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We discuss the existence of generalized solutions of the flow of two immiscible, incompressible,
viscous Newtonian and non-Newtonian fluids with and without surface tension in a dgh@iiR?,

d = 2, 3. In the case without surface tension, the existence of weak solutions is shown, but little is
known about the interface between both fluids. If surface tension is present, the energy estimate gives
an a priori bound on thé&l — 1)-dimensional Hausdorff measure of the interface, but the existence

of weak solutions is open. This might be due to possible oscillation and concentration effects of
the interface related to instabilities of the interface as for example fingering, emulsification or just
cancellation of area, when two parts of the interface meet. Nevertheless we will show the existence
of so-called measure-valued varifold solutions, where the interface is modeled by an oriented general
varifold V () which is a non-negative measure &nx S¢~1, whereS?—1 is the unit sphere ifR?.
Moreover, it is shown that measure-valued varifold solutions are weak solutions if an energy equality
is satisfied.
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1. Introduction and main results

We study the flow of two incompressible, viscous and immiscible fluids like oil and water inside

a bounded domai2 or in 2 = R?, d = 2, 3. The fluids fill domains2,.(r) and2_(r), t > 0,

and the interface between both fluids is denotedgy). The flow is described using the velocity

v: 2 x (0, 00) — R and the pressurg: 2 x (0, co) — R in both fluids in Eulerian coordinates.

We assume the fluids to be of a generalized Newtonian type, i.e., the stress tensors are of the form
T*(v, p) = 2v(|Dv|) Dv — pI with viscositiesv* depending on the shear rgi@v| of the fluid,

2Dv = Vv + VuT. Moreover, we consider the cases with and without surface tension at the
interface. Precise assumptions are made below. Under suitable smoothness assumptions, the flow
is a solution of the system

dv+v-Vo—divTT(v, p)=0 inR*@), t >0, (1.1)
dive =0 in2%(), t >0, (1.2)
n-TY(w,p)—n-T (v, p)=kHn onI(),t>0, (1.3)
V=n-v onI(),t>0, (1.4)

v=20 ondsf2, t > 0, (1.5)

V=0 = vo in 2, (1.6)
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together with2+(0) = !25“. HereV andH denote the normal velocity and mean curvature, resp., of

I (1) taken with respect to the exterior normadf 32+ (¢), andx > 0 is the surface tension constant

(« = 0 means no surface tension is present). Equatjon$ (L.1)—(1.2) describe the conservation of
linear momentum and mass in both fluids, [1.3) is the balance of forces at the boyndary, (1.4) is the
kinematic condition that the interface is transported with the flow of the mass particle§, gnd (1.5)
is the non-slip condition at the boundary @f Moreover, it is assumed that the velocity fields
continuous along the interface.

Most publications on the mathematical analysis of free boundary value problems for viscous
incompressible fluids study quite regular solutions and often deal with well-posedness locally in
time or global existence close to equilibrium states (cf. e.g. Solonnikov [29, 30], Béale [3, 4], Tani
and Tanaka [33], Shibata and Shimizul[24] or Abgls [1]). These approaches are a priori limited to
flows in which the interface does not develop singularities and the domain filled by the fluid does not
change its topology. In the present contribution we consider certain classes of generalized solutions,
which allow singularities of the interface and which exist globally in time for general initial data.
For this purpose, we need a suitable weak formulation of the system above. Testjing (1.1) with a
divergence free vector field and using in particular the jump relatign (JL.4), we obtain

_(U’at‘p)Q_(UOa §0|Z=O)Q —(U®U, V(p)QJ’_(S(XaDv)aD(p)Q =K\/O <HF(I)7 (p(t)> dt (17)

forall ¢ € Cf5 (2 x [0, 00))? with divg = 0, whereQ = 2 x (0,00), x = xo+, S(1, Dv) =
2vt(|Dv])Dv, S(0, Dv) = 2v—(|Dv|)Dv, and

(Hra. o) = o Hn - (x, ) dH (). (1.8)
I3

Now the aim is to construct generalized solutions in a class of functions determined by the energy
estimate: Ifv andI"(r) are sufficiently smooth, then choosigg= v 0,77 in (1.7) one obtains the
energy equality

T
%||U(T)||§2(m+KH"‘1(F(T))+fO /QS(X,DwDdedt:%nvoniz(mﬂnd—l(ro) (1.9)

forall 7 > 0, wherelp = 3824 . Note thatZ H4=1(I" (1)) = — Jroy HV dH4™Y = —(Hr ), v(1))
due to [1.#) (cf. Lemmia 23 below). Now assuming that

vE(IDv)) > ¢ Dv|?7?
for ¢ > 1 the equality above gives a uniform bound of
v € L™(0, 00; L5 (£2)) N LY(0, 00; W (£2)).

where we refer to Sectign 2.2 below for the precise definitions of the function spaces in this section.
Moreover, we note that

—(Vx(@), ¢) = / dive(x)dx = n - () dH ()
(1) ra)
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for all ¢ € CgO(Q)d. Hence the distributional gradieM y (z) is a finite Radon measure and
IV llam) = HEHI (). Thus, ifk > 0, theny (r) € BV (£2) for all + > 0 and the energy
equality above gives an a priori estimate of

x € L*(0, 0o; BV (£2)).

In the case without surface tensian= 0, we only find thaty € L*°(Q) is a priori bounded by one.
This motivates us to look for weak solutions, x) lying in the function spaces above, satisfying
(1.9) with a suitable substitute ¢f (1.8), such thaty) solve [1.7) as well as the transport equation

x+v-Vx =0 in Q, (2.10)
Xli=0=x0 in$2 (1.11)

for xo = Xof in a suitable weak sense, Wh.lO) is a weak formulatif (1.4) (cf. [17, Lemma

1.2)).

In the case without surface tension and for Newtonian fluids,i(|Dv|) = v* > 0, the
existence of weak solutions (even frfluids with different densities) was proven by Nouri and
Poupaud]17]. Moreover, Giga and Takahashi [10] consider the case of a two-phase Stokes flow with
vt close tov~. The main difference in their approach is that (1.10)—(1.11) is replaced by a transport
equation for a level set function, which is solved in the sense of viscosity solutions. Due to a lack
of regularity in the velocity only sub- and supersolutions exists, which may differ. This causes
the possibility of “boundary fattening” (cf. [10] for details). In_]|17] and the present contribution the
transport equation is solved in the sense of renormalized solutions due to DiPerna and Lions [9].
But also the result of Nouri and Poupaud does not give good information for the intdriage
sinceRT(t) = {x € 2 : x(t) = 1} is only known to be a measurable set. Moreover, we note
that Wagneri[35] considered generalized solutions of a one-phase flow for an ideal, irrotational and
incompressible fluid and that Gomez and&sib [11] treated a quasi-stationary two-phase flow for
shear thinning fluids.

Because of the better a priori estimate in the case with surface tension, one might expect
to get better results in this case. But unfortunately the additional mean curvature term causes
severe problems in the construction of weak solution, which might be related to instabilities of
the boundary when fingering or emulsification takes place (cf. e.g. Joseph and Rénardy [12]). The
only known results for generalized solutions in the case of surface tension are due to Plotnikov [20]
for a two-dimensional flow of shear thickening fluids (ie.> d = 2 above) and[[21] for the
case of compressible fluids, as well as Sdlvi [23] for an incompressible viscous Newtonian fluid.
In Plotnikov’s contributions the mean curvature term is interpreted as the first variation of a so
called general varifold and it is shown that for almostzalt- 0 the varifold is supported on a
rectifiable closed curve dividing the plane into two disjoint domais(r). The latter solutions can
be considered as some kind of measure-valued solutions and are related to the solutions constructed
in the present contribution. 12 [23] no interpretation of the mean curvature term for the constructed
weak solution is given.

It is the purpose of this article to introduce a notion of so called measure-valued varifold
solutions of the two-phase flow described above. The definitions are in the spirit of measure-valued
solutions for conservation laws and the flow of non-Newtonian fluids as studied for example in [16].
Measure-valued solutions were introduced in order to model possible oscillation and concentration
effects on an infinitesimal scale, which mathematically do not allow proving the convergence of
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a suitable approximation scheme to a weak solution. In the present two-phase flow we have to
deal with possible oscillation/concentration effects of the shear teBsar, t) as well as of the
boundaryI"(¢). Therefore the definition of a measure-valued varifold solution uses the Young
measure generated by the shear tendrs(x, ) of an approximate sequence;, x.), ¢ > 0,
as well as an oriented genei@ — 1)-varifold V (¢) generated by the sequence of surfafgg)
of the approximation. Here a generalizéfl — 1)-varifold V is simply a non-negative measure
V e M(£2 x S, which by disintegration can be represented as a non-negative measure
V]| € M(82), corresponding to a surface measure, together with a family of probability measures
Vy, x € £2, for the normal vector of the “surface’ € S?~1, which models possible infinitesimal
oscillations of the interface.

Before we come to the precise definitions and results we make the following assumptions:

ASSUMPTION1.1 We assume that > 0 and$2 = R? or thatx = 0 ands2 < R? is a bounded
domain with Lipschitz boundary @2 = R¢, d = 2, 3. Moreover, ley > 1 and letv(j, s), j = 0, 1,
be twice continuously differentiable for> 0 such thaw(j, s)s2 is continuous at 0 and

2
cos?% < v(j,s) < Cos?72, dg("(j, s)s) > 0, %(VU’ $)5%) > 0 (1.12)
A) A)

for some constantsy, Co > 0. Finally, we setS(9, A) = 6v(l, |[A)A + (1 — 6)v(0, |A])A for
everyA € Ré:, 6 € [0,1], andV, () = W;’O(Q)d N LY($2) if 2 is a bounded domain and

V,(RY) = {v € WiRY) s dive = 0}.
We note that the simple power lav(j, s) = v;s9~2 satisfies the conditions above.
Before defining generalized solutions of the two-phase flow with surface tension we need some

notation: An (orientedyeneral varifoldis a non-negativd/ ¢ M(R? x S¢~1). For such a general
varifold V,

8V, ) = / (I —s®5):Vox)dV(x,s), ¢ e CFRY), (1.13)
R xS4-1

denotes itdirst variation Moreover, letQ := £ x (0, 00), Q; = 2 x (0, t), and let( -, -),; denote
the L2-scalar product ot/

DEFINITION 1.2 Letx > O and let Assumptiof 111 hold. Then € L%(0, o0; L2(RY)) N
L9(0, 00; V,(RY), x € L®(0,00; BV(RY{0,1})), p € LP(Q;Prob(Rey)), and V €
L(0, 00; M(RY x S471)), V(1) > O for a.e.r > 0, is called aneasure-valued varifold solution

of the two-phase flofor initial datavg € L2 (R?), xo = Xq for a bounded domaiy € RY of
finite perimeter if

—(U, al‘@)Q - (UO’ ‘P(O))Rd - (U R v, V(p)Q

T
+(/ “su,mdm,z(m,w) = —« / BV, o) dr (1.14)
Réyr 0 0

m

forall ¢ € CF R x [0, 00))? with dive = 0, and

/ sy (x)dV () (x, s) = —f vdVx(t), ¢ e CoRHY, (1.15)
RY x§d—1 Rd
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/ Aduy(A) = Du(x, 1) (1.16)
R4

for almost all(x, 1) € Q, x is the unique renormalized solution of the transport equafion](1.10)—
(L.13) (cf. Section 25 below), and, x. V, ) satisfies thgieneralized energy inequality

%||v(r>||§+x||V(r>||M+/Q /S(x,m:xdux,rd(x,r) < Sllvoll3 +kliVxolm  (1.17)

for almost allr € (0, 00).

