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We discuss the existence of generalized solutions of the flow of two immiscible, incompressible,
viscous Newtonian and non-Newtonian fluids with and without surface tension in a domainΩ ⊆ Rd ,
d = 2,3. In the case without surface tension, the existence of weak solutions is shown, but little is
known about the interface between both fluids. If surface tension is present, the energy estimate gives
an a priori bound on the(d − 1)-dimensional Hausdorff measure of the interface, but the existence
of weak solutions is open. This might be due to possible oscillation and concentration effects of
the interface related to instabilities of the interface as for example fingering, emulsification or just
cancellation of area, when two parts of the interface meet. Nevertheless we will show the existence
of so-called measure-valued varifold solutions, where the interface is modeled by an oriented general
varifold V (t) which is a non-negative measure onΩ × Sd−1, whereSd−1 is the unit sphere inRd .
Moreover, it is shown that measure-valued varifold solutions are weak solutions if an energy equality
is satisfied.
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1. Introduction and main results

We study the flow of two incompressible, viscous and immiscible fluids like oil and water inside
a bounded domainΩ or in Ω = Rd , d = 2,3. The fluids fill domainsΩ+(t) andΩ−(t), t > 0,
and the interface between both fluids is denoted byΓ (t). The flow is described using the velocity
v : Ω × (0,∞) → Rd and the pressurep : Ω × (0,∞) → R in both fluids in Eulerian coordinates.
We assume the fluids to be of a generalized Newtonian type, i.e., the stress tensors are of the form
T ±(v, p) = 2ν±(|Dv|)Dv − pI with viscositiesν± depending on the shear rate|Dv| of the fluid,
2Dv = ∇v + ∇vT . Moreover, we consider the cases with and without surface tension at the
interface. Precise assumptions are made below. Under suitable smoothness assumptions, the flow
is a solution of the system

∂tv + v · ∇v − div T ±(v, p) = 0 inΩ±(t), t > 0, (1.1)

div v = 0 inΩ±(t), t > 0, (1.2)

n · T +(v, p)− n · T −(v, p) = κHn onΓ (t), t > 0, (1.3)

V = n · v onΓ (t), t > 0, (1.4)

v = 0 on∂Ω, t > 0, (1.5)

v|t=0 = v0 in Ω, (1.6)
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together withΩ+(0) = Ω+

0 . HereV andH denote the normal velocity and mean curvature, resp., of
Γ (t) taken with respect to the exterior normaln of ∂Ω+(t), andκ > 0 is the surface tension constant
(κ = 0 means no surface tension is present). Equations (1.1)–(1.2) describe the conservation of
linear momentum and mass in both fluids, (1.3) is the balance of forces at the boundary, (1.4) is the
kinematic condition that the interface is transported with the flow of the mass particles, and (1.5)
is the non-slip condition at the boundary ofΩ. Moreover, it is assumed that the velocity fieldv is
continuous along the interface.

Most publications on the mathematical analysis of free boundary value problems for viscous
incompressible fluids study quite regular solutions and often deal with well-posedness locally in
time or global existence close to equilibrium states (cf. e.g. Solonnikov [29, 30], Beale [3, 4], Tani
and Tanaka [33], Shibata and Shimizu [24] or Abels [1]). These approaches are a priori limited to
flows in which the interface does not develop singularities and the domain filled by the fluid does not
change its topology. In the present contribution we consider certain classes of generalized solutions,
which allow singularities of the interface and which exist globally in time for general initial data.
For this purpose, we need a suitable weak formulation of the system above. Testing (1.1) with a
divergence free vector fieldϕ and using in particular the jump relation (1.4), we obtain

−(v, ∂tϕ)Q − (v0, ϕ|t=0)Ω − (v⊗ v,∇ϕ)Q + (S(χ,Dv),Dϕ)Q = κ

∫
∞

0
〈HΓ (t), ϕ(t)〉 dt (1.7)

for all ϕ ∈ C∞

(0)(Ω × [0,∞))d with divϕ = 0, whereQ = Ω × (0,∞), χ = χΩ+ , S(1,Dv) =

2ν+(|Dv|)Dv, S(0,Dv) = 2ν−(|Dv|)Dv, and

〈
HΓ (t), ϕ(t)

〉
=

∫
Γ (t)

Hn · ϕ(x, t)dHd−1(x). (1.8)

Now the aim is to construct generalized solutions in a class of functions determined by the energy
estimate: Ifv andΓ (t) are sufficiently smooth, then choosingϕ = vχ[0,T ] in (1.7) one obtains the
energy equality

1
2‖v(T )‖2

L2(Ω)
+κHd−1(Γ (T ))+

∫ T

0

∫
Ω

S(χ,Dv)Dv dx dt =
1
2‖v0‖

2
L2(Ω)

+κHd−1(Γ0) (1.9)

for all T > 0, whereΓ0 = ∂Ω+

0 . Note that d
dt
Hd−1(Γ (t)) = −

∫
Γ (t)

HV dHd−1
= −〈HΓ (t), v(t)〉

due to (1.4) (cf. Lemma 2.3 below). Now assuming that

ν±(|Dv|) > c|Dv|q−2

for q > 1 the equality above gives a uniform bound of

v ∈ L∞(0,∞;L2
σ (Ω)) ∩ Lq(0,∞; Ẇ1

q (Ω)),

where we refer to Section 2.2 below for the precise definitions of the function spaces in this section.
Moreover, we note that

−〈∇χ(t), ϕ〉 =

∫
Ω(t)

divϕ(x)dx =

∫
Γ (t)

n · ϕ(x)dHd−1(x)
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for all ϕ ∈ C∞

0 (Ω)
d . Hence the distributional gradient∇χ(t) is a finite Radon measure and

‖∇χ(t)‖M(Ω) = Hd−1(Γ (t)). Thus, ifκ > 0, thenχ(t) ∈ BV (Ω) for all t > 0 and the energy
equality above gives an a priori estimate of

χ ∈ L∞(0,∞;BV (Ω)).

In the case without surface tension,κ = 0, we only find thatχ ∈ L∞(Q) is a priori bounded by one.
This motivates us to look for weak solutions(v, χ) lying in the function spaces above, satisfying
(1.9) with a suitable substitute of (1.8), such that(v, χ) solve (1.7) as well as the transport equation

∂tχ + v · ∇χ = 0 inQ, (1.10)

χ |t=0 = χ0 in Ω (1.11)

for χ0 = χΩ+

0
in a suitable weak sense, where (1.10) is a weak formulation of (1.4) (cf. [17, Lemma

1.2]).
In the case without surface tension and for Newtonian fluids, i.e.,ν±(|Dv|) ≡ ν± > 0, the

existence of weak solutions (even forN -fluids with different densities) was proven by Nouri and
Poupaud [17]. Moreover, Giga and Takahashi [10] consider the case of a two-phase Stokes flow with
ν+ close toν−. The main difference in their approach is that (1.10)–(1.11) is replaced by a transport
equation for a level set function, which is solved in the sense of viscosity solutions. Due to a lack
of regularity in the velocityv only sub- and supersolutions exists, which may differ. This causes
the possibility of “boundary fattening” (cf. [10] for details). In [17] and the present contribution the
transport equation is solved in the sense of renormalized solutions due to DiPerna and Lions [9].
But also the result of Nouri and Poupaud does not give good information for the interfaceΓ (t)

sinceΩ+(t) = {x ∈ Ω : χ(t) = 1} is only known to be a measurable set. Moreover, we note
that Wagner [35] considered generalized solutions of a one-phase flow for an ideal, irrotational and
incompressible fluid and that Gomez and Zolésio [11] treated a quasi-stationary two-phase flow for
shear thinning fluids.

Because of the better a priori estimate in the case with surface tension, one might expect
to get better results in this case. But unfortunately the additional mean curvature term causes
severe problems in the construction of weak solution, which might be related to instabilities of
the boundary when fingering or emulsification takes place (cf. e.g. Joseph and Renardy [12]). The
only known results for generalized solutions in the case of surface tension are due to Plotnikov [20]
for a two-dimensional flow of shear thickening fluids (i.e.q > d = 2 above) and [21] for the
case of compressible fluids, as well as Salvi [23] for an incompressible viscous Newtonian fluid.
In Plotnikov’s contributions the mean curvature term is interpreted as the first variation of a so
called general varifold and it is shown that for almost allt > 0 the varifold is supported on a
rectifiable closed curve dividing the plane into two disjoint domainsΩ±(t). The latter solutions can
be considered as some kind of measure-valued solutions and are related to the solutions constructed
in the present contribution. In [23] no interpretation of the mean curvature term for the constructed
weak solution is given.

It is the purpose of this article to introduce a notion of so called measure-valued varifold
solutions of the two-phase flow described above. The definitions are in the spirit of measure-valued
solutions for conservation laws and the flow of non-Newtonian fluids as studied for example in [16].
Measure-valued solutions were introduced in order to model possible oscillation and concentration
effects on an infinitesimal scale, which mathematically do not allow proving the convergence of
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a suitable approximation scheme to a weak solution. In the present two-phase flow we have to
deal with possible oscillation/concentration effects of the shear tensorDv(x, t) as well as of the
boundaryΓ (t). Therefore the definition of a measure-valued varifold solution uses the Young
measure generated by the shear tensorsDvε(x, t) of an approximate sequence(vε, χε), ε > 0,
as well as an oriented general(d − 1)-varifold V (t) generated by the sequence of surfacesΓε(t)

of the approximation. Here a generalized(d − 1)-varifold V is simply a non-negative measure
V ∈ M(Ω × Sd−1), which by disintegration can be represented as a non-negative measure
|V | ∈ M(Ω), corresponding to a surface measure, together with a family of probability measures
Vx , x ∈ Ω, for the normal vector of the “surface”n ∈ Sd−1, which models possible infinitesimal
oscillations of the interface.

Before we come to the precise definitions and results we make the following assumptions:

ASSUMPTION1.1 We assume thatκ > 0 andΩ = Rd or thatκ = 0 andΩ ⊆ Rd is a bounded
domain with Lipschitz boundary orΩ = Rd , d = 2,3. Moreover, letq > 1 and letν(j, s), j = 0,1,
be twice continuously differentiable fors > 0 such thatν(j, s)s2 is continuous at 0 and

c0s
q−2 6 ν(j, s) 6 C0s

q−2,
d

ds
(ν(j, s)s) > 0,

d2

ds2
(ν(j, s)s2) > 0 (1.12)

for some constantsc0, C0 > 0. Finally, we setS(θ,A) = θν(1, |A|)A + (1 − θ)ν(0, |A|)A for
everyA ∈ Rd×dsym , θ ∈ [0,1], andVq(Ω) = W1

q,0(Ω)
d

∩ L
q
σ (Ω) if Ω is a bounded domain and

Vq(Rd) = {v ∈ Ẇ1
q (Rd)d : div v = 0}.

We note that the simple power lawν(j, s) = νj s
q−2 satisfies the conditions above.

Before defining generalized solutions of the two-phase flow with surface tension we need some
notation: An (oriented)general varifoldis a non-negativeV ∈ M(Rd × Sd−1). For such a general
varifold V ,

〈δV, ϕ〉 =

∫
Rd×Sd−1

(I − s ⊗ s) : ∇ϕ(x)dV (x, s), ϕ ∈ C1
0(R

d), (1.13)

denotes itsfirst variation. Moreover, letQ := Ω × (0,∞),Qt = Ω × (0, t), and let( · , ·)M denote
theL2-scalar product onM.

DEFINITION 1.2 Let κ > 0 and let Assumption 1.1 hold. Thenv ∈ L∞(0,∞;L2
σ (Rd)) ∩

Lq(0,∞;Vq(Rd)), χ ∈ L∞(0,∞;BV (Rd; {0,1})), µ ∈ L∞
ω (Q; Prob(Rd×dsym )), and V ∈

L∞
ω (0,∞;M(Rd × Sd−1)), V (t) > 0 for a.e.t > 0, is called ameasure-valued varifold solution

of the two-phase flowfor initial datav0 ∈ L2
σ (Rd), χ0 = χΩ+

0
for a bounded domainΩ+

0 b Rd of
finite perimeter if

−(v, ∂tϕ)Q − (v0, ϕ(0))Rd − (v ⊗ v,∇ϕ)Q

+

(∫
Rd×dsym

S(χ, λ)dµx,t (λ),Dϕ

)
Q

= −κ

∫ T

0
〈δV (t), ϕ(t)〉 dt (1.14)

for all ϕ ∈ C∞

(0)(R
d

× [0,∞))d with divϕ = 0, and∫
Rd×Sd−1

s · ψ(x)dV (t)(x, s) = −

∫
Rd
ψ d∇χ(t), ψ ∈ C0(Rd)d , (1.15)
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Rd×dsym

λdµx,t (λ) = Dv(x, t) (1.16)

for almost all(x, t) ∈ Q, χ is the unique renormalized solution of the transport equation (1.10)–
(1.11) (cf. Section 2.5 below), and(v, χ, V, µ) satisfies thegeneralized energy inequality

1
2‖v(t)‖2

2 + κ‖V (t)‖M +

∫
Qt

∫
S(χ, λ) : λdµx,τ d(x, τ ) 6 1

2‖v0‖
2
2 + κ‖∇χ0‖M (1.17)

for almost allt ∈ (0,∞).

REMARK 1.3 1. If V (t) is obtained from aC1-surfaceΓ (t) in the natural manner,〈δV (t), ·〉
coincides with the first variation ofHd−1

bΓ (t) (cf. Section 2.3 below).
2. Note that by the assumption onν(j, s), λ 7→ S(χ, λ) :λ, λ ∈ Rd×dsym , is a strictly convex function.

