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We address the numerical discretization of the Allen–Cahn problem with additive white noise in
one-dimensional space. Our main focus is to understand the behavior of the discretized equation
with respect to a small “interface thickness” parameter and the noise intensity. The discretization
is conducted in two stages: (1) regularize the white noise and study the regularized problem, (2)
approximate the regularized problem. We address (1) by introducing a piecewise constant random
approximation of the white noise with respect to a space-time mesh. We analyze the regularized
problem and study its relation to both the original problem and the deterministic Allen–Cahn
problem. Step (2) is then performed leading to a practical Monte Carlo method combined with a
finite element-implicit Euler scheme. The resulting numerical scheme is tested against theoretical
benchmark results concerning the behavior of the solution as the interface thickness goes to zero.

1. Introduction

Stochastic partial differential equation (SPDE) models arise in numerous applications ranging from
materials science, surface processes and macromolecular dynamics [Coo70, Spo89], to atmosphere
and ocean modeling [LN03] and epidemiology [Dur99]. These models are typically derived from
finer and more detailed models where unresolved degrees of freedom are represented by suitable
stochastic forcing terms. There are also some notable rigorous derivations from microscopic scales
in special asymptotic regimes, e.g. [BPRS93, MT95].
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An important class of models consists of the stochastic Ginzburg–Landau models which are
typically obtained from microscopic lattice models for a suitable order parameter (e.g., spin), by
statistical mechanics renormalization arguments combined with detailed balance laws.

Numerical simulation of these nonlinear SPDE’s constitutes an important research issue. On the
practical side, one is interested in having efficient, reliable and not too complex numerical codes
which can be used either in the context of Monte Carlo methods or for sample paths simulations of
the physical models of phase transition, e.g. [WB95, KM99, KK01, Sha00]. From a more theoretical
view-point, understanding the issues arising from the discretization of SPDE’s, in a more general
setting than phase separation, both through finite difference or finite element schemes, turns out
to be a non-obvious departure from numerical schemes for deterministic models [ANZ98, Gyö99,
DZ02, BTZ04, ST03].

In this paper, our focus is on the numerical simulation of the stochastic Allen–Cahn problem,
which is one of the simplest models exhibiting the phenomena of interface formation and nucleation.
The stochastic Allen–Cahn problem is an ad-hoc white noise perturbation of the deterministic
Allen–Cahn, given by

∂tu(x, t) − ∂xxu(x, t) + fε(u(x, t)) = εγ ∂xtW(x, t) for x ∈ D, t ∈ [0, ∞), (1.1)

whereD = (−1, 1) ⊂ R1, ε > 0 andfε is an odd nonlinearity scaled by 1/ε2 and∂xtW is the
space-time white noise (see §2.1 for the details). This is a stochastic version of the well-known
deterministic Allen–Cahn problem describing the evolution in time of a polycrystalline material
[AC79]. We take boundary conditions of Neumann type and the initial condition to be aresolved
profile; we refer again to §2 for the details. Note that this equation, with white noise, is tractable
only in one spatial dimension, which is the case we will study. In higher space dimensions, one has
to consider noise which is colored in space.

Equation (1.1) is a type A model in Halperin’s classification [HH77]. It is non-conservative
in the order parameteru and exhibits both nucleation and interface formation, whilst retaining a
relatively simple structure without multiplicative or conservative noise terms encountered in type B
models, such as the Cahn–Hilliard–Cook equation [KM99].

While a thorough discussion of (1.1) is given in §2, it is worth mentioning here that this SPDE,
with the white noise term, is well-posed only in one space dimension. Two important pieces of
work concerned with the analytic and probabilistic aspects of (1.1) are those of Funaki [Fun95]
and Brassesco, De Masi & Presutti [BDMP95]. In both papers, the authors study the asymptotic
behavior of the solution processes asε → 0. In particular, it turns out that, under suitable time-space
rescaling, the solution with initial value taken to be (roughly speaking) a step function, converges (in
an appropriate probabilistic sense) to the step function with its jump point performing a Brownian
motion.

Though finite difference schemes have been used for simulations [KM99, KK01], we follow
here a finite element approach. The reason driving us to understand finite element methods (FEM)
for such equations is that FEM constitute a quite flexible tool, especially for problems in higher
dimensions where one may have to deal with complex geometries. Also, finite elements are naturally
suited for adaptive schemes where fine scales may be resolved only on small portions of the domain
in order to obtain a reasonable accuracy. We believe that understanding the FEM in a nonadaptive
one-dimensional setting will pave the way to more sophisticated studies.

Our strategy to formulate a finite element scheme for (1.1) follows an idea introduced for linear
problems by Allen, Novosel & Zhang [ANZ98], and consists in two steps:
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1. regularize the noiseterm ∂xtW , by replacing it with a somewhat smoother approximate white
noise∂xtW̄ ;

2. discretize the regularizedproblem.

This approach allows us to conduct a rigorous analysis of the approximation. It makes the
subsequent finite element discretization straightforward. Note that a finite difference variant based
on our regularization is also possible.

Our first task, carried out in §3, is to construct a regularization, denoted∂xtW̄ (x, t), of
∂xtW(x, t) (appearing in (1.1)) with respect to an underlying uniform partition,Dσ × Iρ , of the
space-time domainD × I . In the spirit of FEM, this regularization process consists of a projection
of the white noise onto an appropriate space of piecewise constant space-time functions, which may
be viewed as the mixed derivatives of hat functions. This idea, which has been successfully used in
the context of the linear heat equation [ANZ98], leads to theregularized problem

∂tu(x, t) − ∂xxu(x, t) + fε(u(x, t)) = εγ ∂xtW̄ (x, t) for x ∈ D, t ∈ [0, ∞). (1.2)

Notice that∂xtW̄ is still a stochastic process in space-time, but it is much smoother than the white
noise, which allows equation (1.2) to be interpreted in the usual PDE sense pathwise.

In §4, after recalling some basic properties of problem (1.2) and its solution, we prove Theorem
4.4, which states that the solution of the regularized problem converges—in an appropriate sense—
to the solution of the original SPDE (1.1) as the space-time partition becomes infinitely fine.

Next, in §5, we relate the solution of the regularized problem to the deterministic solution of
the Allen–Cahn equation. Our main result here, Theorem 5.4, proved forγ > 3, indicates that the
regularization parameters have to be sufficiently small for the noise to be captured in the numerical
computations. In fact, according to this theorem the weaker the noise, the finer space-time mesh one
must take in order to see the noise effects. This is due to the fact that for a fixed space-time mesh and
ε → 0, the distance between the regularized stochastic solutionū and the deterministic solution,
q, is of higher order inε than the distance betweenū andu. Our proof makes use of thespectrum
estimatesof the linearized elliptic differential operator−∂xx + f ′

ε(q), derived independently by
Xinfu Chen [Che94] and de Mottoni & Schatzman [dMS95].

We note that while numerical schemes for the stochastic Allen–Cahn involving a spectral
approach to white noise have been analyzed [Liu03], this is, up to our knowledge, a first analysis
using projection methods to regularize the white noise.

Step 2 of our strategy is accomplished in §6, where we derive a simple finite element scheme
for the regularized problem (1.2). This is a scheme which uses piecewise polynomial finite elements
to discretize the space variable and an implicit (backward) Euler scheme to discretize the time
variable. Related numerical schemes have been thoroughly analyzed and successfully applied in
the context of thedeterministic Allen–Cahn problem[FP03, KNS04, FW05] and for thestochastic
linear heat diffusion problem[ANZ98]. It is for the first time, up to our knowledge, that this scheme
is employed in astochastic and nonlinearsetting. The issues of regularity of the regularized solution
and the convergence of the FEM are objects of our current research.

In §7, we test our scheme in combination with a Monte Carlo simulation. The test consists in
reconciling the computational results with the theoretical results obtained by Funaki [Fun95] and
Brassesco, De Masi & Presutti [BDMP95] independently. Our benchmarking procedure consists
in tracking the so-called center of a resolved profile of the Allen–Cahn equation as time evolves,
performing statistics thereon and comparing them with the probabilistic results coming from the
theory. The following conclusions are drawn: (1) The robustness of the Monte Carlo method
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depends on the noise intensity; the lower the noise, the higher the observed robustness. (2) The
noise has to be resolved satisfactorily in order to see stochastic effects. In contrast with the first
conclusion, the lower the noise, the more one has to resolve the mesh in order to see the noise. This
is in competition with the need to have a fine mesh in order to resolve the transition layer, due to the
structure of the solution of the Allen–Cahn equation. (3) The behavior captured by the numerics is
consistent with the theoretical results; in particular, the Mueller–Funaki time scale 1+ 2γ (see 5.6
for the details) and the corresponding Brownian motion diffusion coefficient are clearly exhibited
by our numerical results. We close with some computations that capture the drift of the interface,
modeled by the Allen–Cahn equation. This drift, typical of the stochastic solution, is quite fast with
respect to the deterministic case where the solutions are metastable states.

