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Optimal channel networks, landscape function and branched transport
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Starting from transportation models for branching structures, we define a function that represents the
elevation of the landscape in a river basin. This function is already well-known in the geophysical
community but it is only considered under a very strong discretization. We generalize it to the
continuous case and study its properties, providing several applications.

1. Introduction

Lots of branching structures transporting different kind of fluids, such as road systems,
communication networks, river basins, blood vessels, leaves and trees and so on, may be easily
thought of as coming from a variational principle. They appear when transport costs encourage
joint transportation. Recently these problems received a lot of attention by mathematicians. This
paper mainly discusses some features wich are crucial in river basins applications, but addresses
also applications to other fields.

1.1 Branching transport models by Gilbert and Xia

A mathematical formalization for the branching transport problems is very classical and has been
performed first for atomic measures and then generalized. We briefly present here the problem
introduced by Gilbert in [11] and [12], where it is presented as an extension of Steiner’s minimal
length problems. The main applications that Gilbert referred to were in the field of communication
networks. Given two atomic probability measuresµ =

∑m
i=1 aiδxi andν =

∑n
j=1 bj δyj , consider

(PG) min E(G) :=
∑
h

wαhH
1(eh), (1.1)

where the infimum is among all weighted oriented graphsG = (eh, êh, wh)h (whereeh are the
edges,̂eh represent their orientations andwh the weights) satisfying Kirchhoff’s Law: at each vertex
which is not one of thexi ’s or yj ’s the total incoming mass equals the outcoming, while at eachxi
we have

ai + incoming mass= outcoming mass

and, conversely, at eachyj we have

incoming mass= outcoming mass+ bj .

These conditions correspond exactly to the well-known Kirchhoff Law for electric circuits. The
orientationsêh do not appear in the energyE but appear in fact in Kirchhoff constraints. The
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exponentα is a fixed parameter 0< α < 1 so that the functiont 7→ tα is concave and subadditive.
In this way larger links bringing the mass fromµ to ν are preferred to several smaller links
transporting the same total mass. It is not difficult to check that the energy of any finite graph
may be improved if we remove cycles from the graph. In this way we can minimize among finite
graphs which are actually trees. This implies a bound on the number of edges and hence ensures a
suitable compactness which is enough to prove the existence of a minimizer.

More recently Xia, in [20], has proposed a new formalization leading to generalizations of this
problem to arbitrary probability measuresµ andν. In this case the interest of the author of [20] is
to view this problem as an extension of Monge–Kantorovich optimal transport theory (see [19]). In
fact Steiner and Monge’s problems represent the limit casesα = 0 andα = 1, respectively.

1.2 Landscape equilibrium and OCNs in geophysics

It is interesting to see how people working in geophysics arrive at very similar problems in the
study of river basins. There is a wide literature on this and a quite comprehensive reference is
[17]. The specific subject dealt with by this paper is developed both in [17] and in [2] (this last
paper being our main reference, but a short previous summary of these ideas can be found in [1]
as well). While studying the configuration of a river basin, the main objects are two: the landscape
elevation, which is a functionz giving the altitude of any point of the region we are considering,
and a river networkN , which is the datum of all the streams that concur to bring water (which falls
on the region as rain) to a single point (where a lake is supposed to be present). A first link between
both objects is the fact that at any point the direction followed by water is the direction of steepest
descent ofz. Hence, once we knowz we are able to deduceN and to compute themultiplicity
θ(x) at any pointx, which is the quantity of water passing throughx while following the steepest
descent lines ofz. At first the interest is towards an evolution model, which allowsz andN (and
henceθ ) to depend on time as well. The evolution ofz is ruled by an erosion equation of the form

∂z

∂t
= −θ |∇z|2 + c, (1.2)

where∇z is the spatial gradient ofz andc is a positive constant. The idea is that the erosion effect
increases both with the quantity of water and with the slope. The constantc is called uplift and takes
care of the fact that all the material brought down by erosion is in the end uniformly redistributed
from below in the whole region as a geomorphological effect. Equation (1.2) is in fact a simplified
version of other more general evolution equations involving higher order terms. The following
phenomenon concerning solutions of (1.2) can be empirically observed: approximately, up to a
certain time scale bothz andθ (i.e.N ) move, in a very strong erosional evolution; then, up to a larger
time scale the network is almost constant, lettingθ(x, t) = θ(x) depend on the position only, and
the landscape function evolves without changing its lines of maximal slope; finally, there is a much
larger time scale such thatz approximately agrees with alandscape equilibrium, i.e. a stationary
solution of (1.2). We are interested in studying landscape equilibria. In this case the steepest descent
condition, which we can read as “∇z follows the direction of the network”, is completed by a
second one which we get by imposing∂z/∂t = 0 in (1.2). This leads to|∇z| = c1/2θ−1/2 and this
last condition is called theslope-discharge relation. It is explicitly suggested in [2] that in (1.2)
one could change the exponents ofθ and |∇z| (preserving anyway the increasing behavior with
respect to both variables), thus obtaining different slope-discharge relationships. In general we get
|∇z| = c θα−1 and the physically interesting case is when the exponentα is very close to 1/2.
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To find landscape equilibria a discretization is performed in [2] and a regular square grid is used.
Functions defined on the pixels of the grid and vanishing at a given pointx0 representing the outlet
are considered, as well as networks composed by edges of the grid, directed from every point to one
of the neighbors.

• As we already mentioned, the conditions on the direction of the water allow reconstructing a
network from a function. In fact, given a functionz with no local minima other thanx0, one can
always follow the maximal slope paths ofz.

• These are obtained by linking any pointx of the grid to a point which realizes the minimum of
z among the neighbors ofz. Notice in particular that these paths are only composed by edges
following the two main directions of the grid.

• In this way a networkN = N(z) can be deduced fromz.
• On the other hand, the slope-discharge condition allows one to reconstruct a function from a

networkN , provided it is tree-shaped.
• In order to make this reconstruction, first compute the multiplicities of the points of the network:

at a pointx its multiplicity θ(x) is the number of points which findx on their way to the outlet
(this works under the assumption that the quantity of rain falling down at any pixel is the same,
i.e. rain falls uniformly on the grid). See also Figure 1, where the multiplicity of a pointxi is
computed as the number of points in the areaAi .

• Then setz(x0) = 0 and for any other pointx consider the only path onN linking x0 to x. Set
z(x) =

∑
i θ(xi)

α−1, where thexi ’s are the points on the path. In Figure 1 the path linkingx0 to
x is shown.

• In this way we get a functionz = z(N).

FIG. 1. The path fromx to x0 and the multiplicity ofxi .

