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Optimal channel networks, landscape function and branched transport
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Starting from transportation models for branching structures, we define a function that represents the
elevation of the landscape in a river basin. This function is already well-known in the geophysical
community but it is only considered under a very strong discretization. We generalize it to the
continuous case and study its properties, providing several applications.

1. Introduction

Lots of branching structures transporting different kind of fluids, such as road systems,
communication networks, river basins, blood vessels, leaves and trees and so on, may be easily
thought of as coming from a variational principle. They appear when transport costs encourage
joint transportation. Recently these problems received a lot of attention by mathematicians. This
paper mainly discusses some features wich are crucial in river basins applications, but addresses
also applications to other fields.

1.1 Branching transport models by Gilbert and Xia

A mathematical formalization for the branching transport problems is very classical and has been
performed first for atomic measures and then generalized. We briefly present here the problem
introduced by Gilbert in[[11] and [12], where it is presented as an extension of Steiner’s minimal
length problems. The main applications that Gilbert referred to were in the field of communication
networks. Given two atomic probability measures= 3/ ; a;8y, andv = 3°7_; b;8,,, consider

(PG) min E(G) =Y wiH (en), (1.1)
h

where the infimum is among all weighted oriented graghs= (e, en, wy), (Whereey, are the
edges¢), represent their orientations ang the weights) satisfying Kirchhoff's Law: at each vertex
which is not one of the;’s or y;’s the total incoming mass equals the outcoming, while at each
we have

a; + incoming mass= outcoming mass

and, conversely, at eagh we have
incoming mass= outcoming mass- b;.

These conditions correspond exactly to the well-known Kirchhoff Law for electric circuits. The
orientationse;, do not appear in the energy but appear in fact in Kirchhoff constraints. The
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exponenty is a fixed parameter & a < 1 so that the function — ¢“ is concave and subadditive.
In this way larger links bringing the mass from to v are preferred to several smaller links
transporting the same total mass. It is not difficult to check that the energy of any finite graph
may be improved if we remove cycles from the graph. In this way we can minimize among finite
graphs which are actually trees. This implies a bound on the number of edges and hence ensures a
suitable compactness which is enough to prove the existence of a minimizer.

More recently Xia, in[[20], has proposed a new formalization leading to generalizations of this
problem to arbitrary probability measurgsandv. In this case the interest of the author|of![20] is
to view this problem as an extension of Monge—Kantorovich optimal transport theory ($ee [19]). In
fact Steiner and Monge’s problems represent the limit cased) anda = 1, respectively.

1.2 Landscape equilibrium and OCNs in geophysics

It is interesting to see how people working in geophysics arrive at very similar problems in the
study of river basins. There is a wide literature on this and a quite comprehensive reference is
[17]. The specific subject dealt with by this paper is developed both in [17] arid in [2] (this last
paper being our main reference, but a short previous summary of these ideas can be found in [1]
as well). While studying the configuration of a river basin, the main objects are two: the landscape
elevation, which is a functionp giving the altitude of any point of the region we are considering,
and a river networkV, which is the datum of all the streams that concur to bring water (which falls
on the region as rain) to a single point (where a lake is supposed to be present). A first link between
both objects is the fact that at any point the direction followed by water is the direction of steepest
descent ofz. Hence, once we know we are able to deduc¥ and to compute thenultiplicity
6 (x) at any pointx, which is the quantity of water passing throughwvhile following the steepest
descent lines of. At first the interest is towards an evolution model, which allavend N (and
henced) to depend on time as well. The evolutionzof ruled by an erosion equation of the form

8Z 2
= 0|Vz|© +c, 1.2)
whereVz is the spatial gradient af andc is a positive constant. The idea is that the erosion effect
increases both with the quantity of water and with the slope. The consitaoalled uplift and takes
care of the fact that all the material brought down by erosion is in the end uniformly redistributed
from below in the whole region as a geomorphological effect. Equdfioh (1.2) is in fact a simplified
version of other more general evolution equations involving higher order terms. The following
phenomenon concerning solutions pf {1.2) can be empirically observed: approximately, up to a
certain time scale bothandd (i.e. N) move, in a very strong erosional evolution; then, up to a larger
time scale the network is almost constant, letiirg, ) = 6(x) depend on the position only, and
the landscape function evolves without changing its lines of maximal slope; finally, there is a much
larger time scale such thatapproximately agrees with landscape equilibriumi.e. a stationary
solution of [1.2). We are interested in studying landscape equilibria. In this case the steepest descent
condition, which we can read a%% follows the direction of the network”, is completed by a
second one which we get by imposifig/dr = 0 in (I.2). This leads toVz| = ¢%26~%2 and this
last condition is called thelope-discharge relatianit is explicitly suggested in_[2] that i (7].2)
one could change the exponentsfoénd |Vz| (preserving anyway the increasing behavior with
respect to both variables), thus obtaining different slope-discharge relationships. In general we get
|Vz| = ¢6%~1 and the physically interesting case is when the expomésivery close to 12.
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To find landscape equilibria a discretization is performedlin [2] and a regular square grid is used.
Functions defined on the pixels of the grid and vanishing at a given pgiapresenting the outlet
are considered, as well as networks composed by edges of the grid, directed from every point to one
of the neighbors.

e As we already mentioned, the conditions on the direction of the water allow reconstructing a
network from a function. In fact, given a functiarwith no local minima other thamg, one can
always follow the maximal slope paths af

e These are obtained by linking any ponbf the grid to a point which realizes the minimum of
z among the neighbors af Notice in particular that these paths are only composed by edges
following the two main directions of the grid.

¢ In this way a networkV = N(z) can be deduced from

e On the other hand, the slope-discharge condition allows one to reconstruct a function from a
network N, provided it is tree-shaped.

e In order to make this reconstruction, first compute the multiplicities of the points of the network:
at a pointx its multiplicity 6 (x) is the number of points which find on their way to the outlet
(this works under the assumption that the quantity of rain falling down at any pixel is the same,
i.e. rain falls uniformly on the grid). See also Figlije 1, where the multiplicity of a piri
computed as the number of points in the atga

e Then setz(xg) = 0 and for any other point consider the only path oV linking xg to x. Set
zZ(x) =), 6 (x;)*~1, where thex;’s are the points on the path. In Figtll—_r]e 1 the path linkiggo
x is shown.

¢ In this way we get a function = z(N).

[
=
T

X

FiG. 1. The path fromx to xg and the multiplicity ofx;.

In general it will not be true that a functionN) has maximal slope in the direction of the
network N. Finding a landscape equilibrium means exactly satisfying both conditions at a time,
through a fixed point problem. The algorithm starts from a tree-shaped netMobuilds the
functionz(~N), and then the new netwok’ = N(z(N)). If N’ = N, then the landscape function
z = z(N) is a landscape equilibrium.

