Interfaces and Free Boundarie$(2007), 6798

A free boundary problem in glaciology: The motion of grounding lines
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We consider stationary ice sheet modeled as a Stokes flow in a bounded two-dimensional domain. In
particular, we study the behavior of the grounding line, where different boundary conditions meet:
no-slip conditions for the grounded part and force balance conditions for the floating part whose
shape is a priori undetermined. This yields a free boundary problem with mixed boundary conditions
and a contact line, called “grounding line” in the glaciological context, that might move along the
solid substrate. We show that solutions with moving grounding lines and zero contact angle do exist
and determine the shape and asymptotic properties of the free boundary.

Keywords Free boundary problem; glaciology; mixed type boundary conditions; Stokes’ flow
problem; Lax—Milgram theorem; Mellin transform.

1. Introduction

In this paper we study a free boundary problem arising in a glaciological context and involving the
motion of a contact line separating a solid from a fluid interface. The contact line is called, in this
context, “grounding line” and the question on whether or not it can move and which are the dominant
mechanisms is subject of debate. Ice sheets are typically separated into three distinct flow regimes,
which are referred to as inland ice sheet, ice streams (or outlet glaciers of fast flow features) and
ice shelves (see Figuré 1). The interaction of these three components is crucial in determining the
evolution of the whole ice-sheet system. Ice shelves may form if local ice thickness is insufficient
to prevent floatation in the surrounding oceans. The grounding line separates the grounded ice zone
from the floating zone, and each zone has its distinct flow regime. Some distance away from this
grounding zone, either in the ice shelf or in the ice sheet, ice flow is reasonably well understood and
there is some consensus as to which simplifications can be made in the stress equilibrium, either to
have flow dominated by shearing in horizontal planes, most of it at the base as in the ice sheet, or
to have the flow dominated by lateral shearing and longitudinal stretching, as in the ice shelf. This
fundamental difference between the two flow regimes seems to suggest the existence of a transition
zone where all the stress components are important and no simplification can be made. There also

t )
E-mail: marco.fontelos@uam.es
i . . .
E-mail: anaisabel.munoz@urjc.es

© European Mathematical Society 2007



68 M.A. FONTELOS AND A. |. MUNOZ

AlR Z
T r °

Y

| > —
| ICE | OUTFLOW
i—b SHELF |—>
| | -
I . |
INFLOW - ICE
l'—’ SHEET T
I Z=-1+b(x)
—
i dreuene
I .
i T 4
SANNNNANRNNN
- K=M
?: 2\“ - Z=-1

FiIG. 1. Physical setting of the problem.

arises the question on the width of such a transition zone, if any, which is moreover likely to be
strongly influenced by the occurrence of basal sliding or the development of ice streams.

On the other hand, it has also been suggested that the details of the stress and strain conditions
at the grounding line would be unimportant for modeling grounding-line migration, as the inland
flow would be little influenced by conditions in the ice shelf, and grounding-line migration could be
above all controlled by conditions of hydrostatic equilibrium in the grounding area. Whatever the
case, grounding-line migration and the coupling of ice sheet flow with ice shelf flow can rightly be
considered as one of those “grand unsolved modeling problems”, which is nevertheless of prime
importance because it is the predominant mechanism by which Antarctic ice sheet changes its
dimensions (it is a key process affecting the stability of marine ice sheets such as the West Antarctic
Ice Sheet (WAIS)). Only a few studies have tried to deal with the numerical inconsistencies at the
grounding line that most finite difference models suffer from (see [12]). In these models the focus is
on the dynamical problem and less attention is paid to the mechanical coupling between the ice sheet
and ice shelf. In the works [28, 29| [6—-8] some models of marine ice stream flow and in particular
two-dimensional steady isothermal flow are developed.

The model studied in this paper is based on the models developed in the above mentioned
references. I [28, 29] a consistent scaling is applied to consider ice streams with different relations
between the shear and longitudinal deviatoric stresses and a parametric analysis is performed in
order to prescribe suitable governing equations at the ice stream—ice shelf transition zone depending
on different physical assumptions. Wilchinsky and Chugunov conclude that if the shear stress in the
ice stream is much larger than the longitudinal stress deviator, then all the stresses in the transition
zone are of the same order of magnitude and the transition zone should be singular. However, if the
importance of the shearing component is small near the grounding line and one assumes that the
solution for the ice shelf is valid up to the grounding line, then the problem of marine-ice stream
dynamics determines the ice thickness at hydrostatic equilibrium and stresses are continuous at the
grounding line. In this case, Wilchinsky and Chugunov deduce the continuity of the ice thickness
gradient and of the strain rate at the grounding line. They suggest that in order to be physically
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consistent one should find a unique solution of the complete problem describing the ice flow in the
stream, transition zone and ice shelf when the horizontal mass flux and bed profile are monotone
functions in the main flow direction.

The presence of contact lines between a fluid interface and a solid substrate and the description
of their motion constitute a classical problem in fluid mechanics (see for instande [15, 16, 19, 3])
and a challenge both from the mechanical and mathematical points of view. From the mechanical
perspective the neighborhood of a moving contact line, if modeled as a Navier—Stokes or Stokes
flow, may develop unbounded values of the energy dissipation rate, which is clearly nonphysical.
This is known as the contact line paradox in the context of the spreading of a capillary drop over a
flat surface. From the mathematical viewpoint, a contact line separates the fluid interface from the
solid substrate. At the interface one must impose boundary conditions expressing balance of forces,
leading to conditions typically involving first derivatives of the velocity field. On the solid substrate
one usually imposes no-slip boundary conditions implying that the velocity field must vanish there.

Solving partial differential equations in domains with boundaries which are either not regular or
with mixed boundary conditions is in general a difficult problem since these situations, in general,
originate singularities in the solutions (cf._[13,114,] 18] 20]). One is then forced to modify the
classical Sobolev or &lder spaces with suitable weights in order to accommodate such singularities.
One must also modify the usual analytical tools (Sobolev embeddings, trace inequalities, etc.)
accordingly. In the context of “coating flows”, consisting in the motion of a capillary (i.e. under
the influence of surface tension) fluid interface, some work has been done towards showing that
solutions with moving contact lines do exist (let us mention [25,26] 22,19, 10]). The stability of
these solutions has been analyzed In [5].

In the present paper the balances of forces at the interface change and therefore the boundary
conditions are different. In particular, we cannot count on the regularizing effects of surface
tension, a situation that was also present.in [21], but in absence of contact lines. This fact gives
rise to different singularities at the contact (grounding) line and hence, to different mathematical
difficulties. Let us remark finally that the solutions we aim to obtain in this paper are zero contact
angle solutions, for which there is a bounded energy dissipation in the vicinity of the contact line.

