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Asymptotic behaviour of the porous media equation in domains with holes
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The paper deals with the asymptotic behaviour of solutions to the porous media equationu™,

m > 1, in an exterior domain, which excludes one or several holes, and with zero Dirichlet data
on d£2. When the space dimension is three or more this behaviour is given by a Barenblatt function
away from the fixed boundar§s2 and near the free boundary. The asymptotic behaviour of the
free boundary is given by the same Barenblatt function. On the other hand, if the solution is scaled
according to its decay factor, away from the free boundary and close to the holes it behaves like
a function whosen-th power is harmonic and vanishes 8. The height of such a function is
determined by matching with the Barenblatt solution representing the outer behaviour. The inner and
the outer behaviour can be presented in a unified way through a suitable global approximation.
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1. Introduction

Let G ¢ RY be a bounded open set with smooth boundary anlet R \ G. We do not assume

G to be connected, so that it may represent one or several holes in an otherwise homogeneous
medium. Our goal is to study the large-time behaviour of the solution to the porous media equation
(PME for short) in that exterior domain with zero data on the boundary,

u; = Au™, (x,1) € £2 x (0, 00),
u(x,t) =0, (x,1) € 982 x (0, 00), (1.2)
u(x,0) =ug(x), x €2,

wherem > 1. In order to simplify the presentation we assume thés$ connected, since the general
case follows from that case and known reslilts [22]. By smooth boundary we mean tha€#%s a
embedded manifold, which is a standard assumption in the literature, though the results hold under
less regularity at the cost of longer proofs.

As for the initial data, we assume thatis in L1(£2), nonnegative in2, not identically zero and
compactly supported ife. The last assumption implies that the suppont 6f #) remains bounded
for any later timey > O (finite propagation property, which follows easily by comparison with the
solution of the problem in the whole space). This allows us to study the behaviour in time of the free
boundary"(t) = 3{x € £ : u(x,t) > 0}\ 082, which is an important topic in porous media flows.
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Due to theL1-L> regularizing effect,/[6],[23]/[25], we may assume without loss of generality that
uo € L°°(82), and then solutions are continuous fora# 0. A general reference for the theory of
the PME is the monograph [24].

The asymptotic behaviour of the solution to the present probfen (1.1) was studied by King
in [16], both forN = 3 andN = 2. However, his calculations are formal and restricted to radially
symmetric solutions. The aim of this paper is to perform a complete analysis of the issue when
N > 3 for general domains and data. The restriction on the dimension will be assumed hereatfter,
since the situation fov = 1,2 is different. As a first step, in Sectiph 2 we construct sub- and
supersolutions that will allow us to identify the decay and expansion rates of the solution. We show
thatu decays a®) (+~*) while its support expands like (¢#), where

B N B 1
a_Nm—D+Z ﬂ_NW—D+2

turn out to be the self-similarity exponents corresponding to the source-type solutions of the PME,
also known a8arenblatt solutionsWe scale the solution according to these rates,

(1.2)

vout(y, 1) = t*u(ytP 1),

and prove thaboyt converges as — oo to the profile F¢, of a particular Barenblatt solution,
Bc,(x,1) =t *Fc,(|x|t~#). The precise value af, is determined from the initial data thanks to
an explicit conservation law. Convergence is uniform in $gts> 4§, i.e., in a wide exterior region
up to the free boundary, which is called in Matched Asymptoticsotiter limit (see Theorern 4.1).

The asymptotic mass af coincides with the mass of the Barenblatt functiBa, (see
Corollary[4.2). The amount of mass that is lost through the boundary is given by the projection
of the initial data on a functio® which is the normalized harmonic function that measures the
capacityof G (see formula[(4]6)). This is the only influence of the hole structure on the outer
asymptotic behaviour in first approximation.

As a consequence of the convergence of bgthand the mass, we prove that the free boundary
of u behaves for large times as the free boundary of the Barenblatt fungtiofthe one that gives
the outer behaviour; see Corollgry|4.3).

In order to complete the study we must also consider what happens in the region near the
holes (the so-calleéhner limit). The scaling in this case is simpler: we only have to amplify
the solution, keeping the space variable fixed (i.e., a quasi-stationary situation). We prove that
vin(x, 1) = %u(x, t) converges to a stationary stafég (x) = C"/"~DH(x), whereH = 1 — @
is the unique continuous solution of

AH =0, xe€2, H=0 x€0df2, H — 1uniformlyas|x|— oc. (1.3)

The existence ofH is proved by considering solutions in the intersectionsdfwith balls of
increasing radius, which take boundary data equal to 1 in the boundary of the ball. The sequence of
solutions is monotone and bounded, hence the limit is harmanic, [10]. Uniqueness is an immediate
consequence of the maximum principle. The free constastadjusted through matching with the
Barenblatt function which gives the outer behaviour. It turns out ¢hat C,. See Sectiofi|5 for
complete details.

A combination of the inner and outer descriptions allows us to write a global uniform
approximation for the large-time behaviour of the solution (cf. Theqrein 6.1). lovthadapping
region

1/8 < |x| < 8%, & small
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both the inner and the outer limit differ very little from the global approximation, and hence between
themselves. Therefore, a posteriori one realizes that the outer limit holds uniformbky fer 1/5
and the inner one far | < 877.

In order to illustrate the theory, in Sectiph 7 we show some numerical computations for a radial
example. We present some conclusions and comments in the last section, [Section 8.

Let us review some precedents: in[18], two of the authors study the same exterior problem,
but with nontrivial boundary data;. Assuming thaf is time independent, the inner limit of the
solution stabilizes tdd/™, whereH is a harmonic function in the exterior domain with boundary
datag and decaying at infinity. The outer behaviour is given by a self-similar solution of the PME
which is singular ak = 0. In contrast to the case of zero boundary data, in this case the inner limit
is completely determined by and the matching is heeded in order to properly describe the outer
limit. In other words, the sense of the implications in the matching process is reversed.