In general it will not be true that a functionz(N) has maximal slope in the direction of the
networkN . Finding a landscape equilibrium means exactly satisfying both conditions at a time,
through a fixed point problem. The algorithm starts from a tree-shaped networkN , builds the
functionz(N), and then the new networkN ′

= N(z(N)). If N ′
= N , then the landscape function

z = z(N) is a landscape equilibrium.
The important idea presented in [2] is the relation between landscape equilibria and Optimal

Channel Networks (OCNs in literature, see for instance [18], [16] and [13]). An OCN is a network
N minimizing a certain dissipated energy. The dissipated energy in a system satisfying the slope-
discharge relation is the total potential energy that water loses on the network. For each pixel we
have a quantity of waterθ which falls down towards the next pixel and its elevation decreases by
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a quantity which is proportional to|∇z| and hence toθα−1. Hence, the total energy loss is given
by

∑
i θ(xi)θ(xi)

α−1
=

∑
i θ(xi)

α. It is clear that this energy is the same as in (1.1) (no length
of segments is involved because in a regular grid they all have the same, given, length). What is
proven in [2] is that, ifN is an OCN minimizing this energy, then the landscape functionz = z(N)

reconstructed from it is in fact an equilibrium. This actually means that not only is the slope ofz in
the direction of the network given byθα−1, which is true by construction, but also this direction is
the direction of maximal slope.

Notice that the problems studied in [2] and in the other papers on the subject have undergone a
very strong discretization. In fact, they correspond to solving(PG) whereµ is a discretization on
a regular grid of the Lebesgue measure andν = δx0, but with the extra constraint that only edges
eh which are given with the grid are allowed. Compared to continuous models there is a loss of
rotational invariance, a fixed scale effect due to the mesh, and several questions concerning the river
basin may lose their meaning (for instance questions about the interfaces between two separated
parts of the basin and points where the water takes two different directions, or most regularity
issues). On the other hand, a continuous counterpart for the landscape function could not be simply
a regular solution of (1.2) or of its statical version, as forC1 functions steepest descent curves are
well-defined, but they never merge and therefore do not give rise to a positive multiplicityθ (except
for the cased = 1, see [2]).

1.3 A landscape function appearing for derivation purposes

We will briefly see here another aspect of branching transport problems such as(PG) where a
function similar to the landscape function appears.

DEFINITION 1 We define theirrigation cost of a finite atomic measureµ ∈ P(Ω) to be the
minimum of problem(PG) for ν = δ0. This quantity is denoted byXα(µ).

A variational analysis of this functional yields the following.

THEOREM 1.1 Suppose thatµ =
∑m
i=1 aiδxi with ai > 0 (so that the finite setK = {xi : i =

1, . . . , n} is actually the support ofµ) and thatµ1 is another probability measure concentrated on
K with µ1 =

∑m
i=1 biδxi . Then

Xα(µ1) 6 Xα(µ)+ α

m∑
i=1

z(xi)(bi − ai),

where the functionz is defined in this way: take an optimal graphG for problem(PG) for the
measuresµ andδ0; this graph is a tree; for anyxi define

z(xi) =

∑
h∈H(i)

wα−1
h H1(eh),

whereH(i) denotes the set of the indices of the edges of the unique path from 0 toxi .

Proof. We will build a new oriented graph which is acceptable for problem(PG) when irrigating
µ1 starting fromδ0. This graph will be built by using the same edges(eh)h as inG but changing the
weightswh. We define the new weightsw′

h by

w′

h = wh +

∑
i :h∈H(i)

(bi − ai).
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It is easy to check that this new graph satisfies the constraints, and so we get

Xα(µ1) 6
∑
h

(w′

h)
αH1(eh) 6 Xα(µ)+ α

∑
h

wα−1
h

∑
i :h∈H(i)

(bi − ai),

where the last inequality is obtained by concavity oft 7→ tα. By changing the order in performing
the sums we easily get the assertion. 2

REMARK 1 The link between this functionz and the one used in geophysics is straightforward: to
compute a valuez(x), what we do in fact is integrating the multiplicity of the graph along the river
from 0 up tox. See Figure 2 and compare with Figure 1: in this case there are in general many more
degrees of freedom, the multiplicity of the represented pointxi is the total mass of the regionAi
and the geometry of points and edges is not prescribed.

FIG. 2. The path fromx to x0 and the multiplicity ofxi .

REMARK 2 As a consequence of Theorem 1.1, if we setµε = µ+ ε(µ1 − µ), we get

lim sup
ε→0+

Xα(µε)−Xα(µ)

ε
6

∫
z d(µ1 − µ).

This inequality gives information on the derivative of the functionalXα and this fact is very useful
in variational problems of the following kind:

(P+) min Xα(µ)+ F(µ),

whereF may be any functional whose derivative is known. We will show later an example and
briefly explain the interest of these problems.

REMARK 3 Theorem 1.1 has been established under no constraints on the direction of the edges,
i.e. in the setting of problem(PG). It is easy to reproduce them in the case of grid-constrained
OCNs, as in the proof there is no need to change the edges of the graph. Hence this result is also
valid in the setting of [2].

1.4 Goals of the paper

The main goal of this paper is to define a landscape function in the continuous case and analyze its
properties. We will use the recent developments about these irrigation problems concerning arbitrary
probability measures (and not only atomic ones) that we mentioned before. We will consider the



154 F. SANTAMBROGIO

irrigation of an arbitrary measure on a domainΩ starting from a single sourceδ0. Here the main
problem is that the optimal structures which arise are not necessarily trees in the sense that there
may be points which are reached by several curves. We will anyway propose a landscape function
z and check that it is well-defined. Then we will prove that it shares all the properties that we had
in the discrete case, in particular at a pointx0 of the irrigation network it has maximal slope in
the direction of the network itself and this slope is given byθα−1, whereθ is the multiplicity of
the network atx0. Moreover we will prove that even in the continuous case an inequality on the
derivative of the energyXα involving the landscape function is available, and finally we will give
some continuity and semicontinuity results.

Generalizing the concept of landscape function to the irrigation of arbitrary probability measures
has not only variational applications. In river basin applications, in fact, it is natural to consider
directly a configuration where the starting measure is the Lebesgue measure instead of considering
a grid discretization. Moreover, getting rid of the discretization will also add isotropy and other
features to the models in [2] and [17].

The main results leading to the definition of a landscape function and to the study of its
properties will be presented from Section 3 on. Section 2 is in fact devoted to a short summary
of the different models and of the main features that will be used later.

2. Branched transport structures: models and tools

Recently, several models have been developed to study branching transport structures. At first sight
they are very different, but many equivalences can be proved. On one hand there are the Eulerian
approaches, first by Gilbert and then by Xia, and on the other there are Lagrangian, time-dependent
approaches mainly presented in [15] and [4]. The Eulerian models are the most similar to the one
used by the geophysical community, and the generalization by Xia will be explained here a little
more. The Lagrangian ones, on the other hand, are the most useful to deal with a possible landscape
function thanks to the form of the functionals involved.