1.1 Preliminaries. Equations

We want to determine whether or not solutions with migrating grounding lines are possible. In
order to do that, we make some modeling simplifications. First we assume that the grounding line
is moving with constant velocity/ in a longitudinalx direction. In a frame of reference attached
to the grounding line, this is equivalent to assuming that the solid base is moving with constant
velocity —U (see Figur¢[l). The ice sheet will be modeled as a 2D Stokes flow. In doing this we
follow some of the works cited above. In fact, ice is known to be non-Newtonian, with a strain
dependent viscosity, in certain regimes, but we will leave the analysis of such “nonlinear” effects
for future publications and focus here on the simpler Stokes model. Let us remark in this respect that
our study will rely on a variational approach (Section 3) followed by local analysis in the regions
of interest and therefore we expect that our results can be extended to the more complex situations
involving rheology where variational formulations can be established.

The flow region is given byD = {(x,z) : x € (M, M), z € (-1,0)if x < 0 andz €
(=1+4b(x), 0) if x > 0}, where thec-coordinate denotes the longitudinal length, i.e. in the direction
of the main flow, and the-coordinate denotes the height. The boundanyotonsists of three
parts: the partlp in contact with the air, i.e., the surface which we describezby s(x) and
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x € (=M, M) (here we shall assume= s(x) = 0, i.e., a flat surface); the paft of the base

in contact with the ground, i.elly ;= {(x,z), x < 0,z = —1}; and the partl, in contact with

the seaJy = {(x,z) : x > 0,z = =1+ b(x)}. I» is a free boundary whose shape we wish to
determine. The problem is to determin the velocity figld/, 0) + (v, v;), the pressurél and the
location and geometry of the free boundaries. Modeling the ice sheet dynamics as a Stokes flow that
we assume, without loss of generality, of viscogity- 1, the equations we shall use are:

e momentum conservation equatioh: t = —VIT + Av = —p;g in D,
e Mass conservation equation: v = 0 in D,

wherep; is the density of ice and; = —I76;; 4 (v; ; +v;,;). The momentum conservation equation
may be written, interms gb = IT — p;g(z + 1), as

V.T=-Vp+Av =0,
whereT is the stress tensor,

Tij = —pdij + (vi,j + vji).

Concerning the boundary conditions, as the upper part of the sheet is in contact with air and we
assume that both the normal velocity and the shear stress are zero there, we shall consider the
following conditions:

0 atIp, (1.1)
Tn=0 atlp, (1.2)

v -

S Sy

i
wheren andr are the normal and tangent vectorsligrespectively. In the part of the bottom of
the ice sheet which is in contact with the solid substrate we impose0, while the other part
is in contact with another fluid modeling the sea. We suppose that the second fluid is stationary
at all times. Hence we impose as boundary condition between both fluids a balance between
viscous stresses on the ice sheet and hydrostatic pressure of the second fluid. Therefore, at the

base, depending on whether the ice is grounded or floating over the sea, we consider the following
boundary conditions:

-

v=0 onrly,
T = pugb(x)ii = Thn = pgh(x)n onIly,

where—p,,gb(x) is the hydrostatic pressure of waterlip andp = p,, — p;. We shall also impose
inflow and outflow conditions as — +M respectively. We denote the inflow as— —M by
#i"(z) and assume, by compatibility with the boundary conditions, #at-1) = 0, v"(0) = 0,
and the shear stres81 is zero at(—M, 0). We may think, for instance, that"(z) has a parabolic
velocity profile, i.e.

pin — (%(1— 22, o). (1.3)

The outflowi°¥(z) is such thav?"'(0) = 0 and the shear stress(atM, 0) and(—M, —1) is zero.
We may think, for instance, of a uniform velocity profile, i.e.

7% = (Un, 0). (1.4)
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Here o and Uy, are two arbitrary positive parameters which are nevertheless linked by the
conservation of mass constraint which implies

0

(U
-U +/ v(z)dz = —U (1 — b(M)) +/ vg”t(z) dz.
-1 —1+b(M)

Notice that the velocity of the grounding line can then be determined from the physically measurable
entitiesv™(z), v (z) andb(M):

1 0 0
U=—"— / vi(z) dz —/ vOU(z) dz). (1.5)
b(M) ( ~1 —1+b(M)
Notice also that the curvE> may evolve following the velocity field:
b, o 1
W =((-U,0+v)-n= W[be + (vx, v)(=by, D] oOnI3,

so that the stationary solutions satisfy
O0=Uby 4+ v, — byvy.

A final simplification we make consists in assumingflat, i.e.Ip = {(x,0) : x € [-M, M]} so
that the boundary conditioris (1.1) afd {1.2) become

v, =0 atlvo,
dv,  Jvy
— +—=0 atly.
0x + 0z 0
Notice thatV - v = 0, so we can introduce the stream functiprsuch thaty, = v,, ¥, = —v,.

Hence, applying the rotation operator+d/p + Av = 0, we arrive at the following biharmonic
equation fony:

A%y =0 inD. (1.6)
To summarize, the problem we wish to solve can be formulated in the following terms:(find
and a biharmonic functiott (x, z) in D so that

(=2, 1) =0 atry, 1.7)
nTn = pgh(x) at I, (1.8)
iTi=0 atr, (1.9)
Uby + Yy + by, =0 atl, (1.10)
Yy =1Ti =0 atlo, (1.12)
(= ) =" at(-M,z), (1.12)
(=Y, ¥x) = vout at(M, z). (1.13)

Condition [1.8) admits a useful representation in terms of the stream function sinfe, By (1.10),
1/ 1/Md
b(x) = _U/o (Y + bat) ' = —5/0 @xﬁ(x/, —1+b(x")) dx’

1
= —a(lﬂ(x, —1+b(x)) — ¥ (x, D).
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From now on we shall tak¢ (x, —1) = 0 for x < 0. Hence we can substitute conditipn {1.7) by
Y.=¢ =0 atl1, (1.14)

and condition[(1]8) by
ATi = —yy  athy, (1.15)

wherey = pg/U.

REMARK 1.1 If one considers a fluid with arbitrary viscosity in a domain of arbitrary size
([-ML,0] x [-L,0]) U ([0, ML] x [L(—1+ b(x)), 0], then the problem can be formulated
in exactly the same terms as above after the change of variables and unkrowns> (Lx, Lz),
(vx, v) > (ve/u, v./p) but withy = pgL?/uU a dimensionless parameter.

The main result of this paper is the following theorem establishing the existence and uniqueness
of solutions to the free boundary problem consisting of|(1.6) with conditjons ([L.9)4(1.15):

THEOREM1.1 If 3" and 7" are such thafit™" | cz_1 o5, 17"l c2;_ 14 4a).0) @€ Small enough

andb(M) is also small enough then there exists a unique (weak) solytion H>%(D), b €
C™9[0, M] (0 < 8 < 1) to the nonlinear free boundary problem given by |(1[6),] (1.9)1.15) with
U given by [1.5). Moreover, the asymptotic behavior of the free bounblarynear the grounding
line located atx = 0, z = —1) is the following:

b(x) = Cx%? + 0(x%/?).