REMARK 1.3 1. If V(¢) is obtained from aCl-surfacel’(¢) in the natural mannefsV (z), -)
coincides with the first variation &4~ I"(s) (cf. Sectior] 2.3 below).
2. Note that by the assumption o0y, s), A — S(x, 1) : A, A € R&x4 is a strictly convex function.

Therefore by the generalized Jensen inequality[(cf] (2.4) below)and (1.16),
/ S(x, Dv): Dvd(x, 1) < / / S(x, M)t Aduy - d(x, T) (1.18)
O O ngxn({

for almost all(x, t) € Q;, with equality if and only ifi, - = 8py(x,0)-

3. Let (Vi (n), [V(®)]), x € R, denote the disintegration of(r) € M(R? x S¢~1) into a non-
negative measurg/ (r)| and a family of probability measurés (1) € M(S?~1) as described
in Sectior{ 2.B below. Thefi (1.]15) implies th&tx (r)[(A) < |V (¢)|(A) for all open setsA and
almost allz € (0, co) (cf. (2.3) below). HencéV x (r)| is absolutely continuous with respect to
|V ()| and

/ f(X)dIVX(l)IZ/ fO@) V@), f € Co@®Y),
R R

for a |V (r)|-measurable functios;: RY — [0, co) with |6;(x)| < 1 almost everywhere. In
particular, this implies supgy; < suppV () and||[Vx(@®)|lm < IV (@)|aq for almost allz €
(0, 00). Hence every measure-valued varifold solution satisfies the energy inequality

13 + € IVX Ol + (S, D), Dv)g, < Slvoll3 + <11V x0ll v (1.19)

for almost allz > 0. Moreover, ifE(r) = {x € R? : x(x,t) = 1}, ¢t > 0, thenE(¢) is for almost
everyr > 0 a set of finite perimeter (cf. Sectipn .4 below), gnd ({1.15) yields the relation
if *E
/ sdVe(1)(s) = :Bt(x)n(x) if x € 0*E;,
§d-1

else

for |V (r)|-almost everyx € R¢ and almost every > 0, wheren = —Vyx(1)/|Vx ()| is
the exterior normal of the reduced boundai\f; of E, and x (r) = xg,. In other words, the
expectation oV, (¢) is proportional to the normad on the interface and zero inside the fluid.

4. Ingeneral, itis an open problem wheth&r) is a so-called countably/ — 1)-rectifiable varifold,
which implies thatV, () is a Dirac measure fgiV (¢)|-almost everyc. ThenV (¢) can naturally
be identified with a countablyd — 1)-rectifiable set—a “surface’—equipped with a density
6; > 0. So far we can only give a sufficient condition for the rectifiabilityya®) in terms of a
regularity condition for the pressupg() or the first variatiors V (r). See Appendik A below for
details.
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An open question is whether there are measure-valued varifold solutions such that the first
variation(§ V, -) coincides with the negative mean curvature functional associated fowhich is
defined below, and such that ; coincides with the Dirac measuég,..,) almost everywhere. If
this is the case, we call, x) a weak solution:

DEFINITION 1.4 Let (v, x, V, u) be a measure-valued varifold solution of the two-phase flow
in the sense of Definitio@.Z. The, x, V) is called avarifold solutionif wy, = 8py(,r for
almost all(x, r) € Q. If (v, x, V) is a varifold solution, thertv, x) is called aweak solutiorof the
two-phase flow if

BV (@), ¥) = —(Hyp), ¥) = ,/]Rd Tr(P,VY)diVx()] forally e Cgfg(Rd)

_7_ Vx® Vx (@) .
and almost alt € (0, c0), whereP; = 1 o] © Wyl (cf. ) below).

From the definitions one derives the following general properties of measure-valued varifold
solutions:

ProPOSITION1.5 (Properties of measure-valued varifold solutions) lLety, V, u) be a
measure-valued varifold solution. Then:

1. If (v, x, V) satisfies thenergy equality
O3+« VX Ol + (S(x, Dv), D)o, = 3llvoll3 + «1IV xoll pm (1.20)

for almost allz € (0, 00), then (v, x) is a weak solution. Moreover, if1:20) holds with
IV x ()|l a replaced by V (2) || pq, then(u, x, V) is a varifold solution.
2. Ifg >d,theny € BV(Q7) forevery0< T < oo.

Our main result concerns existence of measure-valued varifold solutions with some additional
properties:

THEOREM 1.6 (Existence of measure-valued varifold solutions) get- 2d/(d + 2), let vp €
L2(RY), let 24 € R? be a bounded’-domain, and letxo := Xqg- Then there is a measure-

valued varifold solutior(v, x, V, ) of the two-phase flow as in Definitipn 1.2. Moreover,

1. Ifd =2o0rq > d, then supp/(r) C Br(0) forall ¢ € [0, T] for someR = R(T, xo, vo) and
arbitraryT > 0.
2. Ifg > d =2, then(v, x, V) is a varifold solution and sugW (t)| = I';* is a compact rectifiable
setandV(1)| > HlLFt* for almost allr > 0. Moreover,
dy(TF

!
F ) < Cln— Y7 forall0< 1,12 < oo,

wheredy ( - ,-) denotes the Hausdorff distance.

REMARK 1.7 The casg > d = 2 was already studied by Plotnikov [n]20], where a similar result
is shown, but his definition of a varifold solution is different: Propertie¥ &) and suppV (¢)| =

I}, which can be shown fof > d = 2, are taken as part of the definition of a varifold solution.
In particular, it is required that supp(z) is a compact 1-rectifiable set separating the plane into
two open setso(#) andws(¢). Moreover, the relatiorf (1.15) is not used. Inste@d) is taken as
the characteristic function of the seg(z) and it solves the transport equation in the weak sense.
Furthermore, it is required that the space-time interfaey, 71 7" x {1} has for almost every
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t € [0, T] and everyx € I}* a tangent plane containirig, 1). Finally, no energy estimate is part of
the definition. See [20] for detalils.

REMARK 1.8 We note that in the case of a Newtonian fluid, .€j, |Dv|) = v;, the proof of
Theoren{ 16 yields a conditional existence result for weak solutions if there is no loss of area
when passing to the limit in the approximation scheme, i.ex i@ |Vxr(@®)] = Vx ()| for

almost allz > 0. Then the arguments in the proof of Proposifior] 1.5 or a convergence theorem
by Reshetnyak |2, Theorem 2.39] show tliat x ) is a weak solution. Such results are known for
example for the mean curvature flow by Luckhaus and SturzenhécKer [15] and for the multi-phase
Mullins—Sekerka problem by Bronsard, Garcke, and Sidth [6].

Theorenj 1. is proved by first constructing solutions to an approximate system forevedy
and then passing to the limit— 0 for a suitable subsequence. The approximate system is derived
by replacing(sV (1), -) by (8V (r), ¥;-) in (1.14) and replacing - V x by ¥, v - Vx in (1.10), where
¥, is a suitable smoothing operator. This preserves the energy estimate. Moreover, the convective
term in [1.14) is smoothed suitably. Using the same approximation scheme we extend the result of
Nouri and Poupaud [17] on existence of weak solution of a two-phase flow of Newtonian fluids
(¢ = 2 andv(j, s) = v;) to a class of non-Newtonian fluids:

THEOREM 1.9 (Existence of weak solution,= 0) Letd =2,3,letq > 2d/(d+2)+10orqg =2
andv(j, s) = vj, and let Assumptiol hold. Moreover, lgf € Lg(:z), X0 € L*°(£2;{0, 1}),

f € L9 (0, o0; V,($2)"). Then there are € L*(0, oo; L?,(Q)) N L9(0, 00; V,(£2)) and x €
L*>°(Q;{0,1}), O := £2 x (0, 00), that are a weak solution of the two-phase flow without surface
tension in the sense that

—(, 019)0 — (0, 9(0)2 — (W@ v, Vo) o + (S(x, Dv), D)o = (f, ¢) (1.21)

forall ¢ € Cﬁg)(ﬂ x [0, 00))¢ with div g = 0, wherey is the unique renormalized solution of the
transport equation of (1.10)—(1]11), ahd (1.17) holds for almost=alD with « = 0.

REMARK 1.10 In the case of a two-phase flow for tBtokes equatigri.e. the convective term
v - Vv is neglected and (1.21) is replaced by

the same result as above holds for @ll> 2d4/(d + 2). Comments on the prove are given in
RemarK5.b below.

The structure of the article is as follows: After studying the necessary preliminaries in $éction 2,
we first prove Propositiof 1.5 in Sectiph 3. Then we introduce the approximate system for the
two-phase flow in Sectidn| 4 and prove existence of solutions for it. Using these solutions we pass
to the limit in Sectiorf p and prove Theorefns]1.6 and 1.9. Finally in the appendix, we present a
rectifiability criterion for the varifold in the two-phase flow, which is based on a new rectifiability
result for varifolds due to Luckhaus [14].

2. Preliminaries
2.1 Notation

The set of all symmetrid x d-matrices is denoted k. For A, B € Réy we write A : B =
Tr(AB) and |A| = /A: A, where Tr denotes the trace of matrices. Givere RY we define

a ®a € Re as the matrix with entriega;, i, j = 1,....,d.
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The dual of a topological vector spateis denoted by’. If v € V andv’ € V/, then(v, V') =
(v,v")y,yr 1= v'(v) denotes the duality product. K: V. — W is a continuous linear operator,
A’ W — V'’ denotes its adjoint.

For a given setd c R¢, we define itse-neighborhoodA,, ¢ > 0, asd, = U
Moreover, for given compact sets B ¢ R¢ the Hausdorff distance is defined as

B:(x).

xeA

dy(A, B) =infle >0: A C B, andB C A,}.

If A c R?isacompact set, théi(A) = {B C A : B closed equipped with the Hausdorff distance
is a compact metric space (cf. eld. [7, Proposition 2.4.4]).

2.2 Function spaces

Spaces of integrable functionslf M € R is measurable, theh? (M), 1 < g < oo, denotes the
usual Lebesgue space ajd ||, its norm. MoreoverL?(M; X) denotes its vector-valued variant
of strongly measurablg-integrable (or essentially bounded) functions, wheris a Banach space.
More generally, ifX is a Fechet space, thefi € L9(M; X) if f is strongly measurable and
g-integrable/essentially bounded with respect to all the seminorn¥s. dfor a subsetv C X
we denote byL?(M; N) the set of allf € L?(M; X) with f(x) € N for almost allx € M.
Furthermoref € Lf’oc([o, o0); X) ifand only if f € L1(0, T; X) for everyT > 0.1f 2 C R? is
adomain, thery € L (£2) ifand only if f € L4(£2 N B) for every ballB with B N 2 # @. For

loc
any measurable sét c R?, x4 denotes its characteristic function.
Recall that, ifX is a Banach space with the Radon—Nikodym property, then
LI(M; X) =LY (M; X') forevery1< ¢ < oo

by means of the duality product
(f. 8) = /M(f(x), g(x)) dx

for f € L1(M; X), g € L7 (M; X'). If X is reflexive orX’ is separable, theX has the Radon—
Nikodym property (cf. Diestel and UHI[8]).

