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Homogenization of contact line dynamics
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This paper considers the effects of substrate inhomogeneity on the motion of the three phase contact
line. The model employed assumes the slowness of the contact line in comparison to capillary
relaxation. The homogenization of this free boundary problem with a spatially periodic velocity law

is considered. Formal multiple scales analysis yields a local, periodic problem whose time-averaged
dynamics corresponds to the homogenized front velocity. A rigorous understanding of the long time
dynamics is developed using comparison techniques. Computations employing boundary integral
equations are used to illustrate the consequences of the analysis. Advancing and receding contact
angles, pinning and anisotropic motion can be predicted within this framework.

In many realistic circumstances, the static and dynamic wetting properties of liquids are
substantially influenced by imperfections in the solid surface. Heterogeneities result in contact lines
with a fine scale structure that may lead to pinning of the evolving front and hysteresis of the overall
fluid shape.

Understanding the role that surface imperfections play is part of larger theoretical effort to
determine the macroscopic manifestations of microscopic contact line features [4], 15, 42]. Classical
fluid mechanics is by itself insufficient to describe the moving contactlline [32], and the additional
physical ingredients needed are still controversial. Modeling and theoretical studies include notions
of slip boundary conditions [28, 80], continuum models [15/45, 51], rheological modifications [27,
53], and atomistic simulation§ [119, [29] (see [4] 42] for more extensive accounts). There is also
considerable technological importance in understanding the role of wetting on patterned substrates
11,1737/ 48].

The model studied here is based on the slowness of the contact line in comparison to the time for
capillary relaxation, known as the quasistatic limit. This represents possibly the simplest nontrivial
global model for contact line motion, and therefore provides a good point of departure for examining
surface heterogeneity. In this limiting case, the fluid pressure is constant, and the fluid’'s geometry
can therefore be described as a “capillary” surface. Motion arises from an imbalance of surface
forces at the contact line itself, which can be modeled by a constitutive velocity-contact angle law.
This approximation has been utilized in many previous studies [2, 21—-P3,128,131] B3| 40, 43].

The static effects of surface heterogeneity have been studied for some time. Early heuristic
theories considered the averaged effect of rough surfaces and chemical heterogeneities on the
equilibrium contact angle [7, 54]. These laws have known limits of applicability, however ([4,
Chapter 9], [[3]). More recent studies have considered this problem from the point of view of
mechanics [4, 34], statistics [14,]41], and gamma convergence techrigques [1].

In the dynamic case, much less is understood. Flows over heterogeneous surfaces have been
studied experimentally [11, 12,138,139, 47] and computationally [49, 50]. Theoretical arguments, on
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the other hand, have been limited to cases with simplified geometries [35, 46] or deal specifically
with the dynamic coating transition [26].

Homogenization of free boundary and front propagation problems is a young and evolving field
(see, e.g.,[5.19, 55]). The strategy we adopt is a combination of formal asymptotic calculations
coupled with a detailed understanding of the “inner” or “cell” problem. The existence and
unigueness of the homogenized velocity is studied rigorously. A Green’s function formulation is
used for numerical computation to illustrate the analytical results.

1. Problem formulation

We consider a fluid droplet on a macroscopically flat surface whose height is assumed to be a graph
h(x, y). The functionk has bounded suppaf2, whose boundary is the contact lie In the small
angle limit [€], the linearized contribution of surface energy is given by

y / 1+ |Vh]?) do 1)
2

wherey is the liquid-vapor surface energy, which is presumed constant here. The minimizer of this
expression, subject to the constraint of constant volume, is the quasi-steady droplet shape. Finding
the minimizer amounts to solving the Euler—Lagrange problem

Ah =i, hlr=0, /hd:B:MEVOthe (2)
2

whereA < 0 is a Lagrange multiplier, essentially just the negative hydrostatic pressure. We
remark that body forces such as gravity can be added to this maodel [22] without compromising
the homogenization procedure.

