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We study the asymptotic limit of obstacle problems for Mumford—Shah type functionalspwith
growth in periodically perforated domaiwi the I"-convergence of the associated free-discontinuity
energies. In the limit a non-trivial penalization term related to the 1-capacity of the reference hole
appears if and only if the size of the perforation scales #k€”~D, ¢ being its periodicity. We

give two different formulations of the obstacle problem to include also perforations with Lebesgue
measure zero.

1. Introduction

The aim of this paper is to study the limiting behavior of Mumford—Shah type functionals in
periodically perforated domains. We express the obstacle constraint by two different formulations
according to the “size” of the perforation, thus includifaig— 1)-dimensional sets. For both cases
we identify the meaningful scaling yielding a non-trivial limit energy (see Theofems 3[1 gnd 4.1).

A model case for this kind of problem is the following: find the asymptotics as O of

inf{/ |Vu(x)|? dx+H""1(S,)+lower order terms u € SBV (£2), u =0 onBSUBQ}, 1.1
2

where$2 c R" is a given regular bounded open seéy andsS, are, respectively, the approximate
gradient and the set of approximate discontinuities: qsee Subsection 2.3), arBl = £2 N
Uiez» B (ie), with B, (ie) the ball centered at of radiusr, > 0. This is the first step in studying
obstacle problems for free-discontinuity energidsch we are currently investigating [30].

The case in which the minimum problel.l) above are restricted to the Sobolewisbéce
p > 1,is classical and it has been object of much research since the pioneering works of Marchenko
and Khruslov|[[31], Rauch and Taylar [34], [35] and Cioranescu and Murat [14]. A wide literature
also deals with Neumann or Robin conditions on the boundary of the set of perforatioris (see [15],
[13] and the books [12], [16] for a more exhaustive list of references).
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A typical phenomenon occurring in this context is that the limit problem is no longer related to
an obstacle constraint and the limit energy to be minimized contains an extra term. The latter is a
finite penalization keeping track of the local capacity density of the homogenizing obstacles (with
the appropriate notion of capacity related to the Dirichlet type energy under consideration).

In order to deal with thigelaxation phenomengme Giorgi, Dal Maso and Longo proposed
in [27] an approach which was then carried out by many authors|(seé [9],[[23].1[3]._[4],[20], [21],
[33]). The method is based on abstrattonvergence arguments (see Sedtioh 2.2 for the definition
and main properties af-limits) for the associated Dirichlet energies and requires a deep study of
some fine properties of Sobolev functions. It turns out that one can confine the analysis to the range
1 < p < n since forp > n the convergence result is trivial. Moreover, alsoincase p < n a
simple computation shows that there exists only one meaningful scalingmafdtius of the periodic
perforationr, depending on the space dimensioand on the exponent: r, ~ ¢"/"=P) if 1 <
p<n,andr, ~ e "if p=n.

A different method using diredt'-convergence arguments was developed more recenily in [2].
The main tool there is a joining lemma in varying domains (see Lemma 3[1 of [2]) which allows
one to modify sequences of functions in the vicinity of the perforation set, reminiscent of a method
proposed by De Giorgi to match boundary conditions.

Going back to our framework, in order to deal with problems]|(1.1) we introduce fopanyl
the functionals?, : SBV(£2) — [0, +o¢] defined as

/ IVul? dx + H"1(S,), u e SBV(R),u = 0L -a.e. onB,,
2

Fe(u) = 1.2)

+00, otherwise inNSBV (£2),

thus neglecting the boundary condition on the fixed bounda?y(we refer to Theorerp 3,1 and
Propositior] 3.3 for the exact statement and the right functional framework). In Propsitjon 3.4 we
show how to recover the case in which the boundary datu@adiis imposed.

Unlike the Sobolev setting, it turns out that for apy> 1 there exists only one meaningful
scaling for the radius, which depends only on the space dimensioifhis is due to the enlarged
domain of the problem allowing fdiractured configurationswith a penalization on the site of
fracture added. In terms df'-convergence a rigorous statement of this fact is the following (see
Propositiof 3.8)(F;) I'-converges to the functiondl given for anyu € SBV (£2) by

Fu) = / IVulP dx + H""1(S,) + nw, 1L (fx € 2 u(x) # 0}) (1.3)
2

with respect to thé.1 convergence, where the coefficighis finite and different from 0 if and only
if r, ~ &= This result is achieved by studying the more general case of a unilateral constraint
of the same type (see Theorgm|3.1).

Similarly to the Sobolev case, the temw, has a capacitary interpretation and it is related to
thefunctional capacity of degreestudied in detail in[[29],[10]. Indeed, we prove the convergence
result of Theorerp 3]1 for a generic reference perforatioEseplacingnw, in (1.3) with G (E4),
the 1-capacity of a suitablé” representative of (see Subsectidn 3.5 and Remiari 3.2).

A heuristic motivation explaining the appearance of the capacitary term (and also the
independence fromp in the meaningful threshold) can be given by considering the energy of an
optimizing sequence for a constant function= n < 0. The latter is obtained by modifying
u itself in a neighborhood of the periodic perforation in order to satisfy the constraint. In such
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a neighborhood the transition between the values 0:aisl minimal, for Mumford—Shah type
energies, onotally fractured configurations, since the contribution of the bulk term is of order
strictly greater than that of the surface term (see Lefnnja 3.6). Moreover, since on piecewise constant
functions the energyF, reduces to the perimeter of their level sets, one has to solve locally an
obstacle problem for minimal surfaces taking also into account the effect of the vanishing size of
the perforation. This is indeed the argument with which an upper bound far4imit is obtained

for a genericSBV function (see Propositidn 3.9).

To prove that the latter is actually an optimal bound, one reduces to a local picture and
estimates in eactrcell contained in2 separately the contribution of the energy far and close to the
perforation set. The first term accounts for the Mumford—Shah energy in the limit, while the second
for the capacitary contribution (see Steps 1 and 2 of Lefnnja 3.5).

In Section 4 we consider reference perforation sets which may also have Lebesgue measure
zero, the so callethin obstaclegsee Theorein 4.1). In such a case formulafion (1.2) of the obstacle
condition is trivial and the constraint has to be imposed in a different way. As usual in this kind of
problem (see [10]), this can be done by exploiting fine properties of the class of functions under
consideration. In particular, for a functienin BV (£2) the representative™ is definedH"1-a.e.
on £2. By taking this into account, we prove that the famil%.), with 7, : SBV (£2) — [0, +00]
given by

/ |VulP dx + H"1(S,), ue SBV(2),ut >0H"1-ae.onE,,
Fe(u) = 2

~+00, otherwise inSBV (£2),

whereE, = 2N,z (ie+r:E), I'-converges with respect to thie convergence to the functional
F equal forany: € SBV(£2) to

Flu) = f |Vul? dx + H"71(S,) + CL(E)B" 1L  (fx € 2 @ u(x) < O)) (1.4)
2

(see Theoretn 4] 1). Due to the occurrence of a relaxation phenomenon the analysis of the capacitary
contribution in the statement above requires a delicate argument founded on the theory of obstacle
problems in the linear setting [26], [10], [11] (see Len|md 4.4).

This fact led us to distinguish two formulations of the obstacle problem, the one in Slction 3
being more intuitive and less technically demanding than that of Sedtion 4 (see Remark 4.2 for a
comparison between Theorens|3.1 and 4.1).

Finally, in Sectiorff b we generalize the results obtained in the model case of the Mumford—Shah
functional to a wider class of free-discontinuity energies (see Theorgm 5.1).

2. Notation and preliminaries
2.1 Basic notation

In the following, $2 denotes a bounded open seffify with Lipschitz boundary an@{"~1(32) <
+o00, withn > 2 a fixed integer. Given an open setC R” the family of its open subsets is denoted
by A(A).

The symbolB A C stands for the symmetric differen¢g \ C) U (C \ B) of the setsB andC
in R",
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As usual,B; denotes the open ball iR" of radius 1 centered at the origin, agli the semi-
open unit cube with side 1 centered at the origin, thaPis= [—1/2, 1/2)". For any sef£ C R”,

z € R" andr > 0, we denote by, (z) the setz + r E; in casez = 0 we simply writeE, for E, (0).