Moreover, recall the lemma of Aubin—Lions: ¥y << X1 <> X, are Banach spaces,4
p <00,1< ¢q <o0,andl C Ris abounded interval, then

{UELP(I;Xo)Z(;—?ELq(I;Xz)} < LP(I; X7). (2.1)

See J.-L. Lions [13] for the cage> 1 and Simon[[26] or Roubek [22] forg = 1.
Furthermore, we note that, if = X’ is a dual space, theh>°(Q; Y) for openQ < RV is
defined as all weak-measurable functions: Q — Y, i.e.,

X = (V)ﬁ F(x’ )) = <])Xa F()C, .)>X/,X
is measurable for each € L1(Q; X), such that

”V“LS)"(Q;Y) .= €ess Sum Vx”Y < OQ.
xeQ
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Sobolev and Bessel potential space®/;'(§2), m € No, 1 < g < o0, denotes the usudl?-
Sobolev spacdfl’é’f,oc(Q) its local version ,W;fo(ﬂ) the closure o3°(£2) in W (82), W, ™(£2) =

(W o(2)), and f € W;l’gc(ﬁ) if f € W,™(2N B) for every ballB C R?. The L-Bessel
potential spaces are denotedBy(£2), s € R, defined as the restrictions of distributionsHr (R?)

to £2 (cf. Triebel [34, Section 4.2.1)). FinaII)qu(_Q) ={f € Ll.(2):Vfe L)}, normedin

the obvious way, denotes the homogeneous Sobolev space of first order, where functions differing
by a constant are identified.

Spaces of continuous functionsThe usual spaces of continuouspltier continuousk-times
differentiable and smooth functions on an open or closedAsate denoted byC(A), C*(A),

0 < a < 1,Ck(A), andC™®(A), respectively, Furthermor€,3°(§2) = D(s2) denotes the space of
smooth and compactly supported functiongdandCo(£2), C’g([z) denote the closures 6f;°(£2)

in the corresponding norms. Moreoverifc R? is a set, then

CHA) ={f:A>R: f=F|s FeCPRY, suppf C A}

equipped with the quotient topology. 4 is an open set, a subscriptas in C’b‘(Rd) indicates that
the functions and their derivatives are required to be bounded.

Spaces of solenoidal functionsin the following Cow (£2) denotes the space of all divergence free
vector fields inC8°(.Q)d and L (£2) is its closure in the.?-norm. The corresponding Helmholtz
projection is denoted by, 4 or just P, (cf. e.g. Simader and Sohir [25]).

Finally, recall thatv, (RY) = {v € qu(Rd)d :div f = 0} andV,(2) = qu,o(sz) N LL() if
£2 is a bounded domain. In both caséswill be normed byl|v|lv,(2) = | DvllLi(2)- By Korn's
inequality this norm is equivalent to the standard norms.

Spaces of measures and functions of bounded variatiofisese spaces are defined at the beginning
of Section$§ 2.3 and 2.4.

2.3 Measures, disintegration and Young measures

Let X be a locally compact separable metric space andCtg; R”) be the closure of the
compactly supported continuous functighs X — R™, m € N, in the supremum norm. Moreover,
denote byM (X; R™) the space of all finit&®”-valued Radon measure${(X) := M(X; R), and
let ProlX) denote the space of all probability measureXnThen by the Riesz representation
theorem M (X; R™) = Co(X;R™) (cf. e.g. Ambrosio et al. ]2, Theorem 1.54]). Given €
M(X; R™) the total variation measure is defined by

Iul(A) = sup{z (AR Ay € B(X) pairwise disjointA = | ] Ak}
i=0 o0

for every A € B(X), whereB(X) denotes ther-algebra of Borel subsets of. Then by [2,
Proposition 1.47],

lul(A) = sup{/X f)dux) 1 f € Co(X; R™), suppf C A, || fllee < 1} (2.2)
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for every open sed C X. The restriction of a measuye to a u-measurable set is denoted by
(u| A)(B) = n(AN B). Finally, thes-dimensional Hausdorff measure B, 0 < s < d, is denoted
by H*.

Now letU ¢ R¥, Vv c R™ be open sets and lete M(U x V; R™). Moreover, we sei(A) =
[v](A x V). Then by the disintegration theorem (¢fl [2, Theorem 2.28]), thereiist@easurable
mappingx — v, such thatv,| € Pro(V) for u-a.e.x € U and for anyf € LY(U x V, |v]),

fx,) e LYV, lvy]) forp-a.ex e U,

X /vf(x, ) dve(y) € LY(U, ). (2.3)

/ f(x,y)dV(x,y)=[</ f(x,y)dvx(y)> du(x).
UxV U \%4

Obviously, ifv € M(U x V) is a non-negative measure, then = |v,| € Proh(V) for u-a.e.
xelU.
We need the following version of the fundamental theorem on Young measures:

THEOREM2.1 LetQ C RY be anopensetand let € L?(Q; R™), 1 < p < oo, be a bounded
sequence. Then there is a subsequence still denoteddnd a weaks measurable function —
vy € Prol(R™) such that for every continuous R™ — R satisfying the growth condition

T < CA+|ENP~t forallé e RY

for someC > 0 we have . /
1(z/) =T inL?(Q)asj — oo,

wheret = (v, t) for almost allx € Q.

Proof. The result immediately follows from Corollary 2.10 in&lék et al. [16, Section 4.2] by
choosingg = p — 1,r = p/q = p’. Moreover, we note that the restriction to a bounded set in that
corollary is only needed if k r < p/q as can be easily seen in the proof. |

Finally, recall the generalized Jensen inequality: ¢ eRY — R be a strictly convex function and
let u be a probability measure &" such that id andig| areu-integrable. Then

g( / xdu(x)) < /R 8@ ). (2.4)

with equality if and only ifi is a Dirac measure (cf. e.d. [16, Lemma 2.27, Chapter Ill]] and its
proof).

2.4 BV-functions and varifolds
Let U < R4 be an open set. Recall that
BV(U) ={f € LNU) : Vf € M(U; R%)},
I Bvw) = 1 fllLrwy + IV Fllmwsray

whereV f denotes the distributional derivative. Moreov8ry (U; {0, 1}) denotes the set of all
x € BV (U) such thaty (x) € {0, 1} for almost allx € U.
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Moreover, a seft C U is said to havdinite perimeterin U if xg € BV (U). Then by the
structure theorem on sets of finite perimet®z| = H 1|0*E, whered*E is the so-called
reduced boundargf E and

_(VXEa(p):/ d|V(de:/ (ande—l’
E IE

whereng(x) = —Vyxe/|Vxel (cf. e.g. [2]). Note that, ifE is a domain withC1-boundary, then
0*E = 052 andng coincides with the exterior unit normal.

For a setE of finite perimeter inU we define thanean curvature functionassociated t0* E
as

(Hy+g, 0) = (Hyp, @) = —/

a*

Tr(P. Vo) dH'™L, ¢ e Ci(2), (2.5)
E

whereP; = I —ng(x) ® ng(x). ~

A general(d — 1)-varifold V is simply a measur&¥ € MU x G4-1), whereG;_1 is the space
of all unoriented(d — 1)-dimensional linear subspaces®f (cf. Simon [27]). The first variation
3V of a general varifold/ is defined as

8V, ¥) =/ Pr:VydV(x,T) fory e CEW)?,
UxGg4-1

where Pr denotes the orthogonal projection orifo € G,—1. Note that general varifolds are
unoriented and thafs_1 = S?~1/{x = —x}. If E is a set of finite perimeter ity, then its reduced
boundary can be identified with the varifold defined by

(Varr, ¢) = f 9@, [ne)) dHI™t forallp € Co(U x Ga-1),
0*E

where | ¢ (x)] denotes théd — 1)-dimensional subspace Bf with normaln g (x). Then
(8Vyrp, W) = —(Hypp,¥) forally e CIU).

Hence the mean curvature functional associateii fo can be recovered from the general varifold
associated t@*E. But this is not the case fo¥ xz = —ngH?~1|8*E since general varifolds do
not take orientation into account. Therefore we definaented generald — 1)-varifold as a
non-negative measuiié € M(U x S¢~1) as was done for example by Sorler|[31, Section 2.3]. By
disintegrationV can be written in the form

(V, ) =/ fgd @AV dVIw), ¢ e CoU si71). (2.6)
v Jsa-
Obviously, every oriented general varifoltlinduces an (unoriented) general varif&cby
(V.g) :/ p(x, [sDdV(x,s), ¢ € Co(U x Gag-1), (2.7)
UxSd-1

where againg] denotes théd — 1)-dimensional linear subspace]@f with s as normal. Now, ifE
has finite perimeter i/, then we associate @ E the oriented general varifolds« z defined by

(Vas, @) =/ o(x,ng(x)dH?™t  forallp € Co(U x S71).
0*E

Note that this corresponds to the chojeg = H~[3*E andVy = 8, () in (2.6).
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Now we recovelV yg from V = Vi«g by choosingp(x, s) = s - ¥ (x) with ¢ € Co(U; R9):
(VorE, @) =/ 5P () dVi(x,s) =/ yonpdHTt = —(Vxg, v).
UxSd-1 *E

Finally, let Iy < R? be the boundary of a boundet-domains2; with exterior normal vector
field n and letX,: R — R4 ¢ > 0, be a family of C1-diffeomorphisms depending in a
continuously differentiable way an> 0 such thaﬁj;X, (x) = v(X,(x), r) for a sufficiently smooth

vector fieldv. Moreover, sef’; = X,(Ip) and$2, = X,(.Qa“), t > 0. Then one calculates that

% / () dHL(x) = (8Vr. pu()) + / n-Ve(on v, ndH ) (2.8)
I; Iy

for everyg € Cé(Rd ), whereV; denotes the general varifold associateditdefined as above and
n is the exterior normal af; = 942,.

2.5 Transport equation

We consider weak solutions of the transport equation

ox+v-Vx=0 inQOr, (2.9)
xli=0=x0 Ing, (2.10)

whereQr = 2 x (0,7),0 < T < oo, 2 = R? or £2 is a bounded Lipschitz domain, €
Lﬁ,c([o, 0); L§ (£2)), andyg € L*°(£2). Here a weak solution is a functigne L°°(Q) satisfying

/ x©Orp +v - Ve)dx, t) —i—/ xop(x,0)dx =0 (2.112)
o 2

forally € C (2 x [0, T)). Then we have

PROPOSITION2.2 For everyyg € L>®(£2) andv € L2 ([0, 00); L2(£2)) there is a unique weak

solution of [2.9)4(2.10) witl’ = co. Moreover, this solution is a renormalized solution, i&.x)
is a weak solution associated to the datao) for any 8 € C1(R). Furthermore, ifgg € M a.e. for
some finite seM, theny € M a.e.

The proposition follows from Nouri, Poupaud and Demayl [18, Theorem 4.1]. It essentially
coincides with[[17, Proposition 3.3]. These results are based on DiPerna and Lion’s results on weak
and renormalized solutions of the transport equation(tf. [9]). In that work éi\0 or divv € L™
is essentially used.

