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Homogenization of contact line dynamics
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This paper considers the effects of substrate inhomogeneity on the motion of the three phase contact
line. The model employed assumes the slowness of the contact line in comparison to capillary
relaxation. The homogenization of this free boundary problem with a spatially periodic velocity law
is considered. Formal multiple scales analysis yields a local, periodic problem whose time-averaged
dynamics corresponds to the homogenized front velocity. A rigorous understanding of the long time
dynamics is developed using comparison techniques. Computations employing boundary integral
equations are used to illustrate the consequences of the analysis. Advancing and receding contact
angles, pinning and anisotropic motion can be predicted within this framework.

In many realistic circumstances, the static and dynamic wetting properties of liquids are
substantially influenced by imperfections in the solid surface. Heterogeneities result in contact lines
with a fine scale structure that may lead to pinning of the evolving front and hysteresis of the overall
fluid shape.

Understanding the role that surface imperfections play is part of larger theoretical effort to
determine the macroscopic manifestations of microscopic contact line features [4, 15, 42]. Classical
fluid mechanics is by itself insufficient to describe the moving contact line [32], and the additional
physical ingredients needed are still controversial. Modeling and theoretical studies include notions
of slip boundary conditions [28, 30], continuum models [15, 45, 51], rheological modifications [27,
53], and atomistic simulations [19, 29] (see [4, 42] for more extensive accounts). There is also
considerable technological importance in understanding the role of wetting on patterned substrates
[11, 17, 37, 48].

The model studied here is based on the slowness of the contact line in comparison to the time for
capillary relaxation, known as the quasistatic limit. This represents possibly the simplest nontrivial
global model for contact line motion, and therefore provides a good point of departure for examining
surface heterogeneity. In this limiting case, the fluid pressure is constant, and the fluid’s geometry
can therefore be described as a “capillary” surface. Motion arises from an imbalance of surface
forces at the contact line itself, which can be modeled by a constitutive velocity-contact angle law.
This approximation has been utilized in many previous studies [2, 21–23, 28, 31, 33, 40, 43].

The static effects of surface heterogeneity have been studied for some time. Early heuristic
theories considered the averaged effect of rough surfaces and chemical heterogeneities on the
equilibrium contact angle [7, 54]. These laws have known limits of applicability, however ([4,
Chapter 9], [3]). More recent studies have considered this problem from the point of view of
mechanics [4, 34], statistics [14, 41], and gamma convergence techniques [1].

In the dynamic case, much less is understood. Flows over heterogeneous surfaces have been
studied experimentally [11, 12, 38, 39, 47] and computationally [49, 50]. Theoretical arguments, on
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the other hand, have been limited to cases with simplified geometries [35, 46] or deal specifically
with the dynamic coating transition [26].

Homogenization of free boundary and front propagation problems is a young and evolving field
(see, e.g., [5, 9, 55]). The strategy we adopt is a combination of formal asymptotic calculations
coupled with a detailed understanding of the “inner” or “cell” problem. The existence and
uniqueness of the homogenized velocity is studied rigorously. A Green’s function formulation is
used for numerical computation to illustrate the analytical results.

1. Problem formulation

We consider a fluid droplet on a macroscopically flat surface whose height is assumed to be a graph
h(x, y). The functionh has bounded supportΩ, whose boundary is the contact lineΓ . In the small
angle limit [6], the linearized contribution of surface energy is given by

γ

∫
Ω

(1 + |∇h|
2) dx (1)

whereγ is the liquid-vapor surface energy, which is presumed constant here. The minimizer of this
expression, subject to the constraint of constant volume, is the quasi-steady droplet shape. Finding
the minimizer amounts to solving the Euler–Lagrange problem

∆h = λ, h|Γ = 0,

∫
Ω

h dx = M ≡ volume, (2)

where λ < 0 is a Lagrange multiplier, essentially just the negative hydrostatic pressure. We
remark that body forces such as gravity can be added to this model [22] without compromising
the homogenization procedure.