The important idea presented [d [2] is the relation between landscape equilibria and Optimal
Channel Networks (OCNs in literature, see for instancé [18], [16]land [13]). An OCN is a network
N minimizing a certain dissipated energy. The dissipated energy in a system satisfying the slope-
discharge relation is the total potential energy that water loses on the network. For each pixel we
have a quantity of watet which falls down towards the next pixel and its elevation decreases by
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a quantity which is proportional tvz| and hence t&@*~1. Hence, the total energy loss is given
by 3, 0(x)0(x)* 1 = 3, 0(x;)%. Itis clear that this energy is the same as[in|(1.1) (no length
of segments is involved because in a regular grid they all have the same, given, length). What is
proven in [2] is that, ifN is an OCN minimizing this energy, then the landscape funciienz(N)
reconstructed from it is in fact an equilibrium. This actually means that not only is the slefa of
the direction of the network given W#~1, which is true by construction, but also this direction is
the direction of maximal slope.

Notice that the problems studied in [2] and in the other papers on the subject have undergone a
very strong discretization. In fact, they correspond to sol\iRg) wherepu is a discretization on
a regular grid of the Lebesgue measure and §,,, but with the extra constraint that only edges
en Which are given with the grid are allowed. Compared to continuous models there is a loss of
rotational invariance, a fixed scale effect due to the mesh, and several questions concerning the river
basin may lose their meaning (for instance questions about the interfaces between two separated
parts of the basin and points where the water takes two different directions, or most regularity
issues). On the other hand, a continuous counterpart for the landscape function could not be simply
a regular solution of (I]2) or of its statical version, as@@rfunctions steepest descent curves are
well-defined, but they never merge and therefore do not give rise to a positive multipl{@kgcept
for the casel = 1, seel[2]).

1.3 Alandscape function appearing for derivation purposes

We will briefly see here another aspect of branching transport problems suab;asvhere a
function similar to the landscape function appears.

DEFINITION 1 We define thdrrigation cost of a finite atomic measurg € P(£2) to be the
minimum of problem(Pg) for v = §p. This quantity is denoted b¥, ().

A variational analysis of this functional yields the following.

THEOREM1.1 Suppose that = > /' a;8y, With a; > 0 (so that the finite sek = {x; : i =
1,...,n}is actually the support gf) and thatus is another probability measure concentrated on
K with 1 = >"1" 1 b;8y;. Then

Xo(11) < Xo() +o Y 2(xi)(bi — ay),
i=1

where the functiory is defined in this way: take an optimal graghfor problem (Pg) for the
measureg anddp; this graph is a tree; for any define

2= Y wi  H e,
heH (i)
whereH (i) denotes the set of the indices of the edges of the unique path from 0 to

Proof. We will build a new oriented graph which is acceptable for problét) when irrigating
w1 starting fromsg. This graph will be built by using the same edgeg),, as inG but changing the
weightsw;,. We define the new weights, by

wy=wp+ Y (b —ap).

itheH (i)
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It is easy to check that this new graph satisfies the constraints, and so we get
Xo (1) <Y wp)*HMen) < Xo(w) +a Y wi™ Y (b —ap),
h h i heH(®)
where the last inequality is obtained by concavity ef *. By changing the order in performing
the sums we easily get the assertion. O

REMARK 1 The link between this functionand the one used in geophysics is straightforward: to
compute a value(x), what we do in fact is integrating the multiplicity of the graph along the river
from O up tox. See Figurg]2 and compare with Figife 1: in this case there are in general many more
degrees of freedom, the multiplicity of the represented pagirn$ the total mass of the regiosy;

and the geometry of points and edges is not prescribed.

A

X0=0
FIG. 2. The path fromx to xg and the multiplicity ofx;.

REMARK 2 As a consequence of Theorgm|1.1, if weset= o + e(u1 — p), we get

. X - X
lim SupM < fzd(M1 — ).
e—0t €
This inequality gives information on the derivative of the functiokigland this fact is very useful

in variational problems of the following kind:
(P+)  min Xo () + F(w),

where F may be any functional whose derivative is known. We will show later an example and
briefly explain the interest of these problems.

REMARK 3 Theorenj 11 has been established under no constraints on the direction of the edges,
i.e. in the setting of probleniPs). It is easy to reproduce them in the case of grid-constrained
OCN:s, as in the proof there is no need to change the edges of the graph. Hence this result is also
valid in the setting of[[2].

1.4 Goals of the paper

The main goal of this paper is to define a landscape function in the continuous case and analyze its
properties. We will use the recent developments about these irrigation problems concerning arbitrary
probability measures (and not only atomic ones) that we mentioned before. We will consider the
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irrigation of an arbitrary measure on a domanstarting from a single sourc®. Here the main
problem is that the optimal structures which arise are not necessarily trees in the sense that there
may be points which are reached by several curves. We will anyway propose a landscape function
z and check that it is well-defined. Then we will prove that it shares all the properties that we had
in the discrete case, in particular at a potgtof the irrigation network it has maximal slope in

the direction of the network itself and this slope is givendy !, whered is the multiplicity of

the network atcg. Moreover we will prove that even in the continuous case an inequality on the
derivative of the energy,, involving the landscape function is available, and finally we will give
some continuity and semicontinuity results.

Generalizing the concept of landscape function to the irrigation of arbitrary probability measures
has not only variational applications. In river basin applications, in fact, it is natural to consider
directly a configuration where the starting measure is the Lebesgue measure instead of considering
a grid discretization. Moreover, getting rid of the discretization will also add isotropy and other
features to the models inl[2] and [17].

The main results leading to the definition of a landscape function and to the study of its
properties will be presented from Section 3 on. Section 2 is in fact devoted to a short summary
of the different models and of the main features that will be used later.

2. Branched transport structures: models and tools

Recently, several models have been developed to study branching transport structures. At first sight
they are very different, but many equivalences can be proved. On one hand there are the Eulerian
approaches, first by Gilbert and then by Xia, and on the other there are Lagrangian, time-dependent
approaches mainly presented|inl[15] and [4]. The Eulerian models are the most similar to the one
used by the geophysical community, and the generalization by Xia will be explained here a little
more. The Lagrangian ones, on the other hand, are the most useful to deal with a possible landscape
function thanks to the form of the functionals involved.

