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Asymptotic analysis of Mumford–Shah type energies
in periodically perforated domains
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We study the asymptotic limit of obstacle problems for Mumford–Shah type functionals withp-
growth in periodically perforated domainsvia theΓ -convergence of the associated free-discontinuity
energies. In the limit a non-trivial penalization term related to the 1-capacity of the reference hole
appears if and only if the size of the perforation scales likeεn/(n−1), ε being its periodicity. We
give two different formulations of the obstacle problem to include also perforations with Lebesgue
measure zero.

1. Introduction

The aim of this paper is to study the limiting behavior of Mumford–Shah type functionals in
periodically perforated domains. We express the obstacle constraint by two different formulations
according to the “size” of the perforation, thus including(n − 1)-dimensional sets. For both cases
we identify the meaningful scaling yielding a non-trivial limit energy (see Theorems 3.1 and 4.1).

A model case for this kind of problem is the following: find the asymptotics asε → 0 of

inf

{∫
Ω

|∇u(x)|p dx+Hn−1(Su)+lower order terms :u ∈ SBV (Ω), u = 0 onBε∪∂Ω
}
, (1.1)

whereΩ ⊂ Rn is a given regular bounded open set,∇u andSu are, respectively, the approximate
gradient and the set of approximate discontinuities ofu (see Subsection 2.3), andBε = Ω ∩⋃
i∈Zn Brε (iε), withBrε (iε) the ball centered atiε of radiusrε > 0. This is the first step in studying

obstacle problems for free-discontinuity energieswhich we are currently investigating [30].
The case in which the minimum problems (1.1) above are restricted to the Sobolev spaceW1,p,

p > 1, is classical and it has been object of much research since the pioneering works of Marchenko
and Khruslov [31], Rauch and Taylor [34], [35] and Cioranescu and Murat [14]. A wide literature
also deals with Neumann or Robin conditions on the boundary of the set of perforations (see [15],
[13] and the books [12], [16] for a more exhaustive list of references).
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A typical phenomenon occurring in this context is that the limit problem is no longer related to
an obstacle constraint and the limit energy to be minimized contains an extra term. The latter is a
finite penalization keeping track of the local capacity density of the homogenizing obstacles (with
the appropriate notion of capacity related to the Dirichlet type energy under consideration).

In order to deal with thisrelaxation phenomenon, De Giorgi, Dal Maso and Longo proposed
in [27] an approach which was then carried out by many authors (see [9], [23], [3], [4], [20], [21],
[33]). The method is based on abstractΓ -convergence arguments (see Section 2.2 for the definition
and main properties ofΓ -limits) for the associated Dirichlet energies and requires a deep study of
some fine properties of Sobolev functions. It turns out that one can confine the analysis to the range
1 < p 6 n since forp > n the convergence result is trivial. Moreover, also in case 1< p 6 n a
simple computation shows that there exists only one meaningful scaling of theradius of the periodic
perforationrε depending on the space dimensionn and on the exponentp: rε ∼ εn/(n−p) if 1 <

p < n, andrε ∼ e−ε
−n

if p = n.
A different method using directΓ -convergence arguments was developed more recently in [2].

The main tool there is a joining lemma in varying domains (see Lemma 3.1 of [2]) which allows
one to modify sequences of functions in the vicinity of the perforation set, reminiscent of a method
proposed by De Giorgi to match boundary conditions.

Going back to our framework, in order to deal with problems (1.1) we introduce for anyp > 1
the functionalsFε : SBV (Ω) → [0,+∞] defined as

Fε(u) =


∫
Ω

|∇u|p dx +Hn−1(Su), u ∈ SBV (Ω), u = 0Ln-a.e. onBε,

+∞, otherwise inSBV (Ω),
(1.2)

thus neglecting the boundary condition on the fixed boundary∂Ω (we refer to Theorem 3.1 and
Proposition 3.3 for the exact statement and the right functional framework). In Proposition 3.4 we
show how to recover the case in which the boundary datum on∂Ω is imposed.

Unlike the Sobolev setting, it turns out that for anyp > 1 there exists only one meaningful
scaling for the radiusrε which depends only on the space dimensionn. This is due to the enlarged
domain of the problem allowing forfractured configurations, with a penalization on the site of
fracture added. In terms ofΓ -convergence a rigorous statement of this fact is the following (see
Proposition 3.3):(Fε) Γ -converges to the functionalF given for anyu ∈ SBV (Ω) by

F(u) =

∫
Ω

|∇u|p dx +Hn−1(Su)+ nωnβ
n−1Ln({x ∈ Ω : u(x) 6= 0}) (1.3)

with respect to theL1 convergence, where the coefficientβ is finite and different from 0 if and only
if rε ∼ εn/(n−1). This result is achieved by studying the more general case of a unilateral constraint
of the same type (see Theorem 3.1).

Similarly to the Sobolev case, the termnωn has a capacitary interpretation and it is related to
thefunctional capacity of degree 1studied in detail in [29], [10]. Indeed, we prove the convergence
result of Theorem 3.1 for a generic reference perforation setE replacingnωn in (1.3) with C1(E+),
the 1-capacity of a suitableLn representative ofE (see Subsection 2.5 and Remark 3.2).

A heuristic motivation explaining the appearance of the capacitary term (and also the
independence fromp in the meaningful threshold) can be given by considering the energy of an
optimizing sequence for a constant functionu ≡ η < 0. The latter is obtained by modifying
u itself in a neighborhood of the periodic perforation in order to satisfy the constraint. In such
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a neighborhood the transition between the values 0 andη is minimal, for Mumford–Shah type
energies, ontotally fracturedconfigurations, since the contribution of the bulk term is of order
strictly greater than that of the surface term (see Lemma 3.6). Moreover, since on piecewise constant
functions the energyFε reduces to the perimeter of their level sets, one has to solve locally an
obstacle problem for minimal surfaces taking also into account the effect of the vanishing size of
the perforation. This is indeed the argument with which an upper bound for theΓ -limit is obtained
for a genericSBV function (see Proposition 3.9).

To prove that the latter is actually an optimal bound, one reduces to a local picture and
estimates in eachε-cell contained inΩ separately the contribution of the energy far and close to the
perforation set. The first term accounts for the Mumford–Shah energy in the limit, while the second
for the capacitary contribution (see Steps 1 and 2 of Lemma 3.5).

In Section 4 we consider reference perforation sets which may also have Lebesgue measure
zero, the so calledthin obstacles(see Theorem 4.1). In such a case formulation (1.2) of the obstacle
condition is trivial and the constraint has to be imposed in a different way. As usual in this kind of
problem (see [10]), this can be done by exploiting fine properties of the class of functions under
consideration. In particular, for a functionu in BV (Ω) the representativeu+ is definedHn−1-a.e.
onΩ. By taking this into account, we prove that the family(Fε), with Fε : SBV (Ω) → [0,+∞]
given by

Fε(u) =


∫
Ω

|∇u|p dx +Hn−1(Su), u ∈ SBV (Ω), u+ > 0Hn−1 -a.e. onEε,

+∞, otherwise inSBV (Ω),

whereEε = Ω∩
⋃
i∈Zn(iε+rεE),Γ -converges with respect to theL1 convergence to the functional

F equal for anyu ∈ SBV (Ω) to

F(u) =

∫
Ω

|∇u|p dx +Hn−1(Su)+ C1(E)β
n−1Ln({x ∈ Ω : u(x) < 0}) (1.4)

(see Theorem 4.1). Due to the occurrence of a relaxation phenomenon the analysis of the capacitary
contribution in the statement above requires a delicate argument founded on the theory of obstacle
problems in the linear setting [26], [10], [11] (see Lemma 4.4).

This fact led us to distinguish two formulations of the obstacle problem, the one in Section 3
being more intuitive and less technically demanding than that of Section 4 (see Remark 4.2 for a
comparison between Theorems 3.1 and 4.1).

Finally, in Section 5 we generalize the results obtained in the model case of the Mumford–Shah
functional to a wider class of free-discontinuity energies (see Theorem 5.1).

2. Notation and preliminaries

2.1 Basic notation

In the following,Ω denotes a bounded open set inRn with Lipschitz boundary andHn−1(∂Ω) <

+∞, with n > 2 a fixed integer. Given an open setA ⊆ Rn the family of its open subsets is denoted
byA(A).

The symbolB 4 C stands for the symmetric difference(B \ C) ∪ (C \ B) of the setsB andC
in Rn.
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As usual,B1 denotes the open ball inRn of radius 1 centered at the origin, andQ1 the semi-
open unit cube with side 1 centered at the origin, that is,Q1 = [−1/2,1/2)n. For any setE ⊂ Rn,
z ∈ Rn andr > 0, we denote byEr(z) the setz+ rE; in casez = 0 we simply writeEr for Er(0).

If B,C ∈ A(Ω) and dist(B,C) = L > 0, a cut-off function betweenB andC is anyθ ∈

C∞(Ω) with 0 6 θ 6 1 such thatθ ≡ 1 onB andθ ≡ 0 onC. Moreover, we will assume that
|∇θ | 6 c/L.

We employ the standard notationC for the topological closure inRn of the setC.

2.2 Γ -convergence

We recall the notion ofΓ -convergence introduced by De Giorgi (see [22], [6]) in a generic metric
space(X, d) endowed with the topology induced byd. A family of functionalsFε : X → [0,+∞]
Γ -convergesto a functionalF : X → [0,+∞] at u ∈ X, for shortF(u) = Γ - limε Fε(u), if for
every sequence(εj ) of positive numbers decreasing to 0 the following two conditions hold:

(i) (liminf inequality) for any(uj ) converging tou in X, we have lim infj Fεj (uj ) > F(u);
(ii) ( limsup inequality) there exists(uj ) converging tou in X such that lim supj Fεj (uj ) 6 F(u).