Let us also recall that the one-dimensional problem has been studied by Kamin and one of
the authors in[[15]. After an odd extension, the problem is identified as the PME equation with
changing-sign initial data with zero magg, uo = 0. The solution is shown to converge uniformly
to a self-similar antisymmetric profile, a so-called dipole solution, introduced by Barenblatt and
Zel'dovich in [5]. More precisely,

lim *|lu(x,t) — D(x,1)| =0,
11— o0

uniformly in R, where

Dx,t) =t *F(xt™#), a= 1 B = 1
for a certain odd functiot .

Notice that forN = 1 there is no need to consider the outer and the inner region separately,
since the dipole is already a global approximation. Besides, these scaling exponents do not match
the exponents i (1].2), thus showing the different effect of the hole in one and more than two
dimensions. The main physical difference is reflected in the fact thawfgr 3 the asymptotic
mass is not zero, while fa¥ = 1 it goes to zero like a power of tim¢]R u(x,r)dx = O~ Y2m)y,
DimensionN = 2 studied in[[11] exhibits a transition behaviour where the mass goes to zero at a
logarithmic rate.

Throughout the papef, ¢, c1, . .. denote positive constants that may change from one line to
another when no confusion is to be feared. We denot#,liyo) the open ball with radius and
centre atvg. We use sup@y) to refer to the spatial support of a functign

NOTE. After completion of this work, and during a conference held in Bedlewo (Poland), we
were informed of the paper by Profs. Gilding and Goncerzewicz on the same subjéct, [11]. Let
us briefly comment on the differences. They obtain the outer behaviour bofk for3 and for

1 < N < 3, and they also treat fractional dimensions in the radial cases. On the other hand, the
present manuscript contains several new topics, hamely, the description of the inner behaviour (see
Section[}), the rate of decay of the mass to its asymptotic limit, which is expressed in terms of
the capacity of the hole, and the global approximation. The proof of the common result is quite
different: In [11] the authors first prove the result for radial problems, including fractional spatial
dimensions. The radial result is later applied to prove the general case. In this paper the general case
is proved directly using a scaling argument.[In|[11] the holes are simply connected, an assumption
that we do not need.
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2. Preliminaries
2.1 Definitions

We can find in the literature several concepts of solution for the PMEL(cf. [24]). Hence, we make
precise the one we are dealing with. 1@t = 2 x (0, T].

DEFINITION 1 A functionu € C((0, T]; L1(2)) N L>®(Q7r) defined inQ is aweak solutiorof
Problem [(Z]1) on [0T] if for any test functiong € C?1(Q7), compactly supported i@, with
¢ =00nd2 x (0, T], u satisfies the integral identity

t
fu(x,t)¢(x,t)dx=/ /{um(x,t)A¢(x,t)+u(x,t)¢,(x,t)}dxdt+/ uo(x)¢ (x, 0) dx
2 0 J 2

forany 0< ¢ < T. We say that is a weak solution of (I]1) on [@0) if it is a solution, in the
previous sense, on any,[D].

We define weak sub- and supersolutions as usual, i.e., by replacing in the definition of solution
the = sign by a< or >, respectively, and considering only nonnegative test funcijops0. See
[24, Chapters 5, 6 and 9].

The existence and uniqueness of weak solutions is well-known in the case of bounded domains,
and is extended to the case of unbounded domairis In [24]. More precisely, for genenaj data
L1(£2) it can be shown, solving Dirichlet problems in bounded domais= 2 N 5,(0) and
considering suitable approximations, of ug, defined in$2,, that solutions to[(I]1) exist. Even
more, note that we are considering solutions with compactly supported initial data, which leads to
compact support in space for all times. Hence, the standard construction on bounded domains is
enough to show that the solution exists onqQ for all finite 7.

Uniqueness and comparison follow easily from the next proposition.

PROPOSITION2.1 Letu be a weak subsolution of Proble {|1.1) with initial dageand:i a weak
supersolution with initial datdg. Then foreach X ¢ < T,

f [, 1) — e, )] dv < / [0(x) — fig(0)]+ i,
2 2

where F]4+ = maxr, 0}.

The proof is analogous to the one already givemn in [3] for one-dimensional bounded domains.
Moreover, the standard theory of weak solutions provides us with estimates of the form

T
/ /|wm|2dxdt<cr/ ul () d.
0 2 2

For these properties cf. [24, Chapters 5 and 9].
We will also need the concept of local weak solution, where the initial and boundary conditions
are not considered.

DEFINITION 2 We say that € C((0, T]; L1(£2)) N L>®(Q7) for someT > 0 is alocal weak
solutionif u satisfies the integral identity

T
/ / " (x, ) Ap(x,t) +ulx, )¢, (x,t)}dxdr =0 (2.1)
0 2

for any test functionp € C>1(Qr) compactly supported i@ 7.
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2.2 Conservation law

The role of the standard mass conservation is played here by a modification in the form of a weighted
mass conservation. Let be a harmonic function ig2 such thatf = 0 ond2. As in [16], we
introduce

1(t) :/ Fulx, 1) dx.
2

Integrating by parts if2, sincex has compact support, we get formally

dr um  af
— = A m — - "z
dr /Qf " /39 (f v 81})’

wherev is the outward normal. Sineé"” and f are zero ord$2, we conclude that is an integral
invariant,
@
dr
The rigorous justification can be given by one of the two standard tricks used in the porous medium
theory: raising the data hyso that the equation is no more degenerate for these data, or regularizing
the nonlinearity® (1) = u™ into some smooth and nondegeneréte We then pass to the limit
¢ — 0. Such techniques are described in detail in [24].

