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We address the numerical discretization of the Allen—Cahn problem with additive white noise in
one-dimensional space. Our main focus is to understand the behavior of the discretized equation
with respect to a small “interface thickness” parameter and the noise intensity. The discretization
is conducted in two stages: (1) regularize the white noise and study the regularized problem, (2)
approximate the regularized problem. We address (1) by introducing a piecewise constant random
approximation of the white noise with respect to a space-time mesh. We analyze the regularized
problem and study its relation to both the original problem and the deterministic Allen—Cahn
problem. Step (2) is then performed leading to a practical Monte Carlo method combined with a
finite element-implicit Euler scheme. The resulting numerical scheme is tested against theoretical
benchmark results concerning the behavior of the solution as the interface thickness goes to zero.

1. Introduction

Stochastic partial differential equation (SPDE) models arise in numerous applications ranging from
materials science, surface processes and macromolecular dyriamics!|[Coo70, Spo89], to atmosphere
and ocean modelin@ [LN03] and epidemiolo@y [Dur99]. These models are typically derived from
finer and more detailed models where unresolved degrees of freedom are represented by suitable
stochastic forcing terms. There are also some notable rigorous derivations from microscopic scales
in special asymptotic regimes, e.lg. [BPRS93, MT95].
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An important class of models consists of the stochastic Ginzburg—Landau models which are
typically obtained from microscopic lattice models for a suitable order parameter (e.g., spin), by
statistical mechanics renormalization arguments combined with detailed balance laws.

Numerical simulation of these nonlinear SPDE'’s constitutes an important research issue. On the
practical side, one is interested in having efficient, reliable and not too complex numerical codes
which can be used either in the context of Monte Carlo methods or for sample paths simulations of
the physical models of phase transition, €.g. [WB95, KM99, KK01, Sha00]. From a more theoretical
view-point, understanding the issues arising from the discretization of SPDE’s, in a more general
setting than phase separation, both through finite difference or finite element schemes, turns out
to be a non-obvious departure from numerical schemes for deterministic models [ANZ8&S,Gy
DZ02,BTZ04]STOB].

In this paper, our focus is on the numerical simulation of the stochastic Allen—Cahn problem,
which is one of the simplest models exhibiting the phenomena of interface formation and nucleation.
The stochastic Allen—Cahn problem is an ad-hoc white noise perturbation of the deterministic
Allen—Cahn, given by

Oru(x, 1) — Opxtu(x,1) + fe(u(x, 1)) =€’9,,W(x,t) forx e D, te|0,o0), (1.1

whereD = (-1,1) c RY, ¢ > 0 and/, is an odd nonlinearity scaled by anda,; W is the
space-time white noise (seg §2.1 for the details). This is a stochastic version of the well-known
deterministic Allen—Cahn problem describing the evolution in time of a polycrystalline material
[AC79]. We take boundary conditions of Neumann type and the initial condition torbsadved

profile; we refer again to[§2 for the details. Note that this equation, with white noise, is tractable
only in one spatial dimension, which is the case we will study. In higher space dimensions, one has
to consider noise which is colored in space.

Equation [(1]L) is a type A model in Halperin's classification [HH77]. It is non-conservative
in the order parameter and exhibits both nucleation and interface formation, whilst retaining a
relatively simple structure without multiplicative or conservative noise terms encountered in type B
models, such as the Cahn—Hilliard—Cook equation [KM99].

While a thorough discussion df (7.1) is given [r] §2, it is worth mentioning here that this SPDE,
with the white noise term, is well-posed only in one space dimension. Two important pieces of
work concerned with the analytic and probabilistic aspect$ of (1.1) are those of Funakil[Fun95]
and Brassesco, De Masi & Presulti [BDMP95]. In both papers, the authors study the asymptotic
behavior of the solution processesas- 0. In particular, it turns out that, under suitable time-space
rescaling, the solution with initial value taken to be (roughly speaking) a step function, converges (in
an appropriate probabilistic sense) to the step function with its jump point performing a Brownian
motion.

Though finite difference schemes have been used for simulafions [KM99, |IKKO01], we follow
here a finite element approach. The reason driving us to understand finite element methods (FEM)
for such equations is that FEM constitute a quite flexible tool, especially for problems in higher
dimensions where one may have to deal with complex geometries. Also, finite elements are naturally
suited for adaptive schemes where fine scales may be resolved only on small portions of the domain
in order to obtain a reasonable accuracy. We believe that understanding the FEM in a nonadaptive
one-dimensional setting will pave the way to more sophisticated studies.

Our strategy to formulate a finite element schemel[for (1.1) follows an idea introduced for linear
problems by Allen, Novosel & Zhan@ [ANZ98], and consists in two steps:
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1. regularize the noiséermd,, W, by replacing it with a somewhat smoother approximate white
noiseo,; W;
2. discretize the regularizedroblem.

This approach allows us to conduct a rigorous analysis of the approximation. It makes the
subsequent finite element discretization straightforward. Note that a finite difference variant based
on our regularization is also possible.

Our first task, carried out in[$3, is to construct a regularization, dendted (x,r), of
9y W (x, 1) (appearing in[(1]1)) with respect to an underlying uniform partiti@p, x .#,, of the
space-time domai® x . In the spirit of FEM, this regularization process consists of a projection
of the white noise onto an appropriate space of piecewise constant space-time functions, which may
be viewed as the mixed derivatives of hat functions. This idea, which has been successfully used in
the context of the linear heat equation [ANZ98], leads tordgrilarized problem

u(x, 1) — dexu(x,t) + fe(u(x, 1)) =€’ W(x,t) forxeD,re[0,00). (1.2)

Notice thatd,, W is still a stochastic process in space-time, but it is much smoother than the white
noise, which allows equatiof (1.2) to be interpreted in the usual PDE sense pathwise.

In §4, after recalling some basic properties of problem| (1.2) and its solution, we prove Theorem
[4.4, which states that the solution of the regularized problem converges—in an appropriate sense—
to the solution of the original SPDE (1.1) as the space-time partition becomes infinitely fine.

Next, in §5, we relate the solution of the regularized problem to the deterministic solution of
the Allen—Cahn equation. Our main result here, Thedrein 5.4, proved fo13, indicates that the
regularization parameters have to be sufficiently small for the noise to be captured in the numerical
computations. In fact, according to this theorem the weaker the noise, the finer space-time mesh one
must take in order to see the noise effects. This is due to the fact that for a fixed space-time mesh and
€ — 0, the distance between the regularized stochastic solutenmd the deterministic solution,

q, is of higher order ire than the distance betwearnandu. Our proof makes use of thepectrum
estimatesf the linearized elliptic differential operaterd,r + f/(g), derived independently by
Xinfu Chen [Che94] and de Mottoni & Schatzman [dM&95].

We note that while numerical schemes for the stochastic Allen—Cahn involving a spectral
approach to white noise have been analyzed [Liu03], this is, up to our knowledge, a first analysis
using projection methods to regularize the white noise.

Step 2 of our strategy is accomplished |} §6, where we derive a simple finite element scheme
for the regularized problerh (1.2). This is a scheme which uses piecewise polynomial finite elements
to discretize the space variable and an implicit (backward) Euler scheme to discretize the time
variable. Related numerical schemes have been thoroughly analyzed and successfully applied in
the context of theleterministic Allen—Cahn problefRP03, KNS04, FW05] and for th&tochastic
linear heat diffusion problerfANZ98]. It is for the first time, up to our knowledge, that this scheme
is employed in atochastic and nonlineaetting. The issues of regularity of the regularized solution
and the convergence of the FEM are objects of our current research.