Therefore by the generalized Jensen inequality (cf. (2.4) below) and (1.16),∫
Qt

S(χ,Dv) :Dv d(x, τ ) 6
∫
Qt

∫
Rd×dsym

S(χ, λ) : λdµx,τ d(x, τ ) (1.18)

for almost all(x, τ ) ∈ Qt , with equality if and only ifµx,τ = δDv(x,τ ).
3. Let (Vx(t), |V (t)|), x ∈ Rd , denote the disintegration ofV (t) ∈ M(Rd × Sd−1) into a non-

negative measure|V (t)| and a family of probability measuresVx(t) ∈ M(Sd−1) as described
in Section 2.3 below. Then (1.15) implies that|∇χ(t)|(A) 6 |V (t)|(A) for all open setsA and
almost allt ∈ (0,∞) (cf. (2.2) below). Hence|∇χ(t)| is absolutely continuous with respect to
|V (t)| and ∫

Rd
f (x)d|∇χ(t)| =

∫
Rd
f (x)θt (x)d|V (t)|, f ∈ C0(Rd),

for a |V (t)|-measurable functionθt : Rd → [0,∞) with |θt (x)| 6 1 almost everywhere. In
particular, this implies supp∇χt ⊆ suppV (t) and‖∇χ(t)‖M 6 ‖V (t)‖M for almost allt ∈

(0,∞). Hence every measure-valued varifold solution satisfies the energy inequality

1
2‖v(t)‖2

2 + κ‖∇χ(t)‖M + (S(χ,Dv),Dv)Ωt 6 1
2‖v0‖

2
2 + κ‖∇χ0‖M (1.19)

for almost allt > 0. Moreover, ifE(t) = {x ∈ Rd : χ(x, t) = 1}, t > 0, thenE(t) is for almost
everyt > 0 a set of finite perimeter (cf. Section 2.4 below), and (1.15) yields the relation∫

Sd−1
s dVx(t)(s) =

{
θt (x)n(x) if x ∈ ∂∗Et ,

0 else,

for |V (t)|-almost everyx ∈ Rd and almost everyt > 0, wheren = −∇χ(t)/|∇χ(t)| is
the exterior normal of the reduced boundary∂∗Et of Et andχ(t) = χEt . In other words, the
expectation ofVx(t) is proportional to the normaln on the interface and zero inside the fluid.

4. In general, it is an open problem whetherV (t) is a so-called countably(d−1)-rectifiable varifold,
which implies thatVx(t) is a Dirac measure for|V (t)|-almost everyx. ThenV (t) can naturally
be identified with a countably(d − 1)-rectifiable set—a “surface”—equipped with a density
θt > 0. So far we can only give a sufficient condition for the rectifiability ofV (t) in terms of a
regularity condition for the pressurep(t) or the first variationδV (t). See Appendix A below for
details.
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An open question is whether there are measure-valued varifold solutions such that the first
variation〈δV, ·〉 coincides with the negative mean curvature functional associated toχ(t), which is
defined below, and such thatµx,t coincides with the Dirac measureδDv(x,t) almost everywhere. If
this is the case, we call(v, χ) a weak solution:

DEFINITION 1.4 Let (v, χ, V, µ) be a measure-valued varifold solution of the two-phase flow
in the sense of Definition 1.2. Then(v, χ, V ) is called avarifold solutionif µx,t = δDv(x,t) for
almost all(x, t) ∈ Q. If (v, χ, V ) is a varifold solution, then(v, χ) is called aweak solutionof the
two-phase flow if

〈δV (t), ψ〉 = −〈Hχ(t), ψ〉 =

∫
Rd

Tr(Pτ∇ψ)d|∇χ(t)| for all ψ ∈ C∞

0,σ (R
d)

and almost allt ∈ (0,∞), wherePτ = I −
∇χ(t)
|∇χ(t)|

⊗
∇χ(t)
|∇χ(t)|

(cf. (2.5) below).

From the definitions one derives the following general properties of measure-valued varifold
solutions:

PROPOSITION1.5 (Properties of measure-valued varifold solutions) Let(v, χ, V, µ) be a
measure-valued varifold solution. Then:

1. If (v, χ, V ) satisfies theenergy equality

1
2‖v(t)‖2

2 + κ‖∇χ(t)‖M + (S(χ,Dv),Dv)Qt =
1
2‖v0‖

2
2 + κ‖∇χ0‖M (1.20)

for almost all t ∈ (0,∞), then (v, χ) is a weak solution. Moreover, if(1.20) holds with
‖∇χ(t)‖M replaced by‖V (t)‖M, then(v, χ, V ) is a varifold solution.

2. If q > d, thenχ ∈ BV (QT ) for every 0< T < ∞.

Our main result concerns existence of measure-valued varifold solutions with some additional
properties:

THEOREM 1.6 (Existence of measure-valued varifold solutions) Letq > 2d/(d + 2), let v0 ∈

L2
σ (Rd), let Ω+

0 b Rd be a boundedC1-domain, and letχ0 := χΩ+

0
. Then there is a measure-

valued varifold solution(v, χ, V, µ) of the two-phase flow as in Definition 1.2. Moreover,

1. If d = 2 or q > d, then suppV (t) ⊆ BR(0) for all t ∈ [0, T ] for someR = R(T , χ0, v0) and
arbitraryT > 0.

2. If q > d = 2, then(v, χ, V ) is a varifold solution and supp|V (t)| = Γ ∗
t is a compact rectifiable

set and|V (t)| > H1
bΓ ∗
t for almost allt > 0. Moreover,

dH (Γ
∗
t1
, Γ ∗

t2
) 6 C|t1 − t2|

1/q ′

for all 0 6 t1, t2 < ∞,

wheredH ( · ,·) denotes the Hausdorff distance.

REMARK 1.7 The caseq > d = 2 was already studied by Plotnikov in [20], where a similar result
is shown, but his definition of a varifold solution is different: Properties ofV (t) and supp|V (t)| =

Γ ∗
t , which can be shown forq > d = 2, are taken as part of the definition of a varifold solution.

In particular, it is required that suppV (t) is a compact 1-rectifiable set separating the plane into
two open setsω0(t) andω1(t). Moreover, the relation (1.15) is not used. Insteadχ(t) is taken as
the characteristic function of the setω0(t) and it solves the transport equation in the weak sense.
Furthermore, it is required that the space-time interface

⋃
t∈[0,T ] Γ

∗
t × {t} has for almost every
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t ∈ [0, T ] and everyx ∈ Γ ∗
t a tangent plane containing(v,1). Finally, no energy estimate is part of

the definition. See [20] for details.

REMARK 1.8 We note that in the case of a Newtonian fluid, i.e.ν(j, |Dv|) ≡ νj , the proof of
Theorem 1.6 yields a conditional existence result for weak solutions if there is no loss of area
when passing to the limit in the approximation scheme, i.e. limk→∞ ‖∇χk(t)‖ = ‖∇χ(t)‖ for
almost allt > 0. Then the arguments in the proof of Proposition 1.5 or a convergence theorem
by Reshetnyak [2, Theorem 2.39] show that(v, χ) is a weak solution. Such results are known for
example for the mean curvature flow by Luckhaus and Sturzenhecker [15] and for the multi-phase
Mullins–Sekerka problem by Bronsard, Garcke, and Stoth [6].

Theorem 1.6 is proved by first constructing solutions to an approximate system for everyε > 0
and then passing to the limitε → 0 for a suitable subsequence. The approximate system is derived
by replacing〈δV (t), ·〉 by 〈δV (t), Ψε·〉 in (1.14) and replacingv · ∇χ byΨεv · ∇χ in (1.10), where
Ψε is a suitable smoothing operator. This preserves the energy estimate. Moreover, the convective
term in (1.14) is smoothed suitably. Using the same approximation scheme we extend the result of
Nouri and Poupaud [17] on existence of weak solution of a two-phase flow of Newtonian fluids
(q = 2 andν(j, s) = νj ) to a class of non-Newtonian fluids:

THEOREM 1.9 (Existence of weak solution,κ = 0) Letd = 2,3, letq > 2d/(d + 2)+ 1 orq = 2
andν(j, s) = νj , and let Assumption 1.1 hold. Moreover, letv0 ∈ L2

σ (Ω), χ0 ∈ L∞(Ω; {0,1}),
f ∈ Lq

′

(0,∞;Vq(Ω)
′). Then there arev ∈ L∞(0,∞;L2

σ (Ω)) ∩ Lq(0,∞;Vq(Ω)) andχ ∈

L∞(Q; {0,1}), Q := Ω × (0,∞), that are a weak solution of the two-phase flow without surface
tension in the sense that

−(v, ∂tϕ)Q − (v0, ϕ(0))Ω − (v ⊗ v,∇ϕ)Q + (S(χ,Dv),Dϕ)Q = 〈f, ϕ〉 (1.21)

for all ϕ ∈ C∞

(0)(Ω × [0,∞))d with divϕ = 0, whereχ is the unique renormalized solution of the
transport equation of (1.10)–(1.11), and (1.17) holds for almost allt > 0 with κ = 0.

REMARK 1.10 In the case of a two-phase flow for theStokes equation, i.e. the convective term
v · ∇v is neglected and (1.21) is replaced by

−(v, ∂tϕ)Q − (v0, ϕ(0))Ω + (S(χ,Du),Dϕ)Q = 〈f, ϕ〉, (1.22)

the same result as above holds for allq > 2d/(d + 2). Comments on the prove are given in
Remark 5.5 below.

The structure of the article is as follows: After studying the necessary preliminaries in Section 2,
we first prove Proposition 1.5 in Section 3. Then we introduce the approximate system for the
two-phase flow in Section 4 and prove existence of solutions for it. Using these solutions we pass
to the limit in Section 5 and prove Theorems 1.6 and 1.9. Finally in the appendix, we present a
rectifiability criterion for the varifold in the two-phase flow, which is based on a new rectifiability
result for varifolds due to Luckhaus [14].

2. Preliminaries

2.1 Notation

The set of all symmetricd × d-matrices is denoted byRd×dsym . ForA,B ∈ Rd×dsym we writeA : B =

Tr(AB) and |A| =
√
A : A, where Tr denotes the trace of matrices. Givena ∈ Rd we define

a ⊗ a ∈ Rd×dsym as the matrix with entriesaiaj , i, j = 1, . . . , d.
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The dual of a topological vector spaceV is denoted byV ′. If v ∈ V andv′
∈ V ′, then〈v, v′

〉 ≡

〈v, v′
〉V,V ′ := v′(v) denotes the duality product. IfA : V → W is a continuous linear operator,

A′ : W ′
→ V ′ denotes its adjoint.

For a given setA ⊂ Rd , we define itsε-neighborhoodAε, ε > 0, asAε =
⋃
x∈A Bε(x).

Moreover, for given compact setsA,B ⊂ Rd the Hausdorff distance is defined as

dH (A,B) = inf{ε > 0 : A ⊆ Bε andB ⊆ Aε}.

If A ⊂ Rd is a compact set, thenK(A) = {B ⊆ A : B closed} equipped with the Hausdorff distance
is a compact metric space (cf. e.g. [7, Proposition 2.4.4]).

2.2 Function spaces

Spaces of integrable functions.If M ⊆ Rd is measurable, thenLq(M), 1 6 q 6 ∞, denotes the
usual Lebesgue space and‖ · ‖q its norm. Moreover,Lq(M;X) denotes its vector-valued variant
of strongly measurableq-integrable (or essentially bounded) functions, whereX is a Banach space.
More generally, ifX is a Fŕechet space, thenf ∈ Lq(M;X) if f is strongly measurable and
q-integrable/essentially bounded with respect to all the seminorms ofX. For a subsetN ⊂ X

we denote byLq(M;N) the set of allf ∈ Lq(M;X) with f (x) ∈ N for almost allx ∈ M.
Furthermore,f ∈ L

q

loc([0,∞);X) if and only if f ∈ Lq(0, T ;X) for everyT > 0. If Ω ⊆ Rd is
a domain, thenf ∈ L

q

loc(Ω) if and only if f ∈ Lq(Ω ∩ B) for every ballB with B ∩Ω 6= ∅. For
any measurable setA ⊂ Rd , χA denotes its characteristic function.

Recall that, ifX is a Banach space with the Radon–Nikodym property, then

Lq(M;X)′ = Lq
′

(M;X′) for every 16 q < ∞

by means of the duality product

〈f, g〉 =

∫
M

〈f (x), g(x)〉 dx

for f ∈ Lq(M;X), g ∈ Lq
′

(M;X′). If X is reflexive orX′ is separable, thenX has the Radon–
Nikodym property (cf. Diestel and Uhl [8]).

Moreover, recall the lemma of Aubin–Lions: IfX0 ↪→↪→ X1 ↪→ X2 are Banach spaces, 1<
p < ∞, 1 6 q < ∞, andI ⊂ R is a bounded interval, then{

v ∈ Lp(I ;X0) :
dv

dt
∈ Lq(I ;X2)

}
↪→↪→ Lp(I ;X1). (2.1)

See J.-L. Lions [13] for the caseq > 1 and Simon [26] or Roubı́ček [22] forq = 1.
Furthermore, we note that, ifY = X′ is a dual space, thenL∞

ω (Q;Y ) for openQ ⊆ RN is
defined as all weak-∗ measurable functionsν : Q → Y , i.e.,

x 7→ 〈νx, F (x, ·)〉 = 〈νx, F (x, ·)〉X′,X

is measurable for eachF ∈ L1(Q;X), such that

‖ν‖L∞
ω (Q;Y ) := ess sup

x∈Q

‖νx‖Y < ∞.
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Sobolev and Bessel potential spaces.Wm
q (Ω), m ∈ N0, 1 6 q 6 ∞, denotes the usualLq -

Sobolev space,Wm
q,loc(Ω) its local version,Wm

q,0(Ω) the closure ofC∞

0 (Ω) inWm
q (Ω),W

−m
q (Ω) =

(Wm
q ′,0(Ω))

′, andf ∈ W−m
q,loc(Ω) if f ∈ W−m

q (Ω ∩ B) for every ballB ⊂ Rd . TheL2-Bessel

potential spaces are denoted byH s(Ω), s ∈ R, defined as the restrictions of distributions inH s(Rd)
toΩ (cf. Triebel [34, Section 4.2.1]). Finally,̇W1

q (Ω) = {f ∈ L
q

loc(Ω) : ∇f ∈ Lq(Ω)}, normed in
the obvious way, denotes the homogeneous Sobolev space of first order, where functions differing
by a constant are identified.

Spaces of continuous functions.The usual spaces of continuous, Hölder continuous,k-times
differentiable and smooth functions on an open or closed setA are denoted byC(A), Cα(A),
0 < α 6 1,Ck(A), andC∞(A), respectively, Furthermore,C∞

0 (Ω) ≡ D(Ω) denotes the space of
smooth and compactly supported functions onΩ andC0(Ω),Ck0(Ω) denote the closures ofC∞

0 (Ω)

in the corresponding norms. Moreover, ifA ⊂ Rd is a set, then

C∞

(0)(A) = {f : A → R : f = F |A, F ∈ C∞

0 (R
d), suppf ⊆ A}

equipped with the quotient topology. IfA is an open set, a subscriptb as inCkb (R
d) indicates that

the functions and their derivatives are required to be bounded.

Spaces of solenoidal functions.In the followingC∞

0,σ (Ω) denotes the space of all divergence free

vector fields inC∞

0 (Ω)
d andLqσ (Ω) is its closure in theLq -norm. The corresponding Helmholtz

projection is denoted byPLqσ or justPσ (cf. e.g. Simader and Sohr [25]).