2.2)

3. Sub- and supersolutions

I. Supersolutions. As supersolutions we will use thgarenblatt functions

B B(m — 1) ﬁ)l/(m—l)

_—a
Be(x,t) =t (C o 28

=t *Fc (gD,
+

with C > 0 andé = xt~#, which are source-type solutions of the PME in the whole space. As is
well-known (cf. [2,21] 24]), these are weak solutions of the equation forr > 0, which have as
initial trace a multiple of the Dirac delté@/5(x). The parametef is a function of the total mass of
B¢, more precisely, the madge = fRN Bc(x, 1) dx is related toC by

Mc = k(m, N)CY2m=DB (3.3)
where N2
2m (o) 1
— 2, N/2 —
wom o =2 ﬂ(ﬁ(m - 1)) re/@py " T m-1 G9

Given any positive time, we choose&” large so thaB¢ (-, 1) lies aboveu (-, ). Recall thau(, r) is
bounded and compactly supported.

Il. Subsolutions. The Barenblatt functions cannot be used as subsolutions of the problem: though
a suitable translation allows putting them belovat some time folC small, they will eventually
become positive at the fixed boundaxs2. To avoid this difficulty with the boundary condition, we

may consider
R N-2\ 1/m
Hp(x,t) = At™ (l - (—) ) .
x| +
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It has the expected decay factor andiisth power is harmonic in its support. Hence it is a
subsolution of the PME. However, it is impossible to put it belowt any time, because its does

not have compact support. The idea is then to take a combination of both subsolutions. But they
intersect with the “wrong angle”. Therefore, we have to modify slightly before “gluing” them.

We take a delay > 0 and consider

’

x|

_ By RA\N2 (x| —rp4\Y"
Haopy,:(x, 1) = A@)(t + 1) (1—( > _(t—i——t)“?’Jr)

Bm—1  |xf? )1/“"‘“
2m  (t +1)%P

+

)

Bcor(x, 1) =@ +1)"% <CQ —
+

whereR_, r1, a, Co, andy are positive constants, with < 8. Foro > 0, we setA(r) =

ZCé/(m_l)(l + (t + 1)79), so that the maximum of{\A(,)J iialways greater than the maximum

of Bc,,r. Let Ri(r) be the radius of the outer interface &) . and B, (¢) the radius of the

interface of B¢, .. We will see that if the parameters are selected appropriately, Ahen . and

Bc, - intersect at a distanag(z) that satisfies, (r) < R4 (¢), with the correct angle, as in Fig 1.

(t+ 1) Hag),r

(t+7)*Beyr

(t+ T)"HEA(t),,—

I " R R0 B al

Fic. 1. Subsolutiorpc ;.

Hence, we define

0, |x] < R_or|x| > B4(t),
0Co.r(r. 1) = 1 Hag.e(x. 1), R_ < |x| <o),
BCO,T(xs t)v r*(t) < |'x| < B+(t)s

which turns out to be the needed subsolution.

LEMMA 3.1 There exist a timeg > 0 large,Co small,c < 4y — 1 and a delayr such that
@0co.r(x, 1) <u(x,t)fore > 1.

Proof. We perform the proof in three steps. We first show that there is afisueh thatpc, .
is a subsolution to the PME far > . Then we show that there exist a timg> 1, a delayr
and constant®_, r1, a andCo such that(x, fp) is aboveypc, ; (x, tp). The result then follows by
comparison, by showing that, - (x, ¢) is well defined for > 1.

Step 1. SinceBc, . and Hs(),. are subsolutions of the PME, by definition EfA(,)yf we only
have to prove that it is a subsolutionif < |x| < r, andt > t; i.e., definingr = |x| and
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H(r,1) = Ha).- (x, ) we have to show that
~ON-1 ]
H — ——H"), —(H™) €0, ri<r<r,t2>t.
r

Sinces < 4y — 1, this inequality is satisfied ffis large.

Step 2. Let A = B4, (0) \ Ba_(0) be an annulus such that for a fixed time > 1, large
enough, A C Int(suppu(-, fo))) (seel[4]). We choos®_ = A_ andA_ < r; < A, and then
selectCo which measures the height ¢t . in order to have:g abovegc, . at1; i.e., we want
A(t) < minu(-, tp) inside 4. We still have two free parameters, namehandz. Since we want
SUPH@Cy,« (-, t0)) = [R—, B4 (t0)] C Int(suppu(:, to))), we impose first that

B (t0) = (cCo)Y?(to + 7) = As.

This determines the value of The next step consists in determinimgTo this end we use the fact
that R, (¢) satisfies
t+ )Y
Ri(t) <ri+ T E
Hence, since we neell, (r0) < By (fp), it is enough to choose the free parametesuch that
r1+ (to+ 1) /a¥* < By (10).

Step 3The construction opc, . requires thak_.(r) < B (¢) in order to have the right intersection
angle atr,. Let us see then that + (r 4+ 7)? /a¥* < B, (t). Define

+ 7)Y
g(t) =ri+ “al—/? — B (o).

From the previous step we know thatg) < 0. Assume that there is a first timewhereg (1) = 0.
Then, sincey < B,

ym+ort _ _
g =" — — Br(tpn+ 07 = B)(a+ Dy = f—yr) <0,
which is a contradiction. Since and ¢c, . are ordered atyg, comparison implies that they are
ordered at any time > 1. O
4. Quter limit

We show that the asymptotic behaviounafiear the free boundary is given by a Barenblatt solution
with a constanC, that can be determined in terms of the initial daga

THEOREM4.1 LetN > 3 and

1 2(m—1)p
C, = ( / H(x)uo(x) dx> . 4.1)
2

k(m, N)
If u is the weak solution of (1}1), then

lim *|u(x,t) — Be,(x,1)| =0 4.2)
11— 00

uniformly on sets of the fornx € 2 : |x| > 818}, 8 > 0.
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Proof. We perform the proof in several steps. By a scaling argument, we show that the rescaled
solutions converge along subsequences. Then we prove that the limit along any subsequence
coincides with Bc,. This implies the validity of Theorerp 4.1, which is not restricted to any
subsequence.