2. Set up

2.1 Noisy Allen–Cahn problem

We will study an initial-boundary value problem associated with the semilinear parabolic partial
differential equation with additive white noise, known as thestochastic(or noisy) Allen–Cahn
equationgiven by (1.1). The nonlinearityfε is the derivative of an even coercive functionFε with
exactly two minimum points. A function such asFε is known as adouble-well potentialand, for
sake of conciseness, we focus on the model potential explicitly defined by

Fε(ξ) =
1

4ε2
(ξ2

− 1)2 for ξ ∈ R. (2.1)

Hereε ∈ R+ is a scaling parameter. The term∂xtW is the space-timeGaussian white noise, which
can be defined as the mixed distributional derivative of aBrownian sheetW [Wal86, KX95]. The
parameterγ ∈ R models the intensity of the white noise and plays a delicate role in the analysis, as
ε → 0.

The presence of the right-hand side makes (1.1) a randomly perturbed version of the Allen–Cahn
equation which is astochastic PDE(SPDE). A solution of such an equation has to be interpreted in
the stochastic sense. That is, for eacht , the solutionu(·, t) is understood as a random process on an
underlying probability measure space(Ω, F , P ) with values in a suitable function space defined
onD. Equation (1.1), supplemented with the initial condition

u(x, 0) = u0(x), ∀x ∈ D, (2.2)

and with the Neumann boundary conditions

∂xu(−1, t) = ∂xu(1, t) = 0, ∀t ∈ R+, (2.3)

defines thestochastic Allen–Cahn problem. For simplicity, we assume that the initial conditionu0
is smooth enough and satisfies the boundary conditions. In §5 we shall focus on a more particular
class of initial conditions known as resolved profiles.

2.2 Space-time stochastic integral

One can give a mathematically rigorous definition of a solution of the stochastic Allen–Cahn
problem (1.1), (2.2)–(2.3) as a distribution-valued process [Wal86, KX95]. However, we find it
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more convenient, as in the case of the white noise generated from a Brownian motion, to work with
the stochastic integralwith respect to the Brownian sheetW , denoted by “

∫
· dW ” [Wal86, §II],

[KX95, Ch. 3]. In our doing so, we bear in mind the formal relationship∫
∞

0

∫
D

f (x, t)∂xtW(x, t) dx dt =

∫
∞

0

∫
D

f (x, t) dW(x, t) (2.4)

that will inspire the weak formulation (2.10) and the definitions in §3. In the particular case where
f is the characteristic function of a Borel-measurable setA ∈ B(R+

× D) of Lebesgue measure
|A| < ∞ the following basic property of the stochastic integral is satisfied:∫

A

dW(x, t) = W(A) ∈ N(0, |A|), (2.5)

i.e.,W(A) is a Gaussian random variable with mean zero and variance|A|.1

Since we are interested in numerical solutions, we consider the time domain to be a bounded
intervalI = [0, T ], for some fixedT ∈ R+. A fundamental property of the stochastic integral is the
following well-known L2-isometry, which holds for the It̂o integral:

E
[(∫

I

∫
D

f (x, t) dW(x, t)

)2]
= E

[∫
I

∫
D

f (x, t)2 dx dt

]
, (2.6)

for anyFW
t -measurablef ∈ L2(I × D × Ω), where

FW
t = σ {W(A) : A ∈ B(I × D)}, (2.7)

is the sigma-field (or sigma-algebra) generated byW up to timet , andE denotes theexpectation
with respect to(Ω, F , P ).2

A useful consequence of (2.6) is that

E
[∫

I

∫
D

f (x, t) dW(x, t)

∫
I

∫
D

g(y, s) dW(y, s)

]
= E

[∫
I

∫
D

f (x, t)g(x, t) dx dt

]
(2.8)

for anyFW
t -measurablef, g ∈ L2(I ×D ×Ω). In the special case wheref andg are, respectively,

the characteristic functions of two Borel setsA, B ∈ B(I × D) with |A|, |B| < ∞, (2.8) implies

Cov(W(A), W(B)) = |A ∩ B|. (2.9)

2.3 Integral solutions

By multiplying (1.1) with a test functionφ ∈ C2
c(D × (0, ∞)) and using the formal relation (2.4),

one can write the problem in the usual weak form3∫
∞

0

∫
D

(u∂tφ − ∂xu∂xφ − fε(u)φ) + εγ

∫
∞

0

∫
D

φ dW = 0. (2.10)

1 For µ ∈ R andσ ∈ R+ we denote by N(µ, σ2) the class of normally distributed (or Gaussian) random variables of
meanµ and varianceσ2 on the spaceΩ.

2 In compliance with the standard practice in stochastic differential equations, we write explicitly the probability variable
ω ∈ Ω as an argument to random variables only when necessary in order to avoid confusion.

3 Whenever the meaning is clear from the context, for sake of conciseness, we often drop the variables “x, t” and, in
nonstochastic integrals, also the corresponding elementary terms “ d”.
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Despite the above formulation being quite useful, especially for studying a numerical scheme, it
is not very convenient to nail down the concept of solution. A rather more convenient way to give
rigorous meaning to (1.1) is to look for an integral solution of anequivalent integral equation
[DPZ92, Doe87, FJL82, Wal86], as we briefly illustrate next.

Introduce first the corresponding boundary value problem for the stochastic linear heat equation
[DPZ92, Wal86]

∂tZ − ∂xxZ = ∂xtW in D × R+

0 ,

Z(x, 0) = 0 onD,

∂xZ(1, t) = ∂xZ(−1, t) = 0, ∀t ∈ [0, ∞).

(2.11)

The solution to this problem can be defined as the Gaussian process in space-time produced by the
stochastic integral

Zt (x) = Z(x, t) :=
∫ t

0

∫
D

Gt−s(x, y) dW(y, s), (2.12)

whereG is the heat kernel for the corresponding homogeneous Neumann problem. In our one-
dimensional particular case,G can be explicitly written as

Gt (x, y) = 4
∞∑

k=0

(2 − δk
0) cos

πk(x + 1)

2
cos

πk(y + 1)

2
exp

−π2k2t

4
, (2.13)

whereδk
0 is the Kronecker symbol.

Theintegral solutionof (1.1) can then be defined as a solution of the equivalent integral equation

u(x, t) = −

∫ t

0

∫
D

Gt−s(x, y)fε(u(y, s)) dy ds +

∫
D

Gt (x, y)u0(y) dy + εγ Zt (x). (2.14)

It is known that such a solution exists uniquely as a C0(D)-valued continuous process,t 7→

u(·, t), adapted toZt , provided the initial conditionu0 satisfies the Neumann boundary conditions
[BDMP95, Wal86, FJL82]. In this article we use this concept of solution which we refer to simply
as thesolution of Problem(1.1), (2.2)–(2.3), and we will denote it byu. Notice thatu is also referred
to by some authors as theGinzburg–Landau process[BDMP95].

For the aims set in this paper, namely, in order to study the error of convergence of an
approximation of the solution of (1.1), we will need a uniform bound foru. While in the
deterministic case such a bound is a direct consequence of the maximum principle, in the stochastic
case one cannot expect to have a uniform bound in the whole probability space. However, a bound
on a set with large probability controlled byε will suffice for our needs. We present an extension of
a previously known result of Brassesco et al. [BDMP95, Prop. 5.2].

2.4 LEMMA (Probabilistic maximum principle)Let γ > −1/2. For eachT > 0 andK0 > 0 there
existc1, c2, δ0 > 0 such that if‖u0‖L∞(D) 6 1 + δ0 then

P
{

sup
t∈[0,T ]

‖u(t)‖L∞(D) > 1 + K0

}
6 c1 exp(−c2/ε

1+2γ ). (2.15)

Proof. We reduce the proof to that of [BDMP95, Prop. 5.2] by introducing the time-space rescaling
t 7→ t/ε2 andx 7→ x/

√
2ε and extending the solution periodically to the whole space so as to
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obtain the proper barrier function. Since we are dealing with the more general caseγ > −1/2,
while they deal with the caseγ = 0 only, we retrace the salient points of their proof. The barrier
functionv satisfies the following equation—corresponding to [BDMP95, (5.12)]:

∂tv −
1

2
∂xxv + 2v = −3v2

− v3
+ 2−1/4εγ+1/2∂xtW. (2.16)

Consider now the function

V (x, t) =

∫ t

0
exp(−2(t − s))H

(ε
√

2)
t−s (x, y) dW(y, s), (2.17)

whereH
(ε

√
2)

t−s is the Green operator defined by

exp(−2t)H
(ε

√
2)

t−s =

(
∂t −

1

2
∂xx + 2 Id

)−1

, (2.18)

with homogeneous boundary conditions on(−1/
√

2ε, 1/
√

2ε). By using [BDMP95, equation (5.2)]
with λ = exp(−(γ +1/2)) and adapting properly the proof of [BDMP95, Lemma 2.1] we can easily
conclude that for eachb > 0 there existc1, c2 > 0 such that

P ε
{

sup
t6T ε−2, x∈R

|εγ+1/2V (x, t)| > b
}

6 c1 exp(−c2/ε
1+2γ ). (2.19)

The rest of the proof is now standard. 2

3. White noise approximation

In order to introduce a finite element method (FEM) that approximates a solution of (2.14), we first
need to obtain a weak formulation in the standard sense of PDE and FEM. This is not possible with
the presence of the white noise, so we regularize first the problem by replacing the white noise with
a smoother stochastic term. Our technique is inspired by that of Allen, Novosel & Zhang [ANZ98]
for the linear heat equation.