2.1 Relaxed minimization by Xia and its minimal value

Let us briefly see how Xia extended the Gilbert approach. The key point is that the constraint on the
incoming and outcoming masses at each vertex (Kirchhoff Law) may be easily written as∇ · λG =

µ − ν, whereλG =
∑
hwh[[eh]] is a vector measure ([[e]] being the integration measure on the

segmente following its direction: a measure which is absolutely continuous with respect toH1 with
density ê on e and 0 elsewhere). These considerations led Xia in [20] to extend the problem by
relaxation to generic probabilitiesµ andν. The problem becomes

(PX) min Ē(λ) : ∇ · λ = µ− ν

whereĒ(λ) := inf lim inf n E(λGn) with the infimum taken over all possible sequences(Gn)n of
finite graphs such that the corresponding vector measuresλGn converge toλ.

One can prove that, whenµ andν are both actually atomic measures, we retrieve the problem
by Gilbert. This can be done by means of necessary optimality conditions: if we minimize Xia’s
functional over vector measures, we can prove that a minimizer must necessarily be a finite graph
(see [21] and [5]). Hence Xia’s formulation is an extension of Gilbert’s.

The minimum value of(PX), which obviously depends onµ andν, will be denoted bydα(µ, ν).
It is very important to understand when this minimal value is finite. It is proven in [20] that, ifα
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is sufficiently close to 1, namelyα > 1 − 1/d, then this minimum is finite for any pair(µ, ν).
Moreover, the following uniform estimate (see [20]) holds:

dα(µ, ν) 6 Cα,d diam(Ω).

To deal with local perturbations, it is not difficult to deduce a sharper estimate, namely

dα(µ, ν) 6 Cα,d δ
α diam(ω), (2.1)

wheneverµ − ν = δ(µ′
− ν′) andµ′ and ν′ are probability measures onω ⊂ Ω. Whenα is

below the threshold 1− 1/d there are pairs of measures which are not linkable by a finite energy
configuration. The possibility of reaching a certain measure by finite energy is somehow linked to
its “dimension” (see [8]).

DEFINITION 2 For any measureµ ∈ P(Ω) we setXα(µ) = dα(µ, δ0). This is an extension of
Definition 1. Moreover, a measureµ is calledα-irrigable if Xα(µ) < +∞.

In [20] it is proven that, forα > 1 − 1/d, the quantitydα defines a new distance over the space
P(Ω) of probability measures, which induces the weak topology. Both the continuity with respect
to this topology and the triangle inequality will be used in the following.

2.2 Patterns and traffic plan models

This subsection is an informal summary of the models in [15] and [4] and their properties. The
approach and terminology have been sometimes simplified in view of the aim of this paper.

Let Ω be a fixed compact domain inRd . Denote byΓ the set of 1-Lipschitz curvesγ :
[0,+∞[ → Ω that are eventually constant. This means that, if we define thestopping timeof a
curveγ by

σ(γ ) = inf{s : γ is constant on [s,+∞[},

these are curves withσ(γ ) < +∞. Denote byΓarc the set of those curves inΓ which are
parametrized by arc length, and byΓinj the set of curves inΓ which are injective on [0, σ (γ )[.
We will often identify a curve with its image, writingγ instead ofγ ([0, σ (γ )]) = γ ([0,+∞[).

Given a probability measureη on the spaceΓ , for any pointx ∈ Rd theη-multiplicity of x is
defined by

[x]η := η{γ ∈ Γ : x ∈ γ ([0, σ (γ )])}. (2.2)

Then we can define

Zη(γ ) =

∫ σ(γ )

0
[γ (t)]α−1

η dt and J (η) =

∫
Γ

Zη dη.

Notice that, for simplicity, hereZη is defined without the term|γ ′
|(t) which appears in the original

definition in [4]. It will be deduced later that minimizers are actually parametrized by arc length.
Finally, we consider the mapsπ0, π∞ : Γ → Ω given byπ0(γ ) = γ (0) andπ∞(γ ) =

γ (σ (γ )). The two image measures(π0)]η and(π∞)]η, which belong toP(Ω), will be called the
starting measureand terminal measureof η, respectively. Following the terminology of [4] we
define atraffic planas a measureη ∈ P(Γ ) such that

∫
Γ
σ(γ ) η(dγ ) < +∞. We will also call a

traffic planη such that(π0)]η = δ0 apattern. In the case of a pattern the terminal measure will also
be called the measureirrigated byη.
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The minimization problem proposed in [4] is

(P ) min {J (η) : η is a traffic plan,(π∞)]η = µ, (π0)]η = ν},

whereµ and ν are given measures inP(Ω). As [γ (t)]η 6 1, we haveZη(γ ) > σ(γ ). Hence
it is straightforward that anyη such thatJ (η) < +∞ is actually a traffic plan. A traffic planη
which minimizesJ among the traffic plans with the same starting and terminal measures, with
J (η) < +∞, will be called anoptimal traffic plan. In the caseν = δ0 it will be called anoptimal
pattern.

A useful tool developed in [4] (see also [3]) is the following: ifη is concentrated onΓarc ∩ Γinj
then the following remarkable formula holds:

J (η) =

∫
Rd

[x]αη H1(dx). (2.3)

This formula gives an evident link with Gilbert and Xia’s models.

2.3 Useful tools: optimality conditions for(P )

Before presenting some consequences of optimality, let us deal with some concepts from [15] which
are crucial in the caseν = δ0.

For anyt > 0 consider an equivalence relation onΓ given by “the curvesγ1 andγ2 are in
relation at timet if they agree on the interval [0, t ]”, and denote the equivalence classes by [·]t , so
that

[γ ]t = {γ̃ : γ̃ (s) = γ (s) for anys 6 t}.

For notational simplicity, set|γ |t,η := η([γ ]t ).

DEFINITION 3 Givenη ∈ P(Γ ), a curveγ ∈ Γ is said to beη-goodif∫ σ(γ )

0
|γ |

α−1
t,η dt < +∞.

Here are the most important results that can be found in [15], [4], [3], [5] and [14] or easily
deduced from them.

(1) Problem(P ) admits a solution, provided the infimum is finite (i.e. there is at least a solution
with finite energy).

(2) If η is an optimal traffic plan, thenη is concentrated onΓarc ∩ Γinj . In particular, we may apply
formula (2.3) forJ .