The “apparent” contact angteis defined on the boundary & (again in the small angle limit)

as
oh

0 = o n = outward normal of"". 3)
n

The motion ofl" is then specified by prescribing the normal velocity, denotéddd, as a function
of this angle and the spatial location of the contact line:
dar

e F(0; x). (4)

This can be recast in terms bfas the free boundary condition
h; = F(|Vh|; 2)|Vh|, whenh = 0. (5)

The functionF is a constitutive law relating the contact line velocity to the apparent contact
angled. Generally speakingy must be continuous and an increasing functioé eb that there is a
local “equilibrium” angled, (x) whereF (6. (x); ) = 0. Some additional technical restrictions will
be placed orF to obtain the rigorous results of Sect[dn 4. Common examples found in the literature
are

F=6%-63 (Cox [8], Voinov [52]), (6)
F=00%-0? (de Gennes[16]) (7)
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The spatial dependence 6f arises as a consequence of substrate inhomogeneities. We focus
here on two-dimensional periodicity with some small perod

FO;x+¢ek)=F@©;z) forallkeZ?. (8)

The purpose of this paper is to examine the homogenized dimit 0 by deriving an effective
velocity law that is independent ef

The free boundary problerp|(2)] (5) forms the basis for our study. While a complete and rigorous
analysis has not been performed on this particular model, it has much in common with well-
understood problems such as zero surface tension Hele—Shawi flaw [13, 36]. This paper’s scope is
restricted just to smooth solutions pf ()] (5). We anticipate that a generalized notion of nonsmooth
solutions is possible, akin to the theory of viscosity solutions which has been developed for a variety
of second order nonlinear problems][10} 18, 36].

2. Formal multiple scales analysis

The goal of this paper is to derive a free boundary problem of the fofn{ {2), (5) in theclirit0,
where the contact angle-velocity relation is replaced by a homogenized version

C(ij_][—' = Fhom(6; n). 9)
The dependence on the normal directioto the contact line stems from the anisotropy introduced
by periodicity of F. In particular, Fhom Will inherit the four-fold symmetry from the periodic
heterogeneity. (Other types of periodicity, hexagonal, rhombic, etc. should of course lead to other
types of symmetry in the homogenized velocity.) The strategy we adopt is to use a combination of
spatial matched asymptotics and a multiple-scales ansatz in time to derive a dynamic “cell problem”.
This problem must be solved independently, either analytically or numerically, and is studied at
length in later sections.

Homogenization of problems which have a fine-structured boundary have been considered
previously. In the same spirit as this work, Gobbert & Ringhafer [25] use a multiscale matched
asymptotic expansion for the case where one of the boundaries has the form of aygeaph
f(x) + fi(x/e). They derive the limiting solution as solving the same elliptic problem with
an effective boundary condition which they compute. Friedman & [HU [20] considered a similar
problem where there was a prescribed moving free boundagy f(x) + fi(x/e,t) and proved
convergence estimates for— 0. Our problem presents two additional challenges. The first is that
the free boundary motion is coupled to the solution itself. One consequence of this is that the free
boundary evolves with fine scale oscillations both in time and space, which motivates the use of a
multiple scale expansion in time. The second complication is that the free boundary has a smooth but
arbitrary geometry. To deal with this, we introduce a local coordinate system fitted to the asymptotic
free boundary.

2.1 Setup and motivation

While the asymptotic analysis that follows is presented at a purely formal level, we provide some

justification for the expansions as well as hint at what ingredients are necessary to make the
calculation completely rigorous. The main assumptions which are needed to justify the asymptotic
expansions are:
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1. Control over the free boundary.As the free boundary evolves, it necessarily develops a fine
structure which we suppose has wavelengtnd (spatial) amplitude. An argument in favor
of this is given in the appendix, where a local bound on the front width is proved with respect to
coordinates rescaled like L. This implies that the spatial amplitude of free boundary oscillation
should behave lik&(¢). We suppose that for each- 0, £2(¢; €) remains simply connected and
approaches a limiting s&2q(¢) in the sense that its boundary converges at a suitable rate:

max min dist(x, 1) = O(e). (20)
x1€082(t;€) €I R20(1)