The “apparent” contact angleθ is defined on the boundary ofΩ (again in the small angle limit)
as

θ = −
∂h

∂n
, n = outward normal ofΓ . (3)

The motion ofΓ is then specified by prescribing the normal velocity, denoted dΓ/dt , as a function
of this angle and the spatial location of the contact line:

dΓ

dt
= F(θ; x). (4)

This can be recast in terms ofh as the free boundary condition

ht = F(|∇h|; x)|∇h|, whenh = 0. (5)

The functionF is a constitutive law relating the contact line velocity to the apparent contact
angleθ . Generally speaking,F must be continuous and an increasing function ofθ so that there is a
local “equilibrium” angleθe(x) whereF(θe(x); x) = 0. Some additional technical restrictions will
be placed onF to obtain the rigorous results of Section 4. Common examples found in the literature
are

F = θ3
− θ3

e (Cox [8], Voinov [52]), (6)

F = θ(θ2
− θ2

e ) (de Gennes [16]). (7)
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The spatial dependence ofF arises as a consequence of substrate inhomogeneities. We focus
here on two-dimensional periodicity with some small periodε:

F(θ; x + εk) = F(θ; x) for all k ∈ Z2 . (8)

The purpose of this paper is to examine the homogenized limitε → 0 by deriving an effective
velocity law that is independent ofε.

The free boundary problem (2), (5) forms the basis for our study. While a complete and rigorous
analysis has not been performed on this particular model, it has much in common with well-
understood problems such as zero surface tension Hele–Shaw flow [13, 36]. This paper’s scope is
restricted just to smooth solutions of (2), (5). We anticipate that a generalized notion of nonsmooth
solutions is possible, akin to the theory of viscosity solutions which has been developed for a variety
of second order nonlinear problems [10, 18, 36].

2. Formal multiple scales analysis

The goal of this paper is to derive a free boundary problem of the form (2), (5) in the limitε → 0,
where the contact angle-velocity relation is replaced by a homogenized version

dΓ

dt
= Fhom(θ; n). (9)

The dependence on the normal directionn to the contact line stems from the anisotropy introduced
by periodicity of F . In particular,Fhom will inherit the four-fold symmetry from the periodic
heterogeneity. (Other types of periodicity, hexagonal, rhombic, etc. should of course lead to other
types of symmetry in the homogenized velocity.) The strategy we adopt is to use a combination of
spatial matched asymptotics and a multiple-scales ansatz in time to derive a dynamic “cell problem”.
This problem must be solved independently, either analytically or numerically, and is studied at
length in later sections.

Homogenization of problems which have a fine-structured boundary have been considered
previously. In the same spirit as this work, Gobbert & Ringhofer [25] use a multiscale matched
asymptotic expansion for the case where one of the boundaries has the form of a graphy =

f (x) + f1(x/ε). They derive the limiting solution as solving the same elliptic problem with
an effective boundary condition which they compute. Friedman & Hu [20] considered a similar
problem where there was a prescribed moving free boundaryy = f (x) + f1(x/ε, t) and proved
convergence estimates forε → 0. Our problem presents two additional challenges. The first is that
the free boundary motion is coupled to the solution itself. One consequence of this is that the free
boundary evolves with fine scale oscillations both in time and space, which motivates the use of a
multiple scale expansion in time. The second complication is that the free boundary has a smooth but
arbitrary geometry. To deal with this, we introduce a local coordinate system fitted to the asymptotic
free boundary.

2.1 Setup and motivation

While the asymptotic analysis that follows is presented at a purely formal level, we provide some
justification for the expansions as well as hint at what ingredients are necessary to make the
calculation completely rigorous. The main assumptions which are needed to justify the asymptotic
expansions are:
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1. Control over the free boundary.As the free boundary evolves, it necessarily develops a fine
structure which we suppose has wavelengthε and (spatial) amplitudeε. An argument in favor
of this is given in the appendix, where a local bound on the front width is proved with respect to
coordinates rescaled likeε−1. This implies that the spatial amplitude of free boundary oscillation
should behave likeO(ε). We suppose that for eacht > 0,Ω(t; ε) remains simply connected and
approaches a limiting setΩ0(t) in the sense that its boundary converges at a suitable rate:

max
x1∈∂Ω(t;ε)

min
x∈∂Ω0(t)

dist(x, x1) = O(ε). (10)

2. Regularity in the interior. Away from the free boundary, oscillations inh should decay
exponentially. As an illustration, suppose that the boundary is given by the graph of the function
y = εf (x/ε) and consider the boundary value problem

∆u = 0, y > εf (x/ε), (11)

u(x, f (x/ε)) = 0, (12)
∂u

∂y
→ 1, y → ∞. (13)

If we introduce the rescaling(x′, y′) = ε−1(x, y), thenu′(x′, y′) = ε−1u(εx′, εy′) − y′ solves
theε-independent problem

