding such edges and approximations to the curves,
and made explicit calculations [36] for determining them (see also the video quoted in [32]).

The plan of the paper is the following. In Sectjon]2.1 we present some basic definitions and
results from|[[3], where the crystalline curvature of partitions is computed through the first variation
of F,. The crystalline curvature is the tangential divergence of a vectorfigldl: 17 — R2 which
minimizes the functional

fn (divy N)2¢°(v) dH* (1.2)

among all Cahn—Hoffman vector fieldé on the elementary triod which satisfy the so-called
balance condition at the triple junctign

Niz,(9) + Ni5,(q) + Ni55(q) = 0. (1.3)
Such a minimizeWVnin is unique(this is true, in general, only in two dimensions) and identifies the
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direction along which the functiondf,, decreases most quickly. The balance condifion (1.3) is the
analog of the Herring condition (120 degrees condition) in the euclidean case. By the definition of a
Cahn-Hoffman vector ﬁ8|dy|z‘j () € aW,. Any triplet of vectors(X, Y, Z) € (8)/\/(/,)3 satisfying
X+Y+Z = 0is called an admissible triplet. In Sect[on]2.2 we introduce the notions of elementary,
quasi-elementary, nonpolygonal and degenerate triod, and of configuration of an elementary triod.
The regularity of an elementary triod is related to the regularity of each interface and to the balance
condition [1.B). We also recall the notion of stability [3] and introduce the concept of stability region
of a configuration. In Sectign 3.3 we give the definition of flow by crystalline curvature starting from
an elementary triod which allows us to consider also initial data which may develop a new segment
or an arc from the triple junction. In Sectipn P.4 we determine the geometry of an elementary triod,
that is, the three angles at the triple junctipbetween the interfaces. These angles are determined
by the balance conditiofi (3.3) at which in turn is related to the existence of admissible triplets.
We prove that any regular polyga®,, n even> 6, has a unique admissible triplet, Y, Z) once

we fix one of the vectors of the triplet, for instan&e in 9 P,. We also determine the range of

all admissible triplets ofVmin atg, and using this result we compute in Secfior 2.5 the crystalline
curvature of the triod. SincHnin is unique and its values are fixed (up to a sign change) at the three
vertices of the partitions, it follows tha¥in is given on all the interfaces by linear interpolation.
Thus, as shown in[3] in the cage= 8, it is possible to reduce the minimum problgm [1.2) to

a one-dimensional minimum problem. In the case of a partition consisting of two adjacent triple
junctions, the solutioVnin of (1.7) is completely determined by the values of two independent real
variables. Since the Cahn—Hoffman vector fields have constant normal component, the crystalline
curvature is simply the tangential derivative of the tangential componeni,f that is, a ratio of
lengths. Finally, we establish which values of the lengths of the finite segmemgpuadvide stable

triods (stability region.

In Sectior] B we prove that there exists, locally in time, a unique stable regular flow starting from
a stable regular initial datum. In Sectijon|3.1 we show a case of global existence. The analysis of the
long time behaviour requires the study of the stability region of each configuration. Stability is the
ingredient that ensures that no additional segments develop at the triple junction during the flow. If
the initial triod is unstable then an additional segment may develop in order to decrease the surface
energy and make the evolved triods stable at positive times. In Sg¢tion 4 we exhibit an example of
this occurrence.

In Sectiond BJ7 we show that the flow becomes unstable at a finiteZiraad that at the
subsequent times a regular flow can be constructed; in particular, a new segment (resp. an arc
with zero crystalline curvature) develops at the triple junction in the flow of Theprem 5.1 (resp.
of Theorenj 6.]1). In Theorefm 7.1 we prove that the flow has two different behaviours depending on
the initial datum/7. For a suitable choice aff, we show that at = 7 one of the three segments
vanishes, its crystalline curvature remains bounded, the Cahn—Hoffman vectdrfigldas a jump
discontinuity and the triple junction translates along the remaining adjacent half-life #ado).

For the other choices of stablé we prove that a curve appears from the triple junction, as in
Sectior| 6, with the difference that the adjacent segment now has pagitivevature and keeps

on moving at subsequent times. Each of these flows has the property that all crystalline curvatures
remain bounded.

In Sectior[ 8 we study the crystalline curvature flow starting frostablee-regular partition
formed bytwo adjacent elementary triple junctions. We discuss some examples of collapsing
situations that lead to changes of topology, such as for instance the collision of two triple junctions.
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We present several candidates to continue the flow after the singularity (see Example 8.4). In
Sectior] 9 we introduce the notion of homothetic flow. We classify homothetic flows wkheBm
and we show that the global flows studied in Sedfiof 3.1 converge to homothetic flows ascc.

While the cases = 6m is exhaustively studied, as is the case 8, the cases = 6m — 4 and
n = 6m — 2 have been studied in less detail. The reason is twofold: first of all, the casésn and
n = 8 present all the phenomena we are interested in (formation of new edges, emergence of curves
and disappearance of edges at the triple junction); secondly, the analysis of the long time behaviour
of all possible configurations can be described in a rather concise way, while in the general cases
n = 6m — 4 andn = 6m — 2 it seems more complicated.

2. Preliminaries

In this paper;, | - | and’H! are respectively the euclidean canonical inner product, the euclidean
norm and the 1-dimensional Hausdorff measur&%nPoints and vectors d&?2 will be identified.
Given two pointsp, ¢ € R? we denote bypg the vector with initial point and end point at
andgq respectively. Given two vectons w € R?, we denote by the counterclockwise rotation

of v throughz /2 around the origin and by (v, w) € [0, 7] the angle between andw. Given

f i (a,b) —> R andt € (a, b), we denote byf (t+) and f (t—) respectively the right and left limits

of f atr (if they exist).

Given a subset/ of R? we denote by ini/), U anddU respectively the interior, closure and
boundary ofU. In particular, given a segmesst ¢ R?, we denote by intS) the relative interior
of S. Given two parallel (possibly infinite) segmersts S», thedistance vectoof S, from S; is the
vector having norm digf1, S»2) pointing fromsSy to S».

By aLipschitz curve with boundatip R? we mean a 1-dimensional bounded Set R? which
can be written locally as a Lipschitz graph on an open intervl éfny Lipschitz function or vector
field defined onz will be considered as defined upa@. We denote by LipX; R?) the set of all
Lipschitz vector fields orE. Given a pointc € X we denote by TX the tangent line t& at x.

We denote by, m positive integers and b, the regular polygon of (n even) sides of length
L inscribed in the unit circle centered at the origifRst Py, has two horizontal sides and is oriented
in clockwise sense.

2.1 Crystalline curvature of regular partitions dt2

In this section we present some basic notations and definitions ffom [3}. LBf — [0, +00) be
a crystalline anisotropy oR? (i.e. an even piecewise linear convex function) satisfyitig = Pn.
We lety be the dual function ap, and we denote by, andT,. the multivalued mappings (duality
mappings) defined &, (¢) 1= 33(¢?)(§) and Ty (£°) := 33((¢°)?)(£°) for all £, £° € R?, where
o denotes the usual subdifferential for convex functions. We observgjtietsp.7,.) is a maximal
monotone operator which také®V,, (resp.d F,) ontod F, (resp. ontdwW,).

DEFINITION 2.1 Let¥ C R? be a Lipschitz curve with boundary,e 9 X, assume thak admits
tangent line T(X¥) atx, and letz € R?\ T,(X). We define the vectar’> e R? as the rotation
through angler/2 of the vector; in such a way that?* points outwards fronk.

That is, since we assume the existence of the tangent lide abx € 9%, the vectorz? ¥ is
required to have a nonzero component along the half-tangent linE @bx) pointing outwards
from X.
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DEFINITION 2.2 A partition of R? is a finite family{E;}; of open subsets d&? (calledphase}
such thatJ, E; = R2, E; N E; =¢fori # j,anddE; N dE;, when itis nonempty, is a Lipschitz
curve with boundary, called aimterface By an m-multiple junctionof {E;} (m > 3 a natural
number) we mean a poigtbelonging tan distinct interfaces.

Given a partition( E;} of R?, we set

% =0ENOE;, i#j =]z J:=Joz;. (2.1)
irj irj

When we writeX;; we always assume that: j andX;; # (. We denote by'/ an!-a.e. defined
euclidean unit normal ta;; and we seb/ := vi/ /¢°(vi7). We denote by Lip, (I'; R?) the space
of vector fieldsN : I' — R? such thatN|s;; € Lip(%;;; R?) and Nz, (x) € Tyo (v (x)) for
H1-almost every € X;;. Set

Ni={N eLip, (I R?): ;(ij)“u =oonJ}. 2.2)

The condition or/ in (2.3) is usually called thbalance condition

DEFINITION 2.3 If A/ # ¢, the partition{E;} is said to bep-regularand anyN € N is called a
Cahn—-Hoffman vector fieldn I".

The following definition ofp-curvature is based ohl[3, Theorem 4.8] and the crucial fact that
we are consideringlanar partitions: if{ E£;}; is ag-regular partition then the minimum problem

1/2
min{[ / (divy N)2¢°(v) dHl} N e/\/} (2.3)
r

admits auniquesolution which identifies the direction along which the functiopal](1.1) decreases
most quickly. LetNmin : I” — R? be the solution of probleni (3.3).

DEFINITION 2.4 Let{E;} be ap-regular partition. We define the-curvaturex, of I" as
Ky = div; Nmin, a.e.onl.

REMARK 2.5 LetX = 9F be a simple Lipschitz curve which admits a Lipschitz Cahn—Hoffman
vector field, i.eN € Lip(Z; R?) with N (x) € Tyo (v, (x)) for H-a.ex € X, wherev, := v/¢°(v)
andv is anH*-a.e. defined euclidean unit normalin It is easy to see that, = 0 on any nonflat
arcy contained inX sinceN on y is constantly equal to a vertex 8#V,,. Assume now thas is

an open segment of length > 0 contained inX'. Denote byN;, N> respectively the values o¥

at the initial and final point of according tor := —v'. Theg-curvature ofS is zero if L = +o0,
while if L < 400,

1
ky(p) = Z(Nz —N1)-t, peSs. (2.4)

HencesS has constanp-curvature which, setting:= Lz, will be denoted by, (/). Notice thatk,,
in (2.4) changes sign if we change the sign of

For simplicity, in this paper we restrict ourselves to Wulff shapgs having an even number
of sides; dropping the central symmetry assumptiognwould require to take into account the
orientation of the various phases, making the analysis more complicated. Again for simplicity, we
assume that the Wulff shape is the same for each pair of adjacent phases. The main definitions (such
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as Definitiong 2.3, 2]4, 2.6) can also be given in the case of different Wulff shapes on different
pairs of adjacent phases; however, the analysis (starting from Lémnja 2.16) would become far more
difficult, as well as the catalog of all possible configurations and phenomena.

2.2 Elementary, quasi-elementary, nonpolygonal triods

In this section we introduce the notions of elementary, quasi-elementary and nonpolygonal triod,
and of configuration of an elementary triod, and we fix the orientation of a triod.

DEFINITION 2.6 When{E1, E», E3} is a partition ofR? into three sets having only one 3-multiple
junction, called driple junctionand denoted by, the setl” defined in[(2.1L) will be called &iod,
and denoted by7. If the partition is¢-regular, the triod is said to be-regular. For simplicity,

X192, X23, Y13 Will be denoted respectively b¥,, X, X3, and correspondingly’j will be denoted
by v,. Theanglesof IT are the three angles @atbetweenXy, X5, X3 (see Figure [5).

REMARK 2.7 The notion of regularity in Definition 2.6 is essentially the same as given by J. E.
Taylor in [36] when eacly); is polygonal. In the case ofgregular partition withl” = U?:l i,
J ={q1, 92}, andN € N as in Figurg[L, the triplet of vectors

(Ni51(qD) >, Nis,(q1)7%2, Nisy(g1) %)
is the clockwise rotation of the tripl€tV, s, (¢1), N x,(q1), N x;(q1)), while
(Ni5,(g2)"*, Ni£,(q2)">*, Ny 55(q2)">%)

is the counterclockwise rotation 6N, 5, (¢2), N x,(q2), N 55(g2)).

W = Py Wo = Py

FIG. 1. (N5, (q1)°*1, N 5, (q1)7%2, N 54(q1)?%3) and(N| 5, (42)?*1. N 5,(q2)? %4, N 55(92)°%5).

DEFINITION 2.8 LetlT = Ule X; be ag-regular triod. We say thdt is elementaryf

(€) each interfacer; is the union of a segmers}; of finite lengthL; > 0 and a half-lineR; such
thatS; andR; correspond to two consecutive sides/df (see Figurg[2(i)).