2. Regularity in the interior. Away from the free boundary, oscillations i should decay
exponentially. As an illustration, suppose that the boundary is given by the graph of the function
y = €f (x/¢) and consider the boundary value problem

Au =0, y>ef(x/e), (12)

u(x, f(x/€)) =0, (12)
3—” -1 y— o0 (13)
dy

If we introduce the rescalingx’, y') = e 1(x, y), thenu/(x’, y') = e Lu(ex’, ey’) — y’ solves
thee-independent problem

A =0, Y > Ff@E), (14)

W' (X, f(x) = —f(x), (15)
al -0, y — oo (16)
ay’

One can show (e.d. [44]) that is periodic iny’ and all its derivatives decay exponentiallyyih
asy’ — oo. In particular, for the unscaled problem there is a bound on second derivatives of the
form

|D%u| < C1+ Coe Lexp(—y/e) fory > Cae (17)

whereC, are constants independentofVe might therefore expect that our problem also enjoys
a similar bound of the form

|D?h(z)| < C1+ Cae texp(—d/e), d=dist(I,x), ford> Cze. (18)

Of course, the precise justification for this relies on the detailed regularity properties for solutions
of @)—(8), which is not within this paper’s scope.

3. Control over Vi near the boundary We need to ensure that, near the bound&wy| is
bounded away from zero as we take—> 0. This is basically equivalent to assuming that the
free boundary remains smooth. Indeed, the Hopf maximum principle (which requires a smooth
boundary) applied th — A|x — xo|?/4 yields(dh/dn)(z¢) < 0. Conversely, if the homogenized
solution is smooth enough and in < 0 at all points on the boundary, then the zero level set
of h is given by a smooth parameterized cuive= x(s) via the differential equation

d:c_

d
gh(a:(s)) =Vh- &

0.
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There may be circumstances where the homogenized free boundary does develop nonsmooth
features (for example, computationsl[22] show the development of a corner). We will not address
this here, but the possibility certainly warrants further investigation.

We introduce the “interior” region
Q) = {x | dist(z, I'(t; €)) > CzeIn(e ™)} (19)

The estimate[ (18) provides a bound fond its first and second derivatives &h independent
of €, whereas[(J]0) indicates th&t. — 2 in the sense of boundary convergence. This suggests
that the leading order approximation fiois well defined on the domaif?g and independent af.
Near the free boundary, we will propose a different expansion in rescaled variables. We define
the set
B. = {x | dist(@, ' (1)) < Caeln(e )}, Ca> Ca. (20)

This definition guarantees th&t ands2, overlap as — 0, which allows application of matching
conditions.

2.2 Expansion in the interior

The foregoing arguments are meant to provide heuristic motivation and plausibility for the proposed
expansion
h = Ho(z, 1) + eHi(z, 1,7) + O(€?), =210+ O(e), (21)

that holds ons2. for eache > 0. Ho, Hy are taken to b&?(£2q) in space and’! in t and .
The correction ternH; is meant to capture temporal fluctuations about the mean dynamics, and is
therefore taken to be bounded:

|H1| < C, C depending only om, r. (22)

The leading order problem solved B is essentially the same &g (2),

AHo=Xlo, Holrb=0, Tp=0d%2, Hpdx = M = volume (23)
$20

Provided|V Ho| > 0 on the boundary, the regularity & implies that/p is aC? curve (see point 3
above). We can identify the “macroscopic” contact angle and normal direction as

VHy

O =|VHol, mno=-—=-,
|V Hy|

on Ip. (24)
It should be emphasized tha is not the limit of the normals to the curvé (except perhaps in a
weak sense), but is rather determined by limit of the interior solutioas-as0.

The motion oflp can be characterized by the free boundary condition

(HO)t

whenHy = 0. 25
|V Ho| (23)

Fhom(0; o) =

The dynamics ofHy and thereforeF,om Will be ascertained by asymptotic matching and time
averaging.
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2.3 Expansion near the free boundary

For the expansion omB,, a local rectilinear coordinate systefn s) is used (see Fid.]1). The
coordinates varies in direction tangent to a poiat € I'p andr is in the negative normal direction
so thatr > 0 is the fluid’s interior. We suppose that the normalat xg is in a “rational” direction,
in other wordsng || n1i 4+ nj whereny,np € 7Z. This ensures thaf is periodic with period

epp = e,/n% +n§ in 7 ands.

