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A free boundary problem in glaciology: The motion of grounding lines
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We consider stationary ice sheet modeled as a Stokes flow in a bounded two-dimensional domain. In
particular, we study the behavior of the grounding line, where different boundary conditions meet:
no-slip conditions for the grounded part and force balance conditions for the floating part whose
shape is a priori undetermined. This yields a free boundary problem with mixed boundary conditions
and a contact line, called “grounding line” in the glaciological context, that might move along the
solid substrate. We show that solutions with moving grounding lines and zero contact angle do exist
and determine the shape and asymptotic properties of the free boundary.

Keywords: Free boundary problem; glaciology; mixed type boundary conditions; Stokes’ flow
problem; Lax–Milgram theorem; Mellin transform.

1. Introduction

In this paper we study a free boundary problem arising in a glaciological context and involving the
motion of a contact line separating a solid from a fluid interface. The contact line is called, in this
context, “grounding line” and the question on whether or not it can move and which are the dominant
mechanisms is subject of debate. Ice sheets are typically separated into three distinct flow regimes,
which are referred to as inland ice sheet, ice streams (or outlet glaciers of fast flow features) and
ice shelves (see Figure 1). The interaction of these three components is crucial in determining the
evolution of the whole ice-sheet system. Ice shelves may form if local ice thickness is insufficient
to prevent floatation in the surrounding oceans. The grounding line separates the grounded ice zone
from the floating zone, and each zone has its distinct flow regime. Some distance away from this
grounding zone, either in the ice shelf or in the ice sheet, ice flow is reasonably well understood and
there is some consensus as to which simplifications can be made in the stress equilibrium, either to
have flow dominated by shearing in horizontal planes, most of it at the base as in the ice sheet, or
to have the flow dominated by lateral shearing and longitudinal stretching, as in the ice shelf. This
fundamental difference between the two flow regimes seems to suggest the existence of a transition
zone where all the stress components are important and no simplification can be made. There also
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FIG. 1. Physical setting of the problem.

arises the question on the width of such a transition zone, if any, which is moreover likely to be
strongly influenced by the occurrence of basal sliding or the development of ice streams.

On the other hand, it has also been suggested that the details of the stress and strain conditions
at the grounding line would be unimportant for modeling grounding-line migration, as the inland
flow would be little influenced by conditions in the ice shelf, and grounding-line migration could be
above all controlled by conditions of hydrostatic equilibrium in the grounding area. Whatever the
case, grounding-line migration and the coupling of ice sheet flow with ice shelf flow can rightly be
considered as one of those “grand unsolved modeling problems”, which is nevertheless of prime
importance because it is the predominant mechanism by which Antarctic ice sheet changes its
dimensions (it is a key process affecting the stability of marine ice sheets such as the West Antarctic
Ice Sheet (WAIS)). Only a few studies have tried to deal with the numerical inconsistencies at the
grounding line that most finite difference models suffer from (see [12]). In these models the focus is
on the dynamical problem and less attention is paid to the mechanical coupling between the ice sheet
and ice shelf. In the works [28, 29, 6–8] some models of marine ice stream flow and in particular
two-dimensional steady isothermal flow are developed.

The model studied in this paper is based on the models developed in the above mentioned
references. In [28, 29] a consistent scaling is applied to consider ice streams with different relations
between the shear and longitudinal deviatoric stresses and a parametric analysis is performed in
order to prescribe suitable governing equations at the ice stream–ice shelf transition zone depending
on different physical assumptions. Wilchinsky and Chugunov conclude that if the shear stress in the
ice stream is much larger than the longitudinal stress deviator, then all the stresses in the transition
zone are of the same order of magnitude and the transition zone should be singular. However, if the
importance of the shearing component is small near the grounding line and one assumes that the
solution for the ice shelf is valid up to the grounding line, then the problem of marine-ice stream
dynamics determines the ice thickness at hydrostatic equilibrium and stresses are continuous at the
grounding line. In this case, Wilchinsky and Chugunov deduce the continuity of the ice thickness
gradient and of the strain rate at the grounding line. They suggest that in order to be physically
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consistent one should find a unique solution of the complete problem describing the ice flow in the
stream, transition zone and ice shelf when the horizontal mass flux and bed profile are monotone
functions in the main flow direction.

The presence of contact lines between a fluid interface and a solid substrate and the description
of their motion constitute a classical problem in fluid mechanics (see for instance [15, 16, 19, 3])
and a challenge both from the mechanical and mathematical points of view. From the mechanical
perspective the neighborhood of a moving contact line, if modeled as a Navier–Stokes or Stokes
flow, may develop unbounded values of the energy dissipation rate, which is clearly nonphysical.
This is known as the contact line paradox in the context of the spreading of a capillary drop over a
flat surface. From the mathematical viewpoint, a contact line separates the fluid interface from the
solid substrate. At the interface one must impose boundary conditions expressing balance of forces,
leading to conditions typically involving first derivatives of the velocity field. On the solid substrate
one usually imposes no-slip boundary conditions implying that the velocity field must vanish there.

Solving partial differential equations in domains with boundaries which are either not regular or
with mixed boundary conditions is in general a difficult problem since these situations, in general,
originate singularities in the solutions (cf. [13, 14, 18, 20]). One is then forced to modify the
classical Sobolev or Ḧolder spaces with suitable weights in order to accommodate such singularities.
One must also modify the usual analytical tools (Sobolev embeddings, trace inequalities, etc.)
accordingly. In the context of “coating flows”, consisting in the motion of a capillary (i.e. under
the influence of surface tension) fluid interface, some work has been done towards showing that
solutions with moving contact lines do exist (let us mention [25, 26, 22, 9, 10]). The stability of
these solutions has been analyzed in [5].

In the present paper the balances of forces at the interface change and therefore the boundary
conditions are different. In particular, we cannot count on the regularizing effects of surface
tension, a situation that was also present in [21], but in absence of contact lines. This fact gives
rise to different singularities at the contact (grounding) line and hence, to different mathematical
difficulties. Let us remark finally that the solutions we aim to obtain in this paper are zero contact
angle solutions, for which there is a bounded energy dissipation in the vicinity of the contact line.

1.1 Preliminaries. Equations

We want to determine whether or not solutions with migrating grounding lines are possible. In
order to do that, we make some modeling simplifications. First we assume that the grounding line
is moving with constant velocityU in a longitudinalx direction. In a frame of reference attached
to the grounding line, this is equivalent to assuming that the solid base is moving with constant
velocity −U (see Figure 1). The ice sheet will be modeled as a 2D Stokes flow. In doing this we
follow some of the works cited above. In fact, ice is known to be non-Newtonian, with a strain
dependent viscosity, in certain regimes, but we will leave the analysis of such “nonlinear” effects
for future publications and focus here on the simpler Stokes model. Let us remark in this respect that
our study will rely on a variational approach (Section 3) followed by local analysis in the regions
of interest and therefore we expect that our results can be extended to the more complex situations
involving rheology where variational formulations can be established.

The flow region is given byD := {(x, z) : x ∈ (−M,M), z ∈ (−1,0) if x < 0 andz ∈

(−1+b(x),0) if x > 0}, where thex-coordinate denotes the longitudinal length, i.e. in the direction
of the main flow, and thez-coordinate denotes the height. The boundary ofD consists of three
parts: the partΓ0 in contact with the air, i.e., the surface which we describe byz = s(x) and
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x ∈ (−M,M) (here we shall assumes ≡ s(x) ≡ 0, i.e., a flat surface); the partΓ1 of the base
in contact with the ground, i.e.,Γ1 := {(x, z), x 6 0, z = −1}; and the partΓ2 in contact with
the sea,Γ2 := {(x, z) : x > 0, z = −1 + b(x)}. Γ2 is a free boundary whose shape we wish to
determine. The problem is to determin the velocity field(−U,0)+ (vx, vz), the pressureΠ and the
location and geometry of the free boundaries. Modeling the ice sheet dynamics as a Stokes flow that
we assume, without loss of generality, of viscosityµ = 1, the equations we shall use are:

• momentum conservation equation:∇ · τ ≡ −∇Π +∆Ev = −ρi Eg in D,
• mass conservation equation:∇ · Ev = 0 inD,

whereρi is the density of ice andτij = −Πδij+(vi,j+vj,i). The momentum conservation equation
may be written, in terms ofp = Π − ρig(z+ 1), as

∇ · T = −∇p +∆Ev = 0,

whereT is the stress tensor,
Tij = −pδij + (vi,j + vj,i).