We say thaf7 is degeneratdf two interfaces satisfyq) and the remaining ong;, is a half-line.
We say thatlT is quasi-elementaryf two interfaces satisfyq) and the remaining on&’;, is
the union of two segmentS, and Si of finite lengths,Ls > 0 andL; > O respectively, and a
half-line Ry such thatSs4 and S, andS; and Ry, correspond to two consecutive sidesf, (see

Figure[ 2(ii))).

We say thatlT is nonpolygonalf two interfaces satisfyq) and the remaining on&’; is the
union of a curvey,, a segmens; of finite lengthL; > 0 and a half-liner; such thatS; and Ry
correspond to two consecutive sides/f (see Figurg[2(iii)).



CRYSTALLINE CURVATURE FLOW 487

(iii)
FiG. 2. (i) Elementary, (ii) quasi-elementary, (iii) nonpolygonal trio&§ = Pg). Note thatc, = 0 on Sz in (i) and (ii),
kg < 00nSyin (i), andky = 0 onyy in (iii).

Given an elementary degenerate or quasi-elementary or nonpolygonalitgodiN € N, we
setA; ;= S; N R; foranyj = 1,2, 3 such thal®; # ¥, As := Sa N S if IT is quasi-elementary,
andAg := y, N Sy if IT is nonpolygonal. We denote ly; the angle ofX; at A; opposite to the
region whereV (4)) lies (see FigurE]3). Notice tha} € {7 —/(2n), 7 + 7/(2n)}.

Let v be theH*-almost everywhere defined euclidean unit normalfteriented in such a way
thatv“nt(sj) -N(Aj) > 0. We seb; = vjinys)), Tj '= —vjl andl; .= L;t;,foranyj =1, 2,3, and
alsoj = 4if IT is quasi-elementary. Thys;, v;} is a positively oriented basis &2 and, without
loss of generality, we assume that edgclpoints towards;. We denote by, (/;) the p-curvature
of Sj.

For an elementary triod, we always assume fais horizontal and¥; and X3 are given in
counterclockwise sense as in Figlife 3. We denoteé/hyW; the vertices of the side oy (in
clockwise sense) having as outer normal and by/; the middle point of the segmenvtj, W;].
Note that

T1-V3=—T1-V2, V1-T3=—V1-Tp, T1- V3= —V1-T3. (2.5)

DEFINITION 2.9 LetI1, IT' be two elementary triods. We say thd@tand I7" are equivalent(or
belong to the same configuratipifi they coincide after possible rescalings of their bounded edges
and after a rotation. We denote h§f] the configurationof 17, i.e. the equivalence class of, and

by € the set of all possible configurations for elementary triods.

We also recall the notion of stability |[3] and introduce the concept of stability region of a
configuration.

DEFINITION 2.10 LetIT be ag-regular triod. We say thall is stableif (Nmin)| =, (q) is not a
vertex of W, forany j = 1, 2, 3. We say thafT is unstableif it is not stable.

It follows that nonpolygonal triods are always unstable (see Rerpark 2.5). Elementary,
degenerate and quasi-elementary triods can be either stable or unstable.

DEFINITION 2.11 Given a configuratiofe) € €, thestability regionof (e), denoted bySe, is the
set of all(A1, A, A3) € (0, +00)3 such that, iflT € (e) is an elementary triod withs;| = A; for
anyj =1, 2, 3, then[T is stable. Forj, jo, j3a € {1, 2, 3}, j1 # j2 # j3 # j1, we let

A, A
Se(j2, j3) = {(A—]l A—”) 1 (A1, A, A3) € Se}~
J2 J3

2.3 Definition of crystalline flows of triods

Our object is to provide a definition @f-curvature flow allowing one to consider also initial data
for which a new segment or a curve (with zerecurvature) can develop from the triple junction at
time zero.
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DEFINITION 2.12 LetT > 0 andII be an elementary (resp. a degenerate) triod. Fortaay

[0, T), let I1(¢) be ap-regular triod and (¢) its triple junction. We say thate [0, T) — I1(t) isa

@-curvature flowstarting fromIT = I7(0) if forany ¢ € (0, T):

(i) II1(¢) is either elementary or quasi-elementary or nonpolygonal (resp. degenerate);

(i) for any j = 1,2, 3, eachR;(¢) has zero normal velocity and eash(r) is parallel toS; (0)
= 5j

(iii) foreachj =1, 2,3, and alsg = 4 if I1(¢) is quasi-elementary, denoting by(r) the distance
vector of the segmerf; (r) from S;(0) = S;, we haveh; c(o, 1); v;R) and

M = —ko (i (D)v;
9 (v)) v (2.6)
h;j(0) = 0.

The flow is said to batableif I7(¢) is stable for any € (0, T).

REMARK 2.13 Sincep’(v;) is a constant independent pfe {1, 2, 3, 4}, the system in[(2]7) is
equivalent, up to rescaling in time, to

hi(t) = =k (i ())V;. (2.7
For simplicity, we will consider{(2]7) in place df (2.6).

Note that, in Definitiofi 2.72/7 is not required to be stable (even in the definition of stable flow).
Let

hJV(t) =hj@t)-v; for j=12234 (2.8)
Thenh;(t) = h/V(t)vj and, with this notation, systern (2.7) becomes
'.v 1
hj () = -k (1) = —m[Nmimxjm (g(®)) = Nmin(A; ()] - 7}, 2.9)

1Y (0) = 0.

FIG. 3. These triods have the same evolution according to sygten (2.9). Our convention is to take the orientation as in (i).
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REMARK 2.14 We observe that; (1) moves in the same direction ofif and only if«, (/; (¢)) < 0.
Furthermore, systeri (2.9) is invariant under the change of the orientatidg p{see Figurg¢]3).

2.4 Geometry of elementary triods

The angles of an elementary triod are given by the angles between the vecsoend are
determined by the balance conditiongafsee [(2.R)), which, in turn, is related to the existence
of admissible triplets.

DEFINITION 2.15 Anadmissible tripleis any triplet of vectorgX, Y, Z) € (8W¢)3 satisfying
X+Y+Z=0. (2.10)

LEMMA 2.16 Lety : R? — [0, +00) be a Finsler norm oiR?, i.e. an even one-homogeneous
convex function for which there exists> 0 such thaty (£) > c|&| for any& € R?, and define
Wy = {& e R2: y(§) < 1}. Let X € aWy,. Then there exist two distinct vectors Z in WV,
such that(X, Y, Z) is an admissible triplet. Moreover, if eith&y, is strictly convex or for any
segmentS C W, parallel toX e 3V, we have|S| < |X]|, then the unordered pafi, Z} is
unique. Finally, if there exiskq € 3V, and a segmerf C dW,, parallel toXp with |S] > |Xq|,
then there are infinitely many unordered pairsZ} of distinct vectors i Wy, such thatXo, Y, Z)

is an admissible triplet.

Proof. Let 2k be the length of the orthogonal projection)df, on X1R and setX := X/|X|.
Define the multifunctions, ando; asa, (h) = (—hf(L + XR) N oWy andoy(—h) = —a,(h)
foranyh € [0, hy]. It is easy to see that, (k) contains exactly two points far # hy, while
a,(hy) can be either a point or a closed segment. Define the funations;” : [0, hy] — R? as
af (=h) :={Zea(=h): Z-X <Y -X,Y e (=)} ande; (h) :={Z e o, (h) : Z- X <
Y- X,Y € a,(h)}. Note thate,” ando,~ are local parametrizations %V, which can be written
with respect to the basis-X*, X) aso; (=h) = (=h, & (—h) - X) anda; (h) = (h, a; (h) - X).
Define now the functio® : [0, Ay ] — R as

& (h) = |71|[a,_(—h) + ot ()] - X.

Then @ is convex, since so are > «; (=h) - X, h +> a; (h) - X. Furthermore®(0) = —2,
@ (hy) = 0ifand only ifa,- () is a singleton, whileb (h;) < O if «,-(hy) is a proper segment.

We divide the proof into two cases. First we observe that the existenég of (0, hy]
with @(h,) = —1 implies that [(2.10) is satisfied fdf := «,(h,) and Z = o;(—h,), and
conversely, the existence of, Y € W, satisfying [2.1ID) implies tha® (h.) = —1, where
hy :=maxy - X, Z - X}.

Case 1. If eitherW;, is strictly convex (i.e«, (h) is a singleton) ow, (hy) C 3y is a segment
parallel toX with length|e, (hy)| < |X]|, then® (hy) > —1 with equality holding if and only if
IS| = |X| (for instance if\Wy, = Ps, see Figur¢|4). The convexity @ yields the existence of
hy € (0, hy] with @ (h,) = —1. Assume now that there exist$ € (h., hy] satisfying® (h*) =
@ (hy) = —1. Then, by the convexity ab, for everya € (0, 1) we must haved ((1—A)h, +Ah™) =
—1, that is,dW,, should be flat along the directiot*, but this contradicts the convexity oV, .
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XO:Ml “

Py Ps

FiG. 4. P4 admits infinitely many pair§Y, Z} satisfyingXo+Y + Z = 0 with Xg = M3. Pg has a unique pair alt € 9 Pe.

Case 2. If a,(hy) C 3Wy is a segment parallel t& with length strictly greater thafX|, then
@ (hy) < —1 (for instance iV, = P4, see Figur¢4). Thus, we can find infinitely many pairs
{Y, Z} (as many as the points of a segment of lengil) of distinct vectors indV,, satisfying

(2.10). 0

REMARK 2.17 If Wy = PsandXo = M, (see Figuré:]4), thehS| = 2|Xo|; hence there are
infinitely many pairs{Y, Z} of distinct vectors im P4 satisfyingXo + Y + Z = 0. Moreover, any
elementary triod has always two anglesmof2. If W, = Ps andX = Vi (see Figur¢ |4), then
|S| = |Vil; hence for anyX € W, there exists a unique unordered piir Z} satisfying [2.1D).

COROLLARY 2.18 Letn > 6. ForanyX e [V1, Wq] there exist uniqu& = Y (X) € [V2, W»] and
Z = Z(X) € [Va, W3] such that(X, Y, Z) is an admissible triplet.

A direct computation yields the following result.
PROPOSITION2.19 Letn € N,n > 6, j = 2, 3 andIT be elementary. Then

21/3, n=>6m, m>1,
V(v1, vj) = Vn = 2r/3)(1+1/n), n=6m—4, m>2, (2.11)
27/3)(1-1/n), n=6m—2, m>2

Moreover, the cardinality of in Definition[2.9 is 4 ifn = 6m, and 8 ifn € {6m — 4, 6m — 2}.

The angles of 7 are strictly greater than/2 and strictly less tham whenn > 6 andn # 8.
If n = 8 thend (v2, v3) = 7/2. From Propositiof 2.19, whean € {6m — 4, 6m — 2}, there are
eight different configurations which will be denoted ta), (b), (c), (d), (@), (b, (c’), (d’) (see
Figure[}); whem = 6m, the four different configurations correspond &, (d), (a’), (d’).

From Propositiof 2.79 we deduce the following formulas which are used throughout the paper:

Ty Tj = V1V =COSYy, j=23, (2.12)
V1 T2 = T1 - v3 = COy, — 7/2) = Sinvy, (2.13)
71+ V2 = v1 - 13 = CO Dy + 71/2) = — SiND,. (2.14)

REMARK 2.20 (quasi-elementary and nonpolygonal triods) The angles of a quasi-elementary triod
11 are still determined by the balance condition dsee [(2.R)) and are exactly equakig, 9, and

2 — 21, as in the case of an elementary triod. The notion of local configuratidh aifg can be
introduced by considering the equivalence relation introduced in Defifiiign 2.9 on

(SaU S UL ULy, i j2 € {1,230\ {k}, j1 # j2.
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Os.
V1 ; W
3
a, >\Uz
V2
(b)
a3z

q
o XZ
\P

(b)

Wl G%V3
(0%} >\G2 (o6}
Va
(c) (d)

FiG. 5. Eight different configurations (up to rotations througty @) whenn € {6m — 4, 6m — 2}.

with k as in Definitio of quasi-elementary triod. The different local configuratiorfsf of g
will be denoted bya*), (b*), (c*), (d*), (@), (b'*), (c*), (d*). For nonpolygonal triods, only the
angle between the interfaces, andX,, j1, j2 € {1, 2, 3}\ {k}, j1 # jo, with k as in Definitior] 2.
of nonpolygonal triod, is known and equal#gq.