YALE
n=3
1 J N ez
: tangent to I
n2= 4 ro

FiG. 1. Coordinate system used for the inner expansign=£ 3i + 4j here).

We argue that it is sufficient to defing,om(@; n) only for rational normal directions. For an
irrational normaln(x) to the curve at a point on I'p, we can find a sequenag — x, x; € I,
wheren(x;) are rational directions. Sindéy is continuously differentiable in space and time, using
(25) we have

(Ho): (x) = lim (Ho):

|V Hp| i—oo |V Hp|
In other words, the homogenized velocity only needs to be computed on a denséset eftirely
specify the leading order dynamics.

The expansion we propose near the contact line is

(z;) = l'l[go Fhom(Om (x;); n;). (26)

h=c¢hi(y,z,1,1) + (’)(62), y= el 7 =¢ 15, (27)

wheref is C? on the domair{z1 > 0} N [—o0, 00] x [0, p,], pn-periodic inz, andC? in time.
This is assumed valid on each local subregioBofor eache > 0.

The moving boundary problerf](2],](5) written in the inner coordinate system is therefore to
leading order

Ahy =0 forhy >0, (28)
(h1)r = F(IVhil; y,2)|Vhil onIt, (29)

wherel; = d{h1 > 0}. By construction, the velocity law ig,-periodic iny andz and it depends
on the leading order normal directiew:

F:;y +kipn,z+kopy) = F(6; y,z) forall (ky, ko) € Z°. (30)

The Laplace problem ifi (28) is to be solved in a simply connected subset of the channgbo) x
[0, pn] which extends toy = 400 (see Fig[ R). The boundary conditions iopare

hi(z,y,7) = h(z+ pp, y. 7). (31)
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y
L h~eMy
z
r
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FiG. 2. Diagram of the free boundary “cell” problem.

. 0h JdH
lim 22 = 270 g, (32)
y—>00 QJy ang
The first of these arises from the assumption of periodicity. ilfhe far field boundary condition
comes from asymptotic matching, by equating the expangions (21) and (27) andetakir@and
y — oo simultaneously.

2.4 Matching and time averaging

To complete the analysis, the dynamics of the interior and boundary solutions need to be connected.
Computingdh/dt for both expansions and equating gives

ohq _ 0Hy 0H1
at ot

— — 4+ —) + O(e), (33)
ot

which, for eache > 0, holds on the overlapping regiga. N B.. We can now average over the fast
scale by applying'—1 fOT dr to equation):

t=T
+O(e). (34)

t=0

T

ah 9H

T‘l/ e =22 411
o Ot at

We conclude by taking the limits — 0, T — o0, y — oo in such a way thaf’'e — 0 and
ye — 0. Using [22) yields

T
= lim T—lf oy (35)
0

Io T—o00, y—>00 at

JdHp
ot

To summarize, the homogenized velocity is obtained by solving the free boundary prpblem (28),

(31, [32) and using (25) anf (35) to give

: T an
From(9; n) = 9;11 lim Tfl/(; e (36)

T—o00, y—00 0T
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3. A comparison principle

The main tool for investigating the limif (B6) is a comparison principle similar to the one used
by Kim [36] to construct viscosity solutions of Hele—-Shaw and Stefan problems. We focus here
only on smooth solutions, which can be expected for mild heterogeneities. This makes the analysis
considerably more transparent, although similar results should hold for nonsmooth solutions
provided they obey the same comparison principle.

Following [3€], we define notions of super- and subsolutions.