(3) Suppose thatη is an optimal traffic plan, that two curvesγ0, γ1 ∈ Γarc ∩ Γinj meet twice
(i.e. γ0(s0) = γ1(s1), γ0(t0) = γ1(t1) and si 6= ti) and that [γ0(t)]η > c > 0 for any t ∈

[s0, t0]. Then either both curves coincide in the trajectory between the two common points or we
have

∫ t0
s0

[γ0(t)]α−1
η dt <

∫ t1
s1

[γ1(t)]α−1
η dt . In particular two different curves with multiplicities

bounded from below cannot part and then meet again.
(4) If η is an optimal pattern (in particularν = δ0), then forη-a.e. curveγ and a.e.t < σ(γ ) we

have [γ (t)]η = η([γ ]t ). Roughly speaking, this means that if all the mass starts from a common
point then there is no parting-and-meeting-again-later (this is the single path property described
in [5]).
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(5) As a consequence, any optimal patternη is concentrated on the set ofη-good curves, and any
η-good curveγ belongs toΓarc ∩ Γinj and satisfies [γ (t)]η = η([γ ]t ) for anyt < σ(γ ).

(6) Last but not least, min(P ) = dα(µ, ν), which means that the minima of the Lagrangian and of
the Eulerian models coincide.

REMARK 4 Notice that an optimal traffic planη is concentrated on the set ofη-good curves, but
this does not mean that this set is linked to the support ofη. In fact, any restriction of anη-good
curve is itself anη-good curve and hence, for instance, in the discrete case, we have plenty ofη-good
curves but the support ofη is finite. In particular, the set ofη-good curves may be very different from
the set of fibers of a traffic plan that we find in [4] or [5] and does not depend on any parametrization,
but it is more intrinsic.

3. A general development formula

In this section we will develop in a useful way the variation of the functionalJ when passing from
a traffic planη to a traffic planη′. Formula (2.3) will be crucial.

THEOREM 3.1 Letη andη′ be probability measures onΓ and∆η = η′
− η. Suppose that bothη

and∆η are concentrated onΓarc ∩ Γinj and
∫
Γ
Zη d|∆η| < +∞. Then

J (η′) 6 J (η)+ α

∫
Γ

Zη d∆η − α(1 − α)

∫
Rd

[x]2∆ηH
1(dx). (3.1)

Proof. SetSη = {x ∈ Rd : [x]η > 0} and analogouslySη′ = {x ∈ Rd : [x]η′ > 0}. First we prove
that under the assumptions of this theorem,H1(Sη′ \ Sη) = 0. In fact, for anyx ∈ Sη′ \ Sη we have
necessarily [x]η = 0 and [x]∆η > 0. Hence it is sufficient to prove that the integral of [x]∆η on this
set vanishes to get the desired result. We have∫

Sη′\Sη

[x]∆ηH1(dx) =

∫
Sη′\Sη

H1(dx)
∫
Γ

∆η(dγ ) Ix∈γ =

∫
Γ

∆η(dγ )H1(γ ∩ (Sη′ \ Sη)),

where I denotes the function whose value is 1 if the condition in the subscript is satisfied, 0
otherwise (indicator function). The second assumption of the theorem implies that for∆η-a.e. curve
γ the quantityZη(γ ) is finite, and henceγ (t) ∈ Sη for a.e.t . Sinceγ is 1-Lipschitz continuous,
this yieldsH1(γ \ Sη) = 0. Hence

∫
Sη′\Sη

[x]∆ηH1(dx) = 0, which provesH1(Sη′ \ Sη) = 0.

Now, as bothη andη′ are concentrated onΓarc ∩ Γinj , to evaluateJ we can use the expression
in (2.3) and get

J (η′) =

∫
Sη

([x]η + [x]∆η)
αH1(dx)

6 J (η)+ α

∫
Sη

[x]α−1
η [x]∆ηH1(dx)− α(1 − α)

∫
Sη

[x]2∆ηH
1(dx), (3.2)

where we have used the fact thatSη′ ⊂ Sη up toH1-negligible sets and the concavity inequalities

(t + s)α 6 tα + αtα−1s − α(1 − α)(max{t, t + s})α−2s2 6 tα + αtα−1s − α(1 − α)s2

(this last inequality being valid when botht andt + s belong to ]0,1]).
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Let us now handle the second term of the last sum we obtained. We have∫
Sη

[x]α−1
η [x]∆ηH1(dx) =

∫
Sη

H1(dx)
∫
Γ

∆η(dγ ) [x]α−1
η Ix∈γ .

Here we want to change the order of integration, and to do this we check what happens in absolute
value: ∫

Sη

H1(dx)
∫
Γ

|∆η|(dγ ) [x]α−1
η Ix∈γ =

∫
Γ

|∆η|(dγ )
∫
Sη

H1(dx) [x]α−1
η Ix∈γ

=

∫
Γ

|∆η|(dγ )
∫ σ(γ )

0
[γ (t)]α−1

η dt

=

∫
Γ

Zη d|∆η| < +∞. (3.3)

In this chain of equalities, the first one is just changing the integration order, while the second relies
on the fact that|∆η|-a.e. we haveH1(γ \ Sη) = 0 and,γ being parametrized by arc length, the
H1-integral on its image becomes an integral with respect to dt on [0, σ (γ )]. The finiteness of the
last integral in (3.3) allows us to change the order of integration with respect to∆η andH1 and by
analogous computations we get∫

Sη

H1(dx)
∫
Γ

∆η(dγ ) [x]α−1
η Ix∈γ =

∫
Γ

Zη d∆η.

Inserting this last equality in (3.2) gives the conclusion. 2

4. Existence of a landscape function and applications

In this section we come specifically back to problem(P ) for ν = δ0. Even when not explicitly
stated, from now onη will be an optimal pattern irrigating anα-irrigable measureµ.

4.1 Well-definedness of the landscape function

First a very elementary truncation lemma is needed. As it is just the formalization of a well-known
principle (that a part of an optimal structure is itself optimal), it will not be proven here. It is in fact
proven in [5] when stating the optimality of the connected components of a traffic plan inRd \ {x0}.

LEMMA 4.1 If γ0 is a curve such that|γ |t0,η > 0, setx0 = γ0(t0),A = [γ0]t0,µA = (π∞)](IA ·η),
µ′

= µ − µA + η(A)δx0, η′
= η − IA · η + η(A)δγ̄0, whereγ̄0 is the curveγ0 stopped at timet0.

Thenη′ is an optimal pattern irrigating the measureµ′.

THEOREM 4.2 If γ0 andγ1 are twoη-good curves sharing the same end-pointx̄, thenZη(γ0) =

Zη(γ1).

Proof. If the two curves are identical the assertion is easy. If they are not identical, then they must
split at a certain timēt . It is possible that one of them stops at timet̄ , but not both, as in this case
they would be identical. So we can choose two timest0 andt1 with |γi |ti ,η > 0 andt̄ 6 ti 6 σ(γi)

for i = 0, 1 (if one of the two curves stops at timet̄ , say for instanceσ(γ0) = t̄ , then we are
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FIG. 3. Both curves may go on aftert̄ or one may stop.

forced to chooset0 = σ(γ0) = t̄ and we have|γ0|t0,η = |γ1|t̄ ,η and|γ1|t̄ ,η > 0 as a consequence of
t̄ < σ(γ1)). Figure 3 shows the two possible situations.

