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Crystalline curvature flow of planar networks†
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We consider the evolution of a polycrystalline material with three or more phases, in the presence of
an even crystalline anisotropy. We analyze existence, uniqueness, regularity and stability of the flow.
In particular, if the flow becomes unstable at a finite time, we prove that an additional segment (or
even an arc) at the triple junction may develop in order to decrease the energy and make the flow
stable at subsequent times. We discuss some examples of collapsing situations that lead to changes
of topology, such as the collision of two triple junctions.
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1. Introduction

Several models in phase transitions treat phenomena in which two or more phases of the same
material, or the same phase of a crystal with different orientations, can coexist without mixing.
A curve or a surfaceΓ bounding different regions is called a surface boundary, or interface, and is
moving in a nonequilibrium state. In some cases the motion ofΓ does not depend on the physical
situation in the various phases but only on its geometry, and is described by geometric equations
relating, for instance, the normal velocity of the interface to its curvatures. The crystalline curvature
flow in two dimensions is the formal gradient flow of the energy functional

Fϕ(Γ ) :=
∫
Γ

ϕo(ν)dH1, (1.1)
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whereν is a unit normal vector field toΓ and the energy densityϕo : R2
→ [0,+∞), sometimes

called surface tension, is a crystalline (i.e. piecewise linear) norm. Whenϕo is isotropic the energy
functional (1.1) is proportional to the length of the interfaces and the resulting geometric parabolic
equation is the curvature flow (at least in the simplest case whenΓ is the boundary of an open set).
However, when dealing with crystalline and polycrystalline materials,ϕo is anisotropic and neither
smooth nor strictly elliptic; in addition, multi-phase boundaries with more than two phases occur.

To our knowledge, J. E. Taylor [31], [33], [34], [36] (see also [5] and [9]) was the first to
introduce the notion of crystalline geometry and to determine the crystalline flow of curves with
triple junctions, in particular to compute the motion of the triple junction. The analysis of the
evolution of grain boundaries has been pursued also by other authors: see for instance [5]–[8],
[11], [12], [23], [25], [26], [28]. See also [4], [6], [11], [22] for related physical models of crystal
growth, and [1], [2], [10], [13], [14], [16], [17], [19]–[21], [24], [27], [29], [30] for related results.

In the present paper we consider the evolution of a polycrystalline material with three or more
phases for a crystallineϕo whose one-sublevel setFϕ := {ϕo 6 1} (theFrank diagram) is a regular
polygon ofn sides. The dual functionϕ : R2

→ R defined byϕ(ξ) := sup{ξ · η : ϕo(η) 6 1} is
crystalline too andWϕ := {ϕ 6 1} is called theWulff shape. We are particularly interested in the
motion by crystalline curvature of special planar networks called elementary triods, namely regular
three-phase boundaries given by the union of three Lipschitz curves, the interfaces, intersecting at a
point called a triple junction. Each interface is the union of a segment of finite length and a half-line,
corresponding to two consecutive sides ofWϕ .

We analyze local and global existence and stability of the flow. In general, the flow may become
unstable at a finite time. If this occurs, we prove that at subsequent times a regular flow can be
constructed, by adding a new segment (or even an arc with zero crystalline curvature) at the triple
junction. In all flows we exhibit, the crystalline curvature remains bounded (even if a segment
appears or disappears) and has a jump discontinuity at the time of instability only in the case of
the disappearance of a segment. We also discuss some examples of collision of two triple junctions.
These examples (as well as the local in time existence result) show one of the advantages of
crystalline flows with respect, for instance, to the usual mean curvature flow: explicit computations
can be performed to some extent, and in case of nonuniqueness, a comparison between the energies
of different evolutions (difficult in the euclidean case) can be made.

The rigorous definition of crystalline curvature for networks has been introduced in [3]; we will
see that the corresponding flow essentially agrees with the one suggested in [34]. Finally, we stress
that Taylor already predicted the emergence of new edges and zero weighted curvature curves from a
triple junction, wrote a computer program [32] adding such edges and approximations to the curves,
and made explicit calculations [36] for determining them (see also the video quoted in [32]).

The plan of the paper is the following. In Section 2.1 we present some basic definitions and
results from [3], where the crystalline curvature of partitions is computed through the first variation
of Fϕ . The crystalline curvature is the tangential divergence of a vector fieldNmin : Π → R2 which
minimizes the functional ∫

Π

(divτ N)
2ϕo(ν)dH1 (1.2)

among all Cahn–Hoffman vector fieldsN on the elementary triodΠ which satisfy the so-called
balance condition at the triple junctionq,

N|Σ1(q)+N|Σ2(q)+N|Σ3(q) = 0. (1.3)

Such a minimizerNmin is unique(this is true, in general, only in two dimensions) and identifies the
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direction along which the functionalFϕ decreases most quickly. The balance condition (1.3) is the
analog of the Herring condition (120 degrees condition) in the euclidean case. By the definition of a
Cahn–Hoffman vector field,N|Σj (q) ∈ ∂Wϕ . Any triplet of vectors(X, Y,Z) ∈ (∂Wϕ)

3 satisfying
X+Y +Z = 0 is called an admissible triplet. In Section 2.2 we introduce the notions of elementary,
quasi-elementary, nonpolygonal and degenerate triod, and of configuration of an elementary triod.
The regularity of an elementary triod is related to the regularity of each interface and to the balance
condition (1.3). We also recall the notion of stability [3] and introduce the concept of stability region
of a configuration. In Section 2.3 we give the definition of flow by crystalline curvature starting from
an elementary triod which allows us to consider also initial data which may develop a new segment
or an arc from the triple junction. In Section 2.4 we determine the geometry of an elementary triod,
that is, the three angles at the triple junctionq between the interfaces. These angles are determined
by the balance condition (1.3) atq, which in turn is related to the existence of admissible triplets.
We prove that any regular polygonPn, n even> 6, has a unique admissible triplet(X, Y,Z) once
we fix one of the vectors of the triplet, for instanceX, in ∂Pn. We also determine the range of
all admissible triplets ofNmin at q, and using this result we compute in Section 2.5 the crystalline
curvature of the triod. SinceNmin is unique and its values are fixed (up to a sign change) at the three
vertices of the partitions, it follows thatNmin is given on all the interfaces by linear interpolation.
Thus, as shown in [3] in the casen = 8, it is possible to reduce the minimum problem (1.2) to
a one-dimensional minimum problem. In the case of a partition consisting of two adjacent triple
junctions, the solutionNmin of (1.2) is completely determined by the values of two independent real
variables. Since the Cahn–Hoffman vector fields have constant normal component, the crystalline
curvature is simply the tangential derivative of the tangential component ofNmin, that is, a ratio of
lengths. Finally, we establish which values of the lengths of the finite segments ofΠ provide stable
triods (stability region).

In Section 3 we prove that there exists, locally in time, a unique stable regular flow starting from
a stable regular initial datum. In Section 3.1 we show a case of global existence. The analysis of the
long time behaviour requires the study of the stability region of each configuration. Stability is the
ingredient that ensures that no additional segments develop at the triple junction during the flow. If
the initial triod is unstable then an additional segment may develop in order to decrease the surface
energy and make the evolved triods stable at positive times. In Section 4 we exhibit an example of
this occurrence.

In Sections 5–7 we show that the flow becomes unstable at a finite timeT and that at the
subsequent times a regular flow can be constructed; in particular, a new segment (resp. an arc
with zero crystalline curvature) develops at the triple junction in the flow of Theorem 5.1 (resp.
of Theorem 6.1). In Theorem 7.1 we prove that the flow has two different behaviours depending on
the initial datumΠ . For a suitable choice ofΠ , we show that att = T one of the three segments
vanishes, its crystalline curvature remains bounded, the Cahn–Hoffman vector fieldNmin has a jump
discontinuity and the triple junction translates along the remaining adjacent half-line in [T ,+∞).
For the other choices of stableΠ we prove that a curve appears from the triple junction, as in
Section 6, with the difference that the adjacent segment now has positiveϕ-curvature and keeps
on moving at subsequent times. Each of these flows has the property that all crystalline curvatures
remain bounded.

In Section 8 we study the crystalline curvature flow starting from astableϕ-regular partition
formed by two adjacent elementary triple junctions. We discuss some examples of collapsing
situations that lead to changes of topology, such as for instance the collision of two triple junctions.
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We present several candidates to continue the flow after the singularity (see Example 8.4). In
Section 9 we introduce the notion of homothetic flow. We classify homothetic flows whenn = 6m
and we show that the global flows studied in Section 3.1 converge to homothetic flows ast → +∞.

While the casen = 6m is exhaustively studied, as is the casen = 8, the casesn = 6m − 4 and
n = 6m−2 have been studied in less detail. The reason is twofold: first of all, the casesn = 6m and
n = 8 present all the phenomena we are interested in (formation of new edges, emergence of curves
and disappearance of edges at the triple junction); secondly, the analysis of the long time behaviour
of all possible configurations can be described in a rather concise way, while in the general cases
n = 6m − 4 andn = 6m − 2 it seems more complicated.

2. Preliminaries

In this paper,·, | · | andH1 are respectively the euclidean canonical inner product, the euclidean
norm and the 1-dimensional Hausdorff measure inR2. Points and vectors ofR2 will be identified.
Given two pointsp, q ∈ R2 we denote bypq the vector with initial point and end point atp
andq respectively. Given two vectorsv,w ∈ R2, we denote byv⊥ the counterclockwise rotation
of v throughπ/2 around the origin and byϑ(v,w) ∈ [0, π ] the angle betweenv andw. Given
f : (a, b) → R andt ∈ (a, b), we denote byf (t+) andf (t−) respectively the right and left limits
of f at t (if they exist).

Given a subsetU of R2 we denote by int(U), U and∂U respectively the interior, closure and
boundary ofU . In particular, given a segmentS ⊂ R2, we denote by int(S) the relative interior
of S. Given two parallel (possibly infinite) segmentsS1, S2, thedistance vectorof S2 from S1 is the
vector having norm dist(S1, S2) pointing fromS1 to S2.

By aLipschitz curve with boundaryin R2 we mean a 1-dimensional bounded setΣ ⊂ R2 which
can be written locally as a Lipschitz graph on an open interval ofR. Any Lipschitz function or vector
field defined onΣ will be considered as defined up to∂Σ . We denote by Lip(Σ; R2) the set of all
Lipschitz vector fields onΣ . Given a pointx ∈ Σ we denote by TxΣ the tangent line toΣ atx.

We denote byn,m positive integers and byPn the regular polygon ofn (n even) sides of length
L inscribed in the unit circle centered at the origin ofR2. Pn has two horizontal sides and is oriented
in clockwise sense.

2.1 Crystalline curvature of regular partitions ofR2

In this section we present some basic notations and definitions from [3]. Letϕ : R2
→ [0,+∞) be

a crystalline anisotropy onR2 (i.e. an even piecewise linear convex function) satisfyingWϕ = Pn.
We letϕo be the dual function ofϕ, and we denote byTϕ andTϕo the multivalued mappings (duality
mappings) defined asTϕ(ξ) := 1

2∂(ϕ
2)(ξ) andTϕo(ξo) := 1

2∂((ϕ
o)2)(ξo) for all ξ, ξo ∈ R2, where

∂ denotes the usual subdifferential for convex functions. We observe thatTϕ (resp.Tϕo ) is a maximal
monotone operator which takes∂Wϕ (resp.∂Fϕ) onto∂Fϕ (resp. onto∂Wϕ).

DEFINITION 2.1 LetΣ ⊂ R2 be a Lipschitz curve with boundary,x ∈ ∂Σ , assume thatΣ admits
tangent line Tx(Σ) at x, and letz ∈ R2

\ Tx(Σ). We define the vectorz∂Σ ∈ R2 as the rotation
through angleπ/2 of the vectorz in such a way thatz∂Σ points outwards fromΣ .

That is, since we assume the existence of the tangent line toΣ at x ∈ ∂Σ , the vectorz∂Σ is
required to have a nonzero component along the half-tangent line (toΣ at x) pointing outwards
fromΣ .
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DEFINITION 2.2 A partition of R2 is a finite family{Ei}i of open subsets ofR2 (calledphases)
such that

⋃
i Ei = R2, Ei ∩ Ej = ∅ for i 6= j , and∂Ei ∩ ∂Ej , when it is nonempty, is a Lipschitz

curve with boundary, called aninterface. By anm-multiple junctionof {Ei} (m > 3 a natural
number) we mean a pointq belonging tom distinct interfaces.

Given a partition{Ei} of R2, we set

Σij := ∂Ei ∩ ∂Ej , i 6= j, Γ :=
⋃
i,j

Σij , J :=
⋃
i,j

∂Σij . (2.1)

When we writeΣij we always assume thati 6= j andΣij 6= ∅. We denote byνij anH1-a.e. defined

euclidean unit normal toΣij and we setνijϕ := νij/ϕo(νij ). We denote by Lipν,ϕ(Γ ; R2) the space

of vector fieldsN : Γ → R2 such thatN|Σij ∈ Lip(Σij ; R2) andN|Σij (x) ∈ Tϕo(ν
ij
ϕ (x)) for

H1-almost everyx ∈ Σij . Set

N :=
{
N ∈ Lipν,ϕ(Γ ; R2) :

∑
i,j

(N|Σij )
∂Σij = 0 onJ

}
. (2.2)

The condition onJ in (2.2) is usually called thebalance condition.

DEFINITION 2.3 If N 6= ∅, the partition{Ei} is said to beϕ-regular and anyN ∈ N is called a
Cahn–Hoffman vector fieldonΓ .

The following definition ofϕ-curvature is based on [3, Theorem 4.8] and the crucial fact that
we are consideringplanarpartitions: if{Ei}i is aϕ-regular partition then the minimum problem

min

{[∫
Γ

(divτ N)
2ϕo(ν)dH1

]1/2

: N ∈ N
}

(2.3)

admits auniquesolution which identifies the direction along which the functional (1.1) decreases
most quickly. LetNmin : Γ → R2 be the solution of problem (2.3).

DEFINITION 2.4 Let{Ei} be aϕ-regular partition. We define theϕ-curvatureκϕ of Γ as

κϕ := divτ Nmin, a.e. onΓ .

REMARK 2.5 LetΣ = ∂E be a simple Lipschitz curve which admits a Lipschitz Cahn–Hoffman
vector field, i.e.N ∈ Lip(Σ; R2)withN(x) ∈ Tϕo(νϕ(x)) forH1-a.e.x ∈ Σ , whereνϕ := ν/ϕo(ν)

andν is anH1-a.e. defined euclidean unit normal toΣ . It is easy to see thatκϕ = 0 on any nonflat
arcγ contained inΣ sinceN on γ is constantly equal to a vertex of∂Wϕ . Assume now thatS is
an open segment of lengthL > 0 contained inΣ . Denote byN1, N2 respectively the values ofN
at the initial and final point ofS according toτ := −ν⊥. Theϕ-curvature ofS is zero ifL = +∞,
while if L < +∞,

κϕ(p) =
1

L
(N2 −N1) · τ, p ∈ S. (2.4)

HenceS has constantϕ-curvature which, settingl := Lτ , will be denoted byκϕ(l). Notice thatκϕ
in (2.4) changes sign if we change the sign ofν.