The solutions are weak in the sense of solutions obtained via application of the Lax—Milgram
theorem (cf. [[2] for instance), i.e. solutions of the equivalent weak version of the problem:
A(w,¥) = Lo whereA is a bilinear form involving derivatives of only up to second order,
and L a linear functional (see Section 3 where these definitions are made rigorous). Analogous
results, without smallness conditions, will also be obtained for a linearized versipnJof [[1.9)—(1.15)
before the proof of Theorem 1.1.

This paper is organized as follows. In Section 2, we introduce the linearized version of the
problem. In Section 3, we prove the existence, uniqueness and partial regularity of solutions. Since
the grounding line is a special conflict point, as mixed boundary conditions meet there, we devote
most of Section 4 to regularity of the solution in the neighborhood of the grounding line. Regularity
of the solution in the rest of the domain is derived from classical results. Next, in Section 5,
the representation of the linearized free boundary along with some numerical results is presented
and discussed. After solving the linearized problem, in Section 6, we finally address the original
nonlinear problem which is treated as a perturbed version of the linearized one, and prove Theorem
[L.3. Finally, in an appendix, we deduce some weighed inequalities used in the paper.

2. The linearized problem

In our problem, we shall considéb as the only free boundary, which is located at —1 + b(x).

In order to deduce a linearized version of the problem when the free boundary is almost flat, in this
section we considdr(x) = ¢h(x), with ¢ <« 1 andi(0) = 0. The main difficulty in the analysis

lies in the behavior near the grounding line locate(Dat-1). We assume that, (0) = 0 so thatl';

and > meet withC? regularity. This hypothesis on the free boundary will be verified a posteriori
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and allows us to perform a diffeomorphism from the dom@iwhere the problem is defined to the
strip§ = [-M, M] x[—1, 0]. In order to do that we introduceGt(S) cutoff functiony (x, z) such
that

0 ifz>2eh(x),

x(x.2) = {1 if z < eh(x),

where?’ is a regular function such that(x) = 0 if x < 0 andh(x) > h(x) if x > 0. Our
diffeomorphism is of the form’ = x andz’ = z — ¢ x (x, 2)h(x). Then

0 d 0 d 0
o= e T e DR o= A e(x (b)) (2.1)
z 9z

ax  ax/ 3z
Analogously one can obtain formulas for higher order derivatives by successive applicafion of (2.1).
Next, we shall analyze the boundary conditions. Sihgés defined by; = —1 + eh(x), the unit
tangent vector is given by

c_ ( 1 chy )
V1+¢e2h2" /14 e2h2
and the unit normal vector is

. ( ehy 1 )
V1+e2n2" 1+ 62n2)
Note that we impose as boundary condition between ice shelf and sea water a balance between

viscous stresses on the ice and hydrostatic pressure of the sea water and then we need to evaluate
T,-jn,-:

h.

v v v, - Ex

P25 Tty V1+e2h?

Tijn; = vy v, 2V 1
Tt TPt ays

1 (=p+2%%) (—eho) + (B + 5%)

V1+e?ht (i,%+da—x) (—ehy) — p + 25

Juy v,
~ < o %); )-i—gth(szvj*p’hX)’

2z

9z
Then we obtain

ov ov ov ov
tjTijn; = (8—; + a—;) + ehxC1(Dxzvj, p, €hy) = (8—; + a—;) + 0(e),

av ov
njTijn; = —p + 28—; + &hxCo(Dyvj, p, ehy) = —p + 23—; + 0(¢).

If we now consider the formulation in terms of the stream function, we arrive at the following
equation, to be verified in the interior of our domain

A% = eF(D.h, Di.y), i,j=0,...,3
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Noting thatT;;n; = pgehn;, we can write the boundary conditions/atin the form
Ve — Yax =€hyC1,  —p+ 2z = ehCo + epgh, (2.2)
and the kinematic condition as
eUhy + Yy +ehyy, =0. (2.3)

The nature of the problem allows us to write a system only/fawy eliminatingp from the boundary
condition. In order to do that we observe that the tangential component of the Vgeier

= =7-Vp=r1-(AD). (2.4)
Taking into account that

- AV = —AY, + ehC5(Dy;vj, p, ehy)

and taking derivatives in the boundary conditipn2.2)-2 we obtain

_%
dr

If we substitute the expressidn (R.4) in (2.5), we obtain

d d
2—_> X = 75 X . 2
+ dt(l/f 2) 5 (ehyCa + epgh) (2.5)

Vezr + 3Waex = epghy + ehy Bo(eh, ehy, ehyy, ehyrx, D), i=1,2,3. (2.6)
Finally, from (2.3) we can obtaievi, = —U (¢, + eh,y;), substitute in[(2]6) and conclude

Yozz + azx + v = O(s) .

Ignoring terms of ordeD (¢), as a result of the change of coordinates and linearization, the same
problem is formulated it = [-M, M] x [—1, 0] as

A%y =0 inS, 2.7

Ve =V — VY =0 o0nz=0, x €[-M, M], (2.8)

Yv=v%,=0 onz=-1 xe[-M,Q], (2.9)

Voo —VYax =0 and  3pz; + Yoz + ¥ =0 onz= -1, x €[0, M], (2.10)

together with the inflow and outflow conditions:

Y, = —olf c=u"atx = —M, (2.11)

X
Y, == y=0" atx = M. (2.12)

X

Once a solutiony is found, one can compute the linearized free boundaty) as

eh(x) = —%w(x, ~1). (2.13)
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3. Existence, uniqueness and partial regularity for the linearized problem

In this section we will show the existence of a unique weak solution to the linearized system (2.7)—
(2.12). To this end, we write the linearized system in terms of the stress tErgfined as

T — <_p_2¢xz Yoy — Yz )
Yex =Yz —P+2%s; )7

Therefore we wish to solve:

V.T=0 in[-M,M]x[-1,0], (3.1)
V.5=0 in[-M,M]x[-1,0] (3.2)

The boundary conditions are then

T,.=0, v.=0 atz=0, (3.3)
1=0 atz=-1x<0, (3.9)
X
T, =0, T,,=—-yy¥= —y/ v,(s,—1) atz=-1, x> 0. (3.5)
0

In addition we impose the inflow and outflow boundary conditions as= +M: see [2.1]1) and
(2.12). The rest of the section will be devoted to the proof of the following theorem:

THEOREM3.1 There exists a unique weak solutipre H2(S) to problem|(2.J)}(2.10) satisfying
(2.17) and[(2.12).