Step 1: Scaling and compactnesaVe define the family of rescaled solutions
u (x, 1) = Au(Px, rr),

wherea and 8 are given in [(TR). The Barenblatt functions are invariant under this scaling.
Therefore, by the upper bound established in Se€fjon 3, the fgmilyis uniformly bounded by
some Barenblatt solution far > 7/, a time that tends to zero as— oo. Thus, thanks to the
results on compactness for the PME, [8],1[26], there is a subseqdigpicend a function:, such
thatu;, — uo uniformly on compact subsets &\ {0} x (0, co). Moreoveru is a local weak
solution of the PME iRV \ {0} x (0, 00).

Step 2: The limit is a Barenblatt solution We now show thai , is a Barenblatt solution. We know
from the previous section that there exists a consfastich that

o(x,t —1t9) <u(x,t) < Be(x,t) fortlarge

If we re-scale this expression and then pass to the limiyas> oo, we find thatu, is bounded,
both from above and below, by Barenblatt solutions,

Bcy Suoo < Bc, x#0. (4.3)

Thus,u« is a nontrivial solution of the PME iRV \ {0}, + > 0, which is bounded for all positive
times. Hence, sinc& > 3, the singularity can be removed. Here is a standard proof: take a smooth
cutoff function 0 < ¢ < 1 that vanishes near = 0 and is 1 for|x| > 1 and puty, (x) =
¥ (x/r). We now write the weak formulation of the PME with respect to a test funetion t) =
¢(x, Y, (x) where¢ € C(RN x (0, 00)). Sinceg = 0 nearx = 0, this test function is admissible
for the solution with a bounded singularity. Sineg is bounded for > 7 > 0, the limitr — 0
shows that it is a solution of the PME for alt- 0 andx € RV.

Sinceu is a local weak solution of the PME bounded for any ¢ > 0, it has an initial trace
that is a finite measurgl[7]. From relatign (4.3) we get

SUPPBc, S SUPPLse S SUPPBC.

and hence sufip~ (-, t)) shrinks to{0} ast — 0. We conclude that the initial trace is a multiple
of the delta function. Therefore,, is a Barenblatt solutionB¢,, with a constant, that satisfies
Co<Ci<C.

Step 3: Convergence along subsequencéssing the invariance of Barenblatt functions under this
scaling, we have

s, (v, 1) — Be, (v, D = AL (L y, ap) — Be, Oy, M)l = A8 u(x, A) — Be, (x, Ap)

for A; large, wherex = Afy. Thus, the uniform convergence ®f, to B¢, asiy — oo in sets of
the form{|y| > 8} implies, takingr; = #, the result stated in Theorgm }4.1 for a subsequence.
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Step 4: Conclusion. The final step consists in showing that, independently of the chosen

subsequence, the parametgrof the limit function is given by[(4]1). LeH be a solution of[(1]3).
Using the conservation laj (2.2) we obtain

/ H(x)uo(x)d)C:/ H()u(x, tr) dx.
2 2

In order to estimate the integral on the right hand side we split it into two parts,

/ H®u(x, ) dx = / H(x)u(x,tk)dx—l—/ Hx)u(x, 1) dx (4.4)
2 {xI<srf Ine x| >8]}

I Iz

for any§ > 0 andy large enough. If we bound by a Barenblatt solution, and use the fact that
H < 1, we get

11<r,:“f Fe(xli Py dx <f Fe (&) de,
{lx|<8ef 12 {1€1<8)

where Fc is the profile of the Barenblatt solution with constant Thus, limsup_, ., /1 can be
made as small as desired by takihgmall. In order to computé& we make again the change of

variablesx = St,f and pass to the limit ag — oo using the uniform convergence result stated
before. Sincex = N, we obtain

lim 12:/ lim HEDuE], ne’ dg:/ Fe, (&) .
( (11>5)

tp—>00 El}s} ty— 00

Passing to the limit i (4]4), and then lettidag~ O, gives
[ Heouoax = [ Feqel de = Me, = km, wyc Y, (4.5)
7 RN

wherek(m, N) is given by [3.4). This result does not depend on the particular seqi@ighce O

REMARK 1 Theorenj 4] is also true when we replakg (x, 1) by a Barenblatt solution that is
centred akg # 0, B¢, (x — xo, t). This poses an interesting problem, the optimal choiceof

As a corollary of the outer behaviour we obtain the rate of decay of the mass to its asymptotic
limit Mc, = [gv Fc,(1§]) d§ > 0. The fact that there is a nonzero asymptotic mass is a property
that is not true fotv = 1, 2.

