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Asymptotic behaviour of the porous media equation in domains with holes
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The paper deals with the asymptotic behaviour of solutions to the porous media equation,ut = ∆um,
m > 1, in an exterior domain,Ω, which excludes one or several holes, and with zero Dirichlet data
on ∂Ω. When the space dimension is three or more this behaviour is given by a Barenblatt function
away from the fixed boundary∂Ω and near the free boundary. The asymptotic behaviour of the
free boundary is given by the same Barenblatt function. On the other hand, if the solution is scaled
according to its decay factor, away from the free boundary and close to the holes it behaves like
a function whosem-th power is harmonic and vanishes on∂Ω. The height of such a function is
determined by matching with the Barenblatt solution representing the outer behaviour. The inner and
the outer behaviour can be presented in a unified way through a suitable global approximation.

2000 Mathematics Subject Classification: 35B40, 35R35, 35K65.

Keywords: Porous media equation; exterior domain; asymptotic behaviour; free boundary; matched
asymptotics.

1. Introduction

LetG ⊂ RN be a bounded open set with smooth boundary and letΩ = RN \G. We do not assume
G to be connected, so that it may represent one or several holes in an otherwise homogeneous
medium. Our goal is to study the large-time behaviour of the solution to the porous media equation
(PME for short) in that exterior domain with zero data on the boundary,ut = ∆um, (x, t) ∈ Ω × (0,∞),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),

u(x,0) = u0(x), x ∈ Ω,

(1.1)

wherem > 1. In order to simplify the presentation we assume thatΩ is connected, since the general
case follows from that case and known results [22]. By smooth boundary we mean that it is aC2,α

embedded manifold, which is a standard assumption in the literature, though the results hold under
less regularity at the cost of longer proofs.

As for the initial data, we assume thatu0 is inL1(Ω), nonnegative inΩ, not identically zero and
compactly supported inΩ. The last assumption implies that the support ofu(·, t) remains bounded
for any later time,t > 0 (finite propagation property, which follows easily by comparison with the
solution of the problem in the whole space). This allows us to study the behaviour in time of the free
boundary,Γ (t) = ∂{x ∈ Ω : u(x, t) > 0} \ ∂Ω, which is an important topic in porous media flows.
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Due to theL1-L∞ regularizing effect, [6], [23], [25], we may assume without loss of generality that
u0 ∈ L∞(Ω), and then solutions are continuous for allt > 0. A general reference for the theory of
the PME is the monograph [24].

The asymptotic behaviour of the solution to the present problem (1.1) was studied by King
in [16], both forN = 3 andN = 2. However, his calculations are formal and restricted to radially
symmetric solutions. The aim of this paper is to perform a complete analysis of the issue when
N > 3 for general domains and data. The restriction on the dimension will be assumed hereafter,
since the situation forN = 1,2 is different. As a first step, in Section 2 we construct sub- and
supersolutions that will allow us to identify the decay and expansion rates of the solution. We show
thatu decays asO(t−α) while its support expands likeO(tβ), where

α =
N

N(m− 1)+ 2
, β =

1

N(m− 1)+ 2
(1.2)

turn out to be the self-similarity exponents corresponding to the source-type solutions of the PME,
also known asBarenblatt solutions. We scale the solution according to these rates,

vout(y, t) = tαu(ytβ , t),

and prove thatvout converges ast → ∞ to the profileFC? of a particular Barenblatt solution,
BC?(x, t) = t−αFC?(|x|t

−β). The precise value ofC? is determined from the initial data thanks to
an explicit conservation law. Convergence is uniform in sets|y| > δ, i.e., in a wide exterior region
up to the free boundary, which is called in Matched Asymptotics theouter limit (see Theorem 4.1).

The asymptotic mass ofu coincides with the mass of the Barenblatt functionBC? (see
Corollary 4.2). The amount of mass that is lost through the boundary is given by the projection
of the initial data on a functionΦ which is the normalized harmonic function that measures the
capacityof G (see formula (4.6)). This is the only influence of the hole structure on the outer
asymptotic behaviour in first approximation.

As a consequence of the convergence of bothvout and the mass, we prove that the free boundary
of u behaves for large times as the free boundary of the Barenblatt functionBC? (the one that gives
the outer behaviour; see Corollary 4.3).

In order to complete the study we must also consider what happens in the region near the
holes (the so-calledinner limit). The scaling in this case is simpler: we only have to amplify
the solution, keeping the space variable fixed (i.e., a quasi-stationary situation). We prove that
vin(x, t) = tαu(x, t) converges to a stationary state,HC(x) = Cm/(m−1)H(x), whereH = 1 − Φ

is the unique continuous solution of

∆H = 0, x ∈ Ω, H = 0, x ∈ ∂Ω, H → 1 uniformly as|x| → ∞. (1.3)

The existence ofH is proved by considering solutions in the intersection ofΩ with balls of
increasing radius, which take boundary data equal to 1 in the boundary of the ball. The sequence of
solutions is monotone and bounded, hence the limit is harmonic, [10]. Uniqueness is an immediate
consequence of the maximum principle. The free constantC is adjusted through matching with the
Barenblatt function which gives the outer behaviour. It turns out thatC = C?. See Section 5 for
complete details.

A combination of the inner and outer descriptions allows us to write a global uniform
approximation for the large-time behaviour of the solution (cf. Theorem 6.1). In theoverlapping
region

1/δ < |x| < δtβ , δ small,
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both the inner and the outer limit differ very little from the global approximation, and hence between
themselves. Therefore, a posteriori one realizes that the outer limit holds uniformly for|x| > 1/δ
and the inner one for|x| 6 δtβ .

In order to illustrate the theory, in Section 7 we show some numerical computations for a radial
example. We present some conclusions and comments in the last section, Section 8.

Let us review some precedents: in [18], two of the authors study the same exterior problem,
but with nontrivial boundary data,g. Assuming thatg is time independent, the inner limit of the
solution stabilizes toH 1/m, whereH is a harmonic function in the exterior domain with boundary
datag and decaying at infinity. The outer behaviour is given by a self-similar solution of the PME
which is singular atx = 0. In contrast to the case of zero boundary data, in this case the inner limit
is completely determined byg and the matching is needed in order to properly describe the outer
limit. In other words, the sense of the implications in the matching process is reversed.

