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For the reaction-diffusion system of three competing species:

—Auiz—uuiZuj, i=123,
J#
we prove uniqueness of the limiting configurationas> oo on a planar domais®, with appropriate

boundary conditions. Moreover we prove that the limiting configuration minimizes the energy
associated to the system

3
E(U):Z/ [Vu; (X)|2 dx
i=17%

among all segregated states (u; = 0 a.e.) with the same boundary conditions.

1. Introduction

Spatial segregation may occur in population dynamics when two or more species interact in a highly
competitive way. A wide literature is devoted to this topic, mainly for the case of competition models
of Lotka—\Volterra type (see e.q./[1,[7215] 17]). As a prototype for the study of this phenomenon, in
[4] we consider the competition-diffusion systemkadiifferential equations:

—Aui:—uuiZuj, u; >0 In2, u;=¢; ona, i=1,... k. Q)
J#i
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Here2 c RY is a bounded regular domain, atgh, . . ., ¢) is a given boundary datum (regular,
nonnegative, and satisfying - ¢; = 0 fori # j). This system describes the stationary states

of the evolution ofk species diffusing and competing for resources. The internal dynamics of
the populations and the diffusion coefficients are trivialized (although a wide class of internal
dynamics and diffusion coefficients could be considered, without providing substantial changes to
the qualitative behaviour of the model; seél[?2, 13, 6]), while attention is focused on the coefficient
u, the rate of mutual competition. As a matter of fact, it can be shown that large interaction induces
the spatial segregation of the species in the limit configuratiqn as co. Precisely, the following

result has been proved by the authors in [4]:

THEOREM1.1 The systen{{1) admits a solutiam ,,, ..., ux,) € (H*(£2))* for everyu > 0.
Moreover there existsii1, ..., iix) € (H(£2))* such thati; - i; = 0 fori # j and, up to
subsequences,

i, — i; in H, for everyi, whenu — oo.

Not only does the limiting configuration exhibit segregation, but also the differential structure of
the model passes to the limit in the form of a system of distributional inequalities. We collect these
properties by introducing the function class

u; >0, ui-uj=0ifi;éj, in 2
S={U=(u,...,up) € (H2)": u; = ¢; ondN

—Au; <O, —A(u; — Y ;4;uj) 20

In fact, we have
(1, ...,ur) €8S.

Thus the study ofS provides the understanding of the segregated states induced by strong
competition. In this direction, a number of regularity properties, both of the densities and of the
mutual interfaces, were obtained by the authorslinl[2—6].

On the other hand, in[6] we studied the minimal energy configurations in the class of all possible
segregated states. Precisely, let us define the energl-afde of densities as

k
EU) = Zf [Vu; (X)) dx.
i=1Y%

In [6] we proved the following:

THEOREM 1.2 The problem
MIN{EU) :u; € HY(2), uilse = ¢i, ui =0, u; -u; = 0if i # j} 2

admits a solution. In addition

(a) the minimum is unique;
(b) the minimum belongs t6;
(c) the minimum depend& 1-continuously on the boundary data endowed withA#é? norm.

In particular, this result shows that the unique minimal energy configuration shares with the
limiting states of systeni [1) the common property of belongin§.tm the case of two populations,
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we can say much more: indeed, we know the explicit solution of both problems. Lditihg

the harmonic extension @fi — ¢ onto £2, it is easy to see that the pai® ™+, @ ~) achieves the
minimum [2), while in [4] we proved that it is the limit configuration ahy sequence of pairs

(1., u2,) aspu — oo. As a consequence, whén= 2, the classS consists of exactly one
element, the minimal one. One may wonder if this result can be extended to the case of three or
more densities, a case in which no explicit solution is provided. Even without uniqueness, we have

PrROBLEM Is the minimal energy configuration the limiting state for the corresponding
competitive system?