Finally, recall thatVq(Rd) = {v ∈ Ẇ1
q (Rd)d : div f = 0} andVq(Ω) = W1

q,0(Ω) ∩ L
q
σ (Ω) if

Ω is a bounded domain. In both casesVq will be normed by‖v‖Vq (Ω) = ‖Dv‖Lq (Ω). By Korn’s
inequality this norm is equivalent to the standard norms.

Spaces of measures and functions of bounded variations.These spaces are defined at the beginning
of Sections 2.3 and 2.4.

2.3 Measures, disintegration and Young measures

Let X be a locally compact separable metric space and letC0(X; Rm) be the closure of the
compactly supported continuous functionsf : X → Rm,m ∈ N, in the supremum norm. Moreover,
denote byM(X; Rm) the space of all finiteRm-valued Radon measures,M(X) :=M(X; R), and
let Prob(X) denote the space of all probability measure onX. Then by the Riesz representation
theoremM(X; Rm) = C0(X; Rm)′ (cf. e.g. Ambrosio et al. [2, Theorem 1.54]). Givenµ ∈

M(X; Rm) the total variation measure is defined by

|µ|(A) = sup
{ ∞∑
k=0

|µ(Ak)| : Ak ∈ B(X) pairwise disjoint, A =

∞⋃
k=0

Ak

}
for everyA ∈ B(X), whereB(X) denotes theσ -algebra of Borel subsets ofX. Then by [2,
Proposition 1.47],

|µ|(A) = sup

{∫
X

f (x)dµ(x) : f ∈ C0(X; Rm), suppf ⊂ A, ‖f ‖∞ 6 1

}
(2.2)
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for every open setA ⊆ X. The restriction of a measureµ to aµ-measurable setA is denoted by
(µbA)(B) = µ(A∩B). Finally, thes-dimensional Hausdorff measure onRd , 0 6 s 6 d, is denoted
byHs .

Now letU ⊂ RN , V ⊂ RM be open sets and letν ∈M(U×V ; Rm). Moreover, we setµ(A) =

|ν|(A × V ). Then by the disintegration theorem (cf. [2, Theorem 2.28]), there is aµ-measurable
mappingx 7→ νx such that|νx | ∈ Prob(V ) for µ-a.e.x ∈ U and for anyf ∈ L1(U × V, |ν|),

f (x, ·) ∈ L1(V , |νx |) for µ-a.e.x ∈ U,

x 7→

∫
V

f (x, y)dνx(y) ∈ L1(U,µ), (2.3)∫
U×V

f (x, y)dν(x, y) =

∫
U

(∫
V

f (x, y)dνx(y)

)
dµ(x).

Obviously, if ν ∈ M(U × V ) is a non-negative measure, thenνx = |νx | ∈ Prob(V ) for µ-a.e.
x ∈ U .

We need the following version of the fundamental theorem on Young measures:

THEOREM 2.1 LetQ ⊂ RN be an open set and letzj ∈ Lp(Q; Rm), 1 < p < ∞, be a bounded
sequence. Then there is a subsequence still denoted byzj and a weak-∗ measurable functionx 7→

νx ∈ Prob(Rm) such that for every continuousτ : Rm → R satisfying the growth condition

|τ(ξ)| 6 C(1 + |ξ |)p−1 for all ξ ∈ Rd

for someC > 0 we have
τ(zj ) ⇀ τ̄ in Lp

′

(Q) asj → ∞,

whereτ̄ = 〈νx, τ 〉 for almost allx ∈ Q.

Proof. The result immediately follows from Corollary 2.10 in Málek et al. [16, Section 4.2] by
choosingq = p − 1, r = p/q = p′. Moreover, we note that the restriction to a bounded set in that
corollary is only needed if 1< r < p/q as can be easily seen in the proof. 2

Finally, recall the generalized Jensen inequality: Letg : RN → R be a strictly convex function and
letµ be a probability measure onRN such that id and|g| areµ-integrable. Then

g

(∫
x dµ(x)

)
6

∫
RN
g(x)dµ(x), (2.4)

with equality if and only ifµ is a Dirac measure (cf. e.g. [16, Lemma 2.27, Chapter III] and its
proof).

2.4 BV-functions and varifolds

LetU ⊆ Rd be an open set. Recall that

BV (U) = {f ∈ L1(U) : ∇f ∈M(U ; Rd)},
‖f ‖BV (U) = ‖f ‖L1(U) + ‖∇f ‖M(U ;Rd ),

where∇f denotes the distributional derivative. Moreover,BV (U ; {0,1}) denotes the set of all
χ ∈ BV (U) such thatχ(x) ∈ {0,1} for almost allx ∈ U .
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Moreover, a setE ⊆ U is said to havefinite perimeterin U if χE ∈ BV (U). Then by the
structure theorem on sets of finite perimeter|∇χE | = Hd−1

b∂∗E, where∂∗E is the so-called
reduced boundaryof E and

−〈∇χE, ϕ〉 =

∫
E

divϕ dx =

∫
∂∗E

ϕ · nE dHd−1,

wherenE(x) = −∇χE/|∇χE | (cf. e.g. [2]). Note that, ifE is a domain withC1-boundary, then
∂∗E = ∂Ω andnE coincides with the exterior unit normal.

For a setE of finite perimeter inU we define themean curvature functionalassociated to∂∗E

as

〈H∂∗E, ϕ〉 ≡ 〈HχE , ϕ〉 := −

∫
∂∗E

Tr(Pτ∇ϕ)dHd−1, ϕ ∈ C1
0(Ω)

d , (2.5)

wherePτ = I − nE(x)⊗ nE(x).
A general(d−1)-varifold Ṽ is simply a measurẽV ∈M(U×Gd−1), whereGd−1 is the space

of all unoriented(d − 1)-dimensional linear subspaces ofRd (cf. Simon [27]). The first variation
δṼ of a general varifold̃V is defined as

〈δṼ , ψ〉 =

∫
U×Gd−1

PT : ∇ψ dṼ (x, T ) for ψ ∈ C1
0(U)

d ,

wherePT denotes the orthogonal projection ontoT ∈ Gd−1. Note that general varifolds are
unoriented and thatGd−1 ∼= Sd−1/{x ≡ −x}. If E is a set of finite perimeter inU , then its reduced
boundary can be identified with the varifold defined by

〈Ṽ∂∗E, ϕ〉 =

∫
∂∗E

ϕ(x, [nE(x)])dHd−1 for all ϕ ∈ C0(U ×Gd−1),

where [nE(x)] denotes the(d − 1)-dimensional subspace ofRd with normalnE(x). Then

〈δṼ∂∗E, ψ〉 = −〈H∂∗E, ψ〉 for all ψ ∈ C1
0(U)

d .

Hence the mean curvature functional associated to∂∗E can be recovered from the general varifold
associated to∂∗E. But this is not the case for∇χE = −nEHd−1

b∂∗E since general varifolds do
not take orientation into account. Therefore we define anoriented general(d − 1)-varifold as a
non-negative measureV ∈M(U × Sd−1) as was done for example by Soner [31, Section 2.3]. By
disintegrationV can be written in the form

〈V, ϕ〉 =

∫
U

∫
Sd−1

ϕ(x, s)dVx(s)d|V |(x), ϕ ∈ C0(U × Sd−1). (2.6)

Obviously, every oriented general varifoldV induces an (unoriented) general varifold̃V by

〈Ṽ , ϕ〉 =

∫
U×Sd−1

ϕ(x, [s])dV (x, s), ϕ ∈ C0(U ×Gd−1), (2.7)

where again [s] denotes the(d − 1)-dimensional linear subspace ofRd with s as normal. Now, ifE
has finite perimeter inU , then we associate to∂∗E the oriented general varifoldV∂∗E defined by

〈V∂∗E, ϕ〉 =

∫
∂∗E

ϕ(x, nE(x))dHd−1 for all ϕ ∈ C0(U × Sd−1).

Note that this corresponds to the choice|V | = Hd−1
b∂∗E andVx = δnE(x) in (2.6).
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Now we recover∇χE from V = V∂∗E by choosingϕ(x, s) = s · ψ(x) with ψ ∈ C0(U ; Rd):

〈V∂∗E, ϕ〉 =

∫
U×Sd−1

s · ψ(x)dV (x, s) =

∫
∂∗E

ψ · nE dHd−1
= −〈∇χE, ψ〉.

Finally, let Γ0 ⊆ Rd be the boundary of a boundedC1-domainΩ+

0 with exterior normal vector
field n and letXt : Rd → Rd , t > 0, be a family ofC1-diffeomorphisms depending in a
continuously differentiable way ont > 0 such thatddtXt (x) = v(Xt (x), t) for a sufficiently smooth
vector fieldv. Moreover, setΓt = Xt (Γ0) andΩt = Xt (Ω

+

0 ), t > 0. Then one calculates that

d

dt

∫
Γt

ϕ(x)dHd−1(x) = 〈δVΓt , ϕv(t)〉 +

∫
Γt

n · ∇ϕ(x)n · v(x, t)dHd−1(x) (2.8)

for everyϕ ∈ C1
0(R

d), whereVΓt denotes the general varifold associated toΓt defined as above and
n is the exterior normal atΓt = ∂Ωt .

2.5 Transport equation

We consider weak solutions of the transport equation

∂tχ + v · ∇χ = 0 inQT , (2.9)

χ |t=0 = χ0 in Ω, (2.10)

whereQT = Ω × (0, T ), 0 < T 6 ∞, Ω = Rd or Ω is a bounded Lipschitz domain,v ∈

L2
loc([0,∞);L2

σ (Ω)), andχ0 ∈ L∞(Ω). Here a weak solution is a functionχ ∈ L∞(Q) satisfying∫
Q

χ(∂tϕ + v · ∇ϕ)d(x, t)+

∫
Ω

χ0ϕ(x,0)dx = 0 (2.11)

for all ϕ ∈ C∞

(0)(Ω × [0, T )). Then we have

PROPOSITION2.2 For everyχ0 ∈ L∞(Ω) andv ∈ L2
loc([0,∞);L2

σ (Ω)) there is a unique weak
solution of (2.9)–(2.10) withT = ∞. Moreover, this solution is a renormalized solution, i.e.,β(χ)

is a weak solution associated to the dataβ(χ0) for anyβ ∈ C1(R). Furthermore, ifχ0 ∈ M a.e. for
some finite setM, thenχ ∈ M a.e.

The proposition follows from Nouri, Poupaud and Demay [18, Theorem 4.1]. It essentially
coincides with [17, Proposition 3.3]. These results are based on DiPerna and Lion’s results on weak
and renormalized solutions of the transport equation (cf. [9]). In that work divv = 0 or divv ∈ L∞

is essentially used.
In order to construct approximate solutions of the two-phase flow with surface tension we use:

LEMMA 2.3 Letχ0 ∈ BV (Rd; {0,1}) and letv ∈ C([0, T ];C2
b(R

d)d), divv = 0, T > 0. Then
there is a weak solutionχ ∈ L∞(0, T ;BV (Rd; {0,1})) of (2.9)–(2.10). Moreover,

‖χ‖L∞(0,T ;BV (Rd )) 6 M(‖v‖C([0,T ];C2
b (Rd ))

)‖χ0‖BV (Rd ), (2.12)

d

dt
|∇χ(t)|(Rd) = −〈Hχ(t), v(t)〉 for all t ∈ (0, T ) (2.13)

for some continuous functionM.
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Proof. The solution χ is constructed by the usual method of characteristics. Sincev ∈

C([0, T ];C1
b(R

d)d) for everyx0 ∈ Rd there is a unique solutionx(t; x0) ∈ C1(0,∞; Rd) of

d

dt
x(t; x0) = v(x(t; x0), t), t > 0, (2.14)

x(0; x0) = x0, (2.15)

which is a trajectory along the vector fieldv. Note that, sincev is globally Lipschitz, the solution
x(t; x0) exists for allt ∈ (0, T ). LetX(x0, t) := x(t; x0) and letXt = X( · , t) be the flow mapping.
ThenX ∈ C1([0, T ] × Rd) by the usualC1-dependence on the initial values andXt : Rd → Rd
is aC1-diffeomorphism. Now defineχ(x, t) := χ0(X

−1
t x). Then‖χ( · , t)‖L1(Rd ) = ‖χ0‖L1(Rd )

since detDXt (y) = detDX0(y) = 1 because of∂t detDXt (y) = div v(Xt (y, t)) = 0. In order to
estimateχ ∈ L∞(0, T ;BV (Rd; {0,1})), we use the fact that∫

Ω

χ(x, t)divψ(x)dx =

∫
Ω

χ0(y)Tr((∇ψ)(Xt (y)))dy

=

∫
Ω

χ0(y)Tr(∇ψ̃(y))dy −

∫
Ω

χ0(y)Tr(∇DX−T
t )ψ(Xt (y))dy,

whereψ̃(y) = DX−T
t ψ(Xt (y)), ψ ∈ C1

0(R
d)d . Hence

sup
t∈[0,T ]

∣∣∣∣∫
Ω

χ(x, t)divψ(x)dx

∣∣∣∣ 6 M(‖v‖C([0,T ];C2
b (Rd ))

)‖χ0‖BV (Rd )‖ψ‖C0
b (Rd )

for all ψ ∈ C1
0(R

d)d and t > 0 and some continuous functionM. Moreover, by standard calcu-
lations

(χ, ∂tϕ)Q =

∫
∞

0

∫
Ω

χ0(y)∂tϕ(Xt (y), t)dy dt

= −(χ0, ϕ|t=0)−

∫
∞

0

∫
Ω

χ0(y)∇ϕ(Xt (y), t) · v(Xt (y), t)dy dt

= −(χ0, ϕ|t=0)− (χ, v · ∇ϕ)Q

for all ϕ ∈ C∞

(0)([0,∞)× Rd). Henceχ is a weak solution of (2.9)–(2.10).
Finally, the last identity follows from (2.8). 2

For the following we note thatC1(Rd) is equipped with the topology of locally uniform convergence
of functions and their first order derivatives.