3.1 A piecewise constant approximation of the white noise

Consider a tensor-product partition of the space-time domain,Dσ × Iρ , whereσ, ρ ∈ R+ and

Dσ := {Dm : Dm := (xm−1, xm), m ∈ [1 : M]},

Iρ := {In : In := [tn−1, tn), n ∈ [1 : N ]},
(3.1)

are, respectively, a space-domain partition and a time-domain partition; each of these partitions is
uniform, that is,

xm − xm−1 = σ, ∀m ∈ [1 : M] , and tn − tn−1 = ρ, ∀n ∈ [1 : N ] , (3.2)

andx0 = −1, xM = 1, t0 = 0 andtN = T . We denote byχm = 1Dm andϕn = 1In the characteristic
functions of the space subdomains and time subdomains respectively.
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The (piecewise constant)approximation of white noise, abbreviated by AWN below, is given by
the random space-time function

∂xtW̄ (x, t) =

N∑
n=1

N∑
m=1

η̄m,nχm(x)ϕn(t) (3.3)

where the coefficients are the random variables defined by

η̄m,n :=
1

σρ

∫
I

∫
D

χm(x)ϕn(t) dW(x, t). (3.4)

In the following we will use the shorthand∫ t

0

∫
D

f (x, s) dW̄ (x, s) =

∫ t

0

∫
D

f (x, s)∂xtW̄ (x, s) dx ds, (3.5)

in spite of the integral being taken in the classical, nonstochastic sense.

3.2 LEMMA (Moments and independence of the AWN coefficients)The coefficients̄ηm,n defined
in (3.4) are i.i.d. N(0, 1/σρ) variables.

Proof. From the definitions of̄ηm,n and property (2.5) we have

η̄m,n =
1

σρ

∫
I

∫
D

χm(x)ϕn(t) dW(x, t)

=
1

σρ

∫
In

∫
Dm

dW(x, t) =
W(In × Dm)

σρ

∈ N

(
0,

|In × Dm|

σ 2ρ2

)
= N

(
0,

1

σρ

)
. (3.6)

To show independence compute the covariances form, m′
∈ [1 : M] andn, n′

∈ [1 : N ], using
(2.8), as follows:

(σρ)2 E[η̄m,nη̄m′,n′ ] = E
[∫

I

∫
D

χmϕn dW

∫
I

∫
D

χm′ϕn′ dW

]
=

∫
I

∫
D

χm(x)χm′(x)ϕn(t)ϕn′(t) dx dt

= δm
m′δ

n
n′σρ, (3.7)

whereδi
j is the Kronecker symbol. 2

The AWN has two important technical properties that we state and prove next.

3.3 LEMMA (Approximate It̂o-type inequality) For all deterministic functionsf ∈ L2(I ×D) the
following holds true:

E
[(∫

I

∫
D

f (x, t) dW̄ (x, t)

)2]
6
∫

I

∫
D

f (x, t)2 dx dt. (3.8)
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Proof. Lemma 3.2 and some manipulations yield

E
[(∫

I

∫
D

f (x, t) dW̄ (x, t)

)2]
= E

[(∫
I

∫
D

f (x, t)
∑
m,n

η̄m,nχm(x)φn(t) dx dt

)2]

= E
[(∑

m,n

η̄m,n

∫
In

∫
Dm

f (x, t) dx dt

)2]

= E
[∑

nm

η̄2
m,n

(∫
In

∫
Dm

f

)2

+ 2
∑

n6=n′, m6=m′

η̄m,nη̄
′

m′n

(∫
In

∫
Dm

f

)(∫
I ′
n

∫
D′

m

f

)]

=

∑
m,n

E[η̄2
m,n]

(∫
In

∫
Dm

f

)2

=

∑
m,n

1

ρσ

(∫
In

∫
Dm

f

)2

6
∑
m,n

∫
In

∫
Dm

f 2
=

∫
I

∫
D

f (x, t)2 dx dt.

In the next-to-last step we use the Cauchy–Schwarz inequality. 2

3.4 REMARK Lemma 3.3 and (2.6) imply that

E
[(∫

I

∫
D

f (x, t) dW̄ (x, t)

)2]
6 E

[(∫
I

∫
D

f (x, t) dW(x, t)

)2]
. (3.9)

In other words, the L2-type regularity properties of the AWN will be, at the worse, the same as those
of the white noise itself.

Since we will need bounds on space-time norms of the AWN, but in probability rather than in
expectation, we establish the following basic result.

3.5 LEMMA (L∞(L2) and L2(L2) bounds for the AWN) For eachK > 0 we have

P
{

sup
t∈[0,T ]

‖∂xtW̄ (t)‖L2(D) 6 K
}

>

[
1 −

T

ρ

(
1 +

K2

2
ρ

)1/σ−1

exp

(
−

K2

2
ρ

)]+

(3.10)

and

P
{
‖∂xtW̄‖L2(D×[0,T ]) 6 K

}
> 1 −

(
1 +

K2

2

)T/(σρ)−1

exp

(
−

K2

2

)
. (3.11)

Proof. We proceed in several steps.

Step 1. Recall thatM = 2/σ andN = T/ρ. By the definition of∂xtW̄ we have, for eacht ∈ [0, T ]
andn ∈ [1 : N ] such thatt ∈ In,

‖∂xtW̄ (t)‖2
L2(D) = σ

M∑
m=1

η̄2
m,n =

1

ρ

M∑
m=1

η2
m,n, (3.12)

where theηm,n ∈ N(0, 1). In order to conclude, we will obtain a condition on the right-hand side
that makes it smaller thanK2, for all n ∈ [1 : N ].
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Step 2. For eachn ∈ [1 : N ] we consider the random variable

Hn :=
M∑

m=1

η2
m,n. (3.13)

Notice that, in view of Lemma 3.2 forn 6= n′, Hn andHn′ are independent. Let us fixn for a
while and find an event for whichHn 6 ρK2. By Lemma 3.2 and a basic probability fact [Bil95,
Pbm. 20.16], the random variableHn has a chi-squared distribution withM degrees of freedom. Its
density is given by

zM/2−1 exp(−z/2)

2M/2Γ (M/2)
for z > 0, (3.14)

and 0 forz 6 0, whereΓ is the Euler Gamma-function. Thus we have

P {Hn 6 ρK2
} =

1

2M/2Γ (M/2)

∫ ρK2

0
zM/2−1 exp(−z/2) dz. (3.15)

Step 3. We next prove a lower bound on this integral in the case whereM is even, the odd case
being similar. Lety play the role ofρK2 and consider for eachk ∈ N0 the integral

Ik :=
∫ y

0
zk exp(−z/2) dz. (3.16)

An integration by parts yields the recursive expression

Ik = 2kIk−1 − 2yk exp(−y/2), (3.17)

which allows, by an inductive argument, to see that

Ik = 2k+1k! − 2
k∑

i=0

k!

(k − i)!
yk−i2i exp(−y/2). (3.18)

An easy manipulation with the binomial formula implies that

Ik > 2k+1k!(1 − (1 + y/2)k exp(−y/2)). (3.19)

Takingk = M/2 − 1 in the above and recalling the definition ofIk and (3.14) it follows that

P {Hn 6 ρK2
} > 1 −

(
1 +

ρK2

2

)M/2−1

exp

(
−

ρK2

2

)
, (3.20)

which implies

P {Hn 6 ρK2
} >

[
1 −

(
1 +

ρK2

2

)M/2−1

exp

(
−

ρK2

2

)]+

. (3.21)
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Step 4. To conclude the proof, we introduce the event

Ω2
K =

N⋂
n=1

{Hn 6 ρK2
}, (3.22)

and we observe that, in view of (3.12), onΩ2
K we have

‖∂xtW̄ (t)‖L2(D) 6 K, ∀t ∈ [0, T ]. (3.23)

On the other hand, using the independence ofHn, n ∈ [1 : N ], the simple fact that(1−ξ)N > 1−Nξ

for ξ 6 1 and (3.21) we can estimate the probability

P(Ω2
K) =

N∏
n=1

P {Hn 6 ρK2
}

>

([
1 −

(
1 +

ρK2

2

)M/2−1

exp

(
−

ρK2

2

)]+)N

>

[
1 − N

(
1 +

ρK2

2

)M/2−1

exp

(
−

ρK2

2

)]+

. (3.24)

By replacingN = T/ρ andM = 2/σ we get (3.10).