We say thatFε Γ -convergestoF (orF = Γ -limεFε) if F(u) = Γ - limε Fε(u) for all u ∈ X. We
also define theupperandlowerΓ -limits as

Γ - lim sup
ε→0+

Fε(u) = inf{lim sup
ε→0+

Fε(uε) : uε → u},

Γ - lim inf
ε→0+

Fε(u) = inf{lim inf
ε→0+

Fε(uε) : uε → u},

respectively, so that conditions (i) and (ii) are equivalent toΓ -lim supε Fε(u) = Γ -lim inf ε Fε(u) =

F(u). Moreover, the functionsΓ -lim supε Fε(·) andΓ -lim inf ε Fε(·) are lower semicontinuous.
One of the main reasons for the introduction of this notion is explained by the following

fundamental theorem.

THEOREM 2.1 LetF = Γ -limε Fε, and assume there exists a compact setK ⊂ X such that
infX Fε = infK Fε for all ε. Then minX F = limε infX Fε exists. Moreover, if(uj ) is a convergent
sequence such that limj Fεj (uj ) = limj infX Fεj then its limit is a minimum point forF .

2.3 BV functions

In this section we recall some basic definitions and results on sets of finite perimeter andBV ,
SBV andGSBV functions. We will give precise references to the book [1] for all the results used
throughout the paper.

LetA ⊆ Rn be an open set. For everyu ∈ L1(A) andx ∈ A, we define

u+(x) = inf{t ∈ R : lim
r→0+

r−nLn({y ∈ Br(x) : u(y) > t)} = 0},

u−(x) = sup{t ∈ R : lim
r→0+

r−nLn({y ∈ Br(x) : u(y) < t)} = 0},

with the convention inf∅ = +∞ and sup∅ = −∞. We remark thatu+, u− are Borel functions
uniquely determined by theLn-equivalence class ofu. If u+(x) = u−(x) the common value is
denoted bỹu(x) or ap-limy→x u(y) and called theapproximate limitof u atx.
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Notice that for everyLn-measurable setE ⊆ Rn we have(χE)+ = χE+
, where

E+ = {x ∈ Rn : lim sup
r→0+

r−nLn(E ∩ Br(x)) > 0}.

Moreover, we have
Ln(E \D) = 0 ⇔ E+ ⊆ D+, (2.1)

thus, by (2.1) above,E+ is anLn representative ofE, i.e.Ln(E 4 E+) = 0.
The setSu = {x ∈ A : u−(x) < u+(x)} is called theset of approximate discontinuity pointsof

u and it is well known thatLn(Su) = 0. Let x ∈ A \ Su be such that̃u(x) ∈ R. We say thatu is
approximately differentiableatx if there existsL ∈ Rn such that

ap- lim
y→x

|u(y)− ũ(x)− L(y − x)|

|y − x|
= 0. (2.2)

If u is approximately differentiable atx, the vectorL uniquely determined by (2.2) will be denoted
by ∇u(x) and called theapproximate gradientof u atx.

A function u ∈ L1(A) is said to be ofbounded variationin A, for shortu ∈ BV (A), if its
distributional derivativeDu is anRn-valued finite Radon measure. Ifu ∈ BV (A), denote byDau,
Dsu the absolutely continuous and singular parts of the Lebesgue decomposition ofDuwith respect
toLn A, respectively. Thenu turns out to be approximately differentiable a.e. onA (Theorem 3.83
of [1]), Su to becountablyHn−1-rectifiable(see Theorem 3.78 of [1]), and the valuesu+(x), u−(x)

are finite and specifiedHn−1-a.e. inA (see Remark 3.79 of [1]). Moreover,

Dau = ∇uLn A, Dsu Su = (u+
− u−)νu Hn−1 Su,

whereνu ∈ Sn−1 is an orientation forSu.
We say that anLn-measurable setE ⊆ Rn is of finite perimeterin A if χE ∈ BV (A), and we

call the total variation ofχE in A theperimeterof E in A, denoting it by Per(E,A), or simply by
Per(E) if A ≡ Rn. It is well known thatDχE = DχE ∂∗E = ν∂∗EHn−1 ∂∗E (see Theorem
3.59 of [1]), where the countablyHn−1-rectifiable set∂∗E is called theessential boundaryof E and
ν∂∗E is an orientation for it.

We recall that ifA has Lipschitz boundary, then anyu ∈ BV (A) leaves an inner boundary trace
on ∂A, which we denote by tr(u), and moreover tr(u) ∈ L1(∂A,Hn−1) (see Theorem 3.87 of [1]).

We say thatu ∈ BV (A) is aspecial function of bounded variationin A if Dsu ≡ Dju onA; we
then writeu ∈ SBV (A). Moreover,u ∈ SBVloc(A) if u ∈ SBV (U) for every open subsetU ⊂⊂ A.

We say thatu ∈ L1(A) is a generalized special function of bounded variationin A, written
u ∈ GSBV (A), if for everyM > 0 the truncated function(u∧M)∨(−M) ∈ SBV (A). Functions in
GSBV inherit many properties fromBV functions: they are approximately differentiable a.e. onA,
andSu turns out to be countablyHn−1-rectifiable (see Theorem 4.34 of [1]). The space(G)SBV
has been introduced by De Giorgi and Ambrosio [25] in connection with the weak formulation of
the image segmentation model proposed by Mumford and Shah (see [32]). Ifu ∈ GSBV (A) and
p ∈ (1,+∞), theMumford–Shah energyof u is defined as

MSp(u) =

∫
A

|∇u|p dx +Hn−1(Su). (2.3)

We recall theSBV compactness theorem due to Ambrosio in a form needed for our purposes (see
Theorems 4.8 and Theorem 5.22 of [1]).
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THEOREM 2.2 Let(uj ) ⊂ SBV (A) and assume that for somep ∈ (1,+∞),

sup
j

(MSp(uj )+ ‖uj‖L∞(A)) < +∞.

Then there exist a subsequence(ujk ) and a functionu ∈ SBV (A) such thatujk → u a.e. inA,
∇ujk → ∇u weakly inLp(A; Rn), Dsujk Sujk

→ Dsu Su weak∗ in the sense of measures.

Moreover, ifψ : Rn → R is a norm onRn satisfyingc1 6 ψ(ν) 6 c2 for everyν ∈ Sn−1, with
c1, c2 > 0, then ∫

Su

ψ(νu)dHn−1 6 lim inf
k

∫
Sujk

ψ(νujk
)dHn−1.

Finally, in caseu ∈ GSBV (A) andMSp(u,A) < +∞ the valuesu+(x), u−(x) are finite and
specifiedHn−1-a.e. inA (see Theorem 4.40 of [1]).

2.4 Homogenization inSBV

Here we collect the main results of [8] (see Proposition 2.1, Proposition 2.2 and Theorem 2.3 there)
in a form which is convenient for our purposes.

Let ϕ : R2n
→ [0,+∞) andψ : R3n

× Sn−1
→ [0,+∞) be two Borel functions with

ψ(x, a, b, ν) = ψ(x, b, a,−ν) for every(x, a, b, ν) ∈ R3n
× Sn−1. Suppose thatϕ andψ satisfy

(i) ϕ(·, ξ) is 1-periodic for everyξ ∈ Rn, and there existc1, c2 > 0 such that for everyξ ∈ Rn
and a.e.x ∈ Rn,

c1|ξ |
p 6 ϕ(x, ξ) 6 c2(1 + |ξ |p);

(ii) ψ(·, a, b, ν) is 1-periodic for every(a, b, ν) ∈ R2n
×Sn−1, and there existc3, c4 > 0 such that

for every(x, a, b, ν) ∈ R3n
× Sn−1,

c3(1 + |b − a|) 6 ψ(x, a, b, ν) 6 c4(1 + |b − a|);

(iii) there exists a continuous non-decreasing functionω : [0,+∞) → [0,+∞), with ω(0) = 0,
andL > 0 such thatω(t) 6 Lt for t > 1 and

|ψ(x, a, b, ν)− ψ(x, a1, b1, ν)| 6 ω(|a − a1| + |b − b1|)

for every(x, a, b, ν), (x, a1, b1, ν) ∈ R3n
× Sn−1.

For everyε > 0, defineGε : SBV (A)×A(A) → [0,+∞) by

Gε(u, U) =

∫
U

ϕ

(
x

ε
,∇u

)
dx +

∫
Su∩U

ψ

(
x

ε
, u+, u−, νu

)
dHn−1. (2.4)

Then we have

THEOREM 2.3 For everyU ∈ A(A) the family (Gε(·, U)) Γ -converges with respect to the
L1-convergence to the functionalGhom : SBV (A)×A(A) → [0,+∞) defined by

Ghom(u, U) =

∫
U

ϕhom(∇u)dx +

∫
Su∩U

ψhom(u
+, u−, νu)dHn−1, (2.5)

where
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1. ϕhom : Rn → [0,+∞) is the convex function given by

ϕhom(ξ) = lim
ε→0+

inf

{∫
Q1

ϕ

(
x

ε
,∇v + ξ

)
dx : v ∈ W

1,p
0 (Q1)

}
. (2.6)

2. ψhom : R2n
× Sn−1

→ [0,+∞) is the function given by

ψhom(a, b, ν) = lim
ε→0+

inf

{∫
Sv∩Qν

ψ

(
x

ε
, v+, v−, νv

)
dHn−1 :

v ∈ SBV (Qν) with ∇v = 0 a.e., tr(v) = tr(va,b,ν) on ∂Qν

}
, (2.7)

whereQν is any unit cube inRn centered at the origin and with one face orthogonal toν, and
va,b,ν(x) = aχ{x : 〈x,ν〉>0}(x)+ bχ{x : 〈x,ν〉<0}(x).