Proof. As a first step we write

0, =1

v=10"+0v,
where 0 is a divergence free®((—M, M) x (-1, 0))]? velocity field satisfying the inflow
and outflow boundary conditions as well as conditins|(3[3)] (3.4). Such a velocity field can be

constructed, for instance, from a stream functjdhso thatv® = (—y2, ¢2),

pO -l 0o " asy > —m, (3.6)
Yl — oM g2 M asy — +M, (3.7)
2, y% =0 atz=0, (3.8)

Y0 y%=0 atz=-1 x <O. (3.9)

It is simple to show that there exists/d satisfying these conditions. Consider for instafite U
given by [1.3),[(1.}) respectively. Then we can tgi&as follows:

3
0— (—% - %(z - %))@1@)77(%1) + (—% - U°°z><1>2(x),

1 ifs>1/2M,
0 ifs <1/3M,

where
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and®1(x) + ®2(x) = 1 with

&1 e C% ®1() 1 if—M<x<0,
S s = .
! 1 0 ifx>94,

if x <O,

0
PrcC®, @ = .
2 2(x) {1 if5<x< M,

ands = M/10. Theny® e C®((—M, M) x (-1, 0)) and satisfie (3|6)~(3.9). Notice, in particular,
that
ca) = 9% -y and ca(r) = yyd + W, +3v0)

are bounded at = —1, x > 0. The velocitys! and its associated stress tengdrwill satisfy the
system

V.-T'=5 in[-M,M] x[-1,0], (3.10)

Vv.'=0 in[-M, M]x[-1,0],
with 51 (depending ony%) bounded. The boundary conditions are then

TL =0, vl=0 atz=0

1=0 atz=-1, x <0,
X

X
Txlz = —c1(x), Tzlz(x, -1+ y/ vzl(s, -1 = —/ c2(s)ds atz=-1, x > 0,
0 0

together with the conditions that the stream function associatél fe. the functiony! such that
vl = (—y1, y1), vanishes together with its first derivativesvat= +M. We introduce as a set of

X

test functions the space which is the closure with respect to the norm

12
17lx = (f |V<Z|2)
S

-

(¢ = (91, 92) € [CFS]*:V-§ =0,
@2(x,0)=0,x e [-M, M],
p1(x, —1) = ¢2(x,-1) =0,x € [-M, 0],
¢ =0atx = £M}.

of the set

In terms of the stream function, we will work with the set of test functions formed by those
o such thaty = (—w,, wy) is in X. Korn’s inequality which applies to bounded domains and for
functionsg vanishing at a part of the boundary (seel[23]) and Sobolev embeddings imply that this
setY is the closure with respect to th#2(S) norm of the set of stream functions whose associated
velocities belong td. More precisely,

Y ={we H*S):ow=0o0n(-M, M],0),
w=w,=00n(-M,Q], -1,
wy =w=0o0n(+M,[-1, 0]}
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We multiply equation[(3.70) by € X, integrate by parts and obtain
. 1 o 1e - -
/€0le Tt = _E/(Ql’i,j +(pj,i)(vi]:j + ”jl,i) +/ ¢Thi = /(0‘51-
s s 9 s

Hence,

1 1 1 -l T
> (pi,j + @)W +vi)=[ ¢T°n— [ ¢-s1.
S as S

SetL = [-M,M] and Lt = [0, M]. Given the boundary conditions imposed @A and the
properties ofX we can compute

/ ¢Thi = / (@1TE + Tt — / (1T + ¢2Th)
EN L,z=0 L,z=-1

=/ (61(x)<p1(x,—1)+ [J/(/ v, —l)> +/ cz(S)dS}wz(x,—l)).
Ltz=—1 0 0

Hence we arrive at the formula

1 X
éfmjwj,i)(v,-%j +v7)) —y/ (/ vzl(s,—1>)<oz(x,—1)
S Lt,z=—1\J0

= / c1()ga(x, —1) +/ </ c2(s) d5>902()€, -1) - / @ - 51.
Lt,z=—1 Lt,z=—1\J0 S

Next we write the expression above in terms of the stream funatiohg andv of v1 assuming
weY:

a(w, W)—)// ¥ (x, — Dy (x, —1)
Lt ,z=—1

= —/ 01(x)wz(x,—1)+/ c2(xX)wy(x, —1) —/(—wz,wx) -51, (3.11)
Lt,z=-1 Lt,z=-1 S
where
P B
alw, V) = 2 S(Qot,] + (Pj,z)(vi,j + Uj,i)-
Equation[(3.1]1) can be written symbolically as
A(w, V) = Lo,

where

Ao, ¥) = a(w,¥) —b(o, ¥) and blw, V) = J//+ ¥(x, —Dax(x, -1

,z=—1

are bilinear forms continuous in (for a(-, -) this is obvious while fob (-, -) it is due to the fact that
the trace of functions i#2(S) lies in H1(35)) and

Lo= —/ c1(n)wy (x, 1) +/ co(M)w(x, —1) — f(—wz,wz) -
Lt,z=—1 Lt,z=—1 S

is a continuous linear functional an given the boundedness of, c; ands; and the fact that the
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trace ofH2 is in H in a bounded domain in two dimensions. Finalfw, v/) is coercive since
Alw,0) =a(w, ®) — )// o(x, —Dox(x, =1) = a(w, w) = Cllo|| 42
Lt,z=—1

We have used, for the last inequality, Korn’s inequality which allows us estimate the norm of any
@i jin L? by a(w, w), and Poinca’s inequality which allows estimating agy in L2 by the norms

of ¢; ; in L? as well as the norm ab in L2. These inequalities are valid in bounded domains with
Lipschitz boundaries i andw vanish at a part of the boundary, as is the case here. Lax—Milgram’s
theorem then implies the existence of a unique solution to our problem suah thaf ().

4. Regularity in the neighborhood of the grounding line

In order to study the regularity we shall follow the classical approach except for the conflict
point (x = 0, z = —1), where mixed boundary conditions meet and the solutions might develop
some kind of singularities. We introduce suitable cut-off functions to isolate different regions (see
Figure@). More precisely, we considgr, i =1, ..., 5, such thal; € C*°(S), Y xi = 1,

SUpFIXl) = 91 C [—M, M] X (_3/49 _1/4)7

SUpH(x2) = 22 C [-M, M] x (=1/2,0),

supp(x3) = £23 C ([-1, M] x [-1, =1/2]) \ Bs;2(0, -1,

Supp(x4) = £24 C ([—M, 1] x [-1, =1/2]) \ Bs;2(0, 1),

SUpf(xs) = 25 = Bs(0, =1) N S,

and _
xs=1 inBs;0,-1)NS.