In order to construct approximate solutions of the two-phase flow with surface tension we use:
LEMMA 2.3 Letyo € BV(R?; {0,1}) and letv € C([0, T]; CZ(R)?), divv = 0, T > 0. Then
there is a weak solutiop € L>°(0, T; BV (R%; {0, 1})) of (2.9)-{2.10). Moreover,

||X||LOO(0,T;BV(]Rd)) < M(”v”c([o,T];cg(Rd)))"XOHBV(R”’)’ (2.12)
d
a|vx(z)|(Rd) = —(Hy(), v(t)) forallr € (0, T) (2.13)

for some continuous functioM .
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Proof. The solution x is constructed by the usual method of characteristics. Since=
C([0, T]; CLR?)?) for everyxg € R? there is a unique solutian(z; xg) € C1(0, co; RY) of

%x(r; x0) = v(x(¢; x0), 1), t >0, (2.14)

x(0; x0) = xo, (2.15)

which is a trajectory along the vector field Note that, since is globally Lipschitz, the solution
x(t; xo) exists forallr € (O, T). Let X (xo, 1) := x(¢; xg) and letX; = X (-, r) be the flow mapping.
ThenX e C1([0, T] x R?) by the usualCl-dependence on the initial values akigh RY — R?
is a C1-diffeomorphism. Now defing (x, 1) := XO(X,_lx). Thenllx (-, Dl iwrey = X0l L1wa)
since detD X, (y) = detDXo(y) = 1 because of; detDX,(y) = divv(X;(y, t)) = 0. In order to
estimatey € L>®(0, T; BV (R?; {0, 1})), we use the fact that

/Qx(x,t)divllf(X)dx=/Qx0(y)Tr((V1/f)(Xz(y)))dy
=LXO(y)Tr(Vt/Nf(y))dy—fQXO(y) Tr(VDX; 1)y (X, () dy,
wherey (y) = DX; Ty (X, (), ¥ € C3®RY)?. Hence

sup

< M(|vll .c2rdy) 1 xoll ¥l cora
1€[0,T] = C([0,T);CyRY) BVRH IV IIcoRra)

/ X (x, t)divyr(x) dx
Q

forall v € Cé(Rd)d andr > 0 and some continuous functiad. Moreover, by standard calcu-
lations

(X,Btfp)Q=/O on(y)azw(Xz(y),t)dydt

=—(x0,<0|z:o)—/0 /QXO(y)pr(Xt(y),t)~v(Xz(y),t)dydt
= —(x0, ¢lr=0) — (X, v-V@)o

for all ¢ € C ([0, 00) x R). Hencey is a weak solution 09)0).
Finally, the last identity follows fron (2]8). a

For the following we note that1(R?) is equipped with the topology of locally uniform convergence
of functions and their first order derivatives.

LEMMA 2.4 Let xo = Xq. where 24 is a boundedC!-domain. Moreover, let, u €

C ([0, T]; C2(R%)?) be such thatyy — u in C([0, T]; CYRY)) ask — oo. Then for any
feClRY x §471),

lim / fx,ny) dH ™ (x) = £ Cx, ny) dH(x) (2.16)
0

k—o00 ()

uniformly in¢ € (0, T), whererl,(t) = Xw(z)(aszgf) and X, (¢) is the flow map obtained from
(2.14)H2.1p) withv = w as above. Finall{ I, (1), I,(z) : k € N, t € [0, T]} is contained in a
compact set.
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Proof. First of all, X,, € C(0,T] x RY) andX,, — X, € C([0,T] x Bg(0)), R > O,

by the usualc1-dependence of solutions of ordinary differential equations on the data. Moreover,
by constructionX,, (r): RY — R is bijective for anyr € [0, T]. HenceX, *(1): RY — R is
continuously differentiable andl, *(r) — X, () in C*(R?) for any: € [0, T]. Using all this, the
lemma can be proved by either introducing a local parameterizatiemz@‘f and usingX,, (+) and

X, (r) to get suitable parameterizationsigf, (r) andTI,(z), or one can use the continuity theorem by
Reshetnyak: Sinck,, (t) — X, (1) andx;kl(t) — X;l(z) in CL(RY), itis an easy exercise to show
HIY L, (1) — HAZ(T,(@1)). Moreover, if 27 (1) = X, ()(29) and 21 () = X, (1)(27),

then

(Vg oy 0) = — /Q v (X, () dr > /Q v (X, (1) A = (V. 0)
0 0

ask — oo forall ¢ € C3(R?)?. This impliesVy o+ ;) —* Vxg+q) in M(RY) since||V xu, llm =
HI=Y(,, (1)) are uniformly bounded and}(R?) is dense inCo(R¢). Therefore one can apply
[2, Theorem 2.39] to the vector measul@§9k+<,) andV o+ () to show ).

Finally, the last statement is an easy consequence of the factthat X, in C1([0, T] x R?)
and the compactness @.f?gf . O

LEMMA 2.5 Letug,u € Ll(O,T;L?,(SZ)), k € N, for someT > 0 such thatuy — u in

LY(0, T; L2 ,(£2)). Moreover, lety;, x € L®(Q7) be the solutions of (29}-(2.]10) with= . u,
resp., andgo = xg for some fixed measurable s€t Theny;, —* x in L>®(Qr) andy; — x in
LP(Qr) for everyp < oo.

Proof. First of all, sincexx € L*°(Qr) are uniformly boundedyy, —* Xoin L®(Q7)asj — oo
for some%o € L®(Qr) and some suitable subsequence. Simce— u in L0, T’; L%C(Q)),
up -V — u-Voin LY, T; L%(2)) for anyg C) (82 x [0, 00)). Thuso solves the transport
equation withv = u. Hence

I 1700y = TIEI = I Xollg
for every 1< g < oco. Thusyx, — Xo in L9(Qr) strongly. In particular, this impliego € {0, 1}
almost everywhere. Therefof@ coincides with the unique renormalized solutigf Since this
argument holds for any subsequence, the sequengge-n converges itself. |

2.6 A convergence result for monotone non-linearities
In order to construct weak solutions in the case 0, we will use the following result:

THEOREM 2.6 (éwierczewska [32, LemmaA.l]) LeE c R? be a measurable set of finite
measure and let: E x R™ x RN — R be a function such that

1. A(x, s, &) is a Caratkodory function with respect to and (s, &), i.e., A is measurable with
respect toc and continuous with respect g, &).
2. A(x, s, &) is strictly monotone with respect t For almost allx € E and alls € R™ and

£1,6 € RN, &1 # &,
(A(x,s, &) — A(x,s5,82)) - (61— &) > 0.
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3. There argy > 1 andcy, c¢2 > 0 such that
A(x,s,8) & > c1lEl?,  |A(x,s5,8)] < colg|7?

for almost allx € E and all(s, £) € R” x RV,

Moreover, lety,: E — R™ andz,: E — RY be a sequence of measurable functions such that
v, — ya.e.inkE, z, — zin LY(E) andA(x, y,, z,) — Ain L9 (E) asn — oo. Then

lim sup A(x,yn,z,,)~zndx</5-zd.x
E

n—oo E
impliesz, — z in measure a8 — oo.

In the following we will apply the theorem to the casec 2,s € R, &£ = A € R&, and
A(x, s, &) = S(s, 1). In this case Assumptign 1.1 implies the assumptions of the theorem.

3. Proof of Proposition[1.5

First of all, we note that b2), = S(I,A):h, A € RE:, is a strictly convex function for every
[ €][0,1].
Firstassume thdtV (r)|| = ||V x (t)| foralmostallr € (0, T'). We will prove thatVy (t) = 8,,(x.1)

for |V (r)|-almost everyr € RY and almost every € (0, 00), wheren(x, t) = _|§§8\ (x). From
(I:13) we know that

// S~¢(X)de(t)d|V(t)|=/n(x,t)-I/f(X)dIVX(t)I
2 Jsd-t 2

forall ¥ € Co(£2)4. Hence by)l,Vx(t)l(A) < |V(@)|(A) for every opeA C 2. Thus|Vy (1)|
is absolutely continuous with respect|#o(z)| and

IVX(t)I(A)=/A€z(X)dIV(t)I(X)

with some|V (¢)|-measurable functios, : R? — [0, co) andf,(x) < 1 for |V (r)|-almost allx
in RZ. But, since|Vx (@) = [Vx(OIRY) = |[V(©)|(RY) = ||V ()], we conclude thag, (x) = 1
almost everywhere and (r)| = |V x (r)| as measures. Therefofe (1.15) yields

/d lstx(t)(s) =n(x,t) for|V(r)|]-almostallx € 2.
Sd—

Thus 1
- / |s —n(x, t)|2de(t)(s) =1—n(x,t)- f sdV,(t)(s) =0
2 Sd-1
for |V (¢)|-almost allx € §2, which implies thalV, (1) = 8,1 for |V (¢)|-almost every e RY.

If (v, x) satisfies[(1.20), then necessatly x (t) |4 = |V (2) || p for almost alls > 0 because
of (L.17) and[(1.18). Hence the first part implies thatr) = 8,(x.r), which yieldssV (1) = —Hy ).

Moreover, by|(Z2.4) and (1.16),

S(x(x,t), Dv(x,t)): Dv(x,t) < / S(x(x, 1), 1) i A duy (X)
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with equality if and only ifi., . is a Dirac measure. (Note thAtS (x (x, ), A) : A diy , (A) < oo for
almost all(x, r) € Q by (1.17).) On the other hand, Hy (1}17)-(1.20),

[, stxe.n.pue.y: oo nden = [ S0 b0 den
t t sym
for almost allr > 0. Hencew, ; is a Dirac measure for almost &, r) € Q, which implies that
Mx.r = 8pu(r.r) because of (1.16). Altogether, we have proved thaj ) is a weak solution. The
same argument also shows thatx, V) is a varifold solution if[(1.2D) holds withV x (r)|| replaced
by [V ()]
Finally, if ¢ > d, then[2.1]1) and the fact thate L>°(0, oo; BV (RY)) yield

O divi ¥ = /0 / W ea 1) AV (1) dif + fQ X div(oyas 1) dex, )

=/Oofw’(x,t)dvx(t) dt—/m/vwﬂdvx(t) dr
0 0

forall v = (¥, ¥ar1) € CHQ; R whereyyy1(x,) € R. Moreover, sinceg > d,
L0, T; Vy(RY)) N L>®(0, T; L2 (RY)) — L9(0, T; Co(RY)) for eachT > 0 and

o
’/ /w’<x,r> dVx (1) dr
0
< C(Ep, T)||U||LQ(0,T;CO(Rd))||W||CO(QT)

o0
’ /0 / Va1 dVx (1) de
< C(Eo, DIV llcocor)

if suppy € Qr for T > 0, whereEg = 3 lvoll3 + x|V xoll p. This shows thay € BV (Qr) for
every O0< T < oo.

< C(Eo, DY llcoor)

4. Approximate two-phase flow

In the following we sefX, = BV if k > 0 andX, = L if « = 0.

In order to formulate the approximation equations,jete Cgo(Rd) with suppy € B1(0),
[¢dv = 1andy > 0. Moreover, let¥, f = . x f if 2 = R and¥, = Py (Y: * f),
wherey, (x) := e 9y (¢ 1x), e > 0, f is extended by 0 t®?, and P, denotes the Helmholtz
projection (cf. [25]). Then we consider the approximate two-phase flo@goh), T > 0, which is
ve € L®(0, T; L2(£2)) N L4(0, T; V,(£2)) that solves

— (g, at‘ﬂ)QT — (vo, p(0) 2 — (Yeve ® Ve * Vg, Ve ¢)QT + (S(xe, Dvg), D(P)QT
T
= K/(; (HXs(l% Y.p(t)) dr (4.1)

forall ¢ € C (2 x [0, 7))? with dive = 0, andy, € L>(0, T; X, (£2; {0, 1})) is the unique
renormalized solution of the transport equation

0 Xe + (Weve) - Vxe =0 inQr, (4.2)

Xel=0= X0 in£2. (4.3)
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Throughout this section we will frequently use the fact that
v Q@Y xw, Ve xw)o = —(Pev QY xw, Ve xw)p =0 (4.4)

for all v, w € L2(22)¢, divv = 0. This follows from integration by parts and from diyv = 0,
n-Ylpe =0.

