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Optimal regularity for elliptic transmission problems including C? interfaces
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We prove an optimal regularity result for elliptic operater¥ - 1V : W&‘q — wLldforaqg >3

in the case when the coefficient functipnhas a jump across @? interface and is continuous
elsewhere. A counterexample shows that@decondition cannot be relaxed in general. Finally, we
draw some conclusions for corresponding parabolic operators.

1. Introduction

This work is situated on the intersection of two mathematical questions: the first is the regularity
of solutions of elliptic transmission problems (see, elg.| [38] 46, 47, 49,122/ 3| 4,]141,115] 48, 37,
20,[16], and references therein). The other concerns the isomorphism property of elliptic operators
—V - uV : X — Y between suitable Banach spac¢esr in the case of nonsmooth domains and/or
discontinuous coefficient functions(seel[7, 18, 27, 38, 48, 57,112]). In particular, the latter question

in connection with transmission problems for the spates= W14,y := w—14¢ (with boundary
conditions incorporated) has been treated inl[27, 12,143, 7] (se¢ also [32] and references therein). All
of these have in common that they transfer geometrical properties of the underlying domain or/and
geometrical properties of the smoothness regions for the coefficient function to functional-analytic
properties of the relevant spac&s-4 andW —1:4. Exactly this is also the case in this paper; our aim

is to prove a sharpened (and optimal) version of the results from [12, Ch. 4], namely:

THEOREM1.1 Assume thaf2 ¢ R? is a bounded domain with Lipschitz boundary. Further, let
2, C £2 be another domain which is supposed to satisfy one of the following conditions:

(i) £2,isacCt domain which does not touch the boundaryaf
(i) The dimensiond equals 3,02, is a Lipschitz domain, ands2, N £2 is a C* hypersurface.
Moreover,d£2 andd 2, meet suitably (see the definition below).

Let « be a function o2 with values in the set of real, symmetticc d matrices which is uniformly
continuous on both2, and 2 \ £2.. Additionally, . is supposed to satisfy the usual ellipticity
condition
essinf  inf w(X)E - € > 0. (1.1)
Xef2 £eCd, |||l a=1

Then there is @ > 3 such that for every from the closed right complex half-plane,

—V L uV 4 WER) - W) (1.2)
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is a topological isomorphism for ajl € | p/, pl. If £2 itself is also aC* domain and2, satisfies (i),
thenp may be taken asc.

DEFINITION 1.2 We say thad 2 andd $2, meet suitablyf for any pointx from the boundary of
352 N 382, within 32 there is an open neighbourhotid of x in R and aC* diffeomorphismady
from Uy onto an open subset Bf such that

o Oy (Ux N £2) equals an open bounded convex polyhedign
o Oy(Ux N 2N 082,) = Cx N Hy, WwhereHy is a plane which contain®y (x) and a point of’y.

Note that our result is a certain complement [to] [19], where for 3D-problems with mixed
boundary conditions, but without heterogeneities, isomorphism theorems withilthe> w14
scales are obtained. Furthermore, it is somewhat similar to the results|of [41], where piecewise
Holder continuity of the first order derivatives is proved under slightly stronger assumptions on the
data. Last but not least, Theor 1.1 is related to the resulis bf [14], vW\éfé regularity is
proved for the solution if the right hand side is sufficiently regular.

Operators of typd (1} 2)—which may be seen as the principal part of the homogenized version of
an elliptic operator with inhomogeneous Dirichlet data—are of fundamental significance in many
application areas. This is the case not only in mechanics (sée [40, Ch. 1V.3]), thermodynamics
[51], and electrodynamic$ [50] of heterogeneous media, but also in mining, multiphase flow and
mathematical biology. Especially in biological models it often seems unavoidable to take into
account heterogeneties (seel[23][or [11] and references therein). Moreover, such operators are also
of interest for the description of submicron devices by means of &8utger operator in effective
mass approximation (see for examplel[10,[55,[54, 42]). Here heterostructures are the determining
features of many fundamental effects (see for instanice [9, 34]). With ongoing miniaturization of
electronic devices the resolution of material interfaces becomes ever more important, so that one
definitely has to deal with discontinuous coefficient functions here. Moreover, a large amount of
papers exist on the numerics of such problems (see€ é[g./[1,/31.113, 53] and references therein).