If B,C € A(2) and distB,C) = L > 0, acut-off function betweeB and C is any6 €
C>(£2) with 0 < 6 < 1 such that = 1 on B andd = 0 onC. Moreover, we will assume that
VO < ¢/L.

We employ the standard notati@hfor the topological closure iR” of the setC.

2.2 I'-convergence

We recall the notion of "-convergence introduced by De Giorgi (seel[22], [6]) in a generic metric
space(X, d) endowed with the topology induced by A family of functionalsF; : X — [0, +o00]
I'-convergeso a functionalF : X — [0, +oc] atu € X, for shortF(u) = I'-lim. F.(u), if for
every sequence;) of positive numbers decreasing to 0 the following two conditions hold:

(i) (liminfinequality for any(u;) converging ta: in X, we have liminf 7, (u;) > F(u);
(i) (limsup inequality there existsu;) converging ta: in X such that lim supFe, (u;) < F(u).

We say thatF, I'-convergedo F (or F = I'-lim.F.) if F(u) = I'-lim; Fe(u) forallu € X. We
also define theipperandlower I'-limits as

r-limsupF, (u) = inf{limsupF, (ue) : ug — u},
e—0t+ =0t

I-liminf Fo(u) = inf{liminf Fe(ug) : ue — u},
e—0t e—0t+

respectively, so that conditions (i) and (ii) are equivalenttbm sup, F. (u) = I'-liminf, F.(u) =
F(u). Moreover, the functiong™-lim sup, 7. (-) andI"-liminf, F.(-) are lower semicontinuous.

One of the main reasons for the introduction of this notion is explained by the following
fundamental theorem.

THEOREM2.1 LetF = I'-lim, 7, and assume there exists a compactiett X such that
infy 7 = infg F; for all e. Then miry F = lim, infx F, exists. Moreover, i{u;) is a convergent
sequence such that ljF; (u;) = lim; infx ¢, then its limit is a minimum point for-.

2.3 BV functions

In this section we recall some basic definitions and results on sets of finite perimet&Vand
SBV andGSBYV functions. We will give precise references to the badk [1] for all the results used
throughout the paper.

Let A C R”" be an open set. For evesye L1(A) andx € A, we define

ut()=infireR: Iirgl+ r"L"({y € By(x) :u(y) > 1)} =0},
w-(x) =sudr €R: lim, r"L"({y € Br(x) tu(y) < 1)} =0},
with the convention inff = +oo and suy = —oo. We remark that*, u~ are Borel functions

uniguely determined by thé"-equivalence class of. If u*(x) = u~(x) the common value is
denoted byi(x) or ap-lim,_, . u(y) and called thexpproximate limitof « atx.
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Notice that for everyC"-measurable séf C R” we have(xg)* = xg, , where

Ey ={x e R":limsupr " L"(E N B:(x)) > 0}.
r—0t

Moreover, we have
LY(E\D)=0 & E, C Dy, (2.1)
thus, by [(2.1) aboveE ;. is anL" representative of, i.e. L"(E A E;) = 0.
The setS, = {x € A : u~(x) < ut(x)} is called theset of approximate discontinuity poiraé

u and it is well known thatZ"(S,) = 0. Letx € A\ S, be such thafi(x) € R. We say that is
approximately differentiablatx if there existsL € R” such that

ap- lim 140) =) — LG =] _
= v = x|

0. (2.2)

If u is approximately differentiable at, the vectorL uniquely determined by (2.2) will be denoted
by Vu(x) and called thepproximate gradiendf u atx.

A functionu € L1(A) is said to be obounded variatiorin A, for shortu € BV (A), if its
distributional derivativeDu is anR"-valued finite Radon measure.dfe BV (A), denote byD“u,
D*u the absolutely continuous and singular parts of the Lebesgue decomposibiarvath respect
to L"_ A, respectively. Then turns out to be approximately differentiable a.e Ao(lrheorem 3.83
of []), S, to becountablyH"~1-rectifiable(see Theorem 3.78 dfl[1]), and the valu€s(x), u~ (x)
are finite and specifiet”~1-a.e. inA (see Remark 3.79 df[1]). Moreover,

D% =Vul'LA, DulS,= @t —u ), H"ILS,,

wherev, € S"~1is an orientation fors,,.

We say that arC"-measurable séf C R” is of finite perimeteiin A if xz € BV(A), and we
call the total variation of¢g in A the perimeterof E in A, denoting it by P, A), or simply by
Pel(E) if A = R”. Itis well known thatDxr = Dxgl 0*E = vy«gH" 1L 9*E (see Theorem
3.59 of [1]), where the countabil” ~1-rectifiable seb*E is called theessential boundargf E and
Vy+ g IS an orientation for it.

We recall that ifA has Lipschitz boundary, then anye BV (A) leaves an inner boundary trace
ondA, which we denote by tr), and moreover ti) € L1(9A, H*~1) (see Theorem 3.87 dfl[1]).

We say that: € BV (A) is aspecial function of bounded variatiom A if DSu = D/u on A; we
then writeu € SBV (A). Moreoveru € SBVioc(A) if u € SBV (U) for every open subsét cc A.

We say thatt € L1(A) is ageneralized special function of bounded variationA, written
u € GSBV(A),ifforeveryM > 0 the truncated functiouAM)Vv(—M) € SBV (A). Functions in
G S BYV inherit many properties from V functions: they are approximately differentiable a.e Agn
and S, turns out to be countablf”1-rectifiable (see Theorem 4.34 6 [1]). The spaG®SBV
has been introduced by De Giorgi and Ambrosid [25] in connection with the weak formulation of
the image segmentation model proposed by Mumford and Shah (see [32). §SBV (A) and
p € (1, 400), theMumford—Shah energyf « is defined as

MS,,(u):fA|Vu|pdx+'Hn_1(Su). (2.3)

We recall theS BV compactness theorem due to Ambrosio in a form needed for our purposes (see
Theorems 4.8 and Theorem 5.22[of [1]).
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THEOREM2.2 Let(u;) C SBV(A) and assume that for somee (1, +00),

SURM S (uj) + llujllLoe(a)) < +o00.
j

Then there exist a subsequer(eg,) and a functioru € SBV(A) such thatu;, — u a.e. inA,
Vuj, — Vu weakly in LP(A; R"), D*uj, LSu,k — Dul_S, weak in the sense of measures.

Moreover, ify : R” — R is a norm onR” satisfyingc: < ¥ (v) < ¢ for everyv € "1, with
c1, c2 > 0, then

/ W (ve) dH 1 < Iiminf/ ¥ (v, ) dH" L
S ks, k

Finally, in casex € GSBV (A) andM S, (u, A) < +oo the values: ™ (x), u~(x) are finite and
specifiedH"1-a.e. inA (see Theorem 4.40 dfl[1]).

2.4 Homogenization irff BV

Here we collect the main results 0f [8] (see Proposition 2.1, Proposition 2.2 and Theorem 2.3 there)
in a form which is convenient for our purposes.

Let g : R? — [0, +o00) andy : R¥ x §*1 — [0, +00) be two Borel functions with
V(x,a,b,v) =¥(x,b,a, —v)forevery(x,a, b, v) € R¥ x $"~1. Suppose thap andy satisfy

() ¢(-, &) is 1-periodic for every € R”", and there existy, c2 > 0 such that for everg € R"
and a.ex € R",

c1lEl? < o(x, &) < ca(L+1E17);
(i) ¥(,a,b,v)is1-periodic for everya, b, v) € R? x S*~1, and there exists, c4 > 0 such that
for every(x, a, b, v) € R¥ x §"1,
c3(L+1b—al) <¥(x,a,b,v) <ca(l+|b—al);

(i) there exists a continuous non-decreasing function[0, +o00) — [0, +00), with w(0) = 0,
andL > O such thatw(r) < Lt forr > 1 and

|w(x7 a, b’ V) - W(X’ ai, blv V)| < a)(|a - al' + |b - bl')

for every(x, a, b, v), (x, a1, b1,v) € R3 x §*—1,

For everye > 0, defineG, : SBV(A) x A(A) — [0, +00) by

gg(u,U)z/ ¢<f,vM>dx+/ w(f,u+,u—,uu> dH L, (2.4)
U & S.NU &

Then we have

THEOREM2.3 For everyU € A(A) the family (G.(-, U)) I'-converges with respect to the
L1-convergence to the functionghom : SBV (A) x A(A) — [0, +00) defined by

Ghom(, U) = f ohom(Vae) dix + / Uhom(@ s 1, ve) AR, (2.5)
U S,.NU

where
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1. ¢hom: R" — [0, +00) is the convex function given by
Yhom(§) = lim inf{f w(f Vo +§) dx:ve W&’p(Q1)}. (2.6)
e—0t 01 &

2. Yhom: R?" x §"~1 — [0, +00) is the function given by

e—0F

Yhom(a, b, v) = lim inf{/ w()_c, vTuT, vv> dH 1
$,NQY &
v e SBV(QY) with Vv =0ae, tr(v) = tr(va.pv) onaQ"}, (2.7)

where QV is any unit cube iR"” centered at the origin and with one face orthogonal,tand
Va,b,v(X) = axix: (x,v) 200 (%) + b X(x: (x,0) <0} (X).