In §7, we test our scheme in combination with a Monte Carlo simulation. The test consists in
reconciling the computational results with the theoretical results obtained by Flnaki [Fun95] and
Brassesco, De Masi & Presutti [BDMP95] independently. Our benchmarking procedure consists
in tracking the so-called center of a resolved profile of the Allen—Cahn equation as time evolves,
performing statistics thereon and comparing them with the probabilistic results coming from the
theory. The following conclusions are drawn: (1) The robustness of the Monte Carlo method
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depends on the noise intensity; the lower the noise, the higher the observed robustness. (2) The
noise has to be resolved satisfactorily in order to see stochastic effects. In contrast with the first
conclusion, the lower the noise, the more one has to resolve the mesh in order to see the noise. This
is in competition with the need to have a fine mesh in order to resolve the transition layer, due to the
structure of the solution of the Allen—Cahn equation. (3) The behavior captured by the numerics is
consistent with the theoretical results; in particular, the Mueller—Funaki time sea2yl(seq 5.p

for the details) and the corresponding Brownian motion diffusion coefficient are clearly exhibited
by our numerical results. We close with some computations that capture the drift of the interface,
modeled by the Allen—Cahn equation. This drift, typical of the stochastic solution, is quite fast with
respect to the deterministic case where the solutions are metastable states.

2. Setup
2.1 Noisy Allen—Cahn problem

We will study an initial-boundary value problem associated with the semilinear parabolic partial
differential equation with additive white noise, known as #techastic(or noisy) Allen—Cahn
equationgiven by [1.1). The nonlinearity, is the derivative of an even coercive functip with
exactly two minimum points. A function such & is known as alouble-well potentialnd, for

sake of conciseness, we focus on the model potential explicitly defined by

F.(§) = %(52 — 12 forg eR. (2.1)

Heree € RT is a scaling parameter. The tedn W is the space-tim&aussian white noisavhich

can be defined as the mixed distributional derivative 8frawnian sheeW [Wal86,[KX95]. The
parametely € R models the intensity of the white noise and plays a delicate role in the analysis, as
e — 0.

The presence of the right-hand side makeg (1.1) a randomly perturbed version of the Allen—Cahn
equation which is atochastic PDESPDE). A solution of such an equation has to be interpreted in
the stochastic sense. That is, for eactihe solutioru(-, ¢) is understood as a random process on an
underlying probability measure spat®, .#, P) with values in a suitable function space defined
on D. Equation[(T.1), supplemented with the initial condition

u(x,0 =ug(x), VxeD, (2.2)
and with the Neumann boundary conditions
u(—1,1) =du(l,t)=0, VteR", (2.3)

defines thestochastic Allen—Cahn problerior simplicity, we assume that the initial conditiog
is smooth enough and satisfies the boundary conditiong.]In 85 we shall focus on a more particular
class of initial conditions known as resolved profiles.

2.2 Space-time stochastic integral

One can give a mathematically rigorous definition of a solution of the stochastic Allen—Cahn
problem [T:1),[2R)E(2]3) as a distribution-valued process [Wal86. KX95]. However, we find it
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more convenient, as in the case of the white noise generated from a Brownian motion, to work with
the stochastic integraivith respect to the Brownian she®t, denoted by | - dw” [Wal86), §lI],
[KX95] Ch. 3]. In our doing so, we bear in mind the formal relationship

/Oo/ f(x, )0 W(x,t)dx dr =/OO/ fx,)dW(x, 1) (2.4)
o Jp o Jp

that will inspire the weak formulatiofi (2.]10) and the definitions[ih §3. In the particular case where
f is the characteristic function of a Borel-measurableset Z(Rt x D) of Lebesgue measure
|A] < oo the following basic property of the stochastic integral is satisfied:

/ dW (x, 1) = W(A) € N(O, |A]), (2.5)
A

i.e., W(A) is a Gaussian random variable with mean zero and varikm@

Since we are interested in numerical solutions, we consider the time domain to be a bounded
intervall = [0, T], for some fixedl' € R*. A fundamental property of the stochastic integral is the
following well-known Ly-isometry which holds for the f integral:

E[(/I/Df(x,t)dW(x,t))z}:E[/I/Df(x,t)zdxdt}, (2.6)

for any.# Y -measurablg’ € Lo(I x D x ), where
FV =c{W(A): A e B x D)), (2.7)

is the sigma-field (or sigma-algebra) generatedibyp to timet, andE denotes thexpectation
with respect ta$2, %, P)E]
A useful consequence ¢f (2.6) is that

]E[//f(x,t)dW(x,t)f/g(y,s)dW(y,s)}:IE[// f(x,t)g(x,t)dxdt} (2.8)
1JD 1JD 1JD

for any.Z," -measurable, g € L2( x D x £2). In the special case wheyeandg are, respectively,
the characteristic functions of two Borel setsB € Z(I x D) with |A|, |B| < oo, (2.8) implies

Cov(W(A), W(B)) = |AN B. (2.9)

2.3 Integral solutions

By multiplying (I2) with a test functio® € C2(D x (0, o)) and using the formal relatiofi (2.4),
one can write the problem in the usual weak fgrm

/OO/ (udp — dxudedp — fo(u)d) + €’ /oo/ ¢ dW = 0. (2.10)
0 D 0 D

1 Foru € R ands € R we denote by Nu, o2) the class of normally distributed (or Gaussian) random variables of
meany and variance-2 on the space?.

2 n compliance with the standard practice in stochastic differential equations, we write explicitly the probability variable
w € 2 as an argument to random variables only when necessary in order to avoid confusion.

3 Whenever the meaning is clear from the context, for sake of conciseness, we often drop the variablasd, in
nonstochastic integrals, also the corresponding elementary terms “d”.
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Despite the above formulation being quite useful, especially for studying a numerical scheme, it
is not very convenient to nail down the concept of solution. A rather more convenient way to give
rigorous meaning td (1.1) is to look for an integral solution ofegquivalent integral equation
[DPZ92,Doe87, FIJLE2, Wal86], as we briefly illustrate next.

Introduce first the corresponding boundary value problem for the stochastic linear heat equation
[DPZ9Z,[Wal86]

WZ—0Z =0qW inDxR],
Z(x,00=0 onD, (2.11)
0:Z(1,t) =0,Z(—1,t) =0, Vte]0,00).

The solution to this problem can be defined as the Gaussian process in space-time produced by the
stochastic integral

t
Z;(x)=Z(x,1) = /0 /DGt,S(x, y)dW(y, s), (2.12)

where G is the heat kernel for the corresponding homogeneous Neumann problem. In our one-
dimensional particular casé, can be explicitly written as

1 k 1 —2k2t
x4+ )cosn &y + )exp T

> i k(
Gi(x.y)=4) (2-5)cos 5 5 YR

k=0

(2.13)

wheres}, is the Kronecker symbol.
Theintegral solutionof (T.7]) can then be defined as a solution of the equivalent integral equation

t
u(x,1) = — fo /D Gy (. ¥) feluly, 5)) dy ds + /D Gi(x. Vo) dy + €' Z,(x).  (2.14)

It is known that such a solution exists uniquely as % /)-valued continuous process, —

u(-, t), adapted tdZ,, provided the initial conditiomg satisfies the Neumann boundary conditions
[BDMP95,Wal86/ FJIL82]. In this article we use this concept of solution which we refer to simply
as thesolution of ProblenfL.1)), (2.2)-(2.3), and we will denote it by. Notice that is also referred

to by some authors as tl&nzburg—Landau proce§BDMP95].

For the aims set in this paper, namely, in order to study the error of convergence of an
approximation of the solution of (1.1), we will need a uniform bound #orWhile in the
deterministic case such a bound is a direct consequence of the maximum principle, in the stochastic
case one cannot expect to have a uniform bound in the whole probability space. However, a bound
on a set with large probability controlled leywill suffice for our needs. We present an extension of
a previously known result of Brassesco etlal. [BDMP95, Prop. 5.2].