Then we can write the stream functignin the following way:

5
w:zlﬁi withy; = v, i=1,...,5.
i=1

: S >
Q.
! - 2 I g OUTFLOW
| !
I iy - T
()
INFLOW 52 .
I ol I
I I
- = o
| Q, Q, !
L - AN -

non
L=

[
nn

-M X
-1 Z

GROUNDING
LINE

FIG. 2. lllustration of the partition of the domain used to study the regularity of the solution.
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In the previous sections we obtaingd € H? but we expect the solution to have a much better
regularity locally in the neighborhood of any point fhgiven the elliptic nature of the system

(cf. [2]). The only exception to this is the regigbs where mixed boundary conditions have to be
imposed and this fact, as mentioned above, may give rise to singularities that we wish to understand
in the next sections. The analysis of the regularityfpr i = 1, 2, 3, 4, follows the lines of[[8, 10],

where almost identical analysis was developed in full detail. The only essential difference is in the
boundary condition[(2.10) fogz which was slightly different: #3 x; + ¥32; + ¥ ¥3.0x = 0.

Making y = 0 in both problems leads to the same system. In their case, this particular choice does
not affect the regularity outsid@s and in our case, the terpyz , dropped out is more regular than

the other terms in the boundary condition and its presence does not affect regularity. The conclusion
then isC* regularity fory insideS and outside?s as in [9/10]. If we assume that depends only

onr, the distance t©0, —1), then using the systeth (2.7)—(2.10) one can write the following system

for yrs:

A%ys = J (Y, DY, D%y, D3y) in S, (4.1)

Yys5=0 atx <0, z=-1, (4.2)

Ys.=0 atx <0, z=—1, (4.3)

V52 — VUsax = Bi(y, DY)  atx >0, z = -1, (4.4)

3Ys.xxz + Wbz = —V X5¥x + B2, DY, D*y)  atx > 0, z = —1, (4.5)

where

B1(¢, DY) = 2X5,sz + X5,ZZW - 2X5,x¢’x - X5,xxw,
Ba(yr, DY, Dzlﬂ) = 3(X5,2x0x ¥ + 2x5, 20 Ux + X5 :Wxx + X5.x0x V7 + 2X5xVzx)
+ (X5.22:V + 3xX5.: ¥z + 35,20 V2)-

The functionJ (v, Dy, D%y, D3y) and bothBy(y, D) and Ba(y, Dy, D?y) are compactly
supported away frorx, z) = (0, —1). From the classical results of Agmon, Douglis and Nirenberg
[1] and the discussion above it follows thate C*({(—M, M) x [—1,0]} \ Bs/2(0, —1)) so that

J (Y, DY, D%y, D3Y), B1(¥, DY), Bo(y, Dy, D%y) are bounded. Thereforgs satisfies

A%ys = J(x,y)z InR x[-1, 400, (4.6)
Ys=0 atx <0, z=—1, (4.7)

Ys.=0 atx <0, z=-1, (4.8)

Y5 — Ysax = G(x)  atx >0, z =—1, (4.9)
3¢5,xxz + U522, = F(x) atx>0,z=-1 (4-10)

where

G(x) = B1(y, DY),
F(x) = —y x5 + Ba2(yr, DY, D).

Notice that bothG and F are inL2(Rt), J € LRt x[—1, +o0]) and all of these functions are
compactly supported away froi®, —1). We can express the solution for (4.6)—(4.10)/as =
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zﬁél) + wg” wherewél) solves )0) with homogeneous boundary conditionsmé??dsolves

AP =0 inR x [~1, +od], (4.11)

Wéz) =0 atx <0, z=-1, (412)

¥g) =0 atr<0 z=-1 (4.13)

wé,zz)z - wé,zix =G(x) atx>0,z=-1, (4.14)
Swéaz;)fz + wézz)zz =F@) atx>0z=-1 (4.15)

The functionwél) can be written in terms of Green’s function for the biharmonic operator with
homogeneous boundary conditions. This operator can be constructed straightforwardly by using
Mellin transforms. Since the sourdéx, y) is compactly supported away frof@, —1) it is a simple

matter to find thatp(l) behaves in the neighborhood @, —1) as a solution to the homogeneous

version of )0) which is locally if? (see for instance Maz'ya et dl, [17, Chapters 6 and 7],
where this fact is established rigorously). Using polar coordinates ar@,rel) the problem can
be written in the form

A2y — 92 X 92 zw—o
T \or2  ror  r2929 -
Y =0 ath =m,
Yy =0 ath =m,
1 1
Yy — r_zwee - ;wr =0 ath =0,
1 3 3 4
——3Vo00 — —Vrro + V0 — 3% =0 atd =0,
r r r r
and the solutions can be found in the form
Y (r, 0) = r*t £, (0), (4.16)
where
fu(0) = Asin((a + 1)0) + B coq(x + 1)0) + C sin((@ — 1)6) + D cog(a — 1)6). (4.17)

The coefficientsA, B, C and D should be determined by the boundary conditions, @mthosen
in such a way that they are satisfied. In fact, considefing[4.16) and imposing boundary conditions,
we get a homogeneous system forB, C and D which will have a nontrivial solution only if the
determinant of the matrix of the system written in termsp$in((e + 1)) and co$(o + 1)7) is
null. The determinant is

16(c — Da* cof(( + D))

so that the only possible solutions are= 0, « = 1 and the solutions of
cof((w+ D7) =0, ie. (@+Lr=m+1/2x, nel

It can be easily shown that the roets= 0 ande = 1 are such that the solution (4]17) degenerates
and an analysis of these two specific cases leads to the nonexistence of solutions satisfying all the
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boundary conditions. Therefose= n — 1/2. Taking into consideration thgt H%C(BR(—L 0),

we find that the first value af compatible with it iss = 1/2. This implies that theé42 solution
should be such that
Y ~ Cr¥2 f120) + 0% asr — 0. (4.18)

4.1 Analysis of problen (4.11)=(4]15)

Next we will study the behavior of the solutlon,fséz) of -) 15) in the neighborhood
of the grounding line. For simplicity of notation we will denoues) by . Notice thatyr €
H2(Bgr(—1,0)) and supps C 25 = Br(—1,0) for R > 8. Then, if we introduce polar coordinates
(r,9) around(0, —1) and use Poincéis inequality it is straightforward to prove the following
equivalence of norms:

1
1V | #2(BR(—1.0)) //[ Z
i=0 =0

The homogeneity in of the above expression suggests the introduction of the following Mellin
transform inr of :

19y |?

1
r2 961 r

2
Tw ]r dr do.

0 %y
ar ar?

OO .
(A, 0) = / W (r, 0)r'* =2 dr, (4.19)
0
in terms of which one can write
1 2o / / Mo d.
H<(Bgr(—1,0) 391

In general, one can define theMellin transform as follows:

DEFINITION 4.1 Given a functiory € L2([0, 00), u®®) , its -Mellin transformis given by

feo) = / h fayurel2 gy,
0

wherei € R. The corresponding inverse Mellin transform is given by
ico .
fay=o— [ feeumtmem 2 da
27 J—ico
Note that by integration by parts,
fo=—@r—1/2+a)f* L.