2.1 Relaxed minimization by Xia and its minimal value

Let us briefly see how Xia extended the Gilbert approach. The key point is that the constraint on the
incoming and outcoming masses at each vertex (Kirchhoff Law) may be easily writténjas =

w — v, wherexg = Y, wp[[en]] is a vector measure @[] being the integration measure on the
segment following its direction: a measure which is absolutely continuous with respé¢t tith
densitye on e and 0 elsewhere). These considerations led Xia_ in [20] to extend the problem by
relaxation to generic probabilitigs andv. The problem becomes

(Px) mMnERXN: V- r=pu—v

where E()) := inf liminf,, E(xg,) with the infimum taken over all possible sequen¢€s), of
finite graphs such that the corresponding vector measuifesonverge to..

One can prove that, whem andv are both actually atomic measures, we retrieve the problem
by Gilbert. This can be done by means of necessary optimality conditions: if we minimize Xia's
functional over vector measures, we can prove that a minimizer must necessarily be a finite graph
(seel[21] and [b]). Hence Xia's formulation is an extension of Gilbert's.

The minimum value of Px), which obviously depends gnandv, will be denoted by/, (i, v).

It is very important to understand when this minimal value is finite. It is proven_ih [20] that, if
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is sufficiently close to 1, namely > 1 — 1/d, then this minimum is finite for any paiiu, v).
Moreover, the following uniform estimate (se€e [20]) holds:

do (1, v) < Cy g diam(£2).
To deal with local perturbations, it is not difficult to deduce a sharper estimate, namely
do (e, v) < Cy g 8% diam(w), (2.1)

whenevery — v = §(u’ — V') andp’ andyv’ are probability measures an C 2. Whena is

below the threshold % 1/d there are pairs of measures which are not linkable by a finite energy
configuration. The possibility of reaching a certain measure by finite energy is somehow linked to
its “dimension” (see [8]).

DEFINITION 2 For any measurg € P(£2) we setX,(u) = dy(u, o). This is an extension of
Definition[]. Moreover, a measureis calledex-irrigable if X, (1) < +o0.

In [20] it is proven that, fox > 1 — 1/d, the quantityd,, defines a new distance over the space
P(£2) of probability measures, which induces the weak topology. Both the continuity with respect
to this topology and the triangle inequality will be used in the following.

2.2 Patterns and traffic plan models

This subsection is an informal summary of the models_in [15] and [4] and their properties. The
approach and terminology have been sometimes simplified in view of the aim of this paper.
Let 2 be a fixed compact domain iR?. Denote byI" the set of 1-Lipschitz curveg :
[0, +oo] — £2 that are eventually constant. This means that, if we definetibygping timeof a
curvey by
o(y) =inf{s : y is constant ons], +oo[},

these are curves with(y) < +oo. Denote byl the set of those curves it which are
parametrized by arc length, and By, the set of curves id” which are injective on [0o (y)[.
We will often identify a curve with its image, writing instead ofy ([0, o (y)]) = ¥ ([0, +o0|).
Given a probability measung on the spacd™, for any pointx € R? the n-multiplicity of x is
defined by
[x]y ==nly e ' ix € y(0,0(y)D} (2.2)

Then we can define

o(y)
zy = [ ol and s = [ 2,0

Notice that, for simplicity, her&,, is defined without the terrfy’|(r) which appears in the original
definition in [4]. It will be deduced later that minimizers are actually parametrized by arc length.
Finally, we consider the mapsg, 7.0 : I’ — £ given byng(y) = y(0) and o (y) =

y(o(y)). The two image measuréso):n and (i )zn, which belong tadP(£2), will be called the
starting measureand terminal measuref 5, respectively. Following the terminology dfi[4] we
define atraffic planas a measurg € P(I") such that/ o (y) n(dy) < +oo. We will also call a
traffic plann such thaizg);n = g apattern In the case of a pattern the terminal measure will also
be called the measuieigated by .
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The minimization problem proposed in [4] is
(P) min{J(n) : nisatraffic plan(ms)sn = w, (wo)sn = v},

wherep andv are given measures iR(£2). As [y ()], < 1, we haveZ,(y) > o(y). Hence
it is straightforward that any such that/(n) < +4oc is actually a traffic plan. A traffic plan
which minimizesJ among the traffic plans with the same starting and terminal measures, with
J(n) < +oo, will be called anoptimal traffic plan In the case = §q it will be called anoptimal
pattern

A useful tool developed in [4] (see al<d [3]) is the followingyifs concentrated oy N Iinj
then the following remarkable formula holds:

s = [ 1y i), (23)
R4

This formula gives an evident link with Gilbert and Xia’s models.

2.3 Useful tools: optimality conditions fatP)

Before presenting some consequences of optimality, let us deal with some concepis from [15] which
are crucial in the case = §g.
For anyt > 0 consider an equivalence relation dhgiven by “the curvess andy, are in
relation at timer if they agree on the interval [@]”, and denote the equivalence classes fy o
that
[vle={y : v(s) = y(s) foranys < r}.
For notational simplicity, s€t/|;., := n([y]:).

DEFINITION 3 Givenn € P(I"), acurvey € I' is said to bej-goodif

o(y) 1
/ lyls, dt < +oo.
0

Here are the most important results that can be found_in [15],[[4],[[3], [5] land [14] or easily
deduced from them.

(1) Problem(P) admits a solution, provided the infimum is finite (i.e. there is at least a solution
with finite energy).

(2) If nis an optimal traffic plan, thenis concentrated offiyc N Iinj. In particular, we may apply
formula [2.3) forJ.

(3) Suppose thay is an optimal traffic plan, that two curve®, y1 € Iac N Iinj meet twice
(i.e. yo(s0) = y1(s1), yo(to) = y1(r1) ands; # 1;) and that fo(1)], > ¢ > 0 for anyr €
[s0, 0]- Then either both curves coincide in the trajectory between the two common points or we
havef;(?[yo(t)]‘,’;‘1 dr < Lff[yl(t)]g‘l dr. In particular two different curves with multiplicities
bounded from below cannot part and then meet again.

(4) If n is an optimal pattern (in particular = &), then forn-a.e. curvey and a.et < o(y) we
have [ (1)], = n([y];). Roughly speaking, this means that if all the mass starts from a common
point then there is no parting-and-meeting-again-later (this is the single path property described

in [5]).
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(5) As a consequence, any optimal patteris concentrated on the set pfgood curves, and any
n-good curvey belongs talarcN Iy and satisfies)f (1)1, = n([y]:) foranyr < o (y).

(6) Last but not least, mitP) = d, (i, v), which means that the minima of the Lagrangian and of
the Eulerian models coincide.

REMARK 4 Notice that an optimal traffic plamis concentrated on the set gfgood curves, but

this does not mean that this set is linked to the support df fact, any restriction of an-good

curve is itself am-good curve and hence, for instance, in the discrete case, we have plergpofl
curves but the support gfis finite. In particular, the set af-good curves may be very different from

the set of fibers of a traffic plan that we findin [4] b [5] and does not depend on any parametrization,
but it is more intrinsic.