We sets := |V1 — X (V3)| if n =6m — 4,5 := Wy — X (W3)| if n = 6m — 2 (see Figurg]6),

a.b] = {[0, L], n = 6m, . {l, n = 6m,
L=, L - 6], n=6m—4,6m—2, = 168/(L—25), n=6m—4 6m-—2,
(2.15)
and
L, n = 6m, 0, n = 6m,
gy =1 m(L—3§), n=06m-—4, q, = { —msé, n=~6m-—4, (2.16)

L +mé, n==6m-—2, L—m(L—-6), n=6m-—2.
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Given an admissible triplgtX, Y, Z) € [V1, W1] x [V2, W2] x [V3, W3], we set
=|Vi—-X|, y=I|W2—-Y|, z:=|Vz—-Z|. (2.17)
The proof of the next result is omitted and follows by a direct computation.

PROPOSITION2.21 Ifn=6m —4thens = |[W1 — X(Wo)| = |[Wo — Y (V3)| = |V3 — Z(W2)|. If
n=6m—2thens = |Vy — X (V)| = |Vo — Y (W3)| = |W3 — Z(V>)|. Furthermore,

25 =(1—cosvn) *L, m=—(2cosdn) "L, ne{bm—4 6m—2). (2.18)

Finally,
y=yx):=-mx+gqy, z=2z2x):=mx+gq;, xe€la,b],n=6. (2.19)

2.5 Crystalline curvature of elementary triods

In this section we compute thg-curvaturesk, (11), k,(l2) andk,(l3) (see Definitlor@@ of an
elementary triod7. Each configuration gives rise to a different vector fislgin : I7 — R<. Since

in two dimensions the value d¥min is fixed (up to sign) at each vertek;, the value omem|E

at g uniquely determinesVmin on X; simply by linear interpolation. Hence, we can restrict the
minimum problem[(2]3) to the class of vector fiellsc A/ which are given by linear interpolation
on eachX;. From Proposmo@l the admissible trip{dt s, (¢), N|x,(¢q), Nix,(q)) is uniquely
associated withix, y(x), z(x)) satisfying [2.IP). Hence, we can rewrite the functiona[in|(2.3) as a
function ofx. The problem of findingVmin in (2.3) reduces to the problem

rr[1inb] f), fx) = / (divy N)2p°(v) dH! = ax? + Bx + y, (2.20)
X€la, I7

whereq, B, y are coefficients depending on the configuratiodiof
Let xmin be the minimizer of[(2.20)ymin := y(xmin) @ndzmin := z(xmin). The stability of an
elementary triod is equivalent to the condition

Xmin € (a, b).

PROPOSITION2.22 If IT € (d) thenxmin = a, wherea is defined as in[{2.15). T <
{(a), (b), (c)} is stable then

—1
(@) qy qz 1 2 1 1
L1, Lo, L3) = - — =) — —+ — , 2.21
Ymin(L1, L2, L3) = m<L2 L3>[L1+m <L2+L3 (2.21)
-1
(®) L—qy L—g:\[1 of 1 1
Li, Lo, L3) = — )| — —_— 4+ — , 2.22
Xmin(L1, L2, L3) = m( L + s )[Ll +m L + s (2.22)
-1
©) q) L — qz 1 2 1 1
L1, Lo, L3) = — )| — —+ — 2.23
Xmin(L1, L2, L3) = m<L2+ s >[Ll+m <L2+L3 , (2.23)

wherem, gy, g are given by[(2.75) anl (Z.]16).

Proof. Let N € N be given by linear interpolation on eacl;, let (X,Y,Z) =
(N12,(9), Ni5,(q), Ni55(q)), and letx, y, z be as in[(2.1]7). We observe that g,z , div; N|x,,
div; N5, are constant and given as in Table 1 after replagiig, ymin, zmin With x, y, z, and

f(x) = (dive Nyg,)?L1g®(v1) + (dive N|5,)?Log°(v2) + (dive N 5,)? L@’ (v3).
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TABLE 1

Anglese; andg-curvaturesy, (/;) of an elementary triod

493

a1/m | op/m | oz/w ko (l1) Kkp(l2) ko (l3)
@ [1-=2/m|1+2/m|1-2/n Xmin/L1 —Ymin/L2 Zmin/L3
0 |1-2/n|1-2/n|1+2/n Xmin/L1 (L = ymin)/L2 | —(L —zmin)/L3
© [1=2/n|1+2/mn|1+2/n Xmin/L1 —Ymin/L2 —(L —zmin)/L3
() |1-2/n|1-2/n|1-2/n a/Ly,a = Xmin (L = ymin)/L2 Zmin/L3
@)|1+2/m|1+2/n|1-2/n —(L = xmin)/L1 —Ymin/L2 Zmin/L3
M) [1+2/m|1-2/n|142/n —(L = xmin)/L1 (L = ymin)/L2 | —(L —zmin)/L3
€)[1+2/m|1-2/n|1-2/n —(L — xmin)/L1 (L = ymin)/L2 Zmin/L3
@) |1+2/n|1+2/m|1+2/n| —(L=b)/L1,b=xmin| —¥min/L2 | —(L—2zmin)/L3

Furthermorep’(v1) = ¢°(v2) = ¢°(v3). In the case of configuratiofd), since f(x) is an
increasing function ok € [a, b], it follows that the minimizer is given bymin = a and the
first assertion follows. In the other cases, since

owp| £ m?( L4 0

= e - e >

oa=¢" (11 . m L s R

it follows thatxmin = —8/(2) € (a, b). Formulas[(Z.21){(Z.23) follow since

—2mwo(v1)(q—y - 2)

in configuration(a),

L, L3
L—-—¢qgy, L-— . . .
B = —ngoo(vl)(— 9y + _qz) in configuration(b),
Lo L3

in configuration(c). O

qy L—gq;,
—2m° ay | =274z
¢ (Ul)<L2 L3 )

REMARK 2.23 Since@’), (b’), (¢c’) and(d’) are respectively symmetric {@), (b), (c) and(d)
with respect to thé;-axis, we can derive the expressiongfin for configurationga’), (b, (c’)
and(d’) from those of(a), (b), (c) and(d) using the mirror law:

2 (L1, Lo, Ly) € [a,b] > x &) (L1, Lo, La) = L — x\E\ (L1, Ls, Ly) € [a, b].

min min min

(2.24)

Since (Xmin, ymin, Zmin) identifies Nmin at g, «,(;) is explicitly determined for each
configuration, as shown in Table 1.

REMARK 2.24 Whem = 6m, IT is unstable if and only if

(Nmin| 2,(q)s Nmin| £,(q)> Nminx5(q)) € {(V1, V2, V3), (W1, W2, W3)}, i.e.

(see FigurE]6). Whem = 6m—4 (respn = 6m—2), IT is unstable if and only if eithe¥min 5, (¢) =
V3 O Nmin| 5, (q) = W2 (resp. eithetVmin| 5, (q) = V2 OF Nmin|x3(q) = W3), i.e. eitherxmin = § or
xmin = L — 8§ (see Figurg[6). In particular, configuratiofs and(d’) are always unstable.

Xmin € {0, L}
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Vi My W X(Va) X(W2) X(V2) X(Ws)

FiG. 6. Wulff shapesV, = P12, Wy = P14 (n = 6m — 4) andW,, = P1g (n = 6m — 2) and relative ranges of all
admissible triplets (filled regions).

REMARK 2.25 If [T is a quasi-elementary triod, the solutid¥i, of the minimum problen (2]3)
with I" replaced byﬁ is still determined as the solution of the minimum problém (.20) with
replaced byﬁ. Hence, formulas in Table 1 and in Proposit.22 still hold wilb, (b), (c),
(d) replaced bya*), (b*), (c*), (d*) and withly, I3, I3 suitably replaced by;,, /j,, la, j1, j2 €
{1,2, 3} \ {k}, k as in Definitior] 2.B of quasi-elementary triod.

3. Short time existence and uniqueness of a crystalline flow

Before proving the short time existence result (Thedrerh 3.3) we need to understand the relations

between the distancé$(¢) (see[(2.B) and DeﬁnitiZ) and the length¢r) (see Definitio),

in order to write the left hand side of systefm {2.9) as a functiohaf).

PROPOSITION3.1 LetIT be an elementary triod aril > 0. Assume that € [0, T) +— II(¢) €

[1T] is a flow starting from/T which satisfies (ii) of Definitiof 2.2 and that the distance vector
h;(r) of the segmens; (¢) from S;(0) = S; satisfies:; (0, 7); viR). Then, definingay(t) as

in (2.8), we have

Y () — v1 - veh! (t)

L1(t) = L1 + cotaq hy (1) + , k=23,
Tl . Vk
hY(t) — vy - vohb(t
La(t) = Lo + cotag hy(t) + 1) = v - vaha ), (3.1)
V-T2
hY(t) — vy - v3hi(t
La(t) = La + cotag hl(r) + 2D~ 1 v35(0)
V1 - T3
5(t) + hy(t) = 211 - 13hY (1), (3.2)
and
. 1
cotag — b1 b2 Li(t) — L1
T1 V2 T1-V2
1 ViV
rank Cotay — ——2 Loty — Lo | =2 (3.3)
V1 -T2 V112
1—2(v1 - v3)? :
211 - 13C0tag + w —cotasz + s L3(t) — L3

V1 T3 V1- 13
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Conversely, foranyi = 1,2,3,letL; : [0,T) — (0, 4+00) andh]‘.’ . [0,T) — R be continuous
functions satisfying’; (0) = L, h;(0) = 0 and B)HER). If1(¢) € [IT] is the elementary triod
having|S;(t)] = L;(¢) andh;(r) = hj‘.’(t)vj, thens € [0, T) — II(¢) is a flow starting from/T
which satisfies (ii) of Definitiop 2.12 an () is the distance vector & (7) from S;(0) = ;.

Proof. From
qq() =qq(t) - VjVj +qq(t) - TiTj = h})(t)vj‘ + [Lj(t) — Lj — COtOlj h;(t)]fj, (34)

we get, forj = 2, 3,

hi(t) = vi-vihi(t) +v1-5[L;(t) — Lj — cote; 1} (1)], (3.5)
L1(t) = L1+ cotag h‘])_(t) + 711 th}-)(t) + 711 'L’j[Lj(l‘) - Lj - COtOlj h;)(l‘)], (36)
Thus, by [3-5),
hY(@) —v1-vihY (1)
Lj(t) — Lj — cote; h} (1) = ! L , =23, (3.7
V1T

and the second and third equalities[in [3.1) are proved.
Inserting [[3.F) in[(316), subtracting the resulting equations, and (2.19) ahd (2.5) yields

. . 2
- valh (o) + 0] + 252 ng) - P2 ) 1 nge) = o
V1 T3 V1-13
Hence, by[(Z.),
RY . p2)2 .
113 t-vs

which proves[(3R).
Similarly, inserting [(3.]7) in[(3]6), adding the resulting equations, and ufing] (2.12] and (2.5)
yields

(v1 -

2
2L1(1) = 2L1 + 2 cotay A1) + 71 - valhS() — m50] — 2 1hr ey — my o))
V1 - 173

1
71 V3

= 2L1 + 2 cotas hy(t) + [hg(t) — hy(1)]. (3.8)

Substituting[(3:R) intd (3]8) gives the first equality[in {3.1). Now, syst¢ms (3.1)ard (3.2) imply

cotay — 212 ! 0
La(t) = L v 0
La(t) — L2 | = cotap — ol (i |. 3.9
L3() — Ls VT V-T2 hy(0)
1—2(vy - v3)? V1 - V3 3
271 - t13coteg + ——— —cotaz + 0
V173 V113

If we show that systenj (3.9) always has rank 2, tierbeing solutions of (3]1)(3.2), the condition
(3:3) follows. LetA; 2 be the 2 2 matrix given by the first two rows and the first two columns of the
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matrix in (3.9). If cotr; = cotaz, i.e.IT € {(b), (d), (@), (d')}, then detd; » = coP g + 1 # 0.
If cota; = —cotay, i.e.IT € {(a), (c), (b"), (c)}, then

1 <1 B sirf(a1 + z?n)>

detA; 2 = — .
C S 9, sirfay

Using Table 1, one checks that det, # 0 if either IT € {(a), (c)} andn # 6, orIT € {(b’), (c')}
andn ¢ {10, 12 14}. In the remaining cases one can check similarly that the minors given by the
first and third rows (or the second and third rows) of the matri{in| (3.9) are not zero. [Thén (3.3)
follows.