LEMMA 2.4 Let χ0 = χΩ+

0
, whereΩ+

0 is a boundedC1-domain. Moreover, letuk, u ∈

C([0, T ];C2
b(R

d)d) be such thatuk → u in C([0, T ];C1(Rd)d) as k → ∞. Then for any
f ∈ C0

b(R
d

× Sd−1),

lim
k→∞

∫
Γuk (t)

f (x, nx)dHd−1(x) =

∫
Γu(t)

f (x, nx)dHd−1(x) (2.16)

uniformly in t ∈ (0, T ), whereΓw(t) = Xw(t)(∂Ω
+

0 ) andXw(t) is the flow map obtained from
(2.14)–(2.15) withv = w as above. Finally,{Γuk (t), Γu(t) : k ∈ N, t ∈ [0, T ]} is contained in a
compact set.
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Proof. First of all, Xuk ∈ C1([0, T ] × Rd) andXuk → Xu ∈ C1([0, T ] × BR(0)), R > 0,
by the usualC1-dependence of solutions of ordinary differential equations on the data. Moreover,
by constructionXuk (t) : Rd → Rd is bijective for anyt ∈ [0, T ]. HenceX−1

uk
(t) : Rd → Rd is

continuously differentiable andX−1
uk
(t) → X−1

u (t) in C1(Rd) for any t ∈ [0, T ]. Using all this, the
lemma can be proved by either introducing a local parameterization of∂Ω+

0 and usingXuk (t) and
Xu(t) to get suitable parameterizations ofΓuk (t) andΓu(t), or one can use the continuity theorem by
Reshetnyak: SinceXuk (t) → Xu(t) andX−1

uk
(t) → X−1

u (t) inC1(Rd), it is an easy exercise to show
Hd−1(Γuk (t)) → Hd−1(Γu(t)). Moreover, ifΩ+

k (t) = Xuk (t)(Ω
+

0 ) andΩ+(t) = Xu(t)(Ω
+

0 ),
then

〈∇χΩ+

k (t)
, ϕ〉 = −

∫
Ω+

0

divϕ(Xuk (t))dx → −

∫
Ω+

0

divϕ(Xu(t))dx = 〈∇χΩ+(t), ϕ〉

ask → ∞ for all ϕ ∈ C1
0(R

d)d . This implies∇χΩ+

k (t)
⇀∗

∇χΩ+(t) inM(Rd) since‖∇χuk‖M =

Hd−1(Γuk (t)) are uniformly bounded andC1
0(R

d) is dense inC0(Rd). Therefore one can apply
[2, Theorem 2.39] to the vector measures∇χΩ+

k (t)
and∇χΩ+(t) to show (2.16).

Finally, the last statement is an easy consequence of the fact thatXuk → Xu in C1([0, T ] ×Rd)
and the compactness of∂Ω+

0 . 2

LEMMA 2.5 Let uk, u ∈ L1(0, T ;L2
σ (Ω)), k ∈ N, for someT > 0 such thatuk → u in

L1(0, T ;L2
loc(Ω)). Moreover, letχk, χ ∈ L∞(QT ) be the solutions of (2.9)–(2.10) withv = uk, u,

resp., andχ0 = χE for some fixed measurable setE. Thenχk ⇀∗ χ in L∞(QT ) andχk → χ in
Lp(QT ) for everyp < ∞.

Proof. First of all, sinceχk ∈ L∞(QT ) are uniformly bounded,χkj ⇀
∗ χ̃0 in L∞(QT ) asj → ∞

for someχ̃0 ∈ L∞(QT ) and some suitable subsequence. Sinceuk → u in L1(0, T ;L2
loc(Ω)),

uk · ∇ϕ → u · ∇ϕ in L1(0, T ;L2(Ω)) for anyϕ ∈ C∞

(0)(Ω × [0,∞)). Thusχ̃0 solves the transport
equation withv = u. Hence

‖χkj ‖
q

Lq (QT )
= T |E| = ‖χ̃0‖

q
q

for every 16 q < ∞. Thusχkj → χ̃0 in Lq(QT ) strongly. In particular, this implies̃χ0 ∈ {0,1}

almost everywhere. Thereforẽχ0 coincides with the unique renormalized solutionχ0. Since this
argument holds for any subsequence, the sequence(χk)k∈N converges itself. 2

2.6 A convergence result for monotone non-linearities

In order to construct weak solutions in the caseκ = 0, we will use the following result:

THEOREM 2.6 (Świerczewska [32, Lemma A.1]) LetE ⊂ Rd be a measurable set of finite
measure and letA : E × Rm × RN → RN be a function such that

1. A(x, s, ξ) is a Carath́eodory function with respect tox and (s, ξ), i.e.,A is measurable with
respect tox and continuous with respect to(s, ξ).

2. A(x, s, ξ) is strictly monotone with respect toξ : For almost allx ∈ E and all s ∈ Rm and
ξ1, ξ2 ∈ RN , ξ1 6= ξ2,

(A(x, s, ξ1)− A(x, s, ξ2)) · (ξ1 − ξ2) > 0.
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3. There areq > 1 andc1, c2 > 0 such that

A(x, s, ξ) · ξ > c1|ξ |
q , |A(x, s, ξ)| 6 c2|ξ |

q−1

for almost allx ∈ E and all(s, ξ) ∈ Rm × RN .

Moreover, letyn : E → Rm andzn : E → RN be a sequence of measurable functions such that
yn → y a.e. inE, zn ⇀ z in Lq(E) andA(x, yn, zn) ⇀ Ā in Lq

′

(E) asn → ∞. Then

lim sup
n→∞

∫
E

A(x, yn, zn) · zn dx 6
∫
E

Ā · z dx

implieszn → z in measure asn → ∞.

In the following we will apply the theorem to the casex ∈ Ω, s ∈ R, ξ = λ ∈ Rd×dsym , and
A(x, s, ξ) = S(s, λ). In this case Assumption 1.1 implies the assumptions of the theorem.

3. Proof of Proposition 1.5

First of all, we note that by (1.12),λ 7→ S(l, λ) :λ, λ ∈ Rd×dsym , is a strictly convex function for every
l ∈ [0,1].

First assume that‖V (t)‖ = ‖∇χ(t)‖ for almost allt ∈ (0, T ). We will prove thatVx(t) = δn(x,t)

for |V (t)|-almost everyx ∈ Rd and almost everyt ∈ (0,∞), wheren(x, t) = −
∇χ(t)
|∇χ(t)|

(x). From
(1.15) we know that∫

Ω

∫
Sd−1

s · ψ(x)dVx(t)d|V (t)| =

∫
Ω

n(x, t) · ψ(x)d|∇χ(t)|

for all ψ ∈ C0(Ω)
d . Hence by (2.2),|∇χ(t)|(A) 6 |V (t)|(A) for every openA ⊂ Ω. Thus|∇χ(t)|

is absolutely continuous with respect to|V (t)| and

|∇χ(t)|(A) =

∫
A

θt (x)d|V (t)|(x)

with some|V (t)|-measurable functionθt : Rd → [0,∞) andθt (x) 6 1 for |V (t)|-almost allx
in Rd . But, since‖∇χ(t)‖ = |∇χ(t)|(Rd) = |V (t)|(Rd) = ‖V (t)‖, we conclude thatθt (x) = 1
almost everywhere and|V (t)| = |∇χ(t)| as measures. Therefore (1.15) yields∫

Sd−1
s dVx(t)(s) = n(x, t) for |V (t)|-almost allx ∈ Ω.

Thus
1

2

∫
|s − n(x, t)|2 dVx(t)(s) = 1 − n(x, t) ·

∫
Sd−1

s dVx(t)(s) = 0

for |V (t)|-almost allx ∈ Ω, which implies thatVx(t) = δn(x,t) for |V (t)|-almost everyx ∈ Rd .
If (v, χ) satisfies (1.20), then necessarily‖∇χ(t)‖M = ‖V (t)‖M for almost allt > 0 because

of (1.17) and (1.18). Hence the first part implies thatVx(t) = δn(x,t), which yieldsδV (t) = −Hχ(t).
Moreover, by (2.4) and (1.16),

S(χ(x, t),Dv(x, t)) :Dv(x, t) 6
∫
S(χ(x, t), λ) : λdµx,t (λ)
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with equality if and only ifµx,t is a Dirac measure. (Note that
∫
S(χ(x, t), λ) : λdµx,t (λ) < ∞ for

almost all(x, t) ∈ Q by (1.17).) On the other hand, by (1.17)–(1.20),∫
Qt

S(χ(x, t),Dv(x, t)) :Dv(x, t)d(x, t) =

∫
Qt

∫
Rd×dsym

S(χ, λ) : λdµx,t (λ)d(x, t)

for almost allt > 0. Henceµx,t is a Dirac measure for almost all(x, t) ∈ Q, which implies that
µx,t = δDv(x,t) because of (1.16). Altogether, we have proved that(v, χ) is a weak solution. The
same argument also shows that(v, χ, V ) is a varifold solution if (1.20) holds with‖∇χ(t)‖ replaced
by ‖V (t)‖.

Finally, if q > d, then (2.11) and the fact thatχ ∈ L∞(0,∞;BV (Rd)) yield

−(χ,divx,t ψ) =

∫
∞

0

∫
ψ ′(x, t)d∇χ(t)dt +

∫
Q

χ div(vψd+1)d(x, t)

=

∫
∞

0

∫
ψ ′(x, t)d∇χ(t)dt −

∫
∞

0

∫
vψd+1 d∇χ(t)dt

for all ψ = (ψ ′, ψd+1) ∈ C1
0(Q; Rd+1) whereψd+1(x, t) ∈ R. Moreover, sinceq > d,

Lq(0, T ;Vq(Rd)) ∩ L∞(0, T ;L2
σ (Rd)) ↪→ Lq(0, T ;C0(Rd)) for eachT > 0 and∣∣∣∣∫ ∞

0

∫
ψ ′(x, t)d∇χ(t)dt

∣∣∣∣ 6 C(E0, T )‖ψ‖C0(QT ),∣∣∣∣∫ ∞

0

∫
vψd+1 d∇χ(t)dt

∣∣∣∣ 6 C(E0, T )‖v‖Lq (0,T ;C0(Rd ))‖ψ‖C0(QT )

6 C(E0, T )‖ψ‖C0(QT )

if suppψ ⊆ QT for T > 0, whereE0 =
1
2‖v0‖

2
2 + κ‖∇χ0‖M. This shows thatχ ∈ BV (QT ) for

every 0< T < ∞.

4. Approximate two-phase flow

In the following we setXκ = BV if κ > 0 andXκ = L∞ if κ = 0.
In order to formulate the approximation equations, letψ ∈ C∞

0 (R
d) with suppψ ⊆ B1(0),∫

ψ dx = 1 andψ > 0. Moreover, letΨεf = ψε ∗ f if Ω = Rd andΨε = Pσ (ψε ∗ f ),
whereψε(x) := ε−dψ(ε−1x), ε > 0, f is extended by 0 toRd , andPσ denotes the Helmholtz
projection (cf. [25]). Then we consider the approximate two-phase flow on(0, T ), T > 0, which is
vε ∈ L∞(0, T ;L2

σ (Ω)) ∩ Lq(0, T ;Vq(Ω)) that solves

− (vε, ∂tϕ)QT − (v0, ϕ(0))Ω − (Ψεvε ⊗ ψε ∗ vε,∇ψε ∗ ϕ)QT + (S(χε,Dvε),Dϕ)QT

= κ

∫ T

0
〈Hχε(t), Ψεϕ(t)〉 dt (4.1)

for all ϕ ∈ C∞

(0)(Ω × [0, T ))d with divϕ = 0, andχε ∈ L∞(0, T ;Xκ(Ω; {0,1})) is the unique
renormalized solution of the transport equation

∂tχε + (Ψεvε) · ∇χε = 0 inQT , (4.2)

χε|t=0 = χ0 in Ω. (4.3)
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Throughout this section we will frequently use the fact that

(Ψεv ⊗ ψε ∗ w,∇ψε ∗ w)Ω = −(Ψεv ⊗ ψε ∗ w,∇ψε ∗ w)Ω = 0 (4.4)

for all v,w ∈ L2(Ω)d , divv = 0. This follows from integration by parts and from divΨεv = 0,
n · Ψε|∂Ω = 0.

First of all, we need

LEMMA 4.1 Let Assumption 1.1 hold and letT , ε > 0. Then for everyv0 ∈ L2
σ (Ω),

f ∈ Lq
′

(0, T ;Vq(Ω)
′), andχ ∈ L∞(QT ; [0,1]), there is a uniquev ∈ L∞(0, T ;L2

σ (Ω)) ∩

Lq(0, T ;Vq(Ω)) with ∂tv ∈ Lq
′

(0, T ;Vq(Ω)
′) solving

−(v, ∂tϕ)Q − (v0, ϕ(0))Ω − (Ψεv ⊗ ψε ∗ v,∇ψε ∗ v)Q + (S(χ,Dv),Dϕ)Q = 〈f, ϕ〉 (4.5)

for all ϕ ∈ C∞

(0)(Ω × [0, T ))d with divϕ = 0. Moreover,

sup
06t6T

‖v(t)‖2
2 + ‖v‖

q

Lq (0,T ;Vq )
6 C(‖f ‖

q ′

Lq
′
(0,T ;V ′

q )
+ ‖v0‖

2
2), (4.6)

‖∂tv‖Lq′ (0,T ;V ′
q )

6 M(‖f ‖
Lq

′
(0,T ;V ′

q )
, ‖v0‖

2
2) (4.7)

for some continuous functionM. Finally, if fk, f ∈ L1(0, T ;L2
σ (Ω)) ∩ Lq

′

(0, T ;Vq(Ω)
′) and

χk, χ ∈ L∞(QT ; [0,1]), k ∈ N, are bounded sequences such thatfk → f in L1(0, T ;L2(Ω))

andχk → χ in Lp(QT ) for some 16 p 6 ∞, thenvk → v ∈ C([0, T ];L2(Ω)) wherevk is the
solution of (4.5) with(f, χ) replaced by(fk, χk).

Proof. The proof of existence of solutions can be done by a standard Galerkin approximation using
the fact that

〈A(u), v〉 :=
∫
Ω

ν(χ, |Du|)Du :Dv dx, u, v ∈ V := Vq(Ω),

defines a strictly monotone, coercive, hemicontinuous bounded operatorA : V → V ′. More
precisely:

First assume that the convective term is not present, i.e.,Ψε ≡ 0. If Ω is a bounded domain,
then the lemma is a consequence of Zeidler [36, Theorem 30.A] withV as above andH = L2(Ω).
The conditions (H1)–(H6) there are easily verified. IfΩ = Rd , thenV = Vq(Rd), H = L2(Rd),
V ′

= Vq(Rd)′ is no longer an evolution triple. ButV,H, V ′ still have a common dense basis, and
the fundamental relation

(u(t), v(t))L2(Ω) − (u(0), v(0))L2(Ω) =

∫ t

0
(〈u′(s), v(s)〉 + 〈v′(s), u(s)〉)ds (4.8)

still holds for all 06 t 6 T andu, v ∈ Lq(0, T ;V ) with u′, v′
∈ Lq

′

(0, T ;V ′). Then the proof of
[36, Theorem 30.A] easily carries over.