REMARK 2.4 In caseϕ(x, ·) is convex for allx ∈ Rn formula (2.6) can be further specialized (see
Theorem 14.7 of [7]) and reduces to a cell minimization formula

ϕhom(ξ) = min

{∫
Q1

ϕ(x,∇v + ξ)dx : v ∈ W
1,p
per (Q1)

}
. (2.8)

2.5 Functional capacity of degree 1

Let Y1(Rn) be the subspace ofLn/(n−1)(Rn) of functions with distributional derivative of function
type. For any setE ⊆ Rn consider the quantity

Γ1(E) = inf

{∫
Rn

|∇u| dx : u ∈ Y1(Rn), E ⊂ int({x ∈ Rn : u(x) > 1})

}
;

following Federer and Ziemer [29] we call it thefunctional capacity of degree 1of E. Actually,
different minimization problems characterize it, in particular it can be expressed in terms of the
perimeter of the sets containingE, as shown by the following proposition which summarizes the
results of Section 4 of [29] and Theorem 2.1 of [10].

PROPOSITION2.5 LetE ⊆ Rn and let

C1(E) = inf

{∫
Rn

|∇u| dx : u ∈ W1,1(Rn), u+ > 1Hn−1-a.e. onE

}
,

γ (E) = inf{‖Du‖(Rn) : u ∈ BV (Rn), u+ > 1Hn−1-a.e. onE},

δ(E) = inf{Per(D) : D isLn-measurable, Ln(D) < +∞, Hn−1(E \D+) = 0}. (2.9)

ThenΓ1(E) = C1(E) = γ (E) = δ(E).

The existence of extremals for the variational problems above fails for many setsE with
C1(E) < +∞ (e.g. if E is a line segment inR2). A sufficient condition ensuring existence of
minimizers for the formulation (2.9) was proposed in Section 4 of [29] (see also Theorems 3.3
and 3.4, Chapter IV of [26]). Here we recall the result and its proof for the readers’ convenience.

PROPOSITION2.6 For everyLn-measurable setE ⊂ Rn with C1(E) < +∞,

(a) C1(E+) 6 C1(E);
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(b) problem (2.9) forE+ always has a solution and

C1(E+) = min{Per(D) : D isLn-measurable, Ln(D) < +∞, Ln(E \D) = 0}. (2.10)

Moreover, ifHn−1(E \ E+) = 0 then C1(E+) = C1(E) and problem (2.9) forE has a solution.

Proof. Let (Dj ) be a minimizing sequence in problem (2.9) forE. Then by the isoperimetric
inequality (see Theorem 3.46 of [1]) supj (Ln(Dj ) + Per(Dj )) < +∞. The BV compactness
theorem (see Theorem 3.23 of [1]) in turn implies the existence of a subsequence (not relabeled
for convenience) and a setD with finite perimeter inRn such thatχDj → χD in L1(Rn). Thus
Ln(E \ D) = 0, and by taking into account (2.1) we haveE+ ⊆ D+. Hence,D is admissible in
problem (2.9) forE+, i.e.Hn−1(E+ \D+) = 0, and so (a) is established since

C1(E) = lim inf
j

Per(Dj ) > Per(D) > C1(E+).

Obviously the same argument applied to a minimizing sequence of C1(E+) provides a setD
admissible for such a problem which is then a minimizer. Finally, characterization (2.10) holds
true. 2

Sligthly abusing the terminology introduced by De Giorgi in [24], [26] we call the sets satisfying
Hn−1(E \ E+) = 0 thick. Indeed, De Giorgi’s original definition required the stronger condition
E ⊆ E+.

In general, one can determine the relaxed problem associated to C1(·) by usingDe Giorgi’s
measureσ introduced in Chapter IV of [26] to study non-parametric minimal surface problems
with obstacles. For any setE ⊆ Rn, σ is the regular Borel measure given by

σ(E) = sup
ε>0
(inf{Per(D)+ Ln(D)/ε : D isLn-measurable, Hn−1(E \D+) = 0}). (2.11)

We are now able to state the relaxation Theorem 7.1 of [10] in a form needed for our purposes
(see also Theorem 3.4, Chapter IV of [26]).

THEOREM 2.7 For anyLn-measurable setE ⊂ Rn,

C1(E) = min

{
‖Du‖(Rn)+

∫
Rn

[(χE − u+) ∨ 0] dσ : u ∈ BV (Rn)
}

= min{Per(D)+ σ(E \D+) : D isLn-measurable, Ln(D) < +∞}. (2.12)

Finally, we recall that the set function C1(·) is positively(n − 1)-homogeneous, that is, for any
setE ⊆ Rn andr > 0 we have C1(Er) = rn−1C1(E) (see [36]); moreover (see [29]),

C1(E) = 0 ⇔ Hn−1(E) = 0.

REMARK 2.8 For any bounded setE it is easy to prove that C1(E) < +∞. Moreover, ifE is
contained in the interior of a bounded convex setC, one can restrict the class of competing sets in
the capacitary problem forE to those contained inC.

Indeed, by using the formulation (2.9), given a test setD, considerD′
= D ∩ C. ThenD′

has finite perimeter and, sinceE ⊂ int(C) andC+ = C, we haveHn−1(E \ D′
+) = Hn−1(E \

(D ∩ C)+) = Hn−1(E \ D+) = 0. If ΠC denotes the projection onto the convex setC, then
Hn−1(ΠC(D ∩ (Rn \ C))) 6 Per(D ∩ (Rn \ C)). Hence,

Per(D′) 6 Hn−1(ΠC(D \ int(C)))+Hn−1(∂∗D ∩ int(C))

6 Per(D \ int(C))+Hn−1(∂∗D ∩ int(C)) 6 Per(D).
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3. Obstacle constraint imposed in theLn sense

Given anLn-measurable setE ⊆ Q1, for anyε > 0 let rε ∈ (0, ε) andEε = Ω ∩
⋃
i∈Zn Erε (iε).

Consider the functionalFε : L1(Ω) → [0,+∞] defined as

Fε(u) =

{
MSp(u), u ∈ GSBV (Ω), u > 0Ln-a.e. onEε,
+∞, otherwise inL1(Ω).

(3.1)

Moreover, denote byFε(·, A) its localized version, obtained by replacing in (3.1) above the domain
of integrationΩ with any open subsetA ∈ A(Ω).

The same convention will also be applied to the localized version of the Mumford–Shah energy
(2.3), dropping the set dependence in caseA ≡ Ω.

THEOREM 3.1 LetE be anLn-measurable set and assume thatrε/ε
n/(n−1)

→ β ∈ [0,+∞) as
ε → 0+. Then(Fε) Γ -converges toF : L1(Ω) → [0,+∞] defined by

F(u) =

{
MSp(u)+ C1(E+)β

n−1Ln({x ∈ Ω : u(x) < 0}), u ∈ GSBV (Ω),

+∞, otherwise inL1(Ω),
(3.2)

with respect to theL1 convergence.

REMARK 3.2 It is worth noting that definition (3.1) ofFε is not affected if we replaceE with
any other setG in its Ln-equivalence class. For instance, it would not be restrictive to assume the
perforation setE to be thick in the statement of Theorem 3.1, that is, to changeE toE+.

The reason why the representativeE+ is selected in the limit process is the minimality property

C1(E+) = min{C1(G) : G isLn-measurable, Ln(E 4G) = 0},

as follows from Proposition 2.6(a). A further motivation will be discussed in Section 4 (see Theorem
4.1 and Remark 4.2 for details).

Before giving a proof of Theorem 3.1 we state the results mentioned in the introduction
concerning the bilateral obstacle case and when a boundary datum on∂Ω is imposed. Both their
proofs will be given after that of Theorem 3.1, since they share many ideas and techniques developed
for that theorem as well as use part of its results.

PROPOSITION3.3 Let F ′
ε be defined asFε with the unilateral positivity condition onEε in

definition (3.1) replaced withu = 0 Ln-a.e. onEε. Then(F ′
ε) Γ -converges toF ′ : L1(Ω) →

[0,+∞] defined by

F ′(u) =

{
MSp(u)+ C1(E+)β

n−1Ln({x ∈ Ω : u(x) 6= 0}), u ∈ GSBV (Ω),

+∞, otherwise inL1(Ω),
(3.3)

with respect to theL1 convergence.

We now consider the case in which a Dirichlet boundary datum is imposed on∂Ω. For the sake
of simplicity we assume in what follows the additional hypothesis thatΩ hasC2 boundary, although
this condition might be weakened (see for instance Section 8 of [8]).
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We introduce for anyε > 0 the “boundary” functionalsDε : L1(Ω) → [0,+∞] defined as

Dε(u) =

{
F ′
ε(u), u ∈ GSBV (Ω), tr(u) = 0 on∂Ω,

+∞, otherwise inL1(Ω),

and state the following convergence result.