For simplicity, in this paper we restrict ourselves to Wulff shapesWϕ having an even number
of sides; dropping the central symmetry assumption onWϕ would require to take into account the
orientation of the various phases, making the analysis more complicated. Again for simplicity, we
assume that the Wulff shape is the same for each pair of adjacent phases. The main definitions (such
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as Definitions 2.3, 2.4, 2.6) can also be given in the case of different Wulff shapes on different
pairs of adjacent phases; however, the analysis (starting from Lemma 2.16) would become far more
difficult, as well as the catalog of all possible configurations and phenomena.

2.2 Elementary, quasi-elementary, nonpolygonal triods

In this section we introduce the notions of elementary, quasi-elementary and nonpolygonal triod,
and of configuration of an elementary triod, and we fix the orientation of a triod.

DEFINITION 2.6 When{E1, E2, E3} is a partition ofR2 into three sets having only one 3-multiple
junction, called atriple junctionand denoted byq, the setΓ defined in (2.1) will be called atriod,
and denoted byΠ . If the partition isϕ-regular, the triod is said to beϕ-regular. For simplicity,
Σ12,Σ23,Σ13 will be denoted respectively byΣ1,Σ2,Σ3, and correspondinglyνijϕ will be denoted

by νjϕ . Theanglesof Π are the three angles atq betweenΣ1,Σ2,Σ3 (see Figure 5).

REMARK 2.7 The notion of regularity in Definition 2.6 is essentially the same as given by J. E.
Taylor in [36] when eachΣj is polygonal. In the case of aϕ-regular partition withΓ =

⋃5
i=1Σi ,

J = {q1, q2}, andN ∈ N as in Figure 1, the triplet of vectors

(N|Σ1(q1)
∂Σ1, N|Σ2(q1)

∂Σ2, N|Σ3(q1)
∂Σ3)

is the clockwise rotation of the triplet(N|Σ1(q1), N|Σ2(q1), N|Σ3(q1)), while

(N|Σ1(q2)
∂Σ1, N|Σ4(q2)

∂Σ4, N|Σ5(q2)
∂Σ5)

is the counterclockwise rotation of(N|Σ1(q2), N|Σ4(q2), N|Σ5(q2)).

ϕ

Σ 2

4

Σ5

Σ 3Σ

q
2 1

qΣ1

W W8Pϕ = P8=

FIG. 1. (N|Σ1(q1)
∂Σ1, N|Σ2(q1)

∂Σ2, N|Σ3(q1)
∂Σ3) and(N|Σ1(q2)

∂Σ1, N|Σ4(q2)
∂Σ4, N|Σ5(q2)

∂Σ5).

DEFINITION 2.8 LetΠ =
⋃3
j=1Σj be aϕ-regular triod. We say thatΠ is elementaryif

(E) each interfaceΣj is the union of a segmentSj of finite lengthLj > 0 and a half-lineRj such
thatSj andRj correspond to two consecutive sides ofWϕ (see Figure 2(i)).

We say thatΠ is degenerateif two interfaces satisfy (E) and the remaining oneΣk̄ is a half-line.
We say thatΠ is quasi-elementaryif two interfaces satisfy (E) and the remaining oneΣk is

the union of two segmentsS4 andSk of finite lengths,L4 > 0 andLk > 0 respectively, and a
half-lineRk such thatS4 andSk, andSk andRk, correspond to two consecutive sides ofWϕ (see
Figure 2(ii))).

We say thatΠ is nonpolygonalif two interfaces satisfy (E) and the remaining oneΣk is the
union of a curveγ4, a segmentSk of finite lengthLk > 0 and a half-lineRk such thatSk andRk
correspond to two consecutive sides ofWϕ (see Figure 2(iii)).
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S

qq

(iii)(i) (ii)

Σ ΣΣ

Σ

Σ

1

2

3

1 1

q

2Σ

γ

Σ2

4

Σ 3

S4

Σ 3
S3

3

FIG. 2. (i) Elementary, (ii) quasi-elementary, (iii) nonpolygonal triod (Wϕ = P8). Note thatκϕ = 0 onS3 in (i) and (ii),
κϕ < 0 onS4 in (ii), andκϕ = 0 onγ4 in (iii).

Given an elementary degenerate or quasi-elementary or nonpolygonal triodΠ andN ∈ N , we
setAj := Sj ∩ Rj for anyj = 1,2,3 such thatRj 6= ∅, A4 := S4 ∩ Sk if Π is quasi-elementary,
andA4 := γ 4 ∩ Sk if Π is nonpolygonal. We denote byαj the angle ofΣj atAj opposite to the
region whereN(Aj ) lies (see Figure 3). Notice thatαj ∈ {π − π/(2n), π + π/(2n)}.

Let ν be theH1-almost everywhere defined euclidean unit normal toΠ oriented in such a way
thatν|int(Sj ) · N(Aj ) > 0. We setνj := ν|int(Sj ), τj := −ν⊥

j andlj := Lj τj , for anyj = 1,2,3, and

alsoj = 4 if Π is quasi-elementary. Thus{τj , νj } is a positively oriented basis ofR2 and, without
loss of generality, we assume that eachlj points towardsq. We denote byκϕ(lj ) theϕ-curvature
of Sj .

For an elementary triod, we always assume thatS1 is horizontal andΣ2 andΣ3 are given in
counterclockwise sense as in Figure 3. We denote byVj , Wj the vertices of the side ofPn (in
clockwise sense) havingνj as outer normal and byMj the middle point of the segment [Vj ,Wj ].
Note that

τ1 · ν3 = −τ1 · ν2, ν1 · τ3 = −ν1 · τ2, τ1 · ν3 = −ν1 · τ3. (2.5)

DEFINITION 2.9 LetΠ , Π ′ be two elementary triods. We say thatΠ andΠ ′ areequivalent(or
belong to the same configuration) if they coincide after possible rescalings of their bounded edges
and after a rotation. We denote by [Π ] the configurationof Π , i.e. the equivalence class ofΠ , and
by C the set of all possible configurations for elementary triods.

We also recall the notion of stability [3] and introduce the concept of stability region of a
configuration.

DEFINITION 2.10 LetΠ be aϕ-regular triod. We say thatΠ is stable if (Nmin)|Σj (q) is not a
vertex ofWϕ for anyj = 1,2,3. We say thatΠ is unstableif it is not stable.

It follows that nonpolygonal triods are always unstable (see Remark 2.5). Elementary,
degenerate and quasi-elementary triods can be either stable or unstable.

DEFINITION 2.11 Given a configuration(e) ∈ C, thestability regionof (e), denoted bySe, is the
set of all(Λ1,Λ2,Λ3) ∈ (0,+∞)3 such that, ifΠ ∈ (e) is an elementary triod with|Sj | = Λj for
anyj = 1,2,3, thenΠ is stable. Forj1, j2, j3 ∈ {1,2,3}, j1 6= j2 6= j3 6= j1, we let

Se(j2, j3) :=

{(
Λj1

Λj2
,
Λj1

Λj3

)
: (Λ1,Λ2,Λ3) ∈ Se

}
.

2.3 Definition of crystalline flows of triods

Our object is to provide a definition ofϕ-curvature flow allowing one to consider also initial data
for which a new segment or a curve (with zeroϕ-curvature) can develop from the triple junction at
time zero.
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DEFINITION 2.12 LetT > 0 andΠ be an elementary (resp. a degenerate) triod. For anyt ∈

[0, T ), letΠ(t) be aϕ-regular triod andq(t) its triple junction. We say thatt ∈ [0, T ) 7→ Π(t) is a
ϕ-curvature flowstarting fromΠ = Π(0) if for any t ∈ (0, T ):

(i) Π(t) is either elementary or quasi-elementary or nonpolygonal (resp. degenerate);
(ii) for any j = 1,2,3, eachRj (t) has zero normal velocity and eachSj (t) is parallel toSj (0)

= Sj ;
(iii) for eachj = 1,2,3, and alsoj = 4 if Π(t) is quasi-elementary, denoting byhj (t) the distance

vector of the segmentSj (t) from Sj (0) = Sj , we havehj ∈ C1((0, T ); νjR) and
ḣj (t)

ϕo(νj )
= −κϕ(lj (t))νj ,

hj (0) = 0.

(2.6)

The flow is said to bestableif Π(t) is stable for anyt ∈ (0, T ).

REMARK 2.13 Sinceϕo(νj ) is a constant independent ofj ∈ {1,2,3,4}, the system in (2.7) is
equivalent, up to rescaling in time, to

ḣj (t) = −κϕ(lj (t))νj . (2.7)

For simplicity, we will consider (2.7) in place of (2.6).

Note that, in Definition 2.12,Π is not required to be stable (even in the definition of stable flow).
Let

hνj (t) := hj (t) · νj for j = 1,2,3,4. (2.8)

Thenhj (t) = hνj (t)νj and, with this notation, system (2.7) becomesḣνj (t) = −κϕ(lj (t)) = −
1

Lj (t)
[Nmin|Σj (t)

(q(t))−Nmin(Aj (t))] · τj ,

hνj (0) = 0.
(2.9)

(ii)

q qα

α

α α

α

ν
(A 3)

α
ν

3

1

2ν2

)A(

1

)2A(

1

ν
(Aν 1(A1)

2)

2

2

3

S2

S

S1

1

S2

3S
ν

3

W32V

3W V2

M
M2

V3

V3 W2

M

W V11

1
WV1

W2

M 3

1

2

1

M

8P

M 3

=ϕW Wϕ= P8Fϕ

N

N
N

N
N

Σ 2 Σ

S

3

3

Σ 3

1Σ

1

Σ1

Σ3

2

N (A 3)

(i)

FIG. 3. These triods have the same evolution according to system (2.9). Our convention is to take the orientation as in (i).



CRYSTALLINE CURVATURE FLOW 489

REMARK 2.14 We observe thatSj (t)moves in the same direction ofνj if and only ifκϕ(lj (t)) < 0.
Furthermore, system (2.9) is invariant under the change of the orientation ofΠ(t) (see Figure 3).

2.4 Geometry of elementary triods

The angles of an elementary triod are given by the angles between the vectorsνj ’s and are
determined by the balance condition atq (see (2.2)), which, in turn, is related to the existence
of admissible triplets.

DEFINITION 2.15 Anadmissible tripletis any triplet of vectors(X, Y,Z) ∈ (∂Wϕ)
3 satisfying

X + Y + Z = 0. (2.10)

LEMMA 2.16 Letψ : R2
→ [0,+∞) be a Finsler norm onR2, i.e. an even one-homogeneous

convex function for which there existsc > 0 such thatψ(ξ) > c|ξ | for any ξ ∈ R2, and define
Wψ :=

{
ξ ∈ R2 : ψ(ξ) 6 1

}
. LetX ∈ ∂Wψ . Then there exist two distinct vectorsY,Z in ∂Wψ

such that(X, Y,Z) is an admissible triplet. Moreover, if eitherWψ is strictly convex or for any
segmentS ⊂ ∂Wψ parallel toX ∈ ∂Wψ we have|S| 6 |X|, then the unordered pair{Y,Z} is
unique. Finally, if there existX0 ∈ ∂Wψ and a segmentS ⊂ ∂Wψ parallel toX0 with |S| > |X0|,
then there are infinitely many unordered pairs{Y,Z} of distinct vectors in∂Wψ such that(X0, Y, Z)

is an admissible triplet.

Proof. Let 2hM be the length of the orthogonal projection ofWψ onX⊥R and setX̂ := X/|X|.
Define the multifunctionsαr andαl asαr(h) := (−hX̂⊥

+ XR) ∩ ∂Wψ andαl(−h) := −αr(h)

for any h ∈ [0, hM ]. It is easy to see thatαr(h) contains exactly two points forh 6= hM while
αr(hM) can be either a point or a closed segment. Define the functionsα−

r , α
−

l : [0, hM ] → R2 as
α−

l (−h) := {Z ∈ αl(−h) : Z · X 6 Y · X, Y ∈ αl(−h)} andα−
r (h) := {Z ∈ αr(h) : Z · X 6

Y · X, Y ∈ αr(h)}. Note thatα−

l andα−
r are local parametrizations of∂Wψ which can be written

with respect to the basis(−X̂⊥, X̂) asα−

l (−h) = (−h, α−

l (−h) · X̂) andα−
r (h) = (h, α−

r (h) · X̂).
Define now the functionΦ : [0, hM ] → R as

Φ(h) :=
1

|X|
[α−

l (−h)+ α+
r (h)] · X̂.

ThenΦ is convex, since so areh 7→ α−

l (−h) · X̂, h 7→ α−
r (h) · X̂. Furthermore,Φ(0) = −2,

Φ(hM) = 0 if and only ifαr(hM) is a singleton, whileΦ(hM) < 0 if αr(hM) is a proper segment.
We divide the proof into two cases. First we observe that the existence ofh∗ ∈ (0, hM ]

with Φ(h∗) = −1 implies that (2.10) is satisfied forY := αr(h∗) andZ := αl(−h∗), and
conversely, the existence ofX, Y ∈ ∂Wψ satisfying (2.10) implies thatΦ(h∗) = −1, where
h∗ := max{Y · X̂, Z · X̂}.

Case 1. If eitherWψ is strictly convex (i.e.αr(hM) is a singleton) orαr(hM) ⊂ ∂Wψ is a segment
parallel toX with length|αr(hM)| 6 |X|, thenΦ(hM) > −1 with equality holding if and only if
|S| = |X| (for instance ifWψ = P6, see Figure 4). The convexity ofΦ yields the existence of
h∗ ∈ (0, hM ] with Φ(h∗) = −1. Assume now that there existsh∗

∈ (h∗, hM ] satisfyingΦ(h∗) =

Φ(h∗) = −1. Then, by the convexity ofΦ, for everyλ ∈ (0,1)we must haveΦ((1−λ)h∗+λh∗) =

−1, that is,∂Wψ should be flat along the directionX⊥, but this contradicts the convexity ofWψ .
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FIG. 4. P4 admits infinitely many pairs{Y,Z} satisfyingX0 +Y +Z = 0 withX0 = M1. P6 has a unique pair allX ∈ ∂P6.

Case 2. If αr(hM) ⊂ ∂Wψ is a segment parallel toX with length strictly greater than|X|, then
Φ(hM) < −1 (for instance ifWψ = P4, see Figure 4). Thus, we can find infinitely many pairs
{Y,Z} (as many as the points of a segment of length|X|) of distinct vectors in∂Wψ satisfying
(2.10). 2

REMARK 2.17 If Wψ = P4 andX0 = M1 (see Figure 4), then|S| = 2|X0|; hence there are
infinitely many pairs{Y,Z} of distinct vectors in∂P4 satisfyingX0 + Y + Z = 0. Moreover, any
elementary triod has always two angles ofπ/2. If Wψ = P6 andX = V1 (see Figure 4), then
|S| = |V1|; hence for anyX ∈ Wψ there exists a unique unordered pair{Y,Z} satisfying (2.10).