COROLLARY 4.2 LetN > 3 and letu be the weak solution of (7.1). The mass of the solution at
timer, M(r) = [, u(x, 1) dx, satisfies

M) = Mc, + Kt PN=2 4 o= FIN=2),

where
K =Cgq f Fo,(EDIE1P N de, Co= lim @@)|x|VN72
RN |x]—00

and® =1—- H.
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The existence of the limiC,; > 0 is a simple property of harmonic functions on exterior
domains that go to zero at infinity; it can be found[in/[19, Lemma 4.5].
Proof. Itis similar to that of Theorein 4,1, Step 4. We deduce from| (4.5) that
PN (M (1) — Mc,) =zﬁ(N—2>/ u(l— H) =rf’<N—2>/ ud.
2 2

In order to estimate this last integral we split it into two parts,
tPIN=2) / & (xX)u(x, t) dx
2

= tPIN-2) / ®(x)ulx, 1) dy +FN 2 f @ (x)u(x, 1) dx
(Ix|<81PIN 82 {Ix]=51P)

I I

for § > 0 andr large enough. Using the estimate0® (x) < c1/x|%>~" and the change of variables
x = &tP we get 0< 11 < C82. For I, we make again the change of variabtes: £¢#, and get

lim I, = u(gtP, e de

t—00

By|E|N-24B(N-2)
/ im LEOIET
{

D e 5|V =2

=cg/ Fe.(EDIE2N de.
{1E1=8}
Hence

Ca [ Fe.sDiel ™ ds <liminf VD1~ Mc,)
{11 -

=

< lim sup” N2 (M (1) — Mc,) < C8% + Ce / Fe,(IED1gI*" dg.
e (1&1>3)

from which the result follows by just letting) — 0. |

REMARK 2 (Loss of mass) The amount of mas#;, (1), lost in the evolution is given by

My (u) :=/ ug(x) dx — lim / u(x,t)d.x:/ (1— H(x))ug(x)dx > 0O,
I?) —>00 Q Q

which in terms of® reads
My (u) =/ ug(x)® (x) dx.
Q

Therefore, the influence of the hole structure is felt at the asymptotic level through the projection
of the initial data on®, which represents in this way the dissipation capacityyofindeed, this
connection is justified by standard potential theory, sicis the harmonic function defined 2

that takes value 1 ofi$2 and O at infinity. In other wordsp measures the capacity 6f by means

of the formula

cap »(G) = /Q |V®|?dx. (4.6)
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To end this section, we consider the behaviour of the free boundarasf becomes large. For
this purpose, we define

my(t) = max |x|, m_(t)= min |x|. 4.7)
xel (1) xel'(t)

We also note that the Barenblatt solutiBp, has free boundaryt| = y,z# with

2mC, \Y?
=) . 4.8

g <ﬂ(m = 1)) “9)
COROLLARY 4.3 LetN > 3 and letu be the weak solution of (1].1). Then

lim
t—oo P

1/2
mi(t):( 2mC, ) . 4.9)

Bm —1)

Proof. (i) The uniform convergence of the rescaled solutions in sets of the fform® > § > 0,
and the shape of the Barenblatt proffle, , which is uniformly positive in the sets|/t# < y, — e,
imply that given a smak > 0, the expressiorf'u(x, t) is uniformly positive for allr large enough.
This means that

m_(t) 2mC, \Y?
> —&
th B(m —1)

if ¢ is large enougkhy, > ¢(¢). In the limite — 0,7 — oo we get the lower part of estimafe (#.9).

(ii) Since the asymptotic massgc, (see Corollary 4]2)M (11) is belowMc, , . for some large
time ;. We consider the solutioi of the PME in the whole spad@” with initial data

— , 1), €S2,
u(x7t1)={g(x 1) igZ.Q.

Let I'(¢) be the free boundary af at timer andm . (¢) = max.. 7, 1xI- Sincew is a supersolution
of our problem for > 11, we haven, (t) > m (¢) for these times. It is well-known [21] that

my(t) [ 2m M(r) \2DA\12
_<ﬁ<m—1><k<m,1v>> ) '

lim
t—>oo B

Hence, by the relatiof (3.3),

() _ <2m(C,,+8)>1/2

lim
t—00 tﬂ :B(m — ]_)
from which the result follows by letting — 0. O

5. Inner limit. Matching

We know that: decays a®) (t—*), sinceu is bounded both from above and from below by functions
with such decay. What asymptotic profile do we get in the inner layer if we scale the solution
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according to this size factor? In order to guess an answer we make some formal computations. Let
v = t“u; thenv satisfies the equation

A" =17 (v, — av)

in 2 x (0, 00), with the boundary condition = 0 on 3£2. Assume for the moment that
1=2f+1y, — 0 ast — oo. Then the limit ofv” is expected to be a nontrivial solution of the
Laplace equation ir®2 with zero Dirichlet boundary data. There is a whole family of solutions to
this problem. They are all a constant factor of the solutibof (1.3). Hence they are determined
by their height at infinity. In order to determine this height we omstched asymptotic¢he outer
limit of the inner expansion should coincide with the inner limit of the outer development.

THEOREM5.1 LetN > 3 and letu be the weak solution of (3.1). Then the inner asymptotic
behaviour ol is given by the stationary staféc, , where

He, (x) = ™" Y h(x). (5.1)
More precisely, givelm > 0 there exist = §(¢) andsin = fin(e, §) such that
"™ (x, 1) — He, ()] < (5.2)

forall |x| < 8¢%, x € 2 andr > fin.

REMARK 3 In particular, convergence is uniform fpr|r = < A(r) andx e £2 for any positive
functionA(z) such that lim_, ., A() = 0.

In order to proceed with the proof, let us first show that there is convergence in time average. In
order to simplify the notation we write

1 +T
Wr(, 1) = —/ w(-, s)ds,
T J;
wherew(x, t) = t¥"u™ (x, r) with T = log:.
LEMMA 5.2 Givens > 0 andT > 0 there exist = §(¢, T) andtin = tin(e, T, 8) such that
[Wr(x,7) — He,(x)| < & (5.3)

forall |x] < 8ePT, x € 2 andt > Tin.
Proof. Let £2; = 2 N Bg)(0) for R(7) = 8ePT, with § > 0 small. Givens > 0 we know from
the previous section that there exists a tige= 7o(5) such that

Fc,(8) —e < e u(x,e’) < Fc,(8) +¢  for|x| = R(1), T > 10,

whereF¢, is the profile of the Barenblatt solutioB,, which gives the outer limit. Thew, which
is positive and hence classicald® x (g, 00) if 10 is large enough, satisfies, for> 1o,

—Aw = —e BT (v, —av), x € 2,
w = 0’ X € aQ,
w=g, X € 8BR(T)(O).
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The restrictiong, of w to dBg()(0) satisfies
(Fc,(8) —e)" < g(x,7) < (Fc,(8) +&)"  forz > 1.