PROPOSITION3.4 (Dε) Γ -converges with respect to theL1 convergence toD : L1(Ω) →

[0,+∞] given by

D(u) =

{
F ′(u)+Hn−1({x ∈ ∂Ω : tr(u)(x) 6= 0}), u ∈ GSBV (Ω),

+∞, otherwise inL1(Ω).

Notice that if we consider lower order terms converging in a suitable sense (see Proposition 6.20
of [22]), for instance fidelity terms or linear perburations, Proposition 3.4 and Theorem 2.1 imply
the convergence of problems (1.1) mentioned in the introduction to

min{D(u)+ lower order terms :u ∈ GSBV (Ω)}.

Theorem 3.1 will be a consequence of Propositions 3.7 and 3.9 below in which we show
separately the liminf and limsup inequalities, respectively. Proposition 3.7 will easily follow from
Lemma 3.5 below in which we treat the case of sequences bounded inL∞.

LEMMA 3.5 For every sequenceuε → u in L1(Ω) such that supε ‖uε‖L∞(Ω) < +∞,

lim inf
ε

Fε(uε) > F(u).

Proof. We may supposeLn({x ∈ Ω : u(x) < 0}) > 0 andLn(E) > 0, since otherwise the
statement is trivial. Moreover, it is not restrictive to assume lim infε Fε(uε) = limε Fε(uε) < +∞.
Hence, Ambrosio’sSBV closure and compactness Theorem 2.2 implies thatu ∈ SBV (Ω) and also
lim inf ε Fε(uε) = lim inf εMSp(uε) > MSp(u).

Note that theL1 convergence assumption implies that forL1-a.e.η < 0 and for anyA ∈ A(Ω),

lim
ε
Ln({x ∈ A : uε(x) < η} 4 {x ∈ A : u(x) < η}) = 0. (3.4)

For everyη < 0 we are going to prove that

lim inf
ε

Fε(uε) > MSp(u)+ C1(E+)β
n−1Ln({x ∈ Ω : u(x) < η}). (3.5)

Once (3.5) is established the assertion follows by lettingη → 0−.
Since by Ambrosio’s lower semicontinuity Theorem 2.2, for anyA ∈ A(Ω) we have

lim inf
ε

Fε(uε, A) > Hn−1(Su ∩ A), (3.6)

in order to prove (3.5), it suffices to show that for anyA ∈ A(Ω),

lim inf
ε

Fε(uε, A) >
∫
A

|∇u|p dx + C1(E+)β
n−1Ln({x ∈ A : u(x) < η}). (3.7)
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Indeed, taking (3.7) for granted, inequality (3.5) follows from standard measure-theoretic arguments
by taking into account that the two quantities on the right hand side of (3.6), (3.7) are mutually
orthogonal measures and the left hand side term is a superadditive set function defined onA(Ω)
(for details see Proposition 1.16 of [5]).

Fix A ∈ A(Ω) and chooseη for which (3.4) holds for the open setA. Moreover, defineV =

{x ∈ A : u(x) < η}, and assume thatLn({x ∈ A : u(x) < η}) > 0, since otherwise (3.7) is trivial.
Fork ∈ N fixed we consider the following splitting of the energies:1

Fε(uε, A) = MSp

(
uε, A \

⋃
i∈Zn

B3ε/(4k)(iε)
)

+MSp

(
uε, A ∩

⋃
i∈Zn

B3ε/(4k)(iε)
)
. (3.8)

We will now estimate separately the two terms on the right hand side of (3.8) showing that the
first contributes to the gradient energy (Step 1) while the latter provides the capacitary term of (3.7)
(Step 2).

Step 1: Gradient estimate.We prove that

lim
k

(
lim inf

ε
MSp

(
uε, A \

⋃
i∈Zn

B3ε/(4k)(iε)
))

>
∫
A

|∇u|p dx. (3.9)

In order to match the assumptions of Theorem 2.3, fix a parameterγ > 0 and consider the auxiliary
(localized) functionalsGγ,kε : SBV (A)×A(A) → [0,+∞) defined as

Gγ,kε (v, U) =

∫
U

ϕγ,k
(
x

ε
,∇v

)
dx +

∫
Sv∩U

ψγ,k
(
x

ε
, v+, v−, νv

)
dHn−1,

whereϕγ,k(x, ξ) = aγ,k(x)|ξ |p for (x, ξ) ∈ R2n, ψγ,k(x, a, b, ν) = aγ,k(x) + γ |b − a| for
(x, a, b, ν) ∈ R3n

× Sn−1, andaγ,k is the (Borel) 1-periodic function defined by

aγ,k(x) =

{
1, x ∈ Q1 \ B3/(4k),

γ, x ∈ B3/(4k).

Since supεMSp(uε) < +∞, for a positive constantc we get

lim sup
ε

∫
Suε∩A

|u+
ε − u−

ε | dHn−1 6 2 sup
ε
(‖uε‖L∞(Ω)Hn−1(Suε )) 6 c,

and
lim inf

ε
MSp

(
uε, A \

⋃
i∈Zn

B3ε/(4k)(iε)
)

> lim inf
ε

Gγ,kε (uε, A)− cγ. (3.10)

For everyU ∈ A(A) the family (Gγ,kε (·, U)) satisfies the assumptions of Theorem 2.3, and thus it
Γ -converges to the functionalGγ,khom(·, U) defined in (2.5) of Theorem 2.3. Hence, to prove Step 1 it

suffices to estimate the volume densityϕγ,khom of Gγ,khom since (3.10) can be rewritten as

lim inf
ε

MSp

(
uε, A \

⋃
i∈Zn

B3ε/(4k)(iε)
)

> Gγ,khom(u,A)− cγ >
∫
A

ϕ
γ,k

hom(∇u)dx − cγ. (3.11)

1 The choice of the coefficient 3/4 in the radius of the balls in (3.8) is arbitrary and could be replaced with anyt ∈ (0,1).
Indeed, sincerε = o(ε) the setErε is contained inBtε for anyt ∈ (0,1).
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We claim that, with fixedγ > 0, for everyξ ∈ Rn we have

lim
k
ϕ
γ,k

hom(ξ) = sup
k

ϕ
γ,k

hom(ξ) = |ξ |p. (3.12)

Once (3.12) is established, (3.9) follows from (3.11) by letting firstk → +∞ and using the
monotone convergence theorem, and thenγ → 0+.

In order to prove (3.12) we take advantage of (2.4). Indeed, with fixedξ ∈ Rn, we prove that
theΓ -limit (ask → +∞) in theL1 strong topology of the sequenceAγ,k : W1,p

per (Q1) → [0,+∞]
with

Aγ,k(v) =

∫
Q1

aγ,k(x)|∇v + ξ |p dx

is given by

A(v) =

∫
Q1

|∇v + ξ |p dx.

Notice that by definition min
W

1,p
per (Q1)

Aγ,k = ϕ
γ,k

hom(ξ) and by Jensen’s inequality min
W

1,p
per (Q1)

A =

|ξ |p. Moreover, for any fixedγ > 0 the sequence(Aγ,k) is equi-coercive inL1(Q1), so that we
may apply Theorem 2.1 to deduce (3.12).

Finally, we establish the claimedΓ -limit concerning(Aγ,k).
The limsup inequality is trivial, since the recovery sequence for any givenv ∈ W

1,p
per (Q1)

is provided by the function itself thanks to Lebesgue’s dominated convergence theorem. Indeed,
aγ,k → 1 inL1(Q1) and 06 aγ,k(x) 6 1 for everyx ∈ Q1.

To prove the liminf inequality it suffices to note that for every(vk) ⊂ W
1,p
per (Q1) such that

vk → v in L1(Q1) and lim infk Aγ,k(vk) < +∞, actually(vk) converges tov weakly inW1,p(Q1).
Hence, for everyδ > 0 we have

lim inf
k

Aγ,k(vk) > lim inf
k

∫
Q1\Bδ

aγ,k(x)|∇vk + ξ |p dx

= lim inf
k

∫
Q1\Bδ

|∇vk + ξ |p dx >
∫
Q1\Bδ

|∇v + ξ |p dx,

and the conclusion follows by lettingδ → 0+.

Step 2: Capacitary estimate.We prove that

lim inf
ε

MSp

(
uε, A ∩

⋃
i∈Zn

B3ε/(4k)(iε)
)

> C1(E+)β
n−1

(
Ln(V )−

1

kn+1

)
. (3.13)

Choose an open setW ⊆ A such thatW ⊇ V andLn(W \ V ) 6 1/(2k2(n+1)). By (3.4) the set
{x ∈ A : uε(x) > η} ∩ V has vanishingLn-measure so forε sufficiently small we have

Ln({x ∈ A : uε(x) > η} ∩ V ) 6
1

2k2(n+1)
.

SetUε = {x ∈ W : uε(x) > η}. Then forε small enough,

Ln(Uε) 6 Ln(Uε ∩ V )+ Ln(Uε ∩ (W \ V )) 6
1

k2(n+1)
.
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Let
Wε = {i ∈ Zn : Qε(iε) ⊂⊂ W },

and consider
Ikε = {i ∈ Wε : Ln(Uε ∩Qε(iε)) 6 εn/kn+1

}.

The set of indicesIkε identifies those cells for which the contribution to the capacitary term can be
estimated up to an error infinitesimal ask → +∞.