The Wol’q < W14 setting is attractive for many problems for the following reasons: if the
gradient of the solution belongs to a summability clastarger than the space dimensiénthen
the solution is automatically #lder continuous—which is often of use for auxiliary problems. By
the way, in three dimensions this cannot be achieved withinithé scale becaus# /%2 is a
principal threshold in the case of jumping coefficients (see [48] for further results). Secondly, the
result has far reaching consequences for the treatment of quasilinear parabolic equafiéns in
spaces—as carried out [n [43/46]. Moreover, our elliptic regularity theorem, combined with a result
from [8], also yields maximal parabolic regularity &F—149.

Another important application of the informatiop > d is the possibility of obtaining
uniqueness results for associated nonlinear equations and systems (see for eéxample [24, 25]). Of
course, these things are most relevant in the “physical” space dimension 3. Last but ndi fésst,
is large enough to contain (suitable, say bounded) surface densities and even (not too singular)
measures (see [68, Ch. 4]). In particular, this enables one to include prescribed jump conditions for
the conormal derivative of the solution across the interface (sée [13]).

The outline of the paper is as follows: First we introduce some notation. In the next section we
prove Theorel. In Section 4 it is shown by a counterexample that @& theondition on the
subdomain is violated at only one point, then one loses the result completely. The last section is
devote;d to conclusions for corresponding parabolic operators, such as maximal parabolic regularity
onw~—+14,



OPTIMAL REGULARITY FOR ELLIPTIC TRANSMISSION PROBLEMS 235

2. Notations

The real scalar produczj‘?zlxjyj of two vectorsx = (x1,...,x4),y = (y1,...,yq) € Cis
denoted byx - y. Throughout this papes? and A are always domains iR?. For the definition

of a Lipschitz domain and a domain with Lipschitz boundary we refer the reader primatily/to [26,
Ch. 1.2] (see also [56, Ch. 1.2]). X is a complex Banach space, thetY (A; X) denotes the space

of Lebesgue measurable, essentially bounded functiona arith values inX. W14(A) stands

for the usual (complex) Sobolev space on thesdsee [26] or[[52]). Further, we use the symbol
W&’q(A) for the closure ofv|4 : v € CPRY), suppy C A} in W4 (A). W14 (A) denotes the

dual toW&’q(A); here and in what follows;’ always denotes the adjoint exponght= ¢ /(g — 1).
If p is a Lebesgue measurable, essentially bounded function on the damtiking its values in
the set of real, symmetri¢ x d matrices, then we define

—V .oV WA - WL2(a) (2.1)

by
(=V - pVo,w) = / oVu-Vwdx, v,we Wol'z(A). (2.2)
A

Here and in the following{-, -) always denotes the dual pairing betwe‘tbf@'2 and W12, The
maximal restriction of-V - pV to any of the space® ~19(A) (g > 2) will be denoted by the same
symbol. The norm in a Banach spaXewill always be indicated by - || x. For two Banach spaces
X andY we denote the space of bounded linear operators oimto Y by B(X;Y). If X =Y,
then we abbreviat8(X).

3. Proof of Theorem[1.1

Let us briefly outline the proof; it rests heavily on nontrivial regularity results for adequate model
problems within the same scale of spaces. We begin by collecting results of this type which are
already known and afterwards establish some technical prerequisites. In the second subsection we
first prove a regularity result for another model situation, namely for an operatos V +1 onR¢,

whereo equals a (real, symmetric, positive defini#e) d matrix on a half-space and anothéx d

matrix on the complementing half-space (see Thedrenj 3.11 below). Afterwards the Jerison—Kenig
result concerning the Dirichlet Laplacian on domains with Lipschitz boundary is generalized to
divergence operators with uniformly continuous coefficient function. The proof itself is then carried
out via some localization procedure which permits us to reduce the considerations to the constituting
model constellations.