COROLLARY 2.18 Letn > 6. For anyX ∈ [V1,W1] there exist uniqueY = Y (X) ∈ [V2,W2] and
Z = Z(X) ∈ [V3,W3] such that(X, Y,Z) is an admissible triplet.

A direct computation yields the following result.

PROPOSITION2.19 Letn ∈ N, n > 6, j = 2,3 andΠ be elementary. Then

ϑ(ν1, νj ) = ϑn :=

 2π/3, n = 6m, m > 1,
(2π/3)(1 + 1/n) , n = 6m − 4, m > 2,
(2π/3)(1 − 1/n), n = 6m − 2, m > 2.

(2.11)

Moreover, the cardinality ofC in Definition 2.9 is 4 ifn = 6m, and 8 ifn ∈ {6m − 4,6m − 2}.

The angles ofΠ are strictly greater thanπ/2 and strictly less thanπ whenn > 6 andn 6= 8.
If n = 8 thenϑ(ν2, ν3) = π/2. From Proposition 2.19, whenn ∈ {6m − 4,6m − 2}, there are
eight different configurations which will be denoted by(a), (b), (c), (d), (a′), (b′), (c ′), (d′) (see
Figure 5); whenn = 6m, the four different configurations correspond to(a), (d), (a′), (d′).

From Proposition 2.19 we deduce the following formulas which are used throughout the paper:

τ1 · τj = ν1 · νj = cosϑn, j = 2,3, (2.12)

ν1 · τ2 = τ1 · ν3 = cos(ϑn − π/2) = sinϑn, (2.13)

τ1 · ν2 = ν1 · τ3 = cos(ϑn + π/2) = − sinϑn. (2.14)

REMARK 2.20 (quasi-elementary and nonpolygonal triods) The angles of a quasi-elementary triod
Π̃ are still determined by the balance condition atq (see (2.2)) and are exactly equal toϑn, ϑn and
2π − 2ϑn, as in the case of an elementary triod. The notion of local configuration ofΠ̃ atq can be
introduced by considering the equivalence relation introduced in Definition 2.9 on

(S4 ∪ Sk) ∪Σj1 ∪Σj2, j1, j2 ∈ {1,2,3} \ {k}, j1 6= j2,
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FIG. 5. Eight different configurations (up to rotations through 2π/n) whenn ∈ {6m − 4,6m − 2}.

with k as in Definition 2.8 of quasi-elementary triod. The different local configurations ofΠ̃ in q
will be denoted by(a∗), (b∗), (c∗), (d∗), (a′∗), (b′∗), (c ′∗), (d′∗). For nonpolygonal triods, only the
angle between the interfacesΣj1 andΣj2, j1, j2 ∈ {1,2,3}\{k}, j1 6= j2, with k as in Definition 2.8
of nonpolygonal triod, is known and equal toϑn.

We setδ := |V1 −X(V3)| if n = 6m − 4, δ := |W1 −X(W3)| if n = 6m − 2 (see Figure 6),

[a, b] :=

{
[0, L], n = 6m,
[δ, L− δ], n = 6m − 4,6m − 2,

m :=

{
1, n = 6m,
δ/(L− 2δ), n = 6m − 4,6m − 2,

(2.15)
and

qy :=

L, n = 6m,
m(L− δ), n = 6m − 4,
L+mδ, n = 6m − 2,

qz :=

 0, n = 6m,
−mδ, n = 6m − 4,
L−m(L− δ), n = 6m − 2.

(2.16)
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Given an admissible triplet(X, Y,Z) ∈ [V1,W1] × [V2,W2] × [V3,W3], we set

x := |V1 −X|, y := |W2 − Y |, z := |V3 − Z|. (2.17)

The proof of the next result is omitted and follows by a direct computation.

PROPOSITION2.21 If n = 6m − 4 thenδ = |W1 −X(W2)| = |W2 − Y (V3)| = |V3 − Z(W2)|. If
n = 6m − 2 thenδ = |V1 −X(V2)| = |V2 − Y (W3)| = |W3 − Z(V2)|. Furthermore,

2δ = (1 − cosϑn)
−1L, m = −(2 cosϑn)

−1, n ∈ {6m − 4,6m − 2}. (2.18)

Finally,
y = y(x) := −mx + qy, z = z(x) := mx + qz, x ∈ [a, b], n > 6. (2.19)

2.5 Crystalline curvature of elementary triods

In this section we compute theϕ-curvaturesκϕ(l1), κϕ(l2) andκϕ(l3) (see Definition 2.4) of an
elementary triodΠ . Each configuration gives rise to a different vector fieldNmin : Π → R2. Since
in two dimensions the value ofNmin is fixed (up to sign) at each vertexAj , the value ofNmin|Σj

at q uniquely determinesNmin on Σj simply by linear interpolation. Hence, we can restrict the
minimum problem (2.3) to the class of vector fieldsN ∈ N which are given by linear interpolation
on eachΣj . From Proposition 2.21, the admissible triplet(N|Σ1(q),N|Σ2(q),N|Σ3(q)) is uniquely
associated with(x, y(x), z(x)) satisfying (2.19). Hence, we can rewrite the functional in (2.3) as a
function ofx. The problem of findingNmin in (2.3) reduces to the problem

min
x∈[a,b]

f (x), f (x) :=
∫
Π

(divτ N)
2ϕo(ν)dH1

= αx2
+ βx + γ, (2.20)

whereα, β, γ are coefficients depending on the configuration ofΠ .
Let xmin be the minimizer of (2.20),ymin := y(xmin) andzmin := z(xmin). The stability of an

elementary triod is equivalent to the condition

xmin ∈ (a, b).

PROPOSITION2.22 If Π ∈ (d) then xmin = a, where a is defined as in (2.15). IfΠ ∈

{(a), (b), (c)} is stable then

x
(a)
min(L1, L2, L3) = m

(
qy

L2
−
qz

L3

)[
1

L1
+m2

(
1

L2
+

1

L3

)]−1

, (2.21)

x
(b)
min(L1, L2, L3) = m

(
−
L− qy

L2
+
L− qz

L3

)[
1

L1
+m2

(
1

L2
+

1

L3

)]−1

, (2.22)

x
(c)
min(L1, L2, L3) = m

(
qy

L2
+
L− qz

L3

)[
1

L1
+m2

(
1

L2
+

1

L3

)]−1

, (2.23)

wherem, qy, qz are given by (2.15) and (2.16).

Proof. Let N ∈ N be given by linear interpolation on eachΣj , let (X, Y,Z) :=
(N|Σ1(q),N|Σ2(q),N|Σ3(q)), and letx, y, z be as in (2.17). We observe that divτ N |Σ1, divτ N |Σ2,
divτ N |Σ3 are constant and given as in Table 1 after replacingxmin, ymin, zmin with x, y, z, and

f (x) = (divτ N |Σ1)
2L1ϕ

o(ν1)+ (divτ N |Σ2)
2L2ϕ

o(ν2)+ (divτ N |Σ3)
2L3ϕ

o(ν3).
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TABLE 1
Anglesαj andϕ-curvaturesκϕ(lj ) of an elementary triod

α1/π α2/π α3/π κϕ(l1) κϕ(l2) κϕ(l3)

(a) 1 − 2/n 1 + 2/n 1 − 2/n xmin/L1 −ymin/L2 zmin/L3

(b) 1 − 2/n 1 − 2/n 1 + 2/n xmin/L1 (L− ymin)/L2 −(L− zmin)/L3

(c) 1 − 2/n 1 + 2/n 1 + 2/n xmin/L1 −ymin/L2 −(L− zmin)/L3

(d) 1 − 2/n 1 − 2/n 1 − 2/n a/L1, a = xmin (L− ymin)/L2 zmin/L3

(a′) 1 + 2/n 1 + 2/n 1 − 2/n −(L− xmin)/L1 −ymin/L2 zmin/L3

(b′) 1 + 2/n 1 − 2/n 1 + 2/n −(L− xmin)/L1 (L− ymin)/L2 −(L− zmin)/L3

(c ′) 1 + 2/n 1 − 2/n 1 − 2/n −(L− xmin)/L1 (L− ymin)/L2 zmin/L3

(d′) 1 + 2/n 1 + 2/n 1 + 2/n −(L− b)/L1, b = xmin −ymin/L2 −(L− zmin)/L3

Furthermore,ϕo(ν1) = ϕo(ν2) = ϕo(ν3). In the case of configuration(d), sincef (x) is an
increasing function ofx ∈ [a, b], it follows that the minimizer is given byxmin = a and the
first assertion follows. In the other cases, since

α = ϕo(ν1)

[
1

L1
+m2

(
1

L2
+

1

L3

)]
> 0,

it follows thatxmin = −β/(2α) ∈ (a, b). Formulas (2.21)–(2.23) follow since

β =



−2mϕo(ν1)

(
qy

L2
−
qz

L3

)
in configuration(a),

−2mϕo(ν1)

(
−
L− qy

L2
+
L− qz

L3

)
in configuration(b),

−2mϕo(ν1)

(
qy

L2
+
L− qz

L3

)
in configuration(c). 2

REMARK 2.23 Since(a′), (b′), (c ′) and(d′) are respectively symmetric to(a), (b), (c) and(d)
with respect to thel1-axis, we can derive the expression ofxmin for configurations(a′), (b′), (c ′)

and(d′) from those of(a), (b), (c) and(d) using the mirror law:

x
(e)
min(L1, L2, L3) ∈ [a, b] 7→ x

(e′)
min (L1, L2, L3) ≡ L− x

(e)
min(L1, L3, L2) ∈ [a, b]. (2.24)

Since (xmin, ymin, zmin) identifies Nmin at q, κϕ(lj ) is explicitly determined for each
configuration, as shown in Table 1.

REMARK 2.24 Whenn = 6m,Π is unstable if and only if

(Nmin|Σ1(q),Nmin|Σ2(q),Nmin|Σ3(q)) ∈ {(V1, V2, V3), (W1,W2,W3)}, i.e. xmin ∈ {0, L}

(see Figure 6). Whenn = 6m−4 (resp.n = 6m−2),Π is unstable if and only if eitherNmin|Σ3(q) =

V3 orNmin|Σ2(q) = W2 (resp. eitherNmin|Σ2(q) = V2 orNmin|Σ3(q) = W3), i.e. eitherxmin = δ or
xmin = L− δ (see Figure 6). In particular, configurations(d) and(d′) are always unstable.
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FIG. 6. Wulff shapesWϕ = P12, Wϕ = P14 (n = 6m − 4) andWϕ = P16 (n = 6m − 2) and relative ranges of all
admissible triplets (filled regions).

REMARK 2.25 If Π̃ is a quasi-elementary triod, the solutionNmin of the minimum problem (2.3)
with Γ replaced byΠ̃ is still determined as the solution of the minimum problem (2.20) withΠ

replaced byΠ̃ . Hence, formulas in Table 1 and in Proposition 2.22 still hold with(a), (b), (c),
(d) replaced by(a∗), (b∗), (c∗), (d∗) and with l1, l2, l3 suitably replaced bylj1, lj2, l4, j1, j2 ∈

{1,2,3} \ {k}, k as in Definition 2.8 of quasi-elementary triod.

3. Short time existence and uniqueness of a crystalline flow

Before proving the short time existence result (Theorem 3.3) we need to understand the relations
between the distanceshνj (t) (see (2.8) and Definition 2.12) and the lengthsLj (t) (see Definition 2.8),

in order to write the left hand side of system (2.9) as a function ofL̇k(t).

PROPOSITION3.1 LetΠ be an elementary triod andT > 0. Assume thatt ∈ [0, T ) 7→ Π(t) ∈

[Π ] is a flow starting fromΠ which satisfies (ii) of Definition 2.12 and that the distance vector
hj (t) of the segmentSj (t) from Sj (0) = Sj satisfieshj ∈ C0((0, T ); νjR). Then, defininghνj (t) as
in (2.8), we have

L1(t) = L1 + cotα1 h
ν
1(t)+

hνk(t)− ν1 · νkh
ν
1(t)

τ1 · νk
, k = 2,3,

L2(t) = L2 + cotα2 h
ν
2(t)+

hν1(t)− ν1 · ν2h
ν
2(t)

ν1 · τ2
,

L3(t) = L3 + cotα3 h
ν
3(t)+

hν1(t)− ν1 · ν3h
ν
3(t)

ν1 · τ3
,

(3.1)

hν2(t)+ hν3(t) = 2τ1 · τ3h
ν
1(t), (3.2)

and

rank


cotα1 −

ν1 · ν2

τ1 · ν2

1

τ1 · ν2
L1(t)− L1

1

ν1 · τ2
cotα2 −

ν1 · ν2

ν1 · τ2
L2(t)− L2

2τ1 · τ3 cotα3 +
1 − 2(ν1 · ν3)

2

ν1 · τ3
− cotα3 +

ν1 · ν3

ν1 · τ3
L3(t)− L3

 = 2. (3.3)
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Conversely, for anyj = 1,2,3, letLj : [0, T ) → (0,+∞) andhνj : [0, T ) → R be continuous
functions satisfyingLj (0) = Lj , hνj (0) = 0 and (3.1)–(3.3). IfΠ(t) ∈ [Π ] is the elementary triod
having|Sj (t)| = Lj (t) andhj (t) := hνj (t)νj , thent ∈ [0, T ) 7→ Π(t) is a flow starting fromΠ
which satisfies (ii) of Definition 2.12 andhj (t) is the distance vector ofSj (t) from Sj (0) = Sj .

Proof. From

qq(t) = qq(t) · νjνj + qq(t) · τj τj = hνj (t)νj + [Lj (t)− Lj − cotαj h
ν
j (t)]τj , (3.4)

we get, forj = 2,3,

hν1(t) = ν1 · νjh
ν
j (t)+ ν1 · τj [Lj (t)− Lj − cotαj h

ν
j (t)], (3.5)

L1(t) = L1 + cotα1 h
ν
1(t)+ τ1 · νjh

ν
j (t)+ τ1 · τj [Lj (t)− Lj − cotαj h

ν
j (t)], (3.6)

Thus, by (3.5),

Lj (t)− Lj − cotαj h
ν
j (t) =

hν1(t)− ν1 · νjh
ν
j (t)

ν1 · τj
, j = 2,3, (3.7)

and the second and third equalities in (3.1) are proved.
Inserting (3.7) in (3.6), subtracting the resulting equations, and using (2.12) and (2.5) yields

τ1 · ν3[hν2(t)+ hν3(t)] + 2
τ1 · τ3

ν1 · τ3
hν1(t)−

(ν1 · ν3)
2

ν1 · τ3
[hν2(t)+ hν3(t)] = 0.