REMARK 2.4 Incasep(x, -) is convex for allx € R” formula [2.6) can be further specialized (see
Theorem 14.7 of[[7]) and reduces to a cell minimization formula

@hom(§) = min{/Q px,Vo+§)dr v e W&éf(Ql)}- (2.8)
1

2.5 Functional capacity of degree 1

Let V1(R") be the subspace @f*/—1 (R") of functions with distributional derivative of function
type. For any seE C R" consider the quantity

I'(E) = inf{/ [Vuldx :u e Y1(R"), E Cint({x e R" : u(x) > 1})};

following Federer and Ziemer [29] we call it tHanctional capacity of degree af E. Actually,
different minimization problems characterize it, in particular it can be expressed in terms of the
perimeter of the sets containirg, as shown by the following proposition which summarizes the
results of Section 4 of [29] and Theorem 2.1[of|[10].

PrOPOSITION2.5 LetE C R" and let
C1(E) = inf{/ [Vu|dx :u € WELRY), ut > 1H" Lae. onE},

y(E) = inf{| Du||((R") : u € BV(R"), u™ > 1'H" 1-a.e.onE},
8(E) = inf{PeD) : D is £L"-measurableL” (D) < +oo, H" Y(E\ D;) =0}. (2.9)
ThenTI'(E) = C1(E) = y(E) = 8(E).

The existence of extremals for the variational problems above fails for manyEsetih
Ci1(E) < 4o (e.g. if E is a line segment ifR?). A sufficient condition ensuring existence of
minimizers for the formulation (2}9) was proposed in Section 4 of [29] (see also Theorems 3.3
and 3.4, Chapter IV of [26]). Here we recall the result and its proof for the readers’ convenience.

PROPOSITION2.6 For everyC"-measurable séf C R” with C1(E) < +o0,
(@) G(Ey) < Cu(E);
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(b) problem[(Z.p) folE. always has a solution and
C1(E4) = min{Per D) : D is L"-measurableL" (D) < +o0, L'(E\ D) =0}. (2.10)
Moreover, ifH*1(E \ E;) = 0 then G(E) = C1(E) and problem[(2]9) foE has a solution.

Proof. Let (D;) be a minimizing sequence in proble@2.9) fBor Then by the isoperimetric
inequality (see Theorem 3.46 cofl[1]) sug"(D;) + PeD;)) < +oo. The BV compactness
theorem (see Theorem 3.23 0f [1]) in turn implies the existence of a subsequence (not relabeled
for convenience) and a sé& with finite perimeter inR” such thatXDj — xp in LY(R"). Thus

L"(E \ D) = 0, and by taking into accourt (2.1) we hakle < D, . Hence,D is admissible in
problem ) forE,, i.e.H" Y(E, \ D;) = 0, and so (a) is established since

Ci(E) = liminf PeD;) > PelD) > Cy(E).
J

Obviously the same argument applied to a minimizing sequence;@E.G provides a setD
admissible for such a problem which is then a minimizer. Finally, characterizétior] (2.10) holds
true. 0

Sligthly abusing the terminology introduced by De Giorgiini[24].][26] we call the sets satisfying
H*Y(E \ E4) = 0 thick Indeed, De Giorgi's original definition required the stronger condition
ECE,.

In general, one can determine the relaxed problem associate@(fob$ usingDe Giorgi’'s
measures introduced in Chapter IV of [26] to study non-parametric minimal surface problems
with obstacles. For any sé&t C R”, o is the regular Borel measure given by

o (E) = supinf{PerD) + L"(D)/¢ : D is L"-measurable H" 1(E \ D,) = 0}). (2.11)
e>0

We are now able to state the relaxation Theorem 7.1 df [10] in a form needed for our purposes
(see also Theorem 3.4, Chapter IV [of][26]).

THEOREM2.7 For anyL"-measurable sdf C R”,

Ci(E) = min{||Du||(]R”) +/ [(xeg —uT)vO]do :u e BV(R”)}
Rn
= min{PerD) + o(E \ D) : D is L"-measurable L" (D) < +oo}. (2.12)

Finally, we recall that the set functiom C) is positively(n — 1)-homogeneoyshat is, for any

setE C R” andr > 0 we have G(E,) = r"*~1C1(E) (see[[36]); moreover (seg [29]),

Cil(E)=0 & H"Y(E)=0.
REMARK 2.8 For any bounded sét it is easy to prove that {F) < +oco. Moreover, ifE is
contained in the interior of a bounded convex &gbne can restrict the class of competing sets in
the capacitary problem fat to those contained i@

Indeed, by using the formulatiof (2.9), given a test BetconsiderD’ = D N C. Then D’
has finite perimeter and, sinde C int(C) andCy = C, we haveH" Y(E \ D)) = H""Y(E \
(DN C)y) = H*YE\ D;) = 0. If [T denotes the projection onto the convex €etthen
H*L(ITc(D N (R™\ €))) < PerD N (R*\ C)). Hence,

PeD") < H' Y(Ic(D \ int(C))) + H'~1(@*D Nint(C))
< PerD \ int(C)) + H* 13" D Nint(C)) < PerD).
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3. Obstacle constraint imposed in theC” sense

Given anL"-measurable sef € Q,, for anye > O letr, € (0, ¢) andE, = 2 N U;eZn E, (ie).
Consider the functionaF, : L1(£2) — [0, +o0] defined as

MS,(u), uec GSBV(), u>0L"ae. onE,,

f fr—
=) +o0, otherwise inL1(£2).

(3.1)

Moreover, denote by, (-, A) its localized versionobtained by replacing ifi (3.1) above the domain
of integrations2 with any open subset € A(£2).

The same convention will also be applied to the localized version of the Mumford—Shah energy
(2.3), dropping the set dependence in case 2.

THEOREM3.1 LetE be anL”-measurable set and assume that"/ "~ — g € [0, +00) as
¢ — 0. Then(F,) I'-converges toF : L1(£2) — [0, +o0] defined by

MS, )+ C1(E)B" 1L (fx € 2 1u(x) <0}, ue GSBV(R),

_ 3.2
F(u) :+oo, otherwise inL1(£2), (3.2)

with respect to the.® convergence.

REMARK 3.2 It is worth noting that definitior] (3.1) of; is not affected if we replac& with
any other seG in its £"-equivalence class. For instance, it would not be restrictive to assume the
perforation sef to be thick in the statement of Theorem|3.1, that is, to chah¢®E ..

The reason why the representative is selected in the limit process is the minimality property

C1(E4+) = min{C1(G) : G is L*-measurableL"(E A G) = 0},

as follows from Proposition 2.6(a). A further motivation will be discussed in Selction 4 (see Theorem
[4-7 and Remark 4] 2 for details).

Before giving a proof of Theorerpn 3.1 we state the results mentioned in the introduction
concerning the bilateral obstacle case and when a boundary dataf? @mimposed. Both their
proofs will be given after that of Theordm B.1, since they share many ideas and techniques developed
for that theorem as well as use part of its results.