Step 5. Estimate (3.11) is obtained simply by using (3.21) withρK2 andM replaced byK2 and
MN respectively. 2

3.6 REMARK (Alternative proof) As pointed out by one of the referees, it is possible to prove
Lemma 3.5 more directly, by using martingale inequalities.

3.7 REMARK (Interpretation of (3.10) and (3.11))We may rewrite the term appearing in (3.10) as

T

ρ

(
1 +

K2

2
ρ

)1/σ−1

exp

(
−

K2

2
ρ

)
=: T expF(ρ, σ,K). (3.25)

A practical way to use such a result is by fixing firstT , ρ, σ in R+ and then requiringK
to be big enough such thatT expF(ρ, σ,K) � 0. This is made possible by the fact that
limK→∞ F(ρ, σ,K) = −∞ for any fixedρ, σ ∈ R+. The same type of observation is also valid
for (3.11).

4. The regularized solution

We now introduce the regularized solution to problem (1.1), (2.2)–(2.3), which we obtain by
replacing the white noise by the AWN in (1.1). The role of the regularized problem is pivotal in
devising a numerical scheme to approximate the stochastic Allen–Cahn problem. We discuss the
approximation properties of this regularization with respect to the original problem.

4.1 DEFINITION The regularized solution, ū, of the noisy Allen–Cahn problem is the unique
continuous solution of the integral equation

ū(x, t) = −

∫ t

0

∫
D

Gt−s(x, y)fε(ū(y, s)) dy ds

+

∫
D

Gt (x, y)u0(y) dy + εγ

∫ t

0

∫
D

Gt−s(x, y) dW̄ (y, s). (4.1)
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4.2 LEMMA (Maximum principle for regularized solutions)For fixed T , K0 > 0, there exist
δ0, c1, c2 > 0, independent ofε, such that if‖u0‖L∞(D) 6 1 + δ0 then

P
{

sup
t∈[0,T ]

‖ū(t)‖L∞(D) 6 1 + K0

}
> 1 − c1 exp(−c2/ε

1+2γ ). (4.2)

Proof. We follow exactly the proof of Lemma 2.4, by observing that (3.9) ensures that all the
estimates for the stochastic integrals of the white noise can be “translated” into corresponding
estimates for the integrals of the approximate white noise. The constants appearing in this theorem
can therefore be taken to be the same that appear in §2.4. 2

4.3 REMARK (Regularized solution is strong solution)Notice that the regularized solution̄u of
(4.1) is in fact a weak solution in the PDE sense, i.e.,ū(t; ω) ∈ H1(D) and∂t ū(t; ω) ∈ L2(D) for
all t ∈ (0, T ] andω ∈ Ω, and the followingweak formulationis satisfied:

〈∂t ū(t; ω), φ〉 + 〈∂x ū(t; ω), ∂xφ〉 + 〈fε(ū(t; ω)), φ〉

= εγ
〈∂xtW̄ (t; ω), φ〉, ∀φ ∈ H1

0(D), t ∈ (0, T ], (4.3)

ū(0; ω) = u0,

for eachω ∈ Ω (the notation〈·, ·〉 indicating the inner product in L2(D)). Indeed, each of the
AWN’s realizations,∂xtW̄ (ω), is a piecewise constant space-time function. For each such realization
the usual regularity theory for semilinear parabolic equations with piecewise continuous data can
be applied and the corresponding weak formulation written down [LSU68].

Our next goal is to show that the regularized approximate solution converges to the solutionu.
For this we will estimate theregularization error

e(x, t) = u(x, t) − ū(x, t), (4.4)

in terms of the white noise regularization parametersσ andρ, and show that it converges to zero in
an appropriate sense.

4.4 THEOREM (Convergence to the stochastic solution)For a fixedT , there exist constantsc1, c2,
C1 andC2 such that to eachε ∈ (0, 1) there correspond an eventΩ∞

ε and a constantCε > 0 such
that

P(Ω∞
ε ) > 1 − 2c1 exp(−c2/ε

1+2γ ), (4.5)∫
Ω∞

ε

(∫ T

0

∫
D

|ū − u|
2
)

dP 6 Cε

(
C1ρ

1/2
+ C2

σ 2

ρ1/2

)
, ∀σ, ρ > 0. (4.6)

Proof. We proceed by steps.

Step 1. By the integral representations ofu, (2.14), andū, (4.1), we can also represent the error as
an integral

e(x, t) =

∫ t

0

∫
D

Gt−s(x, y)(fε(ū(y, s)) − fε(u(y, s))) dy ds

+ εγ

∫ t

0

∫
D

Gt−s(x, y)( dW(y, s) − dW̄ (y, s)) (4.7)

for all (x, t) ∈ D × (0, T ]. So our task is now to bound the terms on the right-hand side of (4.7) in
the appropriate norm.
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Step 2. In view of the maximum principle for both the exact solution, §2.4, and the approximate
solution, §4.2, there exists an eventΩ∞

ε ⊂ Ω such that

P(Ω∞
ε ) > 1 − 2c1 exp(−c2/ε

1+2γ ) (4.8)

and

Ω∞
ε ⊂ {‖u(t)‖L∞(D), ‖ū(t)‖L∞(D) 6 3, ∀t ∈ [0, T ]}. (4.9)

The choice of the number 3 is quite arbitrary here. In fact any number of the form 1+ K0 with
K0 > 0 will do, with the appropriate change of constants. This and the local Lipschitz continuity of
f imply that

|fε(ū) − fε(u)| 6
28

ε2
|ū − u| onΩ∞

ε . (4.10)

Step 3. Working now on the eventΩ∞
ε and introducing the functions

ε(r) :=
∫ r

0

∫
D

e(x, t)2 dx dt, (4.11)

φ(r) :=
∫ r

0

∫
D

∣∣∣∣∫ t

0

∫
D

Gt−s(x, y)(dW(y, s) − dW̄ (y, s))

∣∣∣∣2 dx dt (4.12)

for all r ∈ [0, T ], we infer from (4.7) that

ε(r) 6 2
∫ r

0

∫
D

(∫ t

0

∫
D

|Gt−s(x, y)|
28

ε2
e(y, s) dy ds

)2

dx dt + 2ε2γ φ(r). (4.13)

The integral in (4.13) can be bounded, using the Cauchy–Schwarz inequality, by

2
282

ε4

∫ r

0

∫
D

(∫ t

0

∫
D

|Gt−s(x, y)|2 dy ds

∫ t

0

∫
D

e(y, s)2 dy ds

)
dx dt =

∫ r

0
z(t)ε(t) dt (4.14)

where

z(t) := 2
282

ε4

∫
D

∫ t

0

∫
D

|Gt−s(x, y)|2 dy ds dx. (4.15)

Inequality (4.13) implies

ε(r) 6 φ(r) +

∫ r

0
z(t)ε(t) dt (4.16)

for eachr ∈ I . Applying the Gronwall lemma to this inequality we obtain

ε(T ) 6 exp

(∫ T

0
z(t) dt

)
ε2γ φ(T ) 6 Cεφ(T ), (4.17)

where—by estimating the heat kernel—the constant is given by

Cε := ε2γ exp

(
282T

12ε4

)
. (4.18)
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Step 4. By summing with respect toP on the eventΩ∞
ε both members of this inequality we obtain∫

Ω∞
ε

∫ T

0

∫
D

|ū − u|
2 dx dt dP 6 Cε

∫
Ω∞

ε

φ(T ) dP 6 Cε E[φ(T )]. (4.19)

We conclude by observing [ANZ98, Lem. 2.3] that there existC1, C2 > 0, depending only onT ,
such that

E[φ(T )] 6 C1ρ
1/2

+ C2
σ 2

ρ1/2
. (4.20)

Thus we established that∫
Ω∞

ε

∫ T

0

∫
D

|ū − u|
2 dx dt dP 6 Cε

(
C1ρ

1/2
+ C2

σ 2

ρ1/2

)
, (4.21)

as claimed. 2

4.5 REMARK (about the constantCε) Theorem 4.4 ensures that, for fixedT andε, the approxi-
mate solutionū converges tou asρ, σ → 0. The constantCε appearing in the estimate depends
exponentially on both 1/ε4 andT , thus for smallε, or largeT , this might force us to take very
smallρ andσ . This fact should be taken into account in practice. The bound we have proved seems
to be pessimistic though, as the choice ofσ andρ, used in our subsequent numerical experiments,
indicates.

4.6 REMARK (Convergence rate)Recalling thatρ andσ can be thought of as discretization (in
addition to regularization) parameters, the convergence rate found in (4.6) is in accordance with
standard results for linear parabolic equations, e.g. in [ANZ98]. Note that forρ = Cσ 2, the so-
called “parabolic space-time scaling”, we obtain the right balance between the two terms on the
right-hand side of (4.6).

5. The regularized solution’s limit for ε → 0

In this section we focus on the relation between the regularized stochastic Allen–Cahn problem
(4.3) and the deterministic version. The reason to do this is to find, in an analytical setting, what
conditions should be imposed on the regularization parameters,ρ andσ , for the noise to be captured
in the regularized equation.