Hence, by (2.5),

(τ1 · ν3)
2
+ (ν1 · ν3)

2

τ1 · ν3
[hν2(t)+ hν3(t)] − 2

τ1 · τ3

τ1 · ν3
hν1(t) = 0,

which proves (3.2).
Similarly, inserting (3.7) in (3.6), adding the resulting equations, and using (2.12) and (2.5)

yields

2L1(t) = 2L1 + 2 cotα1 h
ν
1(t)+ τ1 · ν3[hν3(t)− hν2(t)] −

(ν1 · ν3)
2

ν1 · τ3
[hν3(t)− hν2(t)]

= 2L1 + 2 cotα1 h
ν
1(t)+

1

τ1 · ν3
[hν3(t)− hν2(t)]. (3.8)

Substituting (3.2) into (3.8) gives the first equality in (3.1). Now, systems (3.1) and (3.2) imply

L1(t)− L1
L2(t)− L2
L3(t)− L3

 =


cotα1 −

ν1 · ν2

τ1 · ν2

1

τ1 · ν2
0

1

ν1 · τ2
cotα2 −

ν1 · ν2

ν1 · τ2
0

2τ1 · τ3 cotα3 +
1 − 2(ν1 · ν3)

2

ν1 · τ3
− cotα3 +

ν1 · ν3

ν1 · τ3
0


hν1(t)hν2(t)

hν3(t)

 . (3.9)

If we show that system (3.9) always has rank 2, then,hνj being solutions of (3.1)–(3.2), the condition
(3.3) follows. LetA1,2 be the 2×2 matrix given by the first two rows and the first two columns of the
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matrix in (3.9). If cotα1 = cotα2 , i.e.Π ∈ {(b), (d), (a′), (d′)}, then detA1,2 = cot2 α1 + 1 6= 0.
If cotα1 = − cotα2 , i.e.Π ∈ {(a), (c), (b′), (c ′)}, then

detA1,2 =
1

sin2ϑn

(
1 −

sin2(α1 + ϑn)

sin2 α1

)
.

Using Table 1, one checks that detA1,2 6= 0 if eitherΠ ∈ {(a), (c)} andn 6= 6, orΠ ∈ {(b′), (c ′)}

andn /∈ {10,12,14}. In the remaining cases one can check similarly that the minors given by the
first and third rows (or the second and third rows) of the matrix in (3.9) are not zero. Then (3.3)
follows.

The converse follows by construction. 2

REMARK 3.2 System (3.1) is not symmetric under permutations of the indices 1,2,3, unless
n = 6m. This is due to the fact that forn 6= 6m only two of the angles at the triple junction
are equal. Finally, notice that a flow starting fromΠ which satisfies (ii) of Definition 2.12 with
Π(t) elementary in [0, T ) has two degrees of freedom.

THEOREM 3.3 LetΠ be elementary and stable. Then there existT > 0 and a unique stableϕ-
curvature flowt ∈ [0, T ) 7→ Π(t) starting fromΠ with [Π(t)] = [Π ] for any t ∈ [0, T ). Moreover,
hj ∈ C∞([0, T )) for all j = 1,2,3.

Proof. We assumeΠ ∈ (a), the proof in the other configurations being similar. Letx
(a)
min be defined

as in (2.21). For anyw := (w1, w2, w3) ∈ (0,+∞)3, we setG(w) := x
(a)
min(w) and define the

vector fieldF = (F1, F2, F3) : (0,+∞)3 → R3 as

F1(w) := −

(
cotα1 −

ν1 · ν3

τ1 · ν3

)
G(w)

w1
−

1

τ1 · ν3

mG(w)+ qz

w3
,

F2(w) := −
1

ν1 · τ2

G(w)

w1
+

(
cotα2 −

ν1 · ν2

ν1 · τ2

)
−mG(w)+ qy

w2

F3(w) := −
1

ν1 · τ3

G(w)

w1
−

(
cotα3 −

ν1 · ν3

ν1 · τ3

)
mG(w)+ qz

w3
.

Notice thatF is obtained by differentiating with respect tot the right hand side of system (3.1) and
by replacing theḣνj ’s (in (2.9)) with the expressions inG andwj (where we use Table 1, (2.21) and
(2.19)). Consider the Cauchy problem{

ẇ(t) = F(w(t)),

w(0) = (L1, L2, L3) ∈ (0,+∞)3.
(3.10)

SinceF is C∞ in (0,+∞)3, there exists a unique solutionw ∈ C∞([0, T ); (0,+∞)3) of (3.10)
for someT > 0. Denote byΠ(t) the elementary triod belonging to configuration(a) and having
|Sj (t)| := wj (t) for any j = 1,2,3. Definex(t) := x

(a)
min(w(t)), y(t) := −mx(t) + qy , z(t) :=

mx(t)+ qz. By construction, for anyt ∈ [0, T ), x(t) is the solution of the minimum problem (2.20)
withΠ replaced byΠ(t), andNmin(t), the solution of (2.3) withΓ replaced byΠ(t), is determined
by (x(t), y(t), z(t)). Thus

κϕ(l1(t)) =
x(t)

w1(t)
, κϕ(l2(t)) = −

y(t)

w2(t)
, κϕ(l3(t)) =

z(t)

w3(t)
,
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wherelj (t) := wj (t)τj . Sincewj ∈ C∞([0, T )), possibly reducingT > 0, we havex(t) ∈ (a, b)

for any t ∈ (0, T ). Therefore,Π(t) is elementary and stable for anyt ∈ [0, T ), andκϕ(lj (·)) ∈

C∞([0, T )) for anyj = 1,2,3. Defining, for anyj = 1,2,3,

hj (t) := hνj (t)νj , hνj (t) := −

∫ t

0
κϕ(lj (s))ds, t ∈ [0, T ), (3.11)

we get a flow satisfying (2.7). To prove (ii) of Definition 2.12, in view of (the converse part of)
Proposition 3.1 it is sufficient to show that (3.1)–(3.3) are satisfied. Denote byft the function in
(2.20) whereΠ is replaced byΠ(t). Equality (3.2) follows from

0 =
dft (x)

dx
= 2ϕo(ν1)

[
x

w1(t)
+
y(x)

w2(t)

dy

dx
+
z(x)

w3(t)

dz

dx

]
= 2ϕo(ν1)[−ḣν1(t)−m(ḣν2(t)+ ḣν3(t))]

and from−m = (2τ1 · τ3)
−1 (see (2.15) and (2.18)). Integrating (3.10) yields (3.1). Finally, (3.3)

follows from (3.2), since

w2(t)− L2 =

(
2τ1 · τ2 cotα2 +

1 − 2(ν1 · ν2)
2

ν1 · τ2

)
hν1(t)+

(
− cotα2 +

ν1 · ν2

ν1 · τ2

)
hν3(t).

Uniqueness of the flow follows by uniqueness ofwj andhνj . 2

COROLLARY 3.4 If Π is degenerate and stable, then there existT > 0 and a unique stableϕ-
curvature flowt ∈ [0, T ) 7→ Π(t) starting fromΠ with Π(t) ∈ [Π ] degenerate for anyt ∈ [0, T ).
Moreover,hνj1, h

ν
j2

∈ C∞([0, T )), j1, j2 ∈ {1,2,3} \ {k̄}, k̄ as in Definition 2.8 of degenerate triod.

Proof. As in the proof of Theorem 3.3 we obtain the (two) nondegenerate lengthswj1, wj2 as
solutions of a system of two ordinary differential equations, and the assertion follows by the same
arguments. 2

DEFINITION 3.5 LetΠ be elementary and stable. We defineT = T (Π) as the supremum of all
T > 0 for which there exists a unique stableϕ-curvature flowt ∈ [0, T ) 7→ Π(t) starting fromΠ .

COROLLARY 3.6 LetΠ be elementary and stable, andt ∈ [0, T ) 7→ Π(t) ∈ [Π ] be the stable
ϕ-curvature flow starting fromΠ . Then

−2τ1 · τ3κϕ(l1(t))+ κϕ(l2(t))+ κϕ(l3(t)) = 0, ∀t ∈ [0, T ). (3.12)

Proof. This follows by differentiating (3.2) with respect tot and using (2.9). 2

Condition (3.12) is related to the geometry of the triod near the triple junction and is equivalent
to stability of the triod. In particular, ifn = 6m, we haveτ1 · τ3 = −1/2, hence the sum of the
ϕ-curvatures at the triple junction is zero (as in the euclidean case).

If we use (3.2), (2.13) and (2.5), for anyt ∈ [0, T ) and alln > 6, system (3.1) can be written as
follows:

L1(t)− L1 = [cotα1 + cotϑn]hν1(t)−
1

sinϑn
hν2(t) (3.13)

= [cotα1 − cotϑn]hν1(t)+
1

sinϑn
hν3(t), (3.14)
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L2(t)− L2 =
1

sinϑn
hν1(t)+ [cotα2 − cotϑn]hν2(t) (3.15)

= 2 cosϑn[cotα2 − cot(2ϑn)]h
ν
1(t)− [cotα2 − cotϑn]hν3(t) (3.16)

= [cotα2 − cot(2ϑn)]h
ν
2(t)+

1

sin(2ϑn)
hν3(t), (3.17)

L3(t)− L3 =
1

sinϑn
hν1(t)+ [cotα3 + cotϑn]hν3(t) (3.18)

=
1

sin(2ϑn)
hν2(t)+ [cotα3 + cot(2ϑn)]h

ν
3(t). (3.19)

The following proposition describes some useful qualitative properties of the flow.

PROPOSITION3.7 LetΠ be elementary and stable, andt ∈ [0, T ) 7→ Π(t) ∈ [Π ] be the stable
ϕ-curvature flow starting fromΠ . Denote byj1 andj2 the two indices for which the two angles of
the triod atAj1 andAj2, from the side of their common phase, are both larger thanπ (for instance,
j1 = 2, j2 = 3 in Figure 7(i),j1 = 1, j2 = 3 in Figure 7(ii),j1 = 1, j2 = 3 in Figure 7(iii)). Then

(i) Lj1 andLj2 are nondecreasing in [0, T );
(ii) supj supt∈[0,T ) |κϕ(lj (t))| < +∞;

(iii) supj supt∈[0,T ) |L̇j (t))| < +∞;
(iv) Lj3 ∈ Lip((0, T )), j3 6= j1, j2;
(v) if T < +∞ thenLj (T −) < +∞ for anyj = 1,2,3.

(i)

’

−=
3

’

−’
1

V

W2

W

q
3

q

q(t)

q

q(t)

W31V
V3

V2

V1

q(t)

W 2(iii)(ii)

FIG. 7. Stableϕ-curvature flow from a stable elementary triodΠ (see Theorem 3.3): (i)Π ∈ (a), (ii) Π ∈ (b), (iii) Π ∈ (c).

Proof. We show assertion (i) for configurations(a), (b) and(c), the cases(a′), (b′), (c ′) being
similar (interchangeL2(t) with L3(t)). Differentiating (3.14), (3.17) and (3.18) with respect tot ,
using cotα ± cotβ =

sin(β±α)
sinα sinβ , (2.11) and Table 1, we see thatj1 = 2, j2 = 3, L̇j1(t) > 0,

L̇j2(t) > 0 in configurations(a), andj1 = 1, j2 = 3, L̇j1(t) > 0, L̇j2(t) > 0 in configuration(b)
and(c). Assertion (ii) follows from (i) since, by Table 1,̇hνj1(t) andḣνj2(t) are bounded and, by (3.2),

ḣνj3
(t) is bounded. In view of (3.1), (ii) implies (iii). Conclusions (iv) and (v) follow from (iii).2

For anyt ∈ (0, T ), for simplicity, we denote byx(t) the solution of the minimum problem (2.20)
withΠ replaced byΠ(t) andy(t) := −mx(t)+qy , z(t) := mx(t)+qz. Thanks to Proposition 3.7,
Lj (T −), x(T −) and κϕ(lj (T −)) are well defined. We denote byΠ(T ) the elementary triod
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satisfying [Π(T )] = [Π ] and |Sj | = Lj (T −) for any j = 1,2,3. Finally,Nmin(T ) denotes the
solution of (2.3) withΓ replaced byΠ(T ).

REMARK 3.8 We conclude from Proposition 3.7 that eitherLj3(T −) = 0 orΠ(T ) is unstable
or both of these occurrences happen at timet = T . Finally, Lj3(T −) = 0 is not equivalent
to |κϕ(lj3(T −))| = +∞, but wheneverSj3 disappears in a stable flow, itsϕ-curvature remains
bounded.

3.1 A case of global existence

In general,T is finite and the flow develops a singularity at timet = T . The following result shows
that in a specific case the flow is global, i.e.T = +∞. For alln = 6m > 12, set

u∞ :=
v∞

r
, v∞ := 1+

√
3 sinα1−cosα1, r :=

(
2

√
3
+

1

sinα1

)(
− cotα1−

1
√

3

)−1

. (3.20)

THEOREM 3.9 Letn = 6m and letΠ ∈ (a) be stable. ThenT = +∞.

(i) If n > 12 then limt→∞ Lj (t) = +∞ and limt→∞ κϕ(lj (t)) = 0 for any j = 1,2,3.
Furthermore,

lim
t→∞

L2(t)

L3(t)
= u∞, lim

t→∞

L2(t)

L1(t)
= v∞, lim

t→∞
x(t) = x(∞)

whereu∞, v∞ are as in (3.20) andx(∞) := l(u∞ + v∞ + 1)−1
∈ (0, L).

(ii) If n = 6 then limt→∞ L1(t) = 0, limt→∞ L2(t) = L1 + L2, limt→∞ L3(t) = +∞, and
limt→∞ xmin(t) = 0. Furthermore,

lim
t→∞

κϕ(l3(t)) = 0, lim
t→∞

κϕ(l2(t)) = − lim
t→∞

κϕ(l1(t)) =
l

L2 + L1
.

The analysis of the long time behaviour requires the following lemma (recall Definition 2.11),
which in particular shows that ifn = 6m then the stability regionSa is the whole of(0,+∞)3.

LEMMA 3.10 For alln > 6,Sd = Sd′ = ∅. If n = 6m we haveSa(3,1) = Sa′(2,1) = (0,+∞)2.
Moreover, ifm is defined as in (2.15), then forn = 6m − 4,

Sa(3,1) = Sa′(2,1) = {(u, v) ∈ (0,+∞)2 : v < m},

Sb(2,1) = Sb′(3,1) =

{
(u, v) ∈ (0,+∞)2 : m

L− δ − Lu

L− δ
< v <

L− (L− δ)u

L− 2δ

}
,

Sc (2,1) = Sc ′(3,1) =

{
(u, v) ∈ (0,+∞)2 : m < v <

L+ δu

L− 2δ

}
,

while for n = 6m − 2,

Sa(3,1) = Sa′(2,1) =

{
(u, v) ∈ (0,+∞)2 : m

L− δ − Lu

L− δ
< v <

L− (L− δ)u

L− 2δ

}
,

Sb(2,1) = Sb′(3,1) = {(u, v) ∈ (0,+∞)2 : v < m},

Sc (3,1) = Sc ′(2,1) =

{
(u, v) ∈ (0,+∞)2 : m < v <

L+ δu

L− 2δ

}
.
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Proof. Using Proposition 2.22, and (2.24) for configurations(a′), (b′), (c ′), the conclusion follows
by imposingxmin ∈ (a, b). 2

Proof of Theorem 3.9. Let x(a)min be as in (2.21). For anyt ∈ [0, T ) definey(t) andz(t) as in (2.19)

with x replaced byx(t) := x
(a)
min(L1(t), L2(t), L3(t)). Set

d(t) :=
( ∑
i<j

Li(t)Lj (t)
)−1

.