∆u′
= 0, y′ > f (x′), (14)

u′(x′, f (x′)) = −f (x′), (15)
∂u′

∂y′
→ 0, y′

→ ∞. (16)

One can show (e.g. [44]) thatu′ is periodic iny′ and all its derivatives decay exponentially iny′

asy′
→ ∞. In particular, for the unscaled problem there is a bound on second derivatives of the

form
|D2u| 6 C1 + C2ε

−1 exp(−y/ε) for y > C3ε (17)

whereCn are constants independent ofε. We might therefore expect that our problem also enjoys
a similar bound of the form

|D2h(x)| 6 C1 + C2ε
−1 exp(−d/ε), d = dist(Γ, x), for d > C3ε. (18)

Of course, the precise justification for this relies on the detailed regularity properties for solutions
of (2)–(5), which is not within this paper’s scope.

3. Control over ∇h near the boundary. We need to ensure that, near the boundary,|∇h| is
bounded away from zero as we takeε → 0. This is basically equivalent to assuming that the
free boundary remains smooth. Indeed, the Hopf maximum principle (which requires a smooth
boundary) applied toh−λ|x−x0|

2/4 yields(dh/dn)(x0) < 0. Conversely, if the homogenized
solution is smooth enough and dh/dn < 0 at all points on the boundary, then the zero level set
of h is given by a smooth parameterized curveΓ = x(s) via the differential equation

d

ds
h(x(s)) = ∇h ·

dx

ds
= 0.
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There may be circumstances where the homogenized free boundary does develop nonsmooth
features (for example, computations [22] show the development of a corner). We will not address
this here, but the possibility certainly warrants further investigation.

We introduce the “interior” region

Ωε(t) = {x | dist(x, Γ (t; ε)) > C3ε ln(ε−1)}. (19)

The estimate (18) provides a bound forh and its first and second derivatives onΩε independent
of ε, whereas (10) indicates thatΩε → Ω0 in the sense of boundary convergence. This suggests
that the leading order approximation forh is well defined on the domainΩ0 and independent ofε.

Near the free boundary, we will propose a different expansion in rescaled variables. We define
the set

Bε = {x | dist(x, Γ (t)) < C4ε ln(ε−1)}, C4 > C3. (20)

This definition guarantees thatBε andΩε overlap asε → 0, which allows application of matching
conditions.

2.2 Expansion in the interior

The foregoing arguments are meant to provide heuristic motivation and plausibility for the proposed
expansion

h = H0(x, t) + εH1(x, t, τ ) +O(ε2), λ = λ0 +O(ε), (21)

that holds onΩε for eachε > 0. H0, H1 are taken to beC2(Ω0) in space andC1 in t and τ .
The correction termH1 is meant to capture temporal fluctuations about the mean dynamics, and is
therefore taken to be bounded:

|H1| < C, C depending only onx, t . (22)

The leading order problem solved byH0 is essentially the same as (2),

∆H0 = λ0, H0|Γ0 = 0, Γ0 ≡ ∂Ω0,

∫
Ω0

H0 dx = M ≡ volume. (23)

Provided|∇H0| > 0 on the boundary, the regularity ofH0 implies thatΓ0 is aC1 curve (see point 3
above). We can identify the “macroscopic” contact angle and normal direction as

θM = |∇H0|, n0 =
∇H0

|∇H0|
, onΓ0. (24)

It should be emphasized thatn0 is not the limit of the normals to the curveΓ (except perhaps in a
weak sense), but is rather determined by limit of the interior solutions asε → 0.

The motion ofΓ0 can be characterized by the free boundary condition

Fhom(θ; n0) =
(H0)t

|∇H0|
whenH0 = 0. (25)

The dynamics ofH0 and thereforeFhom will be ascertained by asymptotic matching and time
averaging.
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2.3 Expansion near the free boundary

For the expansion onBε , a local rectilinear coordinate system(r, s) is used (see Fig. 1). The
coordinates varies in direction tangent to a pointx0 ∈ Γ0 andr is in the negative normal direction
so thatr > 0 is the fluid’s interior. We suppose that the normaln0 atx0 is in a “rational” direction,
in other wordsn0 ‖ n1i + n2j wheren1, n2 ∈ Z. This ensures thatF is periodic with period

εpn ≡ ε

√
n2

1 + n2
2 in r ands.

i

j

r=    y

s=    z
n = 3

n  = 4

1

2

ε

ε

Γ

tangent to Γ

0

0

FIG. 1. Coordinate system used for the inner expansion (n0 = 3i + 4j here).