First of all, we need
LEMMA 4.1 Let Assumptiol hold and lef,e > 0. Then for everyvg € L?,(.Q),
f e L1(0,T; V,(2)), andx € L®(Qr;[0,1]), there is a unique € L®(0, T; L2(22)) N
L9(0, T; V,(£2)) with 8,v € L9 (0, T; V,(£2)") solving

—(, %9)o — (v0, p(0) 2 — (Wev @ Ye x v, Ve xv) g + (S(x, Dv), Dp)o = (f, @) (4.5)
forallg € C&($2 x [0, 7)) with divg = 0. Moreover,

2 q q/ 2

Su t <C , ’ 46
Ogtgpr vl + ||v||Lq(0,T;vq) (”f“L‘I 0.1:v)) + llvoll5) (4.6)
100010 0.7:v7) < MU @ 720 10013) 4.7)

for some continuous functio®s. Finally, if fi, f € L0, T; L(Z,(_Q)) N LYO,T; V,(£2)') and
X, x € L®(Q7:[0,1]), k € N, are bounded sequences such that> f in L1(0, T; L3(2))
andy, — x in LP(Qr) for some 1< p < oo, thenvy — v € C([0, T]; L2(£2)) whereuvy is the
solution of [4.5) with( £, x) replaced by( fx. xx)-

Proof. The proof of existence of solutions can be done by a standard Galerkin approximation using
the fact that

(A(u), v) = / v(x, |Dul)Du:Dvdx, wu,veV :=V,(2),
Q

defines a strictly monotone, coercive, hemicontinuous bounded opetatdét — V’. More
precisely:

First assume that the convective term is not presentie= 0. If 2 is a bounded domain,
then the lemma is a consequence of Zeidlel [36, Theorem 30.A]Wvik above andl = L2(£2).
The conditions (H1)—(H6) there are easily verifieds2f= R?, thenV = V,(RY), H = L?(RY),

V' = V,(R?) is no longer an evolution triple. But, H, V' still have a common dense basis, and
the fundamental relation

t
(), v(1)) 2@y — ((0), v(0) 2(g) =/O (' (), v($)) + (V' (s), u(s))) ds (4.8)

still holds for all 0< ¢ < T andu, v € L9(0, T; V) with u/, v € L4’ (0, T; V'). Then the proof of
[36, Theorem 30.A] easily carries over.
If the convective term is present, the proof can be easily modified using the fact that

Wev @Yo % v, Vg xv)g =0

due to [4.4). Therefore the energy estimate for the case with convective term is the same as without
it. Moreover, in order to pass to the limit in the convective term during the Galerkin approximation,
one simply uses the fact that

X :={ueLlOT;V,(R)): 0 e L 0T;V;(2))} = L0, T; LL(2))
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because 01) applied 89 = qu(QR), X1 = L%(R2R), andXs = Wq‘,l(.QR), where2p =
£2 N Br(0) andR > 0is arbitrary. This is sufficient to show that

nli_)moo(llfgvn ® Ve * U, Ve % 0) o, = (Wev @ Y % v, Ve % @) g,

forall g € (2 x [0, 7))% with divg = 0 if v, — vin X.
Furthermore, we note that the estiméte](4.6) follows from the usual energy estimate. In order to
estimated,; v, we observe that

IS0 DYy ) = [ 150 DIV deen <€ [ Dot d.n.
T or or

Moreover, sincel,u = P, (¥, * u) and sinceP, is continuous orL*(2)¢ forall 1 < s < oo, we
conclude that

Wev|ls < CsllYev|ls < Cs,s”UHZa Ve * (p”q < Cs,q”(/)“Vq(Q)

forall 2 < s < oco. Therefore

'/ Wev @ e v Ve x @ d(x, 1)| < C,TY( s[up] e * vOIDIVYe * @llLa0r)
or te[0,T

2
< Cé‘,S,T ”U ”LOO(O’T;L(ZI (£2)) ||(/) ||Lq O,T; VQ(Q))v

where ¥s = 1/2 — 1/2q. Using these estimates and the equafion (4.5), one easily d¢rives (4.7).
In order to prove uniqueness and the last statement, tetbe two solutions of (4]5). Then

—(v —w, %), + (S(x, Dv) — S(x, Dw), Dp)g;
=We(v—w) @ Ve *xv, Ve x 0) o7 + (Yew @ Ve x (v — w), Ve x 0) oy

forall¢ € Cfg)(_Q x [0, T))¢ with div ¢ = 0. Choosingy = (w —v)x0.1,t € [0, T], via a standard
approximation and using (4.8) we conclude that

() — w)lI5 < lv(t) — w5+ (S(x, Dv) — S(x, Dw), Dv — Dw)o,
t

< Ce(sup (o lz+ lw®2) [ llv(s) — wis)|Zds
ot<T 0

sinceDv — S(x, Dv) is monotone. Hence Gronwall’s inequality implies= w.
Finally, let fx, f, x«, x, vk, v be as in the last statement. Then

—(vk — v, 9,9) g + (S(xk, Dvk) — Sk, Dv), Do)
= (S(x, Dv) — S(xk, Dv), Do)g + (fx — f. @)
+ (We(vr —v) @ Ve % vk, Ve x @) o7 + (Wev @ Ve * (v — V), Ve * @) oy

forall¢ € CE"G)(Q x [0, T))¢ with div g = 0. Choosingy = (v — v)x[o,:1. t € [0, T], we conclude,
using the boundedness @f, v, that
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lo (@) = v 115 + (SGtks Dvr) — S(xx, D), Dug — Dv)g,

t
< Ce(”fk — fllzror;22) + 1SGG DY) = SG DV o, + /0 lve(s) — v<s>||§ds).
Thus

sup [lue(t) — v@I2 < Cer(lfi = fllixo7.02) + 1S DY) = S DV 9)
0<<T

by Gronwall’s inequality. The second term can be estimated as

IS(x, Dv) — SGuk, DVI?, < Co | |x — xkl|Dv|?d(x, 1)
L7 (0r) or

<[ ix-wliDettdin+Ca [ D0 Dot de.n
or or

forallg e C?‘S) (Q7). Now we observe that the first term on the right-hand side converges to zero as
k — oo sincey — x in L?(Q7), and the second term is arbitrarily small sir@%(@ﬂ is dense
inL9(0, T; qu(.(Z)). Hence lim_ « |IS(x, Dv) — S(xx, Dv)||Lq/(QT) = 0. Altogether this implies
lim s o0 SURYG <7 104 (1) — v(1)[3 = O. O
THEOREM4.2 Let Assumptior] 1|1 hold. Then for evely7T > 0, v € L2(£2), xo €
Lo(R:{0.1) if k = 0, andxo = xor if ¥ > 0, where 2§ € £ is a bounded

domain withC1-boundary, there is a solution € L>(0, T; L2(£2)) N L4(0, T; V,(R2)), x- €
L>®(0, T; X,(£2; {0, 1})) of (4.1)-{4.3). Moreover, every solution satisfies émergy equality

t
%Ilvs(t)llngKIIVXg(t)llM+/ /QS(Xs,Dvs)ZDvgdxdfz%Ilvg(S)II§+KIIng(s)||M (4.9

forall s,z € (0,T),s < t, wheret %||v8(t)||% andt — ||V x.(¢)||p are absolutely continuous
functions satisfying

dil d :
Ezllva(t)llg = (v (@), ve@)2s L NVXDlIM = =(Hy ), We x v:(1)) ifx>0

for almost allr € (0, T) anda; v, k (Hy, (1), Ve * ) € L9, T; Vy(82)).

Proof. Let
X1:={u e LIO, T; V,(2)) : du € LY (0, T; V,(2))}

normed in a suitable way. Moreover, €y := C([O, T]; L?,(Q)) and letX, = (Xo, X1)o, Where
(-,")¢ IS an exact interpolation functor of typee (0, 1) (e.g. the real interpolation functor, cf. Bergh
and Lofstrdm [5]). Note that by[(4]8)X1 — X,. Furthermore, we note that the inclusionXf into
LY(0, T; L2 (£2)) is compact because .1) applied¥d(2z), LA(2r), anqu‘,l(QR), where
2r = 2 N Br(0) andR > 0 is arbitrary. By[[5, Theorem 3.8.1] the same holdsXgr, « € (0, 1],

in placeX1.
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We define a mappingF: Xo — X3 as follows: For givenu € Xg let x, €

L>®(0, 00; X, (£2; {0, 1})) be the solution of the transport equati¢n [2.0)—(p.10) witm (2.9)
replaced by, u. Then

Xoour x, € LP(Q7), 1< p<oo, (4.10)

is strongly continuous by Lemrha 2.5. Moreover, the mappip® u +— x, € L?(Q7),« € (0, 1],

is even compact by the following argumentulf € X,, k € Np, is a bounded sequence, then after
passing to a suitable subsequenge—~ u in L1(0, T; L|20c(§)) by the observations above. This
implies the same statement #dru,, ¥.u. Hencey,, — x. again by Lemm@S.

Now letv = F(u) be the solution of (4]5) witly = x, and

T
(fu®) :ZK/O (qu(t)’ Pep(1)) dr.

CLAIM. F: Xo— XpiscontinuousfF: X, — Xo, « € (0, 1], is compact, and": Xg — Xj is
bounded.

Proof of Claim. First letx = 0. ThenF: Xo — Xp is continuous because of Lemina}4.1 and
(4.10). MoreoverF: Xo — X1 is bounded by[(4]6) anfl (4.7). Finally,: X1 — Xo is compact
sinceX1 > u — xo € LP(Qr) is compact and the mapping f to the solutiorv = F(u) € Xo
of (4.5) with x = x, and f = 0 is continuous.

In the caser > O it remains to prove thaXg > u — f, € L‘i/(O, T, Vq(]Rd)’) is bounded, that
Xo 3 u — f, € LYX0, T; L2(R%)) is continuous, and that, > u — f, € L0, T; L2(RY)),
a € (0, 1], is compact. Then the claim follows in the same way.

Firstly, we estimatef,. Sinces2 = R? if k > 0, ¥, = ¥, * ¢ and

[(Hy, ), Wep )| < CRAIV XuONMIVYe * @l cogay S Cekc IV xu Ol mll@lly
whereY = L2(RY) orY = V,(R?) and

IVXull Lo 7 M(rey) < M| Weut ”C([O,T];Cbz(]Rd))) I xoll gy (rd)

<
< M (e, lullc(o,77;22 ®ey)) 1 X0l By (R)
by (2.12). Hence

”fu”Lq’(O’T;Vq/) + ||fu||L1(0,T;L§) S M, T, ||u||c([o,T];Lg(Rd)))K||XO||BV(Rd)~
In particular this implies

||F(M)||X1 < M(e, T, |lvoll2, ”M”LOO(O,T;LZ(_Q))v K||VXu||L°°(0,T;M(.Q))) (4-11)

for another continuous functiald and« > 0 by (4.6) and[(4]7).

Now letu; € X4, k € N, be a bounded sequence anddet (0,1]. If « = 1, thenW,u; €
C ([0, T]; C1(Bg(0))), k € N, is precompact for ang > 0 since¥,uy € C([0, T]; C2(R?)) and
oWeu, = Y.ou, € L‘/(O, T, Cg(Rd)) are uniformly bounded. Now using agaln [5, Theorem
3.8.1] we conclude tha#,u;, € C([0, T]; C1(Br(0))), k € N, is precompact ifx € (0, 1).
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Therefore for a suitable subsequengey, — Y.u in C([0, T]; C1(Bg(0))) for any R > 0 as
k — oo. Hence[(2.16) implies that

Nim (Hy, 0, ¢) = (Hy,), @) forallp € CgR?*
uniformly in r € [0, T]. Moreover, since supp,,, k € N, is contained in a compact sé&t by
Lemmd 2.4, and2(K) <> CL(K),

lim sup  sup [(Hy, o). 9) — (Hy,@), )l =0.
K700 10,1 19l 250, <1

Thereforef,, — f. € LY(0, T; L2(RY)) since¥, : L?(R?) — CZ(RY). By the same arguments

it follows that f,, € LY, T; L?,(Rd)) depends continuously ane Xg. This finishes the proof of
the claim.