Let us also recall that the one-dimensional problem has been studied by Kamin and one of
the authors in [15]. After an odd extension, the problem is identified as the PME equation with
changing-sign initial data with zero mass,

∫
R u0 = 0. The solution is shown to converge uniformly

to a self-similar antisymmetric profile, a so-called dipole solution, introduced by Barenblatt and
Zel’dovich in [5]. More precisely,

lim
t→∞

tα|u(x, t)−D(x, t)| = 0,

uniformly in R, where

D(x, t) = t−αF(xt−β), α =
1

m
, β =

1

2m
,

for a certain odd functionF .
Notice that forN = 1 there is no need to consider the outer and the inner region separately,

since the dipole is already a global approximation. Besides, these scaling exponents do not match
the exponents in (1.2), thus showing the different effect of the hole in one and more than two
dimensions. The main physical difference is reflected in the fact that forN > 3 the asymptotic
mass is not zero, while forN = 1 it goes to zero like a power of time,

∫
R u(x, t)dx = O(t−1/2m).

DimensionN = 2 studied in [11] exhibits a transition behaviour where the mass goes to zero at a
logarithmic rate.

Throughout the paperC, c, c1, . . . denote positive constants that may change from one line to
another when no confusion is to be feared. We denote byBr(x0) the open ball with radiusr and
centre atx0. We use supp(f ) to refer to the spatial support of a functionf .

NOTE. After completion of this work, and during a conference held in Będlewo (Poland), we
were informed of the paper by Profs. Gilding and Goncerzewicz on the same subject, [11]. Let
us briefly comment on the differences. They obtain the outer behaviour both forN > 3 and for
1 < N < 3, and they also treat fractional dimensions in the radial cases. On the other hand, the
present manuscript contains several new topics, namely, the description of the inner behaviour (see
Section 5), the rate of decay of the mass to its asymptotic limit, which is expressed in terms of
the capacity of the hole, and the global approximation. The proof of the common result is quite
different: In [11] the authors first prove the result for radial problems, including fractional spatial
dimensions. The radial result is later applied to prove the general case. In this paper the general case
is proved directly using a scaling argument. In [11] the holes are simply connected, an assumption
that we do not need.
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2. Preliminaries

2.1 Definitions

We can find in the literature several concepts of solution for the PME (cf. [24]). Hence, we make
precise the one we are dealing with. LetQT = Ω × (0, T ].

DEFINITION 1 A functionu ∈ C((0, T ]; L1(Ω)) ∩ L∞(QT ) defined inQT is aweak solutionof
Problem (1.1) on [0, T ] if for any test functionφ ∈ C2,1(QT ), compactly supported inQT , with
φ = 0 on∂Ω × (0, T ], u satisfies the integral identity∫

Ω

u(x, t)φ(x, t)dx =

∫ t

0

∫
Ω

{um(x, t)∆φ(x, t)+ u(x, t)φt (x, t)} dx dt +
∫
Ω

u0(x)φ(x,0)dx

for any 0 6 t 6 T . We say thatu is a weak solution of (1.1) on [0,∞) if it is a solution, in the
previous sense, on any [0, T ].

We define weak sub- and supersolutions as usual, i.e., by replacing in the definition of solution
the = sign by a6 or >, respectively, and considering only nonnegative test functionsφ > 0. See
[24, Chapters 5, 6 and 9].

The existence and uniqueness of weak solutions is well-known in the case of bounded domains,
and is extended to the case of unbounded domains in [24]. More precisely, for general datau0 ∈

L1(Ω) it can be shown, solving Dirichlet problems in bounded domainsΩn = Ω ∩ Bn(0) and
considering suitable approximationsu0n of u0, defined inΩn, that solutions to (1.1) exist. Even
more, note that we are considering solutions with compactly supported initial data, which leads to
compact support in space for all times. Hence, the standard construction on bounded domains is
enough to show that the solution exists on [0, T ] for all finite T .

Uniqueness and comparison follow easily from the next proposition.

PROPOSITION2.1 Letu be a weak subsolution of Problem (1.1) with initial datau0 andû a weak
supersolution with initial datâu0. Then for each 06 t 6 T ,∫

Ω

[u(x, t)− û(x, t)]+ dx 6
∫
Ω

[u0(x)− û0(x)]+ dx,

where [r]+ = max{r,0}.

The proof is analogous to the one already given in [3] for one-dimensional bounded domains.
Moreover, the standard theory of weak solutions provides us with estimates of the form∫ T

0

∫
Ω

|∇um|
2 dxdt 6 C

∫
Ω

um+1
0 (x)dx.

For these properties cf. [24, Chapters 5 and 9].
We will also need the concept of local weak solution, where the initial and boundary conditions

are not considered.

DEFINITION 2 We say thatu ∈ C((0, T ]; L1(Ω)) ∩ L∞(QT ) for someT > 0 is a local weak
solutionif u satisfies the integral identity∫ T

0

∫
Ω

{um(x, t)∆φ(x, t)+ u(x, t)φt (x, t)} dx dt = 0 (2.1)

for any test functionφ ∈ C2,1(QT ) compactly supported inQT .
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2.2 Conservation law

The role of the standard mass conservation is played here by a modification in the form of a weighted
mass conservation. Letf be a harmonic function inΩ such thatf = 0 on ∂Ω. As in [16], we
introduce

I (t) =

∫
Ω

f (x)u(x, t)dx.

Integrating by parts inΩ, sinceu has compact support, we get formally

dI

dt
=

∫
Ω

f∆um =

∫
∂Ω

(
f
∂um

∂ν
− um

∂f

∂ν

)
,

whereν is the outward normal. Sinceum andf are zero on∂Ω, we conclude thatI is an integral
invariant,

dI

dt
= 0. (2.2)

The rigorous justification can be given by one of the two standard tricks used in the porous medium
theory: raising the data byε so that the equation is no more degenerate for these data, or regularizing
the nonlinearityΦ(u) = um into some smooth and nondegenerateΦε. We then pass to the limit
ε → 0. Such techniques are described in detail in [24].

3. Sub- and supersolutions

I. Supersolutions. As supersolutions we will use theBarenblatt functions

BC(x, t) = t−α
(
C −

β(m− 1)

2m

|x|2

t2β

)1/(m−1)

+

= t−αFC(|ξ |),

with C > 0 andξ = xt−β , which are source-type solutions of the PME in the whole space. As is
well-known (cf. [2, 21, 24]), these are weak solutions of the equation fort > τ > 0, which have as
initial trace a multiple of the Dirac delta,Mδ(x). The parameterC is a function of the total mass of
BC , more precisely, the massMC =

∫
RN BC(x, t)dx is related toC by

MC = k(m,N)C1/2(m−1)β , (3.3)

where

k(m,N) = 2πN/2β

(
2m

β(m− 1)

)N/2
Γ (σ)

Γ (σ/(2β))
, σ =

1

m− 1
. (3.4)

Given any positive timēt , we chooseC large so thatBC(·, t̄) lies aboveu(·, t̄). Recall thatu(·, t̄) is
bounded and compactly supported.