PROPOSITION3.3 Let F, be defined asF, with the unilateral positivity condition ot in
definition ) replaced with = 0 L£"-a.e. onE,. Then(F)) I'-converges taF’ : LY(92) —>
[0, +o0] defined by

MS,(u) + CL(E)B" 1L ((x € 2 :u(x) #0)), u € GSBV(R2),

F(u) = N
00, otherwise inL~(£2),

(3.3)

with respect to the.® convergence.

We now consider the case in which a Dirichlet boundary datum is imposésoiror the sake
of simplicity we assume in what follows the additional hypothesis haasC2 boundary, although
this condition might be weakened (see for instance Section(§ of [8]).
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We introduce for any > 0 the “boundary” functional®, : L1(£2) — [0, +oc] defined as

Fi(u), ueGSBV(82), tr(u) =00nas2,

D, (1) =
e ) {+oo, otherwise inL1(£2),

and state the following convergence result.

PROPOSITION3.4 (D,) I'-converges with respect to the! convergence t@ : L1(2) —
[0, +o0] given by

Dy = [P0+ 1M €92 1@ #£ 0. u € GSBV(®).
RS otherwise inL1(£2).

Notice that if we consider lower order terms converging in a suitable sense (see Proposition 6.20
of [22]), for instance fidelity terms or linear perburations, Propos[tioh 3.4 and Thgorém 2.1 imply
the convergence of problenjs ([L.1) mentioned in the introduction to

min{D(u) + lower order terms u € GSBV (£2)}.

Theorem 3]l will be a consequence of Proposition$ 3.7[and 3.9 below in which we show
separately the liminf and limsup inequalities, respectively. Propositign 3.7 will easily follow from
Lemmd 3.b below in which we treat the case of sequences boundgt.in

LEMMA 3.5 For every sequence — u in L1(£2) such that supllug |l o2y < 00,

liminf F,(ug) > F(u).

Proof. We may suppos€”({x € £2 : u(x) < 0}) > 0andL"(E) > 0, since otherwise the
statement is trivial. Moreover, it is not restrictive to assume limiff(u,) = lim, Fe(u,) < +00.
Hence, Ambrosio’s BV closure and compactness Theofenj 2.2 impliesittatS BV (£2) and also
liminf, Fe(ue) = liminf, MS, (ue) > MS,(u).

Note that thel.! convergence assumption implies that fdra.e.n < 0 and for anyd e A(£2),

ImL'({x € A us(x) <ntA{x e A:ukx)<n})=0. (3.4)
&€
For everyn < 0 we are going to prove that

liminf F (ue) > MS, () + CLEDB L ({x € 2 1 ulx) < n)). (3.5)

Once[(3.5) is established the assertion follows by letting 0~.
Since by Ambrosio’s lower semicontinuity Theorpm|2.2, for ang A(£2) we have

liminf Fp(ug, A) > H" 1S, N A), (3.6)
&
in order to prove[(3]5), it suffices to show that for atye A(£2),

liminf Fg(ue, A) > / |VulP dx + CLE)B" 1L ({x € Az u(x) < n)). 3.7)
€ A
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Indeed, taking (3]7) for granted, inequality (3.5) follows from standard measure-theoretic arguments
by taking into account that the two quantities on the right hand sidg df (8.6), (3.7) are mutually
orthogonal measures and the left hand side term is a superadditive set function defideé@ on
(for details see Proposition 1.16 0f [5]).

Fix A € A(£2) and choose for which (3.4) holds for the open sét Moreover, defing/ =
{x € A:u(x) < n}, and assume that"({x € A : u(x) < n}) > 0, since otherwisg (3.7) is trivial.
For k € N fixed we consider the following splitting of the energ@s:

Folue, 4) = M, (e, A\ | Bacanie)) + MSy(ue, AN | Baeyanr @) (38)

ez ieZn

We will now estimate separately the two terms on the right hand side ¢f (3.8) showing that the
first contributes to the gradient energy (Step 1) while the latter provides the capacitary tern of (3.7)
(Step 2).

Step 1: Gradient estimate.We prove that
S . p
im (Ilmslnf Msp(ug, A\,EZJH 338/(4k)(55))) > /A IVu|P dx. (3.9)

In order to match the assumptions of Theofem 2.3, fix a parameted and consider the auxiliary
(localized) functionalg}Z’k : SBV(A) x A(A) — [0, +0o0) defined as

ng’k(v,U)=/ wy’k<f,Vv>dx+/ W"‘(f,ﬁ,v‘,vu) dH" L,
U € S,NU €

wherep?k(x, &) = aV*(x)|g|P for (x,&) € R, ¥V (x,a,b,v) = a¥ (x) + y|b — a] for
(x,a,b,v) € R¥ x §"~1 anda?* is the (Borel) 1-periodic function defined by

1, € B ,
a7k () = x € 01\ B3juan
Y, X € Bzjap.

Since supM S, (u:) < +o0, for a positive constant we get

lim sup lut — ug | dH" < 2 supflue |2y H" " (Sk)) < c,
3 SugNA 3
and
lim inf MSI,(ug, a\ 335/(4k)Qs)) > liminf GV * (ug, A) — cy. (3.10)
£ &
ez

For everyU € A(A) the family (gZ’k(~, U)) satisfies the assumptions of Theo@ 2.3, and thus it
I'-converges to the functioné&’éﬁq(-, U) defined in ) of Theore@.& Hence, to prove Step 1 it
suffices to estimate the volume densbﬁg]:“ of ggé’; since ) can be rewritten as

liminf M, (ug, a\ 338/(4k)(gg)) > GV (u, A) —cy > f ok (Vuyde —cy.  (3.12)
ez A

1 The choice of the coefficient/a in the radius of the balls i@ﬁ) is arbitrary and could be replaced with &0, 1).
Indeed, since. = o(¢) the setE,, is contained inB;, for anyr € (0, 1).
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We claim that, with fixed, > 0, for every¢ € R" we have
N ] om(€) = SUPYRon(6) = I£1”. (3.12)

Once [3.IR) is established, (B.9) follows from (3.11) by letting first> +o0 and using the
monotone convergence theorem, and thes 0*.

In order to prove[(3.12) we take advantage[of](2.4). Indeed, with fixedR", we prove that
the I"-limit (ask — +o0) in the L strong topology of the sequengg* : Wplé’r’(Ql) — [0, +00]
with

AV () = / a’*(x)|Vv + €17 dx
01

is given by
Av) =/ Vv + &|P dx.
01

. .. . )/,k - y,k . . .
Notice that by definition mlu/plé[:(Ql) AV = @ 01(€) and by Jensen’s inequality nMéf(Ql) A

|€|7. Moreover, for any fixeds > 0 the sequenceA”¥) is equi-coercive inL1(Q1), so that we

may apply Theorern 2.1 to dedu¢e (3.12).
Finally, we establish the claime@-limit concerning(A"¥).

The limsup inequality is trivial, since the recovery sequence for any given W&é’,’(Ql)
is provided by the function itself thanks to Lebesgue’s dominated convergence theorem. Indeed,
a’* — 1in L1(Q1) and 0< a”*(x) < 1 for everyx € Q1.
To prove the liminf inequality it suffices to note that for evany) C W&é{’(Ql) such that
v — vin LY(Q1) and liminf, Ak (v) < +o0, actually(vy) converges ta weakly inW7(Q1).
Hence, for every > 0 we have

liminf A7) > liminf | a”*(x)|Vur 4 |7 dx
k k- J01\Bs

=liminf [ |Vvk+$|”dx>/ _ Vv + |7 dx,
01\Bs Q1\Bs

and the conclusion follows by letting— 0.