Now, sinceF: X, — X1 is bounded and?: X, — Xp is continuous for alkk € [0, 1],
the interpolation inequalityu| x, < ||u||}(;0‘||u||‘;‘(l implies thatF: X, — X, is continuous for
all « € [0,1). Similarly, the boundedness d@f: X, — X1, « € [0, 1], and the compactness
of F: X, — Xo, @ € (0,1], yields the compactness @f: X, — X,, a € (0, 1]. Altogether
F: X, — X, is a completely continuous mapping for alke (0, 1).

In order to prove the existence of a fixed poipt= F(v;) € X4, a € (0, 1), we will use the
Leray—Schauder principle (cf. e.g. Sohrl[28, Lemma 3.1.1, Chapter Il]), for which it only remains
to verify the following condition for a suitablg@ > O:

If v =AF(v) forsomev € X,, A € [0, 1], then|v|x, < R. (4.12)
Therefore we assume that= AF(v) for somev € X, 2 € [0,1], « € (0,1). If A = 0, then
obviously, |[v|lx, = 0 < R for any R > 0. Thus it remains to consider the case> 0. Set
a=1"1>1 Thenu = av = F(v) solves
—(u, 39)gr — (0, 9(0) 2 — (Weu @ Ve * u, Ve x ©) o + (S(xv, Du), D)o,
T
= K/O <HXU(Z)5 Yep(t)) dr

forall ¢ € C;’g)(ﬂ x [0, T))? with divg = 0. Hence choosing = uxp,; (after a standard
approximation) we conclude that

t t
%||u(r)||§+fo fQS(Xv,DH)iDMdXdT=%Ilvo||%+/c[0 (Hy (). Weu(7)) dr.

where we have usef (4.4).
Now, since¥,u(t) = a¥,v(r), Lemmg 2.B implies that

t
/0 (Hy,(2), Weu(r)) dr = o (|Vx0l(2) — [Vxu(D)](£2))  if x > 0.
Hence

t
%a||v<r>||%+x|wv(r>|(m+oﬂ—1co/0 / Dvl? dr dr < LluollZ + ]V x0l(£2) = Eo
2
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forall 0 < r < T, wherecg is as in [[1.1IR). Hence, using (4]11) and the last estimate, we conclude
that

Ivllx, < CAMF@)lx, <M (e, T, vl 0.7:12(2))> €1V X0l Lo ©0,1:M(02)) < M" (e, T, Eo)

for some continuous function®’, M”. Hence forR := M" (e, T, Eo) the condition[(4.1R) is valid.
This implies that there is a fixed point = F(v;) € X4, which is a solution of[(4]1)F(4.3) by
definition of F.

The remaining statements easily follow frgm {4.8) gnd (2.13). O

5. Proofs of the main theorems
5.1 Approximation sequence

Throughout this section we assume that the assumptions of Thgorenk 1x60fand Theorerp 19
if « = 0 hold. Moreover, we denote by = %||vo||% + k| V x0l(£2) the initial energy of the flow.

For everye > 0 let (v, x.) be an approximate solution due to Theorenj 4.2Foe= 1/«.
Because of the uniform bounds @f;, x.) given by the energy equality (4.9) and

IIS(Xk,ka)II’z;/(QT) =/QT 1S G, D)1 d(x, 1) < C/QT | Dl d(x, 1)
due to [1.IP) there is a subsequelieg, x.,) = (v, xx), k € N, such that
Vg — v in L7(0, oo; V,(£2)), (5.1)
v =% v in L>(0, oo; L2(£2)), (5.2)
S(, Dvg) = § in L9'(Q), (5.3)
Xk =" x in L*(Q), (5.4)
Vxr =" Vyx inL>®0,00; H*(£2)),s >d/2, if « >0, (5.5)

for somev € L>®(0, oo; L2(£2)) N L7(0, 00; V,(2)), x € L®(0, 00; X, (£2)) with X, = BV if
k> 0andX, = L®if x = 0, andS € Lq’(Q). Here the functions,, x. are extended by O for
t>1/e.

5.2 Passing to the limit in the transport equation and the convective term

We pass to the limit in the transport equation using the following lemma, which is a variant of
[18, Lemma 5.1]:

LEMMA 5.1 Let(vk, xx)ren be bounded inil ([0, o0); W}(£2; RY)) x L™(Q), 1 < g < o0,
such that

ve—v inLYO T: Wi()) forall T >0, (5.6)
xk =" x INL¥(Q). (5.7)

If (8; xx)ken IS bounded inLg’ 0, T; wt (22)) foranyT > 0, theny; vy — xv in D'(Q).

q’,loc
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Proof. Firstof all, since the statementis local, it is sufficient to consider the cas@tisad bounded
domain and0, co) is replaced by0, T), T > 0 arbitrary. Because df¢ (£2) <> <> Wq‘,l(SZ), )
yields

g — x* N L0, T; W, ($2))

for some subsequence. Singe —* x in L>°(Qr), we havex™ = x and the full sequencg;
converges strongly in? (0, T; Wq_/l(_Q)). This implies thatg vy — xvin D'(Q7). O

COROLLARY 5.2 Let(v, x) be as in[(5JL){(5]5). Them, x) solves the transport equatign (1.10)—
(€.19).

Proof. It only remains to observe that x; is bounded inL‘I’(O, T, Wq_'1|oc(§)) foranyT > O:
Because of

(Xk> 0:9) 07 + (x> vk - Vo) o =0 forallg € C5°(Qr)
we estimate

|k ) or | < llvrllzaqo.rixem VOl Lo (0,

<
< Cllvellzao, 1 v, 2)) + Tl/q”vk||L°°(0,T;L2(.Q)))”V(p”Lq’(QT)

forall ¢ € L7(0, T; W}(2)) with suppp € 2, 2r = 2 N Bg, R > 0. Note thatV, (RY) n
L2(RY) — L4(Bg(0)) if 2 = R? andV,(2) — L9(£2) if £ is bounded. O

The last corollary and (2.11) yield
1070 = 1xlrop = TlixollLrey = 1kl o
forall1 < p < oosince/ x () dx = [ xodx for almost alls > 0. Hence
Xk —> x inLP(Qp)foralll< p<oo, T >0.

In particular this implies that (x, ¢) € {0, 1} almost everywhere.
In order to pass to the limit in the convective term, we use the following lemma.

LEMMA 5.3 Letvg, v be as above and lgt> 2d/(d + 2). Then
v — v inL7O,T; L3.(2)) (5.8)
forall T > 0. In particular,
k'LmOO(kak ® Vi *xvp, Vi x0)g = (V@ v, Vo)
forall ¢ € C (0)".

Proof. Firstlet|$2| < co. SinceS(xx, Dvx) and¥ v; ® vy x vy are uniformly bounded irllq’(QT),
L>®(0, T; LY(£2)), resp., and

o o
‘/0 (Hyuy» () dt| < sup IIVXk(l)IIM(Rd)fO lp®llcaayde if & >0,

0<r<o0
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o; vy is uniformly bounded inLq/(O, T; H™(£2)) for some suitablen € N. Using ) with
V,(2) N L2(2) <> L%(2) < H(2) wheng > 2d/(d + 2) proves ) in the case
|2] < oo. The case? = R follows from the first part applied t&’ € R?.

Finally, ) implies thatyy * vi - Ve @ — v- Ve in L7(0, T; L2(2)) forall ¢ € c3, (0)¢
andT > 0 sinceyy converges strongly to the identity A&s— oo. Together with[(5.R) this implies
the last statement. O

5.3 Case without surface tension

Obviously, in the case of two Newtonian fluids, i¢ .= 2 andv(j, s) = v; are constant, the strong
convergence of; and the weak convergence b yield S = S(x, Dv). For the case # 2 and
x = 0, we use the following lemma:

LEMMA 5.4 Letk =0andlety > 2d/(d + 2) + 1. Then
S(x(x,1), Dv(x,1)) = S(x,t) foralmostall(x,t) € Q. (5.9)
Proof. By the results so far we obtain
—(, 39)o — (vo, p(0))2 — (W ® v, Vo) g + (5, D)o =0 (5.10)

forall ¢ € Cfg)([o, o0) x £2)? with divg = 0. Furthermoreg > 2d/(d + 2) + 1 implies that for
all T > 0,

(v ® v, Ve)o,| < ClIVelliLaor (5.11)
forall g € C@ ([0, T) x )¢ with divp = 0 because of [16, Lemma 2.44, Chapter 5]. Moreover,
sinceS € L7(Q), equation) implies thatv € L0, T; V,(82)) for all T > 0. Therefore
we can choosg = v|g, in (5.10) to obtain

I (I5+ (8, Dv)o, = 3lvol,
where we have usefl (4.8) atd® v, Vv)g, = 0 (cf. [16, Lemma 4.45, Chapter 5]). Moreover,

LoD I3 + (SO, Dvr), D) oy = 31voll3
and therefore
lim sup(S (k. Dvk), Dvg) o, = 3llvoll3 — liminf 3{jvk (T)113
k—00 k— o0

< Sllvoll3 — 3llv(M)113 = (S, Dv)g,.

Thus we are in a position to apply Theorem|2.6 wittw, s, §) = S(s, &), zx = Dk, Yt = xx

to conclude that for a suitable subsequence lim S(xx, Dvy) = S in measure. Sinc& > 0 is
arbitrary, this implies[(5]9). O
Proof of Theorerp 1]9. For the cas& = 0 the results obtained so far show ttiat x) is a weak
solution of ) forf = 0 together withO)l). The general cgse L9 (0, oo; Vy(82))
can be proved in the same way with minor modifications. |
REMARK 5.5 The conditiory > 2d/(d + 2) + 1 is only needed to estimate the convective term
as in [5.11). For all other parts of the proof ogly> 2d/(d + 2) is needed. Hence in the case of
the Stokes equations, where the convective teriiv is neglected (cf. Remafk 1.]10), the condition
q > 2d/(d + 2) is sufficient to prove existence of weak solutions.
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5.4 Case with surface tension: properties of the interface

It remains to consider the case with surface tension 0. For this let," (1) = Xy ,(27), where
Xkt = Xuy (1) is the flow map associated o (2/14)—(2.15) with= ¥, v, as described above.
Moreover, letr (1) = 952 (1) = X1, (0823 and letl}, = Upg, oo Tk () X {1}.

First we will show that in the casg¢ > d ord = 2, I, N Q7 is contained in the compact set
Br(0) x [0, T] for R = R(T) and arbitraryl’ > 0. Then a suitable subsequence will converge in
the Hausdorff distance.

LEMMA 5.6 Letd = 2,«k > 0. ThenI}(t) € Bg(0) forall r € (0,7) and someR =
R(T, Eo, 2§).