Concerning the boundary conditions, as the upper part of the sheet is in contact with air and we
assume that both the normal velocity and the shear stress are zero there, we shall consider the
following conditions:

Ev · En = 0 atΓ0, (1.1)

Etτ En = EtT En = 0 atΓ0, (1.2)

whereEn andEt are the normal and tangent vectors toΓ0 respectively. In the part of the bottom of
the ice sheet which is in contact with the solid substrate we imposeEv = E0, while the other part
is in contact with another fluid modeling the sea. We suppose that the second fluid is stationary
at all times. Hence we impose as boundary condition between both fluids a balance between
viscous stresses on the ice sheet and hydrostatic pressure of the second fluid. Therefore, at the
base, depending on whether the ice is grounded or floating over the sea, we consider the following
boundary conditions:

Ev = E0 onΓ1,

τ En = ρwgb(x)En ⇒ T En = ρgb(x)En onΓ2,

where−ρwgb(x) is the hydrostatic pressure of water inΓ2 andρ = ρw − ρi . We shall also impose
inflow and outflow conditions asx → ±M respectively. We denote the inflow asx → −M by
Evin(z) and assume, by compatibility with the boundary conditions, thatEvin(−1) = E0, vin

z (0) = E0,
and the shear stressEtT En is zero at(−M,0). We may think, for instance, thatEvin(z) has a parabolic
velocity profile, i.e.

Evin
=

(
σ

2
(1 − z2),0

)
. (1.3)

The outflowEvout(z) is such thatvout
z (0) = 0 and the shear stress at(−M,0) and(−M,−1) is zero.

We may think, for instance, of a uniform velocity profile, i.e.

Evout
= (U∞,0). (1.4)
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Here σ and U∞ are two arbitrary positive parameters which are nevertheless linked by the
conservation of mass constraint which implies

−U +

∫ 0

−1
vin
x (z)dz = −U(1 − b(M))+

∫ 0

−1+b(M)

vout
x (z)dz.

Notice that the velocity of the grounding line can then be determined from the physically measurable
entitiesvin

x (z), v
out
x (z) andb(M):

U =
1

b(M)

(∫ 0

−1
vin
x (z)dz−

∫ 0

−1+b(M)

vout
x (z)dz

)
. (1.5)

Notice also that the curveΓ2 may evolve following the velocity field:

bt

(1 + b2
x)

1/2
= ((−U,0)+ Ev) · En =

1

(1 + b2
x)

1/2
[Ubx + (vx, vz)(−bx,1)] on Γ2,

so that the stationary solutions satisfy

0 = Ubx + vz − bxvx .

A final simplification we make consists in assumingΓ0 flat, i.e.Γ0 = {(x,0) : x ∈ [−M,M]} so
that the boundary conditions (1.1) and (1.2) become

vz = 0 atΓ0,

∂vz

∂x
+
∂vx

∂z
= 0 atΓ0.

Notice that∇ · Ev = 0, so we can introduce the stream functionψ such thatψx = vz, ψz = −vx .
Hence, applying the rotation operator to−∇p + ∆Ev = 0, we arrive at the following biharmonic
equation forψ :

∆2ψ = 0 inD. (1.6)

To summarize, the problem we wish to solve can be formulated in the following terms: findb(x)

and a biharmonic functionψ(x, z) in D so that

(−ψz, ψx) = E0 atΓ1, (1.7)

EnT En = ρgb(x) atΓ2, (1.8)

EtT En = 0 atΓ2, (1.9)

Ubx + ψx + bxψz = 0 atΓ2, (1.10)

ψx = EtT En = 0 atΓ0, (1.11)

(−ψz, ψx) = Evin at (−M, z), (1.12)

(−ψz, ψx) = Evout at (M, z). (1.13)

Condition (1.8) admits a useful representation in terms of the stream function since, by (1.10),

b(x) = −
1

U

∫ x

0
(ψx + bxψz)dx′

= −
1

U

∫ x

0

d

dx′
ψ(x′,−1 + b(x′))dx′

= −
1

U
(ψ(x,−1 + b(x))− ψ(x,−1)).
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From now on we shall takeψ(x,−1) = 0 for x 6 0. Hence we can substitute condition (1.7) by

ψz = ψ = 0 atΓ1, (1.14)

and condition (1.8) by
EnT En = −γψ atΓ2 , (1.15)

whereγ = ρg/U .

REMARK 1.1 If one considers a fluid with arbitrary viscosityµ in a domain of arbitrary size
([−ML,0] × [−L,0]) ∪ ([0,ML] × [L(−1 + b(x)),0]), then the problem can be formulated
in exactly the same terms as above after the change of variables and unknowns(x, z) 7→ (Lx,Lz),
(vx, vz) 7→ (vx/µ, vz/µ) but withγ = ρgL2/µU a dimensionless parameter.

The main result of this paper is the following theorem establishing the existence and uniqueness
of solutions to the free boundary problem consisting of (1.6) with conditions (1.9)–(1.15):

THEOREM 1.1 If Evin and Evout are such that‖Evin
‖C2[−1,0], ‖Evout

‖C2[−1+b(M),0] are small enough
andb(M) is also small enough then there exists a unique (weak) solutionψ ∈ H 2+δ(D), b ∈

C1+δ[0,M] (0 < δ � 1) to the nonlinear free boundary problem given by (1.6), (1.9)–(1.15) with
U given by (1.5). Moreover, the asymptotic behavior of the free boundaryb(x) near the grounding
line located at(x = 0, z = −1) is the following:

b(x) = Cx3/2
+ o(x3/2).

The solutions are weak in the sense of solutions obtained via application of the Lax–Milgram
theorem (cf. [2] for instance), i.e. solutions of the equivalent weak version of the problem:
A(ω,ψ) = Lω whereA is a bilinear form involving derivatives ofψ only up to second order,
andL a linear functional (see Section 3 where these definitions are made rigorous). Analogous
results, without smallness conditions, will also be obtained for a linearized version of (1.9)–(1.15)
before the proof of Theorem 1.1.

This paper is organized as follows. In Section 2, we introduce the linearized version of the
problem. In Section 3, we prove the existence, uniqueness and partial regularity of solutions. Since
the grounding line is a special conflict point, as mixed boundary conditions meet there, we devote
most of Section 4 to regularity of the solution in the neighborhood of the grounding line. Regularity
of the solution in the rest of the domain is derived from classical results. Next, in Section 5,
the representation of the linearized free boundary along with some numerical results is presented
and discussed. After solving the linearized problem, in Section 6, we finally address the original
nonlinear problem which is treated as a perturbed version of the linearized one, and prove Theorem
1.1. Finally, in an appendix, we deduce some weighed inequalities used in the paper.

2. The linearized problem

In our problem, we shall considerΓ2 as the only free boundary, which is located atz = −1+ b(x).
In order to deduce a linearized version of the problem when the free boundary is almost flat, in this
section we considerb(x) = εh(x), with ε � 1 andh(0) = 0. The main difficulty in the analysis
lies in the behavior near the grounding line located at(0,−1). We assume thathx(0) = 0 so thatΓ1
andΓ2 meet withC1 regularity. This hypothesis on the free boundary will be verified a posteriori
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and allows us to perform a diffeomorphism from the domainD where the problem is defined to the
stripS = [−M,M] × [−1,0]. In order to do that we introduce aC4(S) cutoff functionχ(x, z) such
that

χ(x, z) =

{
0 if z > 2εh(x),

1 if z < εh(x),

whereh is a regular function such thath(x) = 0 if x < 0 andh(x) > h(x) if x > 0. Our
diffeomorphism is of the formx′

= x andz′ = z− εχ(x, z)h(x). Then

∂

∂x
=

∂

∂x′
+ (−εχ(x, z)h(x))x

∂

∂z′
,

∂

∂z
= (1 + ε(χ(x, z)h(x))z)

∂

∂z′
. (2.1)

Analogously one can obtain formulas for higher order derivatives by successive application of (2.1).
Next, we shall analyze the boundary conditions. SinceΓ2 is defined byz = −1 + εh(x), the unit
tangent vector is given by

Et =

(
1√

1 + ε2h2
x

,
εhx√

1 + ε2h2
x

)
and the unit normal vector is

En =

(
−

εhx√
1 + ε2h2

x

,
1√

1 + ε2h2
x

)
.