In order to study regularity near the corner, we shall make use of the a priori information on
the regularity of weak solutions obtained in Secfipn 3. More precisely, we shall write the boundary

conditions[(4.14)](4.15) in the form
Vez — Yax = G(x), (4.20)
Vzzz + 3P = F(x), (4.21)
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and we shall solve the system with the right hand side§ of|(4.20),](4.21) being general functions
G and F belonging toL2(R), as dictated by the partial regularity result obtained in Se@on 3.In
order to study the asymptotic behavior of the stream function at the grounding line point we follow
the same procedure performed|in [5]. First we write the problem we ha@s in terms of polar
coordinategr, 6). The equation in the interior is

A2y — A I Zw—o
“\or2 ror r292% -

and the boundary conditions are:

Y =0 atd =m,
Yo =0 atd =,

1
Yy — ﬁwee — =Y, = ato =0,
1 3 3 4
——=Vo00 — ~Vrro + 5Vro — 3V¥o=F atd =0.
r r r r
Given the exponent in the Mellin transform chosen in the definifion {4.19), we multiply the above

equations by**2, pit=2 pir=2 it andri*+1 respectively. Next we integrate irfrom O to infinity
and after some integrations by parts we obtain:

. Ay ,, 027
[(m+1) +W][(”\_l) +W}/’:O’ (4.22)

1}:0 at =,
i~=O ato =,

30

92 .

[_W + (A + D(ir — 1)]1/f =G(») ato =0,
—3—3—(3(')\+1)('x—1)+4)i v =FO) atd=0
363 ! : a0 |V T =

whereys (1, 6) is the Mellin transform ofy (r, #) as defined in9). The solution of the equation
(422) is of the form

U4(h, 0) = Acos(ih — 1)8) + Bsin((ir — 1)0) + C cog(ir + 1)0) + D sin((ix + 1)6).
The coefficientsA, B, C, D are functions of. which are determined by the boundary conditions.

Let us use the following notatiorh = iA — 1, s = sin(ir — 1)xr), ¢ = cog(ir — 1)w) and
y =2b(b+1)(b + 2). Then

c s c s A 0
—bs bc —(b+2s b+ 2c B 0
2 0 —20b+2 0 C G

0 -2 0 2y D F(})
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where

G()”) = /Oo G(V)Vi)V dr and F()\,) = /Oo F(V)ri)“+l dr.
0 0

Next, we find that

b+2 0 1 s(b+2)
2c(b+1) 4(b+1) 4cy (b+1)
A — _ _(r2h2 2 2 212 2
b(b+2)s -1 s (c“b*+3c“b+2c“+s5°b=+25°b)
B . 2c2(b+1) 2c 4c(b+1) 4y c2(b+1)
C - b 0 -1 sb
2c¢(b+1) 4(b+1) 4cy (b+1)
D 2 2, .2 2
b(b+2)s 1 —s b(cb+c“+s°b+25°)
2c¢(b+1) 2c 4c(b+1) 4yc2(b+1)

We are particularly interested in the valuesdioe 0. Hence,

. _ _ s(b+2) sb ~

Y0 =A+C= <4cy(b+ 1) + dey (b + 1)> Fo)
25 - tan((ix — D)
Sae W=

F(L),

and therefore,
. _tan((ixr — D) -

7 (3., 0) 5 F().
Y
Note that 3 3
b +1)(b+ 2 = —),
where ~
Il = f Wi ()L b,
0
Hence, .
- F(u
Ukt = —% tan((i% — D).

Next, we shall use the inversion formula to obtain

Yrrr(r, 0 = 0) = _i%/ drr = F() tan((ix — Dm),
2rre J_oo

or, computing the. integral as in[[5],

1 1 oo £3/2
Yrrr(r,0 = 0) = P.V. fo = f@de

" 2x 32 >
Then

Yrrr = Vrrrd + Yrrr 2,
where

1 1 00 g_-l/2
Vs = =5 PV [ S @,

r—¢
11 [
wm,z=zm/0 Y21 (&) de.

0
0

G(\)
F(\)

83

(4.23)

(4.24)
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Notice now that, given that the support 6t¢) is bounded, one can estimate

A V21 £(e) de < CI1f | 2.

On the other hand, we can estimgte (#.23) using Lemma 2.2 from [5] to conclude
oo co
f 2 dh < C/ IfS2dh, O<s<1(s#1/2),
—00 —0oQ

so that Plancherel’s identity for Mellin transforms yields

|wwmmw;=ﬁ émmm@ﬁx<cﬁ EX|FE)PdE < CIIfIZ,

since f (&) is compactly supported. Hence, by the Hardy type inequality proved in Lemma 7.1 in
the Appendix,

|Yrr1(r, 0) = ¥1,,1(0, 0)
= <P Yl g2 < ClL fll 2. (4.25)

Equations[(4.23)[ (4.24) and inequality (4.25) imply that

C
I//rr(r»o):m—i‘o(l) asr — 0,
and hence,
Ve (r,0) =2CrY2 + O(r) asr — 0. (4.26)

REMARK 4.1 The first order term of the representation of the free boundary is given, according to

expressiong (2.13), (4.118) arjd (4.26), by
b(x) = eh(x) ~ Cx3/?.

5. Representation of the linearized free boundary and numerical approximations

In this section we shall show that the solution to the linearized problem admits a representation as a
power series analytical ip. More precisely, one has:

THEOREM5.1 Ify < y for yo small enough then the solution to

A%y =0 ins, (5.1)

Y=Y, — Yy =0 onz=0,x¢e[-M, M], (5.2)

v=v%,=0 onz=-1 xe[-M,Q0], (5.3)

Voo —Yox =0and Iy + Yoz + ¥ =0 onz= -1, x € [0, M], (5.4)

together with the inflow and outflow conditions
Y, = —v)icn, Yy = vizn atx = —M, (5.5)

Y=o y=0" atx = M, (5.6)

X



MOTION OF GROUNDING LINES 85

can be written as

Y= vy, (5.7)
n=0

where(|y ™| y25) < CoC" for some constant that depends only of.

Proof. We decompose our problem into two: the probl@gwhich is [5.1)4(5.) withy = 0 and
whose solution we caly°, and the problem

A%y =0 ins, (5.8)

U= — Y =0 onz =0, x € [-M, M], (5.9)

Uy =1, =0 onz= -1, x € [-M, 0], (5.10)

Ver — Yrex =0 onz = -1, x € [0, M], (5.11)

3Wxxz + Vezz + ¥V = —yy?  onz=—-1x [0, M], (5.12)
Y, =Y, =0 atx = +M. (5.13)

By introducingy"2% , "¢ into (5.8)-(5.1B) and retaining terms of the same order ime can
write the following problemsP;;1:

A2y U+D — g ins, (5.14)

YUt = Ut _yU+h _ g onz=0,x e [-M, M], (5.15)
D — g Uth o onz=—-1,x e [-M,0], (5.16)

Uy Ut — o onz=—1,x [0, M], (5.17)

U 4y = 9 onz=-1,xe[0, M], (5.18)

G _ yUth _ o atx = +M, (5.19)

with wy) considered as a source. Writing the problePssind P; 11 in terms of the stress tensor as
we did in Sectiof 3 and applying Lax—Milgram we can prove existence and uniqueness of solutions
and the estimates

1 Qlyas) < Coo 19PN o) < Culvn” G, =Dl 2o.u))-

whereCp depends on the inflow and outflow terms afiddepends only on the domakh By the
trace inequality]l v\ (x, —1) I 220, 17 is bounded byy V|| 25, and we conclude that

19 g2y < CIY D N g2s),s
whereC depends solely on the domafnHence
Y PNy < CHHIY O llzgs) < C7FHCo,

and the serie$ (5.7) is convergent proviged < 1, i.e.y < yo = 1/C; this concludes the proof of
the theorem.
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Height: Velocity field Max: 1

\ 0.9

0.8

Outflow

0.3
Inflow

0.2

0.1

Min: 0
FI1G. 3. Modulus of the velocity across the strip. Notice the behavior (@arl).