Setxi = γi(ti) andl = |x1 − x0|. Then we use the notations of the previous lemma to write

dα(δ0, µ
′) 6 dα(δ0, µ

′′)+ dα(µ
′, µ′′), (4.1)

whereµ′′
= µ−µA+η(A)δx1. Defineη′′

= η−IA ·η+η(A)δγ̄1, whereγ̄1 is γ1 stopped at timet1.
It is easy to check that(π∞)]η

′′
= µ′′ and then

dα(δ0, µ
′′) 6 J (η′′) 6 J (η′)+ α

∫
Γ

Zη d(η′′
− η′)

= J (η′)+ αη(A)

(∫ t1

0
|γ1|

α−1
t,η dt −

∫ t0

0
|γ0|

α−1
t,η dt

)
.

Here we have used Theorem 3.1 to estimateJ (η′′). Actually by this theorem we would haveZη′

instead ofZη. Yet we can replaceZη′ byZη because we have only changed the measureη onA by
the same amount of mass concentrated onγ̄0, and onγ0 ∪ γ1 this does not affect multiplicities. As
far as the second term of the sum in (4.1) is concerned, it is easy to see that

dα(µ
′, µ′′) 6 lη(A)α.

By inserting these estimates in (4.1) we get∫ t0

0
|γ0|

α−1 dt −
∫ t1

0
|γ1|

α−1 dt 6 α−1lη(A)α−1.

Now estimate the lengthl by

l = |x0 − x1| 6 |x0 − x̄| + |x̄ − x1| 6 (σ (γ0)− t0)+ (σ (γ1)− t1)

6 η(A)1−α

∫ σ(γ0)

t0

|γ0|
α−1
t,η dt + η(B)1−α

∫ σ(γ1)

t1

|γ1|
α−1
t,η dt.

Hence∫ t0

0
|γ0|

α−1 dt −
∫ t1

0
|γ1|

α−1 dt 6 α−1
(∫ σ(γ0)

t0

|γ0|
α−1
t,η dt +

η(B)1−α

η(A)1−α

∫ σ(γ1)

t1

|γ1|
α−1
t,η dt

)
.
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Notice that we cannot have|γi |σ(γi ),η > 0 for bothi = 0,1, thanks to the no-loop property (property
(3)). So, if|γ1|σ(γ1),η = 0, once we fixt0 such thatη(A) > 0, we can chooset1 so thatη(B) 6 η(A)

sinceη(B) → 0 ast1 → σ(γ1). Otherwise, if|γ1|σ(γ1),η > 0, we can choose directlyt1 = σ(t1). In
both cases we have∫ t0

0
|γ0|

α−1 dt −
∫ t1

0
|γ1|

α−1 dt 6 α−1
(∫ σ(γ0)

t0

|γ0|
α−1
t,η dt +

∫ σ(γ1)

t1

|γ1|
α−1
t,η dt

)
. (4.2)

Then we lett0 andt1 tend toσ(γ0) andσ(γ1), according to the criteria for the choice oft1 we have
used so far, and we get in the limit

Zη(γ0)− Zη(γ1) 6 0,

because the integrals on the right hand side of (4.2) tend to zero as a consequence of the fact thatγ0
andγ1 are bothη-good curves. Interchangingγ0 andγ1 proves the assertion. 2

COROLLARY 4.3 If two differentη-good curvesγ0 andγ1 meet at a certain pointx = γ0(t0) =

γ1(t1), then|γ0|t0,η = |γ1|t1,η = 0.

Proof. If one of the two multiplicities|γi |ti ,η were positive a strict inequality betweenZη(γ0) and
Zη(γ1) would hold, contrary to the equality just proven, 2

COROLLARY 4.4 Anyη-good curveγ is in fact injective on [0, σ (γ )].

Proof. The injectivity on [0, σ (γ )[ is already known. Hence, consider the caseγ (σ (γ )) = γ (t) for
t < σ(γ ). This would imply|γ |t,η > 0, contrary to Corollary 4.3 applied toγ andγ̄ , which isγ
stopped at timet . 2

REMARK 5 The injectivity on [0, σ (γ )] was already known forη-a.e. curveγ (see [4]). Yet, it
was not possible to identify an explicit class of curves sharing this property. For the purposes of this
paper it is important to switch from a generic “a.e.” to the fact that this is true forη-good curves.

The result of Theorem 4.2 allows us to define a function onΩ via the values ofZη.

DEFINITION 4 We define thelandscape functionassociated to the traffic planη as the functionzη
given by

zη(x) =

{
Zη(γ ) if γ is η-good andx = γ (σ (γ ));

+∞ if no η-good curve ends atx.

REMARK 6 It is in fact possible to prove more easily that the value ofz is well-definedµ-a.e. (in
the sense that if on a nonnegligible set of pointsx we had two different values forZη we would have
the possibility to strictly improve the value ofJ ). Yet, we do not want a functionz which is defined
a.e. but a pointwise defined value, to deal later with pointwise properties, being also concerned with
negligible sets such asSη.

REMARK 7 Notice, as in Remark 4, that restrictions ofη-good curves are stillη-good and that this
implies that if the landscape function is finite at a pointx then it is also finite on the wholeη-good
curve arriving atx.
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4.2 Variational applications: the functionalXα

Some consequences of the existence of the landscape function are now presented.

COROLLARY 4.5 For the functionalXα we have the following representation formula:Xα(µ) =∫
Ω
z dµ, wherez = zη is the landscape function associated to any optimal patternη irrigating the

measureµ.

Proof. It is sufficient to apply the formulaXα(µ) = J (η) =
∫
Γ
Zη dη and the fact thatZη(γ )

depends only onπ∞(γ ) throughZη(γ ) = z(π∞(γ )) to get

Xα(µ) =

∫
Γ

Zη dη =

∫
Ω

z d((π∞)]η) =

∫
Ω

z dµ. 2

COROLLARY 4.6 If µ is α-irrigable, then any landscape functionz is finiteµ-a.e.

Proof. Corollary 4.5 yields
∫
z dµ = Xα(µ) < +∞ and from this the result is straightforward.2

REMARK 8 As the word “any” in the previous statement suggests, there is no uniqueness for the
landscape function, and there is a landscape function for any optimal pattern.

Moreover, using Theorem 3.1 together with the existence of the landscape function, a derivation
result extending the discrete case can be obtained. Notice that the following theorem will also be
useful for other purposes, for instance when looking for continuity properties of the landscape
function (see Section 6).