Proof. SinceH?~1(Ik(t)) < k~1Ep, obviously dianis2;t (t)) < Eo/2x. Moreover, by the trans-

port equation
t
/ xdx = xdx+// v - 1dx dr,
2t @ 2F 0 Jo ()

wherel = (1,..., )T, which implies

/ x dx
2F®

forall 0 < ¢ < T since|2 ()| = |82 | for all T > 0. Therefore," (1) € Bg(0) for0< ¢t < T
with R = C(T, Eo, 2§) + Eo/2. O

<O + 1123112 sup |v(r)l2 < C(T, Eo, 27)

STS!

In the case; > d, v € LI(0, T; Co(R?)) sinceV, (RY) N L2 (RY) — Co(R?) and we can prove
that I'; (¢) are equi-Hblder continuous in the following sense:

LEMMA 5.7 Letg > d. Then
du (T (1), Ti(t2)) < Clty — 12| Y9

forall0 < 1,1 < T, T > 0, whereC depends only otkg, ¢, T. In particular,I; (t) € Bg(0) for
all0 <t < T for someR = R(T, Eo, 23).

Proof. By symmetry it suffices to show thdf. (1) € (I (2)), for e = Clt1 — t2|1/q’. Letx; €
I (r1). Then by definition offy (¢) there is a curve (r) such thate (1) = x1 andx’(r) = v (x(2), t)
for ¢t > 0. Moreoverx, = x(r2) € I'v(2) and

15 ,
|x1 — x2| <f lue(x(0), )| df < C(Eo, T, )ltn — 12179, 0<n<n<T.
n

This proves the statement. |

COROLLARY 5.8 Letk > Oandlety > d orletd = 2. Then there is a subsequencepfk € N,
(denoted again by, k € N) and a closed sdt* c Q such that for every rationd! > 0,

N Qr — Iy with respect taly ask — oo

for some compact s€t; < ‘07 with ryNnQr=r*nor.
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Proof. By the previous two lemmag;, N Q is contained in a compact satr. Hence using the
compactness of the metric spa@é(A), dy) for compactA ¢ RY one easily gets a subsequence
of I't, k € N, that converges iGC(Ar), dy) for every rationall’ > 0 to some compact sét;. By
the definition ofdy one easily verifies thallt‘T*1 NQOp = F;fz N Qr, if 0 < Ty < T». From this the

existence of "* C Q is immediate. O
In the casey > d, we even obtain:

COROLLARY 5.9 Letg > d. ThenIy(t) — I forallr > 0in the Hausdorff distance &s— oo,
wherel* = {x e R? : (x,1) € I'*}.

Proof. First of all, for a fixeds > 0 and a suitable subsequen¢g,(r) — I;* in the Hausdorff
distance ag — oo. We claim thatl';** = I}*. The inclusion/;** C I* is obvious. Conversely, let
(x,1) € I7*. Then there is a sequence;, ;) € Ik; such that lim_, . (x;, ;) = (x, ). But by

Lemm there are; € I3, (1) such thaty; — x;;| < C(Eo, T)|t — tkj|1/‘1’. Hence

e = yil < Jx = x|+ lxg — vjl < | — x| + C(Eo)lt — |74,

which shows that’y, (1) > y; — x € I*. ThusI;* < I}**. Thereforel;* = I for any
accumulation point’;** of I';(¢) in the Hausdorff distance, which implidg.(tr) — I;* for all
t > 0ask — oo. O

The last corollary gives some compactness in time for the sequence of intefjaces ¢ > d

for d = 2, 3. But now there is a crucial difference between the cdses2 andd = 3. If d = 3

ands > 0 is fixed, then the boundedness’#f (I} (1)) does not imply that a limit of (¢) in

the Hausdorff distance has finit¢?~1-measure. (It is easy to construct sequences of surfaces of
fixed area with many “small fingers” that will converge to a set of positive Lebesgue measure.) This
cannot happen in dimension two as the following lemma shows:

LEMMA 5.10 Letl; c R2 k € N, be a sequence of compact Lipschitz curves Bpd> I'* in
the Hausdorff distance for some compactBétc R2. ThenH1(I'*) < liminfi_ o0 H1(I%).

Proof. Let§ > 0 andg > 1 be fixed. Then there is aN = N(§, q) such thatdy (I, I'*) <
(1—-1/9)5/2 for all k > N. Moreover, for anye > O there is somé&, > N such thatl :=
Hl(FkE) < liminfi_ oo HY(I%) +¢. Then there is acovering, < jle Bs 24 (xj) such that\f <
(q/(S)Hl(Fkg) + 1. (Letyg: [0, L] — R? be a parameterization by arc-length apc= & - (8/9),
k=0,...,M—1,whereM = [(¢/8)L] + 1, andry; = L; then choose; = %()/k(tj_l) +vi()).)
Thereforel™* C Ujle Bs/2(x;) and

HY(I™) < 8M < qH(Ti) +8 < g(liminf HY(TY) + ) + 5,
—00

where
o0 o0
Hi) =int{> "2 A < | B, (.0 <y <.
j=1 j=1

Sinceg > 1 ande > 0 are arbitrary}H; (I'*) < liminfi_.o H1(I%) + & for everys > 0, which
proves the lemma. |

COROLLARY 5.11 Letg > d = 2 andc > 0. ThenH'+4' (I'* N’ Q) < coforall T > 0.
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Proof. By Corollary,Fk(t) — [I7* in the Hausdorff distance @ — oo. Moreover, by
Lemma 5.1pH(17%) < liminfi oo HA(Ik (1)) < k~Ep for all 1 > 0. Now choose 0= 1 <

1 <--<ty=T,T>0,with|t; —t11] <8 = (r/3C)q’ forr > 0 andN < 2781, where
C is the same constant as in Lemma 5.7. Since the lengfh(@f) is bounded by ~1Eq, there are
balls B, 3(x; ), l =1,...,M;, j =1,..., N, with M; < C(Eo)r~! coveringl (). Now choose
k € N so large thatly (I (tj), I;*) < r/3forj =1,...,N. Using Lemm7 andy () — I},

h J
we conclude that

dy (I} I < Clty — 12]M4

Thenfor|r —z;| <6,
M;
¥ (s © Te)2ga S | Br ().
=1
Thus
o N M;
r<nor cJUB @

j=11=1

where the number of balls on the right-hand side is bounde(drby}—q/. Sincer > 0 was arbitrary,
this implies that{1+9'(I'*) < C(Eo, q). =

5.5 Case with surface tension: end of proof
Using Corollary 5.1]1 we obtain:
LEMMA 5.12 Letk > Oandlety > d = 2. Then

S(x(x, 1), Dv(x,1)) = S(x,t) foralmostall(x,t) € Q. (5.12)

Proof. Because of Corolla]l,i3(1“* NQr) = O0forall T > 0. HenceBz(0) x [0, T] =
U2, QjuM with M = I'*N Q7 andH3(M) = 0, whereQ; = (a;, bj) x By, (x;) andQ; M = .
Now it is sufficient to prove thaf (5.12) holds for gllwith suppp C Q;, which shall be arbitrary
but fixed in the following. Then we choosge C3°(Q;) with n = 1 on supgp. Because of the
convergence of’; in Hausdorff distance, for every fixefl e N we have(I'}),, N Q; = ¢ for
sufficiently largek € N. Hencey,, = [ € {0, 1} is constant onQ; for suitably largek, and

wy i= Ppz me,(nur) € L(0, 003 LZ(R?)) N L9(0, oo; V,(R?)) solves
—(wi, 0ut) g + (Wi li=0, u(0)) gz — (Wrwi @ wi, Vu) g + (SU, Dwy), Du)g = ( fi, u)

forall u € C5) ([0, 00) x R?)? with divu = 0, with a right-hand sidg satisfying

fi > f € L9(0, 00; V,(R?)) ask — oo.

Moreover,wy — w in L4(0, oo; V, (R?)) and weaks in L>(0, oo; L2 (R?)), and it can be shown
by the same argument as in the case= 0 (cf. Lemmg5.4) thaDwy — Dw in measure. In
particular this impliesS = S(I, Dv) = S(x, Dv) almost everywhere on sugp Sincey C3°(Q)
with suppy C Q; andQ; have been arbitrary], (5.[12) follows. O
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Finally, we consider the sequence of oriented general varifglds), + € [0, co), associated to
I:(1),i.e.,

(Ve(0), 9) = /ﬂé o0 AV @), g € Co(R? x §771y,

wheren;, = —Vxi/|V xx|, and we set
o0
Vi, ) = / (Vi(), o)) dt forall g e L*(0, 0o; Co(RY x S971).
0

Hence for a suitable subsequence
Vi =*V in L®(0, 00; H ¥R x $971), s > (2d — 1)/2, (5.13)

for someV e L2(0, 00; M(R? x S?71)) sinceVy € L(0, oo; M(R? x S?~1)) is uniformly
bounded and\U (R¢ x S¢~1) — H—5(R? x S¢~1). Then by choosing a test function of the form
@(x,s,0) =5 -Y(x, 1), ¥ € CF ([0, 00) x R%)4, this implies

—/ <VXk(t>,1/f(t)>dt=/ // §-Y(x, 1) 08, (x,) IV xi (2)] ot
0 0 JRdJ§d-1

— —/OOWx(t),I//(t))dt:/ / s Y (x, ) dVi () dV ()| dt,
0 2 JSd-1

which shows[(1.15). Similarly, choosingx, s, 1) = (I —s @ s) : Vi (x, ) we conclude that
_/o (Hyey, ¥ (1)) dt = fo (8Vi(@®), Y (1)) dt — /0 8V (1), ¥ (1)) dt

forall y e C ([0, 00) x Ry,

Moreover, by Theore.l there is somes LS (Q; Prol(Red)) such that6) holds and

S(l, Dvg) — /S(l,?»)dux,z(/\) in L9'(Q)

for everyl € [0, 1]. But this implies

S(x(x,1), Dvg) — /S(X(x,t),?») dur () in L7(Q).

Moreover,xx — x in measure (for a suitable subsequence) &g, Dvy) is uniformly bounded
in LY (Q). Therefore

lim (S(xk, Dvk), Dp)o = lim (S(x, Dvr), Dg)o = (/ S(x,A) day (1), Dw)
k— 00 k— 00 0
for eachg € CSO(Q)d, which proves 4). Hence the existence of measure-valued varifold
solutions is proved.

It remains to prove the remaining properties stated in Theprejm 1.6. The first statement follows
from Lemmag 5J6 anfl §.7. The second statement is proved by first proving that for a suitable
subsequenceVi(t)| — |V (r)| in M(R?) for almost allz > 0 and then using an argument due
to Plotnikov [20]:
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LEMMA 5.13 Letg > d and let« > 0. Then there is a subsequence (again denotedjliy)|)
such that
Vi) =* V)] in MR?)

for almost allr > 0.

Proof. First, we define a measurg, (¢) by

1
(Ex(1), 9) = k{IVe@)], 9) + 5 /R lue(x, DPp(x) dx, @ € Co(R?).

Note thatEy () measures approximately the kinetic energy and “surface energy” at a given time
t > 0. We now show thak () converges weak-in measure almost everywhere (for a suitable
subsequence).