We argue that it is sufficient to defineFhom(θ; n) only for rational normal directions. For an
irrational normaln(x) to the curve at a pointx on Γ0, we can find a sequencexi → x, xi ∈ Γ0,
wheren(xi) are rational directions. SinceH0 is continuously differentiable in space and time, using
(25) we have

(H0)t

|∇H0|
(x) = lim

i→∞

(H0)t

|∇H0|
(xi) = lim

i→∞
Fhom(θM(xi); ni). (26)

In other words, the homogenized velocity only needs to be computed on a dense set ofΓ0 to entirely
specify the leading order dynamics.

The expansion we propose near the contact line is

h = εh1(y, z, τ, t) +O(ε2), y = ε−1r, z = ε−1s, (27)

whereh1 is C2 on the domain{h1 > 0} ∩ [−∞, ∞] × [0, pn], pn-periodic inz, andC1 in time.
This is assumed valid on each local subregion ofBε for eachε > 0.

The moving boundary problem (2), (5) written in the inner coordinate system is therefore to
leading order

∆h1 = 0 for h1 > 0, (28)

(h1)τ = F(|∇h1|; y, z)|∇h1| onΓ1, (29)

whereΓ1 = ∂{h1 > 0}. By construction, the velocity law ispn-periodic iny andz and it depends
on the leading order normal directionn0:

F(θ; y + k1pn, z + k2pn) = F(θ; y, z) for all (k1, k2) ∈ Z2. (30)

The Laplace problem in (28) is to be solved in a simply connected subset of the channel(−∞, ∞)×

[0, pn] which extends toy = +∞ (see Fig. 2). The boundary conditions onh1 are

h1(z, y, τ ) = h(z + pn, y, τ ), (31)
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y

z

Γ

θh ~     y
M

p
n

FIG. 2. Diagram of the free boundary “cell” problem.

lim
y→∞

∂h1

∂y
= −

∂H0

∂n0
= θM . (32)

The first of these arises from the assumption of periodicity inz. The far field boundary condition
comes from asymptotic matching, by equating the expansions (21) and (27) and takingε → 0 and
y → ∞ simultaneously.

2.4 Matching and time averaging

To complete the analysis, the dynamics of the interior and boundary solutions need to be connected.
Computing∂h/∂t for both expansions and equating gives

∂h1

∂τ
=

(
∂H0

∂t
+

∂H1

∂τ

)
+O(ε), (33)

which, for eachε > 0, holds on the overlapping regionΩε ∩ Bε . We can now average over the fast
scale by applyingT −1

∫ T

0 dτ to equation (33):

T −1
∫ T

0

∂h1

∂τ
dτ =

∂H0

∂t
+ T −1H1

∣∣∣∣t=T

t=0
+O(ε). (34)

We conclude by taking the limitsε → 0, T → ∞, y → ∞ in such a way thatT ε → 0 and
yε → 0. Using (22) yields

∂H0

∂t

∣∣∣∣
Γ0

= lim
T →∞, y→∞

T −1
∫ T

0

∂h1

∂τ
dτ. (35)

To summarize, the homogenized velocity is obtained by solving the free boundary problem (28),
(31), (32) and using (25) and (35) to give

Fhom(θ; n) = θ−1
M lim

T →∞, y→∞
T −1

∫ T

0

∂h1

∂τ
dτ. (36)
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3. A comparison principle

The main tool for investigating the limit (36) is a comparison principle similar to the one used
by Kim [36] to construct viscosity solutions of Hele–Shaw and Stefan problems. We focus here
only on smooth solutions, which can be expected for mild heterogeneities. This makes the analysis
considerably more transparent, although similar results should hold for nonsmooth solutions
provided they obey the same comparison principle.

Following [36], we define notions of super- and subsolutions.

DEFINITION 1 Suppose thath(y, z, t) is a smooth function,pn-periodic inz and {h > 0} is a
simply connected subset of(−∞, ∞) × [0, p]. Let Γ (t) = {h = 0} be a smooth, nonintersecting
curve which is differentiable in time (in the sense that it admits a differentiable parameterization).
Thenh is asupersolution(respectivelysubsolution) if

1. ∆h 6 (>) 0 on the set{h > 0}.
2. There existsy∗ so thath(y, z) > 0 wheny > y∗ and limy→∞ ∂h/∂y > (6) θM .
3. dΓ/dt > (6) F (−∂h/∂n; x) for x ∈ Γ .