Whenk > 3, the answer is not obvious: it is worth noticing that while problgin (2) has an
evident variational structure, the reaction-diffusion sysfgm (1) is not variational at all (the nonlinear
part is not of gradient type). Nevertheless, the present paper provides a partial positive answer to
this question: indeed, we prove that, for three populations in the plane, the only elenseisttbe
minimizer of the energy. Our main result is:

THEOREM1.3 Letk = 3, ands2 be a simply connected regular domainRA. Then, for every
admissible datuntps, 2, ¢3), S consists of exactly one element.

This theorem, together with the results containedinf4, 6], immediately yields:

THEOREM1.4 Let 2 be a simply connected regular domain?, (w1, u2 4, u3,) be any
solution of [1) and(i1, it2, i3) be the minimizer of[(R). Then, for every € (0, 1), the whole
sequence; , tends taz; in H1 N C%* asyu — oo.

As we already observed, this is a remarkable fact, since it shows a deep connection between the
variational problem[{2) and the nonvariational systgmn (1).

2. Basic facts and notation

Due to the conformal invariance of the problem, with no loss of generality we take
R=B={xeR?:|x <1

(to be more precise, we assum€ to be of clas1¢, ¢ > 0, so that also the Riemann map from

2 to Bis C1¢, see e.g[16, Theorem 3.6, Chapter 3]). Throughout the paper we will assume that:

e i, j, h denote integers between 1 and 3.

o (p1, 92, 93) € (WL(3B))3 (anadmissible boundary daturis such that; > 0 for everyi, and
@i -9 =0o0ndB fori # j. The setdy; > O} are open connected arcs, and the funciom;
vanishes at exactly three pointsaB (the endpoints of the supports).

With the above notation, we define the clasef segregated densities
u; >0, uj - uj =0ifi #j,inB
S=1{U = (u1,uz,u3) € (HX(B))3: u; = ¢; ondB , (3)
—Au; <0, —Au; >0
where thehat operatoris defined on each component of a triple as

U =u; — Zu, 4)
J#
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In the following, with some abuse of notatioti, will denote both each tripléu1, u2, u3) in S and
the functiond_ u; in HY(B).
For anyU € S we define the sets(pports or nodal region¥
wi ={X € B :u;j(x) > 0}.
Themultiplicity of a pointx € B (with respect td/) is
m(X) = #{i : measuréw; N B(X,r)) > 0 Vr > 0}.
Theinterfaceshetween two densities are defined as
Ij =0w; Ndw; N{X € B :m(X) =2},

so thatw; U w; U I'}; = B \ wy. The supports; andw; are said to badjacentif I;; is not empty.
Below we list the principal properties of the elementsSofWe refer to [[3[ 6] for their proof,
and for further details.

THEOREM2.1 LetU € S.
(@) U € WL°(B). As a consequence, evapy, is open anc € wj, impliesm(x) = 1.
(b) u; is harmonic inw;, u; — u; is harmonic onB \ w; (with & # i, j). In particular, ifx e Ij;,
then
)I,@X Vui(y) = — J@X Vuj(y) # 0.
Yew; yew;
(c) Foreveryx € B we have 1< m(x) < 3, andm(x) = 3 for a finite number of points.
(d) EachrIj; is (either empty or) a connected arc, locadly, with endpoints either odB or at

points with multiplicity three.
(e) If m(xg) = 3, then|VU (x)] — 0 asx — Xg. More precisely, we have the following asymptotic

estimate: 3
coy = + &
{30 +m)

(here(r, ) denotes a system of polar coordinates arax)d

Ur,9) = Cr¥? +o(r¥/?)

REMARK 2.1 Everyw; is (pathwise) connected. Indeed, gt = « U 8, with « and g disjoint,
open, and nonempty. Recall thatis continuous orB, hence it vanishes (continuously) ém; \
{¢; > 0}. Since{y; > 0} is connected, it cannot intersect baka andags (recall thaty; is strictly
positive on this set). We infer that vanishes, for instance, @8. Butu; € C(f), and itis harmonic
on 8. The classical maximum principle implies = 0 in 8, a contradiction.

We recall that, by Theorefn 1.8, has at least one element. In the next section we prove that it
is unique.