By (2.9) we have
d . d 1
E(|Vk(t)|a§0> = Efrkm(p(x’t) dH"(x)
= (8Vi(0), p¥vr (1)) +/ s - Vo(x)s - Wrvr(x, 1) dVi (1) (x, 5).
Rd x§4-1

Sincev; € L1(0, T; Co(R?)), T > 0, is uniformly bounded, the last term in the equation above is
uniformly bounded inL¢ (0, T; C3(R?)"). Moreover,

(BVi(1), p¥rvi) = (8Vi (1), Po (9¥ivr)) + (8Vi (1), (I — Po)(@¥vr)),

where(I — Py)(pWvr) € L0, T; C3(RY)), T > 0, and(8Vi (1), -) € L>®(0, oo; C(R?)') are
uniformly bounded for every € C%(Rd). (Note that in the cas@ = R? the Helmholtz projection

P, can be represented using classical singular integral operators.) Therefore the second term in the
equation above is also uniformly boundedif (0, T'; Cé(Rd)’). Furthermore,

(8Vi(1), Py(o(Wrvi))) = (Vi (1), Wi Py(pur))) — (8Vi(t), Py[Wk. ¢]uk)

where [A, B] denotes the commutator of two operators. Note fhaand¥; commute and thaf,
is a bounded operator aff* (R?) N L2(RY), for all « € (0, 1). Moreover,

I[¥, plwllcremey < Cllwllce@ray, w € C*RY,0<a <1,

uniformly in k£ € N. This implies that the second term in the equation above is uniformly bounded
in L9'(0, T; C3(R)"). On the other hand, b.l),

—k{8Vk (@), Wi Py (o)) = —«(Hry (1), Wk Po (9Uk))
d1l
= d__,/ lug (x, )20 (x) dx + (1 — Py)(pur(1)), 8,k (1))
t 2 JRrd
+ (Wrvg @ Y * vk, VUi * Py (@ui))ra + (S(xk, Dk), D Py (@ui))Rd,

where the second term vanishes and the last two terms are again uniformly bounded in
LY, T; C3(®RY). (Note thatvy ® vx € L>(0, T; LY(RY)) N L1(0, T; L*(RY)) — LY(Q7) N
L?(Q7) andVu € L1(Q7) are uniformly bounded.) Summing up, we see that

%wk(o, ) e LYo, T; ci(rYY)
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is uniformly bounded. Hence
Ex— E inLP(O,T; Hys(RY) if s > 2
for every 1< p < oo by ) and therefor&, (1) — E(7) in H.: (R%) for almost allt € (0, T).

On the other handy, — v in L9'(0, T; L2 (RY)) by Lemm and therefong (1) — v(z) in
Lﬁ,C(Rd) for almost allz € (0, T') and for a suitable subsequence. Hence

IVe()] = n(t) in Hgf(RY)

for almost allz € (0, T). But, sincecgo(Rd) is dense inCo(R?) and| V()| is uniformly bounded
in M(R4), we conclude that
Vi) =* w@)  in MR?)
for almost all € (0, T). Finally, by [5.13),
Vil =* [V| in L%°(0, 00; H*(RY)) fors > (2d — 1)/2
and thereforg. = |V|. O

LEMMA 5.14 Letg > d = 2. Then|V (¢)| is supported o }* and|V (t)| > H*|I* for aimost all
t > 0.

Proof. First assume thaﬂa“ is simply connected. Let > 0 be such thatV, ()] —* |V ()] in
M(R?). Moreover, lety; : [0, 1] — R? be a parameterization é§, ; with respect to arclength times
the total length+*(I% ;). Thenx; e C€%%([0, 1]; R?) is uniformly bounded sincé} ; < Bx(0)
for someR > 0, and the Lipschitz constants of are H*(I'k;) < C(Ep). Hence for a suitable
subsequencey; — x € Co([0, 1]; R?) for somex € C%([0, 1]; R?) andH* (I}, ,) — I*. (Note
thatH*(I, ;) are bounded below since they enclagg (1) and|2;" (1)| = |25 |.) Then

1 1
VOl 9 = fim HAT0) /0 P(xi(s)) ds = 1" /0 P(x(s)) ds

for all ¢ € Co(R?). Hence suppV (r)| = x ([0, 1]).

Now we prove that'}* = x([0, 1]). Obviously,x ([0, 1]) < I*. Conversely, ifxg € I*, then
x0 = lim;_ oo x¢; (sj) for somes; € [0, 1]. But thens; — so € [0, 1] for a suitable subsequence
again denoted by;. Hencexg = lim;_, xk; (sj) = x(s0) € x([0, 1]). This proves the first part of
the lemma.

In order to prove V (r)| > HY| I"* we use the fact that

IV, ) =1* /Olcp(X(S)) ds > /Olgo(x(S))lx/(S)ldS
since|x’(s)| < I* almost everywhere. Hence by the area formula
IV(DI(A) = /01 XA ()X ()| ds > H I (A)
for every opeA C R? (cf. e.g. [27]).

Finally, if QJ is not simply connected, we apply the argument abové-tmurves instead of one
curve, whereV is the number of connected component@ﬂta’. O
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A. Appendix: Rectifiability of the varifold

One of the most challenging questions concerning measure-valued varifold solutions of the two-
phase flow with surface tension is whether there are solutions such that the unoriented general
varifold V (¢) associated t&/ (¢) via ) is a(d — 1)-rectifiable varifold for almost all > 0, i.e.,

Vi(t) = 8p(x,n and

(Ve(0), 9) = / @(x, P(x, )60, (x) dH " M, (x), ¢ € Co(£2 x Gy—1),

for some countablyd — 1)-rectifiable set; and an?~1| M;-measurable positive functiah (cf.
[27]). In particular, the case thét(x) is a positive integer for almost alk, ) would give a more
satisfactory answer to the existence of measure-valued solutions.

As noted by Plotnikovi[19], the major problem is tHat (3.14) gives only informatios&n )
for v € C3°(Q; R?) with divys = 0. But in order to apply techniques from geometric measure
theory it is necessary to have a good estimat&of(z), v) for v € C5°(Q; R?) with divy £ 0
or at least for suitable gradients. The following result on regularity of measure-valued varifold
solutions shows that, ongéV, /) can be estimated for alr € C3°(Q: R4+1y in suitable norms
and the(d — 1)-density of|V (¢)| is bounded below, theﬁ(t) is a(d — 1)-rectifiable varifold. The
result is based on a new rectifiability result for general varifolds due to Luckhaus [14].

THEOREMA.1 (Rectifiability) Let(v, x, V, u) be a measure-valued solution as in Definifior] 1.2
and letT > 0 andg > 2d/(d + 2). Assume that

lim supp =V (1)|(B,(x)) > 6, > 0
p—0

for |V (r)|-almost allx € R¢ and almost alt € (0, T). If for somes > 1,

(8V,) e LYO, T; Wt .(R?)),

s,loc

or if there is some € L1(0, T; Lfoc(]Rd)) for somes > 1 such that

v, 3r9) o7 + (vo, (0)ga — (v @ v, V),

T
+( / s<x,x>dm,t(x>,0¢) — (p.dvg)g, = —k /O BV em)d (A

or
forall € C ([0, T) xR4; RY), thenV (¢) is a(d — 1)-rectifiable varifold for almost all € (0, T).

We note that, iy > d = 2, then the measure-valued varifold solution of Thedrer 1.6 satisfies

lim supp ™YV (1)|(B,(x)) > 1
p—0

for |V (r)|-almost allx and almost alt > 0. Hence the lower bound of thig — 1)-density above is
satisfied in this case.
The proof of Theorer A]1 is based on the following rectifiability theorem:
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THEOREMA.2 (Luckhaus([14]) LetV be a (generaljd — 1)-dimensional varifold on a domain
£ < R4 whose first variation can be represented as

8V, ) = / WY +A:VY)dur, ¥ e Ca(2; RY), (A2)

satisfying the estimate

p~4 / A | dua(y) + p~ @ f lv(y) dua(y)
B, (x) B

p(x)
p<R<dist(x,0£) Bgr(x)

for all B,(x) € £2 whereus, up are non-negative Radon measures@rand F: Ry x Ry —
[0, c0) satisfies

1. F(0,L)=0,0,F(p.L) >0,32F(p, L) < Oforp, L >0,
2. limy— 0 L™1g(L) = O whereg(L) = inf {R=¥*1 + F(R, L) : R > 0}.

Moreover, assume that lim spipo p~d+1 fB o dIVI =6 > 0for|V|-almost allx € 2. ThenV
is a(d — 1)-rectifiable varifold.

REMARK A.3 We note that in the proof of Theorefm A.2 the identity [A2) is only needed if
Y = Vg is a gradient. For the convenience of the reader we repeat the first part of the proof of
Theorenj A.2. The monotonicity formula for

u(p, x) = pd+l/¢(|x 5 |> dvoly)

is considered, wherg ¢ C*° ([0, c0)) with ¢’(s) < 0,¢(s) = 1 fors < 1/2, and¢(s) = O for
s > 1. Then

apu(p,x>=—(d—1>p—d/¢<' ; ')d|V<r)|<y)
—p‘d/¢('xp ')' ; =3 gy i)
o (e
+,0_d/H } ( ) = Havoi)
=(ro- 2o (55)

+pd ‘(1—1)) ‘|¢|< _y')'x_y'dwwy)
p P

where

X _dy¢(|x ; yl) _ —p‘”ZVy@('xp%yl) for &'(s) = s 1p(s)
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is a gradient field. Then the assumptions of the theorem are used to egfinate xp;[,yq&( "‘;y' ).
In the rest of the proof (A2) is not used.
Proof of Theorel. First of all, since rectifiability is a local property, we repldgé by 2 =
Br(0) with R > 0 arbitrary. Moreover, we can assume that@ ¢*, where Yg* = 1/g — 1/d <
1/2.

First we consider the case whet&V,.) e L0, T; W;l(Q)). Then there is somel ¢
LY(0, T; L*(£2)) such that

SV, ) = / A(x,t):Viyr(x,t)d(x,t) forally € L=, T; Wyl,’O(SZ)),
or

which easily follows from Hahn—Banach'’s theorem if we idenuf&,o(fz) with the closed subspace

{(Vy ¢ € Wsl, o§2)} C L5 (£2; RY). In order to apply Theore@.Z we take for; the
d-dimensional Lebesgue measure and estimate

1/s’ 1/s
p~? / |A(y)|dy < (p‘d / dy) (p‘d / |A(Y)I® dy)
Bp(x) B, (x) B, (x)

1/s
=Cp-1“(p—d+1 / |A<y>|‘?dy) :
Bp(x)

Hence we can choosg(p, L) = Cp/s'L/s for a suitable constar@ sinces > 1, andux(M) =
fM |A(y)|* dy. It is easy to check thaF (p, L) satisfies condition 1 of the theorem. Moreover,
choosingr = 1/(ds — 1) we have

g(L) < C(Loz(d—l) + F(L_a, L)) < C/(Loz(d—l) + L—(x/s’—i—l/s) — C/L(d_l)/(ds_l).

where(d — 1)/(ds — 1) < 1 sinces > 1. Hence lim .o, L~1g(L) = 0.
In the second case we first u@Al) for gradiepts, 1) = ¢(t)Vy(x) for v € C3°(2),
¢ € C3°(0, T), which yields

T
K/ 8V (), Vir)o (1) dt
0

< c(uvnil(o“zm)||¢||Loo<o,r>||v2w||uf(m

bl n IV @)
L7 (Q7)

+ Hf SO, A) ity s

+ ”p”Ll(O,T;LS(.Q)) ||¢||L°°(0,T) ||V21/f ”LS/(.Q))
< C(T)(Eo+ 1pllao.r: @) Ielxon V2Vl v o)

Hence
8V, ) e LYO, T; (GL(£2)))

whereGL(2) = {Vo € Wi(2) 1 ¢ € L*(£2)} € WX(£2). In particular,(8V (1), -) € (GL(2))
for almost allz € (0, T) with s > 1. Now we can apply the arguments of the first part since by
RemarK A.3 the identity (A2) is only needed for gradients. O
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