We also have a notion of comparing two functions (typically super- or subsolutions).

DEFINITION 2 Suppose thath1, h2 are smooth functions,p-periodic inz and{h1,2 > 0} = Ω1,2(t)

are simply connected subsets of(−∞, ∞) × [0, p]. Then if Ω1(t) is a proper subset ofΩ2(t), we
say thath1 andh2 areseparatedat timet , and writeh1 ≺ h2.

It is convenient to rephrase the Laplace problem (28) by introducing the change of variables
w = h1 − θMy so that we have the boundary conditions

w|Γ1 = −θMy, lim
y→∞

w(y, z) = w∞. (37)

Note that the homogenized velocity can be written as

Fhom(θ; n) = θ−1
M lim

T →∞

1

T

∫ T

0

dw∞

dt
dt. (38)

The far field valuew∞ should be regarded as an unknown of the problem, and can be bounded
by the valuesw takes onΓ1:

PROPOSITION1 (i) If w solves∆w = 0 onΩ(t) with boundary conditions (37),

min
Γ1

w 6 w∞ 6 max
Γ1

w.

(ii) Let h1 andh2 be sub- and supersolutions, respectively. Ifh1 ≺ h2 then for the corresponding
functionsw1,2 = h1,2 − θMy we have

lim
y→∞

w1 6 lim
y→∞

w2.

Proof. For (i) the upper bound is obtained by settingg = w−maxΓ1 w and applying the Phragḿen–
Lindelöf principle ([44, p. 97]), which givesg 6 0 in Ωε . The lower bound is similar.

For (ii), we observe thatw2 + θMy takes on nonnegative boundary values on any finite domain
{h2 > 0} ∩ {y < y∗

}, so it follows thatw2 > −θMy andw2 > w1 on {h1 = 0}. The Phragḿen–
Lindelöf principle applied tow2 − w1 on the domainΩ1 impliesw1 > w2 in h1 > 0. 2
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We can now establish the main tool for analysis of the cell problem.

PROPOSITION2 (Comparison principle) Leth1 andh2 be sub- and supersolutions, respectively,
and suppose thath1 ≺ h2 at timet = 0. Then eitherh1 = h2 after some positive time orh1 ≺ h2
for all t > 0.

Proof. SetΩ1,2 = {h1,2 > 0} and letΓ1,2 be the respective boundaries. IfΩ1(t) ⊂ Ω2(t) does not
hold for all t > 0, then there exists a maximal timeT for which this happens, and a contact point
P ∈ Γ1,2(T ). It follows that the normal velocity ofΓ1 is greater than or equal to that ofΓ2 at P .
The monotonicity of the velocity functionF implies that atP ,

∂h1

∂n
6

∂h2

∂n
. (39)

The differenceh = h1 − h2 satisfies Laplace’s equation with the boundary conditionh = −h2 6 0
onΓ1. If h ≡ 0 onΓ1, then uniqueness implies that both solutions will remain identical fort > T .
If not, Proposition 1 implies there is a largey∗ so thath(y, z) < 0 if y > y∗. Thenh must attain its
maximum on the boundary of the bounded domainD = Ω1∪{y < y∗

}. This maximum cannot occur
on the periodic boundaries (z = 0 or z = pn) of D. If it did, one could simply shift the domain
in z so that the maximum point was in the interior. A maximum therefore occurs at the contact
point P . Because of the assumed smoothness of the boundary ofD, the Hopf maximum principle
([44, p. 65]) shows that∂h/∂n is strictly positive at the contact pointP , which contradicts (39).2

4. The homogenized front velocity

This section establishes the existence of the limit in (36) and explores some of its properties. The
following assumptions are placed onF(θ; x) to get control over the front width:

(1) F(θ; x) is continuous, strictly increasing inθ .
(2) For anyθM > 0, there exist constantsC1, C2, C3 > 0 so that

µ − C3 + C1θ 6 F(θ; x) 6 C2

(
θ − θM

θM

)
, µ = min

x
F(θM , x). (40)

The second condition ensures that (A) the front velocity will get large for steep contact angles and
(B) the front recedes fast enough for shallow contact angles. Using (40), control over the front width
can be obtained:

PROPOSITION3 (Bound on front width) Suppose thath(y, z, t), Γ1(t) = {h = 0} is a smooth,
non-self-intersecting solution of (28)–(32). LetW = maxΓ y−minΓ y. If the front velocity satisfies
the conditions (40) there exists an upper boundB so that ifW(0) 6 B, thenW(t) 6 B for all t > 0.