Let us first show thatIkε nearly exhaustsWε. Indeed, we have

1

k2(n+1)
> Ln(Uε) >

∑
i∈Wε

Ln(Uε ∩Qε(iε)) > #(Wε \ Ikε )
εn

kn+1
,

from which we deduce #(Wε \ Ikε ) 6 1/(kn+1εn). Moreover, if we setρε = 3ε/(4k), the very
definition ofIkε also yields

Ln(Uε ∩ Bρε (iε)) 6
2n

wnk
Ln(Bρε (iε)), (3.14)

and a simple translation argument shows that for any such indexi ∈ Ikε we have

MSp(uε, Bρε (iε)) > mε(η) = inf

{
MSp(v, Bρε ) : v ∈ SBV (Bρε ),

v > 0 a.e. onErε , Ln({x ∈ Bρε : v(x) > η}) 6
2n

ωnk
Ln(Bρε )

}
.

It is clear that if we restrict the class of admissible functionsv in the definition ofmε(η) above
to simple functions assuming values in{0, η}, we have, by (2.10),

mε(η) 6 C1((E+)rε ) = C1(E+)r
n−1
ε .

Next we want to estimatemε(η) from below, more precisely we prove

lim
ε
r1−n
ε mε(η) = C1(E+). (3.15)

To do that we need the following result.

LEMMA 3.6 LetH ⊂ Rn be a boundedLn-measurable thick set, andvε ∈ SBV (BRε ), Rε →

+∞, be such that

(i) vε > 0 a.e. onH , supε ‖vε‖L∞(BRε )
< +∞,

(ii) lim ε ‖∇vε‖Lp(BRε ) = 0, lim supεHn−1(Svε ) 6 C1(H),
(iii) supε ‖Dvε‖(BRε ) < +∞,
(iv) there existsζ < 0 such thatLn({x ∈ BRε : vε(x) > ζ }) < 1

2L
n(BRε ).

Then limεHn−1(Svε ) = C1(H). Moreover, for every subsequence(vεm) there exist(vεmj ) and

v ∈ SBVloc(Rn) such thatvεmj → v in L1
loc(R

n), v > 0 a.e. onH , v =
∑
s∈I aiχEi , whereI is a

finite set,Ei has finite perimeter,ai ∈ R, andHn−1(Sv) = C1(H).
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Proof of Lemma 3.6. First note that by assumption (ii) it is sufficient to show that

lim inf
ε

Hn−1(Svε ) > C1(H).

Denote by(vεm) a sequence for which lim infεHn−1(Svε ) = limmHn−1(Svεm ). Ambrosio’ SBV
compactness and lower semicontinuity Theorem 2.2 applied on every ballBR, R > 0, and an
obvious diagonalization argument ensure the existence of a subsequence(vεmj ) ⊆ (vεm), and of

v ∈ SBVloc ∩ L∞(Rn) such thatvεmj → v in L1
loc(R

n), ∇v = 0 a.e. inRn and

Hn−1(Sv) 6 lim
j
Hn−1(Svεmj

) 6 C1(H).

For the sake of simplicity in the rest of the proof we setvj = vεmj andRj = Rεmj .
The BV coarea formula (see Theorem 3.40 of [1]) and the mean value theorem providetj ∈

(ζ, ζ/2) such that

‖Dvj‖(BRj ) >
∫ ζ/2

ζ

Per({x ∈ BRj : vj (x) > t}, BRj )dt

>
|ζ |

2
Per({x ∈ BRj : vj (x) > tj }, BRj ) >

|ζ |

2
cLn({x ∈ BRj : vj (x) > tj })

1−1/n

>
|ζ |

2
cLn({x ∈ BRj : vj (x) > ζ/2})1−1/n,

where in the third inequality we have used assumption (iv) and the relative isoperimetric inequality
in balls (see Remark 3.50 of [1]). Hence, (iii) gives supj Ln({x ∈ BRj : vj (x) > ζ/2}) < +∞, so
that theL1

loc convergence impliesLn({x ∈ Rn : v(x) > ζ/2}) < +∞ as well asv > 0 a.e. onH .
As v ∈ SBVloc ∩ L∞(Rn) with ∇v = 0 a.e. onRn andHn−1(Sv) < +∞, we have the

decompositionv =
∑
i>0 aiχΣi , with Σi a set with finite perimeter for everyi, and the equality

2Hn−1(Sv) =
∑
i>0 Per(Σi) holds true (see Theorem 4.23 of [1]).

Since{x ∈ Rn : v(x) > 0} =
⋃s
r=1Σir for someir , we have Per(

⋃s
r=1Σir ) 6 Hn−1(Sv) 6

C1(H). Moreover, sinceH is a thick obstacle,
⋃s
r=1Σir has finite perimeter and

⋃s
r=1Σir ⊇ H ,

we haveHn−1(H \ (
⋃s
r=1Σir )+) = 0. Thus,χ⋃s

r=1Σir
is a test function for the capacitary problem

onH , which implies Per(
⋃s
r=1Σir ) = C1(H).

Finally, if Σ =
⋃
i 6=ir

Σi it is easy to prove that there exists an indext > 1, with at 6= air for
everyr, such thatv =

∑s
r=1 airχΣir + atχΣ . 2

Let us go back to the proof of inequality (3.15). Givenwε such thatMSp(wε, Bρε ) 6 mε(η) + rnε ,
let us check that the familyvε(x) = wε(rεx), x ∈ BRε , whereRε = ρε/rε, satisfies the assumptions
of Lemma 3.6 above withH = E+. Indeed, (i) is trivially satisfied, while (ii) holds true since by
scaling

MSp(wε, Bρε )

rn−1
ε

= r1−p
ε

∫
BRε

|∇vε|
p dx +Hn−1(Svε ) 6 C1(E+)+ rε. (3.16)

Moreover, (3.16) and Ḧolder’s inequality yield∫
BRε

|∇vε| dx 6 Rn−n/pε ‖∇vε‖Lp(BRε ) 6

(
3ε

4kr1−1/n
ε

)n−n/p
(C1(E+)+ rε)

1/p, (3.17)
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so that supε ‖Dvε‖(BRε ) < +∞, and (iii) is satisfied too. Finally, (iv) easily follows from (3.14)
for k > 2n+2, hence Lemma 3.6 implies (3.15).

To conclude fixW ′
⊂⊂ W and notice that forε small,W ′

⊂
⋃
i∈Wε

Qε(iε). Then

lim inf
ε

∑
i∈Ikε

MSp(uε, Bρε (iε)) > lim inf
ε

mε(η)#Ikε > βn−1 lim
ε

mε(η)

rn−1
ε

(
εn#Wε −

1

kn+1

)

> βn−1C1(E+)

(
Ln(W ′)−

1

kn+1

)
. (3.18)

To get (3.13), it remains to take the supremum over the setsW ′
⊂⊂ W and to recall thatW ⊇ V .

Step 3: Estimate (3.7).We finally obtain (3.7) by combining Step 1 and Step 2, and by letting
k → +∞ in (3.8), i.e.

lim inf
ε

Fε(uε, A) > lim inf
k

(
lim inf

ε
MSp

(
uε, A \

⋃
i∈Zn

B3ε/(4k)(iε)
))

+ lim inf
k

(
lim inf

ε
MSp

(
uε, A ∩

⋃
i∈Zn

B3ε/(4k)(iε)
))

>
∫
A

|∇u|p dx + C1(E+)β
n−1Ln(V ). 2

The lower bound inequality in the general case is an easy consequence of a standard truncation
argument.

PROPOSITION3.7 Under the hypotheses of Theorem 3.1, for everyu ∈ L1(Ω),

Γ - lim inf
ε

Fε(u) > F(u),

whereF is defined in (3.2).

Proof. The assertion follows directly from Lemma 3.5 once one notices that the energiesFε,F are
decreasing by truncation and the Mumford–Shah functional is continuous along such sequences.
More precisely, ifv ∈ L1(Ω) andN > 0, denote(v ∧N) ∨ (−N) by vN ; thenv satisfies the same
constraint asvN does,MSp(vN ) 6 MSp(v), andMSp(vN ) → MSp(v) asN → +∞. 2

REMARK 3.8 As a consequence of Step 2 in Lemma 3.5 above, in caseεn/(n−1)
= o(rε), that is,

β = +∞, theΓ -limit of (Fε) equalsMSp(u) if u ∈ GSBV (Ω), u > 0 Ln-a.e. onΩ, and+∞

otherwise inL1(Ω). This follows directly from (3.18).

Let us now conclude the proof of Theorem 3.1 and prove the upper bound inequality. We
introduce the notation

Uρ(A) = {x ∈ Rn : dist(x,A) < ρ}

for ρ > 0 andA ⊆ Rn.

PROPOSITION3.9 Under the hypotheses of Theorem 3.1, for everyu ∈ L1(Ω),

Γ - lim sup
ε

Fε(u) 6 F(u), (3.19)

whereF is defined in (3.2).
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Proof. Let u ∈ GSBV (Ω) be such thatF(u) < +∞; otherwise the inequality is trivial. We first
prove theΓ -lim sup inequality under the following additional assumptions:

(a) u ∈ SBV (Ω), Hn−1(Su \ Su) = 0, u ∈ W k,∞(Ω \ Su) for any k ∈ N, andSu ⊆
⋃N
j=1Σj

whereΣj are(n− 1)-simplexes;
(b) the set{x ∈ Ω : u(x) < 0} has finite perimeter inΩ, and{x ∈ Ω \ Su : u(x) = 0} is an

(n− 1)-dimensional smooth manifold inΩ \ Su.

By (2.10) and Remark 2.8 we choose a setD ⊆ Q1 of finite perimeter with C1(E+) = Per(D) and
Hn−1(E+ \D+) = 0, which of course impliesLn(E \D) = 0.