THEOREM 4.7 For a given functiong onΩ such that‖g‖L∞(µ) 6 1 and such that
∫
Ω
g dµ = 0,

setµ1 = µ(1 + g). Then

Xα(µ1) 6 Xα(µ)+ α

∫
Ω

z(x)g(x) µ(dx),

where the functionz = zη is the landscape function according to an arbitrary optimal patternη

irrigating the measureµ.

Proof. We will consider a variation ofη given byη1 = (1+ (g ◦ π)) · η. Sinceπ]η1 = (1+ g) ·µ,
we have

Xα(µ1)−Xα(µ) 6 J (η1)− J (η).

We want to apply Theorem 3.1 to this situation, with∆η = (g ◦ π) · η. Since∆η is absolutely
continuous with respect toη with bounded density, it is straightforward that both the conditions
required by the theorem (∆η being concentrated onΓarc ∩ Γinj andZη being|∆η|-integrable) are
satisfied, so

J (η′) 6 J (η)+ α

∫
Γ

Zη d∆η.

Now use the fact thatZη depends only on its terminal point to get∫
Γ

Zη d∆η =

∫
Ω

z d((π∞)]∆η) =

∫
Ω

zg dµ.

Putting together all the results yields the conclusion. 2

A simple consequence of this theorem may be expressed in terms of derivatives.
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COROLLARY 4.8 Setµε = µ+ εg · µ. Then the following derivative inequality holds:

lim sup
ε→0+

Xα(µ+ εg · µ)−Xα(µ)

ε
6 α

∫
Ω

z(x)g(x) µ(dx).

4.3 Variational applications: minimizing(P+)

As already mentioned, the last derivative inequality may be useful in variational problems
involvingXα. For the sake of clarity we provide a short example.

EXAMPLE 1 Consider the functionalF : P(Ω) → [0,+∞] given by

F(µ) =

{∫
Ω
u2 dLd if µ = u · Ld ,

+∞ if µ is not absolutely continuous.

If we want to minimize (forα > 1− 1/d) the sumXα(µ)+F(µ) over all probabilitiesµ onΩ we
get as an optimality condition, by differentiating and using Corollary 4.8,

αz+ 2u = const a.e. on{u > 0}. (4.3)

This implies several interesting properties. First of all we notice that, bothz andu being positive,
they are also bounded. It was nota priori evident thatu ∈ L∞(Ω), since the natural condition was
u ∈ L2(Ω). Sincez(x) > |x|, this also gives an estimate on the support ofµ. As the constant
appearing in (4.3) could be uniformly estimated (it is sufficient to multiply (4.3) byu and integrate,
thus obtaining const= αXα(µ) + 2F(µ) 6 2 min(Xα + F)), this could also be used to prove an
existence result forΩ = Rd , proving also that actually minimizers ofXα + F are supported in
a given bounded ball. Moreover, formula (4.3) yields some regularity result foru according to the
results we will prove later onz.

Variational problems such as(P+) have been first proposed in [15], where the authors suggested
problems involving both the irrigation patternχ and the irrigated measureµχ , and are very similar
to those in [6]. In fact in [6] a similar sum is minimized, but with a standard Wasserstein distance
instead of the termXα(µ) = dα(µ, δ0). Such a model was proposed to study urban planning
problems, withµ standing for the population density in a region, exactly as(P+) may be used
in studying the shape of a leaf or a flower, represented byµ. In fact, the minimization of a sum of an
Xα term and a convex functional onµ could be an easy model taking into account that leaves want
to be as spread as possible to catch sunlight but have to be irrigated starting from a single source.
In the framework of [6] the key condition coming from optimality wasψ + f ′(u) = const, and the
landscape functionz dealt with in this paper plays somehow the role of the Kantorovich potentialψ .
Also Corollary 4.5 can be seen as indicating a similarity between the landscape function and the
Kantorovich potential (see [19]). Moreover, the Hölder continuity result at the end of this paper
perfectly agrees with the fact that Kantorovich potentials (which correspond toα = 1) are Lipschitz
continuous.

5. Properties of the landscape function

5.1 Semicontinuity

LEMMA 5.1 Given anyη ∈ P(Γ ), the functionZη : Γ → R is lower semicontinuous with respect
to pointwise convergence.
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Proof. This result is almost implicitly proven both in [15] and in [4], but never explicitly stated. It
is anyway proven thatx 7→ [x]η is upper semicontinuous, and hencex 7→ [x]α−1

η is l.s.c. Then, to
prove lim infn Zη(γn) > Zη(γ ), fix a timet1 < σ(γ ) and use lim infσ(γn) > σ(γ ). Eventually we
haveσ(γn) > t1 and, by Fatou’s Lemma, we get

lim inf
n

Zη(γn) > lim inf
n

∫ t1

0
[γn]

α−1
η dt >

∫ t1

0
[γ ]α−1

η dt.

Passing to the limit ast1 → σ(γ ) gives the assertion. 2

THEOREM 5.2 The landscape functionz is lower semicontinuous.

Proof. Consider a sequencexn → x and, correspondingly, someη-good curvesγn such that
π∞(γn) = xn andz(xn) = Zη(γn). We may assume supn z(xn) < +∞. Sinceσ(γn) 6 Zη(γn) =

z(xn), we also have supn σ(γn) < +∞ and we can extract a subsequence (not relabeled) such that
γn → γ uniformly. It is not difficult to prove thatπ∞(γ ) = x. Thus, it is sufficient to use Lemma
5.1 to getZη(γ ) 6 lim infn Zη(γn) = lim infn z(xn). This implies thatγ is anη-good curve and
z(x) = Zη(γ ), which yields the assertion. 2

5.2 Maximal slope in the network direction

The next property of the landscape function that can be proven in general (i.e., under no extra
assumption onα, Ω, µ, . . . ) is most important in view of its meaning in river basin applications.
Our interest is in a continuous counterpart of the landscape function of [2]. What we actually need
is that, at the points of the irrigation networkSη, the direction of maximal slope ofz is exactly
the direction of the network. If anη-good curveγ0 is fixed, by the definition ofz, for a.e.t0 the
derivative ofz along the curveγ at the pointx0 = γ0(t0) is exactly|γ0|

α−1
t0,η

. This is why we prove
the following result. Notice that, as already mentioned, in the continuous case the functionz cannot
be expected to be very regular, and in fact the maximal slope result we are going to prove involves
differentiability in a very pointwise way but very weak as well.

THEOREM 5.3 Let x0 = γ0(t0), whereγ0 is anη-good curve,t0 a time with t0 6 σ(γ0) and
θ0 := |γ0|t0,η > 0. Then, for anyx /∈ γ0([0, t0]),

z(x) > z(x0)− θα−1
0 |x − x0| − o(|x − x0|).