We mainly show that the error betweenū and the deterministic solution to the Allen–Cahn
problem,q, in an appropriate probability-L∞(0, T ; L2) sense, is of order O(ε3) asε → 0 for fixed
γ > 3 andρ, σ > 0. In §5.6 we give an interpretation of this result as an evaluation of the risk
of obtaining a poor resolution of the noise for fixedρ andσ and too smallε. This poor resolution
may lead to the disappearance of the stochastic effects in the regularized equation, even after the
appropriate rescaling, becauseū becomes much closer toq thanu, with respect toε. This point is
further investigated numerically in §7.

Our proof makes use of aspectrum estimateresult for the linearized Allen–Cahn operator
[Che94, dMS95], which is recalled in Theorem 5.2, and the L2(D) estimate on the noise given
by 3.5. The proof’s technique is a continuous data dependence result for parabolic equations based
on a Bernoulli–Gronwall type argument, in the spirit of Feng & Wu [FW05].

The result holds forγ > 3 and it is an open problem, as far as we know, to find the criticalγ for
which the result ceases to hold.
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5.1 Deterministic solution and resolved profiles

Denote byq the (classical) solution of the problem

∂tq − ∂xxq + fε(q) = 0 in D × I, (5.1)

q(0) = u0 onD, (5.2)

∂xq(t, 0) = ∂xq(t, 1) = 0, t ∈ I. (5.3)

We also consider the functionq0 of the space variable only defined as the unique solution to

−q ′′

0 + f1(q0) = 0 in R, q0(±∞) = ±1, q0(0) = 0. (5.4)

(In fact, q0 = tanh.) We will assume from now on thatu0 is a resolved profile solution, which
is defined to be anε-linear perturbation of anε-rescaled and shiftedq0. That is, for allx ∈ D,
u0(x) = q0((x − x0)/ε) + εp0(x) wherex0 ∈ D, andp0 is such thatu0 satisfies the Neumann
boundary conditionsu′

0(±1) = 0. With this choice of initial condition the linearization of the
operatoru 7→ −∂xxu + fε(u) aboutq enjoys the following spectral property.

5.2 THEOREM (Spectrum estimate [Che94, dMS95])There exists a constantλ0 > 0 such that for
anyε ∈ (0, 1] we have

‖∂xφ‖
2
L2(D) + 〈f ′

ε(q)φ, φ〉 > −λ0‖φ‖
2
L2(D), ∀φ ∈ H1(D). (5.5)

It is also a well-known consequence of the maximum principle that if|u0| 6 1 (which is the
case whenu0 is a resolved profile) then|q| 6 1.

The main result of this section is

5.3 LEMMA (Continuous dependence for the regularized-deterministic error)There is a bounded
and nonincreasing functionK1 : [0, ∞) → R and a constantK2, both depending only onλ0, such
that

‖ū(t) − q(t)‖L2(D) 6 K2ε
3 (5.6)

provided ∫ t

0
‖∂xtW̄ (s)‖2

L2(D) exp(−(3 + 2λ0)s) ds 6 K1(t)ε
6−2γ , (5.7)

for t ∈ [0, T ].

Proof. We divide the proof into several steps and we denote in it‖ · ‖L2(D) simply by‖ · ‖.

Step 1. We start by deriving an energy inequality for the error

ē := ū − q. (5.8)

Sinceū satisfies the weak formulation (4.3) andq is a classical solution, we can write the following
PDE in its weak formulation for̄e:

〈∂t ē, φ〉 + 〈∂x ē, ∂xφ〉 + 〈f ′
ε(q)ē, φ〉 = εγ

〈∂xtW̄ , φ〉 −
1

ε2
〈r̄ ē2, φ〉, ∀φ ∈ H1(D), (5.9)

where
r̄ := 3q + ē = 2q + ū. (5.10)
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Testing withē in (5.9) we obtain

〈∂t ē, ē〉 + ‖∂x ē‖
2
+ 〈f ′

ε(q)ē, ē〉 6 εγ
〈∂xtW̄ , ē〉 −

1

ε2
〈r̄ , ē3

〉. (5.11)

Step 2. The next step is to bound the terms on the right-hand side of (5.11). The first term can be
written as

εγ
〈∂xtW̄ (t), ē(t)〉 6

ε2γ

2
‖∂xtW̄ (t)‖2

+
1

2
‖ē(t)‖2. (5.12)

To produce a bound on the second term of the right-hand side of (5.11) we use (5.10), valid in one
spatial dimension, to obtain

〈r̄(t), ē(t)3
〉 = 3〈q, ē(t)3

〉 + ‖ē(t)‖4
L4(D). (5.13)

By the fact that|q| 6 1 and the Sobolev embedding H1(D) ↪→ L∞(D), valid for D ⊂ R, the first
term on the right-hand side of (5.13) can be bounded using

|3〈q, ē(t)3
〉| 6 3‖ē(t)‖L∞(D)‖ē(t)‖

2 6 C1‖ē(t)‖H1(D)‖ē(t)‖
2

6 λ1ε
4
‖ē(t)‖2

H1(D)
+

C2
1

4λ1ε4
‖ē(t)‖4 (5.14)

whereC1 is 3 times the Sobolev embedding constant forD andλ1 := min{1, λ0} (the reason for
this choice will be apparent in the next step) withλ0 from (5.5). As a consequence we have

−
1

ε2
〈r̄ , ē3

〉 6 λ1ε
2
‖ē‖2

H1(D)
+

C2

ε6
‖ē‖4

−
1

ε2
‖ē‖4

L4(D) (5.15)

whereC2 = C2
1/4λ1.

Step 3. Owing to the spectrum estimate (5.5) and the fact thatf ′(q) > −1 we have

‖∂x ē‖
2
+ 〈f ′

ε(q), ē2
〉 =: A = (1 − ε2)A + ε2A

> −(1 − ε2)λ0‖ē‖
2
+ ε2

‖∂xε‖
2
− ‖ē‖2

= −((1 − ε2)λ0 + 1)‖ē‖2
+ ε2

‖∂x ē‖
2

= −(1 + λ0)‖ē‖
2
+ ε2(‖∂x ē‖

2
+ λ0‖ē‖

2)

> −(1 + λ0)‖ē‖
2
+ λ1ε

2
‖ē‖2

H1(D)
. (5.16)

The inequalities (5.11), (5.12), (5.16) and (5.15) lead to

1

2
dt‖ē(t)‖

2
− (1 + λ0)‖ē(t)‖

2

6
ε2γ

2
‖∂xtW̄ (t)‖2

+
1

2
‖ē(t)‖2

+
C2

ε6
‖ē(t)‖4

−
1

ε2
‖ē(t)‖4

L4(D), ∀t ∈ I. (5.17)

Consider, for the rest of the proof, the following notation:

g(t) := ‖ē(t)‖2, a := 3 + 2λ0, b := 2C2/ε
6,

r(t) := ε2γ
‖∂xtW̄ (t)‖2

− ‖ē(t)‖4
L4(D).

(5.18)
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Then (5.17) implies
g′(t) 6 ag(t) + bg(t)2

+ r, ∀t ∈ [0, T ]. (5.19)

Step 4. To proceed we will apply a Bernoulli differential inequality technique, which generalizes
the Gronwall lemma, in order to get a bound ong(t). We follow Feng & Wu [FW05, Lem. 2.1].

Fix a t ∈ [0, T ] and let

%(s) :=
∫ s

0
exp(−aτ)r(τ ) dτ and p(s) := pt (s) = (%(t) − %(s)) exp(as) (5.20)

for all s ∈ [0, t ]. Since

p′(s) = dspt (s) = −r(s) + ap(s) and p(s) > 0 for s ∈ [0, t ], (5.21)

we may write

ds(g(s) + p(s)) 6 a(g(s) + p(s)) + b(g(s) + p(s))2 for s ∈ [0, t ]. (5.22)

Introducingz(s) := 1/(g(s) + p(s)), we can rewrite this inequality as

z′(s) + az(s) > −b, ∀s ∈ [0, t ]. (5.23)

Multiplying by exp(as) and integrating over [0, t ] we obtain

z(t) > z(0) exp(−at) −
b(1 − exp(−at))

a
. (5.24)

If we note thatg(0) = ‖ē(0)‖ = 0, pt (0) = %(t) andpt (t) = 0, this yields

1

g(t)
>

a − b%(t)(exp(at) − 1)

a exp(at)%(t)
. (5.25)

We now invert both sides of this inequality, under the sufficient condition that

a − b%(t)(exp(at) − 1) > 0, (5.26)

and we get

‖ē(t)‖2 6
a exp(at)%(t)

a − b%(t)(exp(at) − 1)
. (5.27)

Step 5. To conclude we want to interpret this result more explicitly. Let us replace first (5.26) by
the sufficient condition

a − b%(t)(exp(at) − 1) > δ(t), (5.28)

for someδ(t) > 0 that will be chosen appropriately. This is equivalent to∫ t

0
exp(−as)r(s) ds (= %(t)) 6

a − δ(t)

b(exp(at) − 1)
. (5.29)
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This can be ensured if we assume∫ t