3. Uniqueness results
To start with, we prove a topological result, stating that every triplg Iras exactly one triple point.
LEMMA 3.1 ForevenU e S there exists exactly one poiay € B such thain(ay) = 3.

Proof. This is an easy consequence of the fact that; (&) = 3, then any neighborhood af
contains points of every;, and hence every nonemply; satisfies/”;; > a. But everyl;; is
connected and starts frodB.
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3.1 Uniqueness when the triple point is on the boundary

The simplest situation is whex; belongs td B. In this case, onéj; is empty, andi, (for i # i, j)
is harmonic onB.

PrOPOSITION3.1 LetU,V € Swithay € 9B. ThenV = U.

Proof. The assumption implies that, is the common endpoint of the supports of two data, say
¢1 andgs, and, as a consequende,s is empty. Now,i is C(B) and, by Theorel(b), itis
harmonic both orB \ w3 and onB \ w1. Asw1 N w3 = {ay} we deduce thai, is harmonic onB.
We are going to prove thaty = ay. This will conclude the proof: indeed, it will imply that also
2 is harmonic, with the same boundary data, and fhus= v>; but they have exactly three nodal
regions, therefore they correspond to the same tripi& in

Assume by contradiction that, # ay. Thenay is a point of multiplicity 2 forV, belonging to
the common boundary db; > 0} and{vs > 0}. As a consequence, we can find a neighbourhood
N of ay such thatv, vanishes onV. On the other hand, by definition of multiplicitj, > 0}
intersects\V'. We infer the existence of € N such thati»(X) > 0 andv1(X) + v3(X) > 0. Now,
—Aup, =0 inB,

and {A

—Av2 >0 inB,
Uy = @2 onoB.

Vo= 0o onodB,

It follows thatv, —u> is superharmonic oB and (continuously) zero ahB, and so it is nonnegative
in B. But

(V2 — Uu2)(X) = —v1(X) — v3(X) — u2(X) <O,
a contradiction. O

It remains to prove the uniqueness of the element when its triple point is in the inteBolothis
case we cannot proceed directly as in the previous arguments. We will start, providing a sort of local
unigueness.

3.2 Interior triple point: local uniqueness

Let U € S be given, with trac€qs, ¢2, ¢3) and triple pointa = ay. We want to prove a local
dependence between the trace and the triple point. The key point is that if we know the triple point,
we can construct a harmonic function closely relatedtaoughly speaking, the idea is to move

the triple point ofU to the origin via a Mbbius transformation, and then to double the angle in order
to obtain an even number of nodal regions (compatible with an alternate sign rule). We introduce
the transformation (using the complex notation: the reader will easily distinguish theiiadexhe
imaginary unit;, which appears, by the way, only in exponents)

Ta:B — B, Ta(2) =

It is well known thatTj is a conformal map such th@}(d B) = 9B and75(0) = a. Also the map
z+— Z%is conformal. We find that if = |z| and® = argz, the mapla(z%) given in coordinates by

rZeZn? +a _ rZeZZﬁ_I_a
= AN
ar26211?+1 ar2€2119+l

z2=(r,0) (rz’ 29) — (Eﬁ ) = (x1,x2) =X (5)
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is conformal. For everw;, the set{z : z° € w;} has two open connected components, symmetric
with respect tdd. We want to define a new harmonic function, having opposite signs on the two
components, for every We seE]

o (2)u; (Ta(Z2)) if ze B, Ta(Z2) € o;,

3
Zo(z)u,-(Ta(zz)) if ze B,
=1

w(Z) =

(6)

whereo is £1 in such a way thaw has different signs on adjacent nodal regions. Thdmas six
nodal regions, it is of class® (by Theorenj 2]1(b) and (e)) and

w(—2) = —w(2).