The proof of this is deferred to the Appendix.
We can now prove the main result of this section, which establishes the existence of the limit in

(36).

THEOREM 1 Suppose thath(y, z, t), Γ1(t) = {h = 0} is a smooth, non-self-intersecting
solution of (28)–(32), whose initial frontΓ1(0) has width smaller than the bound guaranteed by
Proposition 3. Then
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• The following limit exists (i.e. the long time average front velocity):

Fhom(θM ; n) = θ−1
M lim

T →∞

1

T

∫ T

0

dw∞

dt
dt. (41)

• The limit is unique:Fhom is independent of the initial condition.
• Fhom(θM ; n) is nondecreasing inθM .

Proof. Existence of the limit. For a solutionh = w + θMy define the channel-averaged interface
position and average velocity as

y(T ) =
1

pn

∫
Γ1(T )

y dz, v(T ) ≡
y(0) − y(T )

T
. (42)

Proposition 1 and the boundary conditions (37) imply that

y(T ) − B 6 −θ−1
M w∞(T ) 6 y(T ) + B

whereB is an upper bound on front width. Dividing byT , integrating and takingT → ∞ we have

lim
T →∞

y(0) − y(T ) − B

T
6 θ−1

M lim
T →∞

1

T

∫ T

0

dw∞

dt
dt 6 lim

T →∞

y(0) − y(T ) + B

T
,

which implies the equality of limits

lim
T →∞

v(T ) = θ−1
M lim

T →∞

1

T

∫ T

0

dw∞

dt
dt. (43)

Since the front velocityF(θ; x) is bounded from below, we can define

v∗
= lim inf

T →∞
v(T ).

For anyδ > 0, there is a timeTδ so that

v(Tδ) 6 v∗
+ δ. (44)

Let M be a positive integer so thaty(Tδ) + B 6 Mpn. By periodicity,h1 = h(y − Mpn, z, T − Tδ)

is also a solution. Proposition 2 yieldsh ≺ h1 for all T > Tδ. It follows that the position of frontΓ1
has the bound

y(T ) − y(0) 6 n(y(Tδ) − y(0)) + B + pn, (n − 1)Tδ 6 T 6 nTδ,

for anyn ∈ Z+. Dividing by T and using (42) and (44) gives

v(T ) 6
n

n − 1
(v∗

+ δ) +
B + pn

(n − 1)Tδ

.

This implies that for anyδ > 0,
lim sup
T →∞

v(T ) 6 v∗
+ δ,

which shows that limT →∞ v(T ) = v∗.
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Uniqueness of the limit. Suppose thath1 andh2 are solutions andv1(T ), y1(T ), etc. are average
velocities and front positions. We can ensure thath1 ≺ h2 initially by a suitable periodic translation
which does not affect the long time average (41). Sinceh1 ≺ h2 for all time, it follows that for
largeT ,

v1(T ) =
y1(0) − y1(T )

T
6

y2(0) − y2(T )

T
+

y1(0) − y2(0)

T
6 v2(T ) +O(T −1). (45)

Similarly, by a suitable periodic translation we could ensure thath1(t) ≺ h2(t) so thatv2(T ) 6
v1(T ) +O(T −1). It follows that the long time limits must be equal.

Monotonicity. Suppose thath1 is any solution corresponding toθM = θ1 with initially bounded
front width. Leth2 be a solution corresponding toθM = θ2 > θ1. We can guarantee thath1 ≺ h2 at
time t = 0 by a suitable periodic translation iny. With respect toΘM = θ1, h2 is a supersolution,
soh1 ≺ h2 for all time t > 0. It follows thatFhom(θ1; n) 6 Fhom(θ2; n). 2

5. Examples and a numerical method

This section demonstrates the practical consequences of the foregoing theory. In general, one must
resort to numerical computation to compute the homogenized velocity. We will formulate the
problem by an efficient integral equation algorithm and demonstrate the feasibility of this approach
by means of computational examples. We begin with a simple example where an explicit formula
can be found.