By Table 1, (2.15) and (2.16), system (2.9) reads

ḣν1(t) = −
x(t)

L1(t)
= −Ld(t)L3(t),

ḣν2(t) =
y(t)

L2(t)
= Ld(t)(L1(t)+ L3(t)),

ḣν3(t) = −
z(t)

L3(t)
= −Ld(t)L1(t).

(3.21)

Set

A1 :=

(
cotα1 −

1
√

3

)
cotα1 +

√
3

cot2 α1 + 1
, A3 :=

(
cotα1 +

1
√

3

)
cotα1 −

√
3

cot2 α1 + 1
.

Then condition (3.3) becomes

L2(t) = A1L1(t)+ A3L3(t)+ (L2 − A1L1 − A3L3)(0), t ∈ [0, T ). (3.22)

Differentiating (3.14) and (3.18) with respect tot and using (3.21) yields

L̇1 = Ld(t)f1, L̇3 = Ld(t)f3, (3.23)

where

f1 := −
2

√
3
L1 −

(
cotα1 +

1
√

3

)
L3, f3 := −

(
cotα1 −

1
√

3

)
L1 +

2
√

3
L3.

ThusdL1/f1 = dL3/f3, and if we substituteL3 = RL1, we obtain

p1dL1 + p2dR = 0, (3.24)

with

p1 :=

(
cotα1 +

1
√

3

)
R2

+
4

√
3
R −

(
cotα1 −

1
√

3

)
, p2 :=

[(
cotα1 +

1
√

3

)
R +

2
√

3

]
L1.

Let us show (i). Integrating (3.24) yields

logL1 +
1

2

∫ (
1

R − R̄
+

1

R − r

)
dR = 0

wherer > 0 is defined as in (3.20) and

R̄ := −
2/

√
3 − 1/sinα1

cotα1 + 1/
√

3
< 0.
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Thus

L2
1(t)

(
L3

L1
(t)− R̄

)(
L3

L1
(t)− r

)
= C, C := (L3 − R̄L1)(L3 − rL1). (3.25)

CLAIM . There existst0 ∈ [0, T ) such thatf1(t) > 0 (and henceL̇1 > 0) for anyt ∈ [t0, T ).
If f1 is positive at timet = 0 then it is so at the subsequent times since, by (3.14) and (3.18),

ḟ1(t) = −ḣν3(cot2 α1 + 1) > 0, t ∈ [0, T ). (3.26)

We proceed by contradiction: assume thatf1 6 0 in [0, T ), i.e.

L1(t) > M0L3(t), t ∈ [0, T ), M0 := −

√
3

2

(
cotα1 +

1
√

3

)
> 1. (3.27)

Then, from (3.23),L1 is decreasing in [0, T ) but bounded below byM0L3. From Propositions 3.10
and 3.7(v), we conclude thatT = +∞. Note thatA1 > 0 andA3 > 0 if n > 12. Set

M1 :=
LL3(0)

[(A3/M0)L1(0)+ L2(0)− A3L3(0)]
M0+1
M0

L1(0)+ L1(0)2/M0
> 0.

From (3.21), (3.22) and (3.27) we get−ḣν3 > M1, and from (3.26),ḟ1 > M1(cot2 α1 + 1) in
[0,+∞). Thus−(cotα1 + 1/

√
3)L3(t) > (2/

√
3)L1(t) +M1(cot2 α1 + 1)t + f1(0) for any t ∈

[0,∞). Hence, lettingt → +∞ we getL3 → +∞, and from (3.27),L1 → +∞. This gives a
contradiction since, by our assumption,L1 is decreasing on [0,+∞). The Claim is proved.

Since (3.27) holds whenL1 is decreasing,T = +∞ follows from Proposition 3.7 and
formula (2.21). Let us show limt→∞ L1(t) = +∞. Assume that limt→∞ L1(t) < +∞. Then
from (3.25) and (3.22) we get respectively limt→∞ L3(t) < +∞ and limt→∞ L2(t) < +∞. But
this implies limt→∞ L̇j (t) = 0 for anyj = 1,2,3. Differentiating (3.16) with respect tot and
recalling thatḣν1 6 0 andḣν3 6 0, we get limt→∞ ḣν1(t) = limt→∞ ḣν3(t) = 0, and consequently
limt→∞ ḣν2(t) = 0, which gives a contradiction with system (3.21).

Finally, we also get limt→∞ L3(t) = +∞ and limt→∞ L2(t) = +∞ respectively fromf1 > 0
on [t0,+∞) and (3.22). Again (3.22), (3.25) and (2.21) yield the conclusion sinceA1 +A3r = v∞.

Let us show (ii). Ifn = 6 thenα1 = ϑn = 2π/3. Thus, (3.22) reduces to

L2(t) = −L1(t)+ S0, t ∈ [0, T ), S0 := L1 + L2, (3.28)

and (3.24) to(2R + 1)dL1 + L1dR = 0 so that integrating yields log(L1
√

2R + 1) = C. Hence

L3(t) =
1

2

(
C0

L1(t)
− L1(t)

)
, t ∈ [0, T ), C0 := L1(L1 + 2L3). (3.29)

Using (3.21), (3.29), (3.28), we can rewrite the first equation in (3.23) asL̇1 = 4LL2
1/

√
3g(L1),

whereg(s) := 2s3
− S0s

2
− C0S0. GivenΛ ∈ (0, L1), let T ∈ (0, T ) be the time that the solution

needs to achieve the valueΛ. Then we get[
s2

− S0s + C0S0
1

s

]Λ
L1

=

∫ Λ

L1

(
2s − S0 −

C0S0

s2

)
ds =

4
√

3
LT . (3.30)

From (3.30) we discover thatT < T for anyΛ ∈ (0, L1). HenceΛ = 0 andT = +∞. Further,
L1(t) being strictly decreasing in [0,+∞) (from (3.23)), we haveL1 > 0 in [0,+∞), and from
(3.30) we get limt↑∞ L1(t) = 0. 2
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4. Configurations(d) and (d′): development of a new segment

In this section we assumen = 8 andΠ ∈ (d). From Proposition 2.22,Π is unstable withxmin = δ,
i.e.Nmin = (X(V3), Y (V3), V3) (see Figure 8), and from Table 1,κϕ(l1) = δ/L1, κϕ(l2) = (L −

δ)/L2, κϕ(l3) = 0. Sincexmin tends to be smaller thanδ and the constraintNmin|Σj (q) ∈ Tϕo(ν
j
ϕ)

cannot be violated, the appearance of a vertical segment atq is forced during the flow, as explained
in the following result.

8

S4(t)

Σ

X(V )3

Y(V )3
V3

Σ (t)

Σ

Π (d)

Σ3 (t)

Σ2(t)

Σ2

3

1

1

q

q(t)

Π (t) (a )*

3Σ (t)

(t)1Σ

q(t)

(t)2Σ

P=Wϕ

FIG. 8. Development of a vertical segmentS4(t). The rotated quasi-elementary triod on the right will be used in the proof of
Theorem 4.1.

THEOREM 4.1 Letn = 8 andΠ ∈ (d). Then there existT > 0 and a stableϕ-curvature flow
t ∈ [0, T ) 7→ Π̃(t) starting fromΠ . More precisely,

Π̃(t) = Σ1(t) ∪Σ2(t) ∪ (S4(t) ∪Σ3(t)) ∈ (a∗), ∀t ∈ (0, T ), (4.1)

and if we define

x̃(t) := x
(a)
min(L2(t), L4(t), L1(t)), ỹ(t) := −mx̃(t)+ qy, z̃(t) := mx̃(t)+ qz, (4.2)

with x(a)min as in (2.21) andm, qy, qz as in (2.15), (2.16), thenκϕ(l3(t)) = 0,

κϕ(l1(t)) =
z̃(t)

L1(t)
, κϕ(l2(t)) =

x̃(t)

L2(t)
, κϕ(l4(t)) = −

ỹ(t)

L4(t)
. (4.3)

Finally, κϕ(lj (·)) ∈ C∞((0, T )) for anyj = 1,2,3,4, and

lim
t↓0
κϕ(l1(t)) =

δ

L1
, lim

t↓0
κϕ(l2(t)) =

L− δ

L2
, lim

t↓0
κϕ(l4(t)) = −

δ

L1
+2τ1·τ2

L− δ

L2
< 0. (4.4)

The idea of the proof is to consider theϕ-curvature flow starting from the rotated quasi-
elementary triodΠ̃ in Figure 8, with singular initial datum(L2,0, L1). Notice that, from
Lemma 3.10,(L2,0, L1) belongs to the boundary of the stability regionSa.

Proof. SetG(w) := x
(a)
min(w) for w := (w1, w2, w3) ∈ (0,+∞)3 with x(a)min as in (2.21), and define

the vector fieldF = (F1, F2, F3) ∈ C∞((0,+∞)3; R3) as

F1(w) :=
1

sinϑn

mG(w)+ qz

w3
, F2(w) = F3(w) :=

−mG(w)+ qy

w2
+
mG(w)+ qz

w3
, (4.5)
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wherem, qy, qz are defined as in (2.15) and (2.16). Notice thatF is obtained by differentiating with
respect tot the right hand side of (3.14), (3.17), (3.19) and by replacing theḣνj ’s (in (2.9)) with
the expressions inG andwj (where we used Table 1, (2.21) and (2.19)). Despite the appearance of
w2 in the denominators ofF2, the presence ofG ensures thatF and all its partial derivatives are
bounded in(0,+∞)× {w2 = 0} × (0,+∞). Thus the Cauchy problem{

ẇ(t) = F(w(t)),

w(0) = (L2,0, L1),
(4.6)

admits a unique solution(Λ1,Λ2,Λ3) ∈ C∞([0, T ); (0,+∞)3) for someT > 0. SetL1(t) :=
Λ3(t), L2(t) := Λ1(t), L4(t) := Λ2(t) for any t ∈ [0, T ). Let us show thatL4 > 0 in [0, T ). In
order to do that, one checks thatL̈4(0) > 0 as a consequence of

L̇4(t) =
qy −mG(L2(t), L4(t), L1(t))

L4(t)
+
mG(L2(t), L4(t), L1(t))+ qz

L1(t)

and

lim
w2→0

G(w1, w2, w3) = L−δ, lim
w2→0

F2(w1, w2, w3) = 0 ( lim
t→0

L̇4(t) = 0), w1, w3 ∈ (0,+∞).

Hence, we conclude thatL4 is increasing in a neighbourhood of 0, say [0, T ).
Let Π̃(t) be the quasi-elementary triod defined in (4.1) and having|Sj (t)| = Lj (t), j =

1,2,3,4. Definẽx(t) := G(L2(t), L4(t), L1(t)) andỹ(t), z̃(t) as in (4.2). By construction, for any
t ∈ (0, T ), the solutionNmin(t) of (2.3) withΓ replaced bỹΠ(t) is determined by(̃x(t), ỹ(t), z̃(t)).
SinceLj ∈ C∞([0, T )), possibly reducingT > 0, we havẽx ∈ (δ, L− δ) in (0, T ). Therefore,Π̃
is stable in(0, T ), κϕ(lj (·)) ∈ C∞([0, T )) for any j = 1,2,3, and (4.3) holds. Defining, for any
j = 1,2,3, hνj : [0, T ) → R as in (3.11) and reasoning as in the last part of Theorem 3.3 we get
a stableϕ-curvature flow starting fromΠ . SinceL1, L2, L4 are monotone functions in(0, T ), the
limits in (4.4) exist and their values follow from limt→0 x̃(t) = L− δ and limt→0L4(t) = 0. 2

REMARK 4.2 The flowt 7→ Π̃(t) of Theorem 4.1 is the unique stable flow starting fromΠ .
Indeed, ift 7→ Π ′(t) is a stable flow starting fromΠ then, from Proposition 2.22,Π ′(t) /∈ (d) and,
asxmin = δ, i.e.Nmin|Σ3 = V3 (see Figure 8),Π ′(t) must be quasi-elementary withΠ ′(t) ∈ (a∗).
We expect thatt 7→ Π̃(t) is also unique among all regular flows starting fromΠ .

5. The casen = 8 andΠ ∈ (b): development of a new segment

In this section we prove that at timet = T ∈ (0,+∞) the flow starting from a stable triodΠ ∈ (b)
becomes unstable and a vertical segment develops in order to decrease the energy functional and
make the flow stable at subsequent times.

THEOREM 5.1 Let n = 8 and letΠ ∈ (b) be stable. ThenT < +∞ and Nmin(T ) =

(X(V3), Y (V3), V3). Furthermore, there existT1 ∈ (T ,+∞] and a stableϕ-curvature flowt ∈

[T , T1) 7→ Π̃(t) starting fromΠ(T ). More precisely, for anyt ∈ (T , T1), Π̃(t) is the quasi-
elementary triod defined as in (4.1),κϕ(l3(t)) = −L/L3(t) and (4.3) holds. Finally,κϕ(lj (·)) ∈

C∞((T , T1)) for anyj = 1,2,3,4, and (4.4) holds witht ↓ 0 replaced byt ↓ T .
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The idea of the proof is that at the finite timet = T the solution reaches the boundary of the
stability region, and at the same time an infinitesimal segment appears; then the flow is continued
by arguing as in Theorem 4.1.

Proof. For anyt ∈ [0, T ) definex(t) := x
(b)
min(L1(t), L2(t), L3(t)), y(t) andz(t) as in (2.19) with

x replaced byx(t). Then system (2.9) reads

ḣν1(t) = −
x(t)

L1(t)
, ḣν2(t) = −

L− y(t)

L2(t)
, ḣν3(t) =

L− z(t)

L3(t)
, (5.1)

system (3.1) reads

L1(t) = L1 +
√

2hν3(t), L2(t) = L2 − hν2(t)− hν3(t), L3(t) = L3 + hν2(t)+ hν3(t), (5.2)

while (3.2) and (3.3) become

−
√

2hν1(t) = hν2(t)+ hν3(t), L3(t)− L3 = L2 − L2(t). (5.3)

Defineu(t) := L3(t)/L2(t) andv(t) := L3(t)/L1(t). Differentiating (5.2) with respect tot ∈

(0, T ) and using (2.22), (2.19) andm =
√

2/2, we obtain

u̇ =
L− 2δ

L2
3

uv(1 + u)(D − Eu)

δ2 + δ2u+ (L− 2δ)2v
, v̇ =

(L− 2δ)(L− δ)

δL2
3

v2(A− Bu− Cv)

δ2 + δ2u+ (L− 2δ)2v
, (5.4)

whereA := δ(L−δ),B := δL,C := (L−δ)(L−2δ),D := (L−δ)2,E := L2
−3δL+δ2. Recall

that the stability regionSb(2,1) is given by Lemma 3.10 (see Figure 9). Notice thatA−Bu−Cv 6 0
is equivalent toxmin 6 L− δ andD − Eu > 0 for any(u, v) ∈ Sb(2,1). Thusu̇ > 0 andv̇ < 0 in
Sb(2,1). From (5.4) we get

dv

du
=
L− δ

δ

v(A− Bu− Cv)

u (u+ 1) (D − Eu)
> −

L− δ

δ

v

u (u+ 1)
, (5.5)

since−
A−Bu−Cv
D−Eu

6 1 for any(u, v) ∈ Sb(2,1). For any(u0, v0) ∈ Sb(2,1) we have

v(u) > v0

(
u0

1 + u0

u+ 1

u

)(L−δ)/δ

> v0

(
u0

1 + u0

)(L−δ)/δ

.

q

...