Step 2: Capacitary estimate.We prove that

1
. . n—1 n
liminf M5, (ue, AN g ng/(4k)(L8)) > C1(E4)B (E V) — an). (3.13)

Choose an open s& C A such thatW 2 V andL*(W \ V) < 1/(2k2"+D). By (3.4) the set
{x € A :uc.(x) > n} NV has vanishingC"-measure so far sufficiently small we have

1

L'{xeAiu(x)=nNV)< 2D

SetU, = {x € W : u.(x) > n}. Then fore small enough,

LNU) <L UNV)+ LY U, NWN\V)) < 2o
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Let
We=1{i e Z"': Q.(ie) CC W},

and consider
TH = (i € We : L' (Ue N Qelig)) < e /K",

The set of indiceg* identifies those cells for which the contribution to the capacitary term can be
estimated up to an error infinitesimal las> +oc.
Let us first show thaIf nearly exhaust®),. Indeed, we have

n

> LU > Y LU N Qulie)) > #OWV, \ TH)

2(n+1) n+1’
k = k

from which we deduce @V, \Ié‘) < 1/(k"+1e"). Moreover, if we sep, = 3e/(4k), the very
definition of Z¥ also yields

1

L"(Us N By, (i€)) < L"(Bp, (ie)), (3.14)

wyk

and a simple translation argument shows that for any such inde& we have

MS,(ue, By, (i€)) = me(n) = inf{MSp(v, B,):veSBV(B,),

v>0aeonk,, L'({x € By, :v(x) > n}) <

27!
L' (B .
wnk (pg)}

It is clear that if we restrict the class of admissible functioris the definition ofn, () above
to simple functions assuming values{ n}, we have, by[(2.70),

me(n) < Cl((E—i-)rS) = C1(E+)rffl.
Next we want to estimate. (n) from below, more precisely we prove

lim r& " me () = C1(E4). (3.15)

To do that we need the following result.

LEMMA 3.6 LetH C R” be a bounded*-measurable thick set, and € SBV(Bg,), R. —
400, be such that

() ve > 0a.e.onH, sup [lvellLo(sg,) < +00,

(i) lim e [[VoellLr(sg,) = 0, limsup H"~1(S,,) < Ca(H),
(iii) sup, [|Dve||(Bg,) < 400,

(iv) there existg < O such that” ({x € Bg, : ve(x) > ¢}) < 3L"(Bg,).
Then lim. H"*l(Svs) = C1(H). Moreover, for every subsequence;,,) there exist(vemj) and
v € SBVioc(R") such thaw,,, — vin Lt (R"),v>0ae.onH,v =23 axg, wherel is a
finite set,E; has finite perimeter; € R, andH"~1(S,) = C1(H).
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Proof of Lemma 3]6. First note that by assumption (ii) it is sufficient to show that
liminf #"=%(S,,) > C1(H).
&
Denote by(v,, ) a sequence for which Iimigﬂi”*l(Svs) = lim,, H”*l(Svm). Ambrosio’ SBV

compactness and lower semicontinuity Theofenj 2.2 applied on evenppalk > 0, and an
obvious diagonalization argument ensure the existence of a subseqmg,,;}()eg (ve,,), and of

v € SBVioc N L (R") such that, — vin LL (R™), Vv =0 a.e. inR" and
H' LS, <M AN, ) < Ci(H).
J J
For the sake of simplicity in the rest of the proof we sgt= v,,,. andR; = Re, -

The BV coarea formula (see Theorem 3.40[0of [1]) and the mean value theorem provde
(¢, ¢/2) such that

¢/2
| Dv; [|[(Bg;) > / Per({x € Bg, : vj(x) > t}, Bg;) dt
¢

> 'iz|Per({x € Bg, 1 vj(x) > t;}, Bg,) > %'Cﬁ”({x € Bg, 1vj(x) > ;ht "
> Blernx e By 0 > g/2p 1,

where in the third inequality we have used assumption (iv) and the relative isoperimetric inequality
in balls (see Remark 3.50 ofI[1]). Hence, (iii) gives s ({x € Bg, : vj(x) > ¢/2}) < +00, SO
that theLﬁJc convergence implie§” ({x e R" : v(x) > ¢/2}) < +oc aswellasy > 0 a.e. onH.

As v € SBVioc N L®(R") with Vv = 0 a.e. onR"” and H"~1(S,) < 400, we have the
decompositiorv = Zz;o a; xx;, with X; a set with finite perimeter for every and the equality
2H1(S,) = Y"i>0Perx;) holds true (see Theorem 4.23 f [1]).

Since{x € R" : v(x) > 0} = | J'_, %;, for somei,, we have Pet J'_; ¥;) < H"71(S,) <
C1(H). Moreover, sinced is a thick obstaclel J;_; X, has finite perimeter and)/_; ~;, 2 H,
we haveH""Y(H \ (J’_; &i,)+) = 0. Thusx g_, =, is atestfunction for the capacitary problem
on H, which implies Pefl J7_; Xi,) = C1(H).

Finally, if X = Ui;éi, X itis easy to prove that there exists an index 1, witha, # a; for
everyr, suchthab =Y )_j a;, xx, +axs. |

Let us go back to the proof of inequalify (3]15). Given such thatV S, (we, B,,) < me(n) +rl,
let us check that the family, (x) = w, (r,x), x € Bg,, whereR, = p./r., satisfies the assumptions
of Lemma 3.6 above wittH = E. . Indeed, (i) is trivially satisfied, while (ii) holds true since by
scaling

MSy(we, By,) _

pit

rg—Pf |Ve|? dx + H"71(Sy,) < CL(E4) + 7. (3.16)
Bg,

Moreover, [(3.1F) and blder’s inequality yield

3e n=n/p 1
/ |va|dx < RZ‘”/I’||VU5||LP(BR£) < (Tl/n) (Cl(E+) +re) /1’7 (317)
Bg, 4k}"8
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so that sup| Dv||(Bg,) < +oo, and (iii) is satisfied too. Finally, (iv) easily follows frorp (3]14)

for k > 2'*2, hence Lemmf 3|6 impliek (3]15).

To conclude fixW’ cC W and notice that foe small, W’ C (U, yy, Q:(i¢). Then

- , - 1y me(m) 1
liminf Z:A MSp(ue. By, (i€)) > limnf me(HIE > p" ll'[,n rfl_”l (s"#Wg 3 W)
ieTy 3
, 1
> o (L) - o) (318)

To get[3.1B), it remains to take the supremum over theétsC W and to recall tha > V.
Step 3: Estimatg (3 7). We finally obtain [(3.) by combining Step 1 and Step 2, and by letting
k — 4o0in @9),i.e.
liminf 7, (e, 4) > liminf (Iminf 475, (ue. A\ L% Bac i ie) ) )
ez
+liminf (tim inf 415, (e 4N LZJ Bac o) ) )
ieZn
> / |Vu|P dx + C1(E4)B" 1L (V). O
A
The lower bound inequality in the general case is an easy consequence of a standard truncation
argument.
PROPOSITION3.7 Under the hypotheses of Theorerr 3.1, for eveyL1(2),

r-liminf F(u) > Fu),
£

whereF is defined in[(3.R).

Proof. The assertion follows directly from Lemrpa B.5 once one notices that the engigiésare
decreasing by truncation and the Mumford—Shah functional is continuous along such sequences.
More precisely, ift € L1(£2) andN > 0, denotev A N) v (—N) by v"; thenv satisfies the same
constraint as” does,M S,(v") < MS,(v), andM S, (vY) — MS,(v) asN — +oo. O

REMARK 3.8 As a consequence of Step 2 in Lenjmd 3.5 above, in<®dée D = o(r,), that is,
B = oo, the I'-limit of (F,) equalsM S, (u) if u € GSBV(£2),u > 0 L"-a.e. ons2, and+oo
otherwise inL1(2). This follows directly from|(3.18).

Let us now conclude the proof of Theordm]3.1 and prove the upper bound inequality. We
introduce the notation
U,(A) = {x e R" : dist(x, A) < p}

for p > 0 andA C R".
PROPOSITION3.9 Under the hypotheses of Theorerm 3.1, for evesy L1(£2),

r-limsupFe(u) < F(u), (3.19)

whereF is defined in[(3.R).



122 M. FOCARDI AND M. S. GELLI

Proof. Letu € GSBV (£2) be such thatF (1) < 4o0; otherwise the inequality is trivial. We first
prove ther -lim sup inequality under the following additional assumptions:

(@) u € SBV(£2), H" 1S, \ Su) = 0,u € W2\ §,) foranyk € N, andS, C U]’.Vzl X
whereX; are(n — 1)-simplexes;

(b) the set{x € 2 : u(x) < 0O} has finite perimeter 2, and{x € £ \'S, : u(x) = 0} is an
(n — 1)-dimensional smooth manifold if? \ S,,.

By (2.1Q) and Remark 2.8 we choose aBet Q1 of finite perimeter with G(E;) = PerD) and
H"1(E, \ D) = 0, which of course implie€" (E \ D) = 0.