DEFINITION 1 Suppose thak(y, z, t) is a smooth functionp,-periodic inz and{h# > 0} is a
simply connected subset ¢f00, c0) x [0, p]. Let I'(+) = {h = 0} be a smooth, nonintersecting
curve which is differentiable in time (in the sense that it admits a differentiable parameterization).
Thenh is asupersolutior(respectivelysubsolution if

1. Ah < (=)0 onthe sefh > 0}.
2. There existy* so thati(y, z) > 0 wheny > y* and lim,_, o, 3h/3y > (<) Oum.
3.dr'/dt > (<) F(—dh/on; z) forx e I'.

We also have a notion of comparing two functions (typically super- or subsolutions).

DEFINITION 2 Suppose thdts, 42 are smooth functiong:-periodic inz and{h1 2 > 0} = 21.2(¢)
are simply connected subsets(efoo, 0co) x [0, p]. Then if £21(¢) is a proper subset aR2(z), we
say thath1 andhy areseparatecht timez, and writehy < 2.

It is convenient to rephrase the Laplace problénj (28) by introducing the change of variables
w = h1 — Oy so that we have the boundary conditions

wir, = —0uy, yILmoow(y, 7) = Woo- (37)

Note that the homogenized velocity can be written as

1 (7 dw
) =1
From(0; m) = 0, T“ﬂlof /0 d—toodt. (38)

The far field valuew., should be regarded as an unknown of the problem, and can be bounded
by the valuesv takes onl:

PrROPOSITIONL (i) If w solvesAw = 0 ons2(r) with boundary conditions (37),

minw < we < Maxw.
Iy I
(i) Let k1 andh2 be sub- and supersolutions, respectivelyiilf< ko then for the corresponding
functionswi 2 = h12 — Oy y We have
lim w1 < lim wo.
y—0o0 y—>00
Proof. For (i) the upper bound is obtained by setting: w —maxr, w and applying the Phragen—
Lindelof principle ([44, p. 97]), which giveg < 0in £2.. The lower bound is similar.
For (ii), we observe thab, + 0,y takes on nhonnegative boundary values on any finite domain
{h2 > 0} N {y < y*}, so it follows thatw, > —0y,y andwz > wi on {kh1 = 0}. The Phragran—
Lindelof principle applied tavs — wy on the domain2; implieswy > ws in k1 > 0. |
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We can now establish the main tool for analysis of the cell problem.

PrRoPOSITION2 (Comparison principle) Lek; and k2 be sub- and supersolutions, respectively,
and suppose thadt; < ko at timer = 0. Then eithefi; = ho after some positive time dr; < hs
forallz > 0.

Proof. Set$212 = {h12 > 0} and letl"1 » be the respective boundariess2 (1) C £22(¢) does not
hold for all# > 0, then there exists a maximal tinfefor which this happens, and a contact point
P e It 2(T). It follows that the normal velocity of is greater than or equal to that 65 at P.
The monotonicity of the velocity functioff implies that atP,

ey (39)

The differencer = h1 — ho satisfies Laplace’s equation with the boundary conditiea —4, < 0

on 1. If h = 0 on Iy, then uniqueness implies that both solutions will remain identicad forT .

If not, Propositior L implies there is a largé so thati(y, z) < 0if y > y*. Thenh must attain its
maximum on the boundary of the bounded domaia- £21U{y < y*}. This maximum cannot occur

on the periodic boundarieg & 0 orz = p,) of D. If it did, one could simply shift the domain

in z so that the maximum point was in the interior. A maximum therefore occurs at the contact
point P. Because of the assumed smoothness of the bounddpy ihfe Hopf maximum principle

([44, p. 65]) shows thaih/dn is strictly positive at the contact poiift, which contradictg (39) -

4. The homogenized front velocity

This section establishes the existence of the limifir} (36) and explores some of its properties. The
following assumptions are placed é1{@; x) to get control over the front width:

(1) F(0; x) is continuous, strictly increasing &

(2) Foranydy, > 0, there exist constants;, C», C3 > 0 so that

0 — 0y
Om

M—C3+C19<F(9;w)<C2< ) M=fT;jnF(9M,w). (40)
The second condition ensures that (A) the front velocity will get large for steep contact angles and

(B) the front recedes fast enough for shallow contact angles. Usihg (40), control over the front width
can be obtained:

PrRopPOSITION3 (Bound on front width) Suppose thaty, z,t), I'n(z) = {h = 0} is a smooth,
non-self-intersecting solution ¢f (R8)—(32). L&t = max; y —min y. If the front velocity satisfies
the conditions[(40) there exists an upper bosreb that ifW (0) < B, thenW () < B forall > 0.