0
‖∂xtW̄ (s)‖2 exp(−as) ds 6

(a − δ(t))ε6−2γ

2C2(exp(at) − 1)
. (5.30)

Under this condition we obtain the bound

‖ē(t)‖2 6
a(a − δ(t)) exp(at)

2C2δ(t)(exp(at) − 1)
ε6. (5.31)

Step 6. We conclude by taking

δ(t) := max{a − exp(at) + 1, a/2}, (5.32)

i.e.,

δ(t) :=

{
a − exp(at) + 1 for t 6 ta,

a/2 for t > ta,
(5.33)

whereta = log(1 + a/2)/a. Then, after putting

K1(t) :=
min{1, a/2(exp(at) − 1)}

2C2
for t > 0, (5.34)

condition (5.29) may be replaced by∫ t

0
‖∂xtW̄ (s)‖2 exp(−as) ds 6 K1(t)ε

6−2γ , (5.35)

a condition under which we have, from (5.31),

‖ē(t)‖2 6 K2
2ε6, (5.36)

whereK2
2 := sup[0,∞) K1(t)

2 exp(at) < ∞. 2

As a consequence of this estimate we state the following result, which, roughly speaking, implies
that in order for the noise to have the chance of persisting in the limit, asε → 0, the parameters
ρ, σ must also go to zero.

5.4 THEOREM (Low-intensity approximate white noise)There exists a constantC = C(λ0) such
that for all fixedγ > 3, ρ, σ, T > 0 we have

lim
ε→0

P
{
ω ∈ Ω : sup

[0,T ]
‖ū(·; ω) − q‖L2(D) < Cε3

}
= 1. (5.37)

Proof. Let C = K2 in (5.6). Choosing to use an L2(0, t; L2(D))-norm estimate for the white noise,
for the estimate (5.6), in view of the monotonicity ofK1, it is enough to assume the sufficient
condition ∫ t

0
‖∂xtW̄ (s)‖2 ds 6 K1(T )ε6−2γ . (5.38)

According to (3.11), this condition is satisfied with probability

1 −

(
1 +

K1(T )

2
ε6−2γ

)T/σρ−1

exp

(
−

K1(T )

2
ε6−2γ

)
. (5.39)
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Sinceγ > 3, we have 6− 2γ < 0 and, for fixedσ, ρ andT > 0, it is possible to make this
probability arbitrarily close to 1 forε > 0 small enough, as claimed. 2

5.5 REMARK Note that, it is also possible to obtain a variant of 5.4 by employing (3.10) instead of
(3.11). This leads to slightly better lower estimates of the probability for the sameε > 0 for longer
timeT .

5.6 White noise resolution by the AWN

We now describe one interpretation of Theorem 5.4.
Note first that, in the theorem’s statement, the AWN regularization parametersσ andρ are kept

fixed whileε → 0. It is well known that, ifu0 is a resolved profile with center atx0 (see §7.2 for a
definition of center), i.e.,u0 = tanh((x −x0)/2ε), asε → 0, the solutionq = qε of (5.1) converges,
in an appropriate sense, to the stationarystep functionχx0 := 1(x0,∞) − 1(−∞,x0). So Theorem 5.4
is saying that for fixedρ, σ > 0 and forε → 0, the solution,̄u, of the regularized problem (4.3)
converges to this stationary step function.

Second, we note that, owing to a result by Funaki [Fun95, Theorem 8.1] or a similar one by
Brassesco et al. [BDMP95], there exists a stochastic process(t, ω) 7→ ξ ε

t (ω) such that

lim
ε↘0

P
{
ω ∈ Ω : sup

t∈[0,T ε−1−2γ ]
‖u(·, t; ω) − χξ ε

t (ω)‖L2(D) > δ
}

= 0, (5.40)

for each fixedδ > 0, whereχx0 is the step function defined above, and(t, ω) 7→ ξ ε
t is a stochastic

process which converges asε → 0, in an appropriate sense (in law), to the standard Brownian
motion rescaled as to have diffusion coefficient

√
c0ε

1/2+γ wherec0 = 3
√

2/4. Of course, as
ε → 0, ξ ε

t (ω) → x0, wherex0 is the center of the initial conditionu0; this implies that the limits of
u andū are consistent, asε → 0, even whenρ andσ are kept fixed.

Suppose now that one wishes, in view of Theorem 4.4, to use the regularized solutionū(t),
instead ofu(t), to approximate the diffusion coefficient of the processt 7→ ξ ε

t . One way of doing
this would be to approximate (numerically)ū(t, ω) for ω ∈ Ω (or a discrete analog), find its center,
if it exists, ξ̄ ε

t (ω), and finally compute its average (excluding solutions that have no center) and
its variance overω ∈ Ω. The resulting variance, rescaled appropriately, i.e.,t 7→ Var[ξ ε

t ]/ε1+2γ ,
is expected to converge to a linear functiont 7→ c0t asε → 0. This rescaling, which we shall
call the Mueller–Funaki rescaling [Fun95], is necessary in order to get a result that is essentially
independent ofε and thus easy to visualize.

Theorem 5.4 tells us that, for fixedρ, σ > 0, the rate of convergence ofū → q is O(ε3/2). Since
the distance(E ‖q(t)−χξ ε

t
‖

2)1/2, as can be seen using a piecewise constant approximation of tanh,
is O(ε1/2), it follows thatū is closer toq thanχξ ε

t
and that any statistics conducted onū may lead to

wrong results. This is a strong indication, which is confirmed by the numerical results in §7, that in
order to capture the stochastic effects the parametersσ andρ must be chosen as functions ofε. Note
that a similar conclusion can be derived from Theorem 4.4 in case the dependence ofCε proves to
be effective, but the nature of this similar conclusion has its roots in deterministic considerations
rather than stochastic ones.

Although we have proved Theorem 5.4 for values ofγ > 3, it is natural to expect similar results
for lower values ofγ . In fact, our numerical experiments in Section 7 indicate that this is the case.
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6. An Euler–Galerkin finite element scheme

We now introduce finite element discretization of the regularized problem (4.3).

6.1 Discretization partitions

We begin by introducing the space and time partitions

Dh := {D′
m : D′

m := (x′

m−1, x
′
m), m ∈ [1 : M ′]},

Ik := {I ′
n : I ′

n := [t ′n−1, t
′
n), n ∈ [1 : N ′]}.

(6.1)

These partitions do not necessarily coincide with the partitionsDσ and Iρ used for the
regularization procedure in §3.1. Bearing in mind that this setting could be further generalized,
we limit ourselves here to the case where the numerical discretization partitions,Dh and Ik,
are refinements of the white noise regularization partitionsDσ and Iρ , respectively. For each
D′

m ∈ Dh there existsDl ∈ Dσ such thatD′
m ⊂ Dl etc.; this determines a unique mapping

µ : [0 : M ′] → [0 : M] such thatD′
m ⊂ Dµ(m). For simplicity, we also assume that the partitions

are uniform and that themeshsizeandtimestepare denoted respectively byh andk. The reason we
do not make these partitions coincide is that for the finite element method’s convergence analysis
it may prove useful to have more involved couplings of the typeh = h(σ) andk = k(ρ). In this
article we consider only the simplest situation possible whereh = σ andk = ρ.

6.2 Finite element space and the discrete scheme

Let V ⊂ H1
0(D) be the space of continuous piecewise linear functions associated with the

partition Dh. We define the(spatial) semi-discrete solutionas the time-dependent random finite
element functionU : [0, T ] × Ω → V which solves the SDE

〈∂tU(t), V 〉 + 〈∂xU(t), ∂xV 〉 + 〈fε(U(t)), V 〉 = 〈∂xtW̄ , V 〉, ∀V ∈ V, t ∈ [0, T ]. (6.2)

We discretize further this SDE in the time variable by taking a semi-implicit Euler scheme in time
associated to the partitionI = {t0} ∪

⋃
m Im,〈

Un
− Un−1

k
, V

〉
+ 〈∂xU

n, ∂xV 〉 + 〈fε(U
n−1), V 〉 = 〈∂xtW̄ , V 〉, ∀V ∈ V, t ∈ [0, T ]. (6.3)

The scheme is semi-implicit in that the linear part is treated implicitly while it is explicit in the
nonlinearity. This means that at each timestep only one linear problem has to be solved and no
nonlinear solver is needed.