II. Subsolutions. The Barenblatt functions cannot be used as subsolutions of the problem: though
a suitable translation allows putting them belowu at some time forC small, they will eventually
become positive at the fixed boundary∂Ω. To avoid this difficulty with the boundary condition, we
may consider

HA(x, t) = At−α
(

1 −

(
R−

|x|

)N−2)1/m

+

.
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It has the expected decay factor and itsm-th power is harmonic in its support. Hence it is a
subsolution of the PME. However, it is impossible to put it belowu at any time, because its does
not have compact support. The idea is then to take a combination of both subsolutions. But they
intersect with the “wrong angle”. Therefore, we have to modifyHA slightly before “gluing” them.
We take a delayτ > 0 and consider

ĤA(t),τ (x, t) = A(t)(t + τ)−α
(

1 −

(
R−

|x|

)N−2

−
a(|x| − r1)

4
+

(t + τ)4γ

)1/m

+

,

BC0,τ (x, t) = (t + τ)−α
(
C0 −

β(m− 1)

2m

|x|2

(t + τ)2β

)1/(m−1)

+

,

whereR−, r1, a, C0, and γ are positive constants, withγ < β. For σ > 0, we setA(t) =

2C1/(m−1)
0 (1 + (t + τ)−σ ), so that the maximum of̂HA(t),τ is always greater than the maximum

of BC0,τ . Let R+(t) be the radius of the outer interface of̂HA(t),τ andB+(t) the radius of the
interface ofBC0,τ . We will see that if the parameters are selected appropriately, thenĤA(t),τ and
BC0,τ intersect at a distancer?(t) that satisfiesr?(t) < R+(t), with the correct angle, as in Figure 1.

R
−

r1 r⋆(t) R+(t) B+(t) |x|

................
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

C
1/(m−1)
0

..........................................................................................................................A(t)

(t + τ)αĤA(t),τ

(t + τ)αHA(t),τ

(t + τ)αBC0,τ

FIG. 1. SubsolutionϕC0,τ .

Hence, we define

ϕC0,τ (x, t) =


0, |x| < R− or |x| > B+(t),

ĤA(t),τ (x, t), R− 6 |x| 6 r?(t),

BC0,τ (x, t), r?(t) 6 |x| 6 B+(t),

which turns out to be the needed subsolution.

LEMMA 3.1 There exist a timet0 > 0 large,C0 small, σ < 4γ − 1 and a delayτ such that
ϕC0,τ (x, t) < u(x, t) for t > t0.

Proof. We perform the proof in three steps. We first show that there is a timet̄ such thatϕC0,τ

is a subsolution to the PME fort > t̄ . Then we show that there exist a timet0 > t̄ , a delayτ
and constantsR−, r1, a andC0 such thatu(x, t0) is aboveϕC0,τ (x, t0). The result then follows by
comparison, by showing thatϕC0,τ (x, t) is well defined fort > t0.

Step 1. SinceBC0,τ andHA(t),τ are subsolutions of the PME, by definition of̂HA(t),τ we only
have to prove that it is a subsolution ifr1 < |x| < r? and t > t̄ ; i.e., definingr = |x| and
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Ĥ (r, t) = ĤA(t),τ (x, t) we have to show that

Ĥt −
N − 1

r
(Ĥm)r − (Ĥm)rr 6 0, r1 < r < r?, t > t̄ .

Sinceσ < 4γ − 1, this inequality is satisfied if̄t is large.

Step 2. Let A = BA+
(0) \ BA−

(0) be an annulus such that for a fixed timet0 > t̄ , large
enough,A ⊂ Int(supp(u(·, t0))) (see [4]). We chooseR− = A− andA− < r1 < A+ and then
selectC0 which measures the height ofϕC0,τ in order to haveu0 aboveϕC0,τ at t0; i.e., we want
A(t) < minu(·, t0) insideA. We still have two free parameters, namelya andτ . Since we want
supp(ϕC0,τ (·, t0)) = [R−, B+(t0)] ⊂ Int(supp(u(·, t0))), we impose first that

B+(t0) = (cC0)
1/2(t0 + τ) = A+.

This determines the value ofτ . The next step consists in determininga. To this end we use the fact
thatR+(t) satisfies

R+(t) < r1 +
(t + τ)γ

a1/4
.

Hence, since we needR+(t0) < B+(t0), it is enough to choose the free parametera such that
r1 + (t0 + τ)γ /a1/4 < B+(t0).

Step 3.The construction ofϕC0,τ requires thatR+(t) < B+(t) in order to have the right intersection
angle atr?. Let us see then thatr1 + (t + τ)γ /a1/4 < B+(t). Define

g(t) = r1 +
(t + τ)γ

a1/4
− B+(t).

From the previous step we know thatg(t0) < 0. Assume that there is a first timet1 whereg(t1) = 0.
Then, sinceγ < β,

g′(t1) =
γ (t1 + τ)γ−1

a1/4
− B+(t1)β(t1 + τ)−1

= B+(t1)(t1 + τ)−1(γ − β − γ r1) < 0,

which is a contradiction. Sinceu andϕC0,τ are ordered att0, comparison implies that they are
ordered at any timet > t0. 2

4. Outer limit

We show that the asymptotic behaviour ofu near the free boundary is given by a Barenblatt solution
with a constantC? that can be determined in terms of the initial datau0.

THEOREM 4.1 LetN > 3 and

C? =

(
1

k(m,N)

∫
Ω

H(x)u0(x)dx

)2(m−1)β

. (4.1)

If u is the weak solution of (1.1), then

lim
t→∞

tα|u(x, t)− BC?(x, t)| = 0 (4.2)

uniformly on sets of the form{x ∈ Ω : |x| > δtβ}, δ > 0.
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Proof. We perform the proof in several steps. By a scaling argument, we show that the rescaled
solutions converge along subsequences. Then we prove that the limit along any subsequence
coincides withBC? . This implies the validity of Theorem 4.1, which is not restricted to any
subsequence.