The converse follows by construction. O

REMARK 3.2 System[(3]1) is not symmetric under permutations of the indic2s3] unless
n = 6m. This is due to the fact that far # 6m only two of the angles at the triple junction
are equal. Finally, notice that a flow starting frafh which satisfies (ii) of Definitiof 2.12 with
I1(t) elementary in [0T) has two degrees of freedom.

THEOREM 3.3 Let/T be elementary and stable. Then there eXist 0 and a unique stable-
curvature flow € [0, T) — I1(¢) starting from/T with [I1(¢)] = [II] foranyt € [0, T). Moreover,
hj e C°([0,T)) forall j =1,2,3.

Proof. We assuméT < (a), the proof in the other configurations being similar. kﬁﬁj be defined
as in [2.21). For anw := (w1, wa, w3) € (0, +00)3, we setG(w) = xr(ﬁi:](w) and define the
vector fieldF = (F1, F», F3) : (0, +00)% — R3 as

v1-v3\ G(w) B 1 mGw)—+gq;
wy  T1-V3 w3 ’

Fi(w) = —(COtOll —
T1- V3

1 . —mG
Fw) =— Gw) + (cotocz _ vz) mGw) + 4y
V172 w1 V112 w2
1 G . G
F(w) = — (w) — (Cotoz3 _n U3)m W) +qz'
V173 W1 V1 - T3 w3

Notice thatF is obtained by differentiating with respectithe right hand side of systefn (8.1) and
by replacing the:;’s (in (2.9)) with the expressions i&i andw; (where we use Table 1, (Z]21) and
(2:19)). Consider the Cauchy problem

w(0) = (L1, L2, L3) € (0, +00)3. (3.10)

{uvu) = F(w(1),
Since F is C™ in (0, +00)3, there exists a unique solution € C*([0, T); (0, +00)3) of (3.10)
for someT > 0. Denote byl1(¢) the elementary triod belonging to configurati@) and having
[S; ()] == wj(t) forany j = 1,2, 3. Definex(t) := xr(ﬁ‘iz](w(t)), y(@) == —mx(t) + gy, 2(t) =
mx(t) + g,. By construction, for any € [0, T), x(¢) is the solution of the minimum problefn (2]20)
with IT replaced by (r), andNmin(#), the solution of[(Z8) with” replaced by1(¢), is determined
by (x(2), y(), z(2)). Thus
(1) y(t) z(1)

Ky (l2(1)) = T2’ Kky(3(1)) = ——,

X
Kp(l1(1)) = w30

wi(t)’
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wherel;(¢) := w;(t)t;. Sincew; € C*([0, T)), possibly reducing” > 0, we havex(t) € (a, b)
for anyr € (0, T). Therefore,J1(¢) is elementary and stable for anye [0, T), andk,(l;(-)) €
C°([0, T)) foranyj = 1, 2, 3. Defining, forany; =1, 2, 3,

t
hj(t) = hj@)v;,  hj(t) = —/0 ko(j(s)ds, re€l0,T), (3.11)

we get a flow satisfying (27). To prove (ii) of Definitipn 2|12, in view of (the converse part of)
Propositior] 3.]1 it is sufficient to show that (B.1)—(3.3) are satisfied. Denotg the function in
(2:20) wherefT is replaced by7(r). Equality [3.2) follows from

_ dfi (x)
o dx

and from—m = (211 - ©3)* (see[[2.1p) and (2.18)). Integratirig (3.10) yields](3.1). Findlly] (3.3)

follows from (3:2), since

X y(x) dy z(x) dz

0 - -
w1 | wa) dr | wa(n) dx

= 2¢”(v1>[ } = 2¢° (vD)[—hY (1) — m(hy(t) + h5(1)]

1—2(vy - vp)? -
wa(t) — Ly = (2r1 . 7o Cotan + &yz;(n n <— cotay + 2 vz)hg(t).
V1 -T2 V1172
Unigueness of the flow follows by uniquenesszgfandh;. |

COROLLARY 3.4 If IT is degenerate and stable, then there €Rist 0 and a unique stable-
curvature flowr € [0, T) — I1(¢) starting fromIT with I1(z) € [IT] degenerate for anye [0, T).

Moreover,j , iy € C([0,T)), ji, j2 € {1,2, 3} \ {k}, k asin Definitio of degenerate triod.

Proof. As in the proof of Theorer 3|3 we obtain the (two) nondegenerate lengthsy;, as
solutions of a system of two ordinary differential equations, and the assertion follows by the same
arguments. O

DEFINITION 3.5 LetIT be elementary and stable. We defihe= 7 (IT) as the supremum of all
T > 0 for which there exists a unique stalglecurvature flowr € [0, T) — I1(¢) starting fromIT.

COROLLARY 3.6 LetIT be elementary and stable, an& [0, 7) — I1(t) € [IT] be the stable
@-curvature flow starting frondZ. Then

—211 - 3K, (11(1)) + 16, (12(1) + Kk, (13(1)) =0, Vi € [0, 7). (3.12)

Proof. This follows by differentiating[(3]2) with respect tand using[(Z2]9). O

Condition [3.1D) is related to the geometry of the triod near the triple junction and is equivalent
to stability of the triod. In particular, i = 6m, we haver; - 13 = —1/2, hence the sum of the
@-curvatures at the triple junction is zero (as in the euclidean case).

If we use [3.2),[(Z.113) an@ (3.5), for any [0, 7) and alln > 6, system[(3]1) can be written as
follows:

L1(t) — L1 = [cotay + cotdn]hy(t) — = hy(t) (3.13)
sindy,
v 1 v
= [cotay — cotd,]hy(t) + mhg(t), (3.14)
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Lo(t) — Lo = s hi(t) + [cotap — cotdy]hy(r) (3.15)
n
= 2 cosvy[cotay — cot(204)]hy (t) — [cotan — cotdy]hy(r) (3.16)
= [cotap — cot(20n)]h5 (1) + m%(r), (3.17)
L3(t) — L3 = Whi(t) + [cotaz + cotdy]hy(1) (3.18)
1 v v
= mhz(t) + [cotaz + cot(20n)] h5(2). (3.19)

The following proposition describes some useful qualitative properties of the flow.

PROPOSITION3.7 LetIT be elementary and stable, and [0, 7) — [1(t) € [II] be the stable
@-curvature flow starting frondiZ. Denote byj; and j» the two indices for which the two angles of
the triod atA;, andA;,, from the side of their common phase, are both larger th&or instance,
j1=2, j2=3inFigurdT(i),j1 = 1, jo = 3in Figurg J(ii),j1 = 1, jo = 3 in Figurg J(iii)). Then

(i) L;, andL;, are nondecreasing in [0);

(i) sup; supepo,7) |Kf,)(lj(t))| < +00;
(ii)) SUP; SURpo, 7 |Lj (1)] < +-00;

(iv) Lj; € Lip((0, 7)), j3 # j1, j2;

(v) if T < 4oothenL;(T—) < +ooforany;j =1,2, 3.

FIG. 7. Stablep-curvature flow from a stable elementary trifid(see Theoreifn 3.3): (i¥ € (a), (ii) 1T € (b), (iii) IT € (c).

Proof. We show assertion (i) for configuratioa), (b) and(c), the casesa’), (b’), (¢’) being
similar (interchangd.2(¢) with L3(1)). Differentiating [3.1#),[(3.17) andl (3.]18) with respect o
using cotr + cotp = Flae, (Z11) and Table 1, we see that = 2, jo = 3, Lj; (1) > 0,
Lj,(t) > 0in configurationga), andji = 1, j» = 3, Lj,(¢) > 0, Lj,(t) > 0 in configuration(b)
and(c). Assertion (ii) follows from (i) since, by Table Zz';l(t) andh}’2 (1) are bounded and, by (3.2),

h}3(t) is bounded. In view of (3]1), (i) implies (iii). Conclusions (iv) and (v) follow from (iii).C]

For anyr € (0, 7), for simplicity, we denote by (¢) the solution of the minimum problerp (2]20)
with IT replaced by7(¢) andy(?) := —mx(t) + gy, 2(¢t) := mx(t) +¢;. Thanks to Propositi.?,
L;(T-), x(T—-) and«,(l;(7—)) are well defined. We denote b§f(7) the elementary triod
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satisfying [[7(7)] = [[T] and |S;| = L;(7—) for any j = 1, 2, 3. Finally, Nmin(7) denotes the
solution of [2.8) withI” replaced by1 (7).

REMARK 3.8 We conclude from Propositi.? that eitgy(7—) = 0 or [1(7) is unstable
or both of these occurrences happen at time-= 7. Finally, L;;(7—) = 0 is not equivalent
to |k, (1;;(T—))| = +oo, but whenevers;, disappears in a stable flow, is-curvature remains
bounded.

3.1 A case of global existence

In general7 is finite and the flow develops a singularity at time: 7. The following result shows
that in a specific case the flow is global, 2= +oc. For alln = 6m > 12, set

Voo . 2 1 1\ 1
=—, ‘= 14++/3siney—cosw, = —4+—)(-cotey—— ) . (3.20
Uoo p Voo ++/3sinag 1, T <ﬁ+SIna1>< o1 \/§> ( )
THEOREM3.9 Letn = 6m and let/T € (a) be stable. Theff = +c0.

(i) If n > 12 then lim_ o L;j(t) = +oo and lim_ o k,(j()) = 0 foranyj = 1,2,3.
Furthermore,

m Lo(r) lim La(t)

=00 La(t) Uoor o0 Li(t) Voo tll[gox(t) = x(00)

wherei s, voo are as in[(3.20) and(oo) := (s + voo + 1)1 € (0, L).
(i) If n = 6thenlim_o L1(t) = O, lim; oo L2(t) = L1 + Lo, lim;_, L3(t) = +00, and
liMm;_ o0 Xxmin(¢) = 0. Furthermore,

Jim ke (s() =0, lim i, (2(1)) = — lim «,(11(1)) = La+L1

The analysis of the long time behaviour requires the following lemma (recall Defi 2.11),
which in particular shows that if = 6m then the stability regios, is the whole of(0, +00)°.

LEMMA 3.10 Forall > 6,8y = Sy = ¥. If n = 6m we haveSa(3, 1) = Sa(2, 1) = (0, +00)2.
Moreover, ifm is defined as if (2.15), then far= 6m — 4,

Sa(3,1) = Sx(2,1) = {(u, v) € (0, +00)2 : v < m},

= _ L—68—Lu L—(L—8u
’ = 2., &~ —o0— LU L—(L—-¥8u
Sp(2,1) =Sy (3,1 (u,v) € (0, +00)* : m P }’
= = L+5$6
Se(21) =83 D) = (. v) € (0, +00)% 1m < v < L —212}’
while forn = 6m — 2,
= = L—b0—Lu L—(L—3d)u
= / = 2.
SaB, D) =8x(2,1) (u,v) € (0, +00)" 1 m T — }’

Sp(2,1) = Sp(3,1) = {(u, v) € (0, 400)2 : v < m},

Sc(3,1) =82, 1) ={(u,v) € (0, +0)% :m < v < .
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Proof. Using Propositioh 2.32, anf (2]24) for configurati¢a$, (b’), (c’), the conclusion follows
by imposingxmin € (a, b). O
Proof of Theore9. Letxr(;;"iﬂ1 be as in[(2.21). For anye [0, 7) definey(s) andz(r) as in [2.1D)

with x replaced by (¢) := xr(r"j‘i?](Ll(t), Lo(1), L3(1)). Set
-1
dt) = (Z Li(t)L; (:)) .
i<j
By Table 1, [[2.1p) and (2.16), systeim (2.9) reads
x(t)

hy (1) = L = —Ld(1)L3(1),
50 = 2~ La()(Lao) + La) (3.21)
27 La() ’
PN O I
hz(t) = Ia0) Ld(t)L1(t).
Set /3 A
- 1 \cota; ++v3 L 1 \cota; —v3
A1 = (cotal \/§> oo i1 P Az = (cotal + \/5) coPa il il
Then condition[(3]3) becomes
La(t) = A1L1(1) + A3L3(t) + (L2 — A1L1 — A3L3)(0), 1 €[0,7). (3.22)
Differentiating [3.1#4) and (3.18) with respectitand using[(3.21) yields
Ly=Ld(t)fi, Lz=Ld{)fs (3.23)

where

2 1 1 2
= —“ 1, (cotay + — ) La. — _(cotay — — VL1 + = La.
=gt ( ' ﬁ)B /3 ( ! Jﬁ)l /32

ThusdL1/f1 = dL3/f3, and if we substitutd.3 = RL1, we obtain

p1dL1+ p2dR =0, (3.24)
with
: <cot + L >R2+ 4 R <cot 1 ) : [(cot + = )R+ 2 ]L
= o — —R — oL — — |, = o — — .
p1 1t 7 1T p2 1t 3 N

Let us show (i). Integrating (3.24) yields

1 1 1
logL - - R =
og 1+2/<R—R+R—r)d 0

wherer > 0 is defined as i (3.20) and

_ 2//3 - 1/sina
R=-""="_"""""° 0.
cotag 4+ 1/4/3
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Thus
Li(z)(ﬁ(n _ R) (5@) - r) —C, C:=(L3— RL1)(L3—rLy). (3.25)
L1 L1

CLAIM. There existsg € [0, 7) such thatfi(r) > 0 (and hencé.1 > 0) for any: € [zo, 7).
If f1is positive at time = 0 then it is so at the subsequent times since[ by [3.14)and (3.18),
fa(t) = —h4(coPa1+1) >0, 1€[0,7). (3.26)
We proceed by contradiction: assume tligt< 0in [0, 7), i.e.