3.1 Known results and preliminaries
Two cornerstones for all what follows are the two results below:

PROPOSITION3.1 (seel[39, pp. 156-157] arid [2, Ch. 15]) Lat be bounded and have @'
boundary. Ifp is a function onA with values in the set of real x d matrices which is elliptic

and uniformly continuous, theaVv - pV : Wol’q(A) — W~14(A) is a topological isomorphism
foranyq € 11, ool.
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PROPOSITION3.2 ([33]) If A ¢ R? is a bounded domain with Lipschitz boundary, then there is
a numberg > 3 such that the Dirichlet Laplacian provides a topological isomorphism between

W (A) andW L4 (4).
For the proof of assertion (i) of Theorgm JL.1 we employ

PrROPOSITION3.3 ([21]) Assume thaf c R3 is a (bounded, open) convex polyhedron and that
H c R3is a plane which intersects LetC, andC_ be the two components 6f\ 7, and letp be

a function orC, constant o€’ andC_, and whose values are two real, symmetric, positive definite
3 x 3 matrices there. Then there iga- 3 such that

—V . pV I WEC) - W)
is a topological isomorphism.

Additionally, the following scaling argument is required:

LEMMA 3.4 LetC c R3 be a bounded, open, convex set whose closure corflaissume that
p is a bounded, measurable, elliptic coefficient functionComaking its values in the set of real,
symmetric 3« 3 matrices and which additionally satisfiegex) = p(x) forallx € C andx € 10, 1[.

For anya € ]0, 1] equip the spacwol’q(o:C) with the normys — (/[ - V¥4 dx)l/q. Then
-1 _ -1
Proof. One checks that foy € [1, oo[ andw € ]0, 1] the mapping
1, - _
Tyo: Wo'(€) 3 ¥ > ¥y @)
is an isometric isomorphism frorwol"’(C) onto Wol’q(aC). Then one verifies the identity
TS o (=Y placV)Tyu = =V - pV. O

Further, we need the following interpolation result:
LEmMMA 3.5 If A c R? is a Lipschitz domain, then one has the interpolation identities

[Wo (), W ()]s = W' (4) and - V=2P1(A), WHP2(A)]g = WP (A)

if p1, p2€]l,o0[and Yp =1 —6)/p1+6/p>.

Proof. Continuation outsideA by zero defines a continuous coretraction frchj"’(A) into
wl4(R?), where the restriction is the retraction. Thus, the first identity follows fromRAe
case (see [52]). The second is implied by the first and duality for complex interpolation (see [52,
Ch. 1.11.3]). O

REMARK 3.6 From Lemma 3]5 the following may be deduced (seé [52, Ch. 1.9.3):i$f a
bounded subset #(W ~12(A); W&’Z(A)) and

sup|All
Aed

Bw-La(ay;whiay <
for oneq > 2, then

sup sup|lAfl
te[2,q] Aed

BW-Lr(aywy' () = O
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LEMMA 3.7 Assumey € [1, oo[. Then the norm of the mapping
L¥(A; BECh) 3 p > V- pV € B(Wy? (4); WL (4))
does not exceed 1. if € C andw is a coefficient function omt which satisfies
leollooa:m@in 1=V oV + D7 g1 aymdray < Y2
then
1=V (p+&)V+1)7"

”B(W*lvz’(m;W&*"(A))

<2|(=V-pV +2)" (3:2)

1
w10 caywtecay:

Proof. The first assertion is implied byd#der’s inequality. The proof of the second follows from
the first and a classical perturbation theorem (seke [35, Ch. IV.1.4, Thm. 1.16]). O

REMARK 3.8 The lemma makes it clear that th&" norm on the space of coefficient functions is
adequate to control the bounded invertibility for divergence operators withifthe < w14
context. Most of what follows heavily rests upon this fact.