If the convective term is present, the proof can be easily modified using the fact that

(Ψεv ⊗ ψε ∗ v,∇ψε ∗ v)Q = 0

due to (4.4). Therefore the energy estimate for the case with convective term is the same as without
it. Moreover, in order to pass to the limit in the convective term during the Galerkin approximation,
one simply uses the fact that

X := {u ∈ Lq(0, T ;Vq(Ω)) : ∂tu ∈ Lq
′

(0, T ;Vq(Ω)
′)} ↪→↪→ L1(0, T ;L2

loc(Ω))
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because of (2.1) applied toX0 = W1
q (ΩR), X1 = L2(ΩR), andX2 = W−1

q ′ (ΩR), whereΩR =

Ω ∩ BR(0) andR > 0 is arbitrary. This is sufficient to show that

lim
n→∞

(Ψεvn ⊗ ψε ∗ vn,∇ψε ∗ ϕ)QT = (Ψεv ⊗ ψε ∗ v,∇ψε ∗ ϕ)QT

for all ϕ ∈ C∞

(0)(Ω × [0, T ))d with divϕ = 0 if vn ⇀ v in X.
Furthermore, we note that the estimate (4.6) follows from the usual energy estimate. In order to

estimate∂tv, we observe that

‖S(χ,Dv)‖
q ′

Lq
′
(QT )

=

∫
QT

|S(χ,Dv)|q/(q−1) d(x, t) 6 C

∫
QT

|Dv|q d(x, t).

Moreover, sinceΨεu = Pσ (ψε ∗ u) and sincePσ is continuous onLs(Ω)d for all 1 < s < ∞, we
conclude that

‖Ψεv‖s 6 Cs‖ψεv‖s 6 Cε,s‖v‖2, ‖∇ψε ∗ ϕ‖q 6 Cε,q‖ϕ‖Vq (Ω)

for all 2 6 s < ∞. Therefore∣∣∣∣∫
QT

Ψεv ⊗ ψε ∗ v : ∇ψε ∗ ϕ d(x, t)

∣∣∣∣ 6 CsT
1/q ′

( sup
t∈[0,T ]

‖ψε ∗ v(t)‖2
s )‖∇ψε ∗ ϕ‖Lq (QT )

6 Cε,s,T ‖v‖2
L∞(0,T ;L2

σ (Ω))
‖ϕ‖Lq (0,T ;Vq (Ω)),

where 1/s = 1/2 − 1/2q. Using these estimates and the equation (4.5), one easily derives (4.7).
In order to prove uniqueness and the last statement, letv,w be two solutions of (4.5). Then

−(v − w, ∂tϕ)QT + (S(χ,Dv)− S(χ,Dw),Dϕ)QT

= (Ψε(v − w)⊗ ψε ∗ v,∇ψε ∗ ϕ)QT + (Ψεw ⊗ ψε ∗ (v − w),∇ψε ∗ ϕ)QT

for all ϕ ∈ C∞

(0)(Ω× [0, T ))d with divϕ = 0. Choosingϕ = (w−v)χ[0,t ] , t ∈ [0, T ], via a standard
approximation and using (4.8) we conclude that

‖v(t)− w(t)‖2
2 6 ‖v(t)− w(t)‖2

2 + (S(χ,Dv)− S(χ,Dw),Dv −Dw)Qt

6 Cε( sup
06t6T

(‖v(t)‖2 + ‖w(t)‖2))

∫ t

0
‖v(s)− w(s)‖2

2 ds

sinceDv 7→ S(χ,Dv) is monotone. Hence Gronwall’s inequality impliesv ≡ w.
Finally, letfk, f, χk, χ, vk, v be as in the last statement. Then

−(vk − v, ∂tϕ)Q + (S(χk,Dvk)− S(χk,Dv),Dϕ)Q

= (S(χ,Dv)− S(χk,Dv),Dϕ)Q + 〈fk − f, ϕ〉

+ (Ψε(vk − v)⊗ ψε ∗ vk,∇ψε ∗ ϕ)QT + (Ψεv ⊗ ψε ∗ (vk − v),∇ψε ∗ ϕ)QT

for all ϕ ∈ C∞

(0)(Ω× [0, T ))d with divϕ = 0. Choosingϕ = (vk−v)χ[0,t ] , t ∈ [0, T ], we conclude,
using the boundedness ofvk, v, that
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‖vk(t)− v(t)‖2
2 + (S(χk,Dvk)− S(χk,Dv),Dvk −Dv)Qt

6 Cε

(
‖fk − f ‖L1(0,T ;L2) + ‖S(χ,Dv)− S(χk,Dv)‖Lq′ (QT )

+

∫ t

0
‖vk(s)− v(s)‖2

2 ds

)
.

Thus

sup
06t6T

‖vk(t)− v(t)‖2
2 6 Cε,T (‖fk − f ‖L1(0,T ;L2) + ‖S(χ,Dv)− S(χk,Dv)‖Lq′ (QT )

)

by Gronwall’s inequality. The second term can be estimated as

‖S(χ,Dv)− S(χk,Dv)‖
q ′

Lq
′
(QT )

6 C0

∫
QT

|χ − χk| |Dv|
q d(x, t)

6 C1

∫
QT

|χ − χk| |Dϕ|
q d(x, t)+ C2

∫
QT

|Dv −Dϕ|
q d(x, t)

for all ϕ ∈ C∞

(0)(QT ). Now we observe that the first term on the right-hand side converges to zero as

k → ∞ sinceχk → χ in Lp(QT ), and the second term is arbitrarily small sinceC∞

(0)(QT ) is dense

in Lq(0, T ; Ẇ1
q (Ω)). Hence limk→∞ ‖S(χ,Dv)−S(χk,Dv)‖Lq′ (QT )

= 0. Altogether this implies

limk→∞ sup06t6T ‖vk(t)− v(t)‖2
2 = 0. 2

THEOREM 4.2 Let Assumption 1.1 hold. Then for everyε, T > 0, v0 ∈ L2
σ (Ω), χ0 ∈

L∞(Ω; {0,1}) if κ = 0, and χ0 = χΩ+

0
if κ > 0, whereΩ+

0 b Ω is a bounded

domain withC1-boundary, there is a solutionvε ∈ L∞(0, T ;L2
σ (Ω)) ∩ Lq(0, T ;Vq(Ω)), χε ∈

L∞(0, T ;Xκ(Ω; {0,1})) of (4.1)–(4.3). Moreover, every solution satisfies theenergy equality

1
2‖vε(t)‖

2
2 + κ‖∇χε(t)‖M+

∫ t

s

∫
Ω

S(χε,Dvε) :Dvε dx dτ =
1
2‖vε(s)‖

2
2 + κ‖∇χε(s)‖M (4.9)

for all s, t ∈ (0, T ), s 6 t , wheret 7→
1
2‖vε(t)‖

2
2 andt 7→ ‖∇χε(t)‖M are absolutely continuous

functions satisfying

d

dt

1

2
‖vε(t)‖

2
2 = 〈∂tvε(t), vε(t)〉Ω ,

d

dt
‖∇χε(t)‖M = −〈Hχε(t), Ψε ∗ vε(t)〉 if κ > 0

for almost allt ∈ (0, T ) and∂tvε, κ〈Hχε(t), ψε ∗ ·〉 ∈ Lq
′

(0, T ;Vq(Ω)
′).

Proof. Let

X1 := {u ∈ Lq(0, T ;Vq(Ω)) : ∂tu ∈ Lq
′

(0, T ;Vq(Ω)
′)}

normed in a suitable way. Moreover, letX0 := C([0, T ];L2
σ (Ω)) and letXα = (X0, X1)α, where

(·,·)α is an exact interpolation functor of typeα ∈ (0,1) (e.g. the real interpolation functor, cf. Bergh
and L̈ofström [5]). Note that by (4.8),X1 ↪→ X0. Furthermore, we note that the inclusion ofX1 into
L1(0, T ;L2

loc(Ω)) is compact because of (2.1) applied toW1
q (ΩR),L

2(ΩR), andW−1
q ′ (ΩR), where

ΩR = Ω ∩BR(0) andR > 0 is arbitrary. By [5, Theorem 3.8.1] the same holds forXα, α ∈ (0,1],
in placeX1.
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We define a mappingF : X0 → X1 as follows: For givenu ∈ X0 let χu ∈

L∞(0,∞;Xκ(Ω; {0,1})) be the solution of the transport equation (2.9)–(2.10) withv in (2.9)
replaced byΨεu. Then

X0 3 u 7→ χu ∈ Lp(QT ), 1< p < ∞, (4.10)

is strongly continuous by Lemma 2.5. Moreover, the mappingXα 3 u 7→ χu ∈ Lp(QT ), α ∈ (0,1],
is even compact by the following argument: Ifuk ∈ Xα, k ∈ N0, is a bounded sequence, then after
passing to a suitable subsequence,uk → u in L1(0, T ;L2

loc(Ω)) by the observations above. This
implies the same statement forΨεuk, Ψεu. Henceχuk → χu again by Lemma 2.5.

Now letv = F(u) be the solution of (4.5) withχ = χu and

〈fu, ϕ〉 := κ

∫ T

0
〈Hχu(t), Ψεϕ(t)〉 dt.

CLAIM . F : X0 → X0 is continuous,F : Xα → X0, α ∈ (0,1], is compact, andF : X0 → X1 is
bounded.

Proof of Claim. First let κ = 0. ThenF : X0 → X0 is continuous because of Lemma 4.1 and
(4.10). Moreover,F : X0 → X1 is bounded by (4.6) and (4.7). Finally,F : X1 → X0 is compact
sinceX1 3 u 7→ χ0 ∈ Lp(QT ) is compact and the mapping ofχu to the solutionv = F(u) ∈ X0
of (4.5) withχ = χu andf = 0 is continuous.

In the caseκ > 0 it remains to prove thatX0 3 u 7→ fu ∈ Lq
′

(0, T ;Vq(Rd)′) is bounded, that
X0 3 u 7→ fu ∈ L1(0, T ;L2

σ (Rd)) is continuous, and thatXα 3 u 7→ fu ∈ L1(0, T ;L2
σ (Rd)),

α ∈ (0,1], is compact. Then the claim follows in the same way.
Firstly, we estimatefu. SinceΩ = Rd if κ > 0,Ψεϕ = ψε ∗ ϕ and

|〈Hχu(t), Ψεϕ(t)〉| 6 Cκ‖∇χu(t)‖M‖∇ψε ∗ ϕ‖C0
b (Rd )

6 Cεκ‖∇χu(t)‖M‖ϕ‖Y ,

whereY = L2
σ (Rd) or Y = Vq(Rd) and

‖∇χu‖L∞(0,T ;M(Rd )) 6 M(‖Ψεu‖C([0,T ];C2
b (Rd ))

)‖χ0‖BV (Rd )

6 M ′(ε, ‖u‖C([0,T ];L2
σ (Rd )))‖χ0‖BV (Rd )

by (2.12). Hence

‖fu‖Lq′ (0,T ;V ′
q )

+ ‖fu‖L1(0,T ;L2
σ )

6 M(ε, T , ‖u‖C([0,T ];L2
σ (Rd )))κ‖χ0‖BV (Rd ).

In particular this implies

‖F(u)‖X1 6 M(ε, T , ‖v0‖2, ‖u‖L∞(0,T ;L2(Ω)), κ‖∇χu‖L∞(0,T ;M(Ω))) (4.11)

for another continuous functionM andκ > 0 by (4.6) and (4.7).
Now let uk ∈ Xα, k ∈ N, be a bounded sequence and letα ∈ (0,1]. If α = 1, thenΨεuk ∈

C([0, T ];C1(BR(0))), k ∈ N, is precompact for anyR > 0 sinceΨεuk ∈ C([0, T ];C2
b(R

d)) and

∂tΨεuk = Ψε∂tuk ∈ Lq
′

(0, T ;C2
b(R

d)) are uniformly bounded. Now using again [5, Theorem
3.8.1] we conclude thatΨεuk ∈ C([0, T ];C1(BR(0))), k ∈ N, is precompact ifα ∈ (0,1).
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Therefore for a suitable subsequence,Ψεuk → Ψεu in C([0, T ];C1(BR(0))) for anyR > 0 as
k → ∞. Hence (2.16) implies that

lim
k→∞

〈Hχuk (t)
, ϕ〉 = 〈Hχu(t), ϕ〉 for all ϕ ∈ C1

0(R
d)d

uniformly in t ∈ [0, T ]. Moreover, since suppχuk , k ∈ N, is contained in a compact setK by
Lemma 2.4, andC2(K) ↪→↪→ C1(K),

lim
k→∞

sup
t∈[0,T ]

sup
‖ϕ‖

C2
b
(Rd )61

|〈Hχuk (t)
, ϕ〉 − 〈Hχu(t), ϕ〉| = 0.

Thereforefuk → fu ∈ L1(0, T ;L2
σ (Rd)) sinceΨε : L2(Rd) → C2

b(R
d). By the same arguments

it follows thatfu ∈ L1(0, T ;L2
σ (Rd)) depends continuously onu ∈ X0. This finishes the proof of

the claim.

Now, sinceF : Xα → X1 is bounded andF : Xα → X0 is continuous for allα ∈ [0,1],
the interpolation inequality‖u‖Xα 6 ‖u‖1−α

X0
‖u‖αX1

implies thatF : Xα → Xα is continuous for
all α ∈ [0,1). Similarly, the boundedness ofF : Xα → X1, α ∈ [0,1], and the compactness
of F : Xα → X0, α ∈ (0,1], yields the compactness ofF : Xα → Xα, α ∈ (0,1]. Altogether
F : Xα → Xα is a completely continuous mapping for allα ∈ (0,1).