The proof of this is deferred to the Appendix.
We can now prove the main result of this section, which establishes the existence of the limit in

@8).

THEOREM1 Suppose that(y,z,7), In(t) = {h = 0} is a smooth, non-self-intersecting
solution of [28){(3R), whose initial fronf1(0) has width smaller than the bound guaranteed by
Propositio B. Then
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e The following limit exists (i.e. the long time average front velocity):

1. 1 T dw
Fhom(eM; ’I'L) = eMl Tll’noo 7 /0 d_[oo dr. (41)

e The limit is unique:Fnomis independent of the initial condition.

e Fhom(0y; m) is nondecreasing iy, .

Proof. Existence of the limit. For a solutiom: = w + 0,y define the channel-averaged interface
position and average velocity as

YO -5T)

. (42)

_ 1
y(T)=—/ ydz, u(T)=
Pn JIry(T)

Propositiorf I and the boundary conditiops| (37) imply that
Y(T) = B < —0) woo(T) < F(T) + B

whereB is an upper bound on front width. Dividing 1§, integrating and takin@ — oo we have

30 —3(T)—-B 1 (Td 30 =y(T)+B
jim 2O YD ZF o1 _/ Moo g < fim 2O =YD+ B
T—00 T T—oo T Jo dt T—00 T
which implies the equality of limits
1 (7 dw
. -1 - 00
TIInOOU(T) =0, Tll”r;o T/o o dr. (43)

Since the front velocity (6; x) is bounded from below, we can define
vt = IiTnliLLf v(T).
For anyé > 0, there is a timds so that
v(Ts) < v*+6. (44)

Let M be a positive integer so thatTs) + B < Mp,,. By periodicity,h1 = h(y — Mp,, z, T — Ts)
is also a solution. Propositi¢h 2 yieléls< k1 for all T > Ts. It follows that the position of fronf;
has the bound

V() =530 <n(¥(T5) =y(O) + B+ py, (n—DT; <T <nTj,
for anyn € Z*. Dividing by T and using[(4R) andl (44) gives

B
"0 4 8) 4 — T Pn

s PRIy

This implies that for ang > 0,
lim supv(7T) < v* 4+ 6,

T—o0

which shows that lim_, o, v(T) = v*.
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Uniqueness of the limit. Suppose thak; andh; are solutions and1(7), y,(T), etc. are average
velocities and front positions. We can ensure thak h; initially by a suitable periodic translation
which does not affect the long time averafe] (41). Sihge< h» for all time, it follows that for
largeT,

y1(0) — y1(T) < ¥2(0) — y(T) + ¥1(0) — ¥,(0)

T = T T
Similarly, by a suitable periodic translation we could ensure #&t) < h2(7) so thatva(T) <
vi(T) + O(T 1. It follows that the long time limits must be equal.

vi(T) = <vAT) +O(T7h). (45)

Monotonicity. Suppose thak; is any solution corresponding t; = 61 with initially bounded
front width. Letho be a solution corresponding ég; = 62 > 6;. We can guarantee that < h; at
timet = 0 by a suitable periodic translation in With respect ta9,, = 61, h» is a supersolution,
Sohy < hp foralltimer > 0. It follows that From(01; ) < Fhom(62; n). |

5. Examples and a numerical method

This section demonstrates the practical consequences of the foregoing theory. In general, one must
resort to numerical computation to compute the homogenized velocity. We will formulate the
problem by an efficient integral equation algorithm and demonstrate the feasibility of this approach
by means of computational examples. We begin with a simple example where an explicit formula
can be found.