Next we present a localization principle which is similar to that proved ih [27] for the Laplacian.
In essence, this will permit us to deduce the isomorphism progerty (1.2) from the same property for
suitable local model constellations.

LEMMA 3.9 LetA c R? be a bounded Lipschitz domain adlc R¢ be open such that, :=
AN QOisagain a Lipschitz domain. Fix an arbitrary functipr CSO(R”’) with suppn C O. Let p,

denote the restriction of the coefficient functiono A,. Assumer > 0 andu € W01’2(A) to be the
solution of
—V-pVu+iu=f e Wt2(A). (3.3)

Then the following holds true:
(i) The linear formf, : w — (f, nw) (Wherenw means the extension by zero to the whalgis
well defined and continuous dﬁ&*’ (As) Wheneverf € W17 (A).

(i) Let T, denote the linear fornw — fA. upeVn - Vwdx on W&’Z(A.). If u e W7 (A), then
—peVula, - Vnla, + T, € WL5(A,), wheres = s(r) is given by

rd
it r e [2
s=1d—r Treted, (3.4)

any (large) positive number if> d.
(iily v :=nula, € Wy2(A,) satisfies
=V peVU+2Av = —peVula, - Vla, + Tu + fo. (3.5)

Proof. (i) The mappingf +— f, is the adjoint tow — 7w which mapsWé”/(A.) continuously
into W2 (A).
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(i) The caser > d may be reduced by the embeddifit}” (A) — W14=€(A) to the case < d;
we treat the latter: clearly, V|4, - Vi € L"(A,), Which gives by Sobolev embedding and duality

rd . . L. .
PeVit| A, - V1A, € wLa (A,) forr e [2, d[. Concerningdl,,, we will show that it is a continuous

L%y

linear form onWw,, (A,): one can estimate

(T, w) | < Mlull

N o1l oo a: B@ay I VnllLoo Al VW IIL([%)/(A.)- (3.6)

Lderr(A
Using again Sobolev embedding, the right hand sidg of (3.6) may be estimated by

cllullyr 0O ( A V|l Lo w rd_y .
lullwrr an Il oo a8y IVHllL=adl le’(rfir) )

(iii) For everyw € W}?(A,) we have

(=V - pe VU + A, w) = /
Ao

=—/ wp.Vu~V17dX+/ u,o.VnodeX—i—/ qu~V(ﬁTu)dX+)\/ unw dx,
Ao Ao A A

peV(nu) - Vw dX—}—K/ nuw dx
Ae

which gives the assertion. O

Further, we need the following technical lemma, the proof of which can be foundlin [36, Remark
2.1.3]:

LEMMA 3.10 Let$2 be a domain with Lipschitz boundary. Then for arye 0952 and any
neighbourhood ok there is a (possibly) smaller open neighbourhd@dof x such that2 N Vy
is a domain with Lipschitz boundary.

3.2 Core of the proof

THEOREM3.11 Leto be a coefficient function o4 which equals a real, symmetric, positive
definited x d matrixo~ onR? = {x € R? : x; < 0} and another real, symmetric, positive
definited x d matrixo™ on R‘fr ={x e R?:x; > 0}. Then—V - o'V + 1 provides a topological
isomorphism betweeW 17 (R?) andW 14 (R9) for all ¢ € ]1, oo].

Proof. Letx = (x’,xs) € RY,x’ € R™L andd; = 9,,,1 < i < d. Moreover, we identify
{x € R? : x; = 0} with R?~1, It is sufficient to prove that the unique solutiene W12(R?) for
each of the equations

—V.-oVu+u=f, feLiRY, 2<gq < oo, 3.7)
—V-oVu+u=20f feLiR?), 2<gq<oo, (3.8)

i €{1,...,d}, belongs tow14(R%). To do this, it is enough to show the estimate
lullwiemay < cll fllpagay. f € C, 3.9)

wherec denotes a generic positive constant & stands for the dense subset/f(R?) defined

by
C® = {y € C(RY) : ¥ = 0in some neighbourhood & ~1}.