Step 1: Scaling and compactness.We define the family of rescaled solutions

uλ(x, t) = λαu(λβx, λt),

where α and β are given in (1.2). The Barenblatt functions are invariant under this scaling.
Therefore, by the upper bound established in Section 3, the family{uλ} is uniformly bounded by
some Barenblatt solution fort > t̄/λ, a time that tends to zero asλ → ∞. Thus, thanks to the
results on compactness for the PME, [8], [26], there is a subsequence{λk} and a functionu∞ such
thatuλk → u∞ uniformly on compact subsets ofRN\{0} × (0,∞). Moreover,u∞ is a local weak
solution of the PME inRN\{0} × (0,∞).

Step 2: The limit is a Barenblatt solution.We now show thatu∞ is a Barenblatt solution. We know
from the previous section that there exists a constantC such that

ϕ(x, t − t0) < u(x, t) < BC(x, t) for t large.

If we re-scale this expression and then pass to the limit asλk → ∞, we find thatu∞ is bounded,
both from above and below, by Barenblatt solutions,

BC0 6 u∞ 6 BC, x 6= 0. (4.3)

Thus,u∞ is a nontrivial solution of the PME inRN \ {0}, t > 0, which is bounded for all positive
times. Hence, sinceN > 3, the singularity can be removed. Here is a standard proof: take a smooth
cutoff function 0 6 ψ 6 1 that vanishes nearx = 0 and is 1 for|x| > 1 and putψr(x) =

ψ(x/r). We now write the weak formulation of the PME with respect to a test functionφ(x, t) =

ζ(x, t)ψr(x) whereζ ∈ C∞
c (RN ×(0,∞)). Sinceφ = 0 nearx = 0, this test function is admissible

for the solution with a bounded singularity. Sinceu∞ is bounded fort > τ > 0, the limit r → 0
shows that it is a solution of the PME for allt > 0 andx ∈ RN .

Sinceu∞ is a local weak solution of the PME bounded for anyt > τ > 0, it has an initial trace
that is a finite measure [7]. From relation (4.3) we get

suppBC0 ⊆ suppu∞ ⊆ suppBC,

and hence supp(u∞(·, t)) shrinks to{0} ast → 0. We conclude that the initial trace is a multiple
of the delta function. Thereforeu∞ is a Barenblatt solution,BC? , with a constantC? that satisfies
C0 6 C? 6 C.

Step 3: Convergence along subsequences.Using the invariance of Barenblatt functions under this
scaling, we have

|uλk (y,1)− BC?(y,1)| = λαk |u(λ
β
k y, λk)− BC?(λ

β
k y, λk)| = λαk |u(x, λk)− BC?(x, λk)|

for λk large, wherex = λ
β
k y. Thus, the uniform convergence ofuλk to BC? asλk → ∞ in sets of

the form{|y| > δ} implies, takingλk = tk, the result stated in Theorem 4.1 for a subsequence.
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Step 4: Conclusion. The final step consists in showing that, independently of the chosen
subsequence, the parameterC? of the limit function is given by (4.1). LetH be a solution of (1.3).
Using the conservation law (2.2) we obtain∫

Ω

H(x)u0(x)dx =

∫
Ω

H(x)u(x, tk)dx.

In order to estimate the integral on the right hand side we split it into two parts,∫
Ω

H(x)u(x, tk)dx =

∫
{|x|6δtβk }∩Ω

H(x)u(x, tk)dx︸ ︷︷ ︸
I1

+

∫
{|x|>δtβk }

H(x)u(x, tk)dx︸ ︷︷ ︸
I2

(4.4)

for any δ > 0 andtk large enough. If we boundu by a Barenblatt solution, and use the fact that
H 6 1, we get

I1 6 t−αk

∫
{|x|6δtβk }∩Ω

FC(|x|t
−β
k )dx 6

∫
{|ξ |6δ}

FC(|ξ |)dξ,

whereFC is the profile of the Barenblatt solution with constantC. Thus, lim suptk→∞ I1 can be
made as small as desired by takingδ small. In order to computeI2 we make again the change of
variablesx = ξ t

β
k and pass to the limit astk → ∞ using the uniform convergence result stated

before. Sinceα = Nβ, we obtain

lim
tk→∞

I2 =

∫
{|ξ |>δ}

lim
tk→∞

H(ξt
β
k )u(ξ t

β
k , tk)t

Nβ
k dξ =

∫
{|ξ |>δ}

FC?(|ξ |)dξ.

Passing to the limit in (4.4), and then lettingδ → 0, gives∫
Ω

H(x)u0(x)dx =

∫
RN
FC?(|ξ |)dξ = MC? = k(m,N)C

1/2(m−1)β
? , (4.5)

wherek(m,N) is given by (3.4). This result does not depend on the particular sequence{tk}. 2

REMARK 1 Theorem 4.1 is also true when we replaceBC?(x, t) by a Barenblatt solution that is
centred atx0 6= 0,BC?(x − x0, t). This poses an interesting problem, the optimal choice ofx0.

As a corollary of the outer behaviour we obtain the rate of decay of the mass to its asymptotic
limit MC? =

∫
RN FC?(|ξ |)dξ > 0. The fact that there is a nonzero asymptotic mass is a property

that is not true forN = 1,2.

COROLLARY 4.2 LetN > 3 and letu be the weak solution of (1.1). The mass of the solution at
time t ,M(t) =

∫
Ω
u(x, t)dx, satisfies

M(t) = MC? +Kt−β(N−2)
+ o(t−β(N−2)),

where

K = CΩ

∫
RN
FC?(|ξ |)|ξ |

2−N dξ, CΩ = lim
|x|→∞

Φ(x)|x|N−2,

andΦ = 1 −H .
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The existence of the limitCΩ > 0 is a simple property of harmonic functions on exterior
domains that go to zero at infinity; it can be found in [19, Lemma 4.5].

Proof. It is similar to that of Theorem 4.1, Step 4. We deduce from (4.5) that

tβ(N−2)(M(t)−MC?) = tβ(N−2)
∫
Ω

u(1 −H) = tβ(N−2)
∫
Ω

uΦ.

In order to estimate this last integral we split it into two parts,

tβ(N−2)
∫
Ω

Φ(x)u(x, t)dx

= tβ(N−2)
∫

{|x|6δtβ }∩Ω

Φ(x)u(x, t)dx︸ ︷︷ ︸
I1

+ tβ(N−2)
∫

{|x|>δtβ }

Φ(x)u(x, t)dx︸ ︷︷ ︸
I2

for δ > 0 andt large enough. Using the estimate 06 Φ(x) 6 c1|x|
2−N and the change of variables

x = ξ tβ we get 06 I1 6 Cδ2. ForI2, we make again the change of variablesx = ξ tβ , and get

lim
t→∞

I2 =

∫
{|ξ |>δ}

lim
t→∞

Φ(ξtβ)|ξ |N−2tβ(N−2)

|ξ |N−2
u(ξ tβ , t)tNβ dξ

= CΩ

∫
{|ξ |>δ}

FC?(|ξ |)|ξ |
2−N dξ.