L1(t) > MoL3(t), t€][0,7), Mpy:= —?(cotal + %) > 1 (3.27)

Then, from|[(3.2B)L1 is decreasing in [07) but bounded below by/oL3. From Propositions 3.10
and3.7(v), we conclude th&t = +oco. Note thatA; > 0 andAz > 0if n > 12. Set
_ LL3(0)
[(A3/Mo)L1(0) + L2(0) — A3L3(0)] M°+1L1(0) + L1(0)2/M0

From [3.21), [3.2R) and (3.R7) we geth} > My, and from [3:2B).f1 > Mi(coPay + 1) in
[0, +00). Thus—(cotar + 1/v/3)La(t) > (2//3)L1(t) + M1(coP a1 + 1)t + f1(0) for anys e
[0, 00). Hence, letting — 400 we getLs — +o0, and from [[3:2/)L1 — +oo. This gives a
contradiction since, by our assumptidhy, is decreasing on [G+oc). The Claim is proved.

Since [3:2F) holds wheid; is decreasingZ = +oo follows from Propositior{ 3]7 and
formula [2.21). Let us show lim,o, L1(f) = +oo. Assume that lim, L1(1) < +oo. Then

from (3:25) and@Z) we get respectively Jlim,, L3(r) < +oo and lim_.. L2(t) < +00. But
this implies I|m_>ooL (t) = 0 foranyj = 1,2, 3. Differentiating [@b) with respect toand

recalling thath! < 0 andh" 0, we get Ilm_mh"(t) = lim;- h3(t) = 0, and consequently

lim; - o0 hz(t) = 0, which gives a contradiction with systejmn (3.21).
Finally, we also get lim., o L3(z) = 400 and lim_, o, L2(¢) = +oo respectively fromf; > 0

on [tg, +00) and [3.2R). Again(3.32) (3.B5) ar{d (21 21) yield the conclusion since Asr = veo.
Let us show (ii). Ifn = 6 thenay = ¥y = 27/3. Thus, [[3.2R) reduces to

Lo(t)y = —L1(t)+ So, t€[0,7), So:=Li+ Lo, (3.28)
and [3:2%) ta2R + 1)d L1 + L1d R = 0 so that integrating yields l@g1+/2R + 1) = C. Hence

C
L3(t) = (L (Ot) Ll(t)), t€[0,7), Co:=L1(L1+2L3). (3.29)
Using [3:21), [(3:29) [(3:28), we can rewrite the first equatiofi in {3.23);as 4LL2/+/3g(L1),
whereg(s) 1= 253 — Sps2 — CopSo. GivenA € (0, L1), let T € (0, T) be the time that the solution
needs to achieve the value Then we get

A

1 A CoS 4

2 050

s — Sos + CoSo—:| = / <2s — S0 — ) ds = —LT. (3.30)
[ s Ly Ly S2 ﬁ

From [3.30) we discover thdt < 7 forany A € (0, L1). HenceA = 0 and7 = +oo0. Further,
L1(t) being strictly decreasing in [6+-00) (from (3:23)), we have.; > 0 in [0, +00), and from

(3:30) we get limyoo L1(r) = 0. O
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4. Configurations (d) and (d’): development of a new segment

In this section we assume= 8 and/7 € (d). From Propositiof 2.227 is unstable withxmin = 8,
i.e. Nmin = (X(V3), Y(V3), V3) (see Figurc{]S), and from Table d,(l1) = 8/L1, k,(l2) = (L —
8)/ Lo, ky(I3) = 0. Sincexmin tends to be smaller thahand the constrainlls/mim;f (q9) € T(pu(v;;)
cannot be violated, the appearance of a vertical segmenisdbrced during the flow, as explained
in the following result.

X(Vs) Z;

&
Y(\5) Vs

W¢=Pg

FiG. 8. Development of a vertical segmefit(z). The rotated quasi-elementary triod on the right will be used in the proof of

Theoreni 4.11.

THEOREM4.1 Letn = 8 and/T € (d). Then there exisi’ > 0 and a stablg-curvature flow
t € [0, T) — II(¢) starting fromIT. More precisely,

ﬁ(t) = X1(t) U Xo(t) U (S4(t) U X3(2)) € (@), Vre(O,T), (4.2)
and if we define

R(t) 1= xB (Lo(t), La(0), L1(1)),  F() i= —mX(t) +qy, 2(0) :=mX (1) +¢q,,  (4.2)

with x'2 as in [2.21) andh, ¢y, ¢, as in [2.15),[(Z.26), ther, (13(1)) = O,

2D X _ Y@
ko(l1(1)) = L) ko (l2(1)) = o) ko (la(t)) = La)’ (4.3)
Finally, k,(1;(-)) € C*°((0, T)) forany j = 1,2, 3,4, and
lim ke, (1) = 2 lim kg (a(0) = 222 lim kg (a(t)) = —— 4201, 2=0 < 0. (44
m ko(l1(1)) = I, 'm ko (l2(1)) = I, .m Kkp(la(t)) = —L—l+ e — <0 (4.4

The idea of the proof is to consider thecurvature flow starting from the rotated quasi-
elementary triodIT in Figure E* with singular initial datum(L», 0, L1). Notice that, from
Lemmg 3.ID(L>, 0, L1) belongs to the boundary of the stability regiss

Proof. SetG(w) := x@ (w) for w = (w1, wa, w3) € (0, +00)3 with +@ asin [2.21), and define

min min
the vector fieldF = (Fy, F, F3) € C®((0, +00)3; R3) as
1 mGw)+ —mG(w) + mG(w) +
Fi(w) == — WA pyw) = Faw) = G mOWITa: 4

sindy, w3 w2 w3
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wherem, gy, g, are defined as ifi (2.15) arfd (2116). Notice thas obtained by differentiating with
respect ta the right hand side of (3.14), (3]17), (3119) and by replacingh'ghe (in (2.9)) with

the expressions iF andw; (where we used Table 1, (Z]21) and (2.19)). Despite the appearance of
w2 in the denominators of, the presence off ensures that and all its partial derivatives are
bounded in0, +00) x {w2 = 0} x (0, +00). Thus the Cauchy problem

{u')(t) = F(w()), (4.6)

w(0) = (L2,0, Ly),

admits a unique solutionAs, Ao, A3) € C*([0, T); (0, +00)3) for someT > 0. SetL1(r) :=
As(t), La(t) := A1(t), La(t) := Az(t) for anyr € [0, T). Let us show thalL4 > 0in [0, T). In
order to do that, one checks tha$(0) > 0 as a consequence of

gy —mG(La(t), La(t), L1(1)) n mG (La(1), La(t), L1(1)) + q;
La(t) L1(2)

La(t) =
and

lim G(w1, w2, w3) = L—8,  lim_Fa(w1, wp, wg) = 0(lim La(t) =0), w1, w3 € (0, +00).
wy—0 t—0

w2—>

Hence, we conclude thdl, is increasing in a neighbourhood of 0, say10.

Let I1(r) be the quasi-elementary triod defined [in [4.1) and hav§)@)| = L;(t), j =
1,2, 3, 4. Definex(z) := G(La(t), La(t), L1(1)) andi(t),Zg) as in [4.2). By construction, for any
t € (0, T), the solutionNmin(¢) of (2.3) with I" replaced by1(¢) is determined byXx (1), ¥(¢), Z(z)).
SinceL; € C*([0, T)), possibly reducing” > 0, we havex € (5, L — 8) in (0, 7). Therefore /T
is stable in(0, T), k,(l;(-)) € C*([0, T)) for any j = 1,2, 3, and [[4.B) holds. Defining, for any
j=123, h” :[0,7) — R as in [3.I1) and reasoning as in the last part of The 3.3 we get
a stablep- curvature flow starting fronmdI. SinceLq, Lo, La are monotone functions 0, 7), the
limits in (4.4) exist and their values follow from limoX(t) = L — § and lim_o L4(r) =0. O

REMARK 4.2 The flows — [I(r) of Theoren] 4] is the unique stable flow starting frém
Indeed, ifr — IT’'(¢) is a stable flow starting fromr then, from Propositio-ZT(t) ¢ (d) and,
aSxmin = 6, i.e. Nm.n|);3 = V3 (see FlgurE]B)H (r) must be quasi-elementary wifft’(r) € (a*).
We expect that +— I1(t) is also unigue among all regular flows starting frém

5. The caser = 8and IT € (b): development of a new segment

In this section we prove that at time= 7 < (0, +o00) the flow starting from a stable triad € (b)
becomes unstable and a vertical segment develops in order to decrease the energy functional and
make the flow stable at subsequent times.

THEOREMb5.1 Letn = 8 and letlT < (b) be stable. Therd < 400 and Nmin(7) =
(X(V3), Y(V3), V3). Furthermore, there exish € (7, +oo] and a stablep-curvature flowt e
[7,71) — H(t) starting fromI7(7). More precisely, for any € (7, T1), H(t) is the quasi-
elementary triod defined as ip (#.%),(/3(r)) = —L/L3(r) and [4.8) holds. Finallyk,(;(-) €
C®((T,T)) foranyj = 1,2, 3,4, and[(4.}4) holds with | O replaced by | 7.
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The idea of the proof is that at the finite time= 7 the solution reaches the boundary of the
stability region, and at the same time an infinitesimal segment appears; then the flow is continued
by arguing as in Theoremn 4.1.

Proof. For anyr € [0, 7) definex(¢) := P (L1(r), L2(t), La(1)), y(¢) andz(r) as in [2.I9) with

x replaced byt (¢). Then systen] (2]9) reansilg
“ __x(t) - __L—y(z) Vo L—2z@)
MO="To RO=TTne 0 Y= e 1)

system|[(3]L) reads
Li(t)=L1+ \/Ehg(t), Lo(t) = Lo — hy(t) — hy(r),  La(t) = La+ hy(t) + hy(t), (5.2)
while (3:2) and[(3.3) become

—2h3(1) = hy(t) + hy(1),  La(t) — L3 = Lo — La(t). (5.3)

Defineu(t) := L3(r)/L2(t) andv(r) := L3(t)/L1(¢). Differentiating [5.2) with respect to
(0, 7) and using[(Z.22)[(2.19) and = +/2/2, we obtain
L—25 uv(l+u)(D — Eu) . (L—=25(L—-8) v%(A—Bu—Cv)
= vV =
L3 82+ 8%u+ (L —285)% 8L2 824 82u + (L — 26)%’

(5.4)

whereA :=8(L—38), B:=8L,C := (L—38)(L—28),D := (L —8)2, E := L?—38L +52. Recall
that the stability regios (2, 1) is given by Lemm§@ 3.10 (see Figliie 9). Notice thatBu—Cv < 0
is equivalent tocmin < L — 8 andD — Eu > 0 forany(u, v) € Sp(2,1). Thusit > O andv < 0in
Sb(2,1). From [5.4) we get

dv L-68 v(A— Bu—Cv) L—-§ v

= > — , (5.5)
du 8 u(u+1)(D— Eu) § u(u+1

A—Bu—Cv
D—Eu

since— < 1forany(u, v) € Sp(2,1). For any(ug, vg) € Sp(2, 1) we have

(L-8)/8 (L—8)/8
uo u-+1 uo
> > .
v(w) v0<1+uo u ) U0<1+u0>

XWs)

M €(b)

Y(V3)
Wy = Pg
X(Va)

Y(VS) e /// A

FIG. 9. g-curvature flow starting from a stablg € {(b)} (see Theorefn 51): at time= T the flow becomes unstable and
a vertical segment develops in order to make the triod stable.