DefineJ = {i ∈ Zn : Ln(Drε (iε) ∩ {x ∈ Ω : u(x) < 0}) > 0}, Dε =
⋃
i∈J Drε (iε), and

defineuε ∈ L1(Ω) asuε = uχΩ\Dε . Thenuε ∈ SBV (Ω) and by constructionuε > 0 Ln-a.e. on
Dε, actuallyuε = 0 Ln-a.e. onDε. SinceLn(Dε) 6 #(J )rnεLn(D) 6 crε, we haveuε → u in
L1(Ω), and a direct computation shows

Fε(uε) 6
∫
Ω\Dε

|∇u|p dx +Hn−1(Su \ Dε)+ Per(Dε)

6
∫
Ω

|∇u|p dx +Hn−1(Su)+ #(J )rn−1
ε Per(D)

6 MSp(u)+ C1(E+)
rn−1
ε

εn
Ln(U√

nε({x ∈ Ω : u(x) < 0})). (3.20)

In the last inequality we used the fact that #(J )εn = Ln(
⋃
i∈J Qε(iε)) and

⋃
i∈J Qε(iε) ⊆

U√
nε({x ∈ Ω : u(x) < 0}). To estimate the Lebesgue measure in the last term of (3.20) we use the

equality ⋂
ε>0

U√
nε({x ∈ Ω : u(x) < 0}) = {x ∈ Ω : u(x) < 0},

so that
lim
ε→0+

Ln(U√
nε({x ∈ Ω : u(x) < 0})) = Ln({x ∈ Ω : u(x) < 0}).

By passing to the limsup asε → 0+ in (3.20) we get

lim sup
ε→0+

Fε(uε) 6 MSp(u)+ C1(E+)β
n−1Ln({x ∈ Ω : u(x) < 0}).

To obtain (3.19) it suffices to notice that

Ln({x ∈ Ω : u(x) < 0} \ {x ∈ Ω : u(x) < 0}) = 0

thanks to (a), (b) and the regularity of∂Ω.
We now remove assumption (b). In order to do that it suffices to note that by applying Sard’s

lemma tou onΩ \ Su and by theBV coarea formula (see Theorem 3.40 of [1]), we can find a
sequenceηk → 0− such that for anyk ∈ N the functionsu − ηk satisfy (b). Hence, the previous
step implies

Γ - lim sup
ε

Fε(u− ηk) 6 F(u− ηk) 6 F(u),

and the upper bound inequality foru follows by lettingηk → 0− and by taking into account the
lower semicontinuity ofΓ - lim supε Fε.
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For a general functionu ∈ GSBV (Ω) we use a density result with respect to Mumford–Shah
type energies and inL1(Ω) for functions satisfying (a), proved in [17] (see also [18] for a more
general statement).

Now, consider(uj ) satisfying (a) and such thatuj → u in L1(Ω) andMSp(uj ) → MSp(u),
and letηk → 0− be such thatLn({x ∈ Ω : uj (x) < ηk}) → Ln({x ∈ Ω : u(x) < ηk}) asj → +∞

for everyk ∈ N. Then, by using for everyj ∈ N the identityΓ - lim supε Fε(uj −ηk) = F(uj −ηk),
and the lower semicontinuity ofΓ - lim supε Fε, we infer that

Γ - lim sup
ε

Fε(u− ηk) 6 lim
j
F(uj − ηk)

= lim
j
(MSp(uj )+ C1(E+)β

n−1Ln({x ∈ Ω : uj (x) < ηk}))

= MSp(u)+ C1(E+)β
n−1Ln({x ∈ Ω : u(x) < ηk}) 6 F(u).

Passing to the liminf ask → +∞ and taking again into account the lower semicontinuity of
Γ - lim supε Fε we conclude the proof. 2

REMARK 3.10 It is clear from the proof of Proposition 3.9 that in the regimerε = o(εn/(n−1)),
that is,β = 0, theΓ -limit of (Fε) is trivial and identically equal toMSp.

We now provide the proof of the bilateral obstacle case contained in Proposition 3.3.

Proof of Proposition 3.3. Lower bound:First notice that for everyA ∈ A(Ω), ε > 0 andu ∈

L1(Ω) we have
F ′
ε(u,A) > Fε(u,A), F ′

ε(u,A) > Fε(−u,A). (3.21)

Hence, given(uε) converging tou in L1(Ω), by applying Proposition 3.7 to the right hand sides in
(3.21), we get

lim inf
ε

F ′
ε(uε, A) > F(u,A) = MSp(u,A)+ C1(E+)β

n−1Ln({x ∈ A : u(x) < 0}) (3.22)

and

lim inf
ε

F ′
ε(uε, A) > F(−u,A) = MSp(u,A)+ C1(E+)β

n−1Ln({x ∈ A : u(x) > 0}). (3.23)

In particular, this entailsu ∈ GSBV (Ω) provided lim infε F ′(uε) < +∞. Moreover, the usual
measure-theoretic arguments imply the lower bound inequality. Indeed, the second terms in the
sums on the right hand sides of (3.22), (3.23) are mutually orthogonal measures and the left hand
side term is a superadditive set function defined onA(Ω) (for details see Proposition 1.16 of [5]).

Upper bound: We construct a recovery sequence for anyu ∈ GSBV (Ω) such thatF ′(u) < +∞.
Moreover, we may assumeLn({x ∈ Ω : u(x) 6= 0}) > 0, the result being trivial otherwise.

We keep the notation of Proposition 3.9, and first prove the limsup inequality under the
additional assumptions (a) and (b) with the set{x ∈ Ω : u(x) 6= 0} playing the role of
{x ∈ Ω : u(x) < 0} there.

Supposing this, we may perform the very same construction of Proposition 3.9 substituting the
0 sub-level set ofu with {x ∈ Ω : u(x) 6= 0}. Indeed, the recovery sequence(uε) ⊂ SBV (Ω) built
up there is such thatuε = 0Ln-a.e. onEε. Hence, using the same arguments one achieves

Fε(uε) 6 MSp(u)+ C1(E+)β
n−1Ln({x ∈ Ω : u(x) 6= 0})+ o(1),

and passing to the limsup asε → 0+ we get the desired inequality.
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We now remove the regularity assumption (b) on the set{x ∈ Ω : u(x) 6= 0}. To do this, argue
as in Proposition 3.9 and consider a positive sequence(ηk) such thatηk → 0+ ask → +∞ and
both the sets{x ∈ Ω : u(x) > ηk}, {x ∈ Ω : u(x) < −ηk} satisfy (b). Letuk ∈ SBV (Ω) be
defined asuk = (u ∨ ηk) + (u ∧ (−ηk)). Notice that|u(x)| 6 ηk ⇔ uk(x) = 0, u(x) > ηk ⇒

uk(x) = u(x)− ηk, u(x) 6 −ηk ⇒ uk(x) = u(x)+ ηk, andHn−1(Suk \ Su) = 0. Clearlyuk → u

in L1(Ω) and

Γ - lim sup
ε

F ′
ε(u

k) 6 F ′(uk) = MSp(u
k)+ C1(E+)β

n−1Ln({x ∈ Ω : uk(x) 6= 0})

6 MSp(u)+ C1(E+)β
n−1Ln({x ∈ Ω : |u(x)| > ηk}).

Passing to the liminf ask → +∞ and taking into account the lower semicontinuity of
Γ - lim supε F ′

ε, we get the desired inequality.
To finish the proof for anyu ∈ GSBV (Ω) consider a sequence(uj ) satisfying (a) and such that

uj → u in L1(Ω) andMSp(uj ) → MSp(u) (see Theorem 3.9 of [17]), and letηk → 0+ be such
thatLn({x ∈ Ω : |uj (x)| > ηk}) → Ln({x ∈ Ω : |u(x)| > ηk}) asj → +∞ for everyk ∈ N.
Since(uj )k → uk in L1(Ω), arguing as in the last step of Proposition 3.9 we infer that

Γ - lim sup
ε

F ′
ε(u

k) 6 lim inf
j

F ′((uj )
k)

6 lim
j
(MSp(uj )+ C1(E+)β

n−1Ln({x ∈ Ω : |uj (x)| > ηk}))

= MSp(u)+ C1(E+)β
n−1Ln({x ∈ Ω : |u(x)| > ηk}) 6 F ′(u).

Passing to the liminf ask → +∞ and taking again into account the lower semicontinuity of
Γ - lim supε F ′

ε completes the proof. 2

Finally, we handle the case in which Dirichlet boundary conditions are imposed.

Proof of Proposition 3.4. Lower bound:The lower bound inequality can be easily derived from
Proposition 3.3. Givenv ∈ GSBV (Ω) denote byṽ the function extendingv by 0 onRn \Ω. Then
ṽ ∈ GSBV (Rn) and for any open setΩ ′

⊃⊃ Ω with Lipschitz boundary, we have

MSp(ṽ,Ω
′) = MSp(v,Ω)+Hn−1({x ∈ ∂Ω : tr(v)(x) 6= 0})

(see Theorems 3.84 and 3.87 of [1]).
Given(uε) ⊂ GSBV (Ω) with tr(uε) = 0 on∂Ω and converging tou in L1(Ω), (ũε) converges

to ũ in L1(Ω ′), and applying Proposition 3.3 withΩ replaced byΩ ′, we have

lim inf
ε

Dε(uε) = lim inf
ε

F ′
ε(ũε,Ω

′) > F ′(ũ,Ω ′)

= F ′(u,Ω)+Hn−1({x ∈ ∂Ω : tr(u)(x) 6= 0}) = D(u).