Hence

CΩ

∫
{|ξ |>δ}

FC?(|ξ |)|ξ |
2−N dξ 6 lim inf

t→∞
tβ(N−2)(M(t)−MC?)

6 lim sup
t→∞

tβ(N−2)(M(t)−MC?) 6 Cδ2
+ CΩ

∫
{|ξ |>δ}

FC?(|ξ |)|ξ |
2−N dξ,

from which the result follows by just lettingδ → 0. 2

REMARK 2 (Loss of mass) The amount of mass,ML(u), lost in the evolution is given by

ML(u) :=
∫
Ω

u0(x)dx − lim
t→∞

∫
Ω

u(x, t)dx =

∫
Ω

(1 −H(x))u0(x)dx > 0,

which in terms ofΦ reads

ML(u) =

∫
Ω

u0(x)Φ(x)dx.

Therefore, the influence of the hole structure is felt at the asymptotic level through the projection
of the initial data onΦ, which represents in this way the dissipation capacity ofG. Indeed, this
connection is justified by standard potential theory, sinceΦ is the harmonic function defined inΩ
that takes value 1 on∂Ω and 0 at infinity. In other words,Φ measures the capacity ofG by means
of the formula

cap1,2(G) =

∫
Ω

|∇Φ|
2 dx. (4.6)
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To end this section, we consider the behaviour of the free boundary ofu ast becomes large. For
this purpose, we define

m+(t) = max
x∈Γ (t)

|x|, m−(t) = min
x∈Γ (t)

|x|. (4.7)

We also note that the Barenblatt solutionBC? has free boundary|x| = y?t
β with

y? =

(
2mC?

β(m− 1)

)1/2

. (4.8)

COROLLARY 4.3 LetN > 3 and letu be the weak solution of (1.1). Then

lim
t→∞

m±(t)

tβ
=

(
2mC?

β(m− 1)

)1/2

. (4.9)

Proof. (i) The uniform convergence of the rescaled solutions in sets of the form|x|/tβ > δ > 0,
and the shape of the Barenblatt profileFC? , which is uniformly positive in the sets|x|/tβ 6 y? − ε,
imply that given a smallε > 0, the expressiontαu(x, t) is uniformly positive for allt large enough.
This means that

m−(t)

tβ
>

(
2mC?

β(m− 1)

)1/2

− ε

if t is large enough,t > t (ε). In the limit ε → 0, t → ∞ we get the lower part of estimate (4.9).
(ii) Since the asymptotic mass isMC? (see Corollary 4.2),M(t1) is belowMC?+ε for some large

time t1. We consider the solution̂u of the PME in the whole spaceRN with initial data

û(x, t1) =

{
u(x, t1), x ∈ Ω,

0, x 6∈ Ω.

Let Γ̂ (t) be the free boundary of̂u at timet andm̂+(t) = maxx∈Γ̂ (t) |x|. Sincêu is a supersolution
of our problem fort > t1, we havêm+(t) > m+(t) for these times. It is well-known [21] that

lim
t→∞

m̂+(t)

tβ
=

(
2m

β(m− 1)

(
M(t1)

k(m,N)

)2(m−1)β)1/2

.

Hence, by the relation (3.3),

lim
t→∞

m̂+(t)

tβ
6

(
2m(C? + ε)

β(m− 1)

)1/2

,

from which the result follows by lettingε → 0. 2

5. Inner limit. Matching

We know thatu decays asO(t−α), sinceu is bounded both from above and from below by functions
with such decay. What asymptotic profile do we get in the inner layer if we scale the solution
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according to this size factor? In order to guess an answer we make some formal computations. Let
v = tαu; thenv satisfies the equation

∆vm = t−2β(tvt − αv)

in Ω × (0,∞), with the boundary conditionv = 0 on ∂Ω. Assume for the moment that
t−2β+1vt → 0 as t → ∞. Then the limit ofvm is expected to be a nontrivial solution of the
Laplace equation inΩ with zero Dirichlet boundary data. There is a whole family of solutions to
this problem. They are all a constant factor of the solutionH of (1.3). Hence they are determined
by their height at infinity. In order to determine this height we usematched asymptotics: the outer
limit of the inner expansion should coincide with the inner limit of the outer development.

THEOREM 5.1 LetN > 3 and letu be the weak solution of (1.1). Then the inner asymptotic
behaviour ofu is given by the stationary stateHC? , where

HC?(x) = C
m/(m−1)
? H(x). (5.1)

More precisely, givenε > 0 there existδ = δ(ε) andtin = tin(ε, δ) such that

|tαmum(x, t)−HC?(x)| 6 ε (5.2)

for all |x| 6 δtβ , x ∈ Ω andt > tin.

REMARK 3 In particular, convergence is uniform for|x|t−β 6 λ(t) andx ∈ Ω for any positive
functionλ(t) such that limt→∞ λ(t) = 0.

In order to proceed with the proof, let us first show that there is convergence in time average. In
order to simplify the notation we write

WT (·, τ ) =
1

T

∫ τ+T

τ

w(·, s)ds,

wherew(x, τ) = tαmum(x, t) with τ = log t .

LEMMA 5.2 Givenε > 0 andT > 0 there existδ = δ(ε, T ) andτin = τin(ε, T , δ) such that

|WT (x, τ )−HC?(x)| 6 ε (5.3)

for all |x| 6 δeβτ , x ∈ Ω andτ > τin.

Proof. LetΩτ = Ω ∩ BR(τ)(0) for R(τ) = δeβτ , with δ > 0 small. Givenε > 0 we know from
the previous section that there exists a timeτ0 = τ0(δ) such that

FC?(δ)− ε 6 eατu(x, eτ ) 6 FC?(δ)+ ε for |x| = R(τ), τ > τ0,

whereFC? is the profile of the Barenblatt solution,BC? , which gives the outer limit. Thenw, which
is positive and hence classical inΩτ × (τ0,∞) if τ0 is large enough, satisfies, forτ > τ0,−∆w = −e−2βτ (vτ − αv), x ∈ Ωτ ,

w = 0, x ∈ ∂Ω,

w = g, x ∈ ∂BR(τ)(0).
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The restriction,g, of w to ∂BR(τ)(0) satisfies

(FC?(δ)− ε)m 6 g(x, τ ) 6 (FC?(δ)+ ε)m for τ > τ0.