Note thatFc, (§) —e > 0if § ande are small. We want to use the Green’s funciibe: G(xg, x; £2;)
for the domain(2,, regardingr as a frozen coefficient. Namely, given € £2, we write

—AG =6y, IN2;, G=0 onds,

wheres,, denotes the Dirac measurexat Note that the domains we are dealing with;, are
bounded and with smooth boundary, hence the Green’s function exists. Observe al§oighat
differentiable up to the boundary add /dv < 0 sinceG > 0 andG = 0 on the boundary.

Thenw can be represented as

wx, 1) = —f g% do —/ e 2" (v, — av)G dx.
Br(z)(0)

We claim that, forT' > 0 fixed andx| < R(7),

e+ ce+8) +c52(TT+1). (5.4)

1 +T
‘?/ w(x,s)ds — He, (x)| <

Indeed, we have

1 +T
‘7/ w(x, s)ds — He, (x)
T

1 +T 9
g-(‘—f f g—gdo’ds—HC*(x)
T v 9B () OV

)

+T
+ ‘ / / e %P3 (v — av)G dx ds
T 25
We start by getting a bound fdj in terms ofT’, § ande. SincedG/dv is nonpositive ord B (0),

|12

+T 8g
—/ / (Fe,(8) + &)"— do ds — Hc, (x)
Br(s)(0) v

+T ag
- f f (F2 (0) + 13 + e2¢) 2 dor ds — He, (x)
Br(s)(0) dv

+T
—/ / F& (O)g do ds — Hc, (x)
Br(s5)(0)

+T
— (c& + ¢b) / / — da ds
3Bp(s)(0) v

+T 8g
< / (H(x 7) — He, (x)) ds + c(e + 8)/ / < ) do ds,
T Br (s (0) dv
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whereH satisfies the Laplace equation, / = 0 on the fixed boundarys2 andH = F2 (0) =

MY 0ndBre (0). In the first step we use the inequality

(Fe,(8) + )" < FZ.(0) — cb + ce,

which is valid fore, § small by Taylor expansion, sincEc,(0) > 0; ¢ is a constant close to
(F¢)'(0).

By definition, H¢, converges ta, uniformly as|x| — oo. Therefore, giver, we have
|He, (x) — i"/(’" l)| < e for |x] = R(r) andz large enough. Hence, by the maximum principle,

m/(m—1)

|H(x,7) — He,(x)| < &

for |x| < R(1), x € 2 andr large. Thus, sincgagR(y)(o)(—ag/av) do is always 1, independently
of the domain (seé [10]), we have

I < Te+ Tc(e+9).
An analogous computation yields > —T¢ — Tc(¢ + 8). Therefore,
|I1] < Te+ Te(e +6).
Finding an estimate fof, is a little more involved. It is based on the well-known semiconvexity

property

%
(m— Dt

(see for example [20]), which in terms offeadsv, > —28v/(m — 1). Sincev is bounded ang is
nonnegative,

+T
12| < ‘/ / e_zﬁ“<vs 2pv )gdxds
T 24 m — 1
+T
‘/ / _2‘%( +a)vgdxds
+T ’3 +T
[ [ ((ezﬂé v)s + —— 2ﬁ5>g drds + ¢ / / e2P5G dx ds.

Let Gpge be the Green’s function for the baflg)(0). Comparison yield§ < 9Bre) in £2;.

Thus,
+T IB
|Io| < / / ((ezﬁw) + ve25°>GBR(J>dxds
I21

+T
+e / / e PG, dx ds.
T 25

Iz

Uur = —
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Since

R%(7)
X0 — X
|x0[2

@)NZ

2—N
) < clx — x>,
|xol

GBper, (x: X0) = C<|x — xo* N - (

we can bound the integrals involviggg, ., in terms of the estimate
/ Ix — xol7 N dx < cR?(7) = 827,
Br(z)(0)

Thus,
+T
I < c/ e_zﬁs/ clx — xo)> N dx ds < ¢8°T.
T Brs)(0)

In order to estimate the integrgl; we split it in two terms as follows:

+T +T
I < c/ / (e 2P v),|x — xol> N dx ds + c/ / e 2P |x — x0)>N dx ds.
T 2 T £

The second integral can be estimated in the same way,af order to get a bound for the first
one, we change the order of integration to get

+T +T
c[ f (e 2P v)1x — x0) N dx ds = C/ [x — xo|2_N[ (e~ 2P ), ds dx < 82,
T QS Qr+T U(X)

for some functior .
Summing up, we have
|Io| < ¢8% + ¢8°T = c8%(T + 1).

Therefore, ifix| < 8¢fT andr is large enough, then

1 (T +1
7(|11|+|12|)§8+c(8+8)+68 — )

which proves the claini (5.4), and hence the lemma. O
Proof of Theorenj 5]1. This is now a calculus lemma. We argue by contradiction. Assume that
there is a sequence of points,,, 7,)} with 7, — oo such thatix,|e #™ — 0 asn — oo and

w(xn, T,) = He, (xy)+2¢. Sincew, > —Cw with C a positive constant, integrating this expression
betweenr, andt, + h we get

WX, Ty + 1) = w0y, T)e” " > (He, (xy) + 28)e™ .