Upper bound: It remains to prove the upper bound inequality. First note that a recovery sequence
for u ∈ GSBV (Ω) with tr(u) = 0 on ∂Ω is the one constructed when no boundary condition is
imposed in Proposition 3.3 above.

Given a generic functionu ∈ GSBV (Ω), it is possible to find a sequence(uj ) ⊂ GSBV (Ω)

with tr(uj ) = 0 on∂Ω and converging tou in L1(Ω) such that limj D(uj ) = D(u). Then the result
follows by the lower semicontinuity ofΓ -lim supDε.
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This sequence can be obtained by modifyingu in a suitable neighborhood of the boundary in
which the distance function is regular. Fix a sequence of positive numbersrj tending to 0 and define
d(x) = dist(x, ∂Ω). Set

uj (x) =


u(x) if 2rj < d(x),

u(x + (d(x)− 2rj )∇d(x)) if rj < d(x) < 2rj ,

0 if 0 < d(x) < rj .

It can be easily checked that

MSp(uj ,Ω) 6 MSp(u,Ω)+ cMSp(u, {x ∈ Ω : rj < d(x) < 2rj })

+Hn−1({x ∈ Ω : d(x) = rj , tr(u)(x − rj∇d(x)) 6= 0})

for a positive constantc not depending onj . Definingϕj : ∂Ω → Ω asϕj (y) = y+ rj∇d(y) (with
a slight abuse of notation∇d(y) denotes the inner normal to∂Ω aty), we have

{x ∈ Ω : d(x) = rj , tr(u)(x − rj∇d(x)) 6= 0} = ϕj ({y ∈ ∂Ω : tr(u)(y) 6= 0}).

The conclusion then follows from the fact thatHn−1(ϕj (H)) 6 (Lip ϕj )n−1Hn−1(H) for any setH ,
and Lipϕj → 1 asj → +∞. 2

4. The case of thin obstacles

In this section we show how to deal with a general reference perforation set, includingthin obstacles,
i.e. sets with Lebesgue measure zero. To consider (non-trivial) thin obstacle problems it is clearly
necessary to express the constraint in a different form. To do that it suffices to recall that ifu ∈

GSBV (Ω) andMSp(u) < +∞ then the valuesu+(x), u−(x) are finite and specified forHn−1-a.e.
x ∈ Ω (see Theorem 4.40 of [1]).

Given anHn−1-measurable setT ⊆ Q1, for any ε > 0 let rε ∈ (0, ε) and letTε = Ω ∩⋃
i∈Zn Trε (iε). Consider the functionalFε : L1(Ω) → [0,+∞] defined as

Fε(u) =

{
MSp(u), u ∈ GSBV (Ω), u+ > 0Hn−1-a.e. onTε,
+∞, otherwise inL1(Ω).

(4.1)

The asymptotic analysis of(Fε) takes advantage of the ideas and techniques developed in Section 3.
The main difference is in the proof of Lemma 4.4, the counterpart of Lemma 3.6 in this framework,
for which substantial changes are required. This is not an accidental or merely technical fact: we
want to point out that Lemma 4.4 relies on the deep relaxation results contained in Chapter IV
of [26] and in [10] (see Theorem 2.7).

THEOREM 4.1 LetT be anHn−1-measurable set, and assume thatrε/ε
n/(n−1)

→ β ∈ [0,+∞)

asε → 0+. Then(Fε) Γ -converges toF : L1(Ω) → [0,+∞] defined by

F(u) =

{
MSp(u)+ C1(T )β

n−1Ln({x ∈ Ω : u(x) < 0}), u ∈ GSBV (Ω),

+∞, otherwise inL1(Ω),
(4.2)

with respect to theL1 convergence.
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REMARK 4.2 Let us point out how Theorem 3.1 can be recovered from Theorem 4.1 above. Notice
that given a setE the following equivalence holds:

u > 0Ln-a.e. onE ⇔ u+ > 0Hn−1-a.e. onE+, (4.3)

so that one can rephrase the unilateral obstacle condition in the sense ofLn on E with the more
preciseHn−1 meaning exactly onE+. Roughly speaking, the equivalence in (4.3) means that the
constraint foru intended in theLn sense is active, for a suitable representative, only on theLn
measure-theoretic closure ofE, and thus it is neglected on lower dimensional parts of the set. By
taking this into account, the functionals in the statement of Theorem 3.1 can be rewritten as

Fε(u) =

{
MSp(u), u ∈ GSBV (Ω), u+ > 0Hn−1-a.e. on(E+)ε,

+∞, otherwise inL1(Ω).

Theorem 3.1 then follows by applying Theorem 4.1 withT = E+.

REMARK 4.3 It is worth noting that a priori the functionalFε in (4.1) may not beL1 lower
semicontinuous. More generally, given anHn−1-measurable setH ⊆ Ω, one can study the lower
semicontinuity properties of the functionalG : L1(Ω) → [0,+∞] defined as

G(u) =

{
MSp(u), u ∈ GSBV (Ω), u+ > 0Hn−1-a.e. onH,

+∞, otherwise inL1(Ω).

In a forthcoming paper (see [30]) we will prove that the lower semicontinuous envelope ofG in the
L1 topology is given by

sc−(G)(u) =


MSp(u)+

1
2σ({x ∈ H ∩ Su : u+(x) < 0})

+ σ({x ∈ H \ Su : u+(x) < 0}), u ∈ GSBV (Ω),

+∞, otherwise inL1(Ω),

whereσ is the measure defined in (2.11). Thus, by taking into account Theorem 4.1, well known
results (see Proposition 6.11 of [22]) yield theΓ -convergence to the functionalF of (4.2) of the
energies

sc−(Fε)(u) =


MSp(u)+

1
2σ({x ∈ Tε ∩ Su : u+(x) < 0})

+ σ({x ∈ Tε \ Su : u+(x) < 0}), u ∈ GSBV (Ω),

+∞, otherwise inL1(Ω).

As a further development of this research we are investigating the compactness and integral
representation properties of Mumford–Shah type energies with general obstacle constraints, as those
established by Dal Maso in the Sobolev setting ([20], see also [10], [11]).

We now turn to the proof of Theorem 4.1. As already stated, we will point out only the changes
needed in the proof of Theorem 3.1 in order to reach the conclusion. The setT in Theorem 4.1 plays
the same role ofE+ in Lemma 3.5. Moreover, we keep the same notation used in Section 3 to which
obviously we refer.
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Proof of Theorem 4.1. Lower bound:The proof of Lemma 3.5 goes through until the capacitary
estimate (3.13) of Step 2, assumingHn−1(E) > 0, as otherwise the statement is trivial. The latter
is now a consequence of Lemma 4.4 below. Taking this for granted, to prove the lower bound
inequality for sequences bounded inL∞ it suffices to verify that the blow-up functionsvε satisfy
the assumptions of Lemma 4.4. The same arguments used in Theorem 3.1 ensure (i) and (iii), while
(ii) follows by (3.17) taking into account that the right hand side in that formula is bounded as a
function ofε and infinitesimal ask → +∞.

Finally, the truncation argument of Proposition 3.7 needs no change, so that the lower bound is
established.

Upper bound: The same argument of Proposition 3.9 works upon replacing in the construction of
the recovery sequence, a minimizing setD with a minimizing sequence for the capacitary problem
for T . 2

The statement of Lemma 4.4 below is given in a slightly more general framework than needed in
our context.

LEMMA 4.4 LetH be a boundedHn−1-measurable set withHn−1(H) > 0,N ∈ N, N > 4, and
vε ∈ BV (BRε ), Rε → +∞, be such that

(i) v+
ε > 0Hn−1-a.e. onH , supε ‖vε‖L∞(BRε )

< +∞,
(ii) supε ‖Dvε‖(BRε \ Svε ) < 1/N ,

(iii) there existsζ < 0 such thatLn({x ∈ BRε : vε(x) > ζ }) < 1
2L

n(BRε ).

Then there exists a positive constantc = c(ζ ) such that lim infεHn−1(Svε ) > C1(H)− c/
√
N .

Proof. It is not restrictive to assume lim infεHn−1(Svε ) < +∞, otherwise the statement is trivial.
Let (vεj ) be such that limj Hn−1(Svεj ) = lim inf εHn−1(Svε ) < +∞; for simplicity for the rest of
the proof we setvj = vεj andRj = Rεj .

Step 1: For any open setA, for anyv ∈ BV (A) satisfyingv+ > 0Hn−1-a.e. onH , withH ⊆ A,
and for anyδ < 0, there existsη ∈ (δ,0) for whichLn({x ∈ A : v(x) > η}) > 0, Per({x ∈ A :
v(x) > η}, A) < +∞ andHn−1(H \ {x ∈ A : v(x) > η}+) = 0.

Let us first prove that there existst ∈ (δ,0) for which the corresponding super-level set has
positive measure. Arguing by contradiction, if there wereδ0 < 0 such thatLn({x ∈ A : v(x) > t})

= 0 for everyt ∈ (δo,0), then the very definition ofv+ would givev+(x) 6 δo Hn−1-a.e. onH ,
which is clearly a contradiction sincev+ > 0Hn−1-a.e. onH andHn−1(H) > 0.