Note that we impose as boundary condition between ice shelf and sea water a balance between
viscous stresses on the ice and hydrostatic pressure of the sea water and then we need to evaluate
Tijni :

Tijni =

(
−p + 2∂vx

∂x
∂vx
∂z

+
∂vz
∂x

∂vx
∂z

+
∂vz
∂x

−p + 2∂vz
∂z

)−
εhx√

1+ε2h2
x

1√
1+ε2h2

x


=

1√
1 + ε2h2

x


(
−p + 2∂vx

∂x

)
(−εhx)+

(
∂vx
∂z

+
∂vz
∂x

)
(
∂vx
∂z

+
∂vz
∂x

)
(−εhx)− p + 2∂vz

∂z


≈

(
∂vx
∂z

+
∂vz
∂x

−p + 2∂vz
∂z

)
+ εhx EA(Dxzvj , p, hx).

Then we obtain

tjTijni =

(
∂vx

∂z
+
∂vz

∂x

)
+ εhxC1(Dxzvj , p, εhx) =

(
∂vx

∂z
+
∂vz

∂x

)
+O(ε),

njTijni = −p + 2
∂vz

∂z
+ εhxC2(Dxzvj , p, εhx) = −p + 2

∂vz

∂z
+O(ε).

If we now consider the formulation in terms of the stream function, we arrive at the following
equation, to be verified in the interior of our domainD:

∆2ψ = εF (Dixh,D
j
xzψ), i, j = 0, . . . ,3.
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Noting thatTij Enj = ρgεhni , we can write the boundary conditions atΓ2 in the form

ψzz − ψxx = εhxC1, −p + 2ψxz = εhxC2 + ερgh, (2.2)

and the kinematic condition as

εUhx + ψx + εhxψz = 0. (2.3)

The nature of the problem allows us to write a system only forψ by eliminatingp from the boundary
condition. In order to do that we observe that the tangential component of the vector∇p is

dp

dEt
= Et · ∇p = Et · (∆Ev). (2.4)

Taking into account that

Et ·∆Ev = −∆ψz + εhxC
′

2(Dxzvj , p, εhx)

and taking derivatives in the boundary condition (2.2)-2 we obtain

−
dp

dEt
+ 2

d

dEt
(ψxz) =

d

dEt
(εhxC2 + ερgh). (2.5)

If we substitute the expression (2.4) in (2.5), we obtain

ψzzz + 3ψxzx = ερghx + εhxB2(εh, εhx, εhxx, εhxxx,D
i
xzψ), i = 1,2,3. (2.6)

Finally, from (2.3) we can obtainεhx = −U−1(ψx + εhxψz), substitute in (2.6) and conclude

ψzzz + 3ψxzx + γψx = O(ε) .

Ignoring terms of orderO(ε), as a result of the change of coordinates and linearization, the same
problem is formulated inS = [−M,M] × [−1,0] as

∆2ψ = 0 in S, (2.7)

ψx = ψzz − ψxx = 0 onz = 0, x ∈ [−M,M], (2.8)

ψ = ψz = 0 onz = −1, x ∈ [−M,0], (2.9)

ψzz − ψxx = 0 and 3ψxxz + ψzzz + γψx = 0 onz = −1, x ∈ [0,M], (2.10)

together with the inflow and outflow conditions:

ψz = −vin
x , ψx = vin

z atx = −M, (2.11)

ψz = −vout
x , ψx= vout

z atx = M. (2.12)

Once a solutionψ is found, one can compute the linearized free boundaryεh(x) as

εh(x) = −
1

U
ψ(x,−1). (2.13)
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3. Existence, uniqueness and partial regularity for the linearized problem

In this section we will show the existence of a unique weak solution to the linearized system (2.7)–
(2.12). To this end, we write the linearized system in terms of the stress tensorT defined as

T =

(
−p − 2ψxz ψxx − ψzz
ψxx − ψzz −p + 2ψxz

)
.

Therefore we wish to solve:

∇ · T = 0 in [−M,M] × [−1,0], (3.1)

∇ · Ev = 0 in [−M,M] × [−1,0]. (3.2)

The boundary conditions are then

Txz = 0, vz = 0 atz = 0, (3.3)

Ev = E0 atz = −1, x < 0, (3.4)

Txz = 0, Tzz = −γψ = −γ

∫ x

0
vz(s,−1) at z = −1, x > 0. (3.5)

In addition we impose the inflow and outflow boundary conditions asx → ±M: see (2.11) and
(2.12). The rest of the section will be devoted to the proof of the following theorem:

THEOREM 3.1 There exists a unique weak solutionψ ∈ H 2(S) to problem (2.7)–(2.10 ) satisfying
(2.11) and (2.12).

Proof. As a first step we write
Ev = Ev0

+ Ev1,

where Ev0 is a divergence free [C∞((−M,M) × (−1,0))]2 velocity field satisfying the inflow
and outflow boundary conditions as well as conditions (3.3), (3.4). Such a velocity field can be
constructed, for instance, from a stream functionψ0 so thatEv0

= (−ψ0
z , ψ

0
x ),

ψ0
x → vin

z , ψ0
z → −vin

x asx → −M, (3.6)

ψ0
x → vout

z , ψ0
z → −vout

x asx → +M, (3.7)

ψ0
x , ψ

0
zz = 0 atz = 0, (3.8)

ψ0, ψ0
z = 0 atz = −1, x < 0. (3.9)

It is simple to show that there exists aψ0 satisfying these conditions. Consider for instanceEvin, Evout

given by (1.3), (1.4) respectively. Then we can takeψ0 as follows:

ψ0
=

(
−
σ

3
−
σ

2

(
z−

z3

3

))
Φ1(x)η

(
z+ 1

x

)
+

(
−
σ

3
− U∞z

)
Φ2(x),

where

η ∈ C∞, η(s) =

{
1 if s > 1/2M,

0 if s < 1/3M,
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andΦ1(x)+Φ2(x) = 1 with

Φ1 ∈ C∞, Φ1(x) =

{
1 if −M 6 x < 0,

0 if x > δ,

Φ2 ∈ C∞, Φ2(x) =

{
0 if x 6 0,

1 if δ < x 6 M,

andδ = M/10. Thenψ0
∈ C∞((−M,M)×(−1,0)) and satisfies (3.6)–(3.9). Notice, in particular,

that
c1(x) ≡ ψ0

zz − ψ0
xx and c2(x) ≡ γψ0

x + (ψ0
zzz + 3ψ0

zxx)

are bounded atz = −1, x > 0. The velocityEv1 and its associated stress tensorT 1 will satisfy the
system

∇ · T 1
= Es1 in [−M,M] × [−1,0], (3.10)

∇ · Ev1
= 0 in [−M,M] × [−1,0],

with Es1 (depending onψ0) bounded. The boundary conditions are then

T 1
xz = 0, v1

z = 0 atz = 0,

Ev1
= E0 atz = −1, x < 0,

T 1
xz = −c1(x), T 1

zz(x,−1)+ γ

∫ x

0
v1
z (s,−1) = −

∫ x

0
c2(s)ds at z = −1, x > 0,

together with the conditions that the stream function associated toEv1, i.e. the functionψ1 such that
Ev1

= (−ψ1
z , ψ

1
x ), vanishes together with its first derivatives atx = ±M. We introduce as a set of

test functions the spaceX which is the closure with respect to the norm

‖Eϕ‖X ≡

(∫
S

|∇ Eϕ|
2
)1/2

of the set

{ Eϕ = (ϕ1, ϕ2) ∈ [C∞

0 (S)]
2 : ∇ · Eϕ = 0,

ϕ2(x,0) = 0, x ∈ [−M,M],

ϕ1(x,−1) = ϕ2(x,−1) = 0, x ∈ [−M,0],

Eϕ = 0 atx = ±M}.