Note thatFC?(δ)−ε > 0 if δ andε are small. We want to use the Green’s functionG = G(x0, x;Ωτ )

for the domainΩτ , regardingτ as a frozen coefficient. Namely, givenx0 ∈ Ωτ , we write

−∆G = δx0 in Ωτ , G = 0 on∂Ωτ ,

whereδx0 denotes the Dirac measure atx0. Note that the domains we are dealing with,Ωτ , are
bounded and with smooth boundary, hence the Green’s function exists. Observe also thatG is
differentiable up to the boundary and∂G/∂ν 6 0 sinceG > 0 andG = 0 on the boundary.

Thenw can be represented as

w(x, τ) = −

∫
∂BR(τ)(0)

g
∂G
∂ν

dσ −

∫
Ωτ

e−2βτ (vτ − αv)G dx.

We claim that, forT > 0 fixed and|x| 6 R(τ),∣∣∣∣ 1

T

∫ τ+T

τ

w(x, s)ds −HC?(x)

∣∣∣∣ 6 ε + c(ε + δ)+ cδ2
(
T + 1

T

)
. (5.4)

Indeed, we have∣∣∣∣ 1

T

∫ τ+T

τ

w(x, s)ds −HC?(x)

∣∣∣∣ 6
1

T

(∣∣∣∣ − ∫ τ+T

τ

∫
∂BR(s)(0)

g
∂G
∂ν

dσ ds −HC?(x)︸ ︷︷ ︸
|I1|

∣∣∣∣
+

∣∣∣∣ ∫ τ+T

τ

∫
Ωs

e−2βs(vs − αv)G dx ds︸ ︷︷ ︸
|I2|

∣∣∣∣).
We start by getting a bound forI1 in terms ofT , δ andε. Since∂G/∂ν is nonpositive on∂BR(τ)(0),

I1 6 −

∫ τ+T

τ

∫
∂BR(s)(0)

(FC?(δ)+ ε)m
∂G
∂ν

dσ ds −HC?(x)

6 −

∫ τ+T

τ

∫
∂BR(s)(0)

(FmC?(0)+ c1δ + c2ε)
∂G
∂ν

dσ ds −HC?(x)

= −

∫ τ+T

τ

∫
∂BR(s)(0)

FmC?(0)
∂G
∂ν

dσ ds −HC?(x)

− (cε + cδ)

∫ τ+T

τ

∫
∂BR(s)(0)

∂G
∂ν

dσ ds

6
∫ τ+T

τ

(Ĥ (x; τ)−HC?(x))ds + c(ε + δ)

∫ τ+T

τ

∫
∂BR(s)(0)

(
−
∂G
∂ν

)
dσ ds,
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whereĤ satisfies the Laplace equation inΩτ , Ĥ = 0 on the fixed boundary∂Ω andĤ = FmC?(0) =

C
m/(m−1)
? on ∂BR(τ)(0). In the first step we use the inequality

(FC?(δ)+ ε)m 6 FmC?(0)− cδ + cε,

which is valid for ε, δ small by Taylor expansion, sinceFC?(0) > 0; c is a constant close to
(FmC?)

′(0).

By definition,HC? converges toCm/(m−1)
? uniformly as|x| → ∞. Therefore, givenε, we have

|HC?(x)− C
m/(m−1)
? | 6 ε for |x| = R(τ) andτ large enough. Hence, by the maximum principle,

|Ĥ (x, τ )−HC?(x)| 6 ε

for |x| 6 R(τ), x ∈ Ω andτ large. Thus, since
∫
∂BR(s)(0)(−∂G/∂ν)dσ is always 1, independently

of the domain (see [10]), we have

I1 6 T ε + T c(ε + δ).

An analogous computation yieldsI1 > −T ε − T c(ε + δ). Therefore,

|I1| 6 T ε + T c(ε + δ).

Finding an estimate forI2 is a little more involved. It is based on the well-known semiconvexity
property

ut > −
u

(m− 1)t

(see for example [20]), which in terms ofv readsvτ > −2βv/(m− 1). Sincev is bounded andG is
nonnegative,

|I2| 6

∣∣∣∣ ∫ τ+T

τ

∫
Ωs

e−2βs
(
vs +

2βv

m− 1

)
G dx ds

∣∣∣∣
+

∣∣∣∣ ∫ τ+T

τ

∫
Ωs

e−2βs
(

2β

m− 1
+ α

)
vG dx ds

∣∣∣∣
6

∫ τ+T

τ

∫
Ωs

(
(e−2βsv)s +

2βm

m− 1
ve−2βs

)
G dx ds + c

∫ τ+T

τ

∫
Ωs

e−2βsG dx ds.

Let GBR(τ) be the Green’s function for the ballBR(τ)(0). Comparison yieldsG 6 GBR(τ) in Ωτ .
Thus,

|I2| 6
∫ τ+T

τ

∫
Ωs

(
(e−2βsv)s +

2βm

m− 1
ve−2βs

)
GBR(s) dx ds︸ ︷︷ ︸

I21

+ c

∫ τ+T

τ

∫
Ωs

e−2βsGBR(s) dx ds.︸ ︷︷ ︸
I22
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Since

GBR(τ)(x; x0) = c

(
|x − x0|

2−N
−

(
R(τ)

|x0|

)N−2∣∣∣∣R2(τ )

|x0|
2
x0 − x

∣∣∣∣2−N)
6 c|x − x0|

2−N ,

we can bound the integrals involvingGBR(τ) in terms of the estimate∫
BR(τ)(0)

|x − x0|
2−N dx 6 cR2(τ ) = cδ2e2βτ .

Thus,

I22 6 c

∫ τ+T

τ

e−2βs
∫
BR(s)(0)

c|x − x0|
2−N dx ds 6 cδ2T .

In order to estimate the integralI21 we split it in two terms as follows:

I21 6 c

∫ τ+T

τ

∫
Ωs

(e−2βsv)s |x − x0|
2−N dx ds + c

∫ τ+T

τ

∫
Ωs

e−2βs
|x − x0|

2−N dx ds.

The second integral can be estimated in the same way asI22. In order to get a bound for the first
one, we change the order of integration to get

c

∫ τ+T

τ

∫
Ωs

(e−2βsv)s |x − x0|
2−N dx ds = c

∫
Ωτ+T

|x − x0|
2−N

∫ τ+T

σ(x)

(e−2βsv)s ds dx 6 cδ2,

for some functionσ .
Summing up, we have

|I2| 6 cδ2
+ cδ2T = cδ2(T + 1).