OPTIMAL REGULARITY FOR ELLIPTIC TRANSMISSION PROBLEMS 239

Applying classical elliptic theory of transmission problems (see, €.d., [47]) to the equation
—V.oVv+v=f feC> (3.10)

we obtain the inequality

”U”WZ»II(R‘LURi) < C”f”Lq(Rdy (3.11)
This ensureg (3]9) in the case [of (3.7). We now estallish (3.9) in the cése| of (3.8) and the transversal
derivatived,; the proof for the tangential derivatives is immediate. Looking for the solutidn df (3.8)

with i = d in the formu = d;v + w, we observe thab has to satisfy the following transmission
problem:

—V.orvutF+wF =0 inRL, [w] = —[v] =: g,

[0v.ow] = —[0y.50qv] =: h, (3.12)

wherew® = w|R‘i’ [w] = (w™ — wh)|ga-1 and

[how]=(c"v-Vw — otv. Vw+)|Rd71, v=(0,...,0,1).

Sincev™ satisfy the homogeneous differential equations fiéart, the term p, , d,v] is a linear
combination OfajadvihRd—l for j =1,...,d — 1. Thus, by the trace theorem and the continuity of
differentiation in tangential direction, we conclude frdm (3.11) that

I[9av]llwi-1/g.0 a-1) + [I[3v.0 8]l w-1/0.9ma-1y < Il f Il La ey (3.13)

We refer to[[52, Ch. 2] for the required properties of Sobolev spaces.

To prove [3.9), in view of{(3.111) an@ (313), it now suffices to show that the solutidn of (3.12)
satisfies

”w”Wl'I(RiURi) < C(||h||w—1/qu(]Rd—1) + ||g||wl—1/q=q(]Rd—1))- (3.14)
We will reduce [(3.I4) to well known continuity properties of Poisson operators [(see [28]), the
symbols of which can be calculated explicitly. In order to do so, we splve]|(3.12) by taking partial

Fourier transform with respect &6 denoted byFu = Fu(&’, x,4) for a functionu onR¢, with F~1
being the inverse transform. We set

+_ o +yd-1 £ _ o+ + £_ *
BY = (o) =1 " =(0qq,-- 0514, b7 =0y,

Whereo;.E are the entries of the matrices™. Applying the partial Fourier transform tp (3]12), we
obtain
(=b*97 + 2ia* - £'9,+BFE - & + DFwH(E, xy) =0 inRL,
Fuw™ (¢, 0-Fuw* (&', 0) = Fg), (3.15)
(b~0g —ia™ - ENFw (.00 — (b7 8y —ia™ - ENFw* (€', 0) = Fh(&).
Ignoring the exponentially increasing solutions of the homogeneous differential equationsijin (3.15),

we have
FwE(E, xq) = CEE) expFra (AT E) +ia® - &) /b%) (3.16)
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with AT (') = (b*(1+B*¢'-£') — (a*-£')%)Y/2. Then we determin€*(¢’) from the transmission
conditions in[(3.1p),

C ()—CT(E) =FgE&,
ATENCTEN+ ATENCHE) = FhE),

which gives
CE= U+ AN IFRF ATA + AN Fg. (3.17)

Note that the ellipticity ofv - oV implies the lower bound
ATEY Z elE), )= A+ EPY2

We will only prove the corresponding estimafe (3.14) for the upper half-space since the proof for
R? is completely analogous. Frofn (3}16) apd (8.17) we obtain the representation

w(x', xq) = F €, xa) FhE) + F hoE' x0) Fg (&) =: Kih + Kag (3.18)
for x; > 0. HerelC1, K2 are Poisson operators with the symbols
k1€, x0) = (A (") + AT(E)) L expl—xa (AT (E) +iat - &)),
ka(§', xq) = =A™ (ENk1(E', xa).