In practice, it is more practical to use a modified version of (6.3) given by〈
Un

− Un−1

k
, V

〉
+ 〈∂xU

n, ∂xV 〉 + 〈f ′
ε(U

n−1)Un, V 〉

= 〈f ′
ε(U

n−1)Un−1
− fε(U

n−1), V 〉 + εγ
〈∂xtW̄ , V 〉, ∀V ∈ V, t ∈ [0, T ], (6.4)

which allows bigger timestepsk [KNS04]. Note that this amounts to a linearization involving one
step of the Newton method to solve the nonlinear (fully implicit) backward Euler scheme.
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6.3 The linear time-stepping system

Let us indicate the basis functions ofV by Φm, for m ∈ [0 : M ′]; these are the piecewise linear
continuous functions such thatΦm(xl) = δm

l for l ∈ [0 : M ′]. If we indicate byun
= (un

m)

the vector of nodal values corresponding to the discrete solutionUn at time tn, that is,Un(x) =∑M ′

m=0 un
mΦm(x), then we can translate (6.4) into the following matrix form:[

1

k
M + A +

1

ε2
N (un−1)

]
un

=
1

ε2
g(un−1) +

1

k
Mun−1

+ εγ w, (6.5)

whereM , A are the usual finite element mass and stiffness matrices, respectively,N (un−1) and
g(un−1) are a “nonlinear” mass matrix and load vector, respectively, andw = (wm) a random
load vector generated at each timestep. A short calculation shows that form an internal degree of
freedom (node) we have

wm =
h

2
√

σρ
(ηµ(m)−1 + ηµ(m)), (6.6)

whereµ is the mapping introduced earlier in this section andηl is an N(0, 1) random number for
l ∈ [0 : M], or zero forl = −1, M + 1 (the boundary cases). If the partitionsDσ andDh coincide,
which will be the case in the next section, thenh = σ and (6.6) simplifies to

wm =
1

2

√
h

ρ
(ηm−1 + ηm). (6.7)

This is the form that we employ in our computations below. From now on, we will assumeIρ and
Ik to coincide, i.e.,k = ρ in all our computations.

7. Computations

We now discuss numerical simulations of the Allen–Cahn problem, using the scheme (6.5). Our
main purpose is to match the behavior of the exact stochastic solution with the behavior of the
Monte Carlo type numerical solution. By “exact behavior” we refer to the theoretical results of
Funaki [Fun95] and Brassesco et al. [BDMP95]. Our numerical experiments are directed towards
testing relations between the various parametersε, γ andρ, σ . In addition to takingk = ρ, we also
takeh = σ .

7.1 Monte Carlo simulations

We use the finite element scheme (6.4) in combination with Monte Carlo type simulations. For
each choice of parametersε, γ and meshsizeh, we choose the timestepk = h2 and compute
between 1000 and 2500 sample paths, each with a different seed for the pseudo-random number
generator.

Each sample path runs from time 0 to a final timeT . At the beginning of each run, the
random number generator is seeded and the subsequentηm appearing in (6.7) are chosen according
to this seed for all the run. The seed for each sample path is determined by the clock of the
machine at the start of each run (these are also recorded for rerunning purposes). In this section
we denote the numerical solution (which tacitly depends onε, γ , h, etc.) by(Un

ω)n∈[0:N ] , where
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n corresponds to the timestep andω is a discrete sample, i.e., the choice of the initial seed. We
indicate byΩ̄ the discrete sample space, which can be thought of as being the set of all initial seeds
employed.

7.2 Phase-separation interfaces and centers

Our benchmarking procedure consists in comparing the behavior of the center of the discrete
solution with that of the exact solution. A functionv ∈ H1(D) is said to have a center ifv(x) = 0
is uniquely solvable with a sign change forx ∈ D = (−1, 1); the solution ofv(x) = 0 is called the
centerof v. For example the functionu0(x) = tanh((x − x0)/

√
2ε) has centerx0.

The center represents a 0-dimensional interface separating two phases in the 1-dimensional
Allen–Cahn model considered here. Due to the noise a solution with center cannucleate, i.e., give
rise to new zeroes, during the evolution; in this case it makes no longer sense to speak of “the” center
and we simply sayinterface position. Such solutions, as we shall see, must be treated carefully in
the statistics. We also note that an interface may disappear, either byexiting the domainD or by
annihilatinganother interface.

7.3 A benchmark

According to known results [Fun95, Theorem 8.1], [BDMP95] and the discussion done in 5.6,
we expect the center ofUn

∈ H1(D), if any, to perform a (discrete) Brownian motion, modulo
perturbations of order O(ε) and the numerical discretization error. Therefore, we will declare our
numerical scheme to be acceptable if we see evidence of this Brownian motion in our computational
results.

Based on this observation, ourbenchmarking procedureconsists in tracking the center
(Ξn

ω)06n6T/k ⊂ (−1, 1) of the computed sample path(Un
ω)06n6T/k, whereω ranges over a discrete

sample space, and we perform statistics on(Ξn
ω)06n6T/k by averaging overω. In order to obtain

meaningful statistics, we keep the number of interfaces constrained to 1. Paths that maintain a center
up to the final time are calledadmissible sample paths. If new interfaces are created, or the center
exits from(−1, 1) during the computation of one sample path, it is rejected as notadmissible, the
computation is stopped, and the computation of a new sample path is started. The average and
variance of the interface position are computed over the admissible sample paths. The resulting
average interface position,E[Ξn], and its variance, Var[Ξn] = E[(Ξn)2] − (E[Ξn])2, are real-
valued functions of (discrete) timetn.

According to (5.40) and the subsequent remarks, the average positionE[Ξn] must be close to 0
and its variance must be close toc0ε

1+2γ tn, and this is what we will be after in the next section.
Note that our use of the benchmark is not as strict as is usual in the context of numerical schemes

for deterministic nonlinear equations. In the latter case, an exact solution is usually readily obtained
and the benchmark procedure simply consists in measuring the error between the two solutions. In
the linear stochastic case, a similar approach can be used with the moments of the SPDE’s solution
[ANZ98]. We should stress, however, that in our case, which is both stochastic and nonlinear, the
exact solution is seldom known analytically, making such simple benchmarking nearly impossible.

7.4 Simulations and results

We run a series of Monte Carlo tests with various combination of parameters as follows:
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S = 0
while S 6 Smax do

for ω = clock timedo
seed of the random number generator withω

for γ = 0.0, 0.2, 0.5 do
for ε = 0.08, 0.04, 0.02, 0.01do

for l = 6, 7, 8, 9 {l is therefinement level} do
let h = 21−l andk = h2

for n ∈ [1 : T/k] do
solve (6.5) forUn

ω

find Ξn
ω such thatUn

ω(Ξn
ω) = 0

if Ξn
ω exists and is uniquethen

let E[Ξn]new = (E[Ξn]S + Ξn
ω)/S

let E[(Ξn)2]new = (E[(Ξn)2]S + Ξn
ω)/S

else
break and skip to the nextl

end if
end for
declare sample path successful:
S = S + 1
E[Ξn] = E[Ξn]new
E[(Ξn)2] = E[(Ξn)2]new

end for
end for

end for
end for

end while
The results are reported in Figures 1, 2 and 3 for the values ofγ = 0.0, 0.2, 0.5, respectively. In
each figure the sub-figures (a), (b) and (c), each of which is split into a top and bottom part, shows
the graph, as (discrete) functions oftn ∈ [0, T ], of the (discrete) average positionE[Ξn] in the
top part and its variance VarΞn := E[(Ξn)2] − E[Ξn]2 rescaled by 1/ε1+2γ T in the bottom part
for the values ofε = 0.04, 0.02, 0.01, respectively. (For easier visualization we plot the piecewise
linear interpolation of discrete functions.) Different lines in each of these three diagrams correspond
to different values of the mesh refinement levell. The absence of a line means that the total number
of successful sample paths is 0 and no statistics are produced. The diagrams (a), (b), (c) correspond,
in each figure, to the values ofε = 0.04, 0.02, 0.01. The plot (d) is designed to see how well the
scheme captures thec0ε

1+2γ t behavior of the variance; each line corresponds to a chosen but fixed
value of t , and is a log-log plot of the variance for the finest refinement level (l = 9) againstε;
different lines correspond to different times between 0 andT = 20. For comparison we plot the
line with slope 1+ 2γ , which represents the scaling power; lines parallel to this line mean that the
code picks up the right scaling.

We next summarize the observations we have drawn from the computational results described.