In terms of the stream function, we will work with the set of test functions formed by those
ω such thatEϕ = (−ωz, ωx) is in X. Korn’s inequality which applies to bounded domains and for
functions Eϕ vanishing at a part of the boundary (see [23]) and Sobolev embeddings imply that this
setY is the closure with respect to theH 2(S) norm of the set of stream functions whose associated
velocities belong toX. More precisely,

Y = {ω ∈ H 2(S) : ω = 0 on([−M,M],0),

ω = ωz = 0 on([−M,0],−1),

ωx = ω = 0 on(±M, [−1,0])}.
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We multiply equation (3.10) byEϕ ∈ X, integrate by parts and obtain∫
S

Eϕ div T 1
= −

1

2

∫
S

(ϕi,j + ϕj,i)(v
1
i,j + v1

j,i)+

∫
∂S

EϕT 1
En =

∫
S

Eϕ · Es1.

Hence,
1

2

∫
S

(ϕi,j + ϕj,i)(v
1
i,j + v1

j,i) =

∫
∂S

EϕT 1
En−

∫
S

Eϕ · Es1.

SetL = [−M,M] and L+
= [0,M]. Given the boundary conditions imposed onT 1 and the

properties ofX we can compute∫
∂S

EϕT 1
En =

∫
L,z=0

(ϕ1T
1
xz + ϕ2T

1
zz)−

∫
L,z=−1

(ϕ1T
1
xz + ϕ2T

1
zz)

=

∫
L+,z=−1

(
c1(x)ϕ1(x,−1)+

[
γ

(∫ x

0
v1
z (s,−1)

)
+

∫ x

0
c2(s)ds

]
ϕ2(x,−1)

)
.

Hence we arrive at the formula

1

2

∫
S

(ϕi,j + ϕj,i)(v
1
i,j + v1

j,i)− γ

∫
L+,z=−1

(∫ x

0
v1
z (s,−1)

)
ϕ2(x,−1)

=

∫
L+,z=−1

c1(x)ϕ1(x,−1)+

∫
L+,z=−1

(∫ x

0
c2(s)ds

)
ϕ2(x,−1)−

∫
S

Eϕ · Es1.

Next we write the expression above in terms of the stream functionω of Eϕ andψ of Ev1 assuming
ω ∈ Y :

a(ω,ψ)− γ

∫
L+,z=−1

ψ(x,−1)ωx(x,−1)

= −

∫
L+,z=−1

c1(x)ωz(x,−1)+

∫
L+,z=−1

c2(x)ωx(x,−1)−

∫
S

(−ωz, ωx) · Es1, (3.11)

where

a(ω,ψ) =
1

2

∫
S

(ϕi,j + ϕj,i)(v
1
i,j + v1

j,i).

Equation (3.11) can be written symbolically as

A(ω,ψ) = Lω,

where

A(ω,ψ) ≡ a(ω,ψ)− b(ω,ψ) and b(ω,ψ) ≡ γ

∫
L+,z=−1

ψ(x,−1)ωx(x,−1)

are bilinear forms continuous inY (for a(·, ·) this is obvious while forb(·, ·) it is due to the fact that
the trace of functions inH 2(S) lies inH 1(∂S)) and

Lω ≡ −

∫
L+,z=−1

c1(x)ωz(x,−1)+

∫
L+,z=−1

c2(x)ω(x,−1)−

∫
S

(−ωz, ωz) · Es1

is a continuous linear functional onY given the boundedness ofc1, c2 and Es1 and the fact that the
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trace ofH 2 is inH 1 in a bounded domain in two dimensions. Finally,A(ω,ψ) is coercive since

A(ω,ω) ≡ a(ω, ω)− γ

∫
L+,z=−1

ω(x,−1)ωx(x,−1) = a(ω, ω) > C‖ω‖H2.

We have used, for the last inequality, Korn’s inequality which allows us estimate the norm of any
ϕi,j in L2 by a(ω, ω), and Poincaŕe’s inequality which allows estimating anyϕi in L2 by the norms
of ϕi,j in L2 as well as the norm ofω in L2. These inequalities are valid in bounded domains with
Lipschitz boundaries ifEϕ andω vanish at a part of the boundary, as is the case here. Lax–Milgram’s
theorem then implies the existence of a unique solution to our problem such thatψ ∈ H 2(S).

4. Regularity in the neighborhood of the grounding line

In order to study the regularity we shall follow the classical approach except for the conflict
point (x = 0, z = −1), where mixed boundary conditions meet and the solutions might develop
some kind of singularities. We introduce suitable cut-off functions to isolate different regions (see
Figure 2). More precisely, we considerχi , i = 1, . . . ,5, such thatχi ∈ C∞(S),

∑
χi = 1,

supp(χ1) = Ω1 ⊂ [−M,M] × (−3/4,−1/4),

supp(χ2) = Ω2 ⊂ [−M,M] × (−1/2,0),

supp(χ3) = Ω3 ⊂ ([−1,M] × [−1,−1/2]) \ Bδ/2(0,−1),

supp(χ4) = Ω4 ⊂ ([−M,1] × [−1,−1/2]) \ Bδ/2(0,−1),

supp(χ5) = Ω5 = Bδ(0,−1) ∩ S,

and
χ5 = 1 inBδ/2(0,−1) ∩ S.

Then we can write the stream functionψ in the following way:

ψ =

5∑
i=1

ψi with ψi = χiψ, i = 1, . . . ,5.

FIG. 2. Illustration of the partition of the domain used to study the regularity of the solution.
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In the previous sections we obtainedψ ∈ H 2 but we expect the solution to have a much better
regularity locally in the neighborhood of any point inS given the elliptic nature of the system
(cf. [1]). The only exception to this is the regionΩ5 where mixed boundary conditions have to be
imposed and this fact, as mentioned above, may give rise to singularities that we wish to understand
in the next sections. The analysis of the regularity forψi, i = 1,2,3,4, follows the lines of [9, 10],
where almost identical analysis was developed in full detail. The only essential difference is in the
boundary condition (2.10) forψ3 which was slightly different: 3ψ3,xxz + ψ3,zzz + γψ3,xxx = 0.
Makingγ = 0 in both problems leads to the same system. In their case, this particular choice does
not affect the regularity outsideΩ5 and in our case, the termγψ3,x dropped out is more regular than
the other terms in the boundary condition and its presence does not affect regularity. The conclusion
then isC4 regularity forψ insideS and outsideΩ5 as in [9, 10]. If we assume thatχ5 depends only
on r, the distance to(0,−1), then using the system (2.7)–(2.10) one can write the following system
for ψ5:

∆2ψ5 = J (ψ,Dψ,D2ψ,D3ψ) in S, (4.1)

ψ5 = 0 atx < 0, z = −1, (4.2)

ψ5,z = 0 atx < 0, z = −1, (4.3)

ψ5,zz − ψ5,xx = B1(ψ,Dψ) atx > 0, z = −1, (4.4)

3ψ5,xxz + ψ5,zzz = −γχ5ψx + B2(ψ,Dψ,D
2ψ) atx > 0, z = −1, (4.5)

where

B1(ψ,Dψ) = 2χ5,zψz + χ5,zzψ − 2χ5,xψx − χ5,xxψ,

B2(ψ,Dψ,D
2ψ) = 3(χ5,zxxψ + 2χ5,zxψx + χ5,zψxx + χ5,xxψz + 2χ5,xψzx)

+ (χ5,zzzψ + 3χ5,zψzz + 3χ5,zzψz).