3. A general development formula

In this section we will develop in a useful way the variation of the functiohalhen passing from
a traffic plany to a traffic plany’. Formula(2.8) will be crucial.

THEOREM 3.1 Letn andn’ be probability measures an andAn = ' — . Suppose that both
and An are concentrated ofrc N Iinj and [ Z, djAn| < +o0. Then

1) < g +a [ zydan-a-a) [ 105, M@, (3.1)
r R4

Proof. SetS, = {x € R : [x], > 0} and analogousl§,, = {x € R? : [x],; > O}. First we prove
that under the assumptions of this theor@th(S,, \ S,,) = 0. In fact, for anyx € S,/ \ S, we have
necessarilyf], = 0 and ] »,, > 0. Hence it is sufficient to prove that the integral of {,, on this
set vanishes to get the desired result. We have

f [x]ay HA(dx) = / H(dv) / An(dy) Ie, = f An(dy) HAy 0 (S \ Sy
$,/\Sy $,/\Sy r r

where I denotes the function whose value is 1 if the condition in the subscript is satisfied, O
otherwise (indicator function). The second assumption of the theorem implies thajfare. curve

y the quantityZ, (y) is finite, and hence (r) € S, for a.e.r. Sincey is 1-Lipschitz continuous,

this yieldsH(y \ S,) = 0. Hencefsn,\sn [x]a, H1(dx) = 0, which proves(S, \ §,) = 0.

Now, as both; andn’ are concentrated ofarc N Inj, to evaluate/ we can use the expression

in (2.3) and get
T = fs (el + [¥]an)® M ()
< I +a fs (4] x]ay HAA) — (1 — @) fs (2, 1y, (32)

where we have used the fact tifgt C S, up toH*-negligible sets and the concavity inequalities
(t+5)* <1+ s —a(l—a)maxr, t +s)¥ %% < 1% +ar® s — a(l — a)s?

(this last inequality being valid when botlandr 4 s belong to ]Q 1]).
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Let us now handle the second term of the last sum we obtained. We have
[ 1t e = [ i [ ancn g e
S, S, r

Here we want to change the order of integration, and to do this we check what happens in absolute
value:

/ H(dr) / | An(dy) [x]¢ ey = f |An|(dy) f H () [x]8 ey
Sy r r Sy

o(y) 1
= [ 1anien [ ot
r 0
:/ Z,d|An| < 4o00. (3.3)
r

In this chain of equalities, the first one is just changing the integration order, while the second relies
on the fact thatAn|-a.e. we havé{1(y \ S,;) = 0 and,y being parametrized by arc length, the
H-integral on its image becomes an integral with respect nd0, o (y)]. The finiteness of the

last integral in[(3.3) allows us to change the order of integration with respeti end* and by
analogous computations we get

/ Hl(dx)/ An(dy) [x](r),l_llxey 2/ Zn dan.
Sy r r
Inserting this last equality i (3.2) gives the conclusion. O

4. Existence of a landscape function and applications

In this section we come specifically back to problém) for v = §o. Even when not explicitly
stated, from now omy will be an optimal pattern irrigating a@-irrigable measure:.

4.1 Well-definedness of the landscape function

First a very elementary truncation lemma is needed. As it is just the formalization of a well-known
principle (that a part of an optimal structure is itself optimal), it will not be proven here. It is in fact
proven in [5] when stating the optimality of the connected components of a traffic pRh\ifixo} .

LEMMA 4.1 Ifypisacurve suchthay |y, , > 0, setxg = yo(to), A = [Y0lrp, a4 = (Teo)z (T4 1),
W= —pa+n(A)sy, n =n—1s-n+n(A)sy, wherey is the curveyp stopped at timey.
Thenn’ is an optimal pattern irrigating the measure

THEOREM4.2 If yg andy; are twon-good curves sharing the same end-painthenZ,(yo) =
Zn (y1).

Proof. If the two curves are identical the assertion is easy. If they are not identical, then they must
split at a certain time. It is possible that one of them stops at timéout not both, as in this case
they would be identical. So we can choose two timeandry with |y;|;,, > 0andr < 1; < o (yi)

fori = 0, 1 (if one of the two curves stops at timesay for instancer (yp) = ¢, then we are
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FiG. 3. Both curves may go on afteor one may stop.

forced to choose) = o (yo) = t and we havéyo|s,.;, = y1l7,, and|yil;, > 0 as a consequence of
f < o(y1)). Figure 3 shows the two possible situations.
Setx; = y;(t;) andl = |x1 — xg|. Then we use the notations of the previous lemma to write

dol (805 H'/) g d()l (80’ I’L//) + d()l (ILL/a H“//)a (41)
wherep” = u—pua +n(A)3y,. Definen” = n—1,-n+n(A)8;,, whereyy is y; stopped at timey.
It is easy to check thatr)sn” = 1” and then

do (80, ") < J (") < T () +Otf Z,d(n” —n")
r

1 110)
=J(n’>+an<A)(fO lml‘i‘,;ldt—/o |yo|;’i;1dr>.

Here we have used Theor3.1 to estimatg”). Actually by this theorem we would havg,
instead ofZ,,. Yet we can replacg,, by Z, because we have only changed the meagure A by
the same amount of mass concentrateggrand onyg U y1 this does not affect multiplicities. As
far as the second term of the sum[in{4.1) is concerned, it is easy to see that

do (i, 1) < In(A)*.

By inserting these estimates [n (4.1) we get

to 11
/ lyol* " dr — / yal* L < o (AL
0 0
Now estimate the lengthby

I =1|x0—x1] < |xo— x|+ |x —x1] < (6 (yo) — t0) + (6 (y1) — 1)

. a (o) 1 . o (y1) 1
< n(A) a/ lyolz,~ df +n(B) “/ lyaly, = dt.
fo

n

Hence

o f o (o) l-a pro(y1)
_ _ _ _ n(B) _1
70l 1dr—/ yl*tdr <« 1(/ lyoleytdr + ——— lyaletde ).
/O 0 10 i n(A)l_a 51 i
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Notice that we cannot hayg; |, (,,),, > 0 for bothi = 0O, 1, thanks to the no-loop property (property
(3)). So, ifly1lsy),n = 0, once we fixg such thay(A) > 0, we can choosg so thaty(B) < n(A)
sincen(B) — 0 ast; — o(y1). Otherwise, ifly1|s¢,),, > 0, we can choose directly = o (#1). In
both cases we have

to 1 f 1 1 o (y0) 1 o(y1) 1
/ yol*~Ldr — / it < am ( / ol + / Iyl dr). @.2)
0 0 1