Using [3.19) and the expressions §4¥, it is not difficult to check that; is a symbol of order-1,
i.e., it satisfies the estimates

(3.19)

Il 9 0 k1 (&', I g2y < Cmno (§7) /271417 Hn (3.20)

forall & € R4 x; € RY, m,n € N and all multi-indicesx. Analogously,k, is a symbol of
order 0, i.e., the-3/2 in the exponent oft’) in (3.20) has to be replaced byl/2. Therefore, from
[28, Thm. 3.1] we obtain the continuity of the operators

Ki: W Hea®I=ty  wstba®a), 1 wVeaRITY) — whI(RE)
for all s € Z. In particular, together wit (3.18) this implies that the-¢ norm ofw on Ri can be
estimated by the right hand side pf(3.14). O

Next we want to show the assertion of Theorpm| 1.1 if the coefficient function is uniformly
continuous on the whole domain. This will be needed later on as a tool for the general situation.

THEOREM3.12 Let2 c R? be a bounded domain with Lipschitz boundary amdh real,
symmetric-valued, uniformly continuous coefficient function @n elliptic in the sense of (111).
Then there is @ > 3 such that

SUPII(=Y - 00OV 33252y w2y < O
xXesf2 e

For allg € [2, p], .
—V oV i Wy(2) - W) (3.21)

is a topological isomorphism.
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Proof. If the first assertion were not true, then there would be a sequygpkefrom £2 converging
to xp € £2 and a sequendg, }, with p, > 3, lim p, = 3 such that

nILmOO [(=V - p(Xx)V) ”B(W*LI’” (Q);W&‘l"l K2) 0. (322)

If one transforms—V - p(Xg)V with respect to the coordinate transform(xo)) /2, then one
ends up with a multiple of the Dirichlet Laplacian aip(x))~Y252. Using the equivalent
characterization of domains with Lipschitz boundary by the uniform cone condition [(see [26,
Thm. 1.2.2.2]) one verifies thap (xo)) /282 is also a domain with Lipschitz boundary. Then,
by Propositior] 32, there is numbgp > 3 such that the Dirichlet Laplacian is a topological
isomorphism betweewol”’o((p(xo))—l/zs?) andW—1r0((p(xg))~1/282). It is not hard to see that
this carries overte-V - p(Xg)V : Wol”’o(Q) — W~Lro(2). But then, due to the continuity qf

and Lemm?, the s€tV - p(x,)V)~1 : n > ng} is bounded iNB(W—1P0(2); Wé’po(_Q)) for
suffciently largeng. Additionally, the set is bounded B(W ~12(£2); Wol’z(.Q)) by Lax—Milgram
because the matricgegx,) have a common ellipticity constant. Taking into account Rerpark 3.6,
this yields a contradiction t¢ (3.22). We prove the second statement, firgt forp. In this case
(3.27) is injective by Lax-Milgram; by the open mapping theorem it suffices to show that it is also
surjective. Choose for every poixte §2 a ball By aroundx with radiusRy such that foy € BxN$2,

1 -1
o) = Pl prey < §<t sup feugll(—v PV +D B<W_1<,(Q);W3,x(9))) - (323
This radiusRy is indeed nonzero due to (i) and Remark]3.6. We choose a finite subcovering
By, ..., By, for 2. Letny, ..., n, be a partition of unity orr2 subordinate to this subcovering.
Assume nowf € W17 (£2) and letu be a solution of-V - pVu = f. Bﬁthe Lax—Milgram lemma

3

u must be fromW&’Z(Q). PuttingO := (J;Z; Bx, we get, from Lemma 3|9,
=V pV(nu) = g, (3.24)
where g; is from W—1Min6@.2) Q). We now setr := min(s(2), p) and define for every €
{1, ..., m} amodified coefficient functiop; on §2 as follows:
if y e By, N$2,
iy =100 7Y < B (3.25)

p(X;) elsewhere oi2.
Becauseyu has its support irBy,, it satisfies besidef (3.24) also the equation
=V o V(nu) = g. (3.26)
We will now show thaig; € W—11(£2) impliesnu € Wol’t(.Q). We rewrite [[3.2p) as
=V pX)Vqu) + V- [p(1) — pr]V(nu) = gi.