The functionJ (ψ,Dψ,D2ψ,D3ψ) and bothB1(ψ,Dψ) andB2(ψ,Dψ,D
2ψ) are compactly

supported away from(x, z) = (0,−1). From the classical results of Agmon, Douglis and Nirenberg
[1] and the discussion above it follows thatψ ∈ C4({(−M,M) × [−1,0]} \ Bδ/2(0,−1)) so that
J (ψ,Dψ,D2ψ,D3ψ), B1(ψ,Dψ), B2(ψ,Dψ,D

2ψ) are bounded. Thereforeψ5 satisfies

∆2ψ5 = J (x, y)z in R × [−1,+∞], (4.6)

ψ5 = 0 atx < 0, z = −1, (4.7)

ψ5,z = 0 atx < 0, z = −1, (4.8)

ψ5,zz − ψ5,xx = G(x) atx > 0, z = −1, (4.9)

3ψ5,xxz + ψ5,zzz = F(x) atx > 0, z = −1, (4.10)

where

G(x) = B1(ψ,Dψ),

F (x) = −γχ5ψx + B2(ψ,Dψ,D
2ψ).

Notice that bothG andF are inL2(R+), J ∈ L2(R+
×[−1,+∞]) and all of these functions are

compactly supported away from(0,−1). We can express the solution for (4.6)–(4.10) asψ5 =
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ψ
(1)
5 +ψ

(2)
5 whereψ (1)5 solves (4.6)–(4.10) with homogeneous boundary conditions andψ

(2)
5 solves

∆2ψ
(2)
5 = 0 in R × [−1,+∞], (4.11)

ψ
(2)
5 = 0 atx < 0, z = −1, (4.12)

ψ
(2)
5,z = 0 atx < 0, z = −1, (4.13)

ψ
(2)
5,zz − ψ

(2)
5,xx = G(x) atx > 0, z = −1, (4.14)

3ψ (2)5,xxz + ψ
(2)
5,zzz = F(x) atx > 0, z = −1. (4.15)

The functionψ (1)5 can be written in terms of Green’s function for the biharmonic operator with
homogeneous boundary conditions. This operator can be constructed straightforwardly by using
Mellin transforms. Since the sourceJ (x, y) is compactly supported away from(0,−1) it is a simple
matter to find thatψ (1)5 behaves in the neighborhood of(0,−1) as a solution to the homogeneous
version of (4.6)–(4.10) which is locally inH 2 (see for instance Maz’ya et al. [17, Chapters 6 and 7],
where this fact is established rigorously). Using polar coordinates around(0,−1) the problem can
be written in the form

∆2ψ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂2θ

)2

ψ = 0,

ψ = 0 atθ = π,

ψθ = 0 atθ = π,

ψrr −
1

r2
ψθθ −

1

r
ψr = 0 atθ = 0,

−
1

r3
ψθθθ −

3

r
ψrrθ +

3

r2
ψrθ −

4

r3
ψθ = 0 atθ = 0,

and the solutions can be found in the form

ψ(r, θ) = rα+1fα(θ), (4.16)

where

fα(θ) = A sin((α + 1)θ)+ B cos((α + 1)θ)+ C sin((α − 1)θ)+D cos((α − 1)θ). (4.17)

The coefficientsA,B,C andD should be determined by the boundary conditions, andα chosen
in such a way that they are satisfied. In fact, considering (4.16) and imposing boundary conditions,
we get a homogeneous system forA,B,C andD which will have a nontrivial solution only if the
determinant of the matrix of the system written in terms ofα, sin((α + 1)π) and cos((α + 1)π) is
null. The determinant is

16(α − 1)α4 cos2((α + 1)π)

so that the only possible solutions areα = 0,α = 1 and the solutions of

cos2((α + 1)π) = 0, i.e. (α + 1)π = (n+ 1/2)π, n ∈ Z.

It can be easily shown that the rootsα = 0 andα = 1 are such that the solution (4.17) degenerates
and an analysis of these two specific cases leads to the nonexistence of solutions satisfying all the
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boundary conditions. Thereforeα = n− 1/2. Taking into consideration thatψ ∈ H 2
loc(BR(−1,0)),

we find that the first value ofα compatible with it isα = 1/2. This implies that theH 2 solution
should be such that

ψ
(1)
5 ∼ Cr3/2f1/2(θ)+ o(r2) asr → 0. (4.18)

4.1 Analysis of problem (4.11)–(4.15)

Next we will study the behavior of the solutionsψ (2)5 of (4.11)–(4.15) in the neighborhood

of the grounding line. For simplicity of notation we will denoteψ (2)5 by ψ . Notice thatψ ∈

H 2(BR(−1,0)) and suppψ ⊂ Ω5 ≡ BR(−1,0) for R > δ. Then, if we introduce polar coordinates
(r, θ) around(0,−1) and use Poincaré’s inequality it is straightforward to prove the following
equivalence of norms:

‖ψ‖H2(BR(−1,0)) ∼

∫ π

0

∫ R

0

[ 2∑
i=0

∣∣∣∣ 1

r2

∂ iψ

∂θ i

∣∣∣∣2 +

1∑
i=0

∣∣∣∣1r ∂∂r ∂ iψ∂θ i
∣∣∣∣2 +

∣∣∣∣∂2ψ

∂r2

∣∣∣∣2]r dr dθ.

The homogeneity inr of the above expression suggests the introduction of the following Mellin
transform inr of ψ :

ψ̃(λ, θ) =

∫
∞

0
ψ(r, θ)r iλ−2 dr, (4.19)

in terms of which one can write

‖ψ‖H2(BR(−1,0)) ∼

∫
∞

−∞

∫ π

0

2∑
i=0

∣∣∣∣∂ iψ̃∂θ i (λ, θ)
∣∣∣∣2 dλdθ.

In general, one can define theα-Mellin transform as follows:

DEFINITION 4.1 Given a functionf ∈ L2([0,∞), u2α) , itsα-Mellin transformis given by

f̃ α(λ) =

∫
∞

0
f (u)uiλ+α−1/2 du,

whereλ ∈ R. The corresponding inverse Mellin transform is given by

f (u) =
1

2π

∫ i∞

−i∞

f̃ α(λ)u−iλ−α−1/2 dλ.

Note that by integration by parts,

f̃ αx = −(iλ− 1/2 + α)f̃ α−1.

In order to study regularity near the corner, we shall make use of the a priori information on
the regularity of weak solutions obtained in Section 3. More precisely, we shall write the boundary
conditions (4.14), (4.15) in the form

ψzz − ψxx = G(x), (4.20)

ψzzz + 3ψxzx = F(x), (4.21)
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and we shall solve the system with the right hand sides of (4.20), (4.21) being general functions
G andF belonging toL2(R), as dictated by the partial regularity result obtained in Section 3. In
order to study the asymptotic behavior of the stream function at the grounding line point we follow
the same procedure performed in [5]. First we write the problem we have inΩ5 in terms of polar
coordinates(r, θ). The equation in the interior is

∆2ψ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂2θ

)2

ψ = 0,

and the boundary conditions are:

ψ = 0 atθ = π,

ψθ = 0 atθ = π,

ψrr −
1

r2
ψθθ −

1

r
ψr = G at θ = 0,

−
1

r3
ψθθθ −

3

r
ψrrθ +

3

r2
ψrθ −

4

r3
ψθ = F at θ = 0.

Given the exponent in the Mellin transform chosen in the definition (4.19), we multiply the above
equations byr iλ+2, r iλ−2, r iλ−2, r iλ andr iλ+1 respectively. Next we integrate inr from 0 to infinity
and after some integrations by parts we obtain:[

(iλ+ 1)2 +
∂2

∂θ2

][
(iλ− 1)2 +

∂2

∂θ2

]
ψ̃ = 0, (4.22)

ψ̃ = 0 atθ = π,

∂

∂θ
ψ̃ = 0 atθ = π,[

−
∂2

∂θ2
+ (iλ+ 1)(iλ− 1)

]
ψ̃ = G̃(λ) at θ = 0,[

−
∂3

∂θ3
− (3(iλ+ 1)(iλ− 1)+ 4)

∂

∂θ

]
ψ̃ = F̃ (λ) at θ = 0,

whereψ̃(λ, θ) is the Mellin transform ofψ(r, θ) as defined in (4.19). The solution of the equation
(4.22) is of the form

ψ̃a(λ, θ) = A cos((iλ− 1)θ)+ B sin((iλ− 1)θ)+ C cos((iλ+ 1)θ)+D sin((iλ+ 1)θ).