.

..

v

u

(a* )

L
L−δ

Y(V3)

X(V3)

X(V )

Y(V )

3

3

P8=ϕW

Σ3

Σ 2

3V

V3

min= δx

=L−δx min

(c’* )

b (2,1)S
Σ1

Π (b)

Π (a* )

FIG. 9. ϕ-curvature flow starting from a stableΠ ∈ {(b)} (see Theorem 5.1): at timet = T the flow becomes unstable and
a vertical segment develops in order to make the triod stable.
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From Proposition 3.7 we know thatL3(·) is nondecreasing; hence, from (5.3) it follows thatL2(·) is
nonincreasing, so that 0< L3(0) 6 L3(t), L2(t) 6 L2(0) for anyt ∈ (0, T ). SinceL3(t)/L2(t) 6
L/(l− δ) it follows that(L− δ)L3(t) 6 LL2(0) andLL2(t) > (L− δ)L3(0) for anyt ∈ (0, T ). It
follows thatL1(T −) − L1 < +∞, sinceL3(t)/L1(t) is bounded from below. Furthermore, since
by (5.2) and (5.1),

L̇2(t) 6 −ḣν2(t) 6
L

L2(t)
, L̇1(t) > −

√
2ḣν2(t) >

√
2
L− δ

L2(t)
,

it follows thatT < +∞, x(T −) = δ and

κϕ(l1(T −)) = −
δ

L1(T −)
, κϕ(l2(T −)) = −

L− δ

L2(T −)
, κϕ(l3(T −)) =

L

L3(T −)
.

We proceed as in the proof of Theorem 4.1, with the difference that nowκϕ(l3(T −)) > 0, so that
a system of four ODEs is required. For anŷw := (w1, w2, w3) ∈ (0,+∞)3 we setG(ŵ) :=
x
(a)
min(ŵ) with x(a)min as in (2.21). For anyw := (ŵ, w4) ∈ (0,+∞)4 we define the vector field
F ∈ C∞((0,+∞)4; R4) as

F1(w) := −
√

2
mG(ŵ)+ qz

w3
, F2(w) := F3(w)−

√
2
L

w4
,

F3(w) :=
qy −mG(ŵ)

w2
+
mG(ŵ)+ qz

w3
, F4(w) := 2

L

w4
−

√
2
qy −mG(ŵ)

w2
,

(5.6)

wherem, qy, qz are given by (2.15) and (2.16). SinceF and all its partial derivatives are bounded
in (0,+∞)× {w2 = 0} × (0,+∞)2, the Cauchy problem{

ẇ(t) = F(w(t)),

w(T ) = (L2(T ),0, L1(T ), L3(T )),
(5.7)

admits a unique solution(w1, w2, w3, w4) ∈ C∞([T , T1); (0,+∞)4) for T1 ∈ (T ,+∞]. For any
t ∈ [T , T1), setL1(t) := Λ3(t), L2(t) := Λ1(t), L3(t) := Λ4(t) andL4(t) := Λ2(t). As in the
proof of Theorem 4.1, we find thaẗL4(0) > 0 as a consequence of

L̇4(t) =
qy −mG(L2(t), L4(t), L1(t))

L4(t)
+
mG(L2(t), L4(t), L1(t))+ qz

L1(t)
−

√
2
L

L3(t)

and

lim
w2→0

G(w1, w2, w3) = L− δ, lim
w2→0

F2(w1, w2, w3, w4) = 0 ( lim
t→0

L̇4(t) = 0),

w1, w3, w4 ∈ (0,+∞).

The conclusion follows by the same argument once we define, for anyt ∈ [T , T1), the quasi-
elementary triod̃Π(t) as in (4.1) with|Sj (t)| := Lj (t), x̃(t) := G(L2(t), L4(t), L1(t)), hj (t) :=
hνj (t)νj andhνj (t) as in (3.11) with

lim
t↓T

hνj (t) = hνj (T ), j = 1,2,3, hν4(T ) = 0.

We notice that condition (ii) of Definition 2.12 holds since, similarly to Proposition 3.1, one can
show that (ii) is satisfied fort ∈ (T , T1) 7→ Π̃(t) if and only if system (5.7) withw(t) =

(L2(t), L4(t), L1(t), L3(t)) holds in(T , T1) andΠ̃(t) is stable for anyt ∈ (T , T1). 2
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REMARK 5.2 The flowt 7→ Π̃(t) of Theorem 5.1 is the unique stable flow starting fromΠ(T ).
Indeed, assume thatt 7→ Π ′(t) is a stable flow starting fromΠ . If Π ′(t) ∈ (b) andu, v are defined
as in the proof of Theorem 5.1 thenu(t), v(t) /∈ Sb(2,1), which gives a contradiction. Since any
nonpolygonal triod is unstable and sincexmin = δ, i.e.Nmin|Σ3 = V3 (see Figure 9),Π ′(t) must
be quasi-elementary withΠ ′(t) ∈ (a∗). We expect thatt 7→ Π̃(t) is also unique among all regular
flows starting fromΠ(T ).

6. The casen = 6m − 4 andΠ ∈ (a): development of a curve

In this section we prove that at timet = T ∈ (0,+∞) the flow starting from a stable triodΠ ∈ (a)
becomes unstable and a curve develops from the triple junction at subsequent times.

THEOREM 6.1 Letn = 6m − 4 and letΠ ∈ (a) be stable. ThenT < +∞ and there exists a
ϕ-curvature flowt ∈ [T ,+∞) 7→ Π(t) starting fromΠ(T ). Moreover, for anyt ∈ [T ,+∞), the
triodΠ(t) is nonpolygonal and unstable withNmin(t) = (X(V3), Y (V3), V3). Finally,κϕ(l3(t)) = 0,
and

κϕ(l1(t)) =
δ

L1(t)
, κϕ(l2(t)) = −

δ

L2(t)
, (6.1)

lim
t→∞

L1(t) = lim
t→∞

L2(t) = +∞, lim
t→∞

L2(t)

L1(t)
= 1. (6.2)

Proof. For anyt ∈ [0, T ) definex(t) = x
(a)
min(L1(t), L2(t), L3(t)), y(t) andz(t) as in (2.19) with

x replaced byx(t). Then system (2.9) reads

ḣν1(t) = −
x(t)

L1(t)
, ḣν2(t) =

y(t)

L2(t)
, ḣν3(t) = −

z(t)

L3(t)
. (6.3)

Step 1. L1, L2, L3 are strictly positive and bounded in [0, T ].
From Lemma 3.10, we know that(u, v) ∈ Sa(3,1) = {(u, v) ∈ (0,+∞)2 : v <

−(2 cosϑn)
−1

} in [0, T ), whereu(t) := L2(t)/L3(t) andv(t) := L2(t)/L1(t), i.e.

−2 cosϑn L2(t) < L1(t), t ∈ [0, T ). (6.4)

3

Wϕ

V3

X(   V3)

)3V(   Y

q

(   )q
γ

4

Σ

Σ 1

Σ 2

FIG. 10. ϕ-curvature flow starting from a stableΠ ∈ (a) for n = 8 (see Theorem 6.1): at timet = T the flow becomes
unstable and a curveγ4 of zeroϕ-curvature develops from the triple junction.
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n>8

1
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.
.
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m

1

vv
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n=8

FIG. 11. Flow lines diagram in the variables(u, v) corresponding toϕ-curvature flows starting from stableΠ ∈ (a) (see
Theorem 6.1).

Set

M0 :=
cotα1 − cotϑn

−2 cosϑn(cotα1 + cot(2ϑn))
> 0.

From (3.14), (3.16), cotα1 = − cotα2 < 0, ḣν3 < 0, cosϑn < 0, we deduceL̇1(t) 6 (cotα1 −

cotϑn)ḣ
ν
1(t) 6 M0L̇2(t) for anyt ∈ [0, T ). Hence, using (6.4), we obtain

L1(t)

(
1 +

M0

2 cosϑn

)
6 L1 −M0L2, t ∈ [0, T ).

Now we observe that 1+ M0/(2 cosϑn) > 0 andL1 − M0L2 > 0. Indeed,L1 − M0L2 >
(−2 cosϑn −M0)L2 and using Table 1 and (2.11) we get

−2 cosϑn −M0 =
(1 − 4 cos2ϑn) cotα1 +

−2 cos2 ϑn
sin(2ϑn)

(2 cos(2ϑn)+ 1)

2 cosϑn(cotα1 + cot(2ϑn))

=
(1 − 4 cos2ϑn)(cotα1 + cotϑn)

2 cosϑn(cotα1 + cot(2ϑn))
> 0 ∀n > 8,

since 1− 4 cos2ϑn < 0, cotα1 + cotϑn < 0 and cotα1 + cot(2ϑn) < 0. ThusL1 is bounded in
[0, T ), and from (6.4) and (3.3), so areL2 andL3.

Step 2. L3(t)− L3 > C

√
L2

1 − 2(cotα1 − cotϑn)(L− δ)t , t ∈ [0, T ), for some constantC > 0.
This follows since, using (3.13), (3.18) and (6.3), we have

L̇1(t) 6 −(cotα1 + cotϑn)
L− δ

L1(t)
, L̇3(t) >

δ

sinϑn L1(t)
, t ∈ [0, T ).

From Steps 1 and 2, we getT < +∞, and hencex(T −) = δ.
For any w := (w1, w2) ∈ (0,+∞)2 we define the vector fieldF = (F1, F2) ∈

C∞((0,+∞)2; R2) as

F1(w) := −δ
cotα1 + cotϑn

w1
−

δ

w2 sinϑn
, F2(w) :=

−δ

w1 sinϑn
− δ

cotα1 + cotϑn

w2
. (6.5)
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The Cauchy problem {
ẇ(t) = F(w(t)),

w(T ) = (L1(T ), L2(T )),
(6.6)

admits a unique solution(w1, w2) ∈ C∞([T , T ); (0,+∞)2) for someT ∈ (T ,+∞]. Notice thatF
is obtained by differentiating with respect tot the right hand side of (3.13), (3.15) and by replacing
ḣν1 and ḣν2 respectively by−δ/w1 and δ/w2. For any t ∈ (T , T ) and j = 1,2 we denote by
Σj (t) the interface of an elementary triod havingSj (t) parallel toSj (T ) with one of the endpoints
in Rj (T ) andLj (t) := |Sj (t)| = wj (t). It follows from Proposition 3.1 that condition (ii) of
Definition 2.12 is satisfied with∅ 6= S1(t) ∩ S2(t) =: q(t) and furthermore (6.1) holds in [T , T ).
For anyj = 1,2 definehνj : (T , T ) → R as in (3.11) with limt↓T hνj (t) = hνj (T −). Then
t ∈ (T , T ) 7→ Σ1(t) ∪ Σ2(t) is a flow starting fromΣ1(T ) ∪ Σ2(T ) which satisfies (i)–(iii) of
Definition 2.12.

Step 3. We haveT = +∞.
SinceL1(t) = L2(t) is the solution of the system (6.6) with initial datumL1(T ) = L2(T ), we

havev(t) := L2(t)/L1(t) < 1 for anyt ∈ [T , T ). Moreover,v is increasing since

v̇(t) =
δ(cotα1 + cotϑn)

L2
2

v(v2
− 1) > 0. (6.7)

Set

c0 := −
sinα1

sin(α1 + ϑn)
=

(
L− 2δ

δ
+

sin(α1 − ϑn)

sinα1

)−1

6
δ

L− 2δ
= m.

ThenL1 andL2 are increasing in [T , T ), since from (6.5) it follows thatL̇1(t) > 0 if and only if
v(t) > c0 ∈ (0, m) while L̇2(t) > 0 if and only if v(t) < 1/c0 ∈ (1,+∞). Substitutingw1 = L1
andw2 = vL1 (= L2) in the second equation in (6.6) and solving inL1, v yields

(1 + v)a1(1 − v)a2 = CT /L1, (6.8)

wherea1 := (1 − c0)/2, a2 := (1 + c0)/2 andCT := (L1(T ) + L2(T ))a1(L1(T ) − L2(T ))a2.
If, by contradiction, the maximal time of existenceT is finite then, using the first equation in (6.6)
(with w1 = L1 andw2 = L2) andL2 < L1 in [T , T ), we get

L̇1(t) 6 −
δ

L1(t)

(
cotα1+cotϑn+

1

sinϑn

)
= −

δ

L1(t)

[
cotα1+cot

(
ϑn

2

)]
, t ∈ [T , T ). (6.9)

Integrating (6.9) givesL1(T ) 6
√
L1(T )2 − 2δ[cotα1 + cot(ϑn/2)](T − T ) < +∞, which

contradicts the maximality ofT . Hence,T = +∞. From (6.9) and (6.8), (6.2) follows.

Step 4. For anyt ∈ (T ,+∞) let γ4(t) be the curve which has initial point inq(T ) and is created
by the motion ofq(s) := S1(s) ∩ S2(s) for s ∈ (T , t). Thenγ (t) is ϕ-regular for anyt ∈ (T ,∞).

Let (X(t), Y (t)) be the component ofqq(t) with respect to the(τ1, ν1)-axis. Then, from (3.4),
we getẊ = ḣν1(t) cotϑn − ḣν2(t)/sinϑn, Ẏ = ḣν1, and the slope of the tangent to the curve with
respect to the(τ1, ν1)-axis is given by

K(t) =
Ẏ

Ẋ
=

ḣν1(t)

ḣν1(t) cotϑn − ḣν2(t)/sinϑn
=

(
cotα1 +

1

v(t) sinϑn

)−1

.
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Thus,γ4 andΣ3 join in aC1 fashion sinceK(T ) = tan(π − ϑn) > 0. Furthermore,γ4 is concave
in [T ,+∞) since from (6.7),K̇ = v̇K2/(v2 sinϑn) > 0, Ẋ = −δ/(L1K) < 0 and d2Y/dX2

=

K̇/Ẋ < 0. Finally,

lim
t→∞

K(t) =

(
cotϑn +

1

sinϑn

)−1

= tan

(
ϑn

2

)
< tan

(
π +

2π

n
− ϑn

)
,

where the right hand side gives the slope of a segment parallel toR3.