The theorem above and formufa (2.13) allow us to represent the free boundary in the form
1 o0
b(x) = =¥, =D =)y (),
=0

where 1 1
go(x) = —Ew‘)(x, -1,  gu(x)= —UW)(x, -1).

By trace embeddings, it follows thity ™ (x, —1) | oo a7y < Cll¥ ™ |l y2(5) @nd one can therefore
write
b(x) = go(x) + yg1(x) + 0(r?) (5.20)
if ¥ is small enough. Formul& (5.20) gives a useful representation for the free boundary that can be
implemented numerically. We have solved the problenin the domainS = [—3, 3] x [—1, 0] by
using finite elements with inflow and outflow at the lateral boundaries given by

@M = 1220, @M 0 = (Us. 0).

X 9
whereUy is chosen such that the total inflow acrass: —3 is larger than the total outflow across
x =3, i.e.

0 2
Uoo=/ 1-—z)dz—86==—3.
1 3
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0.16

0.14 B
6=0.1

0.12F J

0.1f J

%o 0.08- 5=0.05 b

0.06 J
3=0.02

0.04 B

0.02 B

FIG. 4. The free boundaryg(x) for three different values d.

In Figure[3 we represent the modulus of the velocity with outfldy = 2/3 — 0.005. Notice
the behavior neacO, —1) suggesting a singularity in the derivative of the velocity. In fact, we
proved in the previous sections tHat = O(/2). In FigureB we represent the first order term
go(x) (see formula[(5.20)) of the representation of the free boundary as a power serid§ jnis
small, then the free boundary is very similar to the profiles represented in the figure. We have taken
8§ = 0.02,0.05, 0.1. Notice the regular behavior near= 0. The theory developed in the previous
sections predictgo(x) = 0 (x%?) nearx = 0.

6. The nonlinear problem. Proof of Theoren 1.1

In this section we present the proof of Theoifen] 1.1 which states the existence of a unique solution
of the nonlinear problem under certain assumptions on the inflow and outflow, and which also

describes the asymptotic behavior of the free boundary near the grounding line. We shall split the
proof of the theorem into several steps to make the argument easier to follow.

Step 1: Existence and uniqueness of flows for a given geométingtly, we assume that the
interfacer is sufficiently smooth, sag'*?, and construct a weak solution to the flow problem
in a given domain via Lax—Milgram’s theorem. We write, as we did for the linearized problem,
v = v9 4+ v! wheret? is a divergence free and regular velocity field satisfying the inflow and
outflow boundary conditions as well as the conditions &t 0 and the no-slip boundary conditions

at(x, —1), x < 0. Then the problem can be expressed in the form

—Vp+A¥t=17J inD, (6.1)



88 M.A. FONTELOS AND A. |. MUNOZ

V.-31=0 inD, (6.2)
1=0 inn, (6.3)
TYi=—y WO+ yhHi—T@%i  in I, (6.4)
1.i=0 inl, (6.5)
T@H7 =0 in I, (6.6)
t=0 atx==+M, (6.7)

whereT (19) is the stress tensor computed for the velocity figldvith p° = 0. Multiplication by
a vector fieldp = (@1, ¢2) vanishing atc = £M and 7 and such thap, = 0 at I, followed by
integration by parts, yields the formula

1 L -
Q/D(v,-l,,- + 0} ) (@i + @) de dy = —/Dw - J dx dy
+ [ (T @i)g -1+ GTEOA — y W0 + vhHb(x))@ - i) ds.  (6.8)

I

If we introduce in[(6.B) a stream functiemassociated t@ then we can write
1 1 1 Mo d
—f i ; +vi ) (i +90j,i)dxdy—)// Y (x, b(x)) —o(x, b(x)) dx
2)p " 0 dx
= [ @r@ng- i+ Graing i ds
I
ty [ Wbz ids— [ §-Tardy = (17 (69)
D

I

This formulation allows direct application of the Lax—Milgram theorem together with Korn’s
inequality and Sobolev embeddings, yielding

134121, < € fD (v + )P dedy,

to conclude the existence of a velocity field € (H(D)) (or equivalently a stream function
v! e H2(D)) satisfying (6.1)-}(6]7) and such that

/ O + v )% dedy < (ITEiill 2y + VIV L2 15 2ery + 171200y 150 220
D

and hence, using trace inequalities appliedtdo estimatqw’luLz(Fz) by ||{51||H1(D), we conclude
that

15 2epy < CUT @il 2y + 71PN L2 + 1 12m) < CIY Pl gapy-
Both the Lax—Milgram theorem and Korn’s inequality can be applied provided the dorie
continuously differentiable (see for instanCe [4]).

Step 2: Weak formulation of the nonlinear problenT.he free boundary problem can be restated as
the problem of finding the curve= b(x) that describeg? and satisfies

by = —%(bx(vf +vp) — 2+ v))). (6.10)
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The velocity fields* such that[(6/9) andl (6.1L0) hold is found simultaneously. Our strategy to solve
(6.9), [6.10) will be to look for a fixed point “near” (in some norm to be defined) the solution to the
linearized problem analyzed in the previous sections. This implies that we have to relate the problem
defined in the domai® to problems defined in a strip. An application of a diffeomorphism fidm

toS =[-M, M] x[-1,0]sothat’ = x,z’ = z— x(x, z)b(x) leads to a change in the derivatives

Oy = 0y + (xb)x0y, 0, = (1 — x;b)0,.

On the other hand, the line integrals ovércan be written as
O = [OaridiPa= [Odor [Oras 22 - gax
I X X X
Hence we end up with a reformulation pf (6.9) as

_'l _))_ _/(Ul]/+v /)(‘pl]/+(pjl/)dx dy

d - - -
-V /O wl(x/v _1)560(36/’ _1) dx, = (flv @) + <G(Ulv b)9 (p>v (611)

where
M -
(fl,¢) = /O (T @O)i)gy + GT (°)7)g, ) dx

M
+y /0 P00, bz dx < CIYOll o) 181 1),

and G (v1, b) contains the termsyb),d..v; and x.bo, /vl, functions ofy? and their derivatives
multiplied by O (b, factors together with theter(rm1 ,+v ;) (1—=J) with J being the determinant
of the Jacobian matrix of the transformation, wh|ch mvolves derivatives g to the first order.