2.4 LEMMA (Probabilistic maximum principle)Lety > —1/2. For eacl’ > 0 andKp > O there
existcy, c2, 8o > 0 such that if|ugllL. (p) < 1+ do then
P{ sup. 1) lco) > 1+ Ko} < c1exp(—cp/e ). (2.15)

te[0,T

Proof. We reduce the proof to that of [BDMPO5, Prop. 5.2] by introducing the time-space rescaling
t — t/e? andx — x/+/2¢ and extending the solution periodically to the whole space so as to
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obtain the proper barrier function. Since we are dealing with the more generay case-1/2,

while they deal with the casg = 0 only, we retrace the salient points of their proof. The barrier
functionv satisfies the following equation—corresponding to [BDMP95, (5.12)]:

1
00 = S0 + 20 = —32 =3y 27 VA2 W (2.16)
Consider now the function
' NG
Vix, 1) = /0 exp(—2(t — ) H Y2 (x, y) dW (v, 5), (2.17)

whereH,(isﬁ) is the Green operator defined by

1 —l
exp(—20)HY? = (a, = 50 +2 Id) , (2.18)

with homogeneous boundary conditions(er/+/2¢, 1/+/2¢). By using [BDMP95, equation (5.2)]
with A = exp(—(y +1/2)) and adapting properly the proof 6f [BDMP95, Lemma 2.1] we can easily
conclude that for each > 0 there exist1, co > 0 such that

Pf[ sup |72V (x, 1) > b] < crexp(—cp el (2.19)
t<Te 2, xeR
The rest of the proof is now standard. O

3. White noise approximation

In order to introduce a finite element method (FEM) that approximates a solutipn df (2.14), we first
need to obtain a weak formulation in the standard sense of PDE and FEM. This is not possible with
the presence of the white noise, so we regularize first the problem by replacing the white noise with
a smoother stochastic term. Our technique is inspired by that of Allen, Novosel & Zhang [ANZ98]
for the linear heat equation.

3.1 A piecewise constant approximation of the white noise

Consider a tensor-product partition of the space-time dontainx .7, whereo, p € R* and

Dy =Dy, Dy i= (Xpu_1, Xm), m € [1: M]}, 3.1)
]p = {In oy = [tn—la fn), n € [1 : N]}, .

are, respectively, a space-domain partition and a time-domain partition; each of these partitions is
uniform, that is,
Xm — Xm—1=0, Vmel[l:M], and t,—t,_1=p, VYne[l:N], (3.2)

andxg = —1, x) = 1,10 = 0 andry = T. We denote by, = 1p,, andg, = 1; the characteristic
functions of the space subdomains and time subdomains respectively.
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The (piecewise constardpproximation of white nois@bbreviated by AWN below, is given by
the random space-time function

N N
B W, 1) =D dimn X () (1) (3:3)

n=1lm=1

where the coefficients are the random variables defined by

1
Nm.n 1=—/[ Xm (X)@n (1) AW (x, 1). (3.4)
op JrJp

In the following we will use the shorthand

t t
//f(x,s)dW(x,s):f / f(x,5)dW(x,s)dxds, (3.5)
0 JD 0 JD

in spite of the integral being taken in the classical, nonstochastic sense.

3.2 LEMMA (Moments and independence of the AWN coefficientBe coefficients;,, , defined
in (3:4) are i.i.d. NO, 1/0p) variables.

Proof. From the definitions ofj,, , and property[(2]5) we have

_ 1
N = —// Xm (X (1) AW (x, 1)

_ / dW (x, W(In X Dm)
I, /D,
]n Dm
E N(O, %) - N(O, —>. (3.6)
o“p op
To show independence compute the covariancesiforn’ € [1: M] andn,n’ € [1: N], using
(2:9), as follows:
(UP)Z]E[f/m,nﬁm/,n’] = ]E|:// Xm®n dW// Xm' Pn’ dWi|
1JD 1JD
:/f Xm () Xom (X))@ () 0y (1) dx dr
1JD
whereaj". is the Kronecker symbol. |

The AWN has two important technical properties that we state and prove next.

3.3 LEMMA (Approximate 16-type inequality) For all deterministic functiong € L>(I x D) the
following holds true:

E flx,)dW(x, 1) ’ < f(x, ) dx dr. (3.8)
1JD 1JD
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Proof. Lemmg 3.2 and some manipulations yield

([ f s ]-o{(] e s
Al ey
gl foo) o= 5wl L)L)
s ([ -2 L)

< 2:// , )2 dx dr.
mZ/I =] s

In the next-to-last step we use the Cauchy—Schwarz inequality. O
3.4 REMARK Lemmg 3.8 and (2]6) imply that

]E[(/I/Df(x,r)dvv(x,t)f}gE[(flfo(x,t)dW(x,t)f}. (3.9)

In other words, the k-type regularity properties of the AWN will be, at the worse, the same as those
of the white noise itself.

Since we will need bounds on space-time norms of the AWN, but in probability rather than in
expectation, we establish the following basic result.

3.5 LEMMA (Lo (L2) and Lp(L2) bounds for the AWN) For eachk > 0 we have

T Kz /o1 K2 +
i sup (18, W () llL,p) < } > [1— ;(1+ 7,0) exp<—7p)} (3.10)

t€[0,T]

and

_ KZ T/(op)—1 K2
{10 Wiyt < K} > 1— <1+ 7) exp<—7>. (3.11)

Proof. We proceed in several steps.

Step 1. RecallthatM = 2/0 andN = T/p. By the definition ofd,; W we have, for eache [0, T]
andn € [1: N] such that € I,

M
Z (3.12)

where then,, , € N(O, 1). In order to conclude, we will obtain a condition on the right-hand side
that makes it smaller thaki?, for alln € [1 : N].

bll—\

M
192 WL oy =0 Y T =
m=1
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Step 2. For eachn € [1 : N] we consider the random variable

M
Hy= ", (3.13)

m=1

Notice that, in view of Lemma 3|2 far # n’, H, and H,, are independent. Let us fix for a
while and find an event for whick,, < pK?2. By Lemm and a basic probability fact [Bil95,
Pbm. 20.16], the random variaht§, has a chi-squared distribution witli degrees of freedom. Its
density is given by

M2 lexp(—z/2)

f 0, 3.14
221 (M)2) orz > ( )

and O forz < 0, wherel™ is the Euler Gamma-function. Thus we have

P{H, < pK?} = M/2-1 axp(—7/2) dz. (3.15)

1 oK?
272 (M/2) /0 <

Step 3. We next prove a lower bound on this integral in the case wi€ris even, the odd case
being similar. Lety play the role ofp K2 and consider for each e Ny the integral

y
Iy ::/ Fexp(—z/2) dz. (3.16)
0
An integration by parts yields the recursive expression
Iy = 2kI_1 — 2yF exp(—y/2), (3.17)

which allows, by an inductive argument, to see that

k

k! -

=2 -2y T Y2l exp(—y/2). (3.18)
i=0 )

An easy manipulation with the binomial formula implies that
I > 2% — A+ y/2)  exp(—y/2)). (3.19)
Takingk = M /2 — 1 in the above and recalling the definitionffand [3.14) it follows that

pK?2 M/2-1 oK?
P{H, < ,oKZ} >1- <1+ T) exp(——), (3.20)

which implies

2\ M/2-1 2\ 7+
P(H, < pK?) > [1— <1+ ﬁ) exp(—&)} | (3.21)
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Step 4. To conclude the proof, we introduce the event
N
22 = ﬂ{Hn < pK?), (3.22)
n=1

and we observe that, in view ¢ (3]12), & we have
195 WD) lLyp) < K. V1 €[0,T]. (3.23)

On the other hand, using the independencl,gf: € [1 : N], the simple fact thatl—£)" > 1—N¢&
for & < 1 and[3:2]L) we can estimate the probability

N
P@2}) =[] PtH. < pK?)

n=1
KZ M/2-1 K2 +\ N
([ (e) =) )
2\ M/2-1 2\ 7+
> [1—N<1+ %) exp(—%)} . (3.24)

By replacingN = T/p andM = 2/c we get[3.ID).
Step 5. Estimate[(3.1]1) is obtained simply by usifig (3.21) witki> and M replaced byk? and
M N respectively. O

3.6 REMARK (Alternative proof) As pointed out by one of the referees, it is possible to prove
Lemmg 3.5 more directly, by using martingale inequalities.