DefineJ = {i € Z" : L"(D,,(ie) N {x € 2 :u(x) < 0}) > 0}, Dy = J;c 7 Dr,(ie), and
defineu, € LY(2) asu, = uxe\n,. Thenu, € SBV($2) and by constructiom, > 0 £L"-a.e. on
D;, actuallyu, = 0 L"-a.e. onD;. SinceL" (D,) < #J)r!L"(D) < cre, We haveu, — u in
L1(£2), and a direct computation shows

Fulus) < / Vul? dy +H""X(S, \ Dy) + PerD,)
2\D.
< / Vul? de + HX(S,) + #T)r"PerD)

2

n—1
e

< MS,u) + Co(Es) E”(Uﬁs({x € 2 :ulkx) <0}). (3.20)

8”
In the last inequality we used the fact that#e" = L"((UJ;cs Qe(ie)) and ;.7 Q:(ie) <

U sme({x € 2 2 u(x) < 0}). To estimate the Lebesgue measure in the last ter@(S.ZO) we use the
equality

ﬂuﬁe({x e ux)<0) ={xeR:ulx) <0},

e>0

so that

Iirg+ £"(Uﬁ8({x € u(x) <) =L"(Ux € 2 1 ulx) <0})).

By passing to the limsup as— 0" in (3.20) we get

lim supF (ue) < MS,(u) + C1(E4) " 1L"({x € 2 - u(x) < O)).

e—0F

To obtain [[3.1IP) it suffices to notice that

L'{x e :ulx) <0\ {xeR:ukx)<0})=0

thanks to (a), (b) and the regularity &f2.

We now remove assumption (b). In order to do that it suffices to note that by applying Sard’s
lemma tou on 2 \ S, and by theBV coarea formula (see Theorem 3.40 [of [1]), we can find a
sequencey, — 0~ such that for any € N the functions: — »; satisfy (b). Hence, the previous
step implies

r-limsupFe(u —ng) < Fu —ng) < F(u),
&€

and the upper bound inequality farfollows by lettingn;, — 0~ and by taking into account the
lower semicontinuity of - lim sup, F.
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For a general function € GSBV (§2) we use a density result with respect to Mumford—Shah
type energies and inl(£2) for functions satisfying (a), proved in [17] (see al50][18] for a more
general statement).

Now, consider(x;) satisfying (a) and such that — u in LY(2) andMS,(u;) — MS,u),
and letn, — 0~ be suchthat”({x € 2 1 u;(x) < m}) = L*({x € 2 1 u(x) < n}) asj - 4oo
for everyk € N. Then, by using for every € N the identityI"-lim sup, 7, (u; — i) = F(uj — ni),
and the lower semicontinuity df- lim sup, F,, we infer that

r-limsupFe(u — ne) < lim F(uj — ni)
e J
= im (M, (u)) + CUE)B" L ({x € 2 1 uj(x) < m))

= MSp(u) + CL(EL)B" 'L ((x € 2 1u(x) < mi}) < F(w).

Passing to the liminf a8 — +o0o0 and taking again into account the lower semicontinuity of
I'-lim sup, ¥, we conclude the proof. O

REMARK 3.10 It is clear from the proof of Propositipn B.9 that in the regime= o(¢"/"~D),
that is, = 0, thel"-limit of (F;) is trivial and identically equal ta/s,.

We now provide the proof of the bilateral obstacle case contained in Propgsitjon 3.3.

Proof of Propositior] 313. Lower bound:First notice that for every € A(£2), ¢ > 0 andu €
L1(£2) we have
Fl(u, A) = Fe(u, A), Fi(u, A) > Fe(—u, A). (3.21)

Hence, giver(u,) converging ta: in L1(£2), by applying Propositio? to the right hand sides in
(3.23), we get

lim inf Fl(ug, A) > F(u, A) = MS,(u, A) + C1(E1)" 1L ({x € A u(x) < 0))  (3.22)
and

liminf F/ (g, A) > F(—u, A) = MS,(u, A) + Ca(EL)B" L ({x € A tu(x) > 0. (3.23)

In particular, this entailea € GSBV (£2) provided liminf 7' (u.) < +o00. Moreover, the usual
measure-theoretic arguments imply the lower bound inequality. Indeed, the second terms in the
sums on the right hand sides pf (3.2%), (3.23) are mutually orthogonal measures and the left hand
side term is a superadditive set function defined4gs?) (for details see Proposition 1.16 of [5]).

Upper bound: We construct a recovery sequence for any GSBV (£2) such thatF' (1) < +oo.
Moreover, we may assum&' ({x € 2 : u(x) # 0}) > 0, the result being trivial otherwise.

We keep the notation of Propositign 3.9, and first prove the limsup inequality under the
additional assumptions (a) and (b) with the $et € £2 : u(x) # 0} playing the role of
{x € 2 :u(x) < 0} there.

Supposing this, we may perform the very same construction of Propdsition 3.9 substituting the
0 sub-level set ofi with {x € £2 : u(x) # 0}. Indeed, the recovery sequeneg) C SBV (£2) built
up there is such that, = 0 £L"-a.e. onE;. Hence, using the same arguments one achieves

Felue) < MSp(u) + CL(EL)B" 1L (Ix € 2 u(x) # 0} +o(D),

and passing to the limsup as— 0™ we get the desired inequality.
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We now remove the regularity assumption (b) on the{set £2 : u(x) # 0}. To do this, argue
asin Propositi09 and consider a positive sequéngesuch thaty;, — 0 ask — +oo and
both the set§x € £2 : u(x) > m}, {x € 2 : u(x) < —ni} satisfy (b). Letuk € SBV(£2) be
defined asi* = (u v i) + (u A (—n)). Notice thatju(x)| < mx < u¥(x) = 0, u(x) > i =
uk(x) = u(x) — e, u(x) < —mp = uF(x) = u(x) + i, andH" (S, \ S,) = 0. Clearlyu* — u
in L1(£2) and

r-limsupF. ") < F @by = MS, ") + CL(E4)B" 1L ({x € 2 : uk(x) # 0))
< MSy(u) + Co(Ep)B" 1L ({x € 2 |u()| > mie).

Passing to the liminf ax — +oo and taking into account the lower semicontinuity of
I'-limsup, F;, we get the desired inequality.

To finish the proof for any € GSBV (£2) consider a sequence;) satisfying (a) and such that
uj — uin L1(22) andMS,(u;) — MS,(u) (see Theorem 3.9 of [17]), and gt — O* be such
thatL"({x € 2 : |u;j(x)| > m}) = L%({x € 2 : Ju(x)| > n}) asj — +oo for everyk € N.
Since(u;)* — u* in L}(£2), arguing as in the last step of Proposition] 3.9 we infer that

F-limesup;f;(uk) < Iimiinf F'(wj)*)
< M8, () + Co(EDB" L (bx € 2 luj ()] > i)
=MS,u) + CLUENB L ({x € 2 1 [u(x)| > m}) < F ().
Passing to the liminf a8 — +o0o and taking again into account the lower semicontinuity of
I'-limsup, F; completes the proof. O

Finally, we handle the case in which Dirichlet boundary conditions are imposed.

Proof of Propositiorj 34. Lower bound:The lower bound inequality can be easily derived from
Propositiof} 3.3. Givem € GSBV (£2) denote byi the function extending by 0 onR" \ £2. Then
U € GSBV(R™) and for any open se®’ ©> §2 with Lipschitz boundary, we have

MSy(5, ') = MS,(v, 2) + H' X({x € 082 : tr(v)(x) # O})

(see Theorems 3.84 and 3.87[of [1]).
Given(u,) C GSBV (£2) with tr(u,) = 0 ond$2 and converging ta in L1(£2), (ii,) converges
to i in L1(£2"), and applying Propositi@S witf2 replaced by2’, we have

Iimsinf De(ug) = Iimginf Fllite, 2') > F(u, $2')
=F(u, 2)+H' ({x € 92 : tr(u)(x) # 0}) = D(u).

Upper bound: It remains to prove the upper bound inequality. First note that a recovery sequence
foru € GSBV (£2) with tr(u) = 0 ond$2 is the one constructed when no boundary condition is
imposed in Proposition 3.3 above.