Interface motion. The motion of the numerical interface, for sufficient transition layer and
noise resolution, has the properties predicted by the analytical results. Indeed, starting from a
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(a) Interface average (top),E[Ξn], and its rescaled

variance (bottom), Var[Ξn]/20ε1+2γ , as functions of time
tn, for ε = 0.04. Only one line, corresponding to the
coarsest refinement levell = 6, i.e., meshsizeh = 2−5,
is visible as for all the other levels no admissible paths
survive up to timeT = 20 with a center (i.e., only one
zero).
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(b) Interface average (top),E[Ξn], and its rescaled

variance (bottom), Var[Ξn]/20ε1+2γ , as functions of time
tn, for ε = 0.02. Comparing this with the caseε =

0.004 (Figure 1(a)) we see that more graphs are visible
in each diagram, corresponding to the refinement levels
l = 6, 7, 8. This is due to the fact that, as the value ofε

decreases, the number of admissible paths increases.
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(c) Interface average (top),E[Ξn], and its rescaled

variance (bottom), Var[Ξn]/20ε1+2γ , as functions of time
tn, for ε = 0.01. In each plot here, sinceε is even smaller,
we see four graphs corresponding to all four refinement
levels tested,l = 6, . . . , 9. Note that the variance forl = 6
is practically zero, which is far from the exact results. We
believe that this is due to two concurrent factors: (1) the
meshsize is too coarse to resolve the interface layer, (2) the
meshsize is too coarse to resolve properly the noise and
the numerical solution is closer to the exact deterministic
solution rather than the stochastic one. Note also that
the variance time-dependence, which is initially linear as
expected, starts degenerating at aboutT = 4.
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(d) These are the results from a different perspective, with
a two-fold purpose: (1) to check the scaling power 1+2γ in
the diffusion coefficient, and (2) to see how the quality of
results behaves with respect to time. Each of these graphs
shows log Var[Ξn] versus logε for the finest refinement
level l = 9. Each graph corresponds to a fixed choice of
the discrete time index,n, from a sequencen1 < · · · <

nI , with ni = 10ni−1. A linear function of slope 1+ 2γ ,
which is the expected slope for the computed variances in
the Mueller–Funaki time scale, is plotted for reference. We
see that this is reflected by the computations, but with the
quality worsening as time grows.

FIG. 1. Numerical results forγ = 0.0
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(a) Interface average (top),E[Ξn], and its rescaled

variance (bottom), Var[Ξn]/20ε1+2γ , as functions of time
tn, for ε = 0.04. Compared to Figure 1(a) we see here
that, due to the more modest intensity of the noise, three
refinement levels produce enough admissible sample paths.
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(b) Interface average (top),E[Ξn], and its rescaled

variance (bottom), Var[Ξn]/20ε1+2γ , as functions of time
tn, for ε = 0.02. All four refinement levels are represented
here. A clear linear trend in the computed variance, up to
time 10 (with a minor deterioration between 10 and 20),
is visible. This linear dependence is the expected behavior
from the theory saying that Var[Ξn] ≈ c0ε1+2γ tn.
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(c) Interface average (top),E[Ξn], and its rescaled

variance (bottom), Var[Ξn]/20ε1+2γ , as functions of time
tn, for ε = 0.01. We see that the linear dependence on time
is clearly visible in the variance, but for low refinement
levels (coarse meshsize) the slope may not be the proper
one. Also for very low refinement, the stochastic dynamics
are not picked up at all.
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(d) Each of these graphs shows log Var[Ξn] versus
logε for the finest refinement levell = 9. Each graph
corresponds to a fixed choice of the discrete time index,
n, from a sequencen1 < · · · < nI , with ni = 10ni−1.
A linear function of slope 1+ 2γ , which is the expected
slope for the computed variances in the Mueller–Funaki
time scale, is plotted for reference. Comparing with the
caseε = 0.0, an improvement in the quality of the behavior
astn grows is visible, but still a clear deterioration in time
is present.

FIG. 2. Numerical results forγ = 0.2. A comparison with Figure 1 is due and leads to two important observations. (1) The
statistics are more robust in time (especially forε small) in that the variance shows a clear linear dependence ont in Figures
2(b) and 2(c) and the correct scaling behavior in Figure 2(d). This is due to the lower intensity of the noise becauseγ is
bigger. (2) On the other hand, we must work harder with the refinement level in order to pick up the stochastic effects. We
believe that this is a practical aspect of the discussion in §5.6. This poor performance for bigger meshsizes could not be
directly related to the interface layer resolution (a deterministic effect) as for the same values ofε andh but lower values of
γ we obtain meaningful statistics, as shown in Figure 1.
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(a) Interface average (top),E[Ξn], and its rescaled

variance (bottom), Var[Ξn]/20ε1+2γ , as functions of time
tn, for ε = 0.04.
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(b) Interface average (top),E[Ξn], and its rescaled

variance (bottom), Var[Ξn]/20ε1+2γ , as functions of time
tn, for ε = 0.02.
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slope for the computed variances in the Mueller–Funaki
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FIG. 3. Numerical results forγ = 0.5. The same comments made in Figure 2 apply here, but with an even clearer linear
dependence of the variance upon time and a clearer need for high mesh refinement in order to resolve the white noise. Also
the computations are more robust with respect to lower values ofγ and they show almost no deterioration in time.

resolved profile centered at zero, as seen in Figures 1–3, the average position is near zero, whereas
the variance, which is expected to be a linear function of time, behaves in accordance with the
expectations, at least for some initial times; theγ, ε dependence of the diffusion coefficientc0ε

1+2γ

is clearly captured by the numerics, as seen by the diagram (d) of each of the figures.
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Noise resolution. It is well known that for simulating the deterministic Allen–Cahn equation with
any type of mesh/grid-based schemes, the meshsize has to be smaller thanε in order to resolve
satisfactorily the transition layer about the interface. Intuitively, this is due to the fact that the
transition layer has width O(ε), and the numerical discretization parameters must be smaller than
this width to have a proper resolution of this transition layer.

The effect of this is seen in each of Figures 1 to 3: asε decreases, the level of refinement has to
be taken bigger and bigger in order to obtain meaningful calculations.

In the stochastic case, the situation is complicated even more by the noise. Indeed, according
to Theorem 5.4 and the discussion in §5.6, the discretization parameters, in this caseh = σ and
k = ρ, must be taken small enough to ensure that the noise effects are not lost for smallε. Roughly
speaking, the discretization parameters must be small, not only to resolve the interface, but also
to resolve the noise and pick up the diffusion of the Brownian motion. This dependence, which is
indicated analytically forγ > 3 by Theorem 5.4, is also reflected in our computations forγ 6 3.
Indeed, a comparison between Figure 1 and Figure 2 shows how the level of refinementl = 7 leads
to meaningful results forγ = 0.0 and all values ofε (at least for short times), whereas the same
refinement level, for the same values ofε, but withγ = 0.2 is insufficient. Forγ = 0.5 in Figure
3 this phenomenon becomes yet more apparent.

We note that computations withγ > 3 (not shown here) require an extremely fine mesh, and thus
a very small timestep in view of Remark 4.6, in order to capture any of the noise effects. Otherwise
the deterministic solution will be computed. In this case, evenchoices ofh that resolve the interface
satisfactorily are not enough to resolve the noise. The lesson we learn from this is that the interplay
between the noise and the nonlinearity can be quite delicate, and not obviously predicted from
deterministic considerations, in problems such as the stochastic Allen–Cahn equation.

Deterioration of simulations witht big and ε small. As observed in the previous subsection,
the computed variance depends linearly on time, as expected, but only for some initial time. The
smallerε, the shorter this time is. This is seen in the bottom part of the sub-figures (a), (b) and (c)
by the graph’s earlier or later departure from an initial linear behavior. The computations deteriorate
faster for smallε, e.g.,ε = 0.0, than they do for biggerε, e.g.,ε = 0.5. The example withε = 0.2
shows an intermediate behavior.

7.5 Interface drift

To conclude, we add some results of computations, for short times, with initial value a resolved
profile centered away from 0. In this case, the SDE describing the motion of the interface has also
a drift term, which drives the interface towards the closest boundary of the domain. This drift is
clearly seen for various choices of the parameters in the top diagrams of Figure 4, where we plot
the center’s position average against time. Short times must be taken, for the statistics to make
sense, otherwise solutions with centers that exit (or nucleate) cease to counterbalance those which
stay in. Indeed, in diagram (c), where the noise intensity is quite strong, after an initial drift towards
the boundary, the average inverts its route and moves away from the boundary. This is due to the
fact that the statistics become too biased; the SE diagram shows the samples survival with respect
to time (that is, a discrete-probability space version of the exit-time inverse function). The samples
survival for the top diagrams is 100% for the statistics in the top diagrams. It is worth mentioning
that similar observations using stochastic ODE’s were made by Shardlow [Sha00].
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(a) The average of the interface position (center) forγ = 0.0. An upward drift, that is, a drift of the interface towards the
closest boundary point, is visible in this series of computations. The number of Monte Carlo samples is 1623. Only three
of these paths violate the uniqueness of center condition and are therefore excluded from the statistics at the time when that
happens.

(b) The average of the interface position forγ = 0.2. Compared with Figure 4(a), an outward drift is also detectable here,
but due to the weaker noise intensity it is slower. The number of Monte Carlo samples here is 1752, all of which make it up
to timeT = 2.

(c) On the left, we plot the average of the interface position forγ = −0.1. In this case, most sample paths do not make
it with the condition of one interface, or center, up to timeT = 2. This fact is visualized on the right, where the curve
represents the number of “admissible” sample paths (i.e., those that have a center) versus time; as time increases the number
of admissible sample paths drops from an initial 2500 to almost 1500. This high drop in the number of samples makes the
statistics unreliable, and explains why the graph on the left exhibits no clear outward drift as a result.

FIG. 4. Monte Carlo computations of the drift effect for the initial interface position shifted away from zero. All these
computations are performed forε = 0.01, meshsizeh = 2−8 and timestepk = h2. See the text and Shardlow [Sha00], for
example, for details about the drift.
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