X min =L—0
~
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From Propositiofi 3]7 we know thag(-) is nondecreasing; hence, from (5.3) it follows that) is
nonincreasing, so thatQ L3(0) < L3(r), L2(r) < L2(0) foranyt € (0, 7). SinceLs(t)/L2(t) <
L/(l —8) itfollows that(L — 8)L3(t) < LL2(0) andLL>(t) > (L — 8)L3(0) for anys € (0, 7). It
follows thatL1(7 —) — L1 < o0, sinceL3(t)/L1(t) is bounded from below. Furthermore, since

by (5.2) and[(511),

) . L . “ L—4
La(t) < —hy(t) < m, Lqi(t) = —\/Ehz(t) = \/éLz(t)’
it follows that7 < 400, x(7—) = § and
L —
ko(I1(T-)) = LTy kp(l2(T=)) = LT Kp(I3(T—)) = La(T—)

We proceed as in the proof of Theor4.1, with the difference thatay@i(7 —)) > 0, so that
a system of four ODEs is required. For afly := (w1, wo, w3) € (0, +00)3 we setG (W) :=
xrﬁf‘i;(w) with xr(]f‘i?] as in [2.2]). For anyw = (w, wa) € (0, +00)* we define the vector field

F € C®((0, +00)* R* as

~ ) wa o (5.6)
Faw) = 27O mGWI Ha: b 0y mmEW)
w3 w4 w2

wherem, q,, g, are given by[(2.15) an (2.]16). Sinéeand all its partial derivatives are bounded
in (0, 4+00) x {w> = 0} x (0, +00)2, the Cauchy problem

w(t) = F(w(@)),

(5.7)
w(7T) = (L2(7),0, L1(T), L3(7)),

admits a unique solutiotw1, wz, wz, wa) € C°([7, 11); (O, +o00)4) for 77 € (7, +o0]. For any
t € [T,7T7), setLy1(t) .= A3z(1), La(t) == Ax(1), L3(t) = Aa(t) andLa(t) := Ax(r). As in the
proof of Theorenh 4]1, we find thdis(0) > 0 as a consequence of
gy —mG(La(t), La(t), L1(1)) " mG(La(t), La(?), L1(1)) +q: 5 L

La(t) La(2) L3(1)

La(t) =

and
lim G(wi, wo, w3) =L —38, lim Fo(wi, wo, w3, wa) =0 (lim La(z) = 0),
wo—0 wy—0 t—0

w1, w3, wyg € (0, +00).

The conclusion follows by the same argument once we define, for any{7', 71), the quasi-
elementary triod7(¢) as in [4.1) with|S;(1)| := L;(t), X(t) := G(L2a(t), La(t), L1(1)), hj(t) =
h;(t)vj andh}.’(t) as in [3.11) with

tliirTT'lh}’(t) =h!(T). j=123  hyT)=0.
We notice that condition (ii) of Definitioh 2.12 holds since, similarly to Propositioh 3.1, one can

show that (ii) is satisfied for € (7,71) — ~ﬁ(r) if and only if system[(5]7) withw(r) =
(La(t), La(t), L1(¢), L3(¢)) holds in(7, 71) and Il (¢) is stable for any € (7, 7). O
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REMARK 5.2 The flowt — ﬁ(t) of Theore is the unique stable flow starting fréhg7").
Indeed, assume that— IT'(¢) is a stable flow starting fronl. If IT'(¢) € (b) andu, v are defined
as in the proof of Theorein §.1 thertr), v(r) ¢ Sh(2, 1), which gives a contradiction. Since any
nonpolygonal triod is unstable and singgin = 8, i.€. Nmin|x, = V3 (see Figur{]9)]7’(t) must
be quasi-elementary with’ () € (a*). We expect that ﬁ(t) is also unique among all regular
flows starting fromi7(7).

6. The caser = 6m — 4 and IT € (a): development of a curve

In this section we prove that at time= 7 € (0, +00) the flow starting from a stable triad € (a)
becomes unstable and a curve develops from the triple junction at subsequent times.

THEOREMG6.1 Letn = 6m — 4 and let/T € (a) be stable. The < +oo0 and there exists a
@-curvature flowr € [T, +00) — I1(r) starting fromI7 (7). Moreover, for any € [T, +00), the
triod 1 (r) is nonpolygonal and unstable withmin() = (X (V3), Y (V3), V3). Finally,«, (3(t)) = 0,
and

kyp(l1(1)) = m, Ky (l2(1)) = —m, (6.1)
lim La() = im Lo() = 400, fim 220 4 (6.2)
f— 00 t—00 " 1—>o00 L1(2) .

Proof. For anyt € [0, T) definex(¢) = xr(,?i?](Ll(t), La(t), L3(1)), y(r) andz(¢) as in [2.19) with
x replaced by (¢). Then systen{ (2]9) reads

x(1)
Li(t)’

z(t)
L3(t)

W Y(@) Ve
hy(t) = _Lz(t)’ hy(t) =
Step 1. L1, Lp, L3 are strictly positive and bounded in,[D].

From Lemma| 3.10, we know thati,v) € Sa(3.1) = {w.v) € (0,402 : v <
—(2costn) "1} in [0, T), whereu(r) := Lo(r)/L3(t) andv(r) := Lo(t)/L1(1), i.e.

Y (1) = — (6.3)

—2C0S0, Lo(t) < L1(t), te[0,7). (6.4)

FIG. 10. g-curvature flow starting from a stablé € (a) for n = 8 (see Theoreff §.1): at time= 7 the flow becomes
unstable and a curve, of zerog-curvature develops from the triple junction.
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v \"

n=8 n>8

FiG. 11. Flow lines diagram in the variablés, v) corresponding t@-curvature flows starting from stablé € (a) (see

Theorenj G.]1).

Set 5
cotaq — cot
Mo 1 n

) costy,(cotag + cot(29y,)) ~

From [3:1%),[(3.16), cat; = —cotaz < O, h'g < 0, cos¥, < 0, we deducd.1(r) < (cotay —
cotﬁn)h'i(t) < MoL(t) for anyt € [0, 7). Hence, usind (6]4), we obtain

Mo
2 costy,

Ll(t)<1+ ) <Li—MoLy, te€[0,7).

Now we observe that %+ Mg/(2cosd,) > 0 andLi — MgoLy > 0. Indeed,L; — MoLy >
(—2cost, — Mg) L and using Table 1 anfl (Z]11) we get

(1 4cof vy) cotay + 2550 (2c0g20y) + 1)

2 costy(cotay + cot(2194))
_ (1—4cog ¥y)(cotay + cotd)
T 2costy(cotag + cot(29y))

—2c0S%, — Mg =

>0 Vn>8,

since 1— 4cog ¥, < 0, cotay + cotd, < 0 and cotvg + cot(29,) < 0. ThusL is bounded in
[0, 7), and from [[6.%) and (3] 3), so afe andLL3.

Step 2. L3(t) — L3 > C\/Lf — 2(cotay — cotvy) (L — )¢, t € [0, 7), for some constant > 0.
This follows since, usingd (3:13), (3]18) ad (6.3), we have

. L .
La(r) < —(cotag + cotdn)——,  L3(?) >

—, t€[0,7).
L1(1) sind, L1(¢)

From Steps 1 and 2, we gét < +oo, and hence (7 —) = 4.
For anyw = (wi,w2) € (0,+00)2 we define the vector fieldd = (Fy, F») €
C>®((0, +00)%; R?) as
cotaq + cotvy, 1) -5 cotuay + cotvy,

F =4 — - , F = - —4§ . (65
1(w) w1 w2 SiNYy, 2(w) w1 SINYy, w2 ©.5)
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The Cauchy problem

w(t) = F(w(?)), (6.6)

w(7T) = (L1(7T), L2(T)),
admits a unique solutiofwy, wo) € C® ([T, T); (0, +00)?) for someT e (T, +oo]. Notice thatF
is obtained by differentiating with respectitthe right hand side of (3:13], (3]15) and by replacing
h” and h; respectively by—3§/w1 and§/wo. For anyt € (7,T) andj = 1,2 we denote by
2 (1) the interface of an elementary triod haviigr) parallel toS; (7)) with one of the endpoints
in Ri(T) and L;(t) := |S;(®)| = w;(¢). It follows from Prop05|tior1__3f]1 that condition (ii) of
Definition- is satisfied withl # S1(r) N S2(r) =: ¢(¢r) and furthermorg(6]1) holds iff[, 7).
Foranyj = 1,2 definehU : (7,T) - R as in [311) with Iin;iﬂh”(t) h”(T ). Then
te (T, T)— X1(t) U Ez(t) is a flow starting fromX'1(7) U Xo(7) which satisfies (H—(iii) of
Definition[2.12.

Step 3. We haveTl = +o0.
SinceL1(t) = La(t) is the solution of the systerpi (6.6) with initial datum(7) = L(7), we
havev(r) := Lo(t)/L1(¢t) < 1 foranyr € [7, T). Moreover,p is increasing since

s(cotay + cotw,)

0(t) = 2 vw?—1) > 0. (6.7)
Set
sinas L—25 sinfag— o)\t s
Sin(ay + ) 1) Sinag L—2§

ThenL; andL; are increasing in7, T), since from [(6b) it follows thaL1(r) > O if and only if
v(t) > co € (0,m) while La(¢) > 0if and only ifv(z) < 1/co € (1, +00). Substitutingw; = L3
andwz = vL1 (= L») in the second equation ip (6.6) and solvinglif v yields

A+ v)"™(1—v)*2 =Cr/Ly, (6.8)

wherea; = (1 — ¢0)/2, a2 := (1 + ¢0)/2 andCy = (L1(T) + Lao(7))**(L1(T) — La(T))%.
If, by contradiction, the maximal time of existen€eis finite then, using the first equation [n (p.6)
(with wy = L1 andwp = Lo) andLy < L1in[7, T), we get

8 1 8 Un
L < —— =— — )| T,T). .
1) < 0 (cota1+cotﬂn+ mﬁﬂ) 0 [cotal—lrcot( > >] tel ). (6.9
Integrating [(6.P) givesL1(T) < V' L1(T)2 — 28[cotay + cot(9,/2)(T —T) < +oo, which
contradicts the maximality df . Hence,T = +o0. From [6.9) and(6]8)[ (6.2) follows.

Step 4. For anyr € (7, +00) let y4(t) be the curve which has initial point yX7") and is created
by the motion ofy (s) := S1(s) N Sa2(s) for s € (7, t). Theny (¢) is p-regular for any € (7, c0).

Let (X (1), Y (1)) be the component o;‘q(t) with respect to théry, v1)-axis. Then, from[(3]4),
we getX = h”(t)cotzS‘n n 5(1)/sindy, Y = hz, and the slope of the tangent to the curve with
respect to thezrl, v1)-axis is given by

. i .
K@) = Z = - 10). - = (cotal + ;) .
X hj(r) cotdy — hy(t)/sindy v(t) sindy
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Thus,ys and X3 join in a C? fashion sinceéC(7) = tan(x — 9,) > 0. Furthermorey, is concave

in [T, +00) since from[67)K = 0K?/(v?sindy) > 0, X = —8/(L1K) < 0 and ¢Y/dX? =
K/X < 0. Finally,

. 1 -1 U 2
lim K() = | cotd, + — =tan[ =) <tan[ 7 + =— — ¥, ),
1—00 sindy, 2 n

where the right hand side gives the slope of a segment paralkg). to

Step 5. Conclusion of the proof.

Let X3(7) 1= y4(t) U X3(7) andl1(t) ‘= X1(t) U Xo(t) U X3(¢) for anyt € (7, +00). Then
I1(r) is nonpolygonal, unstable, ande [T, +o0) — I1(t) is ag-curvature flow starting from
(7). O

REMARK 6.2 We expect that the flow of Theordm]5.1 is the unique regular flow starting from
IT1(7). Notice that ifxmin < & in some open interval contained(@, 7 + o) for somes > 0, then,

in view of the constrainVmin|x; (¢) € Tyo(vy), at timet = 7 a new segmens, should appear

in X3 in such a way that1(r) U X2(1) U (S4(¢) U S3(2)) € (@) for anyt € (7,7 + o) but this
would give an unstable triod witlVmin = (X (V3), Y(V3), V3) in (7,7 + o) sinceLy/L1 < 1in
[7,7 +0)and

L1 L1 L1 Ly 5 L1 B)
S22 2)=1(=22) e = :
2 (L4 L2> {<L4 L2> (©,F00) La “L-2

a contradiction. Hencemin =38 in[7,7 + o).