In order to prove the existence of a fixed pointvε = F(vε) ∈ Xα, α ∈ (0,1), we will use the
Leray–Schauder principle (cf. e.g. Sohr [28, Lemma 3.1.1, Chapter II]), for which it only remains
to verify the following condition for a suitableR > 0:

If v = λF(v) for somev ∈ Xα, λ ∈ [0,1], then‖v‖Xα 6 R. (4.12)

Therefore we assume thatv = λF(v) for somev ∈ Xα, λ ∈ [0,1], α ∈ (0,1). If λ = 0, then
obviously,‖v‖Xα = 0 6 R for anyR > 0. Thus it remains to consider the caseλ > 0. Set
α = λ−1 > 1. Thenu = αv = F(v) solves

−(u, ∂tϕ)QT − (v0, ϕ(0))Ω − (Ψεu⊗ ψε ∗ u,∇ψε ∗ ϕ)QT + (S(χv,Du),Dϕ)QT

= κ

∫ T

0
〈Hχv(t), Ψεϕ(t)〉 dt

for all ϕ ∈ C∞

(0)(Ω × [0, T ))d with divϕ = 0. Hence choosingϕ = uχ[0,t ] (after a standard
approximation) we conclude that

1
2‖u(t)‖2

2 +

∫ t

0

∫
Ω

S(χv,Du) :Dudx dτ =
1
2‖v0‖

2
2 + κ

∫ t

0
〈Hχv(τ ), Ψεu(τ)〉 dτ.

where we have used (4.4).
Now, sinceΨεu(τ) = αΨεv(τ), Lemma 2.3 implies that∫ t

0
〈Hχv(τ ), Ψεu(τ)〉 dτ = α (|∇χ0|(Ω)− |∇χv(t)|(Ω)) if κ > 0.

Hence

1
2α‖v(t)‖2

2 + κ|∇χv(t)|(Ω)+ αq−1c0

∫ t

0

∫
Ω

|Dv|q dx dτ 6 1
2‖v0‖

2
2 + κ|∇χ0|(Ω) =: E0
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for all 0 6 t 6 T , wherec0 is as in (1.12). Hence, using (4.11) and the last estimate, we conclude
that

‖v‖Xα 6 Cλ‖F(v)‖X1 6 M ′(ε, T , ‖v‖L∞(0,T ;L2(Ω)), κ‖∇χv‖L∞(0,T ;M(Ω))) 6 M ′′(ε, T ,E0)

for some continuous functionsM ′,M ′′. Hence forR := M ′′(ε, T ,E0) the condition (4.12) is valid.
This implies that there is a fixed pointvε = F(vε) ∈ Xα, which is a solution of (4.1)–(4.3) by
definition ofF .

The remaining statements easily follow from (4.8) and (2.13). 2

5. Proofs of the main theorems

5.1 Approximation sequence

Throughout this section we assume that the assumptions of Theorem 1.6 ifκ > 0 and Theorem 1.9
if κ = 0 hold. Moreover, we denote byE0 =

1
2‖v0‖

2
2 + κ|∇χ0|(Ω) the initial energy of the flow.

For everyε > 0 let (vε, χε) be an approximate solution due to Theorem 4.2 forT = 1/ε.
Because of the uniform bounds of(vε, χε) given by the energy equality (4.9) and

‖S(χk,Dvk)‖
q ′

Lq
′
(QT )

=

∫
QT

|S(χk,Dvk)|
q/(q−1) d(x, t) 6 C

∫
QT

|Dvk|
q d(x, t)

due to (1.12) there is a subsequence(vεk , χεk ) ≡ (vk, χk), k ∈ N, such that

vk ⇀ v in Lq(0,∞;Vq(Ω)), (5.1)

vk ⇀
∗ v in L∞(0,∞;L2

σ (Ω)), (5.2)

S(χk,Dvk) ⇀ S̃ in Lq
′

(Q), (5.3)

χk ⇀
∗ χ in L∞(Q), (5.4)

∇χk ⇀
∗

∇χ in L∞(0,∞;H−s(Ω)), s > d/2, if κ > 0, (5.5)

for somev ∈ L∞(0,∞;L2
σ (Ω)) ∩ Lq(0,∞;Vq(Ω)), χ ∈ L∞(0,∞;Xκ(Ω)) with Xκ = BV if

κ > 0 andXκ = L∞ if κ = 0, andS̃ ∈ Lq
′

(Q). Here the functionsvε, χε are extended by 0 for
t > 1/ε.

5.2 Passing to the limit in the transport equation and the convective term

We pass to the limit in the transport equation using the following lemma, which is a variant of
[18, Lemma 5.1]:

LEMMA 5.1 Let (vk, χk)k∈N be bounded inLqloc([0,∞);W1
q (Ω; Rd)) × L∞(Q), 1 < q < ∞,

such that

vk ⇀ v in Lq(0, T ;W1
q (Ω)

d) for all T > 0, (5.6)

χk ⇀
∗ χ in L∞(Q). (5.7)

If (∂tχk)k∈N is bounded inLq
′

(0, T ;W−1
q ′,loc(Ω)) for anyT > 0, thenχkvk → χv in D′(Q).
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Proof. First of all, since the statement is local, it is sufficient to consider the case thatΩ is a bounded
domain and(0,∞) is replaced by(0, T ), T > 0 arbitrary. Because ofLq

′

(Ω) ↪→↪→ W−1
q ′ (Ω), (2.1)

yields
χkj → χ∗ in Lq

′

(0, T ;W−1
q ′ (Ω))

for some subsequence. Sinceχk ⇀∗ χ in L∞(QT ), we haveχ∗
= χ and the full sequenceχk

converges strongly inLq
′

(0, T ;W−1
q ′ (Ω)). This implies thatχkvk → χv in D′(QT ). 2

COROLLARY 5.2 Let(v, χ) be as in (5.1)–(5.5). Then(v, χ) solves the transport equation (1.10)–
(1.11).

Proof. It only remains to observe that∂tχk is bounded inLq
′

(0, T ;W−1
q ′,loc(Ω)) for any T > 0:

Because of
(χk, ∂tϕ)QT + (χk, vk · ∇ϕ)QT = 0 for all ϕ ∈ C∞

0 (QT )

we estimate

|(χk, ∂tϕ)QT | 6 ‖vk‖Lq ([0,T ]×ΩR)‖∇ϕ‖
Lq

′
(QT )

6 C(‖vk‖Lq (0,T ;Vq (Ω)) + T 1/q
‖vk‖L∞(0,T ;L2(Ω)))‖∇ϕ‖

Lq
′
(QT )

for all ϕ ∈ Lq
′

(0, T ;W1
q ′(Ω)) with suppϕ ⊆ ΩR, ΩR = Ω ∩ BR, R > 0. Note thatVq(Rd) ∩

L2
σ (Rd) ↪→ Lq(BR(0)) if Ω = Rd andVq(Ω) ↪→ Lq(Ω) if Ω is bounded. 2

The last corollary and (2.11) yield

‖χ‖
p

Lp(QT )
= ‖χ‖L1(QT )

= T ‖χ0‖L1(Ω) = ‖χk‖
p

Lp(QT )

for all 1 6 p < ∞ since
∫
χ(t)dx =

∫
χ0 dx for almost allt > 0. Hence

χk → χ in Lp(QT ) for all 1 6 p < ∞, T > 0.

In particular this implies thatχ(x, t) ∈ {0,1} almost everywhere.
In order to pass to the limit in the convective term, we use the following lemma.

LEMMA 5.3 Letvk, v be as above and letq > 2d/(d + 2). Then

vk → v in Lq
′

(0, T ;L2
loc(Ω)) (5.8)

for all T > 0. In particular,

lim
k→∞

(Ψkvk ⊗ ψk ∗ vk,∇ψk ∗ ϕ)Q = (v ⊗ v,∇ϕ)Q

for all ϕ ∈ C∞

(0)(Q)
d .

Proof. First let|Ω| < ∞. SinceS(χk,Dvk) andΨkvk⊗ψk ∗vk are uniformly bounded inLq
′

(QT ),
L∞(0, T ;L1(Ω)), resp., and∣∣∣∣∫ ∞

0
〈Hχk(t), ϕ(t)〉 dt

∣∣∣∣ 6 sup
06t<∞

‖∇χk(t)‖M(Rd )

∫
∞

0
‖ϕ(t)‖C1

b (Rd )
dt if κ > 0,
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∂tvk is uniformly bounded inLq
′

(0, T ;H−m(Ω)) for some suitablem ∈ N. Using (2.1) with
Vq(Ω) ∩ L2(Ω) ↪→↪→ L2(Ω) ↪→ H−m(Ω) when q > 2d/(d + 2) proves (5.8) in the case
|Ω| < ∞. The caseΩ = Rd follows from the first part applied toΩ ′ b Rd .

Finally, (5.8) implies thatψk ∗ vk · ∇ψk ∗ϕ → v · ∇ϕ in Lq
′

(0, T ;L2(Ω)) for all ϕ ∈ C∞

(0)(Q)
d

andT > 0 sinceψk converges strongly to the identity ask → ∞. Together with (5.2) this implies
the last statement. 2

5.3 Case without surface tension

Obviously, in the case of two Newtonian fluids, i.e.,q = 2 andν(j, s) = νj are constant, the strong
convergence ofχk and the weak convergence ofDvk yield S̃ = S(χ,Dv). For the caseq 6= 2 and
κ = 0, we use the following lemma:

LEMMA 5.4 Letκ = 0 and letq > 2d/(d + 2)+ 1. Then

S(χ(x, t),Dv(x, t)) = S̃(x, t) for almost all(x, t) ∈ Q. (5.9)

Proof. By the results so far we obtain

−(v, ∂tϕ)Q − (v0, ϕ(0))Ω − (v ⊗ v,∇ϕ)Q + (S̃,Dϕ)Q = 0 (5.10)

for all ϕ ∈ C∞

(0)([0,∞) ×Ω)d with divϕ = 0. Furthermore,q > 2d/(d + 2) + 1 implies that for
all T > 0,

|(v ⊗ v,∇ϕ)QT | 6 C‖∇ϕ‖Lq (QT ) (5.11)

for all ϕ ∈ C∞

(0)([0, T ) ×Ω)d with divϕ = 0 because of [16, Lemma 2.44, Chapter 5]. Moreover,

sinceS̃ ∈ Lq
′

(Q), equation (5.10) implies that∂tv ∈ Lq
′

(0, T ;Vq(Ω)
′) for all T > 0. Therefore

we can chooseϕ = v|QT in (5.10) to obtain

1
2‖v(T )‖2

2 + (S̃,Dv)QT =
1
2‖v0‖

2
2,

where we have used (4.8) and(v ⊗ v,∇v)QT = 0 (cf. [16, Lemma 4.45, Chapter 5]). Moreover,

1
2‖vk(T )‖

2
2 + (S(χk,Dvk),Dvk)QT =

1
2‖v0‖

2
2

and therefore

lim sup
k→∞

(S(χk,Dvk),Dvk)QT =
1
2‖v0‖

2
2 − lim inf

k→∞

1
2‖vk(T )‖

2
2

6 1
2‖v0‖

2
2 −

1
2‖v(T )‖2

2 = (S̃,Dv)QT .

Thus we are in a position to apply Theorem 2.6 withA(x, s, ξ) = S(s, ξ), zk = Dvk, yk = χk
to conclude that for a suitable subsequence limk→∞ S(χk,Dvk) = S̃ in measure. SinceT > 0 is
arbitrary, this implies (5.9). 2

Proof of Theorem 1.9. For the caseκ = 0 the results obtained so far show that(v, χ) is a weak
solution of (1.21) forf = 0 together with (1.10)–(1.11). The general casef ∈ Lq

′

(0,∞;Vq(Ω)
′)

can be proved in the same way with minor modifications. 2

REMARK 5.5 The conditionq > 2d/(d + 2) + 1 is only needed to estimate the convective term
as in (5.11). For all other parts of the proof onlyq > 2d/(d + 2) is needed. Hence in the case of
the Stokes equations, where the convective termv ·∇v is neglected (cf. Remark 1.10), the condition
q > 2d/(d + 2) is sufficient to prove existence of weak solutions.
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5.4 Case with surface tension: properties of the interface

It remains to consider the case with surface tensionκ > 0. For this letΩ+

k (t) = Xk,t (Ω
+

0 ), where
Xk,t = XΨkvk (t) is the flow map associated to (2.14)–(2.15) withv = Ψkvk as described above.
Moreover, letΓk(t) = ∂Ω+

k (t) = Xk,t (∂Ω
+

0 ) and letΓk =
⋃

06t<∞
Γk(t)× {t}.

First we will show that in the caseq > d or d = 2, Γk ∩ QT is contained in the compact set
BR(0) × [0, T ] for R = R(T ) and arbitraryT > 0. Then a suitable subsequence will converge in
the Hausdorff distance.

LEMMA 5.6 Let d = 2, κ > 0. ThenΓk(t) ⊆ BR(0) for all t ∈ (0, T ) and someR =

R(T ,E0,Ω
+

0 ).

Proof. SinceHd−1(Γk(t)) 6 κ−1E0, obviously diam(Ω+

k (t)) 6 E0/2κ. Moreover, by the trans-
port equation ∫

Ω+

k (t)

x dx =

∫
Ω+

0

x dx +

∫ t

0

∫
Ω+

k (τ )

vk · 1dx dτ,

where1 = (1, . . . ,1)T , which implies∣∣∣∣∫
Ω+

k (t)

x dx

∣∣∣∣ 6 C(Ω+

0 )+ t |Ω+

0 |
1/2 sup

06τ6t
‖v(τ)‖2 6 C(T ,E0,Ω

+

0 )

for all 0 6 t 6 T since|Ω+

k (τ )| = |Ω+

0 | for all τ > 0. ThereforeΩ+

k (t) ⊆ BR(0) for 0 6 t 6 T

with R = C(T ,E0,Ω
+

0 )+ E0/2κ. 2

In the caseq > d, v ∈ Lq(0, T ;C0(Rd)) sinceVq(Rd) ∩ L2
σ (Rd) ↪→ C0(Rd) and we can prove

thatΓk(t) are equi-Ḧolder continuous in the following sense:

LEMMA 5.7 Letq > d. Then

dH (Γk(t1), Γk(t2)) 6 C|t1 − t2|
1/q ′

for all 0 6 t1, t2 6 T , T > 0, whereC depends only onE0, q, T . In particular,Γk(t) ⊆ BR(0) for
all 0 6 t 6 T for someR = R(T ,E0,Ω

+

0 ).

Proof. By symmetry it suffices to show thatΓk(t1) ⊆ (Γk(t2))ε for ε = C|t1 − t2|
1/q ′

. Let x1 ∈

Γk(t1). Then by definition ofΓk(t) there is a curvex(t) such thatx(t1) = x1 andx′(t) = vk(x(t), t)

for t > 0. Moreover,x2 = x(t2) ∈ Γk(t2) and

|x1 − x2| 6
∫ t2

t1

|vk(x(t), t)| dt 6 C(E0, T , q)|t1 − t2|
1/q ′

, 0 6 t1 6 t2 6 T .