0 n

Then we letrg and#, tend too (yp) ando (y1), according to the criteria for the choice @fwe have
used so far, and we get in the limit

Zy(yo) — Zy(y1) <0,

because the integrals on the right hand sidg of (4.2) tend to zero as a consequence of the/act that
andy; are bothny-good curves. Interchanging andy; proves the assertion. |

COROLLARY 4.3 If two differentn-good curvesy andy; meet at a certain point = yp(f9) =
yl(tl)v then|V0|zo,n = |yl|t1,n = O

Proof. If one of the two multiplicitiesy; |, , were positive a strict inequality betweeh (o) and
Z,(y1) would hold, contrary to the equality just proven, O

COROLLARY 4.4 Anyn-good curvey is in fact injective on [Qo (y)]-

Proof. The injectivity on [Q o (y)[ is already known. Hence, consider the case (y)) = y (¢) for
t < a(y). This would imply|y|; , > O, contrary to Corollary 4|3 applied to andy, which isy
stopped at time. |

REMARK 5 The injectivity on [Qo(y)] was already known fop-a.e. curvey (see [4]). Yet, it
was not possible to identify an explicit class of curves sharing this property. For the purposes of this
paper it is important to switch from a generic “a.e.” to the fact that this is trug-fpsod curves.

The result of Theorein 4.2 allows us to define a functionowia the values o¥,,.

DEFINITION 4 We define théandscape functioassociated to the traffic planas the function,,
given by

() = Zy(y) if yisn-good ande = y (o (y));
1 +o00 if no n-good curve ends at
REMARK 6 ltis in fact possible to prove more easily that the value &fwell-definedu-a.e. (in
the sense that if on a nonnegligible set of pointse had two different values fdf, we would have
the possibility to strictly improve the value dj. Yet, we do not want a functionwhich is defined
a.e. but a pointwise defined value, to deal later with pointwise properties, being also concerned with
negligible sets such &%,.

REMARK 7 Notice, as in RemaiK 4, that restrictionsieflood curves are stilj-good and that this
implies that if the landscape function is finite at a poirthen it is also finite on the wholg-good
curve arriving atv.
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4.2 Variational applications: the functionaX,
Some consequences of the existence of the landscape function are now presented.

COROLLARY 4.5 For the functionaX, we have the following representation formul&; (1) =
Jo zdu, wherez = z,, is the landscape function associated to any optimal paitémigating the
measureu.

Proof. It is sufficient to apply the formul&,(u) = J(n) = fr Z, dn and the fact tha, (y)
depends only oo (y) throughZ, (y) = z(r(y)) to get

Xo () =/ Zy dnzf zd((noo)nn)=/ zdu. 0
r 2 2

COROLLARY 4.6 If u is a-irrigable, then any landscape functiois finite u-a.e.
Proof. Corollary|4.5 yields/ z diu = X4 (1) < 400 and from this the result is straightforwarél

REMARK 8 As the word “any” in the previous statement suggests, there is no uniqueness for the
landscape function, and there is a landscape function for any optimal pattern.

Moreover, using Theorefn 3.1 together with the existence of the landscape function, a derivation
result extending the discrete case can be obtained. Notice that the following theorem will also be
useful for other purposes, for instance when looking for continuity properties of the landscape
function (see Section 6).

THEOREM4.7 For a given functiog on £2 such thaf| gz~ < 1 and such thafg gdu =0,
setu1 = u(l+ g). Then

Xa (1) < Xo() + /Q (g () (),

where the functiorr = z, is the landscape function according to an arbitrary optimal patfern
irrigating the measurg.

Proof. We will consider a variation of given byn; = (14 (g o 7)) - n. Sincemyny = (1+ g) - i,
we have

Xao(p1) — Xo(u) < J(n1) — J(n).

We want to apply Theorein 3.1 to this situation, withh = (g o ) - . Since An is absolutely
continuous with respect tg with bounded density, it is straightforward that both the conditions
required by the theoremA( being concentrated offarc N Iinj and Z,, being|Anl-integrable) are
satisfied, so

JH) < J() +oe/ Z,dAn.
r

Now use the fact thaZ,, depends only on its terminal point to get

/anAUZf Zd((ﬂoo)uAn)=/ zgdu.
r 2 Q

Putting together all the results yields the conclusion. O

A simple consequence of this theorem may be expressed in terms of derivatives.



162 F. SANTAMBROGIO

COROLLARY 4.8 Setu, = u + &g - 1. Then the following derivative inequality holds:

X . - X
Iimsup ol +6g- 1) o (i) <

e—0t €

o / 2(0)g(x) p(dr).
22

4.3 \Variational applications: minimizingP.)

As already mentioned, the last derivative inequality may be useful in variational problems
involving X,,. For the sake of clarity we provide a short example.

ExamPLE 1 Consider the functiond : P(§2) — [0, +o0] given by

fguzdﬁd ifpw=u-L4

F(p) =
W !-f-oo if u is not absolutely continuous.

If we want to minimize (forx > 1 — 1/d) the sumX, (u) + F(r) over all probabilities. on £2 we
get as an optimality condition, by differentiating and using Coroflary 4.8,

az + 2u =const a.e. ofu > 0}. (4.3)

This implies several interesting properties. First of all we notice that, batidu being positive,
they are also bounded. It was reopriori evident thai: € L°°(£2), since the natural condition was
u € L%(£2). Sincez(x) > |x|, this also gives an estimate on the supporjxofAs the constant
appearing in[(4]3) could be uniformly estimated (it is sufficient to multiply] (4.3} byd integrate,
thus obtaining const a X, (1) + 2F (1) < 2min(X, + F)), this could also be used to prove an
existence result for2 = R?, proving also that actually minimizers &f, + F are supported in
a given bounded ball. Moreover, formufa (§.3) yields some regularity resuit émcording to the
results we will prove later on.

Variational problems such &#,) have been first proposed In |15], where the authors suggested
problems involving both the irrigation pattegnand the irrigated measuge,, and are very similar
to those in[[6]. In fact in[[B] a similar sum is minimized, but with a standard Wasserstein distance
instead of the termX, (1) = du(u, 8p). Such a model was proposed to study urban planning
problems, withy standing for the population density in a region, exactly Bs) may be used
in studying the shape of a leaf or a flower, represented.bg fact, the minimization of a sum of an
X, term and a convex functional gncould be an easy model taking into account that leaves want
to be as spread as possible to catch sunlight but have to be irrigated starting from a single source.
In the framework of([6] the key condition coming from optimality wést f/(u) = const, and the
landscape functiondealt with in this paper plays somehow the role of the Kantorovich potefatial
Also Corollary[4.5 can be seen as indicating a similarity between the landscape function and the
Kantorovich potential (seé [19]). Moreover, thélder continuity result at the end of this paper
perfectly agrees with the fact that Kantorovich potentials (which correspaned) are Lipschitz
continuous.