7. The casen = 8 and IT € (c): disappearance of a segment

In this section we show that the flow has two different behaviours depending on the initial datum
IT € (c). For a suitable choice aff, we show that one of the three segments vanishes=afr,
its g-curvature remains bounded, the Cahn—Hoffman vector figlgh has a jump discontinuity
at g(7) on eachX; and the triple junction translates along the remaining adjacent half-line in
[T, +00). For the other choices of stahlé € (c) we prove that at time = 7 € (0, +00) the flow
becomes unstable, a curve appears from the triple junction, as in Jection 6, with the difference that
the adjacent segment now has positiveurvature and keeps on moving at subsequent times.

In the following theorem we denote bg{T?i?](Al, +00, A3) the limit of @ (Aq, A, A3) as

min
Ap — +00, where)c,(ﬁif1 is defined as i (2.22).
THEOREM7.1 Letn = 8 and letlT € (c) be stable. ThelY < +oco andII(7) is unstable.
Moreover, there exists a curyetangent to the lingxmin(u, v) = 8} at(u2, v2) = P> (see Figurg 12)
which dividesS¢ (2, 1) into two disjoint regiond/c := {(it, V) € Sc (2, 1) it > up, v > vy, =y N
{u =u}}andB; := Sc(2,1) \ U; such that

(i) If (u(0), v(0)) € Bc thenNmin(7 —) = (X(V2), W2, Z(W2)),i.e.x(T—) = L—§, L2(T—) =0,
ko(2(T—)) =0andL3(7—)/L1(T—-) = «/§/2. Furthermore, there exists a stapleurvature
flow in (7", 400) starting from/1(7) with

L —7(t) L —X%(t)

K(p(ll(f)) = T(l‘)’ K(p(l3(l)) = —T(t), t € (T, 400), (71)
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where

3 S(L — 8)%La(1)
R(t) 1= x\o (La(0), +o0, L1(1) = 82L3(t) + (L — 238)2L1(l)’

() = mX () + gz

Finally, the triple junction translates alo®y(7) in (7, +o0) and

1+ /22

L
imio=L—s 1m2D_ 3 imie=s
T 1+ 22

100 ttoo L1(t)

€ (6, L—9).

In particular,Nmin(7 —) # Nmin(7 +) (see Figuré¢ 13(i)).

(i) If @(0),v(0)) € Uc then Nmin(7) = (X(V3), Y(V3), V3). Furthermore, there exish <
(T, +00] and ag-curvature flow in ', 72) starting from/1(7). Furthermore, for any €
[7,T2), I1(t) is nonpolygonal Nmin(t) = (X(V3), Y(V3), V3), k,(l3(t)) = —L/L3(t) and
(6.7) holds (see Figufe JL3(ii)).

\
(a'r
U, u; U, (c) u

FIG. 12. The white region is the stability regidi (2, 1). Flow lines diagram of systerfi (7.5) corresponding+ourvature
flows starting from stablél € {(c)} for n = 8 (see Theorefn 7. Lymin(7) € {8, L — 8}.

23

22 W¢

(i) (if)
FIG. 13. p-curvature flow starting from a stablé € {(c)} (see Theorerf 71): (i) the segmeSzt has zero length at time
t =7 andx(7) = L — §; (i) x(7) = § and a curve develops from the triple junction for 7.
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Proof. For anyr € [0, 7) we definex(t) = x(C)(L1(t), Lo(t), La(1)), y(t) andz(r) as in [2.19)

min

with x replaced by (r). Then systen{ (2]9) reads
oy X W Y(@) o L—z@)
nO="ne RO ne BT e (72

system[(3.]1) reads
Li(t) = L1+ ~2h§(1),  La(t) = Ly + hy(6) — h3(1),  La(t) = La+ h3(t) + h3(0). (7.3)
while (3:2) and[(3.8) become
—V2hy(t) = hy + hy,  V2(L1(t) — L1) = La(t) — La(t) + L2 — Ls. (7.4)

Defineu(r) := L3(t)/L2(¢) andv(r) := L3(¢)/L1(¢). Differentiating [7.B) with respect to time and
using [2.28),[(2.19), anat = +/2/2, we obtain, for any € [0, 7),

L — 8 u[282u® + v(L — 28)(—8u? + Lu + L — §)]

u =

L2 82 4 82u + (L — 28)2v ’
3 (7.5)
(L =28)(L —9)? v2(1 = +/2v)
vV = .
L3 82 4+ 82u + (L — 28)%v

Recall that the stability regiofc (2, 1) is given by Lemma 3.30 (see FigJre| 12). It follows that
v < 0in Sc(2,1) with equality holding only ifv = m (i.e. {xmin(u, v) = L — §}). Notice that
—8uP+Lu+L—8 <0foru > ug:= (L++/L%2+45(L — §8))/(28). Moreover,: < 0 if and only

if u> ugand
V25u?

Su? —Lu—L+38
or, more precisely, if and only if[(716) holds for any > wuj, whereu; = (L + 8§ +

V(L +8)2+45L)/(28) is the intersection point of the lingrmin(z, v) = 8} and the curve of
points satisfying: = 0. Since the condition

(%) :
~ < ) u>uj,
) iy =5y L — 28

is satisfied if and only i (u) := —83u® +28%Lu® + S§L(2L — 8)u + L?(L — §) < 0, that is, for any
u > uz,up > uj (for g(ug) > 0), it follows that the trajectories of solutions of systém|7.5) intersect
the line{xmin(u, v) = 8} for u < up. Denote byP, the point belonging to the linfcmin(u, v) = 8}
havingu-coordinate equal ta,. Lety C S¢ be the flow line tangent t@xmin(i, v) = 38} at Po.
Theny decomposes; (2, 1) into B; andU.

Let us first prove (ii). If(u(0), v(0)) € Uc, then the trajectory of the solution ¢f (¥.5) intersects
the line{xmin(u, v) = 8} at7. Itis clear thatl < +oo since anyL;(7) is bounded and

(7.6)

v =

. “ )
L3(t) = —V2h} (1) > oo

Let (w1, wp) € C®([7, T); (0, +00)?) for someT e (7, +oc] be the solution of[(6]6) withF
defined as i (6]5). For anye (7, T) andj = 1, 2 we defineX; (1), h} andys as in Theore@l.

. . L—
Li(t) < =2hY (1) < 2———,
(1) 10 L0
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Then, by the same argumerjt, (6.1) holdsIn 1), r € (7, T) > X1(¢) U Z2(¢) is a flow starting
from X1(7) U X»(7) which satisfies (i)—(iii) of Definitiofi 2.72]" = +oo andy; is concave and
p-regularin [T, +00). Letr € [T, +00) > ya(00) U S3(7) U R3(t) be thep-curvature flow starting
from y4(c0) U (S3 U R3)(7). Sincehj(t) = —L/L3(t) € C*([T, +00)) and from [7.4) we have

V2R (T = —V205(T) = hy(T) + hy(T) > hy(T) = |h5(T)l,

it follows that|24(1)| < +/2|hY (1) (that is,v(r) > +/2/2) for anyt in a neighbourhood of, say
(T, T2). We conclude that the normal velocﬁig of S3(¢) is smaller than the ones 6{(r) andS3(¢).
Thus, setting¥3(r) := y4(r) U(S3U R3)(¢) andl1 (¢) := X1(t) U X2(¢) U X3(¢) foranyr € (7, 12),
we conclude that the trioff (¢) is ¢-regular and unstable irY], 72) andt € [7, 72) — I1(t) is the
unigueg-curvature flow starting frondiZ (7).

Let us prove (i). Givewr > 0, set

Bc(o) i={(u, v) € Be : 28%u® + v(L — 28)(—8u’ + Lu + L — §) > o, u > u1}.

Notice thatB¢ (o) = {(u,v) € B¢ : u(u,v) > o,u > ui}. Without loss of generality, assume
(u(0), v(0)) € Bc(o). Then(u(t), v(t)) € Bc(o) for anyt € [0, 7). For any(u, v) € Bc(o) we

deduce the estimates
V2v—-1 9 V2v—1
—C1 < -~ < —C2 3
ou u u

with ¢1 1= (L — 28)(L — 8)v andcz := (L — 28)(L — §)/(48?). Integrating yields

\/75(14_ U= 201/0) <v< £2(1+ et'z/(ﬁuz))’

and hence lim, 7 u(t) = 4o0, lim;,_,7v(t) = «/5/2. Thus the first part of the assertion follows

from (2.23) and[(2.19).
Let us showZ < +oo. Lete > 0 and assume(0)
t €[0,7),andL3(t) = v/2x/L1(t) < CL3(r), whereC :

L3(t) < /L% +2Ct. (7.7)

< V2 —¢. Thenv(r) < +/2 — ¢ for any
= (2—+/2¢)(l — §). It follows that

Using [7.3) and[(7]2) we get

Y T L—38(Lat) B P
La(t) = —/2h (1) 2h3(t)<ﬁL3(t)<L1(t) \/é)g Y2 Ly

and inserting[(7]7) and integrating yields

2e(L — 6
Lo(r) < L5~ %,/L% +2Ct.

We conclude thaf” < +oo and, from Propositiop 3|7(v), alsby (7 —), L3(T—) < +oo. More-
over,I1(7—) € (b") is degenerate. Notice that tipecurvature flow starting froni7 (7 —) can be
described as the-curvature flow starting froniﬂ € (b) obtained by a rotation and a symmetry with
respect thd.z-axis from/1, i.e. L2 = 400 andL3 = «/_Ll By the mirror law [[2.2W)J1(7T —) is
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stable, thep-curvature flow starting frond7 (7 —) satisfies systenj (3.7) with-curvatures in[(7]1)
and

L L 2
im 230 _ ey 120 _ V2
t—o00 [1(f) 1= L3(t) 2
Finally, sincesh} = —(L — 8§)h} in [T, +00), the triple junction translates alomy(7). O

REMARK 7.2 We believe that the flows of Theor¢m]7.1(i) and (ii) are the unique regular flows
starting fromI7(7).

8. Adjacent triple junctions: solutions after the collision

In this section we fiXV,, = Pg and consider the-curvature flow starting from atableg-regular
partition, denoted by", consisting of two adjacent elementary triple junctighsandg,. Given a
Cahn—Hoffman vector field/ on T as in Figur¢ T}, we set

(X1, Y1, Z1) := (N15,(q1), Ni5,(q1), N x25(q1)),

(X2, Y2, Z2) '= (N x,(q2), N\3,(q2), N|55(q2)),
andx; := |[V1— Nix,(gj)|, yj = y(x)), zj :=z(x;), j = 1,2, wherey andz are defined in(2.79).
From Propositiof 2.21 we know that the admissible tripet, ¥;, Z;) is uniquely associated with
(xj, yj, zj)- Upon noticing that we can restrict the minimJm {2.3) to vector fields which are linear on
eachX; and satisfy the required constraints, the problem of find¥agh in Definition[2.4 reduces
[3] to the following minimum problem:

min f(x1, x2),
(x1,x2)€[8,L—5]?

where
fx1,x2) = / (divy N)29° (v) dHY = 01x% + 025 + o12x1x2 + Brx1 + Bax2 + ¥,
T

ando1, 02, 012, B1, B2, y are coefficients depending on the configuration we are analyzing.
We say thatr” is stableif Nmin|x; (qk) is not a vertex oV, forany j = 1,2, 3 andk = 1, 2.
We say thar” is unstableif it is not stable. The stability of" is equivalent to

(X1min> X2min) € (6, L — 3)2-
Notice that if 7" is stable then

o122 — 20281 01261 — 20152
Xmin=—"F—""" 5 » Xmn=—"F 5 - (8.1)
40102 —0f, 40102 — 0,
From now onximin, x2min Will be denoted simply by, X2 and we se¥; = y(x;), z; = z(x;).

The discussion which values 6f,i = 1, ..., 5, provide a stabl& simplifies only in the case
of adjacent triple junctions which either belong to the same symmetry classeby(i-e.L4 and
L3 = Ls, see Figurg 14(i)) or are symmetric with respect to the axis orthogor# #i its middle
point (see Figurp 14(ii)), leading respectivelyxtp= x> andx; = L — X».

Let T > 0 and let us introduce the orientationBfas in the comment after Definitign 2.8. We
say thatr € [0, T) — 7T () is ag-curvature flow starting fronY" if 7 (¢) is ag-regular partition
consisting of two adjacent elementary triple junctigng) andgz(¢), and conditions (ii)—(iii) of
Definition[2.12 hold for anyj = 1, 2, 3,4, 5. If the adjacent triple junctions af belong to the
same symmetry classes or are symmetric with respect to the axis orthogdiathien, arguing
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as in Theorerh 3|3, one can show that there exists a unique gtatlevature flow starting from a
stableT.