3.7 REMARK (Interpretation of[(3.7]0) an@ (3.]L1))Ve may rewrite the term appearingin (3.10) as

T 2 1/o—-1 K2
—(1+ 7/)) exp(—T,o) =:TexpF(p,o, K). (3.25)
0

A practical way to use such a result is by fixing firBt p, o in RT™ and then requiringk
to be big enough such thatexpF(p,o0, K) « 0. This is made possible by the fact that
limg_ o0 F(p, o, K) = —oo for any fixedp, o € RT. The same type of observation is also valid

for (3.13).

4. The regularized solution

We now introduce the regularized solution to probldm](1.[1),] (Z-2)}-(2.3), which we obtain by
replacing the white noise by the AWN ip (1.1). The role of the regularized problem is pivotal in
devising a numerical scheme to approximate the stochastic Allen—Cahn problem. We discuss the
approximation properties of this regularization with respect to the original problem.

4.1 DEFINITION The regularized solutioniz, of the noisy Allen—Cahn problem is the unique
continuous solution of the integral equation

t
ux, 1) = —/0 /DG;_S(x,y)fe(ﬁ(y,s)) dy ds

t
+/DGz(x,y)uo(y)dy+6V/0 /Dszs(x,y)dW(y,S). (4.1)
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4.2 LEMMA (Maximum principle for regularized solutions)-or fixed T, Ko > 0, there exist
80, c1, ¢2 > 0, independent of, such that iffluollL, (p) < 1+ o then

P{ sup a®l.) < 1+ Ko} > 1— cyexp(—ca/e!?), 42)
t€[0,T]

Proof. We follow exactly the proof of Lemmp 2.4, by observing that}(3.9) ensures that all the
estimates for the stochastic integrals of the white noise can be “translated” into corresponding
estimates for the integrals of the approximate white noise. The constants appearing in this theorem
can therefore be taken to be the same that appeér ih §2.4. O

4.3 REMARK (Regularized solution is strong solution)otice that the regularized solutioh of
(@) is in fact a weak solution in the PDE sense, ii€; w) € HY(D) andd;ii(r; w) € La(D) for
allt € (0, T]andw € £2, and the followingwveak formulatioris satisfied:

(0u(t; ), @) + (0xu(t; @), 0xP) + (fe (u(t; @), @)
=&’ (0 W(t:w),¢), Vo € Hy(D).t€(0,T], (43)
u(0; w) = uo,
for eachw € £ (the notation(-, -) indicating the inner product in4(D)). Indeed, each of the
AWN's realizations,; W (w), is a piecewise constant space-time function. For each such realization

the usual regularity theory for semilinear parabolic equations with piecewise continuous data can
be applied and the corresponding weak formulation written down [LSU68].

Our next goal is to show that the regularized approximate solution converges to the selution
For this we will estimate theegularization error

e(x,t) =u(x,t) —u(x,t), (4.4)

in terms of the white noise regularization parameteendp, and show that it converges to zero in
an appropriate sense.

4.4 THEOREM (Convergence to the stochastic solutiofpr a fixedT', there exist constants, cz,
C1 andC> such that to each € (0, 1) there correspond an eve2° and a constanf. > 0 such
that

P(2%°) > 1— 2c1exp(—cp/er?), (4.5)

T 2
/ (/ / lu — u|2> dP < C. <C1pl/2 + CZUT/Z), VYo, p > 0. (4.6)
2=\Jo Jp Y

Proof. We proceed by steps.

Step 1. By the integral representations of (2.14), andz, (4.1), we can also represent the error as
an integral

t
6(x,t)=/o fDGz—s(x,y)(fe(ﬁ(y,S))—fe(u(y,S)))dde

t
+e /o /D Gy (e, 1) (AW (v, 5) — AW (v, 5) @.7)

for all (x,7) € D x (0, T]. So our task is now to bound the terms on the right-hand side df (4.7) in
the appropriate norm.
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Step 2. In view of the maximum principle for both the exact solutiop, $2.4, and the approximate
solution, §4.p, there exists an eveRf°® C 2 such that

P(2%°) > 1— 2c1exp(—cp/ett?) (4.8)
and

2 C{llu®llLomy. la® Loy < 3, Ve € [0, T]}. (4.9)

The choice of the number 3 is quite arbitrary here. In fact any number of the fornkgd with
Ko > 0 will do, with the appropriate change of constants. This and the local Lipschitz continuity of
f imply that

28
[fel@) = fe()] < 5l —ul onzr. (4.10)

Step 3. Working now on the ever2>° and introducing the functions

e(r) = /r/‘ e(x, )% dx dr, (4.11)
0 JD

b() :=f0r/D

forall r € [0, T], we infer from [4.7) that

t 2
//G,_S(x,y)(dW(y,s)—dW(y,s)) dx dr (4.12)
0 JD

r t 2
e(r) < 2/ / </ / |G_s(x, y)|2—§e(y, s)dy ds) dx dr + 2€2y¢(r). (4.13)
0 JD 0 JD €

The integral in[(4.13) can be bounded, using the Cauchy—Schwarz inequality, by

r t t r
zﬁf /(/ / |GH(x,y)|2dydsf /e(y,s)zdyds>dxdt=/ ey dr  (4.14)
€ 0 JD\Jo JD 0 Jp 0

where
28 ! 5
z(1) = 2—4/ / / |Gi—s(x, y)|“dyds dx. (4.15)
€ pJo Jp
Inequality [4.18) implies
e(r) <o) +/ z(t)e(r) dt (4.16)
0
for eachr € 1. Applying the Gronwall lemma to this inequality we obtain
T
e(T) < exp(/ z(t)dt>62"¢(T) < Cep(T), (4.17)
0
where—by estimating the heat kernel—the constant is given by
28T
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Step 4. By summing with respect t® on the event2>° both members of this inequality we obtain

T
/ / /|12—u|2dxdth<C€/ ¢(T)dP < C. E[p(T))]. (4.19)
>~ Jo JD QX

We conclude by observin@ [ANZ98, Lem. 2.3] that there exlstC> > 0, depending only off’,

such that )

o
E[¢(T)] < C1p"? + C2_ 1 (4.20)
Thus we established that
T o2
/ / / i —ul?dedt dP < C. [ CrpY2 + Co—75 | - (4.21)
exJo Jp o
as claimed. O

4.5 REMARK (about the constartt.) Theoren] 4.4 ensures that, for fix@dande, the approxi-

mate solution: converges tat asp, o0 — 0. The constan€, appearing in the estimate depends
exponentially on both /* and T, thus for smalle, or largeT, this might force us to take very
small p ando . This fact should be taken into account in practice. The bound we have proved seems
to be pessimistic though, as the choiceradind p, used in our subsequent numerical experiments,
indicates.

4.6 REMARK (Convergence rate)Recalling thato ando can be thought of as discretization (in
addition to regularization) parameters, the convergence rate foupd jn (4.6) is in accordance with
standard results for linear parabolic equations, e.d. in [ANZ98]. Note that fer Co?, the so-

called “parabolic space-time scaling”, we obtain the right balance between the two terms on the
right-hand side of (4]6).

5. The regularized solution’s limit for ¢ — 0

In this section we focus on the relation between the regularized stochastic Allen—Cahn problem
(4.3) and the deterministic version. The reason to do this is to find, in an analytical setting, what
conditions should be imposed on the regularization parametersjo, for the noise to be captured

in the regularized equation.