5.1 A simple example: one-dimensional motion

The simplest situation is wherg(9; y, z) has noz-dependence. In this case, it is sufficient to
consider exact planar solutions of the form

h=0y(y—Y(@). (46)
It follows that
dy
5 = FOu:Y0). (47)

If F(6y; y) is of one sign, periodic motion will ensue.¥fis the period of this oscillating solution

then L
P fdy\ "~

T — Y g 48

fo (w) ¥ (48)

from which one finds the average velocity as
Pn
Jg" F(Oum; y)~tdy

If the integral diverges, the front is pinned and we té@ken to be 0.

Fhom(@m) = (49)

5.2 Integral equation formulation

The problem([(2B)£(32)[ (37) can be written as a pair of integral equations to expedite numerical
simulation of the cell problem and computation ®&f,n. The Green'’s function appropriate for an
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infinite channel with periodic boundary conditions (see dlso [31]) is

G(y,2) = 1 In[sinz(ﬂ> cosﬁ(ﬂ) + 0052<E) sinf?(ﬂﬂ. (50)
4r Pn Pn Pn Pn

Taking the inner product wittAw = 0 on the domairf2, N {y < y*} gives the standard integral
representation

G ow
f <w(y, z)a—(y =0,z —20) — G(y — yo, 2 — 20) — (¥, z)) ds(y, 2)
NU{y=y*} n an

(51)

_Jw(y0,z0), (Yo, z0) € int £,
2wy, z0), (V0. z0) € I,

wheren is the outward normal.
Asy — oo, we have the asymptoti&€s ~ y/2p, + o(1) andw ~ we +0(1). Takingy* — oo
in (57)) leads to

w(y0, 20) — Weo

_/ G _
5 = F1<w(y12)8—n(y Y0, Z — 20)
0
—G(y—y0,z2— zo)%(y, z)) ds(y,2), (vo.zo0) € I'n. (52)

A similar calculation taking* — oo and thenyg — oo gives another equation

1
Woo = — (ya—w —wn ) ds, (53)
I

wheren, is they component of the normal vector. Equati (5@1—(53) form a system to be solved
for unknownsdw /dn, ws. This allows the contact angte= —dw/dn — 6y n, and the associated
normal interface velocity to be computed. Other details concerning the discretization of integrals
and the time stepping procedure have been reported elsewhere [22].

5.3 Example: array of large defects

The practical consequences of the theory which has been developed can now be illustrated. A simple
nonuniform velocity law can be constructed using the Cox—Voinov [aw (6) where the equilibrium
contact angl®, has spatial dependence. Assuming that(the)) coordinates are aligned with the
underlying periodicity, this example supposes

6, (z—m)2+(y—m)? <15

6, = .
¢ .3, otherwise

(54)

With this orientation the (rescaled) spatial periodicity is takep,as- 2. To investigate anisotropy,
we also conducted simulations where the orientation was rotated bprtbthe corresponding
spatial periodicity was @2 . This particular example is meant to model a flow over a rectangular
array of circular “defects”—regions which are less wetting than the rest of the solid surface. All
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0 1 2 3 4 5 6
z

FIG. 3. Front motion whefl; = .48, slightly above the pinning threshold. Theoordinate is aligned with the underlying

spatial periodicity in this example. The shaded regions are where the contact angle is higher (less wetting). Contours are
roughly spaced in equal time intervals.

0

FIG. 4. Front motion when the coordinate is oriented at a 4angle to the underlying spatial periodicit,{ = 0.48).
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angle 45.
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computations used initial data that was just a flat interface 0, although the unigueness of the
homogenized velocity should mean that this choice is more or less inconsequential.

Figure[3 shows typical front evolution when the normal to the macroscopic front is aligned
with the array. In Figur]4 the normal is instead at & 4fgle to the array. The time averaged
front motion (see[(42)) typically oscillates and converges (somewhat slowly) to a long time limit
(Figure[$). Nonlinear regression was used to extrapolate this limit to avoid unnecessarily lengthy
computation.