Hence
1 T 1 1—e €T
Wit 7) > = (He. (xn) + 20) f e dh = = (He, (xn) + 26)
T 0 T c
£
> (He,(xp) +26)(1—cT) 2 (He,(xp) +28) (1 — ——
(He, (t) + 26)(1— eT) > (He, (xn) )( HC*(anZS)

= Hc, (x,) + ¢,

if ¢ < min{e/2C™ ™~ 1/4}. We arrive at a contradiction with the conclusion of Lenjma 512.



226 C. BRANDLE ET AL.

6. Global formulation

Theorem$ 4]1 arid 5.1 allow us to write a unified formulation of the asymptotic behaviaunof
terms of a global approximatiolj¢. This global approximation equals zero at the fixed boundary
and has compact support. Its moving interface behavesléoge as the free boundary 8¢, , and
hence as the moving interfaceof

THEOREM6.1 Let C, be the constant given i (4.5). Lat be the solution of[(1]1), and let
Ug(x.1) = (Be,(x.1) — 174C " P (@~ HY™(x))) . Then

lim *lu(x,t) — Ug(x, )| =0,
—o0

uniformly for x € £2.

Proof. Since
lu(x, 1) — Ug(x, )] < [1%u(x, 1) — CF/ "V HY™ ()| + |cF/ "V — Fe, (xtF))
= 1ux, 1) — H!™ 0l + 162" — Fe (et 7P)),

Theoren| 5]l implies that, given > 0, there exis6 = §(¢) > 0 andsi, such that®|u(x, ) —
Ug(x, )| < eif [x| < 8(e)t? andt > fin. On the other hand,

1lu(x, 1) — Ug(x, )] < 1%|ux, 1) — Be, (x, 0] + 1€ " D@ — HY™ ().

It follows from Theorenj 411 that for any > 0, and in particular foB(¢), there exists a valugyt

such that®|u(x, 1) — Ug(x, 1)| < & if |x| > 8(e)t? andr > fout. O
REMARK 4 There is an overlapping region (see Fidure 2),
1/6 < |x| < 5th

wherer?|Bc, (x, t) — f"‘Hé/m(x)| < ¢ if § is small. Indeed,

*

1/m

1| B, (x, 1) — " H} L/m

Ol < 1B, (x, 1) — C/ " V) 4 |HY " (x) — /0.

* *

If |x] < 8¢f with 8 small, then|t* B¢, (x,1) — C*l/(m_l)| < ¢/2. On the other hand, we have
|H™ (x) — /" V) < e/2if x| > 1/5 ands is small.
Analogous computations show that|iff belongs to the overlapping regiahjs small and is

large enough, then the inner and the outer behaviour hold simultaneously in that region.

L . R
1Overlapping regior

1/6 §5tB

FIG. 2. Overlapping region.
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Convergence to the global approximation also holdslifs2).
COROLLARY 6.2 Letu be andUg be as in Theorefn §.1. Then

Jim Jlu(x, 1) = Ug(x, Dll 1) = 0.

Proof. There is a constant such that both: and Ug vanish for|x| > Ct#. Hence, using the
previous convergence result, we get

f lu(x,t) — Ug(x, 1) dx = lu(x, 1) — Ug(x, )| dx <1 %e(CtP)N = Ve
22 \xlgcﬂ’
for ¢ large enough. O

REMARK 5 TheL?! convergence result can be extended from compactly supported initial data to
the whole class of dat& € L1(£2) by a standard density argument (Se€ [21]).

7. Aradial example

Let the holeG be the ball with radius 1 centred at B;(0), andug a radial initial data. Since
both the domain and the initial data have radial symmetry, the solutismadial and the original
problem [Z:1) can be rewritten as

— 1ur, (r,1) € (1, 00) x (0, 00),

up = W)y +
u(l, ) =0, t € (0, 00),
u(r,0) = ug(r), r e (1, 00).

We use a numerical scheme to approximate the solution to this problem. The method has
three steps: front tracking, space discretization and time discretization. For the first step we use
an algorithm based on ideas from [9], [13]. Then we discretize thagiable with a finite difference
scheme and keepcontinuous. We solve the resulting ODE with the ODE solver ODE15s provided
by MATLAB®.

Let us takeuo(r) = (1 — r)(r — 10));, N = 3andm = 2. Theng = 0.2 anda = 0.6. We
compute the asymptotic consta®yt using formula[(4.5):

1 2m—1)B
C, = (k(m, % /Q H(x)ug(x) dx)

A 10 ) 0.4
= (k(m, A r—0°(10—-r)r dr) ~ 9.705,

whereH (r) = 1— 1/r andk(m, N) = 20%2 . 8. /15~ 1498627.

First we show, in Figurg]3, how the solution evolves with time. The dotted line represents the
solution at time = 10, while the dash-dotted line corresponds te 10°. The solid lines represent
the solution at intermediate times betweert #0d 18. It can be seen that the solution decreases
and that the free boundary increases as time goes by.

Next we run the method until time= 10* and plot the solution in the scales that correspond to
the inner and the outer limit.
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0.03 -

FiG. 3. Evolution ofu.

In Figure[4 we plot the solution multiplied by . At first glance, it may seem that there is not
convergence to the stationary functiﬁé{z(r) = C.(1 - 1/r)Y2, which is represented by the
dotted line. The shape ofu resembles that of/c,. However, the height is bigger. This is due to
the fact that at the time considered the solution has not still lost enough mass.