We mainly show that the error betweanand the deterministic solution to the Allen—Cahn
problem,q, in an appropriate probability4(0, T'; L») sense, is of order @) ase — 0 for fixed
y > 3andp,o > 0. In §5.6 we give an interpretation of this result as an evaluation of the risk
of obtaining a poor resolution of the noise for fixedando and too smalk. This poor resolution
may lead to the disappearance of the stochastic effects in the regularized equation, even after the
appropriate rescaling, becaus&ecomes much closer tpthanu, with respect te. This point is
further investigated numerically if §7.

Our proof makes use of gpectrum estimateesult for the linearized Allen—Cahn operator
[Che94, dMS95], which is recalled in Theorém|5.2, and théZl) estimate on the noise given
by[3.5. The proof’s technique is a continuous data dependence result for parabolic equations based
on a Bernoulli-Gronwall type argument, in the spirit of Feng & \Wu [FWO05].

The result holds foy > 3 and it is an open problem, as far as we know, to find the critidar
which the result ceases to hold.
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5.1 Deterministic solution and resolved profiles

Denote byg the (classical) solution of the problem

0:qg — 0xxq + fe(g) =0 inD x I, (5.1)
q(0) =up onD, (5.2)
0,q(,0) =0,q(t,1) =0, rel. (5.3)

We also consider the functiapy of the space variable only defined as the unique solution to
—qo + fi(go) =0 InR,  go(+oo) = £1, go(0) = 0. (5.4)

(In fact, go = tanh.) We will assume from now on thap is aresolved profile solutianwhich

is defined to be am-linear perturbation of ar-rescaled and shiftegp. That is, for allx € D,
uo(x) = go((x — xp)/€) + €po(x) wherexg € D, and pg is such thatg satisfies the Neumann
boundary conditions;(+1) = 0. With this choice of initial condition the linearization of the
operatomu — —dyyu + fe(u) aboutg enjoys the following spectral property.

5.2 THEOREM (Spectrum estimaté [Che94, dMS$95])here exists a constahg > 0 such that for
anye € (0, 1] we have

1920112, p) + (L@, 8) = —2ollplIZ,p). Vb € HY(D). (5.5)

It is also a well-known consequence of the maximum principle thatpif < 1 (which is the
case whenmg is a resolved profile) thejy| < 1.
The main result of this section is

5.3 LEMMA (Continuous dependence for the regularized-deterministic erfidrgre is a bounded
and nonincreasing functiok; : [0, co) — R and a constankz, both depending only okg, such
that

li(t) — gL,y < Ka2€3 (5.6)
provided

t
/0 192 W ()1, ) EXR(— (3 + 2h0)s) ds < K1(1)e® 2, (5.7)

fort € [0, T].
Proof. We divide the proof into several steps and we denote|in |k_,p) Simply by| - |I.

Step 1. We start by deriving an energy inequality for the error
e:=u—gq. (5.8)

Sinceu satisfies the weak formulation (4.3) aqds a classical solution, we can write the following
PDE in its weak formulation fo#:

- 1
(0€, §) + (9xe, 0x9) + ([ (@), §) = €7 (3 W, §) — 6_2<f§2, ¢), VYpeHY (D), (5.9

where
r:=3¢+e=29+u. (5.10)
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Testing withe in (5.9) we obtain

(8,2, 2) + 10:2)1% + (fl(q)e. &) < € (3, W, &) — ;2(?, e3). (5.11)

Step 2. The next step is to bound the terms on the right-hand side of|(5.11). The first term can be
written as
v - _ EZV - 2 1 _ 2
€’ {0, W (), e(t)) < 7|I3xtW(t)|I + Elle(t)ll . (5.12)

To produce a bound on the second term of the right-hand sidle of (5.11) wje uge (5.10), valid in one
spatial dimension, to obtain

(F(1). 813 = 3(q. &)%) + eI} p)- (5.13)

By the fact thaig| < 1 and the Sobolev embedding ) < L. (D), valid for D c R, the first
term on the right-hand side of (5.13) can be bounded using

13(g, 6% < 3le@ L lE@ I < Calle® g py e
C2
45 2 1 ~ 4
< A€ ||€(f)||H1(D) + m”e(f)” (5.14)

where(1 is 3 times the Sobolev embedding constantfoandi; := min{1, 1o} (the reason for
this choice will be apparent in the next step) withfrom (5.3). As a consequence we have

- _ Ca _ 1 _
-5 (. &%) <aae?lellfa, + gnen“ —~ ;nenﬁm (5.15)

whereCp = C2/4).1.
Step 3. Owing to the spectrum estimafe (b.5) and the fact yiég) > —1 we have
I8:2)1? 4 (f.(q), &%) = A = (1 — €%)A + €A
—(1— eAnollel® + €2 ayell — lle))?
—((1— Ao+ Dlle)? + 219,22
—(1+ ro)lIel® + €2(lla.ell® + rollel?)
> —(1+ ro)llel|® + r1€?|je)|? (5.16)

HY(D)*
The inequalitied (5.11); (5.12), (5]16) and (3.15) lead to

WV

1
> dille) 1% — L+ ro)l1e@))2

< o2+ 2
X 2 Xt 2

Consider, for the rest of the proof, the following notation:

_ Co _ 1 _
le®I+ S 1e1* = S1ewl,py, Vel (517)

g)=llel% a:=3+20, b:=2C/°,

] i (5.18)
r(t) == € |0, W(1)||% — ||€(f)||ﬁ4(0)-
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Then [5.IF) implies
gt <ag(t) +bg()>+r, Viel0,T]. (5.19)

Step 4. To proceed we will apply a Bernoulli differential inequality technique, which generalizes
the Gronwall lemma, in order to get a boundg(m). We follow Feng & Wu [FWO05, Lem. 2.1].

Fixat € [0, T] and let

o(s) = /(; exp(—at)r(r)dr and p(s) ;= pi(s) = (o(t) — o(s)) explas) (5.20)

forall s € [0, ¢]. Since
p'(s) = dypi(s) = —r(s) +ap(s) and p(s) >0 forse[0,1], (5.21)
we may write
di(2(5) + () < a(g(s) + p()) + b(g(s) + p(s))*>  fors [0, 1]. (5.22)
Introducingz(s) := 1/(g(s) + p(s)), we can rewrite this inequality as
Z'(s) +az(s) = —b, Vsel0,1]. (5.23)
Multiplying by exp(as) and integrating over [0] we obtain

b(1 — exp(—at))
B E—

z(t) =2 z(0) exp(—at) — (5.24)

If we note thatg (0) = ||e(0)|| = 0, p;(0) = o(¢) and p;(¢) = 0, this yields

i > a — bo(t)(explat) — 1). (5.25)
g() aexplar)o(r)

We now invert both sides of this inequality, under the sufficient condition that
a—bo(t)(explat) — 1) > 0O, (5.26)

and we get
aexplat)o(t)
a — bo(t)(explat) — 1)

Step 5. To conclude we want to interpret this result more explicitly. Let us replacelfirsi](5.26) by
the sufficient condition

le@? <

(5.27)

a —bo()(explat) — 1) > 8(1), (5.28)
for somes(r) > 0 that will be chosen appropriately. This is equivalent to

a—58(t)

b(expat) — 1)’ (5.29)

t
/ exp(—as)r(s)ds (= o(t)) <
0
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This can be ensured if we assume
(a —8(1)e5%

t
- 2 B (a =8>
/0 |05 W (s)]|“ exp(—as) ds < 2Co(expan) — 1) (5.30)

Under this condition we obtain the bound
a(a —8(1)) explat) ¢

1201 < 2C28(1)(expar) — 1) ¢ (6-31)
Step 6. We conclude by taking
3(t) := max{a — explat) + 1, a/2}, (5.32)
ie.,
I P
wherer, = log(1+ a/2)/a. Then, after putting
Ki(t) = min{, a/2;er2p(at) Db ors >0, (5.34)
condition [5.29) may be replaced by
fo 00 W62 exp—as) ds < Ka)e® 2, (5.35)
a condition under which we have, frofn (5/31),
le@)? < KZe®, (5.36)
whereK? := SURg ., K1(1)? explat) < oc. O

As a consequence of this estimate we state the following result, which, roughly speaking, implies
that in order for the noise to have the chance of persisting in the lim#,-as 0, the parameters
0, o must also go to zero.