The long time averaged velocitids(0y,; n) were computed for many values @f; for both
orientations (Figurg]6). Over a closed intervabgf, the front is pinned and the averaged velocity is
zero. The endpoints of this interval can be thought of as the receding and advancing contact angles.
Anisotropy is present in both the overall velocities and in the interval on which pinning occurs.
Experiments on periodically structured surfaces have also found this [12, 24].

5.4 Example: small randomly placed defects

As a second more elaborate example, we consider smaller randomly placed defects (still arranged
periodically), with the same velocity lay|(6). Figjirie 7 shows typical front motion. The homogenized
front speed (Figurg]8) was computed as before. The pinning interval is markedly smaller than the
case with larger defects. The average front motion is, on the other hand, quantitatively similar.

\—ﬁ

FiG. 7. Front motion fow,, = 0.5. There were 20 defects of radiud B. Slowing of the front around defects is modified by
the lateral spacing.
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FIG. 8. Homogenized front velocities for the case of many defects. The x’s denote actual computations, and the dashed line
is an interpolation.

Appendix: proof of bound on front width

The proof relies on comparison functions which control the normal derivatives at extreme points
onI". Constants”, 8 are generic and assumed independer of

Proof. Let (x,;, ym), (xp, ym) € I' be points on the interface where the minimum and maximum,
respectively, ofy is achieved. Thew is harmonic in [0 p] x [ys, +00) and has a Green’s function
representation

P
w(x0, y0) — Weo = / Go(x, ym, x0, yo)(w(x, yu) — weo) dx,  yo > yu,
0

whereGo = G(x, y, x0, y0) — G(x, —y, x0, y0). It is easily verified thaG satisfies a bound of the
form [|Goll 1,y < C exp(—By), so it follows thatw satisfies a pointwise estimate

lw(x, y) — weo| < Cllw(x, yu) — woollL xp(—Bly — ym])
< COu W exp(—Bly — yuD. (55)

In the last step the maximum principle was used to obtain- we| < Max|we + Oyml,
[Weo +O0yml) < WOy
We now construct the linear comparison functions

CoOyW exp(—ﬂ[L - yM]) + OmYm + Weo
L—yn '

—COy W exp(—B[L — )+ 6 +w
upg = —0mym +s2(y —ym), s2(L) = M it ﬂ[L — yy;j] MYm <. (57)

ur = —0pmym +s1(y —ym), s1(L) = (56)
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for some parameteL which will be determined. By the estimate [55), the maximum principle
implies thatuy < w < 13 on the domain2 U [0, p] x [ym, L]. In particular,w = uy at (x,,,, ym)
andw = u at (xy, yy) so that the normal derivatives at the extreme points satisfy

Jw

g(xma )’m) g Sl(L)’ L > )’M, (58)
ow
5(XM7 ym) = s2(L), L >0. (59)

To make the rest more attractive, introduge= (yy + woo/0a)/ W. The maximum principle
implies—0y vy < weo < —Oyym SOthat 0< p < 1.
For the first estimate, seét= (L — y,,)/ W so that

dw Cexp(—BW[A—1]) +p —1

. \Ams Vm g 0 A 0 60
gy (e ) < O - > (60)
Now chooset so thatC exp(—BW[x — 1]) = 1/ W, which gives

ow I/W+p-1

. \Ams Vm < 0 < (%) 1/w -1 61

8y(x Ym) M T InCW) (BW) (/W +p—1) (61)

for large enougtW. For the second estimate, set (L — yy)/ W and obtain

5 — Cexp—pWi
TG yw) > O exf( PWH 2o, (62)
y

Choosingh so thatC exp(—WA) = 1/ W gives

qw Wp —1
—— Xy Ym) Z2 OM - 63
8y(x Ym) MinCW/B (63)
Finally, (61), [63) and (40) are combined to give a bound @fyd::
dw dw dw
— = f O + —— &m> Ym)» Xims Ym | — f| O + — (xm, ym), X, ym
dt dy dy
1—Wp
< C10y (/W —C3+Cor—. 64
10m (/W + p) — C3 + 2in(CW) /B (64)
For large enoughV, this expression is negative for alle [0, 1]. |
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