5. Properties of the landscape function
5.1 Semicontinuity

LEMMA 5.1 Givenany € P(I), the functionZ, : I' — R is lower semicontinuous with respect
to pointwise convergence.
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Proof. This result is almost implicitly proven both in [15] and [A [4], but never explicitly stated. It
is anyway proven that — [x], is upper semicontinuous, and hence- [)c]‘,’;*1 is I.s.c. Then, to
prove liminf, Z,(y,) > Z,(y), fixatimer, < o(y) and use limink (y,) > o (y). Eventually we
haveo (y,,) > t1 and, by Fatou’s Lemma, we get

n 1
iminf Z,,) > iminf [ "y e > [t
n n 0 o

Passing to the limit ag — o (y) gives the assertion. O
THEOREMS5.2 The landscape functiagnis lower semicontinuous.

Proof. Consider a sequencg, — x and, correspondingly, somggood curvesy, such that
Too(Vn) = X, @andz(x,) = Z,(y,). We may assume spp(x,) < +o00. Sinceo (v,,) < Z,(yy) =

z(x,), we also have sypr (y,) < +oo and we can extract a subsequence (not relabeled) such that
¥, — ¥ uniformly. It is not difficult to prove thatro, () = x. Thus, it is sufficient to use Lemma
[.1 to getZ,(y) < liminf, Z,(y,) = liminf, z(x,). This implies thaty is ann-good curve and

z(x) = Z,(y), which yields the assertion. O

5.2 Maximal slope in the network direction

The next property of the landscape function that can be proven in general (i.e., under no extra
assumption omx, £2, u, ...) is most important in view of its meaning in river basin applications.
Our interest is in a continuous counterpart of the landscape function of [2]. What we actually need
is that, at the points of the irrigation netwofl, the direction of maximal slope af is exactly

the direction of the network. If an-good curveyy is fixed, by the definition ot, for a.e.z the
derivative ofz along the curve at the pointxg = yo(f0) is exactly|yo|?gf,71. This is why we prove

the following result. Notice that, as already mentioned, in the continuous case the funcsionot

be expected to be very regular, and in fact the maximal slope result we are going to prove involves

differentiability in a very pointwise way but very weak as well.

THEOREM5.3 Letxg = yo(tp), Whereyp is ann-good curvety a time withig < o(y0) and
6o := |yolie.y > 0. Then, for any ¢ yo([0, to]),

2(x) = z(x0) — 65 Hx — xol — o(lx — xol).

This amounts to saying that the sloperatin the direction of the network is actually the maximal
slope atxg.

Proof. Fix x ¢ ([0, 70]) such thatz(x) < z(xp). We may assume that= y, (z,) for ann-good
curve y, (otherwisez(x) = +o0) and that the two curvegy and y, get apart at a certain time
11(x) < 1o (the case1(x) > 1o implies in factz(x) > z(xo)). By Lemmg 5.4 below we know that
t1(x) = tgas|x — xg| = 0. Setd(t) = |yols,y; for ¢ € [t1(x), to] we may writed (1) < bo(1 + &),
wheree, is infinitesimal agx — xg| — 0 as a consequence @fx) — fo.

We use again Lemnfa 4.1 and its notations. In particdlae [yo],, andfy = 0(t0) = n(A).
Also define, as in The.a,” =pu—pa+n(A)s, andn” =n —1Ia -0+ n(A)s;,, where
¥x IS yy stopped at time,, and it is easy to check thét..);n” = w”. Then, by the optimality
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Xoto

Xt

Y() ’Yx

X 4y(x)
FIG. 4. Curves and points in the proof.

of n’ (we recall that, according to the notations of Lemimd 41,= u — pua + n(A)sy, and
n' =n—14-n+n(A)sy, whereyy is yo stopped atp, see also Figu@ 4), we have

J(1) = Xa() < Xa(u") +da (", 1) < T + |x — x0165 - (5.1)

We want to comparéd (n") and J ("), and to do this we here need a more refined estimate than
what we could find by using Theoreln B.1. AS— n” = 60(85, — 87,). we have in particular
[¥]y = [¥ly + 60(Iyey, — Iyej)- By using [2.8) we get

16 =300 = [ (@l DIt — [ G- Dy - fo
7x\Y0 70\Vx

It is not difficult to check that {],, = [y], for y € y: U yo, as we have replaced the part of
n concentrated oM by an equal amount of mass gpn. Hence we may estimate (rewriting the
integrals with respect té(* as integrals with respect ta)d

0
lyalfy Y00 de —/ 0@ — (0(1) — 00)) dr.

11(x)

tx 1

T =16 < e /
11(x)
Since the function — s* — (s — 6p)* is decreasing and(r) < (1 + &,)00, we geto(r)* —
O@) —00)* = 05 (L +&x)* — 7). Hence
J(") = J(') < az(x) — z(x1)) — |0 — 11(x)|0g (1 + £)* — £7),

wherex; = yo(f1(x)) = yr(t1(x)). Write (1 +¢,)* —e¥ = (1 + e;)—l with ¢/, > 0 infinitesimal as
X — XxQ. Fromeg‘_1 > (0(1)* 1 we get|rp — t1(x)|0g = 6o(z(x0) — z(x1)). Now notice that, for
|x — xo| sufficiently small, the inequality < (1 + a;)—l is satisfied, and hence
Ty < I+ A+ €) Mo (x) — z(x0).
If we insert this into[(5.]L) we finally get
2(x) — z(x0) = =605 Hx — xol (1 + £)). O

LEMMA 5.4 According to the notations of Theor¢m]5.3, wher> xg andz(x) < z(xo), the
parting timer, (x) tends tor.

Proof. Suppose, by contradiction, that there exists a sequence xg such that lim #1(x;) =
i < tpandz(xx) < z(xo). Sinceyyp is injective (Corollany 4.4), we may infer the existence of a
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positive gquantitys such thatyp(r1(xx)) — xo| > & (otherwise there would be a time< 7 < 1o with
yo(t) = xg). For anyk consider am-good curvey, such thate, = y4 (7). First notice that, at least
for k large enough, thanks gy (f1(xx)) — xk| = |yo(t1(xk)) — x| — |yo() — xo| = 8, we have
tr > 1 + 8/2. Then consider the poinig (z + §/2): this collection of points must in fact be finite,
otherwise we would have|i;s/2,, — 0 and hence(xx) > |yk|?+_51/2’n|tk —(f+68/2)| > +oo
becausdr, — (r + 8/2)| > |xr — yo(?)| — 8/2 > §/2. This contradictg (x;) < z(xg) and so we
may suppose, up to subsequences, that+ §/2) = x (for a pointx which does not belong to
the image ofyp, otherwise we would contradict property (3)) and thatiniformly converges to a
curvey. In the limit we should get a curve passing throughv(7), x andxo, i.e. we have created
a loop becausgy does not pass through(see Figure als0o]5).