5.4 THEOREM (Low-intensity approximate white noiseYhere exists a constatt = C(Ag) such
that for all fixedy > 3, p, o, T > 0 we have
lim P{a) € 2 suplli; @) — qllLymy < Ce3} -1 (5.37)
e—0 [0.7]

Proof. LetC = K2 in (5.6). Choosing to use anpl0, ¢; Lo(D))-norm estimate for the white noise,
for the estimate[(5]6), in view of the monotonicity &, it is enough to assume the sufficient
condition

t
/ 135 W (s)II2ds < K1(T)e® 2. (5.38)
0

According to [3.I]L), this condition is satisfied with probability

T/op—1
1-— (1 + @662}) exp(—@eszy). (5.39)
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Sincey > 3, we have 6- 2y < 0 and, for fixedo, p andT > 0, it is possible to make this
probability arbitrarily close to 1 for > 0 small enough, as claimed. |

5.5 REMARK Note that, itis also possible to obtain a variarjt of 5.4 by employing|3.10) instead of
(3:173). This leads to slightly better lower estimates of the probability for the sam® for longer
timeT.

5.6 White noise resolution by the AWN

We now describe one interpretation of Theofenj 5.4.

Note first that, in the theorem’s statement, the AWN regularization paraneetard p are kept
fixed whilee — 0. Itis well known that, ifug is a resolved profile with center &g (see 7.2 for a
definition of center), i.eyo = tanh((x —xg)/2¢), ase — 0, the solutiony = ¢¢ of (5.7)) converges,
in an appropriate sense, to the stationstgp functiony, = L(xy00) — l(=o0,xg)- SO Theorerp__E]4
is saying that for fixeth, o > 0 and fore — 0, the solutionj, of the regularized problem (4.3)
converges to this stationary step function.

Second, we note that, owing to a result by Funaki [FUn95, Theorem 8.1] or a similar one by
Brassesco et al. [BDMP95], there exists a stochastic praces$ — & (w) such that

lim P{a) €2 sup  IluC, 1 0) — xer(a o) > a} -0, (5.40)
N0 1€[0,Te—1-27]

for each fixeds > 0, wherey,, is the step function defined above, amgw) — & is a stochastic
process which converges as— 0, in an appropriate sense (in law), to the standard Brownian
motion rescaled as to have diffusion coefficie\y%el/zﬂ wherecg = 3ﬁ/4. Of course, as
€ — 0,&7 (w) — xo, Wherexg is the center of the initial conditiomg; this implies that the limits of
u andu are consistent, as— 0, even wherp ando are kept fixed.

Suppose now that one wishes, in view of Theofen 4.4, to use the regularized sal@ion
instead ofu(¢), to approximate the diffusion coefficient of the process &°. One way of doing
this would be to approximate (numerically), w) for w € £2 (or a discrete analog), find its center,
if it exists, £¢ (), and finally compute its average (excluding solutions that have no center) and
its variance ovet € £2. The resulting variance, rescaled appropriately, i.e= Var[&] /ety
is expected to converge to a linear functiom> cot ase — 0. This rescaling, which we shall
call the Mueller—Funaki rescaling [Fun95], is necessary in order to get a result that is essentially
independent of and thus easy to visualize.

Theore tells us that, for fixed o > 0, the rate of convergence @f— ¢ is O(¢3/2). Since
the distanceE [q (1) — xee 12)1/2, as can be seen using a piecewise constant approximation of tanh,
is O(e1/2), it follows thatii is closer tag than xee and that any statistics conductedibmay lead to
wrong results. This is a strong indication, which is confirmed by the numerical resufis in §7, that in
order to capture the stochastic effects the parametarslp must be chosen as functionseofNote
that a similar conclusion can be derived from Theofem 4.4 in case the dependehcprofes to
be effective, but the nature of this similar conclusion has its roots in deterministic considerations
rather than stochastic ones.

Although we have proved Theor¢mb.4 for valuegaf 3, it is natural to expect similar results
for lower values ofy. In fact, our numerical experiments in Sectjign 7 indicate that this is the case.
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6. An Euler—Galerkin finite element scheme

We now introduce finite element discretization of the regularized proljleth (4.3).

6.1 Discretization partitions

We begin by introducing the space and time partitions

Dy =1{D,,: D,, = (x,,_q1,%,), me[1: M1}, 6.1)
Ii={Ly I =1t,_q.1)), n€[1:N']}. '
These partitions do not necessarily coincide with the partitios and .7, used for the
regularization procedure irf 83.1. Bearing in mind that this setting could be further generalized,
we limit ourselves here to the case where the numerical discretization partiignand .7,
are refinements of the white noise regularization partitiGiisand .#,, respectively. For each
D), € 2, there existsD; € 2, such thatD,, C D; etc.; this determines a unique mapping
w:[0: M'] — [0:M] such thatD,, C D, . For simplicity, we also assume that the partitions
are uniform and that thmeshsizandtimestepare denoted respectively thyandk. The reason we
do not make these partitions coincide is that for the finite element method’s convergence analysis
it may prove useful to have more involved couplings of the thpe h(o) andk = k(p). In this
article we consider only the simplest situation possible whetes andk = p.

6.2 Finite element space and the discrete scheme

Let V C H%(D) be the space of continuous piecewise linear functions associated with the
partition 7. We define thgspatial) semi-discrete solutioas the time-dependent random finite
element functiorU : [0, T] x £2 — V which solves the SDE

(@U@, V) +(0:U @), 0.V) + (fe(U@), V) = (0, W, V), VVeV,1€[0,T]. (6.2)
We discretize further this SDE in the time variable by taking a semi-implicit Euler scheme in time

associated to the partitiah= {ro} U |, I,

n _ yrn—1
<%, V> + (0, U", 0, V) + (fe(U"_l), V)y=(0uW,V), VVeV, rel0,T]. (6.3)

The scheme is semi-implicit in that the linear part is treated implicitly while it is explicit in the
nonlinearity. This means that at each timestep only one linear problem has to be solved and no
nonlinear solver is needed.

In practice, it is more practical to use a modified versiorj of|(6.3) given by

n _ ymn—1
<% v> + (0, U™, 0, V) + (fLu"hHu", v)
= (F/UHU L~ LU, V) + €0 W, V), YV eV, re[0.T], (6.4)

which allows bigger timesteps [KNS04]. Note that this amounts to a linearization involving one
step of the Newton method to solve the nonlinear (fully implicit) backward Euler scheme.
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6.3 The linear time-stepping system

Let us indicate the basis functions ¥fby @,,, for m € [0 : M’]; these are the piecewise linear
continuous functions such that, (x;) = §" for/ € [0 : M']. If we indicate byu" = (u},)
the vector of nodal values corresponding to the discrete soldfibat time:”, that is,U" (x) =

oM o Ul @ (x), then we can translatg (6.4) into the following matrix form:

m=
1 1 1 1
IM4+A+ ZN@ Hu' =g H+ Mu"t+ew, (6.5)
k €? €? k

where M, A are the usual finite element mass and stiffness matrices, respechvaly,~1) and
g(u"1) are a “nonlinear” mass matrix and load vector, respectively,ane: (w,,) a random
load vector generated at each timestep. A short calculation shows thatdorinternal degree of
freedom (node) we have
h

Wm = %(nu(m)—l + nu(m))y (66)
wherep is the mapping introduced earlier in this section gpés an N0, 1) random number for
[ € [0: M], or zero forl = —1, M + 1 (the boundary cases). If the partitio’s and &, coincide,
which will be the case in the next section, ther- o and [6.6) simplifies to

1/h
Wm = E —(Mm=1+ 1m). (67)
\ o

This is the form that we employ in our computations below. From now on, we will ass@rand
% to coincide, i.e.k = p in all our computations.