Step 5. Conclusion of the proof.
LetΣ3(t) := γ4(t) ∪Σ3(T ) andΠ(t) := Σ1(t) ∪Σ2(t) ∪Σ3(t) for any t ∈ (T ,+∞). Then

Π(t) is nonpolygonal, unstable, andt ∈ [T ,+∞) 7→ Π(t) is a ϕ-curvature flow starting from
Π(T ). 2

REMARK 6.2 We expect that the flow of Theorem 5.1 is the unique regular flow starting from
Π(T ). Notice that ifxmin < δ in some open interval contained in(T , T +σ) for someσ > 0, then,
in view of the constraintNmin|Σj (q) ∈ Tϕo(ν

j
ϕ), at timet = T a new segmentS4 should appear

in Σ3 in such a way thatΣ1(t) ∪ Σ2(t) ∪ (S4(t) ∪ S3(t)) ∈ (a′) for any t ∈ (T , T + σ) but this
would give an unstable triod withNmin = (X(V3), Y (V3), V3) in (T , T + σ) sinceL2/L1 < 1 in
[T , T + σ) and

Sa′

(
L1

L4
,
L1

L2

)
=

{(
L1

L4
,
L1

L2

)
∈ (0,+∞)2 :

L1

L2
<

δ

L− 2δ

}
,

a contradiction. Hencexmin = δ in [T , T + σ).

7. The casen = 8 andΠ ∈ (c): disappearance of a segment

In this section we show that the flow has two different behaviours depending on the initial datum
Π ∈ (c). For a suitable choice ofΠ , we show that one of the three segments vanishes att = T ,
its ϕ-curvature remains bounded, the Cahn–Hoffman vector fieldNmin has a jump discontinuity
at q(T ) on eachΣj and the triple junction translates along the remaining adjacent half-line in
[T ,+∞). For the other choices of stableΠ ∈ (c) we prove that at timet = T ∈ (0,+∞) the flow
becomes unstable, a curve appears from the triple junction, as in Section 6, with the difference that
the adjacent segment now has positiveϕ-curvature and keeps on moving at subsequent times.

In the following theorem we denote byx(b)min(Λ1,+∞,Λ3) the limit of x(b)min(Λ1,Λ2,Λ3) as

Λ2 → +∞, wherex(b)min is defined as in (2.22).

THEOREM 7.1 Let n = 8 and letΠ ∈ (c) be stable. ThenT < +∞ andΠ(T ) is unstable.
Moreover, there exists a curveγ tangent to the line{xmin(u, v) = δ} at(u2, v2) = P2 (see Figure 12)
which dividesSc (2,1) into two disjoint regionsUc := {(ū, v̄) ∈ Sc (2,1) : ū > u2, v̄ > vγ := γ ∩

{u = ū}} andBc := Sc (2,1) \ Uc such that

(i) If (u(0), v(0))∈Bc thenNmin(T −) = (X(V2),W2, Z(W2)), i.e.x(T −) = L−δ,L2(T −) = 0,
κϕ(l2(T −)) = 0 andL3(T −)/L1(T −) =

√
2/2. Furthermore, there exists a stableϕ-curvature

flow in (T ,+∞) starting fromΠ(T ) with

κϕ(l1(t)) =
L− z̃(t)

L1(t)
, κϕ(l3(t)) = −

L− x̃(t)

L3(t)
, t ∈ (T ,+∞), (7.1)
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where

x̃(t) := x
(b)
min(L3(t),+∞, L1(t)) =

δ(L− δ)2L3(t)

δ2L3(t)+ (L− 2δ)2L1(t)
, z̃(t) = mx̃(t)+ qz.

Finally, the triple junction translates alongR2(T ) in (T ,+∞) and

lim
t↑∞

x̃(t) = L− δ, lim
t↑∞

L3(t)

L1(t)
=

√
2, lim

t↓T
x̃(t) = δ

(1 +
√

2)2

1 + 2
√

2
∈ (δ, L− δ).

In particular,Nmin(T −) 6= Nmin(T +) (see Figure 13(i)).
(ii) If (u(0), v(0)) ∈ Uc thenNmin(T ) = (X(V3), Y (V3), V3). Furthermore, there existT2 ∈

(T ,+∞] and aϕ-curvature flow in [T , T2) starting fromΠ(T ). Furthermore, for anyt ∈

[T , T2), Π(t) is nonpolygonal,Nmin(t) = (X(V3), Y (V3), V3), κϕ(l3(t)) = −L/L3(t) and
(6.1) holds (see Figure 13(ii)).
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FIG. 12. The white region is the stability regionSc (2,1). Flow lines diagram of system (7.5) corresponding toϕ-curvature
flows starting from stableΠ ∈ {(c)} for n = 8 (see Theorem 7.1);xmin(T ) ∈ {δ, L− δ}.
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FIG. 13. ϕ-curvature flow starting from a stableΠ ∈ {(c)} (see Theorem 7.1): (i) the segmentS2 has zero length at time
t = T andx(T ) = L− δ; (ii) x(T ) = δ and a curve develops from the triple junction fort > T .
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Proof. For anyt ∈ [0, T ) we definex(t) = x
(c)
min(L1(t), L2(t), L3(t)), y(t) andz(t) as in (2.19)

with x replaced byx(t). Then system (2.9) reads

ḣν1(t) = −
x(t)

L1(t)
, ḣν2(t) =

y(t)

L2(t)
, ḣν3(t) =

L− z(t)

L3(t)
, (7.2)

system (3.1) reads

L1(t) = L1 +
√

2hν3(t), L2(t) = L2 + hν2(t)− hν3(t), L3(t) = L3 + hν2(t)+ hν3(t), (7.3)

while (3.2) and (3.3) become

−
√

2hν1(t) = hν2 + hν3,
√

2(L1(t)− L1) = L3(t)− L2(t)+ L2 − L3. (7.4)

Defineu(t) := L3(t)/L2(t) andv(t) := L3(t)/L1(t). Differentiating (7.3) with respect to time and
using (2.23), (2.19), andm =

√
2/2, we obtain, for anyt ∈ [0, T ),

u̇ =
L− δ

L2
3

u[2δ2u2
+ v(L− 2δ)(−δu2

+ Lu+ L− δ)]

δ2 + δ2u+ (L− 2δ)2v
,

v̇ =
(L− 2δ)(L− δ)2

L2
3

v2(1 −
√

2v)

δ2 + δ2u+ (L− 2δ)2v
.

(7.5)

Recall that the stability regionSc (2,1) is given by Lemma 3.10 (see Figure 12). It follows that
v̇ 6 0 in Sc (2,1) with equality holding only ifv = m (i.e. {xmin(u, v) = L − δ}). Notice that
−δu2

+Lu+L− δ < 0 for u > u0 := (L+

√
L2 + 4δ(L− δ))/(2δ). Moreover,u̇ 6 0 if and only

if u > u0 and

v >

√
2δu2

δu2 − Lu− L+ δ
(7.6)

or, more precisely, if and only if (7.6) holds for anyu > u1, where u1 := (L + δ +√
(L+ δ)2 + 4δL)/(2δ) is the intersection point of the line{xmin(u, v) = δ} and the curve of

points satisfyinġu = 0. Since the condition(
v̇

u̇

)
|{xmin(u,v)=δ}

<
δ

L− 2δ
, u > u1,

is satisfied if and only ifg(u) := −δ3u3
+ 2δ2Lu2

+ δL(2L− δ)u+L2(L− δ) < 0, that is, for any
u > u2, u2 > u1 (for g(u0) > 0), it follows that the trajectories of solutions of system (7.5) intersect
the line{xmin(u, v) = δ} for u < u2. Denote byP2 the point belonging to the line{xmin(u, v) = δ}

havingu-coordinate equal tou2. Let γ ⊂ Sc be the flow line tangent to{xmin(u, v) = δ} at P2.
Thenγ decomposesSc (2,1) intoBc andUc .

Let us first prove (ii). If(u(0), v(0)) ∈ Uc , then the trajectory of the solution of (7.5) intersects
the line{xmin(u, v) = δ} atT . It is clear thatT < +∞ since anyLj (T ) is bounded and

L̇1(t) 6 −2ḣν1(t) 6 2
L− δ

L1(t)
, L̇3(t) = −

√
2ḣν1(t) >

δ

L1(t)
.

Let (w1, w2) ∈ C∞([T , T ); (0,+∞)2) for someT ∈ (T ,+∞] be the solution of (6.6) withF
defined as in (6.5). For anyt ∈ (T , T ) andj = 1,2 we defineΣj (t), hνj andγ4 as in Theorem 6.1.
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Then, by the same argument, (6.1) holds in [T , T ), t ∈ (T , T ) 7→ Σ1(t) ∪Σ2(t) is a flow starting
fromΣ1(T ) ∪ Σ2(T ) which satisfies (i)–(iii) of Definition 2.12,T = +∞ andγ4 is concave and
ϕ-regular in [T ,+∞). Let t ∈ [T ,+∞) 7→ γ4(∞)∪S3(t)∪R3(t) be theϕ-curvature flow starting
from γ4(∞) ∪ (S3 ∪ R3)(T ). Sinceḣν3(t) = −L/L3(t) ∈ C∞([T ,+∞)) and from (7.4) we have

√
2|ḣν1(T )| = −

√
2ḣν1(T ) = ḣν2(T )+ ḣν3(T ) > ḣν3(T ) = |ḣν3(T )|,

it follows that |ḣν3(t)| 6
√

2|ḣν1(t)| (that is,v(t) >
√

2/2) for anyt in a neighbourhood ofT , say
(T , T2). We conclude that the normal velocitẏhν3 of S3(t) is smaller than the ones ofS1(t) andS3(t).
Thus, settingΣ3(t) := γ4(t)∪ (S3∪R3)(t) andΠ(t) := Σ1(t)∪Σ2(t)∪Σ3(t) for anyt ∈ (T , T2),
we conclude that the triodΠ(t) is ϕ-regular and unstable in [T , T2) andt ∈ [T , T2) 7→ Π(t) is the
uniqueϕ-curvature flow starting fromΠ(T ).

Let us prove (i). Givenσ > 0, set

Bc (σ ) := {(u, v) ∈ Bc : 2δ2u2
+ v(L− 2δ)(−δu2

+ Lu+ L− δ) > σ, u > u1}.

Notice thatBc (σ ) = {(u, v) ∈ Bc : u̇(u, v) > σ, u > u1}. Without loss of generality, assume
(u(0), v(0)) ∈ Bc (σ ). Then(u(t), v(t)) ∈ Bc (σ ) for any t ∈ [0, T ). For any(u, v) ∈ Bc (σ ) we
deduce the estimates

−c1

√
2v − 1

σu
6
v̇

u̇
6 −c2

√
2v − 1

u3

with c1 := (L− 2δ)(L− δ)v2
1 andc2 := (L− 2δ)(L− δ)/(4δ2). Integrating yields

√
2

2
(1 + u−

√
2c1/σ ) 6 v 6

√
2

2
(1 + ec2/(

√
2u2)),

and hence limt→T u(t) = +∞, limt→T v(t) =
√

2/2. Thus the first part of the assertion follows
from (2.23) and (2.19).

Let us showT < +∞. Let ε > 0 and assumev(0) 6
√

2 − ε. Thenv(t) 6
√

2 − ε for any
t ∈ [0, T ), andL̇3(t) =

√
2x/L1(t) 6 CL3(t), whereC := (2 −

√
2ε)(l − δ). It follows that

L3(t) 6
√
L2

3 + 2Ct. (7.7)

Using (7.3) and (7.2) we get

L̇2(t) = −
√

2ḣν1(t)− 2ḣν3(t) 6
√

2
L− δ

L3(t)

(
L3(t)

L1(t)
−

√
2

)
6 −

√
2ε
L− δ

L3(t)
,

and inserting (7.7) and integrating yields

L2(t) 6 L2
2 −

√
2ε(L− δ)

C

√
L2

3 + 2Ct.

We conclude thatT < +∞ and, from Proposition 3.7(v), alsoL1(T −), L3(T −) < +∞. More-
over,Π(T −) ∈ (b′) is degenerate. Notice that theϕ-curvature flow starting fromΠ(T −) can be
described as theϕ-curvature flow starting from̃Π ∈ (b) obtained by a rotation and a symmetry with
respect theL3-axis fromΠ , i.e. L̃2 = +∞ andL̃3 =

√
2L̃1. By the mirror law (2.24),Π(T −) is
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stable, theϕ-curvature flow starting fromΠ(T −) satisfies system (2.7) withϕ-curvatures in (7.1)
and

lim
t→∞

L̃3(t)

L̃1(t)
= lim
t→∞

L1(t)

L3(t)
=

√
2

2
.

Finally, sinceδḣν1 = −(L− δ)ḣν3 in [T ,+∞), the triple junction translates alongR2(T ). 2

REMARK 7.2 We believe that the flows of Theorem 7.1(i) and (ii) are the unique regular flows
starting fromΠ(T ).

8. Adjacent triple junctions: solutions after the collision

In this section we fixWϕ = P8 and consider theϕ-curvature flow starting from astableϕ-regular
partition, denoted byΥ , consisting of two adjacent elementary triple junctionsq1 andq2. Given a
Cahn–Hoffman vector fieldN onΥ as in Figure 14, we set

(X1, Y1, Z1) := (N|Σ1(q1), N|Σ2(q1), N|Σ3(q1)),

(X2, Y2, Z2) := (N|Σ1(q2), N|Σ4(q2), N|Σ5(q2)),

andxj := |V1 − N|Σ1(qj )|, yj := y(xj ), zj := z(xj ), j = 1,2, wherey andz are defined in (2.19).
From Proposition 2.21 we know that the admissible triplet(Xj , Yj , Zj ) is uniquely associated with
(xj , yj , zj ). Upon noticing that we can restrict the minimum (2.3) to vector fields which are linear on
eachΣi and satisfy the required constraints, the problem of findingNmin in Definition 2.4 reduces
[3] to the following minimum problem:

min
(x1,x2)∈[δ,L−δ]2

f (x1, x2),

where

f (x1, x2) =

∫
Υ

(divτ N)
2ϕo(ν)dH1

= σ1x
2
1 + σ2x

2
2 + σ12x1x2 + β1x1 + β2x2 + γ,

andσ1, σ2, σ12, β1, β2, γ are coefficients depending on the configuration we are analyzing.
We say thatΥ is stableif Nmin |Σj (qk) is not a vertex ofWϕ for anyj = 1,2,3 andk = 1,2.

We say thatΥ is unstableif it is not stable. The stability ofΥ is equivalent to

(x1min, x2min) ∈ (δ, L− δ)2.

Notice that ifΥ is stable then

x1min =
σ12β2 − 2σ2β1

4σ1σ2 − σ 2
12

, x2min =
σ12β1 − 2σ1β2

4σ1σ2 − σ 2
12

. (8.1)

From now on,x1min, x2min will be denoted simply byx1, x2 and we setyj := y(xj ), zj := z(xj ).
The discussion which values ofLi , i = 1, . . . ,5, provide a stableΥ simplifies only in the case

of adjacent triple junctions which either belong to the same symmetry classes (i.e.L2 = L4 and
L3 = L5, see Figure 14(i)) or are symmetric with respect to the axis orthogonal toΣ1 at its middle
point (see Figure 14(ii)), leading respectively tox1 = x2 andx1 = L− x2.

Let T > 0 and let us introduce the orientation ofΥ as in the comment after Definition 2.8. We
say thatt ∈ [0, T ) 7→ Υ (t) is aϕ-curvature flow starting fromΥ if Υ (t) is aϕ-regular partition
consisting of two adjacent elementary triple junctionsq1(t) andq2(t), and conditions (ii)–(iii) of
Definition 2.12 hold for anyj = 1,2,3,4,5. If the adjacent triple junctions ofΥ belong to the
same symmetry classes or are symmetric with respect to the axis orthogonal toΣ1 then, arguing
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as in Theorem 3.3, one can show that there exists a unique stableϕ-curvature flow starting from a
stableΥ .