The coefficientsA, B, C, D are functions ofλ which are determined by the boundary conditions.
Let us use the following notation:b = iλ − 1, s = sin((iλ − 1)π), c = cos((iλ − 1)π) and
γ = 2b(b + 1)(b + 2). Then

c s c s

−bs bc −(b + 2)s (b + 2)c
2b 0 −2(b + 2) 0
0 −2γ 0 2γ



A

B

C

D

 =


0
0

G̃(λ)

F̃ (λ)


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where

G̃(λ) =

∫
∞

0
G(r)r iλ dr and F̃ (λ) =

∫
∞

0
F(r)r iλ+1 dr.

Next, we find that


A

B

C

D

 =



b+2
2c(b+1) 0 1

4(b+1)
s(b+2)

4cγ (b+1)

−b(b+2)s
2c2(b+1)

−1
2c

s
4c(b+1)

−(c2b2
+3c2b+2c2

+s2b2
+2s2b)

4γ c2(b+1)
b

2c(b+1) 0 −1
4(b+1)

sb
4cγ (b+1)

b(b+2)s
2c(b+1)

1
2c

−s
4c(b+1)

b(c2b+c2
+s2b+2s2)

4γ c2(b+1)




0
0

G̃(λ)

F̃ (λ)

 .

We are particularly interested in the values forθ = 0. Hence,

ψ̃(λ,0) = A+ C =

(
s(b + 2)

4cγ (b + 1)
+

sb

4cγ (b + 1)

)
F̃ (λ)

=
2s

4cγ
F̃ (λ) =

tan((iλ− 1)π)

2γ
F̃ (λ),

and therefore,

ψ̃(λ,0) =
tan((iλ− 1)π)

2γ
F̃ (λ).

Note that
b(b + 1)(b + 2)ψ̃ = −ψ̃

3/2
rrr ,

where

ψ̃
3/2
rrr =

∫
∞

0
ψrrr(r)r

iλ+1 dr.

Hence,

ψ̃
3/2
rrr = −

F̃ (λ)

2
tan((iλ− 1)π).

Next, we shall use the inversion formula to obtain

ψrrr(r, θ = 0) = −
1

2π

1

r2

∫
∞

−∞

dλ r−iλF̃ (λ) tan((iλ− 1)π),

or, computing theλ integral as in [5],

ψrrr(r, θ = 0) = −
1

2π

1

r3/2
P.V.

∫
∞

0

ξ3/2

r − ξ
f (ξ)dξ.

Then
ψrrr = ψrrr,1 + ψrrr,2,

where

ψrrr,1 = −
1

2π

1

r1/2
P.V.

∫
∞

0

ξ1/2

r − ξ
f (ξ)dξ, (4.23)

ψrrr,2 =
1

2π

1

r3/2

∫
∞

0
ξ1/2f (ξ)dξ. (4.24)
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Notice now that, given that the support off (ξ) is bounded, one can estimate∫
∞

0
ξ1/2

|f (ξ)| dξ 6 C‖f ‖L2.

On the other hand, we can estimate (4.23) using Lemma 2.2 from [5] to conclude∫
∞

−∞

|ψ̃ srrr,1|
2 dλ 6 C

∫
∞

−∞

|f̃ s |2 dλ, 0< s < 1 (s 6= 1/2),

so that Plancherel’s identity for Mellin transforms yields

‖rsψrrr,1(r)‖
2
L2 =

∫
∞

0
ξ2s

|ψrrr,1(ξ)|
2 dξ 6 C

∫
∞

0
ξ2s

|f (ξ)|2 dξ 6 C‖f ‖
2
L2,

sincef (ξ) is compactly supported. Hence, by the Hardy type inequality proved in Lemma 7.1 in
the Appendix,

|ψrr,1(r,0)− ψrr,1(0,0)|

r1/2−s
6 ‖rsψrrr,1‖L2 6 C‖f ‖L2. (4.25)

Equations (4.23), (4.24) and inequality (4.25) imply that

ψrr(r,0) =
C

r1/2
+O(1) asr → 0,

and hence,
ψr(r,0) = 2Cr1/2

+O(r) asr → 0. (4.26)

REMARK 4.1 The first order term of the representation of the free boundary is given, according to
expressions (2.13), (4.18) and (4.26), by

b(x) = εh(x) ∼ Cx3/2.

5. Representation of the linearized free boundary and numerical approximations

In this section we shall show that the solution to the linearized problem admits a representation as a
power series analytical inγ . More precisely, one has:

THEOREM 5.1 If γ < γ0 for γ0 small enough then the solution to

∆2ψ = 0 in S, (5.1)

ψ = ψzz − ψxx = 0 onz = 0, x ∈ [−M,M], (5.2)

ψ = ψz = 0 onz = −1, x ∈ [−M,0], (5.3)

ψzz − ψxx = 0 and 3ψxxz + ψzzz + γψx = 0 onz = −1, x ∈ [0,M], (5.4)

together with the inflow and outflow conditions

ψz = −vin
x , ψx = vin

z atx = −M, (5.5)

ψz = −vout
x , ψx= vout

z atx = M, (5.6)
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can be written as

ψ =

∞∑
n=0

γ nψ (n), (5.7)

where‖ψ (n)‖H2(S) 6 C0C
n for some constantC that depends only onM.

Proof. We decompose our problem into two: the problemP0 which is (5.1)–(5.6) withγ = 0 and
whose solution we callψ0, and the problem

∆2ψ̃ = 0 in S, (5.8)

ψ̃ = ψ̃zz − ψ̃xx = 0 onz = 0, x ∈ [−M,M], (5.9)

ψ̃x = ψ̃z = 0 onz = −1, x ∈ [−M,0], (5.10)

ψ̃zz − ψ̃xx = 0 onz = −1, x ∈ [0,M], (5.11)

3ψ̃xxz + ψ̃zzz + γ ψ̃x = −γψ0
x on z = −1, x ∈ [0,M], (5.12)

ψ̃z = ψ̃x = 0 atx = ±M. (5.13)

By introducing
∑

∞

n=1 γ
nψ (n) into (5.8)–(5.13) and retaining terms of the same order inγ we can

write the following problemsPj+1:

∆2ψ (j+1)
= 0 in S, (5.14)

ψ (j+1)
= ψ

(j+1)
zz − ψ

(j+1)
xx = 0 onz = 0, x ∈ [−M,M], (5.15)

ψ
(j+1)
x = ψ

(j+1)
z = 0 onz = −1, x ∈ [−M,0], (5.16)

ψ
(j+1)
zz − ψ

(j+1)
xx = 0 onz = −1, x ∈ [0,M], (5.17)

3ψ (j+1)
xxz + ψ

(j+1)
zzz = −ψ

(j)
x on z = −1, x ∈ [0,M], (5.18)

ψ
(j+1)
z = ψ

(j+1)
x = 0 atx = ±M, (5.19)

with ψ (j)x considered as a source. Writing the problemsP0 andPj+1 in terms of the stress tensor as
we did in Section 3 and applying Lax–Milgram we can prove existence and uniqueness of solutions
and the estimates

‖ψ (0)‖H2(S) 6 C0, ‖ψ (j+1)
‖H2(S) 6 C1‖ψ

(j)
x (x,−1)‖L2([0,M]),

whereC0 depends on the inflow and outflow terms andC1 depends only on the domainS. By the
trace inequality,‖ψ (j)x (x,−1)‖L2([0,M]) is bounded by‖ψ (j)‖H2(S) and we conclude that

‖ψ (j+1)
‖H2(S) 6 C‖ψ (j)‖H2(S),

whereC depends solely on the domainS. Hence

‖ψ (j+1)
‖H2(S) 6 Cj+1

‖ψ (0)‖H2(S) 6 Cj+1C0,

and the series (5.7) is convergent providedγC < 1, i.e.γ < γ0 ≡ 1/C; this concludes the proof of
the theorem.
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FIG. 3. Modulus of the velocity across the strip. Notice the behavior near(0,−1).

The theorem above and formula (2.13) allow us to represent the free boundary in the form

b(x) = −
1

U
ψ(x,−1) =

∞∑
n=0

γ ngn(x),

where

g0(x) = −
1

U
ψ0(x,−1), gn(x) = −

1

U
ψ (n)(x,−1).