When 7 is not stable, at least one of the two triple junctions is not stable. If in addition the
gradient of f ond[8, L — 8] points inside §, L — §]2, then the appearance of a new edge from one
of the two triple junctions (or from both) is forced during the subsequent crystalline flow.

The following example shows that the collision phenomenon occurs and a quadrijunction forms.

ExampLE 8.1 Consider the partition of Figufe]14(i) wity >0, Ly=L4 > 0 andL3z= L5 > 0.
In this casef reads

(x1—x?  y2 2 yi 23
o) = ¢ Jp gy 2y 22 8.2
fx,x2) =9 (V1)( I + I + L + Ta + Le (8.2)
so that
1+<1+1)0 1+(1+1>0 2
or=—+m|—+—1]>0, oo=—4+m|l—+—]>0, o12=——,
L1 L, L3 L1 Ly Ls L1 8.3)
—qy qz —qy qz
= 2 _— — ), = 2 _— — ),
B1 m< L + L3) B2 m< La +L5)
wherem, gy, g, are defined in(2.15) anf (2]16). Thus, the triodlisays stablesince by [(8.11),
_ —B1 8L+ (L —48)L3
X1 =X2 = = (S 5, L — ). 8.4
YT T 2o+ on Lo+ L3 ( ) (84)

The evolution equations are given by

(i)

0}
FiG. 14. Exampl@]l: collision of two adjacent triple junctions; in (i) we haye= L4, L3 = Ls andk, = 0 on Xy.
Consider now the partition of Figufe|14(ii) with;y > 0, L, = Ls > 0 andL3z = L4 > O.
Formulas[(8.R) and (8 3) still hold, and usilig {8.1), we get

L L=4 8
ot Lt
1

X1=L—-x=2 e, L—29).

ity T T L
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Therefore, the triod ialways stableand the evolution equations are given by

X1—-X2 L— 517 1 . z1 v Y2 ny = 22

B = — hy==%  ni= = , =<,
1 Ly L1 2 3 4 Ly 5 Ls

I
If in addition L3 > Ly, the triple junctions move as shown in Fig{irg 14(ii) until they collide at a
finite time and a quadrijunction forms.

Wo = Pg

FiG. 15. These quadrijunctions ageregular withx, = 0 and unstable, i.e’.\lmim;j (q1) is a vertex ofWW,, for some
j=2734,5.

In general, it is not clear what happens after the collision. In a special case the solution ca
be continued in a “natural” way (see Example]| 8.4 below). A quadrijuncBoas in Figurg 15 is
p-regular withk, = 0 and unstable, i.dymimz‘j (q1) is a vertex ofW,, for somej € {2, 3,4, 5}.
Indeed, the minimizeNmin of (2.3) with I" replaced by& which satisfieszlfzz(Nminp;j)321' =0

is given in Figuré Ib. Finally, — Z is a stationary-curvature flow starting fronk', i.e. & does
not move.

0) (i)
FiG. 16. Exampl@Z: these configurations are stable only for suitable choiggs p&=1, .. ., 5.

The following example concerns the stability of the partitions given in Figure 16[(Sée (8.6)), and
will be used to construct the flow after the collision of two triple junctions (see Exgmpgle 8.1).

ExamPLE 8.2 Consider the partition of Figufe]16(i) wity >0, Ly=L4 > 0 andL3z= L5 > 0.
In this case

(r1—x2?  (L—yD?  (L—z0%, (L—y»)?  (L—22)7?
, 85

L1 + Lo + L3 + Ly + Lsg 8.5
so thato1, 02, 012 are given as i (8]3) and

L —q,y L—%) (L—% L—%)
=om|—2 - = %), =om| —2 - = %),
B1 ( L s B2 La L

fx1,x2) = <P0(V1)(
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Furthermore, since the first two equalities[in {8.4) hold, we have

. (L=8)%Ly— (L2 —35L + %) L3 Lz (L-68 L
=Xo = e, L—6 —e|—,——). (8.6
=2 5Lz + La) ( )< I L) ©9
The evolution equations are given by
. . L—7, . L—-7 . L—7, . L—7
hY =0 h)=-——=— hy = , h)= , hi=-— .
1 2 Lo 3 L 4 La 5 s
We observe that, by symmetry, = —h} andhy = —h%, and by direct computationg); =
—(L —8)/(L2 + L3) = —h'g. Hence, if we assume that the initial partition is stable, the flow is

stable in the whole of [4-oco) with the triple junctions translating in opposite directions alang
Consider now the partition of Figure[16(ii) witty > 0, L, = Ls > 0 andL3 = L4 > 0. Since
(8:9) still holds, the expressions éf, o2, 012, B1, B2 are the same. Fror (8.1) it follows that

L(L=25)%  §(L?—35L+5%) n S(L—8)2
¥i=L-—%p= 12 Lz Ls
B B 20L—28)2 | 82 | 82 ’
T TLTI
so that
Ti>6e B L+(L—8k
X1 > — > — —0)— |,
! L1 L-25 Ly
_ L3 m L3
x1<L-$6 —>—+|L-6§—-6—.
L1 L—26 Lo

Therefore, if the initial partition is stable, the evolution equations are given by
Ly 2 Ly ° 3 Lz ' 4 Ls 5 Ls
If in addition L3 > L, the triple junctions move (for small times) as shown in Figure 14(ii).

ny = 8.7

REMARK 8.3 From the computations in Example]8.2, it follows that the first partition is stable for
any L1 > 0 while the second is stable provided tHatis small enough. In particular, £; = 0
thenx1 = x> = L/2. Hence, in Example 8.2 we have constructableg-curvature flows starting
from a quadrijunction

In the following example we construct flows after the collision of two triple junctions.

ExAMPLE 8.4 Consider the partition of Figufe[17(i) wilty > 0,L, = L4 = L3 = Ls > 0. As
shown in Examplg 8|1 there exists a finite tiffie > 0 such thatL1(7p) = 0. From Remark 8]3,
there exists at least one stalglecurvature flow starting from the quadrijunctiah(7p) as shown
in Figure[TT(i). This is not the only stable-curvature flow starting from¥"(7p). There are other
candidates to continue the flow after the singularity: the stable flows shown in Figdres 17(ii) and
(iii) and the stationary flow € [Tp, +00) — T (Tp). The latter flow is not stable and has the largest
energy[(Z.]l) among the four flows.

Some explicit comparisons between the energies of the different evolutions can be made. For
instance, if we denote by (r) (resp.75ii (1)) the partition in Figurg 17(i) (resp. Figure|17(ii)) at
time ¢, then F, (Yii) (1)) < F,(Y(i)(®)) for anyt > To, sinceh'g(i)(t) = (2 —98)/(2L3(To)) <

L/L3(t) = h'g(“)(z).
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3, 3,
23

<
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9z d:

2
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7

0} (ii) (iif)
FiG. 17. Exampl§ 8J4: existence of three stable flafter the collision of two adjacent triple junctions. Another candidate
to continue the flow after the singularity is the stationary (not stable) fleW 7y, +00) — 7" (Tp). The dotted partition in
(i) is the 90 rotation of the partition in Figuife 16(i) withy = L3 = L4 = Ls.

Furthermore, notice that in the case of the flow in Fi@e L@l (To—)) = «u (L (To+)) for
anyj = 2, 3,4,5, while in the other cases, (/; (To—)) # «,(;j(To+)) foranyj = 2,3,4,5.

We believe that a selection of the “most natural” evolution between the three flows in Figure 17
cannot probably be done if one considers the evolution of interfaces without looking at the phases,
i.e. without looking at the interfaces as the “boundaries” of their interior.

9. Homothetic flows and asymptotic convergencen(= 6m)

In this section we introduce the notion of homothetic flows and we assumé&m. In the case of
curves the homothetic flows by crystalline curvature have been studied in[29], [15].

DEFINITION 9.1 LetI7 be elementary. We say thate [0, +00) — I1(¢) is ahomothetic flow
starting fromIT = I7(0) if there exists. € CO([0, +00)), 1(0) = 1, such thaf7(r) = A(t)IT(0) +
qq(1). If A =1 we say that the flow iganslating if in additiongq (r) = ¢ the flow isstationary

REMARK 9.2 ¢ € [0, +00) +— II(¢) is homothetic if and only ifL;(¢)/L;(t) = L;(0)/L;(0) for
anyi, j = 1,2, 3. The flow is stationary whenever an elementary triod has two of the segfjents
of infinite length.

We now characterize all homothetic flows foe= 6m. If n = 6 we will consider the following
limit cases of degenerate triod:

() T € (a) with L1 = 0 andL3 = +o0 (see Figur@ 18(i));
(i) IT € (a) with L, = 0 andL3 = +o0 (see Figur¢ 18(ii)).

THEOREM9.3 Letn = 6m. If [T € (d), the flow is stationary for any choice @fi, Lo, L3 €
(0, +00]. If IT € (a), the flow is homothetic if and only if one of the following holds:

() Lo = +o0 andLy, L3 € (0, +o0]. The flow is stationary andi (¢) is unstable for any €
[0, +00).
(i) Ly =+ocandL, = L3 (see Figures 18(iv) ad [L9(ii)). The flow is stable.
(i) n>12andL3 = +o00, L1 = L> (see Figur¢ 19(i)). The flow is stable.
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i) (uv)=(0, +o) (@ii) (uv)=(0,0 (iii) (uv)=(0k) @iv) (uv)=(1,0)

FIG. 18. The casa = 6. The flows (i), (ii) and (iii) are translating; (iv) is homothetic.

g

(i) (uv=01) (i) (uv=(1.0) (i) (UV) =(UgVe)

FIG.19. The casa = 12. The flows (i), (ii) and (iii) are homothetic.

(iv) n=6andLs = +o0, (L1, L) € [0, +00)? \ {(0, 0)} (see Figur@S(i), (i), (iii)). The flow is
translating. The triod7(¢) is unstable for any e [0, +oc0) if either L1 = 0, L2 € (0, +00),
orLy =0, Lj € (0, +o0) (resp. (i) and (i) in Figurg 18); in the other cases, the flow is stable.

(V) n>12andLs = uxL3, L2 = v L1 (See Figurg 19(iii)), whereo, v are defined in (3.20).
The flow is stable.

Proof. If IT € (d) thenh'y(t) = 0foranyr € [0, +00), j =1, 2, 3 (see Table 1).

AssumelT € (a). From [3:21), (i) follows since (1) = 0 andh}?(t) = 0 for anyr € [0, +00),

j=1223.
Now letu(t) := La(¢t)/L3(¢t) andv := La(t)/L1(¢). Recalling that cok; = — cotaa = cotas

and®y, = 2r/3, from [3.21),[(3-18)[(3.15) and (3]18), we obtain
L u[—(cotas — 1/v/3)u — (cotas + 1/v/3)v — (2/+/uv + (cotes — 1/v/3)u?]

3

- L2 u+v+1 01
L v[—(cotas — 1/v/3)u — (cotas + 1/v/3)v + (2/+/3)uv + (cotas + 1/v/3)v?] ‘
u+v+1 ’

=72
L5
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From Remark 912 it follows that all homothetic flows are constant solutiens) of system|[(9.]1).
We look for solutions of[(9]1) of the form/u = K, K constant. Imposing = K# we obtain three
possibilities:

D hK G 0; that gives (ii), sincé® (1) = 0, h% (1) = —h}(t) = L/(L2(t) + La(t)) and [3-17),[(3-19)
old.
(2) u = 0; that gives (iii) and (iv), sinc@}(r) = 0, hy(t) = —h}(t) = L/(L1(t) + La(t)) and
(313), [3-I5) hold. Notice that if = 6 thenL; = L, = O while if n > 12 thenL; = L, > 0.
(8) K = r andv = v, 4 = U, that gives (v). Indeed, equating the brackets on the right hand
sides of [[9.]1) we get

(cot T+ l) 2 4 +(cot l) 2_0
- o — V" — —=uv o1 — — Ju" =0,
SV /3 SV

and thu = ru forn > 12 andu = 0 forn = 6 (observe that it > 12 then cotr1+1/4/3 < 0
and equality holds if and only it = 6). Hence, ifn > 12, substituting = ru in 4 = 0 yields
the conclusion, i.eus = (1 + +/3sinay — cosay)/r.

The converse follows by construction. O

REMARK 9.4 Theg-curvature flows in Theorein 3.9 converge to homothetic flows, i.e. j
12 (resp.n = 6), then the limit triod satisfies (v) (resp. (iv) withy = 0) of Lemma[ 9.B (see
Figure[ I9(iii), resp. Figure 18(i)).
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