This amounts to saying that the slope atx0 in the direction of the network is actually the maximal
slope atx0.

Proof. Fix x /∈ γ0([0, t0]) such thatz(x) < z(x0). We may assume thatx = γx(tx) for anη-good
curveγx (otherwisez(x) = +∞) and that the two curvesγ0 andγx get apart at a certain time
t1(x) < t0 (the caset1(x) > t0 implies in factz(x) > z(x0)). By Lemma 5.4 below we know that
t1(x) → t0 as|x − x0| → 0. Setθ(t) = |γ0|t,η; for t ∈ [t1(x), t0] we may writeθ(t) 6 θ0(1 + εx),
whereεx is infinitesimal as|x − x0| → 0 as a consequence oft1(x) → t0.

We use again Lemma 4.1 and its notations. In particularA = [γ0]t0 andθ0 = θ(t0) = η(A).
Also define, as in Theorem 4.2,µ′′

= µ − µA + η(A)δx andη′′
= η − IA · η + η(A)δγ̄x , where

γ̄x is γx stopped at timetx , and it is easy to check that(π∞)]η
′′

= µ′′. Then, by the optimality
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FIG. 4. Curves and points in the proof.

of η′ (we recall that, according to the notations of Lemma 4.1,µ′
= µ − µA + η(A)δx0 and

η′
= η − IA · η + η(A)δγ̄0, whereγ̄0 is γ0 stopped att0, see also Figure 4), we have

J (η′) = Xα(µ
′) 6 Xα(µ

′′)+ dα(µ
′′, µ′) 6 J (η′′)+ |x − x0|θ

α
0 . (5.1)

We want to compareJ (η′) andJ (η′′), and to do this we here need a more refined estimate than
what we could find by using Theorem 3.1. Asη′

− η′′
= θ0(δγ̄0 − δγ̄x ), we have in particular

[y]η′′ = [y]η′ + θ0(Iy∈γ̄x − Iy∈γ̄0). By using (2.3) we get

J (η′′)− J (η′) =

∫
γ̄x\γ̄0

(([y]η′ + θ0)
α

− [y]αη′)dH1
−

∫
γ̄0\γ̄x

([y]αη′ − ([y]η′ − θ0)
α)dH1.

It is not difficult to check that [y]η′ = [y]η for y ∈ γ̄x ∪ γ̄0, as we have replaced the part of
η concentrated onA by an equal amount of mass on̄γ0. Hence we may estimate (rewriting the
integrals with respect toH1 as integrals with respect to dt)

J (η′′)− J (η′) 6 α

∫ tx

t1(x)

|γx |
α−1
t,η θ0 dt −

∫ t0

t1(x)

(θ(t)α − (θ(t)− θ0)
α)dt.

Since the functions 7→ sα − (s − θ0)
α is decreasing andθ(t) 6 (1 + εx)θ0, we getθ(t)α −

(θ(t)− θ0)
α > θα0 ((1 + εx)

α
− εαx ). Hence

J (η′′)− J (η′) 6 α(z(x)− z(x1))− |t0 − t1(x)|θ
α
0 ((1 + εx)

α
− εαx ),

wherex1 = γ0(t1(x)) = γx(t1(x)). Write (1+ εx)
α

− εαx = (1+ ε′x)
−1 with ε′x > 0 infinitesimal as

x → x0. Fromθα−1
0 > (θ(t))α−1 we get|t0 − t1(x)|θ

α
0 > θ0(z(x0) − z(x1)). Now notice that, for

|x − x0| sufficiently small, the inequalityα < (1 + ε′x)
−1 is satisfied, and hence

J (η′′) 6 J (η′)+ (1 + ε′x)
−1θ0(z(x)− z(x0).

If we insert this into (5.1) we finally get

z(x)− z(x0) > −θα−1
0 |x − x0|(1 + ε′x). 2

LEMMA 5.4 According to the notations of Theorem 5.3, whenx → x0 andz(x) 6 z(x0), the
parting timet1(x) tends tot0.

Proof. Suppose, by contradiction, that there exists a sequencexk → x0 such that limk t1(xk) =

t̄ < t0 andz(xk) 6 z(x0). Sinceγ0 is injective (Corollary 4.4), we may infer the existence of a
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positive quantityδ such that|γ0(t1(xk))− x0| > δ (otherwise there would be a timet 6 t̄ < t0 with
γ0(t) = x0). For anyk consider anη-good curveγk such thatxk = γk(tk). First notice that, at least
for k large enough, thanks to|γk(t1(xk)) − xk| = |γ0(t1(xk)) − xk| → |γ0(t̄) − x0| > δ, we have
tk > t̄ + δ/2. Then consider the pointsγk(t̄ + δ/2): this collection of points must in fact be finite,
otherwise we would have|γk|t̄+δ/2,η → 0 and hencez(xk) > |γk|

α−1
t̄+δ/2,η|tk − (t̄ + δ/2)| → +∞

because|tk − (t̄ + δ/2)| > |xk − γ0(t̄)| − δ/2 > δ/2. This contradictsz(xk) 6 z(x0) and so we
may suppose, up to subsequences, thatγk(t̄ + δ/2) = x̄ (for a point x̄ which does not belong to
the image ofγ0, otherwise we would contradict property (3)) and thatγk uniformly converges to a
curveγ . In the limit we should get a curveγ passing throughγ0(t̄), x̄ andx0, i.e. we have created
a loop becauseγ0 does not pass through̄x (see Figure also 5).

FIG. 5. A sequence of curves creating a loop in the limit.

Fromz(xk) 6 z(x0) we can infer by semicontinuity (Lemma 5.1) thatγ is anη-good curve and
hence this loop contradicts Corollary 4.3. 2

6. Hölder continuity under extra assumptions

Here we will be able to prove some extra regularity properties ofz, but we have to add some
assumptions. The most important ones are onα (α > 1 − 1/d is required) and on the irrigated
measureµ (a lower bound on its density is supposed).

6.1 Campanato spaces by medians

We will here give a simple variant of a well-known result by Campanato (see [7]) about an integral
characterization of Ḧolder continuous functions.

DEFINITION 5 Given a measurable functionu on a domainU we define amedianof u in U to be
any numberm which satisfies the following equivalent conditions:

• |{x ∈ U : u(x) > m}| 6 1
2|U | and|{x ∈ U : u(x) < m}| 6 1

2|U |;
• there exists a measurable subsetA ⊂ {x ∈ U : u(x) = m} such that|{x ∈ U : u(x) > m}∪A| =

1
2|U |;

• the functiont 7→
∫
U

|u(x)− t | dx achieves its minimum att = m.

The set of medians ofu in U is an interval ofR; the middle point of this interval is called thecentral
medianof u in U .