By trace embeddings, it follows that‖ψ (n)(x,−1)‖C0([0,M]) 6 C‖ψ (n)‖H2(S) and one can therefore
write

b(x) = g0(x)+ γg1(x)+O(γ 2) (5.20)

if γ is small enough. Formula (5.20) gives a useful representation for the free boundary that can be
implemented numerically. We have solved the problemP0 in the domainS = [−3,3] × [−1,0] by
using finite elements with inflow and outflow at the lateral boundaries given by

(vin
x , v

in
z ) = (1 − z2,0), (vout

x , vout
z ) = (U∞,0),

whereU∞ is chosen such that the total inflow acrossx = −3 is larger than the total outflow across
x = 3, i.e.

U∞ =

∫ 0

−1
(1 − z2)dz− δ =

2

3
− δ.
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FIG. 4. The free boundaryg0(x) for three different values ofδ.

In Figure 3 we represent the modulus of the velocity with outflowU∞ = 2/3 − 0.005. Notice
the behavior near(0,−1) suggesting a singularity in the derivative of the velocity. In fact, we
proved in the previous sections that|Ev| = O(r1/2). In Figure 4 we represent the first order term
g0(x) (see formula (5.20)) of the representation of the free boundary as a power series inγ . If γ is
small, then the free boundary is very similar to the profiles represented in the figure. We have taken
δ = 0.02,0.05,0.1. Notice the regular behavior nearx = 0. The theory developed in the previous
sections predictsg0(x) = O(x3/2) nearx = 0.

6. The nonlinear problem. Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1 which states the existence of a unique solution
of the nonlinear problem under certain assumptions on the inflow and outflow, and which also
describes the asymptotic behavior of the free boundary near the grounding line. We shall split the
proof of the theorem into several steps to make the argument easier to follow.

Step 1: Existence and uniqueness of flows for a given geometry.Firstly, we assume that the
interfaceΓ2 is sufficiently smooth, sayC1+δ, and construct a weak solution to the flow problem
in a given domain via Lax–Milgram’s theorem. We write, as we did for the linearized problem,
Ev = Ev0

+ Ev1 where Ev0 is a divergence free and regular velocity field satisfying the inflow and
outflow boundary conditions as well as the conditions atz = 0 and the no-slip boundary conditions
at (x,−1), x < 0. Then the problem can be expressed in the form

−∇p +∆Ev1
= EJ in D, (6.1)
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∇ · Ev1
= 0 inD, (6.2)

Ev1
= 0 in Γ1, (6.3)

T (Ev1)En = −γ (ψ0
+ ψ1)En− T (Ev0)En in Γ2, (6.4)

Ev1
· En = 0 in Γ0, (6.5)

EtT (Ev1)En = 0 in Γ0, (6.6)

Ev1
= 0 atx = ±M, (6.7)

whereT (Ev0) is the stress tensor computed for the velocity fieldEv0 with p0
= 0. Multiplication by

a vector fieldEϕ = (ϕ1, ϕ2) vanishing atx = ±M andΓ1 and such thatϕ2 = 0 atΓ0, followed by
integration by parts, yields the formula

1

2

∫
D

(v1
i,j + v1

j,i)(ϕi,j + ϕj,i)dx dy = −

∫
D

Eϕ · EJ dx dy

+

∫
Γ2

((EtT (Ev0)En) Eϕ · Et + (EnT (Ev0)En− γ (ψ0
+ ψ1)b(x)) Eϕ · En)ds. (6.8)

If we introduce in (6.8) a stream functionω associated toEϕ then we can write

1

2

∫
D

(v1
i,j + v1

j,i)(ϕi,j + ϕj,i)dx dy − γ

∫ M

0
ψ1(x, b(x))

d

dx
ω(x, b(x))dx

=

∫
Γ2

((EtT (Ev0)En) Eϕ · Et + (EnT (Ev0)En) Eϕ · En)ds

+ γ

∫
Γ2

ψ0(x, b(x)) Eϕ · Ends −

∫
D

Eϕ · EJ dx dy ≡ 〈f, Eϕ〉. (6.9)

This formulation allows direct application of the Lax–Milgram theorem together with Korn’s
inequality and Sobolev embeddings, yielding

‖Ev1
‖

2
H1(D)

6 C

∫
D

(v1
i,j + v1

j,i)
2 dx dy,

to conclude the existence of a velocity fieldEv1
∈ (H 1(D)) (or equivalently a stream function

ψ1
∈ H 2(D)) satisfying (6.1)–(6.7) and such that∫
D

(v1
i,j + v1

j,i)
2 dx dy 6 (‖T (Ev0)En‖L2(Γ2)

+ γ ‖ψ0
‖L2(Γ2)

)‖Ev1
‖L2(Γ2)

+ ‖ EJ‖L2(D)‖Ev1
‖L2(D),

and hence, using trace inequalities applied toΓ2 to estimate‖Ev1
‖L2(Γ2)

by ‖Ev1
‖H1(D), we conclude

that
‖Ev1

‖H1(D) 6 C(‖T (Ev0)En‖L2(Γ2)
+ γ ‖ψ0

‖L2(Γ2)
+ ‖ EJ‖L2(D)) 6 C‖ψ0

‖H3(D).

Both the Lax–Milgram theorem and Korn’s inequality can be applied provided the curveΓ2 is
continuously differentiable (see for instance [4]).

Step 2: Weak formulation of the nonlinear problem.The free boundary problem can be restated as
the problem of finding the curvez = b(x) that describesΓ2 and satisfies

bx = −
1

U
(bx(v

0
x + v1

x)− (v0
z + v1

z )). (6.10)
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The velocity fieldEv1 such that (6.9) and (6.10) hold is found simultaneously. Our strategy to solve
(6.9), (6.10) will be to look for a fixed point “near” (in some norm to be defined) the solution to the
linearized problem analyzed in the previous sections. This implies that we have to relate the problem
defined in the domainD to problems defined in a strip. An application of a diffeomorphism fromD
to S = [−M,M] × [−1,0] so thatx′

= x, z′ = z−χ(x, z)b(x) leads to a change in the derivatives

∂x = ∂x′ + (χb)x∂z′ , ∂z = (1 − χzb)∂z′ .

On the other hand, the line integrals overΓ2 can be written as∫
Γ2

(·)ds =

∫
x

(·)(1 + b2
x)

1/2 dx =

∫
x

(·)dx +

∫
x

(·)[(1 + b2
x)

1/2
− 1] dx.

Hence we end up with a reformulation of (6.9) as

a(Ev1, Eϕ) ≡
1

2

∫
S

(v1
i,j ′ + v1

j,i′)(ϕi,j ′ + ϕj,i′)dx′ dy′

− γ

∫ M

0
ψ1(x′,−1)

d

dx′
ω(x′,−1)dx′

= 〈f ′, Eϕ〉 + 〈G(Ev1, b), Eϕ〉, (6.11)

where

〈f ′, Eϕ〉 =

∫ M

0
((EtT (Ev0)En)ϕx′ + (EnT (Ev0)En)ϕz′)dx

+ γ

∫ M

0
ψ0(x, b(x))ϕz′ dx 6 C‖ψ0

‖H3(S)‖Eϕ‖H1(S),

andG(Ev1, b) contains the terms(χb)x∂z′vi andχzb∂z′vi , functions ofψ0 and their derivatives
multiplied byO(bx) factors together with the term(v1

i,j ′ +v
1
j,i′
)(1−J )with J being the determinant

of the Jacobian matrix of the transformation, which involves derivatives ofb up to the first order.
Notice that, in any case, one can estimate

〈G(Ev1, b), Eϕ〉 6 C‖b‖W1,∞(‖ψ
0
‖H3(S) + ‖Ev1

‖H1(S))‖Eϕ‖H1(S),

where‖b‖W1,∞ ≡ supx |b| + supx |bx | is supposed to be small enough. The equationa(Ev1, Eϕ) =

〈f ′, Eϕ〉 is the linearized problem solved in the previous sections, yielding a solutionEv1 such that
‖Ev1

‖H1(S) 6 C‖ψ0
‖H3(S). On the other hand, equation (6.10) can be written in the following form:

bx =
1

U
(v0
z + v1

z )−
1

U
bx(v

0
x + v1

x) ≡
1

U
(v0
z + v1

z )+ F [ Ev0 + Ev1, bx ]. (6.12)

The equationbx = (1/U)(v0
z + v1

z ) is the linearized version of equation (6.10) and is the one
considered in the previous sections to obtain the profileb(x).