Taking into account|(3.23) and Lemr@&? we see th&t- oV W&”(Q) - W l@)is
boundedly invertible. Thus, eaeiu must be fromW01”(.(2), which givesu € W&”(Q). Repeating
these considerations with the improved information on the integrability expon&ht-efeach time
using Lemm9—0ne, after finitely many steps, ends up with W&”’(.Q). Hence, [(3:2]1) is
surjective, which proves the assertion fpr= p. The numbers from [2p[ are obtained from
Remark3.5. O



242 J. ELSCHNER ET AL

COROLLARY 3.13 The isomorphy property also holds feF - pV + A with the same range for
q,if Rr > 0.

Proof. The resolvent of-V - pV is compact and, due to Lax—Milgram, nowith %A < 0 is an
eigenvalue. O

Now we have all the occurring model situations at hand. The next result will provide the asserted
regularity when the problem is restricted to (suitable) neighbourhoods of the boundary points. Let
us first introduce the following notation: we denotedbthe open unit cube iR¢, while £_, £, are

used as symbols for the lower and upper open half cubes, respectively. Finally, we defutiechy
plate which separates. and&,, P :=EN{x:xs =0}.

LEMMA 3.14 Under the assumptions of Theorem 1.1 for &any 952 there is a neighbourhood
Oy and ag = gx > 3 such thatOx N 2 is a Lipschitz domain and

—V uV 41 Wy 0xN2) - WH(OxN 2) (3.27)

is a topological isomorphism. 2 is aC domain ands2, has positive distance to the boundary,
theng may be taken arbitrarily large.

Proof. First we consider case (i) in Theor¢m]|1.1. For any 352 let Oy be an open neighbourhood
which satisfies the following two conditions:

(I If 21is C1 thenAd, ;== Oy N RisCL;andif2 hasa Lipschitz boundary, thedy := Ox N 2
has a Lipschitz boundary.

The existence of such a neighbourhood is almost obvious inCthease and follows from
Lemma[3:ID in the other case. Thus Corollary B.13 implies the assertion; in particufay be
chosen arbitrarily large if2 is C! (see Propos.l).

In case (ii) one cannot treat all the points fr@® together, but has to divides2 into three
(disjoint) subsets the points of which have to be treated separately:

() 952\ 952,
(b) the inner points 02 N 352, within 952,
(c) the boundary points @f$2 N 9£2, within 9£2.

(@) If x € 982 \ 352,, then there is an open neighbourhodd of x such thatVy N 2 does not
intersect2,. Namely, if this were not the case, themwould be an accumulation point ¢2,, and
hence, would belong t&,. Because is not in£2, this would mearnx e 3£2,, which is not the case.
Thus, by possibly shrinkingVy according to Lemmp 3.1&,can be treated as in (i).

Let us now show that in case (b) one can find a neighbourli®odf x such thatOy N 2 =
OxN 82, andOyN$2 is a domain with Lipschitz boundary. First we construct an open neighbourhood
My of x with My N 2 = My N £2,. Namely, because is a Lipschitz domain (se& [26, Ch. 1.2]
or [56, Ch. 1.2.3]) there is an open neighbourhdoy of x and a bi-Lipschitz ma@y : Wx — &£
such thaty(x) = 0, ¥ (£2 N Wy) = £ and¥y (32 N Wx) = P. Because was an inner point
of 02 N 382, there is a positive numbeyg such thatyP C ¥ (02 N 32,) C ¥(9£2,). But, by
assumptiong2, itself is a Lipschitz domain; thus theresis € 10, r,] such that

WX(BQO) N ng = Sxp. (328)
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Now we defineMy := ¥ 1(s¢&) and write
MyN 2 =MxNR)UMyxNR2N3R) U (MyxN(2)\ £2,)). (3.29)

From the definition oMy and [3.28) it is clear that 1y N 2 N 32, is empty. Thus[(3.29) reduces
to
Mx N2 = (MxN§2)UMxN (2 \ Qo)) (3-30)

But My N £2, being a continuous image of a connected set, is itself connected. Thus, one of the
(open) sets on the right hand side[of (3.30) must be empty, which is definitely not thdg ofs2..