Theorenj 2.1l also implies thatis harmonic. We obtain

Aw =0 inB,
{w:ya onoB, ()
where
2119
+a
Me; 8
ya(2) = Za( )i <ae2~9+1> ®)

Clearly, alsoya(—2z) = —ya(2). Observe that, givety1, 2, ¢3) anda, (7) defines a unique.
By standard calculation we obtain

62119 +a 62119 +a 6_2”9(62”} +a)
arngl ——-—— ) = arg| = .
ae?? +1 ae2? +1 ae=27 41
= arge 27 (e?? + a)?) = —29 + 2arge?” + a).

Thus, if we set
@a(%) = 2arge?? + a) — 29 (9)

we can write, with the usual abuse of notation,

3
va@®) =Y _ 0 (3)g;(Oa(®)). (10)

i=1

REMARK 3.1 LetU,V e S be such thaty = ay. ThenU = V. Indeed, two different triples
with the same triple point should generate two differerin (7]) with the same boundary condition.

The above construction allows one to find whether or not a poiBt@an be the triple point of
a segregated state. We have

LEMMA 3.2 Let (g1, 02, ¢3) be an admissible boundary datum, ané B. Thena is the triple
point of an element of (with datumg;) if and only if

Vw(0) =0, (11)
wherew is defined by[([7)[(8).

1 We will keep writingu; (x) = u; (re'?) = u; (r, ), ¢; (X) = ¢; (), and so on.
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Proof. If a = ay thenw satisfies[(). By conformality and Theorém]|2.1(e), we ob%in0) = 0.
On the other hand, lew be defined by[(7) and 1e¥w(0) = 0. We can write the Fourier
expansion of/,,

A > .
ya®) = 2> + Z[A,, cosn® + B, sinnd],
2 n=1
and, sincey, is odd (by [8)), we immediately obtaiA,, = Bz, = 0. By standard separation of
variables we infew = " [ Ag,11COS(2m + 1)9) + Bay+1 SiN((2m + 1)9)]r2"+1. Finally, by
(17), we obtairA; = B; = 0 and

o

w(r, ) =Y [A211C0L(2n + DY) + Baryasin((2n + D)]r? .

n=1
Moreover,

A3+ BS#0; (12)
indeed, if not there would bek2arcs (wheré is the index of the first nonzero Fourier component),
starting from0O, on whichw vanishes. Since a harmonic function does not admit closed level lines,
this contradicts the fact that, has exactly six zeroes (remembgr (8), and the fact(ihaty, ¢3)
is an admissible datum). Now; is odd, sgw| is even. Therefore we can invert the conformal map
(8) on the half ball, obtaining a nonnegative function with exactly three nodal regions. It is now not
difficult to prove that this function generates an elemer8 ofvith datum(g;) and triple pointa. U

Now that we have characterized, for a given datum, the possible triple points, we can state the local
dependence of these points on the data.

PROPOSITION3.2 Let (g1, ¢2, ¢3) be an admissible boundary datum, amgd € B, so that
(I7) holds. Then there exigt § > 0 such that, for every admissible datumii, ¥2, ¥3) with
lgi — ¥illwro < € there exists exactly onay, satisfying [I1) with datum(y;) and such that

lay —a,| < 8.

Proof. Without loss of generality (using the continuity of the fixed transformafigy) we can
assume that, = 0.
We want to apply the implicit function theorem to the map

(WE*(B)® x B — R?, (g1, 92, 93, @) > Vw(0),

in order to locally solve equatiof (JL1) far(recall that the dependence ©fon (¢1, ¢2, ¢3) anda
is given by [(T),[(B)). To this end, the only nontrivial thing to show is that

the 2x 2 jacobian matrix 9(,,,4,) Vw(0)|a=0 is invertible.

Using the Poisson formula we can write

|2
oo = L2 / ya(y)
a

s’
2t Joply—x27

which implies

— Ix|2 _
Vw(x):_ifa ya(y) dys + 1-1x] /{; y—X V) dys

Ya
7 Jog ly — X2 T B ly — x4
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and 1
Vu(0) = = / Y va(y) dys.
T JaB

We choose the parametrizatigr= (cosd, sin). Taking into accounf(J0) we obtain

2r 3
Vw(0) = (f Za(z?)gol(()a(z?))cosﬂdﬂ f Zo(ﬂ)@(()a(z‘}))smz?dz?>

Now, differentiating[(p) we infer that
Va®a(¥)|a=0 = (—2sin 2%, 2cos 2}).