FIG. 5. A sequence of curves creating a loop in the limit.

Fromz(x;) < z(xp) we can infer by semicontinuity (Lemrha b.1) thats ann-good curve and
hence this loop contradicts Corollgry 4.3. a

6. Holder continuity under extra assumptions

Here we will be able to prove some extra regularity properties, diut we have to add some
assumptions. The most important ones arexof@ > 1 — 1/d is required) and on the irrigated
measureg. (a lower bound on its density is supposed).

6.1 Campanato spaces by medians

We will here give a simple variant of a well-known result by Campanato [see [7]) about an integral
characterization of Blder continuous functions.

DEFINITION 5 Given a measurable functianon a domain/ we define anedianof « in U to be
any numbern which satisfies the following equivalent conditions:

o {xeU: ukx)>m} <iUland|{x € U : u(x) <m}| < 3|U|;

e there exists ameasurable subset {x € U : u(x) = m}suchthat{x € U : u(x) > m}UA| =
177
?|U|1

o the functions — fU lu(x) — | dx achieves its minimum at= m.

The set of medians of in U is an interval ofR; the middle point of this interval is called tleentral
medianof u in U.

DEFINITION 6 If A is a given positive number, a domaid c R? is said to be oftype A if
[2x0,r] = Ar? for anyxg € 22 andr € [0, diam£2], where$2,, » = £2 N B(xg, r).
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LEMMA 6.1 If £2 is a domain of typed andu is a function inL1(£2) such that

f | — iy, dx < Crd*P
2

XQ.7

for a finite constanC and anyr € [0, diams2], whereii,, , is the central median of on £, ,,
thenu admits a representative which iglder continuous with exponept

Proof. This is nothing but the fact that Campanato spaces may be built by using medians instead of
average values (adapt the proof of Theorem 1.2, page 70lin [10]). In fact, it is easy to see that for
each pointc the valuei,, , converges as — 0 to a valuei(xg) and that

lii(x) —ii(y)| < Clx — y|P,

exactly as in the proof we mentioned. What we need isikeat = u(x) a.e. This can be shown in
this way: denote the average valueuodn £2,, , by it . Then

lu(x) — ﬁxo,r| dr < |~Qx0,r|_1/ lu(x) — ﬁxo,r| dx,

- ~ -1
|ux0,r - uxo,r| < |~on,r| /
Q/\'O.r

-on,r

where the second inequality is a consequence of the minimality property of the median. As at
Lebesgue points the last expression tends to zero, this implies that the avgragad the median

liy,, Share the same limit a.e. At the same points we also hgye — u(xo), and this proves

u(xg) = u(xg) a.e. O

6.2 Holder continuity of the landscape function

THEOREM®6.2 Suppose tha® is a domain of typed for A > 0, thate > 1 — 1/d and that

u € P(£2) is a probability measure such that the density of its absolutely continuous part is bounded
from below by a positive constant. Then any landscape functibas a representatidewhich is
Holder continuous with exponegt= d(«¢ — (1 — 1/d)).

Proof. Fix a measure:1 and apply Theorein 4.7 to it and By using the triangle inequality for
dy, We get

—do (1, 1) < Xo (1) — Xo(p) <o /9 zd(ua — ), (6.1)
providedu1 is a measure of the form allowed in Theorgm 4.7, e« u with bounded density.
From [6.]) we get

o /Q 2d(u — 1) < da (i, ). (6.2)
Suppose that has an absolutely continuous part with density everywhere largenthan0 and

choose
p1=p—rola - LY+ rolp - L7,

whereA andB are measurable subsets$®f, . with |[A| = |B|, AU B = £2,, . andA C {z > m}
and B C {z < m} andm is the central median value farin £2,,.. By constructionu; is a
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probability measure to which the estimate of Theofem 4.7 may be applied. With this chqice of
andu1 we get

/ zd(u — u1) =/z(x)kodx—/ z(x)Aodx
Q A B

= ?»o(/ (z(x) —m) dx —/(Z(X) —m) dx) =)»o/ |z(x) — m| dx.
A B 2y

0-€

Putting this into[(6.R) yields

/ z(x) — m| dx < (aro) dy(u, pna).

X0-€

To estimatel, (i, n1) use [2:1) to get

C
[ lz(x) —m|dx < 1“_"; glted
2e.e A

0
Since 1+ ad = d + B, Lemmd 6.1l may be applied. O
An important consequence is the following:

COROLLARY 6.3 Under the same assumptions®@ne andu of Theorenj 6.2,

Xo(12) < Xa(t) + f Zd(u1— ) for any measurg; € P(S2).
2

Proof. The inequality holds fop; of the formu;, = (1 + g) - u with g € L°°, but any measure
u1 € P(£2) may be approximated by such measures. Sinisecontinuous, on both sides of the
inequalities we have quantities which are continuougiimwith respect to weak convergence. This
shows that the same inequality is valid for any. |

Even if we have proven that the landscape functioequals a.e. a function which isdtder
continuous, this is not enough. In fact, this does not provide information on the behaviamof
negligible sets. Yet, the pointwise values:asn S, are of particular interest (as in the last section),
andsS, is one-dimensional and thus negligible. This is why the next step will be proving trad

Z actually agree everywhere.

THEOREM6.4 Letm, denote the central median afin the ball B(xg, ¢). Under the same
assumptions of Theoregm 6.2 one has— z(xo) ase — 0. Consequently;(xo) = z(xo).

Proof. By the semicontinuity of it is easy to get liminf_.om. > z(x0), hence only an estimate
from above form, is needed. Consider a bal(xg, ¢) and a setA, C B(xg, ¢) N {z > m,} such
that|A¢| = |B(xo, €)|/2. Thensely ={y € I' 1 (Too)(¥) € Ae}, e = 4 + n(Ae)dxg — 14, - 14
andn, = n 4+ n(I)é,, — I, - n, whereyg is ann-good curve stopping afb. TheorenE]l can be
applied ton andn. and hence

J(me) < J(n) +Oé<n(Fs)Zn(Vo) —/ Zy dﬂ)

&

= J(n) +ap(Ae)z(xo) — Ot/ 2(x) p(dx) < J () + ap(Ae)(z(x0) — me).