Given a generic function € GSBV (£2), it is possible to find a sequen¢e;) C GSBV (£2)
with tr(x;) = 0 ond$2 and converging ta in L1(£2) such that limD(u;) = D(u). Then the result
follows by the lower semicontinuity of -lim supD;.
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This sequence can be obtained by modifyinmn a suitable neighborhood of the boundary in
which the distance function is regular. Fix a sequence of positive numbiensding to 0 and define
d(x) = dist(x, 9£2). Set

u(x) if 2r; <d(x),
ui(x) = Ju(x 4+ dx) —2r)Vd(x)) ifr; <d(x) < 2rj,
0 if0 <d(x) <.

It can be easily checked that

MSy(uj, 2) < MSy(u, 2) +cMS,(u, (x € 2 :r; <d(x) < 2rj})
+H' T {x € 2 1d(x) = rj, tr(u)(x — rjVd(x)) # 0})

for a positive constant not depending ori. Definingy; : 2 — 2 asg;(y) = y +r;Vd(y) (with
a slight abuse of notatio¥d (y) denotes the inner normal 8a2 at y), we have

(xe:dx)=r,tr)(x —r;Vd(x)) # 0} = ¢;({y € 082 1 tr(u)(y) # 0}).

The conclusion then follows from the fact tat —(p; (H)) < (Lip ¢;)""*H"~1(H) for any setH,
and Lipg; — 1 asj — 4oo0. O

4. The case of thin obstacles

In this section we show how to deal with a general reference perforation set, incthitimdpstacles
i.e. sets with Lebesgue measure zero. To consider (non-trivial) thin obstacle problems it is clearly
necessary to express the constraint in a different form. To do that it suffices to recall that if
GSBV (£2) andM S, (u) < +oo then the values™ (x), u~ (x) are finite and specified for"1l-a.e.
x € 2 (see Theorem 4.40 df][1]).

Given anH"!-measurable sef < Q,, for anye > O letr, € (0,¢) and letT, = £2 N
Uiezn Tr. (i€). Consider the functionaf : L1(£2) — [0, +00] defined as

MS,(u), ue GSBV(2), um > 0H"t-ae. onT,,

fs - . .
@) +o0, otherwise inL1(£2).

(4.1)

The asymptotic analysis ¢f;) takes advantage of the ideas and techniques developed in $éction 3.
The main difference is in the proof of Lemina}4.4, the counterpart of Lemma 3.6 in this framework,

for which substantial changes are required. This is not an accidental or merely technical fact: we
want to point out that Lemmfa 4.4 relies on the deep relaxation results contained in Chapter IV
of [26] and in [10] (see Theorem 2.7).

THEOREM4.1 LetT be anH”1-measurable set, and assume that"/ D — B € [0, +00)
ase — 0T. Then(F,) I'-converges toF : L1(£2) — [0, +o0] defined by

MS,(u) + CL(T)B" 1L ((x € 2 1u(x) <0), ue GSBV(2),
+o00, otherwise inL1(£2),

Fu) = { (4.2)

with respect to the.! convergence.
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REMARK 4.2 Letus point out how Theorgm B.1 can be recovered from Thgorém 4.1 above. Notice
that given a sef the following equivalence holds:

u>0L"-ae onE < ut >0H"tae. onEy,, (4.3)

so that one can rephrase the unilateral obstacle condition in the sed$eoof E with the more
preciseH”~1 meaning exactly orE_.. Roughly speaking, the equivalence @4.3) means that the
constraint foru intended in thel"” sense is active, for a suitable representative, only on(the
measure-theoretic closure af and thus it is neglected on lower dimensional parts of the set. By
taking this into account, the functionals in the statement of Theprem 3.1 can be rewritten as

MS,(u), ueGSBV(2), ut > 0H"t-a.e. on(E),,

f p—
=) {Jroo, otherwise inL1(£2).

Theorenj 3]1 then follows by applying Theorgm|4.1 wiith= E, .

REMARK 4.3 It is worth noting that a priori the functiondf;, in ) may not beL! lower
semicontinuous. More generally, given &fi—-measurable setf < £2, one can study the lower
semicontinuity properties of the functional: L1(£2) — [0, +oc] defined as

cw MS,(u), ue GSBV(R), u" >0H"tae. onH,
u)—=
+00, otherwise inL1(£2).

In a forthcoming paper (seke [30]) we will prove that the lower semicontinuous envela@péahe
L1 topology is given by

MS,(u) + 3o(flx e HN S, tut(x) < O}
sC(G)(u) = +o(fx e H\ Sy:ut(x) <0}, ue GSBV(2),
+o0, otherwise inL1(£2),

whereo is the measure defined in (2]11). Thus, by taking into account Theorém 4.1, well known
results (see Proposition 6.11 0f [22]) yield tieconvergence to the functiona of (4.9) of the
energies

MS,(u) + 30(fx € T, NS, ut(x) <0}
SC (Fe)(u) = +o({x eT\ Sy tut(x) <0)), ue GSBV(R),
+o00, otherwise inL1(£2).

As a further development of this research we are investigating the compactness and integral
representation properties of Mumford—Shah type energies with general obstacle constraints, as those
established by Dal Maso in the Sobolev settingl([20], see also [10], [11]).

We now turn to the proof of Theorem 4.1. As already stated, we will point out only the changes
needed in the proof of Theor¢dm B.1 in order to reach the conclusion. Tiars@heoreni 4.]1 plays
the same role of ;. in Lemmg3.b. Moreover, we keep the same notation used in Sg¢tion 3 to which
obviously we refer.
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Proof of Theorer 4]1. Lower boundThe proof of Lemmé 3]5 goes through until the capacitary
estimateS) of Step 2, assumitg—1(E) > 0, as otherwise the statement is trivial. The latter
is now a consequence of Lemrpal4.4 below. Taking this for granted, to prove the lower bound
inequality for sequences boundediif it suffices to verify that the blow-up functions satisfy
the assumptions of Lemmia #.4. The same arguments used in THeofem 3.1 ensure (i) and (iii), while
(i) follows by (3.17) taking into account that the right hand side in that formula is bounded as a
function ofe and infinitesimal ag§ — +oo.

Finally, the truncation argument of Proposit[on|3.7 needs no change, so that the lower bound is
established.

Upper bound: The same argument of Proposit[on|3.9 works upon replacing in the construction of
the recovery sequence, a minimizing $ewith a minimizing sequence for the capacitary problem
forT. O

The statement of Lemnja 4.4 below is given in a slightly more general framework than needed in
our context.

LEMMA 4.4 LetH be a bounded{"1-measurable set with"1(H) > 0,N € N, N > 4, and
ve € BV(BR,), Re — +00, be such that

0] U;_ > 0H" l-ae. onH, sup ||v8||Loc(3R£) < 400,
(ii) sup, IDvel[(Bg, \ Sy,) < 1/N,
(iii) there exists; < 0 such that’" ({x € Bg, : ve(x) > ¢}) < 3L"(Bg,).

Then there exists a positive constant ¢(¢) such that liminf H"~1(S,,) > C1(H) — ¢/~/N.

Proof. It is not restrictive to assume lim ip’H"*l(S,,g) < +o00, otherwise the statement is trivial.
Let (vg;) be such that IimH"‘l(Svgj) = liminf, H"‘l(Svg) < +o0; for simplicity for the rest of
the proof we set; = v;; andR; = R;;.

Step 1: For any open set, for anyv € BV (A) satisfyingu™ > 0 H"~1-a.e. onH, with H C A,
and for anys < O, there exists; € (8, 0) for whichL"({x € A 1 v(x) > n}) > 0, Per({x € A :
v(x) =1}, A) < +ooandH" L(H \ {x € A : v(x) > n};) =0.

Let us first prove that there existse (8, 0) for which the corresponding super-level set has
positive measure. Arguing by contradiction, if there w&ye< 0 such thatl"({x € A : v(x) > t})
= 0 for everyr € (8,, 0), then the very definition of™ would givevt(x) < 8, H" 1-a.e. onH,
which is clearly a contradiction sinag” > 0 H"~1-a.e. onH andH"~1(H) > 0.