Moreover, since{x ∈ A : v(x) > η} ⊇ {x ∈ A : v(x) > t} if η < t , and Per({x ∈ A :
v(x) > η}, A) < +∞ for L1-a.e.η ∈ R we get{x ∈ A : v(x) > η}+ ⊇ {x ∈ A : v+(x) > t} for
L1-a.e.η ∈ R, η < t . Since{x ∈ A : v(x) > η}+ ⊇ {x ∈ A : v+(x) > t} ⊇ {x ∈ A : v+(x) > 0},
it is clear that we can findη ∈ (δ, t) for which all the required conditions are satisfied.

Step 2: There existwj ∈ SBV (BRj ) and ηj ∈ (ζ,0), with ζ as in assumption(iii) , such that
∇wj = 0 Ln-a.e. onBRj , Hn−1(H \ {x ∈ BRj : wj (x) > ηj }+) = 0, supj Ln({x ∈ BRj :
wj (x) > ηj }) < +∞, supj Per({x ∈ BRj : wj (x) > ηj }, BRj ) < +∞, and

lim inf
j

Hn−1(Svj ) > lim inf
j

Hn−1(Swj )− c/
√
N.
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LetC = supj ‖vj‖L∞(BRj )
andkN = [

√
N ]. Then apply theBV coarea formula to get

‖Dvj‖(BRj \ Svj ) =

kN−1∑
i=0

∫ αi+1

αi

Per({x ∈ BRj : vj (x) > t}, BRj \ Svj )dt,

whereα0 = −C, αi+1 = αi + 2C/kN for 0 6 i 6 kN − 1. Let 0 6 r 6 kN − 1 be such that
ζ ∈ (αr−1, αr ]; and first assume thatαr+1 6 0. For every 06 i 6 kN − 1 by the mean value
theorem we may findtji ∈ (αi, αi+1) such that

2C

kN
Per({x ∈ BRj : vj (x) > t

j
i }, BRj \Svj ) 6

∫ αi+1

αi

Per({x ∈ BRj : vj (x) > t}, BRj \Svj )dt. (4.4)

Let 0 6 s 6 kN − 1 be such that 0∈ (t
j
s , t

j

s+1], and note thattjs ∈ (ζ,0) sinceαr+1 6 0 implies

t
j
s > t

j
r > αr . Considerηj ∈ (t

j
s ,0) provided by Step 1 and the setsΣj

i = {x ∈ BRj : tji 6 vj (x) <

t
j

i+1}, then define the functionwj : BRj → R aswj (x) = ηj if x ∈ Σ
j
s andwj (x) = t

j
i if x ∈ Σ

j
i ,

0 6 i 6 kN − 1 andi 6= s.
Clearly,Σj

i being of finite perimeter inBRj , we havewj ∈ SBV (BRj ) with ∇wj = 0 Ln-a.e.

onBRj , Swj ⊆
⋃kN−1
i=0 ∂∗Σ

j
i , andHn−1(H \ {x ∈ BRj : wj (x) > ηj }+) = 0 since by the choice of

ηj ∈ (t
j
s ,0),

{x ∈ BRj : wj (x) > ηj } = {x ∈ BRj : vj (x) > t
j
s } ⊇ {x ∈ BRj : vj (x) > ηj }.

Moreover, by assumption (ii) and the definition ofkN ,

Hn−1(Swj ) 6 Hn−1(Svj )+

kN−1∑
i=0

Per({x ∈ BRj : vj (x) > t
j
i }, BRj \ Svj )

6 Hn−1(Svj )+
kN

2C
‖Dvj‖(BRj \ Svj ) 6 Hn−1(Svj )+

c
√
N
.

Finally, the relative isoperimetric inequality in balls (see Remark 3.50 of [1]), the choicesζ < t
j
s <

ηj < 0 and assumption (iii) imply that supj Ln({x ∈ BRj : wj (x) > ηj }) < +∞.

In caseζ ∈ (αr−1, αr ] with αr+1 > 0, this construction fails sincetjs might not satisfytjs > ζ .
Nevertheless, this case can be handled by slightly modifying the choice of thet

j
i ’s. Indeed, choose

t
j
i as in (4.4) fori /∈ {r − 1, r}, choosetjr ∈ (ζ,0) such that

|ζ | Per({x ∈ BRj : vj (x) > t
j
r }, BRj \ Svj ) 6

∫ αr+1

αr−1

Per({x ∈ BRj : vj (x) > t}, BRj \ Svj )dt,

and settjr−1 = t
j
r . Let ηj ∈ (t

j
r ,0) be provided by Step 1, and definewj : BRj → R aswj (x) = ηj

if x ∈ Σ
j
r , andwj (x) = t

j
i if x ∈ Σ

j
i , 0 6 i 6 kN − 1 andi /∈ {r − 1, r}. Notice thatΣj

r−1 = ∅.
The same arguments exploited before entail that(wj ) still satisfies the statement of Step 2.

Step 3: Conclusion. SetΣj = {x ∈ BRj : wj (x) > ηj }. ThenHn−1(Swj ) > Per(Σj , BRj ) (see
Theorem 4.23 of [1]), which, together with Step 2, yields

+∞ > lim
j
Hn−1(Svj ) > lim inf

j
Hn−1(Swj )−

c
√
N

> lim inf
j

Per(Σj , BRj )−
c

√
N
. (4.5)



MUMFORD–SHAH TYPE ENERGIES 129

By applying theBV compactness theorem we may extract a subsequence (not relabeled for
convenience) and find a setΣ with locally finite perimeter inRn such thatχΣj → χΣ in L1

loc(R
n).

By Theorem 6.1 of [10] (see also Chapter IV of [26]) for everyR > 0 we get

lim inf
j

Per(Σj , BR) > Per(Σ,BR)+ σ((H \Σ+) ∩ BR), (4.6)

so that by combining (4.5) and (4.6), and by passing to the supremum overR,Σ has finite perimeter
in Rn and moreover

lim
j
Hn−1(Svj ) > Per(Σ)+ σ(H \Σ+)− c/

√
N.

The assertion now follows by taking into account (2.12) of Theorem 2.7. 2

5. Further results

In the previous sections we have described the asymptotic behavior of the Mumford–Shah energy
in periodically perforated domains. In the present section we extend the results of Sections 3 and 4
to more general free-discontinuity energies. We limit ourselves to stating and giving the hints of the
proof of the generalization of Theorem 4.1 in this setting, since the analogues of Propositions 3.3
and 3.4 are trivial.

Let p > 1 andϕ,ψ : Rn → R be continuous functions such that

(a) ϕ is convex, and there exist constantsc1, c3 > 0 andc2 ∈ R such that for everyξ ∈ Rn,

c1|ξ |
p

− c2 6 ϕ(ξ) 6 c3(|ξ |
p

+ 1);

(b) ψ is a norm onRn, and there exist constantsc4, c5 > 0 such that for everyν ∈ Sn−1,

c4 6 ψ(ν) 6 c5.

Analogously to the case in whichψ is the euclidean norm one can define an anisotropic capacity as
follows: for any setE ⊆ Rn let

Cψ (E) = inf

{∫
∂∗D

ψ(ν∂∗D)dHn−1 : D isLn-measurable, Ln(D) < +∞, Hn−1(E \D+) = 0

}
.

Different characterizations ofCψ , similar to those of Proposition 2.5, can be deduced from
Theorem 6.1 of [10].

Given anHn−1 measurable setT ⊆ Q1, for any ε > 0 let rε ∈ (0, ε) and letTε = Ω ∩⋃
i∈Zn Trε (iε). Consider the functionalFε : L1(Ω) → [0,+∞] defined as

Fε(u) =


∫
Ω

ϕ(∇u)dx +

∫
Su

ψ(νu)dHn−1, u ∈ GSBV (Ω), u+ > 0Hn−1-a.e. onTε,

+∞, otherwise inL1(Ω).

(5.1)

We are now in a position to state the following result whose proof is just a technical adjustment of
those of Theorems 3.1 and 4.1.
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THEOREM 5.1 LetT be anHn−1-measurable set, and assume thatrε/ε
n/(n−1)

→ β ∈ [0,+∞)

asε → 0+. Suppose thatϕ andψ satisfy assumptions (a) and (b) above. Then(Fε) Γ -converges
toF : L1(Ω) → [0,+∞] defined by

F(u) =


∫
Ω

ϕ(∇u)dx +

∫
Su

ψ(νu)dHn−1

+ Cψ (T )β
n−1Ln({x ∈ Ω : u(x) < 0}), u ∈ GSBV (Ω),

+∞, otherwise inL1(Ω),

with respect to theL1 convergence.

Proof. Lower bound:We first point out that estimate (3.6) in Lemma 3.5 follows directly by
Theorem 2.2. Moreover, in order to get a gradient estimate as in (3.9) of Step 1, the same argument
developed there can be repeated with the function| · |

p replaced byϕ, and taking into account the
convexity ofϕ and assumption (a).

Furthermore, a capacitary estimate as in (3.13) of Step 2 follows by replacing in the statement
of Lemma 4.4 the total variation of aBV function with the anisotropic variation∫

Ω

ψ

(
dDu

d‖Du‖

)
d‖Du‖, (5.2)

and in its conclusionC1 with Cψ . Indeed, thanks to assumption (b), one can use for the anisotropic
variation in (5.2) suitable versions of theBV coarea formula (see Lemma 2.4 of [19]) and of the
relaxation result for energies with linear growth with obstacles (see Theorem 7.1 of [10]).

Finally, the truncation argument of Proposition 3.7 can be carried out with only minor changes.

Upper bound: The proof of Proposition 3.9 works upon replacing, in the construction of the
recovery sequence, a minimizing setD for the usual capacity with a minimizing sequence for the
anisotropic capacitary problem forT related toψ . 2
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