5.1 A simple example: one-dimensional motion

The simplest situation is whereF(θ; y, z) has noz-dependence. In this case, it is sufficient to
consider exact planar solutions of the form

h = θM(y − Y (t)). (46)

It follows that
dY

dt
= −F(θM ; Y (t)). (47)

If F(θM ; y) is of one sign, periodic motion will ensue. IfT is the period of this oscillating solution
then

T =

∫ pn

0

(
dY

dt

)−1

dy (48)

from which one finds the average velocity as

Fhom(θM) =
pn∫ pn

0 F(θM ; y)−1 dy
. (49)

If the integral diverges, the front is pinned and we takeFhom to be 0.

5.2 Integral equation formulation

The problem (28)–(32), (37) can be written as a pair of integral equations to expedite numerical
simulation of the cell problem and computation ofFhom. The Green’s function appropriate for an
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infinite channel with periodic boundary conditions (see also [31]) is

G(y, z) =
1

4π
ln

[
sin2

(
πz

pn

)
cosh2

(
πy

pn

)
+ cos2

(
πz

pn

)
sinh2

(
πy

pn

)]
. (50)

Taking the inner product with∆w = 0 on the domainΩε ∩ {y < y∗
} gives the standard integral

representation∫
Γ1∪{y=y∗}

(
w(y, z)

∂G

∂n
(y − y0, z − z0) − G(y − y0, z − z0)

∂w

∂n
(y, z)

)
ds(y, z)

=

{
w(y0, z0), (y0, z0) ∈ int Ωε,
1
2w(y0, z0), (y0, z0) ∈ Γ1,

(51)

wheren is the outward normal.
As y → ∞, we have the asymptoticsG ∼ y/2pn +o(1) andw ∼ w∞ +o(1). Takingy∗

→ ∞

in (51) leads to

w(y0, z0) − w∞

2
=

∫
Γ1

(
w(y, z)

∂G

∂n
(y − y0, z − z0)

− G(y − y0, z − z0)
∂w

∂n
(y, z)

)
ds(y, z), (y0, z0) ∈ Γ1. (52)

A similar calculation takingy∗
→ ∞ and theny0 → ∞ gives another equation

w∞ =
1

pn

∫
Γ1

(
y

∂w

∂n
− wny

)
ds, (53)

whereny is they component of the normal vector. Equations (52)–(53) form a system to be solved
for unknowns∂w/∂n, w∞. This allows the contact angleθ = −∂w/∂n− θMny and the associated
normal interface velocity to be computed. Other details concerning the discretization of integrals
and the time stepping procedure have been reported elsewhere [22].

5.3 Example: array of large defects

The practical consequences of the theory which has been developed can now be illustrated. A simple
nonuniform velocity law can be constructed using the Cox–Voinov law (6) where the equilibrium
contact angleθe has spatial dependence. Assuming that the(y, z) coordinates are aligned with the
underlying periodicity, this example supposes

θe =

{
.6, (z − π)2

+ (y − π)2 < 1.52,

.3, otherwise.
(54)

With this orientation the (rescaled) spatial periodicity is taken aspn = 2π . To investigate anisotropy,
we also conducted simulations where the orientation was rotated by 45◦ and the corresponding
spatial periodicity was 2

√
2π . This particular example is meant to model a flow over a rectangular

array of circular “defects”—regions which are less wetting than the rest of the solid surface. All
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FIG. 3. Front motion whenθM = .48, slightly above the pinning threshold. They coordinate is aligned with the underlying
spatial periodicity in this example. The shaded regions are where the contact angle is higher (less wetting). Contours are
roughly spaced in equal time intervals.

FIG. 4. Front motion when they coordinate is oriented at a 45◦ angle to the underlying spatial periodicity (θm = 0.48).
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FIG. 5. Time averaged front velocity as a function of time (θm = .48).
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FIG. 6. Homogenized front velocities. The x’s denote computations for orientation angle 0◦ and the circles for orientation
angle 45◦.
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computations used initial data that was just a flat interfacey = 0, although the uniqueness of the
homogenized velocity should mean that this choice is more or less inconsequential.

Figure 3 shows typical front evolution when the normal to the macroscopic front is aligned
with the array. In Figure 4 the normal is instead at a 45◦ angle to the array. The time averaged
front motion (see (42)) typically oscillates and converges (somewhat slowly) to a long time limit
(Figure 5). Nonlinear regression was used to extrapolate this limit to avoid unnecessarily lengthy
computation.