This proves the statement. 2

COROLLARY 5.8 Letκ > 0 and letq > d or letd = 2. Then there is a subsequence ofΓk, k ∈ N,
(denoted again byΓk, k ∈ N) and a closed setΓ ∗

⊂ Q such that for every rationalT > 0,

Γ ∗

k ∩QT → Γ ∗

T with respect todH ask → ∞

for some compact setΓ ∗

T ⊆ QT with Γ ∗

T ∩QT = Γ ∗
∩QT .
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Proof. By the previous two lemmas,Γk ∩QT is contained in a compact setAT . Hence using the
compactness of the metric space(K(A), dH ) for compactA ⊂ RN one easily gets a subsequence
of Γk, k ∈ N, that converges in(K(AT ), dH ) for every rationalT > 0 to some compact setΓ ∗

T . By
the definition ofdH one easily verifies thatΓ ∗

T1
∩QT1 = Γ ∗

T2
∩QT1 if 0 < T1 6 T2. From this the

existence ofΓ ∗
⊆ Q is immediate. 2

In the caseq > d, we even obtain:

COROLLARY 5.9 Letq > d. ThenΓk(t) → Γ ∗
t for all t > 0 in the Hausdorff distance ask → ∞,

whereΓ ∗
t = {x ∈ Rd : (x, t) ∈ Γ ∗

}.

Proof. First of all, for a fixedt > 0 and a suitable subsequence,Γkj (t) → Γ ∗∗
t in the Hausdorff

distance asj → ∞. We claim thatΓ ∗∗
t = Γ ∗

t . The inclusionΓ ∗∗
t ⊆ Γ ∗

t is obvious. Conversely, let
(x, t) ∈ Γ ∗

t . Then there is a sequence(xkj , tkj ) ∈ Γkj such that limj→∞(xkj , tkj ) = (x, t). But by

Lemma 5.7 there areyj ∈ Γkj (t) such that|yj − xkj | 6 C(E0, T )|t − tkj |
1/q ′

. Hence

|x − yj | 6 |x − xkj | + |xkj − yj | 6 |x − xkj | + C(E0)|t − tkj |
1/q ′

,

which shows thatΓkj (t) 3 yj → x ∈ Γ ∗
t . ThusΓ ∗

t ⊆ Γ ∗∗
t . ThereforeΓ ∗

t = Γ ∗∗
t for any

accumulation pointΓ ∗∗
t of Γk(t) in the Hausdorff distance, which impliesΓk(t) → Γ ∗

t for all
t > 0 ask → ∞. 2

The last corollary gives some compactness in time for the sequence of interfacesΓk(t) if q > d

for d = 2,3. But now there is a crucial difference between the casesd = 2 andd = 3. If d = 3
and t > 0 is fixed, then the boundedness ofHd−1(Γk(t)) does not imply that a limit ofΓk(t) in
the Hausdorff distance has finiteHd−1-measure. (It is easy to construct sequences of surfaces of
fixed area with many “small fingers” that will converge to a set of positive Lebesgue measure.) This
cannot happen in dimension two as the following lemma shows:

LEMMA 5.10 LetΓk ⊂ R2, k ∈ N, be a sequence of compact Lipschitz curves andΓk → Γ ∗ in
the Hausdorff distance for some compact setΓ ∗

⊂ R2. ThenH1(Γ ∗) 6 lim inf k→∞H1(Γk).

Proof. Let δ > 0 andq > 1 be fixed. Then there is anN = N(δ, q) such thatdH (Γk, Γ ∗) 6
(1 − 1/q)δ/2 for all k > N . Moreover, for anyε > 0 there is somekε > N such thatL :=
H1(Γkε ) 6 lim inf k→∞H1(Γk)+ ε. Then there is a coveringΓkε ⊆

⋃M
j=1Bδ/2q(xj ) such thatM 6

(q/δ)H1(Γkε ) + 1. (Letγk : [0, L] → Rd be a parameterization by arc-length andtk = k · (δ/q),
k = 0, . . . ,M − 1, whereM = [(q/δ)L] + 1, andtM = L; then choosexj =

1
2(γk(tj−1)+ γk(tj )).)

ThereforeΓ ∗
⊆

⋃M
j=1Bδ/2(xj ) and

H1
δ (Γ

∗) 6 δM 6 qH1(Γkε )+ δ 6 q(lim inf
k→∞

H1(Γk)+ ε)+ δ,

where

H1
δ (A) = inf

{ ∞∑
j=1

2rj : A ⊆

∞⋃
j=1

Brj (xj ),0< rj 6 δ
}
.

Sinceq > 1 andε > 0 are arbitrary,H1
δ (Γ

∗) 6 lim inf k→∞H1(Γk) + δ for everyδ > 0, which
proves the lemma. 2

COROLLARY 5.11 Letq > d = 2 andκ > 0. ThenH1+q ′

(Γ ∗
∩QT ) < ∞ for all T > 0.
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Proof. By Corollary 5.9,Γk(t) → Γ ∗
t in the Hausdorff distance ask → ∞. Moreover, by

Lemma 5.10,H1(Γ ∗
t ) 6 lim inf k→∞H1(Γk(t)) 6 κ−1E0 for all t > 0. Now choose 0= t0 <

t1 < · · · < tN = T , T > 0, with |tj − tj+1| 6 δ = (r/3C)q
′

for r > 0 andN 6 2T δ−1, where
C is the same constant as in Lemma 5.7. Since the length ofΓk(tj ) is bounded byκ−1E0, there are
ballsBr/3(xj,l), l = 1, . . . ,Mj , j = 1, . . . , N , withMj 6 C(E0)r

−1 coveringΓk(tj ). Now choose
k ∈ N so large thatdH (Γk(tj ), Γ ∗

tj
) 6 r/3 for j = 1, . . . , N . Using Lemma 5.7 andΓk(t) → Γ ∗

t ,
we conclude that

dH (Γ
∗
t1
, Γ ∗

t2
) 6 C|t1 − t2|

1/q ′

.

Then for|t − tj | 6 δ,

Γ ∗
t ⊆ (Γ ∗

tj
)r/3 ⊆ (Γk(tj ))2r/3 ⊆

Mj⋃
l=1

Br(xj,l).

Thus

Γ ∗
∩QT ⊆

N⋃
j=1

Mj⋃
l=1

Br(xj,l)

where the number of balls on the right-hand side is bounded byCr−1−q ′

. Sincer > 0 was arbitrary,
this implies thatH1+q ′

(Γ ∗) 6 C(E0, q). 2

5.5 Case with surface tension: end of proof

Using Corollary 5.11 we obtain:

LEMMA 5.12 Letκ > 0 and letq > d = 2. Then

S(χ(x, t),Dv(x, t)) = S̃(x, t) for almost all(x, t) ∈ Q. (5.12)

Proof. Because of Corollary 5.11,H3(Γ ∗
∩ QT ) = 0 for all T > 0. HenceBR(0) × [0, T ] =⋃

∞

j=1Qj∪M withM = Γ ∗
∩QT andH3(M) = 0, whereQj = (aj , bj )×Brj (xj ) andQj∩M = ∅.

Now it is sufficient to prove that (5.12) holds for allϕ with suppϕ ⊂ Qj , which shall be arbitrary
but fixed in the following. Then we chooseη ∈ C∞

0 (Qj ) with η ≡ 1 on suppϕ. Because of the
convergence ofΓk in Hausdorff distance, for every fixedj ∈ N we have(Γk)εk ∩ Qj = ∅ for
sufficiently largek ∈ N. Henceχεk = l ∈ {0,1} is constant onQj for suitably largek, and
wk := PL2

σ (R2)(ηvk) ∈ L∞(0,∞;L2
σ (R2)) ∩ Lq(0,∞;Vq(R2)) solves

−(wk, ∂tu)Q + (wk|t=0, u(0))R2 − (Ψkwk ⊗ wk,∇u)Q + (S(l,Dwk),Du)Q = 〈fk, u〉

for all u ∈ C∞

(0)([0,∞)× R2)2 with div u = 0, with a right-hand sidefk satisfying

fk → f ∈ Lq
′

(0,∞;Vq(R2)′) ask → ∞.

Moreover,wk ⇀ w in Lq(0,∞;Vq(R2)) and weak-∗ in L∞(0,∞;L2
σ (R2)), and it can be shown

by the same argument as in the caseκ = 0 (cf. Lemma 5.4) thatDwk → Dw in measure. In
particular this implies̃S = S(l,Dv) = S(χ,Dv) almost everywhere on suppϕ. Sinceϕ ∈ C∞

0 (Q)

with suppϕ ⊂ Qj andQj have been arbitrary, (5.12) follows. 2
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Finally, we consider the sequence of oriented general varifoldsVk(t), t ∈ [0,∞), associated to
Γk(t), i.e.,

〈Vk(t), ϕ〉 :=
∫

Rd
ϕ(x, nk(x))d|∇χk(t)|, ϕ ∈ C0(Rd × Sd−1),

wherenk = −∇χk/|∇χk|, and we set

〈Vk, ϕ〉 =

∫
∞

0
〈Vk(t), ϕ(t)〉 dt for all ϕ ∈ L1(0,∞;C0(Rd × Sd−1)).

Hence for a suitable subsequence

Vk ⇀
∗ V in L∞(0,∞;H−s(Rd × Sd−1)), s > (2d − 1)/2, (5.13)

for someV ∈ L∞
ω (0,∞;M(Rd × Sd−1)) sinceVk ∈ L∞

ω (0,∞;M(Rd × Sd−1)) is uniformly
bounded andM(Rd × Sd−1) ↪→ H−s(Rd × Sd−1). Then by choosing a test function of the form
ϕ(x, s, t) = s · ψ(x, t), ψ ∈ C∞

(0)([0,∞)× Rd)d , this implies

−

∫
∞

0
〈∇χk(t), ψ(t)〉 dt =

∫
∞

0

∫
Rd

∫
Sd−1

s · ψ(x, t)dδnk(x,t) d|∇χk(t)| dt

→ −

∫
∞

0
〈∇χ(t), ψ(t)〉 dt =

∫
Ω

∫
Sd−1

s · ψ(x, t)dVx(t)d|V (t)| dt,

which shows (1.15). Similarly, choosingϕ(x, s, t) = (I − s ⊗ s) : ∇ψ(x, t) we conclude that

−

∫
∞

0
〈Hχk(t), ψ(t)〉 dt =

∫
∞

0
〈δVk(t), ψ(t)〉 dt →

∫
∞

0
〈δV (t), ψ(t)〉 dt

for all ψ ∈ C∞

(0)([0,∞)× Rd)d .

Moreover, by Theorem 2.1 there is someµ ∈ L∞
ω (Q; Prob(Rd×dsym )) such that (1.16) holds and

S(l,Dvk) ⇀

∫
S(l, λ)dµx,t (λ) in Lq

′

(Q)

for everyl ∈ [0,1]. But this implies

S(χ(x, t),Dvk) ⇀

∫
S(χ(x, t), λ)dµx,t (λ) in Lq

′

(Q).

Moreover,χk → χ in measure (for a suitable subsequence) andS(χk,Dvk) is uniformly bounded
in Lq

′

(Q). Therefore

lim
k→∞

(S(χk,Dvk),Dϕ)Q = lim
k→∞

(S(χ,Dvk),Dϕ)Q =

(∫
S(χ, λ)dµx,t (λ),Dϕ

)
Q

for eachϕ ∈ C∞

0 (Q)
d , which proves (1.14). Hence the existence of measure-valued varifold

solutions is proved.
It remains to prove the remaining properties stated in Theorem 1.6. The first statement follows

from Lemmas 5.6 and 5.7. The second statement is proved by first proving that for a suitable
subsequence|Vk(t)| ⇀ |V (t)| in M(R2) for almost allt > 0 and then using an argument due
to Plotnikov [20]:
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LEMMA 5.13 Letq > d and letκ > 0. Then there is a subsequence (again denoted by|Vk(t)|)
such that

|Vk(t)| ⇀
∗

|V (t)| inM(Rd)
for almost allt > 0.

Proof. First, we define a measureEk(t) by

〈Ek(t), ϕ〉 := κ〈|Vk(t)|, ϕ〉 +
1

2

∫
Rd

|vk(x, t)|
2ϕ(x)dx, ϕ ∈ C0(Rd).

Note thatEk(t) measures approximately the kinetic energy and “surface energy” at a given time
t > 0. We now show thatEk(t) converges weak-∗ in measure almost everywhere (for a suitable
subsequence).

By (2.8) we have

d

dt
〈|Vk(t)|, ϕ〉 =

d

dt

∫
Γk(t)

ϕ(x, t)dH1(x)

= 〈δVk(t), ϕΨkvk(t)〉 +

∫
Rd×Sd−1

s · ∇ϕ(x)s · Ψkvk(x, t)dVk(t)(x, s).

Sincevk ∈ Lq(0, T ;C0(Rd)), T > 0, is uniformly bounded, the last term in the equation above is
uniformly bounded inLq

′

(0, T ;C1
0(R

d)′). Moreover,

〈δVk(t), ϕΨkvk〉 = 〈δVk(t), Pσ (ϕΨkvk)〉 + 〈δVk(t), (I − Pσ )(ϕΨkvk)〉,

where(I − Pσ )(ϕΨkvk) ∈ Lq(0, T ;C1
0(R

d)), T > 0, and〈δVk(τ ), ·〉 ∈ L∞(0,∞;C1
0(R

d)′) are
uniformly bounded for everyϕ ∈ C1

0(R
d). (Note that in the caseΩ = Rd the Helmholtz projection

Pσ can be represented using classical singular integral operators.) Therefore the second term in the
equation above is also uniformly bounded inLq

′

(0, T ;C1
0(R

d)′). Furthermore,

〈δVk(t), Pq(ϕ(Ψkvk))〉 = 〈δVk(t), ΨkPq(ϕvk))〉 − 〈δVk(t), Pq [Ψk, ϕ]vk〉

where [A,B] denotes the commutator of two operators. Note thatPσ andΨk commute and thatPσ
is a bounded operator onCα(Rd) ∩ L2(Rd), for all α ∈ (0,1). Moreover,

‖[Ψk, ϕ]w‖C1,α(Rd ) 6 C‖w‖Cα(Rd ), w ∈ Cα(Rd),0< α < 1,

uniformly in k ∈ N. This implies that the second term in the equation above is uniformly bounded
in Lq

′

(0, T ;C1
0(R

d)′). On the other hand, by (4.1),

−κ〈δVk(t), ΨkPσ (ϕvk)〉 = −κ〈HΓk(t), ΨkPσ (ϕvk)〉

=
d

dt

1

2

∫
Rd

|vk(x, t)|
2ϕ(x)dx + 〈(1 − Pσ )(ϕvk(t)), ∂tvk(t)〉

+ (Ψkvk ⊗ ψk ∗ vk,∇ψk ∗ Pσ (ϕvk))Rd + (S(χk,Dvk),DPσ (ϕvk))Rd ,

where the second term vanishes and the last two terms are again uniformly bounded in
L1(0, T ;C1

0(R
d)′). (Note thatvk ⊗ vk ∈ L∞(0, T ;L1(Rd)) ∩ L1(0, T ;L∞(Rd)) ↪→ L1(QT ) ∩

L2(QT ) and∇vk ∈ Lq(QT ) are uniformly bounded.) Summing up, we see that

d

dt
〈Ek(t), ·〉 ∈ L1(0, T ;C1

0(R
d)′)
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is uniformly bounded. Hence

Ek → Ẽ in Lp(0, T ;H−s
loc (R

d)) if s > 2

for every 16 p < ∞ by (2.1) and thereforeEk(t) → Ẽ(t) in H−s
loc (R

d) for almost allt ∈ (0, T ).