Ag



168 F. SANTAMBROGIO

It follows that

Xo(n) < Xo(ue) + Cep(An)* < Xo(u) + ap(Ag)(z(xo) — me) + Ceu(Ap)“.

This implies
me — z(x0) < Cepu(Ag)* L < CeltdeD,

Since 1+ d(e — 1) > 0 we get limsup_om, < z(xp). To get the second assertion, just use
Z(xg) = limg_ o me. ]

REMARK 9 The landscape functianis in general never Lipschitz continuous (not even locally),

as on the sef, it has slopes given by*—1. This means that, if we have arbitrarily small values

of 6, we cannot have a Lipschitz constant forYet estimates of the kind > ¢ > 0 would imply
Hl(S,,) < +o0 and no measure whose support is not one-dimensional may be irrigated by a set of
finite length (or locally finite length).

Acknowledgments

The work has been completed during a research stay at CMLA-Cachan, financed by an international
grant by ENS Cachan, which is gratefully acknowledged. On this occasion, Prof. Morel read a
previous version of the paper maybe more carefully than the author himself and suggested lots of
improvements. For his help, suggestions and support the author wants to thank him very much. As
another personal remark, it has been a pleasure to cite and use results on Campanato spaces, as the
late Prof. Campanato had been the author’s first calculus teacher, in his last teaching year in Pisa.

REFERENCES

1. BANAVAR, J. R., @LAIORI, F., RLAMMINI, A., GIACOMETTI, A., MARITAN, A., & RINALDO, A.
Sculpting of a fractal river basifPhys. Rev. Let#8(1997), 4522-4525.

2. BANAVAR, J. R., ®LAIORI, F., LAMMINI, A., MARITAN, A., & RINALDO, A. Scaling, optimality,
and landscape evolutiod. Statist. Phys104(2001), 1-48.| Zbl 1074.86518

3. BERNOT, M. Optimal transport and irrigation. PhD Thesis, ENS Cachan (2005), http://perso.crans.
org/~bernot.

4, BERNOT, M., CASELLES, V., & MOREL, J.-M. Traffic plans.Publ. Mat. 49 (2005), 417-451.
Zbl pre0223322Z MR 2177636

5. BERNOT, M., CASELLES, V., & MOREL, J.-M. The structure of branched transportation netwdkdc.
Var. Partial Differential Equationsto appear; http://www.cmla.ens-cachan.fr/Cmla/.

6. BuTTAZZO, G., & SANTAMBROGIO, F. A model for the optimal planning of an urban ar&AM J.
Math. Anal.37 (2005), 514-530. Zbl pre05029245 MR 2176114

7. CAMPANATO, S. Propried di Holderiani& di alcune classi di funzionAnn. Scuola Norm. Sup. Pid¥
(1963), 175-188.  Zbl 0121.29201 MR 0156188

8. DEVILLANOVA, G. Singular structures in some variational problems. PhD Thesis, ENS Cachan (2005).

9. DEVILLANOVA, G., & SOLIMINI, S. Elementary properties of optimal irrigation patter@slc. Var.
Partial Differential Equationsto appear.

10. GAQUINTA, M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems
Princeton Univ. Press (1983). Zbl 0516.49003 MR 0717034
11. GLBERT, E. N. Minimum cost communication networl8ell System Tech. 46 (1967), 2209-2227.


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1074.86518&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=02233222&format=complete
http://www.ams.org/mathscinet-getitem?mr=2177636
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=05029345&format=complete
http://www.ams.org/mathscinet-getitem?mr=2176114
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0121.29201&format=complete
http://www.ams.org/mathscinet-getitem?mr=0156188
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0516.49003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0717034

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

OPTIMAL CHANNEL NETWORKS 169

GILBERT, E. N., & PoLLAK, H. O. Steiner minimal treesSIAM J. Appl. Math.16 (1968), 1-29.
Zbl 0159.22001 MR 0223269

13JJASZVASQUEZ, E., BRAS, R. L., RODRIGUEZITURBE, |., RIGON, R., & RINALDO, A. Are river
basins optimal channel networka@v. Water Resourcds (1993), 69-79.

MADDALENA, F., & SoLIMINI, S. Transport distances and irrigation models. Preprint, http://
cvgmt.sns.it/papers/madsol07/.

MADDALENA, F., SOLIMINI, S., & MOREL, J.-M. A variational model of irrigation patternsterfaces
Free Bound5 (2003), 391-415.] Zbl 1057.35076 MR 2031464

RGON, R., RNALDO, A., RODRIGUEZ-ITURBE, ., 13JASZVASQUEZ, E., & BRAS, R. L. Optimal
channel networks: a framework for the study of river basin morphoM@er Resources Re29 (1993),
1635-1646.

RODRIGUEZ-ITURBE, |., & RINALDO, A. Fractal River BasinsCambridge Univ. Press (1997).
RODRIGUEZ-ITURBE, |., RINALDO, A., RIGON, R., BRAS, R. L., [JJASZVASQUEZ E., & MARANI, A.
Fractal structures as least energy dissipation patterns: the case of river netdeokdys. Res. Leth.
(1992), 2854-2860.

VILLANI, C. Topics in Optimal TransportatiorGrad. Stud. Math. 58, Amer. Math. Soc. (2003).

XIA, Q. Optimal paths related to transport problel@®mmun. Contemp. Mat. (2003), 251-279.
Zbl 1032.90008 MR 1966259

XiA, Q. Interior regularity of optimal transport patt@alc. Var. Partial Differential Equationg0 (2004),
283-299. [ Zbl 1080.900083 MR 2062945


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0159.22001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0223269
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1057.35076&format=complete
http://www.ams.org/mathscinet-getitem?mr=2031464
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1032.90003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1966259
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1080.90008&format=complete
http://www.ams.org/mathscinet-getitem?mr=2062945

	Introduction
	Branching transport models by Gilbert and Xia
	Landscape equilibrium and OCNs in geophysics
	A landscape function appearing for derivation purposes
	Goals of the paper

	Branched transport structures: models and tools
	Relaxed minimization by Xia and its minimal value
	Patterns and traffic plan models
	Useful tools: optimality conditions for (P)

	A general development formula
	Existence of a landscape function and applications
	Well-definedness of the landscape function
	Variational applications: the functional X_
	Variational applications: minimizing (P_+)

	Properties of the landscape function
	Semicontinuity
	Maximal slope in the network direction

	Hölder continuity under extra assumptions
	Campanato spaces by medians
	Hölder continuity of the landscape function