Therefore, if|x| 6 δeβτ andτ is large enough, then

1

T
(|I1| + |I2|) 6 ε + c(δ + ε)+ cδ2

(
T + 1

T

)
,

which proves the claim (5.4), and hence the lemma. 2

Proof of Theorem 5.1. This is now a calculus lemma. We argue by contradiction. Assume that
there is a sequence of points{(xn, τn)} with τn → ∞ such that|xn|e−βτn → 0 asn → ∞ and
w(xn, τn) > HC?(xn)+2ε. Sincewτ > −Cw with C a positive constant, integrating this expression
betweenτn andτn + h we get

w(xn, τn + h) > w(xn, τn)e
−Ch > (HC?(xn)+ 2ε)e−Ch.

Hence

WT (xn, τn) >
1

T
(HC?(xn)+ 2ε)

∫ T

0
e−Ch dh =

1

T
(HC?(xn)+ 2ε)

1 − e−CT

C

> (HC?(xn)+ 2ε)(1 − cT ) > (HC?(xn)+ 2ε)

(
1 −

ε

HC?(xn)+ 2ε

)
= HC?(xn)+ ε,

if cT < min{ε/2Cm/(m−1)
? ,1/4}.We arrive at a contradiction with the conclusion of Lemma 5.2.2
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6. Global formulation

Theorems 4.1 and 5.1 allow us to write a unified formulation of the asymptotic behaviour ofu in
terms of a global approximation,UG. This global approximation equals zero at the fixed boundary
and has compact support. Its moving interface behaves fort large as the free boundary ofBC? , and
hence as the moving interface ofu.

THEOREM 6.1 Let C? be the constant given in (4.5). Letu be the solution of (1.1), and let
UG(x, t) =

(
BC?(x, t)− t−αC

1/(m−1)
? (1 −H 1/m(x))

)
+

. Then

lim
t→∞

tα|u(x, t)− UG(x, t)| = 0,

uniformly for x ∈ Ω.

Proof. Since

tα|u(x, t)− UG(x, t)| 6 |tαu(x, t)− C
1/(m−1)
? H 1/m(x)| + |C

1/(m−1)
? − FC?(xt

−β)|

= |tαu(x, t)−H
1/m
C?

(x)| + |C
1/(m−1)
? − FC?(xt

−β)|,

Theorem 5.1 implies that, givenε > 0, there existδ = δ(ε) > 0 andtin such thattα|u(x, t) −

UG(x, t)| 6 ε if |x| 6 δ(ε)tβ andt > tin. On the other hand,

tα|u(x, t)− UG(x, t)| 6 tα|u(x, t)− BC?(x, t)| + |C
1/(m−1)
? (1 −H 1/m(x))|.

It follows from Theorem 4.1 that for anyδ > 0, and in particular forδ(ε), there exists a valuetout
such thattα|u(x, t)− UG(x, t)| 6 ε if |x| > δ(ε)tβ andt > tout. 2

REMARK 4 There is an overlapping region (see Figure 2),

1/δ < |x| < δtβ

wheretα|BC?(x, t)− t−αH
1/m
C?

(x)| 6 ε if δ is small. Indeed,

tα|BC?(x, t)− t−αH
1/m
C?

(x)| 6 |tαBC?(x, t)− C
1/(m−1)
? | + |H

1/m
C?

(x)− C
1/(m−1)
? |.

If |x| 6 δtβ with δ small, then|tαBC?(x, t) − C
1/(m−1)
? | 6 ε/2. On the other hand, we have

|H
1/m
C?

(x)− C
1/(m−1)
? | < ε/2 if |x| > 1/δ andδ is small.

Analogous computations show that, if|x| belongs to the overlapping region,δ is small andt is
large enough, then the inner and the outer behaviour hold simultaneously in that region.

...................................................................................................................................................

Overlapping region
.....................................

.....................................

1/δ δtβ

H
1/m
C⋆

BC⋆

FIG. 2. Overlapping region.
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Convergence to the global approximation also holds inL1(Ω).

COROLLARY 6.2 Letu be andUG be as in Theorem 6.1. Then

lim
t→∞

‖u(x, t)− UG(x, t)‖L1(Ω) = 0.

Proof. There is a constantC such that bothu andUG vanish for|x| > Ctβ . Hence, using the
previous convergence result, we get∫

Ω

|u(x, t)− UG(x, t)| dx =

∫
|x|6Ctβ

|u(x, t)− UG(x, t)| dx 6 t−αε(Ctβ)N = CNε

for t large enough. 2

REMARK 5 TheL1 convergence result can be extended from compactly supported initial data to
the whole class of datau0 ∈ L1(Ω) by a standard density argument (see [21]).

7. A radial example

Let the holeG be the ball with radius 1 centred at 0,B1(0), andu0 a radial initial data. Since
both the domain and the initial data have radial symmetry, the solutionu is radial and the original
problem (1.1) can be rewritten as

ut = (um)rr +
N − 1

r
ur , (r, t) ∈ (1,∞)× (0,∞),

u(1, t) = 0, t ∈ (0,∞),

u(r,0) = u0(r), r ∈ (1,∞).

We use a numerical scheme to approximate the solution to this problem. The method has
three steps: front tracking, space discretization and time discretization. For the first step we use
an algorithm based on ideas from [9], [13]. Then we discretize ther variable with a finite difference
scheme and keept continuous. We solve the resulting ODE with the ODE solver ODE15s provided
by MATLAB r.

Let us takeu0(r) = ((1 − r)(r − 10))+, N = 3 andm = 2. Thenβ = 0.2 andα = 0.6. We
compute the asymptotic constantC? using formula (4.5):

C? =

(
1

k(m,N)

∫
Ω

H(x)u0(x)dx

)2(m−1)β

=

(
4π

k(m,N)

∫ 10

1
(r − 1)2(10− r)r dr

)0.4

≈ 9.705,

whereH(r) = 1 − 1/r andk(m,N) = 203/2
· 8 · π/15 ≈ 149.8627.

First we show, in Figure 3, how the solution evolves with time. The dotted line represents the
solution at timet = 104, while the dash-dotted line corresponds tot = 105. The solid lines represent
the solution at intermediate times between 104 and 105. It can be seen that the solution decreases
and that the free boundary increases as time goes by.