On the other hand,vk → v in Lq
′

(0, T ;L2
loc(R

d)) by Lemma 5.3 and thereforevk(t) → v(t) in
L2

loc(R
d) for almost allt ∈ (0, T ) and for a suitable subsequence. Hence

|Vk(t)| → µ(t) in H−s
loc (R

d)

for almost allt ∈ (0, T ). But, sinceC∞

0 (R
d) is dense inC0(Rd) and|Vk(t)| is uniformly bounded

inM(Rd), we conclude that
|Vk(t)| ⇀

∗ µ(t) inM(Rd)
for almost allt ∈ (0, T ). Finally, by (5.13),

|Vk| ⇀
∗

|V | in L∞(0,∞;H−s(Rd)) for s > (2d − 1)/2

and thereforeµ = |V |. 2

LEMMA 5.14 Letq > d = 2. Then|V (t)| is supported onΓ ∗
t and|V (t)| > H1

bΓ ∗
t for almost all

t > 0.

Proof. First assume thatΩ+

0 is simply connected. Lett > 0 be such that|Vk(t)| ⇀∗
|V (t)| in

M(R2). Moreover, letxk : [0,1] → R2 be a parameterization ofΓk,t with respect to arclength times
the total lengthH1(Γk,t ). Thenxk ∈ C0,1([0,1]; R2) is uniformly bounded sinceΓk,t ⊆ BR(0)
for someR > 0, and the Lipschitz constants ofxk areH1(Γk,t ) 6 C(E0). Hence for a suitable
subsequence,xkj → x ∈ C0([0,1]; R2) for somex ∈ C0,1([0,1]; R2) andH1(Γkj ,t ) → l∗. (Note
thatH1(Γkj ,t ) are bounded below since they encloseΩ+

k (t) and|Ω+

k (t)| = |Ω+

0 |.) Then

〈|V (t)|, ϕ〉 = lim
j→∞

H1(Γkj ,t )

∫ 1

0
ϕ(xk(s))ds = l∗

∫ 1

0
ϕ(x(s))ds

for all ϕ ∈ C0(R2). Hence supp|V (t)| = x([0,1]).
Now we prove thatΓ ∗

t = x([0,1]). Obviously,x([0,1]) ⊆ Γ ∗
t . Conversely, ifx0 ∈ Γ ∗

t , then
x0 = limj→∞ xkj (sj ) for somesj ∈ [0,1]. But thensj → s0 ∈ [0,1] for a suitable subsequence
again denoted bysj . Hencex0 = limj→∞ xkj (sj ) = x(s0) ∈ x([0,1]). This proves the first part of
the lemma.

In order to prove|V (t)| > H1
bΓ ∗ we use the fact that

〈|V (t)|, ϕ〉 = l∗
∫ 1

0
ϕ(x(s))ds >

∫ 1

0
ϕ(x(s))|x′(s)| ds

since|x′(s)| 6 l∗ almost everywhere. Hence by the area formula

|V (t)|(A) >
∫ 1

0
χA(x(s))|x

′(s)| ds > H1
bΓ ∗
t (A)

for every openA ⊆ R2 (cf. e.g. [27]).
Finally, if Ω+

0 is not simply connected, we apply the argument above toN -curves instead of one
curve, whereN is the number of connected components of∂Ω+

0 . 2
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A. Appendix: Rectifiability of the varifold

One of the most challenging questions concerning measure-valued varifold solutions of the two-
phase flow with surface tension is whether there are solutions such that the unoriented general
varifold Ṽ (t) associated toV (t) via (2.7) is a(d − 1)-rectifiable varifold for almost allt > 0, i.e.,
Ṽx(t) = δP(x,t) and

〈Ṽx(t), ϕ〉 =

∫
ϕ(x, P (x, t))θt (x)dHd−1

bMt (x), ϕ ∈ C0(Ω ×Gd−1),

for some countably(d − 1)-rectifiable setMt and anHd−1
bMt -measurable positive functionθt (cf.

[27]). In particular, the case thatθt (x) is a positive integer for almost all(x, t) would give a more
satisfactory answer to the existence of measure-valued solutions.

As noted by Plotnikov [19], the major problem is that (1.14) gives only information on〈δV,ψ〉

for ψ ∈ C∞

0 (Q; Rd) with divψ = 0. But in order to apply techniques from geometric measure
theory it is necessary to have a good estimate of〈δV (t), ψ〉 for ψ ∈ C∞

0 (Q; Rd) with divψ 6= 0
or at least for suitable gradients. The following result on regularity of measure-valued varifold
solutions shows that, once〈δV,ψ〉 can be estimated for allψ ∈ C∞

0 (Q; Rd+1) in suitable norms
and the(d − 1)-density of|V (t)| is bounded below, theñV (t) is a(d − 1)-rectifiable varifold. The
result is based on a new rectifiability result for general varifolds due to Luckhaus [14].

THEOREM A.1 (Rectifiability) Let(v, χ, V, µ) be a measure-valued solution as in Definition 1.2
and letT > 0 andq > 2d/(d + 2). Assume that

lim sup
ρ→0

ρ−d+1
|V (t)|(Bρ(x)) > Θt > 0

for |V (t)|-almost allx ∈ Rd and almost allt ∈ (0, T ). If for somes > 1,

〈δV, ·〉 ∈ L1(0, T ;W−1
s,loc(R

d)),

or if there is somep ∈ L1(0, T ;Lsloc(R
d)) for somes > 1 such that

(v, ∂tϕ)QT + (v0, ϕ(0))Rd − (v ⊗ v,∇ϕ)QT

+

(∫
S(χ, λ)dµx,t (λ),Dϕ

)
QT

− (p,divϕ)QT = −κ

∫ T

0
〈δV (t), ϕ(t)〉 dt (A1)

for all ϕ ∈ C∞

(0)([0, T )×Rd; Rd), thenṼ (t) is a(d−1)-rectifiable varifold for almost allt ∈ (0, T ).

We note that, ifq > d = 2, then the measure-valued varifold solution of Theorem 1.6 satisfies

lim sup
ρ→0

ρ−1
|V (t)|(Bρ(x)) > 1

for |V (t)|-almost allx and almost allt > 0. Hence the lower bound of the(d − 1)-density above is
satisfied in this case.

The proof of Theorem A.1 is based on the following rectifiability theorem:
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THEOREM A.2 (Luckhaus [14]) LetV be a (general)(d − 1)-dimensional varifold on a domain
Ω ⊆ Rd whose first variation can be represented as

〈δV,ψ〉 =

∫
(vψ + A : ∇ψ)dµ1, ψ ∈ C1

0(Ω; Rd), (A2)

satisfying the estimate

ρ−d

∫
Bρ (x)

|A(y)| dµ1(y)+ ρ−(d−1)
∫
Bρ (x)

|v(y)| dµ1(y)

6 ∂ρF

(
ρ, sup

ρ<R<dist(x,∂Ω)
R−(d−1)

∫
BR(x)

dµ2

)
for all Bρ(x) ⊆ Ω whereµ1, µ2 are non-negative Radon measures onΩ andF : R+ × R+ →

[0,∞) satisfies

1. F(0, L) = 0, ∂ρF(ρ,L) > 0, ∂2
ρF(ρ,L) 6 0 for ρ,L > 0,

2. limL→∞ L−1g(L) = 0 whereg(L) = inf
{
R−d+1

+ F(R,L) : R > 0
}
.

Moreover, assume that lim supρ→0 ρ
−d+1

∫
Bρ (x)

d|V | > θ > 0 for |V |-almost allx ∈ Ω. ThenV
is a(d − 1)-rectifiable varifold.

REMARK A.3 We note that in the proof of Theorem A.2 the identity (A2) is only needed if
ψ = ∇ϕ is a gradient. For the convenience of the reader we repeat the first part of the proof of
Theorem A.2. The monotonicity formula for

u(ρ, x) := ρ−d+1
∫
φ

(
|x − y|

ρ

)
d|V (t)|(y)

is considered, whereφ ∈ C∞([0,∞)) with φ′(s) 6 0, φ(s) = 1 for s 6 1/2, andφ(s) = 0 for
s > 1. Then

∂ρu(ρ, x) = −(d − 1)ρ−d

∫
φ

(
|x − y|

ρ

)
d|V (t)|(y)

− ρ−d

∫
φ′

(
|x − y|

ρ

)
|x − y|

ρ
d|V (t)|(y)

=

∫
Tr

(
P∇y

[
x − y

ρd
φ

(
|x − y|

ρ

)])
d|V (t)|(y)

+ ρ−d

∫ [∣∣∣∣P x − y

|x − y|

∣∣∣∣2 − 1

]
φ′

(
|x − y|

ρ

)
|x − y|

ρ
d|V (t)|(y)

=

〈
δV (t),

x − y

ρd
φ

(
|x − y|

ρ

)〉
+ ρ−d

∫ ∣∣∣∣(I − P)
x − y

|x − y|

∣∣∣∣2|φ′
|

(
|x − y|

ρ

)
|x − y|

ρ
d|V (t)|(y)

where
x − y

ρd
φ

(
|x − y|

ρ

)
= −ρ−d+2

∇yΦ

(
|x − y|

ρ

)
for Φ ′(s) = s−1φ(s)
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is a gradient field. Then the assumptions of the theorem are used to estimate
〈
δV (t),

x−y

ρd
φ
(

|x−y|
ρ

)〉
.

In the rest of the proof (A2) is not used.

Proof of Theorem A.1. First of all, since rectifiability is a local property, we replaceRd byΩ =

BR(0) with R > 0 arbitrary. Moreover, we can assume that 2s 6 q∗, where 1/q∗
= 1/q − 1/d <

1/2.
First we consider the case where〈δV, ·〉 ∈ L1(0, T ;W−1

s (Ω)). Then there is someA ∈

L1(0, T ;Ls(Ω)) such that

〈δV,ψ〉 =

∫
QT

A(x, t) : ∇ψ(x, t)d(x, t) for all ψ ∈ L∞(0, T ;W1
s′,0(Ω)),

which easily follows from Hahn–Banach’s theorem if we identifyW1
s′,0(Ω)with the closed subspace

{∇ψ : ψ ∈ W1
s′,0(Ω)} ⊂ Ls

′

(Ω; Rd). In order to apply Theorem A.2 we take forµ1 the
d-dimensional Lebesgue measure and estimate

ρ−d

∫
Bρ (x)

|A(y)| dy 6

(
ρ−d

∫
Bρ (x)

dy

)1/s′(
ρ−d

∫
Bρ (x)

|A(y)|s dy

)1/s

= Cρ−1/s
(
ρ−d+1

∫
Bρ (x)

|A(y)|s dy

)1/s

.

Hence we can chooseF(ρ,L) = Cρ1/s′L1/s for a suitable constantC sinces > 1, andµ2(M) =∫
M

|A(y)|s dy. It is easy to check thatF(ρ,L) satisfies condition 1 of the theorem. Moreover,
choosingα = 1/(ds − 1) we have

g(L) 6 C(Lα(d−1)
+ F(L−α, L)) 6 C′(Lα(d−1)

+ L−α/s′+1/s) = C′L(d−1)/(ds−1).

where(d − 1)/(ds − 1) < 1 sinces > 1. Hence limL→∞ L−1g(L) = 0.
In the second case we first use (A1) for gradientsϕ(x, t) = φ(t)∇ψ(x) for ψ ∈ C∞

0 (Ω),
φ ∈ C∞

0 (0, T ), which yields∣∣∣∣κ ∫ T

0
〈δV (t),∇ψ〉φ(t)dt

∣∣∣∣ 6 C

(
‖v‖2

L1(0,T ;L2s (Ω))
‖φ‖L∞(0,T )‖∇

2ψ‖
Ls

′
(Ω)

+

∥∥∥∥∫
S(χ, λ)dµx,t

∥∥∥∥
Lq

′
(QT )

‖φ‖L∞(0,T )‖∇
2ψ‖Lq (Ω)

+ ‖p‖L1(0,T ;Ls (Ω))‖φ‖L∞(0,T )‖∇
2ψ‖

Ls
′
(Ω)

)
6 C(T )(E0 + ‖p‖L1(0,T ;Ls (Ω)))‖φ‖L∞(0,T )‖∇

2ψ‖
Ls

′
(Ω)
.

Hence
〈δV, ·〉 ∈ L1(0, T ; (G1

s′(Ω))
′)

whereG1
s′
(Ω) = {∇ϕ ∈ W1

s′
(Ω) : ϕ ∈ Ls

′

(Ω)} ⊂ W1
s′
(Ω). In particular,〈δV (t), ·〉 ∈ (G1

s′
(Ω))′

for almost allt ∈ (0, T ) with s > 1. Now we can apply the arguments of the first part since by
Remark A.3 the identity (A2) is only needed for gradients. 2
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Zbl 0189.40603 MR 0259693

14. LUCKHAUS, S. Uniform rectifiability from mean curvature bounds.Recent Advances in Elliptic and
Parabolic Problems, World Sci. (2005), 197–201. MR 2172575

15. LUCKHAUS, S., & STURZENHECKER, T. Implicit time discretization for the mean curvature flow
equation.Calc. Var. Partial Differential Equations3 (1995), 253–271. Zbl 0821.35003 MR 1386964
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22. ROUBÍČEK, T. A generalization of the Lions–Temam compact imbedding theorem.Časopis P̌est. Mat.
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