Notice that, in any case, one can estimate

(G@Lb), @) < Clbllyro (1900 r3cs) + 174 s 18] 1)

where||b|l w1 = sup, |b| + sup, |by| is supposed to be small enough. The equadiit, §) =
(f', @) is the linearized problem solved in the previous sections, yielding a solutisuch that
15 5115y < CllY Ol ga(s). On the other hand, equatidn (6} 10) can be written in the following form:

1 1 1 R R
be= 500+ 0D) = Zhe 00+ 0) = S0 4+ vD) + FI0 + 5% by]. (6.12)

The equatiorb, = (1/U)(v0 + v}) is the linearized version of equation (6/10) and is the one
considered in the previous sections to obtain the profite.

Step 3: Setting and resolution of the fixed point problémorder to solve[(6.71)[(6.12) let us
consider the problem

a(@, ) = f @) + (G, b), §), (6.13)
by = E(UZ +oh) + F[00 + , by, (6.14)
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which represents a nonlinear mappifigrom (b, w) to the solution(b, 7). The solution we wish
to find is a fixed point of the mappir@. If w € H(S) andb € W then by Lax—Milgram again,
(6.13) has a unique solution satisfying

15 25y < CIYCllgacs) + ClB oo (1Y Ol sy + 181 as))-

In fact, we will need higher regularity of'. This can be achieved by introducing suitable
partitions of unity, local chart diffeomorphisms and classical elliptic estimates (cf. for insience [2]).
Since the process is quite straightforward, but lengthy, we omit the details and simply write the
estimate:

||171||H1+5(S) < C||W0||H3(s) + C||E||c1+8(||wo||ﬂ3(5) + 101 gravss))- (6.15)
By trace inequalities, we can estimate tH&/2t% norm of 1 on the line given by{(x, —1) : x €
[0, M]} in terms of |52l ;145 (5, and by the Sobolev embedding®f in #/2+3 we conclude that
15, =Dlles < ClYCllgags) + Cllblleass (1900 gagsy + 11l s s)-
It is a direct calculation to deduce frofn (6] 14) that

1 _ » .
1]l c1es < U(vauca + v}l es) + ClIBllcres (1vCll s + 1wl os)

1 ) — )
< G U ) + 15 v cs) + Clblcses 1 N ags) + 1Bl avacs). - (6.16)
From [6.1%) and (6.16) we conclude

1Bl c1ss + 15 gravs sy < ClYClzgs) + CllYCl pzgs) (1Bl cars + 1011 asss)
+ ClIbll cres 10| s s

so that?” maps the ball of radiusin C1+4(0, M) x H2(S) to a ball of radiusk = C ||| 35, (1+¢)

+ C&2 which is smaller thare if both ¢ and ||‘/f0||H3(5) are small enough. Since the problems
(6.13), (6.14) are linear, it is simple to verify that the mappihgs also a contraction i is small
enough. Hence, by the Banach fixed point theorem there exists a unique solution to the nonlinear
free boundary problem.

Step 4: Asymptotic behavior of the free boundary near the grounding liNetice that by[(6.14),

b(x) = /XG@S + o) + F[0 + 7%, bx]) dx
0

1
< Cx1te sup(—(S
X

so that the interface is flat nedd, —1). This allows us to apply a local cut-off function in the
neighborhood of the grounding line and a diffeomorphism to a half-plane. Then the analysis of
Sectiorf 4.1 is valid and we arrive at the following asymptotic behaviob foy:

b(x) = Cx¥? + 0(x*?) nearx = 0.

1 S
E(v? +v3) + F[v0 + 3%, by]

) < Cxl+5,

This concludes the proof of the theorem.

REMARK 6.1 Since the free boundary s, it can be shown, just as in the linear case, that the
weak solutions are in fact strong (i.e., the stream functiaffjsinside D and up to the boundaries
outside(0, —1).
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7. Appendix: A Hardy type inequality
This appendix is devoted to the proof of the following lemma:

LEMMA 7.1 Letg be such that

o0 (o)

f 2| (g(x) — g(O)[Z e +/ X ge(nPd <00 if o <1/2
R o
/0 x%72g(x)|? dx +/0 X% |g (x)[?dx < 00 if o > 1/2.

Then the following estimates hold:

— 2(0 0
sup M < c/ g (0)Pdx ifa < 1/2, (7.2)
xeR+t x1/2-a 0
o
sup "i’/(j_)' < cf g (0Pdy ifa>1/2 (7.2)
xeR+ X « 0

Proof. We prove the inequalities for functiogglefined inR+ which areC! and bounded and decay
exponentially at infinity. Such functions are denséfjhso that the inequalities extend automatically
to any function inHo}. In the casex < 1/2 we can considef (x) = g(x) — g(0) so thatf(0) =0
and

/wx2“|fx(x>|2dx = /wx2“|gx(x>|2dx < 00.
0 0

By taking the Mellin transform

feoy = f " faoutre12gy,
0

wherei € R, and using Plancherel’s identity

fooxz"‘lfx(X)lzdx _r /OO | fe()?da,
0 27 J

together with the following rule (resulting after integration by parts and ugit@ = 0) relating
the Mellin transform off, with the transform off:

fé=—(@ir—1/2+a)f*

we deduce that

/Ooxz"‘lfx(x)lzdx _ 1 /Oo | ()2 dh = if°°(<1/2—a>2 L)L R d.
0 2r J_o 27 J_o

Notice next the following relation of Mellin transform and Fourier transform following from the
change of variablesg = ¢':

fa()\') — /m f(u)ui)x-H)l—l/z du — /OO f(el)e(a-Fl/Z)lel‘)Ll dt — F(f(et)e(a—&-l/Z)t)’
0 —00
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so that

/ x2°‘|fx<x>|2dx=% / (12 = @) + 12| F(f(e)e@ YD) 2 dy
0 00

> Cysuplf(ee@ V212 (a £1/2),
teR

where we have used, in the last inequality, the Sobolev embed#thig) c L°°(R). Therefore

_ 2 2 [e'9) 00
'g(xilffa(o)'= sup 'fff;', <c/o x2“|fx(x>|2dx=6/0 x| gy ()] dx,

xeR+ X

sup
xeR+

proving (7.1). Ifa > 1/2, then we apply Mellin transform directly 6 :

OO .
gr(M) = / g (wu* 2 dy
0
and the rule for the derivative
g¥(M) = —(ir — 1/2+ )3 (),

which can be deduced by integrating by parts. Then the same reasoning as abovg yjelds (7.2).
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