Moreover, sincgx € A :v(x) 2 nt 2 {x € A:vx) > «t}ifn < t,and Pef{x € A :
v(x) > n}, A) < +oofor Ll-a.e.p e Rwegetfx € A:v(x) > n}y 2 {x € A:vH(x) > 1} for
LlaeneR,np<t.SincefxeA:vx) > D2{xed:vt(x) >} D{xeA:vt(x) >0}
it is clear that we can find e (6, ¢) for which all the required conditions are satisfied.

Step 2: There exisb; e SBV (Bg,) andn; € (£,0), with ¢ as in assumptioriii) , such that
Vw; = 0 L"-a.e. onBg,, H'*LH \ {x € Bg, : wi(x) > nj}y) = 0, sup L"({x € Bg, :
wj(x) = n;}) < 400, sup Pel({x € Bg; : w;j(x) = nj}, Bg;) < +00, and

liminf 7*2(S,,) > liminf H"(Sy,) — ¢/~/N.
J J
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Let C = sup [[v; llL~(s,,) andky = [v/N]. Then apply theBV coarea formula to get

ky—1 A1
1DV [I(Br; \ Suy) = Z/ Pex(x € B, : v;(x) > 1}, Bg, \ Su,) o,

whereag = —C, aj41 = «; + 2C/ky for 0 < i < ky — 1. Let 0< r < ky — 1 be such that
¢ € (ap—1, o]; and first assume that, 1 < O. For every 0< i < kN — 1 by the mean value

theorem we may finqi € (a;, @j4+1) such that
2C . o+l
aPer({x € Br; 1 vj(x) 21}, Br;\Sy) < / Per(x € Bg; : v;(x) > 1}, Br,\Sy;) dr. (4.4)
o

Let 0< s < ky — 1 be such that & (¢/, ts]+l] and note that! € (¢, 0) smcear+1 0 implies
tY > t, > a,. Considem; (zY , 0) provided by Step 1 and the s@$ {x € Bg; 11 <vj(x) <
l+1} then define the functiom; : Bz, — R asw;(x) = n; if x € ) andw; (x) = t/ if x € X/,
0<i<ky—1landi #s.

CIearIy,E’ being of finite perimeter imBg;, we havew; € SBV (Bg;) with Vw; = 0 L"-a.e.
on Bg;, Swj - UkN 18*2’ andH"L(H \ {x € Bg; twj(x) = nj}4) =0 since by the choice of
77] € (t€ ’ O)

{x € Bp, i wj(x) = nj} = {x € B, 1 vj(x) > 1} 2 {x € B, : v;(x) > n;).

Moreover, by assumption (ii) and the definitionigf,
ky—1 .
HH(Sw,) S H'HS,) + D Per{x € Bg, 1 v;(x) > 1/}, Bg; \ Sy))
i=0
n—1 ky n—1 ¢
SHTHSY) + 5D I(BR \ Sy) SHUTHS) +
Finally, the relative isoperimetric inequality in balls (see Remark 3.50 of [1]), the chpieesf <
n;j < 0 and assumption (iii) imply that syg” ({x € Bg; : w;(x) = n;}) < +o0.
In case; € (ay—1, o] With 11 > 0, this construction fails sinoé might not satisfy; > C.
Nevertheless, this case can be handled by slightly modifying the choice dfsthmdeed choose

t’ as in .) fori ¢ {r — 1, r}, choose; e (¢, 0) such that

. Or+1
|{| Pe'({x € BRJ' : Uj(x) 2 t;!}, BR/‘ \Svj) g / Pe'({-x € BRj : Uj(.x) 2 t}, BRj \ Svj)dt’

or—1

and se't’ z, Letn; (t, ,0) be prowded by Step 1, and defing : Bg, — R asw;(x) = n;

if x e E,’, andw;(x) = t’ if x € E’ 0<i<ky—1andi ¢ {r —1,r)}. Notice thater_1 = 0.
The same arguments epr0|ted before entail thay still satisfies the statement of Step 2.

Step 3: Conclusion. SetX; = {x € Bg; 1 w;j(x) = n;}. ThenH"*~1(S,, ;) = PerX;, Bg,) (see
Theorem 4.23 of [1]), which, together with Step 2, yields

C C
+o0o > limH"71(S,.) = liminf H" (S, ) — — > liminf PerX;, Bg,) — —. 4.5
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By applying the BV compactness theorem we may extract a subsequence (not relabeled for
convenience) and find a s&twith locally finite perimeter irR" such thatyx, — xx in Llloc(R").
By Theorem 6.1 of [10] (see also Chapter IV [of [26]) for evéry- O we get

liminf PexX;, Br) > PelX, Bg) + o (H \ X+) N Bg), (4.6)
J

so that by combining (4]5) and (4.6), and by passing to the supremunko¥ehas finite perimeter
in R"” and moreover

lim H"7(S,,) > Pex¥) + o (H \ £1) — ¢/VN.
J

The assertion now follows by taking into accoUnt (2.12) of Thegrein 2.7. O

5. Further results

In the previous sections we have described the asymptotic behavior of the Mumford—Shah energy
in periodically perforated domains. In the present section we extend the results of Sgctions 3 and 4
to more general free-discontinuity energies. We limit ourselves to stating and giving the hints of the
proof of the generalization of Theorgm 4.1 in this setting, since the analogues of Prop¢sitions 3.3
and3.% are trivial.

Let p > 1 andgp, ¥ : R" — R be continuous functions such that

(a) ¢ is convex, and there exist constantscz > 0 andc, € R such that for everg € R”,
c1l§l? — c2 < p(§) < c3(|E]P + 1);
(b) v is a norm orR”, and there exist constants, cs > 0 such that for every e "1,
ca < Y (v) < cs.

Analogously to the case in whigh is the euclidean norm one can define an anisotropic capacity as
follows: for any setE C R” let

Cy(E) = inf{/ ¥ (varp) dH" 1 : D is £"-measurableL” (D) < +oo, H" Y(E\ D) = 0}.
0*D

Different characterizations ofy, similar to those of Propositiop 2.5, can be deduced from
Theorem 6.1 of [10].

Given anH"~! measurable sef € Q,, for anye > O letr, € (0,¢) and letT, = £2 N
Uiezn T, (ie). Consider the functionaF, : L1(£2) — [0, +oc] defined as

/ o (Vu) dx +f Y dH" Y, ue GSBV(R2), ut > 0H"L-a.e. onT,,
Q Sy

Fe(u) = (5.1)

+o0, otherwise inL1(£2).

We are now in a position to state the following result whose proof is just a technical adjustment of
those of Theorenis 3.1 ahd#¥.1.
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THEOREM5.1 Let7 be anH”~!-measurable set, and assume that"/ "D — g [0, +00)
ass — 0T. Suppose thap andy satisfy assumptions (a) and (b) above. Tl&h) I'-converges
to F : L1(2) — [0, +oo] defined by
¢(Vu) dx + f ¥ (v,) dH" 1

Su

+Cp(TB" L ({x € 2 u(x) <O), ueGSBV(R2),
+o00, otherwise inL1(£2),

2
Fu) =

with respect to the.! convergence.

Proof. Lower bound:We first point out that estimat¢ (3.6) in Lemra]3.5 follows directly by
Theorenj 2.R. Moreover, in order to get a gradient estimate &s in (3.9) of Step 1, the same argument
developed there can be repeated with the fundtig replaced byp, and taking into account the
convexity ofp and assumption (a).

Furthermore, a capacitary estimate agin (8.13) of Step 2 follows by replacing in the statement
of Lemmg 4.4 the total variation of BV function with the anisotropic variation

dDu
/Q w<m> d|l Dul. (5.2)

and in its conclusior€y with Cy,. Indeed, thanks to assumption (b), one can use for the anisotropic
variation in [5.2) suitable versions of tl&V coarea formula (see Lemma 2.4 bf[19]) and of the
relaxation result for energies with linear growth with obstacles (see Theorem 7.1 of [10]).

Finally, the truncation argument of Proposit[on|3.7 can be carried out with only minor changes.

Upper bound: The proof of Propositiofi 3|9 works upon replacing, in the construction of the
recovery sequence, a minimizing getfor the usual capacity with a minimizing sequence for the
anisotropic capacitary problem fa@rrelated toy. O
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