7. Computations

We now discuss numerical simulations of the Allen—Cahn problem, using the schefne (6.5). Our
main purpose is to match the behavior of the exact stochastic solution with the behavior of the
Monte Carlo type numerical solution. By “exact behavior” we refer to the theoretical results of
Funaki [Fun95] and Brassesco et al. [BDMP95]. Our numerical experiments are directed towards
testing relations between the various parametgysandp, o. In addition to takinge = p, we also

takeh = o.

7.1 Monte Carlo simulations

We use the finite element schenfie [6.4) in combination with Monte Carlo type simulations. For
each choice of parametees y and meshsizé, we choose the timestgp = 72 and compute
between 1000 and 2500 sample paths, each with a different seed for the pseudo-random number
generator.

Each sample path runs from time 0 to a final tirfie At the beginning of each run, the
random number generator is seeded and the subsegyeppearing in[(6]7) are chosen according
to this seed for all the run. The seed for each sample path is determined by the clock of the
machine at the start of each run (these are also recorded for rerunning purposes). In this section
we denote the numerical solution (which tacitly depends: op, i, etc.) by (U}),e[o:n], Where
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n corresponds to the timestep ands a discrete sample, i.e., the choice of the initial seed. We
indicate bys2 the discrete sample space, which can be thought of as being the set of all initial seeds
employed.

7.2 Phase-separation interfaces and centers

Our benchmarking procedure consists in comparing the behavior of the center of the discrete
solution with that of the exact solution. A functiene H1(D) is said to have a centerifix) = 0
is uniquely solvable with a sign change foe D = (—1, 1); the solution ofv(x) = O is called the
centerof v. For example the functiom(x) = tanh((x — xo)/~/2¢) has centekg.

The center represents a O-dimensional interface separating two phases in the 1-dimensional
Allen—Cahn model considered here. Due to the noise a solution with centeucksatei.e., give
rise to new zeroes, during the evolution; in this case it makes no longer sense to speak of “the” center
and we simply saynterface positionSuch solutions, as we shall see, must be treated carefully in
the statistics. We also note that an interface may disappear, eitretiting the domainD or by
annihilatinganother interface.

7.3 Abenchmark

According to known resultd_ [Fun95, Theorem 8.1]. [BDMP95] and the discussion ddne]in 5.6,
we expect the center di” € HY(D), if any, to perform a (discrete) Brownian motion, modulo
perturbations of order @) and the numerical discretization error. Therefore, we will declare our
numerical scheme to be acceptable if we see evidence of this Brownian motion in our computational
results.

Based on this observation, oulrenchmarking procedureonsists in tracking the center
(ED)osn<r/k C (=1, 1) of the computed sample pathi}) o<, <7/, Wherew ranges over a discrete
sample space, and we perform statisticS BY)o<. <7/« by averaging ovew. In order to obtain
meaningful statistics, we keep the number of interfaces constrained to 1. Paths that maintain a center
up to the final time are callealdmissible sample pathE new interfaces are created, or the center
exits from(—1, 1) during the computation of one sample path, it is rejected asadmwissible the
computation is stopped, and the computation of a new sample path is started. The average and
variance of the interface position are computed over the admissible sample paths. The resulting
average interface positiofi[ £”], and its variance, Vag"] = E[(E")?] — (E[E"])?, are real-
valued functions of (discrete) timg.

According to [5.4D) and the subsequent remarks, the average pdifist) must be close to 0
and its variance must be closedg 12" 1,, and this is what we will be after in the next section.

Note that our use of the benchmark is not as strict as is usual in the context of numerical schemes
for deterministic nonlinear equations. In the latter case, an exact solution is usually readily obtained
and the benchmark procedure simply consists in measuring the error between the two solutions. In
the linear stochastic case, a similar approach can be used with the moments of the SPDE’s solution
[ANZ98]. We should stress, however, that in our case, which is both stochastic and nonlinear, the
exact solution is seldom known analytically, making such simple benchmarking nearly impossible.

7.4 Simulations and results

We run a series of Monte Carlo tests with various combination of parameters as follows:
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S=0
while S < Smaxdo
for @ = clock timedo
seed of the random number generator with
for y = 0.0, 0.2, 0.5do
for ¢ = 0.08, 0.04, 0.02, 0.01do
for1 =6, 7, 8, 9{/ is therefinement levéldo
leth = 21! andk = h?
forne[1:T/k] do
solve [6.5) forU?,
find =7 such that/}(Z7) =0
if £ exists and is uniguthen
let E[Z"]new = (E[E"]S + E5)/S
let E[(Z2")?]new = (E[(E")?]S + E1)/S
else
break and skip to the nekt
end if
end for
declare sample path successful:
S=S5+1
E[E"] = E[E"]new
E[(Z2")?] = E[(Z2")?]new
end for
end for
end for
end for
end while
The results are reported in Figufgg [, 2 phd 3 for the valugs6f0.0, 0.2, 0.5, respectively. In
each figure the sub-figures (a), (b) and (c), each of which is split into a top and bottom part, shows
the graph, as (discrete) functions f € [0, T'], of the (discrete) average positid{Z"] in the
top part and its variance V&" := E[(5")2] — E[£"]2 rescaled by 1172’ T in the bottom part
for the values ot = 0.04, 0.02, 0.01, respectively. (For easier visualization we plot the piecewise
linear interpolation of discrete functions.) Different lines in each of these three diagrams correspond
to different values of the mesh refinement lelvéThe absence of a line means that the total number
of successful sample paths is 0 and no statistics are produced. The diagrams (a), (b), (c) correspond,
in each figure, to the values ef= 0.04, 0.02, 0.01. The plot (d) is designed to see how well the
scheme captures tlge 12”1 behavior of the variance; each line corresponds to a chosen but fixed
value oft, and is a log-log plot of the variance for the finest refinement levet (9) against;
different lines correspond to different times between 0 @&ng 20. For comparison we plot the
line with slope 1+ 2y, which represents the scaling power; lines parallel to this line mean that the
code picks up the right scaling.
We next summarize the observations we have drawn from the computational results described.

Interface motion. The motion of the numerical interface, for sufficient transition layer and
noise resolution, has the properties predicted by the analytical results. Indeed, starting from a
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ty, for ¢ = 0.04. Only one line, corresponding to the z,, for ¢ = 0.02. Comparing this with the case =
coarsest refinement level= 6, i.e., meshsizé = 275, 0.004 (Figurg[I(g)) we see that more graphs are visible
is visible as for all the other levels no admissible pathsn each diagram, corresponding to the refinement levels
survive up to timeT' = 20 with a center (i.e., only one [ = 6, 7, 8. This is due to the fact that, as the valuecof
zero). decreases, the number of admissible paths increases.
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(c) Interface average (top)E[E"], and its rescaled (d) These are the results from a different perspective, with
variance (bottom), Vag”] /2061-!—2}/’ as functions of time & two-fold purpose: (1) to check the scaling power2y in
tn, fore = 0.01. In each plot here, sineds even smaller, the diffusion coefficient, and (2) to see how the quality of
we see four graphs corresponding to all four refinemerf€Sults behaves with respect to time. Each of these graphs
levels tested, = 6, . . ., 9. Note that the variance for= 6  Shows log Varg"] versus log: for the finest refinement
is practically zero, which is far from the exact results. wg€vell = 9. Each graph corresponds to a fixed choice of
believe that this is due to two concurrent factors: (1) thde discrete time index, from a sequence; < --- <
meshsize is too coarse to resolve the interface layer, (2) ti» With 7; = 10;_1. A linear function of slope -2y,
meshsize is too coarse to resolve properly the noise arfich is the expected slope for the computed variances in
the numerical solution is closer to the exact deterministiéh® Mueller—Funaki time scale, is plotted for reference. We
solution rather than the stochastic one. Note also th&€e that this is reflected by the computations, but with the
the variance time-dependence, which is initially linear agiuality worsening as time grows.
expected, starts degenerating at atiut 4.