Next we run the method until timet = 104 and plot the solution in the scales that correspond to
the inner and the outer limit.
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0
0 150r

u(r, t)

FIG. 3. Evolution ofu.

In Figure 4 we plot the solution multiplied bytα. At first glance, it may seem that there is not
convergence to the stationary functionH 1/2

C?
(r) = C?(1 − 1/r)1/2, which is represented by the

dotted line. The shape oftαu resembles that ofHC? . However, the height is bigger. This is due to
the fact that at the time considered the solution has not still lost enough mass.
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tαu(r, t)
Harmonic function
Solution u at t = 104

Solution u at t = 1

FIG. 4. Inner limit.
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Barenblatt profile
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Solution u at t = 1

FIG. 5. Outer limit.
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K

0 9

2

5

log r

log t

FIG. 6. Free boundary.

Observe that bothHC? andBC? are known a priori. Hence we do not need to compute them
numerically.

Figure 5 shows the outer limit. As in the previous figure, we also notice an accommodation to
the shape of the limit profile, in this case the Barenblatt profile that we have denoted byFC? . Notice
that at the finite time under consideration the rescaled solution has more mass than the limit. With
this scaling, the inner boundary moves to zero. The hole is filled in and it loses its influence on the
behaviour of the solution.

From Corollary 4.3 we know that the free boundary grows asx ∼ tβ , for t large enough.
More precisely, it behaves astβ multiplied by an explicit constant. In our case this constant is
approximately 13.932. This behaviour can be observed in Figure 6: if we plot the free boundary in
logarithmic scale, we see that it converges to a line with slopeβ = 0.2 and valueK ≈ log(13.932)
at the origin. In view of Corollary 4.3, this is the expected result.

8. Extensions and open problems

Capacity and removable sets

Given any bounded setQ, the capacity ofQ is defined as the limit of the capacities of a nested
sequence of approximating smooth and bounded domains. An equivalent definition can be given as
a variational characterization

cap1,2(Q) = inf
Φ∈K

∫
|∇Φ|

2,

whereK = {Φ ∈ C1
0(R

N ) : Φ = 1 onQ} (see for example [10], [17]). We can compute the loss of
mass for each of the approximating domains in terms of their capacity. If the limit capacity is zero,
then the limit problem does not lose mass. Hence, the solutions of the approximate problems are
bounded above by the free solution and the monotone limit has the same mass; therefore, the limit
equals the solution of the Cauchy problem defined in the whole ofRN . This shows that sets of zero
capacity are removable as complements of the domain of the Dirichlet problem.
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Hot spots

A possible extension to this paper would be to determine thehot spots,H(t), for problem (1.1); i.e.
we want to study the movement of

H(t) = {x ∈ Ω : u(x, t) = max
y∈Ω

u(y, t)}

ast → ∞. WhenN = 1, the behaviour ofH(t) follows directly from the convergence ofu to the
dipole solution.

Let
H+(t) = sup

x∈H(t)
|x|, H−(t) = inf

x∈H(t)
|x|.

If ξ? is the unique point where the profile of the dipole attains its maximum, then

lim
t→∞

H±(t)

t1/2m
= ξ?.

For generalN only the casem = 1 is known. In [14], Ishige proves that ifΩ = RN \ BR(0) then
lim
t→∞

H±(t)

t1/N
= (2(N − 2)RN−2)1/N if N > 3,

lim
t→∞

H±(t)

(t log t)1/2
=

√
2 if N = 2.

In our case,m > 1, N > 3, the existence of the global approximation (cf. Theorem 6.1) implies
that the hot spots lie in the overlapping region, and we have the bounds

H±(t) → ∞, H±(t)/t
β

→ 0

as t → ∞. The precise behaviour is an open problem. Our conjecture is that they behave like
the maximum of the global approximation, i.e.,H±(t) ∼ O(t2β/N ). This fits with the linear case
mentioned above.

Boundary data with fast decay

This paper was motivated by the study of the same problem with nonzero boundary conditions on
∂Ω done by two of the authors in [18]. That paper is mainly concerned with the standard case of
data which are positive and constant in time,u(x, t) = g(x) > 0 for x ∈ ∂Ω, t > 0. However, in
Section 11 dealing with conclusions and extensions, we describe how the same methods allow one
to treat the case of boundary data which decrease in time in the form

u(x, t) ∼ g(x)t−σ , (8.1)

and the following result about asymptotic behaviour of the free boundary is stated:

log(r(t)) ∼ βσ log(t) (8.2)

for a βσ > β that is precisely determined in terms ofm, n andσ (here,β is the exponent of the
Barenblatt solution as used above). In particular, forσ < 1/m we getβσ = mβ(1 − σ(m − 1)),
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which is larger thanβ, and this exponent is sharp (note that formula (11.4) on page 223 of [18]
uses a slightly different notation). It is furthermore stated that forσ > 1/m the exponentβσ is
exactly β. We also state that in the limit caseσ → ∞ we should recover convergence to the
Barenblatt solutions. All these unprecise asymptotic results1 are easy to prove by putting together
the techniques of that paper plus comparison with the behaviour of Barenblatt solutions and suitable
self-similar solutions. No further indication is given of asymptotic masses, rates of convergence,
inner expansions or capacities. The present paper contributes the details on the precise asymptotics
in the caseu = 0 at the boundary.2

A natural step is now to consider the exact asymptotics whenu = ct−σ at the boundary, with
σ > 1/m. If σ > α, the convergence results presented in this paper still hold, and the free boundary
isO(tβ). The key point is that we still may use Barenblatt functions as supersolutions. There is still
a gap, namelyσ ∈ [1/m, α).

Heat equation and fast diffusion. Other classes of initial data

Results similar to those contained in this paper (except the ones concerning the free boundary) were
obtained by Herraiz [12] for the heat equation (m = 1) with initial datau0 ∼ C|x|−γ , γ > N . Our
techniques may be used to extend the results to general data inL1(Ω). Moreover, they may also be
applied to the fast diffusion case (m < 1).

The casem = 1, u0 ∼ C|x|−γ , γ 6 N is also considered in [12]. The proofs depend
strongly on the linearity of the problem and do not apply to the casem 6= 1. On the contrary,
our techniques might be used to deal with this problem. The outer behaviour will be given by a self-
similar solution of the PME in the whole space with the right decay at infinity. These self-similar
solutions, constructed in [1], are then matched with a quasi-stationary solution to give the inner
behaviour. The hole has no effect on the outer development, since it is negligible, compared with
the “big” size of the solution at infinity. Details will be given elsewhere.
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