WhenΥ is not stable, at least one of the two triple junctions is not stable. If in addition the
gradient off on∂[δ, L− δ]2 points inside [δ, L− δ]2, then the appearance of a new edge from one
of the two triple junctions (or from both) is forced during the subsequent crystalline flow.

The following example shows that the collision phenomenon occurs and a quadrijunction forms.

EXAMPLE 8.1 Consider the partition of Figure 14(i) withL1>0,L2 =L4 > 0 andL3 =L5>0.
In this casef reads

f (x1, x2) = ϕo(ν1)

(
(x1 − x2)

2

L1
+
y2

1

L2
+
z2

1

L3
+
y2

2

L4
+
z2

2

L5

)
, (8.2)

so that

σ1 =
1

L1
+m

(
1

L2
+

1

L3

)
> 0, σ2 =

1

L1
+m

(
1

L4
+

1

L5

)
> 0, σ12 = −

2

L1
,

β1 = 2m

(
−qy

L2
+
qz

L3

)
, β2 = 2m

(
−qy

L4
+
qz

L5

)
,

(8.3)

wherem, qy, qz are defined in (2.15) and (2.16). Thus, the triod isalways stablesince by (8.1),

x1 = x2 =
−β1

2σ1 + σ12
=
δL2 + (L− δ)L3

L2 + L3
∈ (δ, L− δ). (8.4)

The evolution equations are given by

ḣν1 = 0, ḣν2 =
y1

L2
, ḣν3 = −

z1

L3
, ḣν4 = −

y2

L4
, ḣν5 =

z2

L5
,

so that the triple junctions move alongΣ1 until they collide at the middle point at a finite time.

2

q 2 q 1
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1
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= P 8ϕW

1

Σ5 Σ2
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qΣ

Σ 4 Σ
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21

1
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ZY1

FIG. 14. Example 8.1: collision of two adjacent triple junctions; in (i) we haveL2 = L4, L3 = L5 andκϕ = 0 onΣ1.

Consider now the partition of Figure 14(ii) withL1 > 0, L2 = L5 > 0 andL3 = L4 > 0.
Formulas (8.2) and (8.3) still hold, and using (8.1), we get

x1 = L− x2 =

L

m2L1
+

L−δ
L2

+
δ
L3

2
m2L1

+
1
L2

+
1
L3

∈ (δ, L− δ).
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Therefore, the triod isalways stableand the evolution equations are given by

ḣν1 = −
x1 − x2

L1
=
L− 2x1

L1
, ḣν2 =

y1

L2
, ḣν3 = −

z1

L3
, ḣν4 = −

y2

L4
, ḣν5 =

z2

L5
.

If in additionL3 > L2, the triple junctions move as shown in Figure 14(ii) until they collide at a
finite time and a quadrijunction forms.

Σ
Σ3

Σ2
Σ 5

1q

8P=ϕW Wϕ = P8

Wϕ = P8

q1

4

5Σ
2Σ

Σ 3

= Wϕ= P 8

Σ4

FIG. 15. These quadrijunctions areϕ-regular withκϕ = 0 and unstable, i.e.Nmin|Σj
(q1) is a vertex ofWϕ for some

j = 2,3,4,5.

In general, it is not clear what happens after the collision. In a special case the solution can
be continued in a “natural” way (see Example 8.4 below). A quadrijunctionΞ as in Figure 15 is
ϕ-regular withκϕ = 0 and unstable, i.e.Nmin|Σj (q1) is a vertex ofWϕ for somej ∈ {2,3,4,5}.

Indeed, the minimizerNmin of (2.3) withΓ replaced byΞ which satisfies
∑5
j=2(Nmin|Σj )

∂Σj = 0
is given in Figure 15. Finally,t 7→ Ξ is a stationaryϕ-curvature flow starting fromΞ , i.e.Ξ does
not move.

3

Σ 2

(i) (ii)

Σ 4

Σ1

q1q 2

Σ 5

1q1Σq
2

Σ
2

Σ5

Σ3 Σ4 Σ

FIG. 16. Example 8.2: these configurations are stable only for suitable choices ofLj , j = 1, . . . ,5.

The following example concerns the stability of the partitions given in Figure 16 (see (8.6)), and
will be used to construct the flow after the collision of two triple junctions (see Example 8.1).

EXAMPLE 8.2 Consider the partition of Figure 16(i) withL1>0,L2 =L4 > 0 andL3 =L5>0.
In this case

f (x1, x2) = ϕo(ν1)

(
(x1 − x2)

2

L1
+
(L− y1)

2

L2
+
(L− z1)

2

L3
+
(L− y2)

2

L4
+
(L− z2)

2

L5

)
, (8.5)

so thatσ1, σ2, σ12 are given as in (8.3) and

β1 = 2m

(
L− qy

L2
−
L− qz

L3

)
, β2 = 2m

(
L− qy

L4
−
L− qz

L5

)
.
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Furthermore, since the first two equalities in (8.4) hold, we have

x1 = x2 =
(L− δ)2L2 − (L2

− 3δL+ δ2)L3

δ(L2 + L3)
∈ (δ, L− δ) ⇔

L3

L2
∈

(
L− δ

L
,

L

L− δ

)
. (8.6)

The evolution equations are given by

ḣν1 = 0, ḣν2 = −
L− y1

L2
, ḣν3 =

L− z1

L3
, ḣν4 =

L− y2

L4
, ḣν5 = −

L− z2

L5
.

We observe that, by symmetry,̇hν4 = −ḣν2 and ḣν5 = −ḣν3, and by direct computations,̇hν2 =

−(2L − δ)/(L2 + L3) = −ḣν3. Hence, if we assume that the initial partition is stable, the flow is
stable in the whole of [0,+∞) with the triple junctions translating in opposite directions alongΣ1.

Consider now the partition of Figure 16(ii) withL1 > 0,L2 = L5 > 0 andL3 = L4 > 0. Since
(8.5) still holds, the expressions ofσ1, σ2, σ12, β1, β2 are the same. From (8.1) it follows that

x1 = L− x2 =

L(L−2δ)2

L1
−

δ(L2
−3δL+δ2)
L2

+
δ(L−δ)2

L3

2(L−2δ)2
L1

+
δ2

L2
+

δ2

L3

,

so that

x1 > δ ⇔
L3

L1
>

m

L− 2δ

(
−L+ (L− δ)

L3

L2

)
,

x1 < L− δ ⇔
L3

L1
>

m

L− 2δ

(
L− δ − δ

L3

L2

)
.

Therefore, if the initial partition is stable, the evolution equations are given by

ḣν1 =
L− 2x1

L1
, ḣν2 = −

L− y1

L2
, ḣν3 =

L− z1

L3
, ḣν4 =

L− y2

L4
, ḣν5 = −

L− z2

L5
. (8.7)

If in additionL3 > L2, the triple junctions move (for small times) as shown in Figure 14(ii).

REMARK 8.3 From the computations in Example 8.2, it follows that the first partition is stable for
anyL1 > 0 while the second is stable provided thatL1 is small enough. In particular, ifL1 = 0
thenx1 = x2 = L/2. Hence, in Example 8.2 we have constructedstableϕ-curvature flows starting
from a quadrijunction.

In the following example we construct flows after the collision of two triple junctions.

EXAMPLE 8.4 Consider the partition of Figure 17(i) withL1 > 0,L2 = L4 = L3 = L5 > 0. As
shown in Example 8.1 there exists a finite timeT0 > 0 such thatL1(T0) = 0. From Remark 8.3,
there exists at least one stableϕ-curvature flow starting from the quadrijunctionΥ (T0) as shown
in Figure 17(i). This is not the only stableϕ-curvature flow starting fromΥ (T0). There are other
candidates to continue the flow after the singularity: the stable flows shown in Figures 17(ii) and
(iii) and the stationary flowt ∈ [T0,+∞) 7→ Υ (T0). The latter flow is not stable and has the largest
energy (1.1) among the four flows.

Some explicit comparisons between the energies of the different evolutions can be made. For
instance, if we denote byΥ(i)(t) (resp.Υ(ii)(t)) the partition in Figure 17(i) (resp. Figure 17(ii)) at
time t , thenFϕ(Υ(ii)(t)) < Fϕ(Υ(i)(t)) for any t > T0, sinceḣν3(i)(t) = (2l − δ)/(2L3(T0)) <

L/L3(t) = ḣν3(ii)(t).
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FIG. 17. Example 8.4: existence of three stable flowsafter the collision of two adjacent triple junctions. Another candidate
to continue the flow after the singularity is the stationary (not stable) flowt ∈ [T0,+∞) 7→ Υ (T0). The dotted partition in
(i) is the 90◦ rotation of the partition in Figure 16(i) withL2 = L3 = L4 = L5.

Furthermore, notice that in the case of the flow in Figure 17(i),κϕ(lj (T0−)) = κϕ(lj (T0+)) for
anyj = 2,3,4,5, while in the other casesκϕ(lj (T0−)) 6= κϕ(lj (T0+)) for anyj = 2,3,4,5.

We believe that a selection of the “most natural” evolution between the three flows in Figure 17
cannot probably be done if one considers the evolution of interfaces without looking at the phases,
i.e. without looking at the interfaces as the “boundaries” of their interior.

9. Homothetic flows and asymptotic convergence (n = 6m)

In this section we introduce the notion of homothetic flows and we assumen = 6m. In the case of
curves the homothetic flows by crystalline curvature have been studied in [29], [15].

DEFINITION 9.1 LetΠ be elementary. We say thatt ∈ [0,+∞) 7→ Π(t) is a homothetic flow
starting fromΠ = Π(0) if there existsλ ∈ C0([0,+∞)), λ(0) = 1, such thatΠ(t) = λ(t)Π(0)+

qq(t). If λ ≡ 1 we say that the flow istranslating; if in additionqq(t) = q the flow isstationary.

REMARK 9.2 t ∈ [0,+∞) 7→ Π(t) is homothetic if and only ifLj (t)/Li(t) = Lj (0)/Li(0) for
any i, j = 1,2,3. The flow is stationary whenever an elementary triod has two of the segmentsSj
of infinite length.

We now characterize all homothetic flows forn = 6m. If n = 6 we will consider the following
limit cases of degenerate triod:

(i) Π ∈ (a) with L1 = 0 andL3 = +∞ (see Figure 18(i));
(ii) Π ∈ (a) with L2 = 0 andL3 = +∞ (see Figure 18(ii)).

THEOREM 9.3 Letn = 6m. If Π ∈ (d), the flow is stationary for any choice ofL1, L2, L3 ∈

(0,+∞]. If Π ∈ (a), the flow is homothetic if and only if one of the following holds:

(i) L2 = +∞ andL1, L3 ∈ (0,+∞]. The flow is stationary andΠ(t) is unstable for anyt ∈

[0,+∞).
(ii) L1 = +∞ andL2 = L3 (see Figures 18(iv) and 19(ii)). The flow is stable.

(iii) n > 12 andL3 = +∞, L1 = L2 (see Figure 19(i)). The flow is stable.



518 G. BELLETTINI ET AL .

)  (u,v)=(0,k)(iii) (u,v)=(1,0)(iv)(ii) (u,v)=(0,0)(u,v)=(i)

q
q q q

(0, + 8

FIG. 18. The casen = 6. The flows (i), (ii) and (iii) are translating; (iv) is homothetic.

q

(i)  (u,v)=(0,1) (ii)  (u,v)=(1,0) =(u(u,v)(iii) ,v 8)8

q q

FIG. 19. The casen = 12. The flows (i), (ii) and (iii) are homothetic.

(iv) n = 6 andL3 = +∞, (L1, L2) ∈ [0,+∞)2 \ {(0,0)} (see Figure 18(i), (ii), (iii)). The flow is
translating. The triodΠ(t) is unstable for anyt ∈ [0,+∞) if eitherL1 = 0,L2 ∈ (0,+∞),
orL2 = 0,L1 ∈ (0,+∞) (resp. (i) and (ii) in Figure 18); in the other cases, the flow is stable.

(v) n > 12 andL2 = u∞L3,L2 = v∞L1 (see Figure 19(iii)), whereu∞, v∞ are defined in (3.20).
The flow is stable.

Proof. If Π ∈ (d) thenḣνj (t) = 0 for anyt ∈ [0,+∞), j = 1,2,3 (see Table 1).

AssumeΠ ∈ (a). From (3.21), (i) follows sincex(t) = 0 andḣνj (t) = 0 for anyt ∈ [0,+∞),
j = 1,2,3.

Now letu(t) := L2(t)/L3(t) andv := L2(t)/L1(t). Recalling that cotα1 = − cotα2 = cotα3
andϑn = 2π/3, from (3.21), (3.13), (3.15) and (3.18), we obtain

u̇ =
L

L2
2

u[−(cotα1 − 1/
√

3)u− (cotα1 + 1/
√

3)v − (2/
√

3)uv + (cotα1 − 1/
√

3)u2]

u+ v + 1
,

v̇ =
L

L2
2

v[−(cotα1 − 1/
√

3)u− (cotα1 + 1/
√

3)v + (2/
√

3)uv + (cotα1 + 1/
√

3)v2]

u+ v + 1
.

(9.1)
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From Remark 9.2 it follows that all homothetic flows are constant solutions(u, v) of system (9.1).
We look for solutions of (9.1) of the formv/u = K,K constant. Imposinġv = Ku̇ we obtain three
possibilities:

(1) K = 0; that gives (ii), sinceḣν1(t) = 0, ḣν2(t) = −ḣν3(t) = L/(L2(t)+L3(t)) and (3.17), (3.19)
hold.

(2) u = 0; that gives (iii) and (iv), sincėhν3(t) = 0, ḣν2(t) = −ḣν1(t) = L/(L1(t) + L2(t)) and

(3.13), (3.15) hold. Notice that ifn = 6 thenL̇1 = L̇2 = 0 while if n > 12 thenL̇1 = L̇2 > 0.
(3) K = r andv = v∞, u = u∞; that gives (v). Indeed, equating the brackets on the right hand

sides of (9.1) we get

−

(
cotα1 +

1
√

3

)
v2

−
4

√
3
uv +

(
cotα1 −

1
√

3

)
u2

= 0,

and thusv = ru for n > 12 andu = 0 for n = 6 (observe that ifn > 12 then cotα1+1/
√

3 6 0
and equality holds if and only ifn = 6). Hence, ifn > 12, substitutingv = ru in u̇ = 0 yields
the conclusion, i.e.u∞ = (1 +

√
3 sinα1 − cosα1)/r.

The converse follows by construction. 2

REMARK 9.4 Theϕ-curvature flows in Theorem 3.9 converge to homothetic flows, i.e. ifn >
12 (resp.n = 6), then the limit triod satisfies (v) (resp. (iv) withL1 = 0) of Lemma 9.3 (see
Figure 19(iii), resp. Figure 18(i)).
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