121
« T — Solution u at ¢t = 10*
tulr,t) ’ S - Harmonic function
L ~. == Solution v at t =1
\"'
S
L .
Y
N
AY
r Y
R
0 >
LN a s
0 r 20
FIG. 4. Inner limit.
12¢

‘== Solution v at t =1
Solution u at ¢t = 104
... Barenblatt profile

tu(r, t)

FIG. 5. Outer limit.
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5,

logr

logt

FIG. 6. Free boundary.

Observe that botlH ¢, and B¢, are known a priori. Hence we do not need to compute them
numerically.

Figure[$ shows the outer limit. As in the previous figure, we also notice an accommodation to
the shape of the limit profile, in this case the Barenblatt profile that we have denofgg.byotice
that at the finite time under consideration the rescaled solution has more mass than the limit. With
this scaling, the inner boundary moves to zero. The hole is filled in and it loses its influence on the
behaviour of the solution.

From Corollar we know that the free boundary growscas- t#, for ¢ large enough.
More precisely, it behaves a§ multiplied by an explicit constant. In our case this constant is
approximately 1332. This behaviour can be observed in Figgre 6: if we plot the free boundary in
logarithmic scale, we see that it converges to a line with sppe0.2 and valuek ~ log(13.932)
at the origin. In view of Corollarf 4|3, this is the expected result.

8. Extensions and open problems
Capacity and removable sets

Given any bounded s&?, the capacity ofQ is defined as the limit of the capacities of a nested
sequence of approximating smooth and bounded domains. An equivalent definition can be given as
a variational characterization

cap 2(Q) = inf / V|2,

whereK = {® € C&(RN) : @ =1onQj} (see for example [10].[17]). We can compute the loss of
mass for each of the approximating domains in terms of their capacity. If the limit capacity is zero,
then the limit problem does not lose mass. Hence, the solutions of the approximate problems are
bounded above by the free solution and the monotone limit has the same mass; therefore, the limit
equals the solution of the Cauchy problem defined in the whaR*ofThis shows that sets of zero
capacity are removable as complements of the domain of the Dirichlet problem.
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Hot spots

A possible extension to this paper would be to determindtiiespotsH(¢), for problem [T.1L); i.e.
we want to study the movement of

HE) ={x e 2 ulx,t)= maxu(y, 1)}
ves

ast — oo. WhenN = 1, the behaviour ot{(z) follows directly from the convergence ofto the
dipole solution.

Let
Hi(t) = sup |x|, H_@) = inf |x|.
xeH(t) xeH(t)
If &, is the unique point where the profile of the dipole attains its maximum, then

M)
r|l>nc1>o t1/2m = 5

For generalV only the casen = 1 is known. In[14], Ishige proves that§® = R" \ Bz (0) then

o He (@) N=2\1/N
,ll[goW—(Z(N_Z)R ) if N > 3,

Ha(t) Lo
i Toani? = V2 if N = 2.

In our casem > 1, N > 3, the existence of the global approximation (cf. Theofem 6.1) implies
that the hot spots lie in the overlapping region, and we have the bounds

Hi(t) »> 0o, H+(@)/tP -0

ast — oo. The precise behaviour is an open problem. Our conjecture is that they behave like
the maximum of the global approximation, i.e{,-(r) ~ O(?#/N). This fits with the linear case
mentioned above.

Boundary data with fast decay

This paper was motivated by the study of the same problem with nonzero boundary conditions on
252 done by two of the authors in_[18]. That paper is mainly concerned with the standard case of
data which are positive and constant in timeéy, t) = g(x) > 0 forx € 98, ¢ > 0. However, in
Section 11 dealing with conclusions and extensions, we describe how the same methods allow one
to treat the case of boundary data which decrease in time in the form

ulx, 1) ~gx)t—’, (8.1)
and the following result about asymptotic behaviour of the free boundary is stated:
log(r (1)) ~ B log(?) (8.2)

for a B, > B thatis precisely determined in termsiof n ando (here,B is the exponent of the
Barenblatt solution as used above). In particular,ofox 1/m we getg, = mp(l — o(m — 1)),
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which is larger tharg, and this exponent is sharp (note that formula (11.4) on page 223 lof [18]
uses a slightly different notation). It is furthermore stated thatsfop 1/m the exponeng, is
exactly 8. We also state that in the limit cage — oo we should recover convergence to the
Barenblatt solutions. All these unprecise asymptotic r@aﬁe easy to prove by putting together
the techniques of that paper plus comparison with the behaviour of Barenblatt solutions and suitable
self-similar solutions. No further indication is given of asymptotic masses, rates of convergence,
inner expansions or capacities. The present paper contributes the details on the precise asymptotics
in the caser = 0 at the boundaf§.

A natural step is now to consider the exact asymptotics whenct—° at the boundary, with
o > 1/m.If o > «, the convergence results presented in this paper still hold, and the free boundary
is O (t#). The key point is that we still may use Barenblatt functions as supersolutions. There is still
agap, namely € [1/m, «).

Heat equation and fast diffusion. Other classes of initial data

Results similar to those contained in this paper (except the ones concerning the free boundary) were
obtained by Herraiz [12] for the heat equatian £ 1) with initial dataug ~ C|x|~7,y > N. Our
techniques may be used to extend the results to general datasi?. Moreover, they may also be
applied to the fast diffusion case: (< 1).

The casen = 1,up ~ Cl|x|77, y < N is also considered in_[12]. The proofs depend
strongly on the linearity of the problem and do not apply to the easg 1. On the contrary,
our techniques might be used to deal with this problem. The outer behaviour will be given by a self-
similar solution of the PME in the whole space with the right decay at infinity. These self-similar
solutions, constructed in][1], are then matched with a quasi-stationary solution to give the inner
behaviour. The hole has no effect on the outer development, since it is negligible, compared with
the “big” size of the solution at infinity. Details will be given elsewhere.
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