DEFINITION 6 If A is a given positive number, a domainΩ ⊂ Rd is said to be oftypeA if
|Ωx0,r | > Ard for anyx0 ∈ Ω andr ∈ [0,diamΩ], whereΩx0,r = Ω ∩ B(x0, r).
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LEMMA 6.1 IfΩ is a domain of typeA andu is a function inL1(Ω) such that∫
Ωx0,r

|u− ũx0,r | dx 6 Crd+β

for a finite constantC and anyr ∈ [0,diamΩ], whereũx0,r is the central median ofu onΩx0,r ,
thenu admits a representative which is Hölder continuous with exponentβ.

Proof. This is nothing but the fact that Campanato spaces may be built by using medians instead of
average values (adapt the proof of Theorem 1.2, page 70 in [10]). In fact, it is easy to see that for
each pointx0 the valueũx0,r converges asr → 0 to a valueũ(x0) and that

|ũ(x)− ũ(y)| 6 C|x − y|β ,

exactly as in the proof we mentioned. What we need is thatũ(x) = u(x) a.e. This can be shown in
this way: denote the average value ofu onΩx0,r by ūx0,r . Then

|ūx0,r − ũx0,r | 6 |Ωx0,r |
−1

∫
Ωx0,r

|u(x)− ũx0,r | dx 6 |Ωx0,r |
−1

∫
Ωx0,r

|u(x)− ūx0,r | dx,

where the second inequality is a consequence of the minimality property of the median. As at
Lebesgue points the last expression tends to zero, this implies that the averageūx0,r and the median
ũx0,r share the same limit a.e. At the same points we also haveūx0,r → u(x0), and this proves
ũ(x0) = u(x0) a.e. 2

6.2 Hölder continuity of the landscape function

THEOREM 6.2 Suppose thatΩ is a domain of typeA for A > 0, thatα > 1 − 1/d and that
µ ∈ P(Ω) is a probability measure such that the density of its absolutely continuous part is bounded
from below by a positive constant. Then any landscape functionz has a representativẽz which is
Hölder continuous with exponentβ = d(α − (1 − 1/d)).

Proof. Fix a measureµ1 and apply Theorem 4.7 to it andµ. By using the triangle inequality for
dα, we get

−dα(µ,µ1) 6 Xα(µ1)−Xα(µ) 6 α

∫
Ω

z d(µ1 − µ), (6.1)

providedµ1 is a measure of the form allowed in Theorem 4.7, i.e.µ1 � µ with bounded density.
From (6.1) we get

α

∫
Ω

z d(µ− µ1) 6 dα(µ,µ1). (6.2)

Suppose thatµ has an absolutely continuous part with density everywhere larger thanλ0 > 0 and
choose

µ1 = µ− λ0IA · Ld + λ0IB · Ld ,

whereA andB are measurable subsets ofΩx0,ε with |A| = |B|, A ∪ B = Ωx0,ε andA ⊂ {z > m}

andB ⊂ {z 6 m} andm is the central median value forz in Ωx0,ε. By constructionµ1 is a
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probability measure to which the estimate of Theorem 4.7 may be applied. With this choice ofµ

andµ1 we get∫
Ω

z d(µ− µ1) =

∫
A

z(x)λ0 dx −

∫
B

z(x)λ0 dx

= λ0

(∫
A

(z(x)−m)dx −

∫
B

(z(x)−m)dx

)
= λ0

∫
Ωx0,ε

|z(x)−m| dx.

Putting this into (6.2) yields∫
Ωx0,ε

|z(x)−m| dx 6 (αλ0)
−1dα(µ,µ1).

To estimatedα(µ,µ1) use (2.1) to get∫
Ωx0,ε

|z(x)−m| dx 6
Cα,d

λ1−α
0

ε1+αd .

Since 1+ αd = d + β, Lemma 6.1 may be applied. 2

An important consequence is the following:

COROLLARY 6.3 Under the same assumptions onΩ, α andµ of Theorem 6.2,

Xα(µ1) 6 Xα(µ)+

∫
Ω

z̃ d(µ1 − µ) for any measureµ1 ∈ P(Ω).

Proof. The inequality holds forµ1 of the formµ1 = (1 + g) · µ with g ∈ L∞, but any measure
µ1 ∈ P(Ω) may be approximated by such measures. Sincez̃ is continuous, on both sides of the
inequalities we have quantities which are continuous inµ1 with respect to weak convergence. This
shows that the same inequality is valid for anyµ1. 2

Even if we have proven that the landscape functionz equals a.e. a function which is Hölder
continuous, this is not enough. In fact, this does not provide information on the behavior ofz on
negligible sets. Yet, the pointwise values ofz onSη are of particular interest (as in the last section),
andSη is one-dimensional and thus negligible. This is why the next step will be proving thatz and
z̃ actually agree everywhere.

THEOREM 6.4 Let mε denote the central median ofz in the ball B(x0, ε). Under the same
assumptions of Theorem 6.2 one hasmε → z(x0) asε → 0. Consequently,̃z(x0) = z(x0).

Proof. By the semicontinuity ofz it is easy to get lim infε→0mε > z(x0), hence only an estimate
from above formε is needed. Consider a ballB(x0, ε) and a setAε ⊂ B(x0, ε) ∩ {z > mε} such
that |Aε| = |B(x0, ε)|/2. Then setΓε = {γ ∈ Γ : (π∞)(γ ) ∈ Aε}, µε = µ+ µ(Aε)δx0 − IAε · µ,
andηε = η + η(Γε)δγ0 − IΓε · η, whereγ0 is anη-good curve stopping atx0. Theorem 3.1 can be
applied toη andηε and hence

J (ηε) 6 J (η)+ α

(
η(Γε)Zη(γ0)−

∫
Γε

Zη dη

)
= J (η)+ αµ(Aε)z(x0)− α

∫
Aε

z(x) µ(dx) 6 J (η)+ αµ(Aε)(z(x0)−mε).
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It follows that

Xα(µ) 6 Xα(µε) + Cεµ(Aε)
α 6 Xα(µ) + αµ(Aε)(z(x0) − mε) + Cεµ(Aε)

α.

This implies
mε − z(x0) 6 Cεµ(Aε)

α−1 6 Cε1+d(α−1).

Since 1+ d(α − 1) > 0 we get lim supε→0mε 6 z(x0). To get the second assertion, just use
z̃(x0) = limε→0mε. 2

REMARK 9 The landscape functionz is in general never Lipschitz continuous (not even locally),
as on the setSη it has slopes given byθα−1. This means that, if we have arbitrarily small values
of θ , we cannot have a Lipschitz constant forz. Yet estimates of the kindθ > c > 0 would imply
H1(Sη) < +∞ and no measure whose support is not one-dimensional may be irrigated by a set of
finite length (or locally finite length).
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