FIG. 1. Numerical results foy = 0.0
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that, due to the more modest intensity of the noise, threkere. A clear linear trend in the computed variance, up to
refinement levels produce enough admissible sample pathisne 10 (with a minor deterioration between 10 and 20),

is visible. This linear dependence is the expected behavior
from the theory saying that Vag["] ~ coelt? 1,,.
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tp, fore = 0.01. We see that the linear dependence on tim&orresponds to a fixed choice of the discrete time index,
is clearly visible in the variance, but for low refinement’, from a sequence; < --- < ny, with n; = 10 1.
levels (coarse meshsize) the slope may not be the prop@rlinear function of slope k- 2y, which is the expected
one. Also for very low refinement, the stochastic dynamics!ope for the computed variances in the Mueller—Funaki
are not picked up at all. time scale, is plotted for reference. Comparing with the
cases = 0.0, animprovement in the quality of the behavior

ast, grows is visible, but still a clear deterioration in time
is present.

-25

FIG. 2. Numerical results fop = 0.2. A comparison with Figurfg]1 is due and leads to two important observations. (1) The
statistics are more robust in time (especiallydamall) in that the variance shows a clear linear dependencéndrigures

and 2(d) and the correct scaling behavior in Figure] 2(d). This is due to the lower intensity of the noise beisause
bigger. (2) On the other hand, we must work harder with the refinement level in order to pick up the stochastic effects. We
believe that this is a practical aspect of the discussiorf in| §5.6. This poor performance for bigger meshsizes could not be

directly related to the interface layer resolution (a deterministic effect) as for the same vaduasdif but lower values of
y we obtain meaningful statistics, as shown in Fiqgre 1.
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(c) Interface average (topJE[Z"], and its rescaled (d) Each of these graphs shows log\&f] versus
variance (bottom), Vag"]/20¢127 | as functions of time loge for the finest refinement levél = 9. Each graph
tp, for € = 0.01. The linear time dependence of thecorresponds to a fixed choice of the_ discrete time index,
(rescaled) variance is clear here. Note that for level of megh from a sequence; < --- < nj, With n; = 10n;_3.
refinement/ = 6,7 the computed solution is basically A linear function of slope k- 2y, which is the expected
deterministic (average and variance are 0). This is a furth&lope for the computed variances in the Mueller-Funaki
indication of the practical importance of noise resolution,L'me scale, is plotted for reference. The value/ds quite

following the observations if55.6. igh now as to keep the statistics robust with respect to
time.

FiG. 3. Numerical results fop = 0.5. The same comments made in Fie 2 apply here, but with an even clearer linear
dependence of the variance upon time and a clearer need for high mesh refinement in order to resolve the white noise. Also
the computations are more robust with respect to lower valugsanfd they show almost no deterioration in time.

resolved profile centered at zero, as seen in Figyfes 1-3, the average position is near zero, whereas
the variance, which is expected to be a linear function of time, behaves in accordance with the
expectations, at least for some initial times; the dependence of the diffusion coefficiegt1+2

is clearly captured by the numerics, as seen by the diagram (d) of each of the figures.
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Noise resolution. It is well known that for simulating the deterministic Allen—Cahn equation with
any type of mesh/grid-based schemes, the meshsize has to be smalleritharder to resolve
satisfactorily the transition layer about the interface. Intuitively, this is due to the fact that the
transition layer has width @), and the numerical discretization parameters must be smaller than
this width to have a proper resolution of this transition layer.

The effect of this is seen in each of Figufés []to X adecreases, the level of refinement has to
be taken bigger and bigger in order to obtain meaningful calculations.

In the stochastic case, the situation is complicated even more by the noise. Indeed, according
to Theorenj 54 and the discussion [n §5.6, the discretization parameters, in this easeand
k = p, must be taken small enough to ensure that the noise effects are not lost fo¢ . SRalghly
speaking, the discretization parameters must be small, not only to resolve the interface, but also
to resolve the noise and pick up the diffusion of the Brownian motion. This dependence, which is
indicated analytically foy > 3 by Theorenj 514, is also reflected in our computations/fag 3.
Indeed, a comparison between Figufe 1 and Figlire 2 shows how the level of refilem@émads
to meaningful results fop = 0.0 and all values o€ (at least for short times), whereas the same
refinement level, for the same valueseptbut withy = 0.2 is insufficient. Fory = 0.5 in Figure
this phenomenon becomes yet more apparent.

We note that computations with > 3 (not shown here) require an extremely fine mesh, and thus
a very small timestep in view of Remgrk 4.6, in order to capture any of the noise effects. Otherwise
the deterministic solution will be computed. In this case, eshaices of: that resolve the interface
satisfactorily are not enough to resolve the noikke lesson we learn from this is that the interplay
between the noise and the nonlinearity can be quite delicate, and not obviously predicted from
deterministic considerations, in problems such as the stochastic Allen—Cahn equation.

Deterioration of simulations with big ande small. As observed in the previous subsection,
the computed variance depends linearly on time, as expected, but only for some initial time. The
smallere, the shorter this time is. This is seen in the bottom part of the sub-figures (a), (b) and (c)
by the graph’s earlier or later departure from an initial linear behavior. The computations deteriorate
faster for smalk, e.g.,e = 0.0, than they do for bigger, e.g.,e = 0.5. The example witlk = 0.2

shows an intermediate behavior.

7.5 Interface drift

To conclude, we add some results of computations, for short times, with initial value a resolved
profile centered away from 0. In this case, the SDE describing the motion of the interface has also
a drift term, which drives the interface towards the closest boundary of the domain. This drift is
clearly seen for various choices of the parameters in the top diagrams of Fjgure 4, where we plot
the center’s position average against time. Short times must be taken, for the statistics to make
sense, otherwise solutions with centers that exit (or nucleate) cease to counterbalance those which
stay in. Indeed, in diagram (c), where the noise intensity is quite strong, after an initial drift towards
the boundary, the average inverts its route and moves away from the boundary. This is due to the
fact that the statistics become too biased; the SE diagram shows the samples survival with respect
to time (that is, a discrete-probability space version of the exit-time inverse function). The samples
survival for the top diagrams is 100% for the statistics in the top diagrams. It is worth mentioning
that similar observations using stochastic ODE’s were made by Shaidlow [Sha00].
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(a) The average of the interface position (center)foe 0.0. An upward drift, that is, a drift of the interface towards the
closest boundary point, is visible in this series of computations. The number of Monte Carlo samples is 1623. Only three
of these paths violate the uniqueness of center condition and are therefore excluded from the statistics at the time when that
happens.
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(b) The average of the interface position for= 0.2. Compared with Figua), an outward drift is also detectable here,
but due to the weaker noise intensity it is slower. The number of Monte Carlo samples here is 1752, all of which make it up
totimeT = 2.
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(c) On the left, we plot the average of the interface positiomfoe —0.1. In this case, most sample paths do not make

it with the condition of one interface, or center, up to tiffie= 2. This fact is visualized on the right, where the curve
represents the number of “admissible” sample paths (i.e., those that have a center) versus time; as time increases the number
of admissible sample paths drops from an initial 2500 to almost 1500. This high drop in the number of samples makes the
statistics unreliable, and explains why the graph on the left exhibits no clear outward drift as a result.

FiG.4. Monte Carlo computations of the drift effect for the initial interface position shifted away from zero. All these
computations are performed for= 0.01, meshsizé = 2~8 and timesteft = h2. See the text and Shardlow [Sha00], for
example, for details about the drift.
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