Since®p(¥) = 209, we deduce thad(,, 4,) Vw(0)|a=o iS equal to

27 2r 3
/ Z o (9)9)(209) sin 29 cosy diy / > o (9)g](29) cos 2 cosy dv
2 0 =1 0 i1
= (13)
T 27 3 2r 3
—/ > o ()g](29) sin 29 sind dv / > o (9)¢](29) cos D siny
0 =1 0 =1

Let us compute (J0) and the Fourier expansion in the proof of Lemna 3.2 ahe® We have

3 00
Y o @)¢i(20) = o) = Y [A2,11C0%(2n + 1)) + Bza1Sin((21n + D)),
i=1 n=1

implies that
3 1.
D o0)gi29) =53 (20 + D —Az1 SN2 + D) + Bay41 C0K(21 + D],
= n=1

This (together with the Werner formulas) allows us to compute the first terfn pf (13):

2r 3
/ Z o ()¢ (29) sin 29 cosy dv

2w +o0
f Z(Zn + D[—A2,41Sin((2n 4+ 1)9) + Boy41 co(2n + D))][sin 3¢ + sinv]d?d

3
== —3A3sif39dd = ——A
4/; 3sl 2 3.

Analogous calculations prove
3/ A3z B3
d(ay.a2) VW(0)[a=0 = > <—B3 Az )

But we know (se€(12)) that + B3 # 0. Therefore the jacobian matrix is invertible, concluding
the proof. O
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3.3 Interior triple point: global uniqgueness

Proof of Theorerp 1]3. By Theorenj 1.2 we know that at least one elem¥rnin S exists. Assume
by contradiction that there exists another elem&nt S with U # M (that is, U is not the
minimal one). By Propositiofh 3.1 we hagg € B. Again, without loss of generality (using the
transformatiori,, ) we can assume that; = 0. Fort > 0 we define

1
Ui (X) = WUUX),

and we observe that

v 20, v -v; =0, —Avy; <0, —AY; >0
U eS8 =1V = (v1, v2, v3) :

1
v;(X) = tmui(tx) for x| =1

Now, U; has a limit ag — 0. Indeed, by Theorefn 2.1(e) we can write

co 319+z9
> 0

3 0(t3/2r3/2)
cos(éz‘} + ﬁo)’ LT

co 319—}—19
2" 7))
v; >0, U,’~Uj=0, —Av; <0, —AD; >0

co 31‘/‘—{-1‘/‘
5 0

So we have a continuous path in W% (B) connectingl and Ug. Denote byM, the minimum

of E in §;. While U # M by assumption, it is worth noticing thaly = My is minimum. Indeed,

the datum ofSp is symmetric and hence, by uniqueness of the minimal (Theprgm 1.2(a)), its triple
point must be the origin; this implies (Remark]3.1) thitis the minimal solution. Let

U(r,0) = Cr¥? +o(r¥?) asr— 0,

U(’ 'L?)—-U(t’ '[9) = C’ /
t ’ 3/2 k)

tends to
Uo(r, 9) = Cr¥/?

Again Ug belongs to

So:=1{V =(v1,v2,v3) : 20+1)

Ui(l,l?)z 7T§l9§ 3 T

"3

f=suft* > 0:U; = M, for everyr € [0, t*]}.

By continuity of E we immediately see thdf;- = M,«. On the other hand, we can find a sequence
g, > 0 such that

Ut ye, & My, .
By Theorenj 1.p(c), we have

My, — M+ a.e,  which implies AMyny,, > Ay
On the other hand, sindé+ = M,«, by construction we have

Upete, — M in Wh which implies ay,.,, — au,..

t*+epn
We infer that bottU;« ¢, andM;« ., belong taS;,, and the distance betweap,. o andayy,. e
is arbitrarily small. This contradicts Proposition|3.2, and concludes the proof.
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