The long time averaged velocitiesF(θM ; n) were computed for many values ofθM for both
orientations (Figure 6). Over a closed interval ofθM , the front is pinned and the averaged velocity is
zero. The endpoints of this interval can be thought of as the receding and advancing contact angles.
Anisotropy is present in both the overall velocities and in the interval on which pinning occurs.
Experiments on periodically structured surfaces have also found this [12, 24].

5.4 Example: small randomly placed defects

As a second more elaborate example, we consider smaller randomly placed defects (still arranged
periodically), with the same velocity law (6). Figure 7 shows typical front motion. The homogenized
front speed (Figure 8) was computed as before. The pinning interval is markedly smaller than the
case with larger defects. The average front motion is, on the other hand, quantitatively similar.

FIG. 7. Front motion forθm = 0.5. There were 20 defects of radius 0.15. Slowing of the front around defects is modified by
the lateral spacing.
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Appendix: proof of bound on front width

The proof relies on comparison functions which control the normal derivatives at extreme points
onΓ . ConstantsC, β are generic and assumed independent ofW .

Proof. Let (xm, ym), (xM , yM) ∈ Γ be points on the interface where the minimum and maximum,
respectively, ofy is achieved. Thenw is harmonic in [0, p] × [yM , +∞) and has a Green’s function
representation

w(x0, y0) − w∞ =

∫ p

0
G0(x, yM , x0, y0)(w(x, yM) − w∞) dx, y0 > yM ,

whereG0 = G(x, y, x0, y0) − G(x, −y, x0, y0). It is easily verified thatG0 satisfies a bound of the
form ‖G0‖L1(x) < C exp(−βy), so it follows thatw satisfies a pointwise estimate

|w(x, y) − w∞| 6 C‖w(x, yM) − w∞‖L∞ exp(−β[y − yM ])

6 CθMW exp(−β[y − yM ]). (55)

In the last step the maximum principle was used to obtain|w − w∞| 6 max(|w∞ + θym|,
|w∞ + θyM |) 6 WθM .

We now construct the linear comparison functions

u1 = −θMym + s1(y − ym), s1(L) =
CθMW exp(−β[L − yM ]) + θmym + w∞

L − ym

, (56)

u2 = −θMyM + s2(y − yM), s2(L) =
−CθMW exp(−β[L − yM ]) + θMym + w∞

L − yM

, (57)
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for some parameterL which will be determined. By the estimate (55), the maximum principle
implies thatu2 6 w 6 u1 on the domainΩ ∪ [0, p] × [ym, L]. In particular,w = u1 at (xm, ym)

andw = u2 at (xM , yM) so that the normal derivatives at the extreme points satisfy

∂w

∂y
(xm, ym) 6 s1(L), L > yM , (58)

∂w

∂y
(xM , yM) > s2(L), L > 0. (59)

To make the rest more attractive, introduceρ = (yM + w∞/θM)/W . The maximum principle
implies−θMyM 6 w∞ 6 −θMym so that 06 ρ 6 1.

For the first estimate, setλ = (L − ym)/W so that

∂w

∂y
(xm, ym) 6 θM

C exp(−βW [λ − 1]) + ρ − 1

λ
, λ > 0. (60)

Now chooseλ so thatC exp(−βW [λ − 1]) = 1/W , which gives

∂w

∂y
(xm, ym) 6 θM

1/W + ρ − 1

1 + ln(CW)/(βW)
6 θM(1/W + ρ − 1) (61)

for large enoughW . For the second estimate, setλ = (L − yM)/W and obtain

∂w

∂y
(xM , yM) > θM

ρ − C exp(−βWλ)

λ
, λ > 0. (62)

Choosingλ so thatC exp(−βWλ) = 1/W gives

∂w

∂y
(xm, ym) > θM

Wρ − 1

ln(CW)/β
. (63)

Finally, (61), (63) and (40) are combined to give a bound on dW/dt :

dW

dt
= f

(
θM +

dw

dy
(xm, ym), xm, ym

)
− f

(
θM +

dw

dy
(xM , yM), xM , yM

)
6 C1θM(1/W + ρ) − C3 + C2

1 − Wρ

ln(CW)/β
. (64)

For large enoughW , this expression is negative for allρ ∈ [0, 1]. 2
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