Step 3: Setting and resolution of the fixed point problem.In order to solve (6.11), (6.12) let us
consider the problem

a(Ev1, Eϕ) = 〈f ′, Eϕ〉 + 〈G( Ew, b), Eϕ〉, (6.13)

bx =
1

U
(v0
z + v1

z )+ F [ Ev0 + Ew, bx ], (6.14)
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which represents a nonlinear mappingT from (b, Ew) to the solution(b, Ev1). The solution we wish
to find is a fixed point of the mappingT . If Ew ∈ H 1(S) andb ∈ W1,∞ then by Lax–Milgram again,
(6.13) has a unique solution satisfying

‖Ev1
‖H1(S) 6 C‖ψ0

‖H3(S) + C‖b‖W1,∞(‖ψ
0
‖H3(S) + ‖ Ew‖H1(S)).

In fact, we will need higher regularity ofEv1. This can be achieved by introducing suitable
partitions of unity, local chart diffeomorphisms and classical elliptic estimates (cf. for instance [2]).
Since the process is quite straightforward, but lengthy, we omit the details and simply write the
estimate:

‖Ev1
‖H1+δ(S) 6 C‖ψ0

‖H3(S) + C‖b‖C1+δ (‖ψ
0
‖H3(S) + ‖ Ew‖H1+δ(S)). (6.15)

By trace inequalities, we can estimate theH 1/2+δ norm of Ev1 on the line given by{(x,−1) : x ∈

[0,M]} in terms of‖Ev1
‖H1+δ(S), and by the Sobolev embedding ofCδ in H 1/2+δ we conclude that

‖Ev1(x,−1)‖Cδ 6 C‖ψ0
‖H3(S) + C‖b‖C1+δ (‖ψ

0
‖H3(S) + ‖ Ew‖H1+δ(S)).

It is a direct calculation to deduce from (6.14) that

‖b‖C1+δ 6
1

U
(‖v0

z‖Cδ + ‖v1
z‖Cδ )+ C‖b‖C1+δ (‖ Ev0‖Cδ + ‖ Ew‖Cδ )

6
1

U
(‖ψ0

‖H3(S) + ‖Ev1
‖H1+δ(S))+ C‖b‖C1+δ (‖ψ

0
‖H3(S) + ‖ Ew‖H1+δ(S)). (6.16)

From (6.15) and (6.16) we conclude

‖b‖C1+δ + ‖Ev1
‖H1+δ(S) 6 C‖ψ0

‖H2(S) + C‖ψ0
‖H2(S)(‖b‖C1+δ + ‖ Ew‖H1+δ(S))

+C‖b‖C1+δ‖ Ew‖H1+δ(S),

so thatT maps the ball of radiusε inC1+δ(0,M)×H 2(S) to a ball of radiusR = C‖ψ0
‖H3(S)(1+ε)

+ Cε2 which is smaller thanε if both ε and ‖ψ0
‖H3(S) are small enough. Since the problems

(6.13), (6.14) are linear, it is simple to verify that the mappingT is also a contraction ifε is small
enough. Hence, by the Banach fixed point theorem there exists a unique solution to the nonlinear
free boundary problem.

Step 4: Asymptotic behavior of the free boundary near the grounding line.Notice that by (6.14),

b(x) =

∫ x

0

(
1

U
(v0
z + v1

z )+ F [ Ev0 + Ev1, bx ]

)
dx

6 Cx1+δ sup

(
1

xδ

∣∣∣∣ 1

U
(v0
z + v1

z )+ F [ Ev0 + Ev1, bx ]

∣∣∣∣) 6 Cx1+δ,

so that the interface is flat near(0,−1). This allows us to apply a local cut-off function in the
neighborhood of the grounding line and a diffeomorphism to a half-plane. Then the analysis of
Section 4.1 is valid and we arrive at the following asymptotic behavior forb(x):

b(x) = Cx3/2
+ o(x3/2) nearx = 0.

This concludes the proof of the theorem.

REMARK 6.1 Since the free boundary isC1+δ, it can be shown, just as in the linear case, that the
weak solutions are in fact strong (i.e., the stream function isC4) insideD and up to the boundaries
outside(0,−1).
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7. Appendix: A Hardy type inequality

This appendix is devoted to the proof of the following lemma:

LEMMA 7.1 Letg be such that

‖g‖2
H1
α

≡


∫

∞

0
x2α−2

|(g(x)− g(0))|2 dx +

∫
∞

0
x2α

|gx(x)|
2 dx < ∞ if α < 1/2,∫

∞

0
x2α−2

|g(x)|2 dx +

∫
∞

0
x2α

|gx(x)|
2 dx < ∞ if α > 1/2.

Then the following estimates hold:

sup
x∈R+

|g(x)− g(0)|

x1/2−α
6 C

∫
∞

0
x2α

|gx(x)|
2 dx if α < 1/2, (7.1)

sup
x∈R+

|g(x)|

x1/2−α
6 C

∫
∞

0
x2α

|gx(x)|
2 dx if α > 1/2. (7.2)

Proof. We prove the inequalities for functionsg defined inR+ which areC1 and bounded and decay
exponentially at infinity. Such functions are dense inH 1

α so that the inequalities extend automatically
to any function inH 1

α . In the caseα < 1/2 we can considerf (x) = g(x)− g(0) so thatf (0) = 0
and ∫

∞

0
x2α

|fx(x)|
2 dx =

∫
∞

0
x2α

|gx(x)|
2 dx < ∞.

By taking the Mellin transform

f̃ αx (λ) =

∫
∞

0
fx(u)u

iλ+α−1/2 du,

whereλ ∈ R, and using Plancherel’s identity∫
∞

0
x2α

|fx(x)|
2 dx =

1

2π

∫
∞

−∞

|f̃ αx (λ)|
2 dλ,

together with the following rule (resulting after integration by parts and usingf (0) = 0) relating
the Mellin transform offx with the transform off :

f̃ αx = −(iλ− 1/2 + α)f̃ α−1,

we deduce that∫
∞

0
x2α

|fx(x)|
2 dx =

1

2π

∫
∞

−∞

|f̃ αx (λ)|
2 dλ =

1

2π

∫
∞

−∞

((1/2 − α)2 + λ2)|f̃ α−1(λ)|2 dλ.

Notice next the following relation of Mellin transform and Fourier transform following from the
change of variablesu = et :

f̃ α(λ) =

∫
∞

0
f (u)uiλ+α−1/2 du =

∫
∞

−∞

f (et )e(α+1/2)teiλt dt = F(f (et )e(α+1/2)t ),
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so that ∫
∞

0
x2α

|fx(x)|
2 dx =

1

2π

∫
∞

−∞

((1/2 − α)2 + λ2)|F(f (et )e(α−1/2)t )|2 dλ

> Cα sup
t∈R

|f (et )e(α−1/2)t
|
2 (α 6= 1/2),

where we have used, in the last inequality, the Sobolev embeddingH 1(R) ⊂ L∞(R). Therefore

sup
x∈R+

|g(x)− g(0)|2

x1−2α
= sup
x∈R+

|f (x)|2

x1−2α
6 C

∫
∞

0
x2α

|fx(x)|
2 dx = C

∫
∞

0
x2α

|gx(x)|
2 dx,

proving (7.1). Ifα > 1/2, then we apply Mellin transform directly togx :

g̃αx (λ) =

∫
∞

0
gx(u)u

iλ+α−1/2 du

and the rule for the derivative

g̃αx (λ) = −(iλ− 1/2 + α)g̃α−1(λ),

which can be deduced by integrating by parts. Then the same reasoning as above yields (7.2).
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9. FRIEDMAN , A., & V ELÁZQUEZ, J. J. L. The analysis of coating flows near the contact line.

J. Differential Equations119(1995), 137–208. Zbl 0851.35106 MR 1334490
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