This givesMy N 2 = My N £2,. Due to Lemma 3.70 we may pass to a neighbourt@pd- My

for which Ox N 2 is additionally a domain with Lipschitz boundary. Hence, the coefficient function
is also uniformly continuous 0@y N §2 and one can again argue by Corollary 3.13. It remains to
consider case (c): assume tkas a boundary point 0§ 2 N 8 £2, within 9£2. Then, by assumption,
there is an open neighbourhobig, a C! diffeomorphismay, a convex polyhedro@y and a plane

Hx which together satisfy the conditions of Definitfon]|1.2. Modulo a translation we may additionally
assumedy (x) = 0 € R3. Let py be the coefficient function ofy which is induced byt|zs,ns under

the mappingdy. If C; andC; are the two components 6% \ Hy, thenpy is uniformly continuous

on both of them. Define the matrices

px = lim pi(y) and py = lim o pe(y) (3.31)
y—0,yeCy y—0,yeC_

and the coefficient functiopx onCy by

- ip;* oncy,

= 3.32
Px py onCy. (3.32)

Leta = ay € ]0, 1[ andg > 3 be such that

€S SUlY) ~ s 1=V - 50 sy -sacy e < Y2
yealx

This is possible due to Propositipn Bf3, (3.31) gnd (3.32). In view of Lejnnha 3.4 then also

ess SulAx(y) = oMl 1=V - V) w14 eyt ey < M2
yealx

Lemmg 3.¥ implies that

—V - pxV Wy (aCy) — W (aCy) (3.33)
is also a topological isomorphism. L& be a cube, centred ate R3, with the properties
Ox C Ox(Ux), 9OxN(Cx\alx) =0, (3.34)

and such tha&Cx U Qx is a Lipschitz domain. (A€y is a convex polyhedron, wit@ being one of

its boundary points, it is not hard to see that any sufficiently small @bedoes this job.) If one
definesOy := & 1(aCx U Qx), thenOx is also a Lipschitz domain (s€e 26, Ch. 1.2, Lem. 1.2.1.3)).
Moreover, in view ofxCx C Cx = ®x(Ux N £2), (3:34) and the injectivity oy one has

Dy (Ox N 2) = Dy(Dg H(@Cx U Qx) N Uy N £2))
= (OéCX U Qx) N Qx(ux N Q) = (“Cx U Qx) N CX = (OéCX N Cx) U (Qx N Cx) = Ofcx~



244 J. ELSCHNER ET AL
This and the isomorphism property pf (3.33) imply that
—V . uV WOk N 2) - WO Q)

is also a topological isomorphism. But the resolvent is compact -ahds obviously not an
eigenvalue, henc®y also satisfies the assertion of Lemjma B.14. O

We now come to the proof of Theorgm 1.1, first restricting the considerations to thg cas2

For thesg;, (1.3) is injective by the Lax—Milgram lemma. Hence, by the open mapping theorem it
suffices to show that for the asserigd and anyf € W—149(£2) the solutionu of =V - uVu + u

= f belongs toWOLq(.Q). Let {Ox}xeaz be a system of open sets from the foregoing lemma and
Oy, - .., Ox, be afinite subcovering dfs2. Letg > 3 be the minimal for these sets. Further,
the C* property ofd2, N £2 ensures for every € 352, N £2 the existence of a positive number
ay, an open neighbourhood, ¢ £ of x and aC? diffeomorphism®y : Vx — ax& such that

Dy (082,NVy) = axP, Px(X) = 0 and the determinant of the corresponding Jacobian is identically 1
(seell56, Ch. I, Thm. 2.5]). The transform@fV - uV + 1)|y, under®y (seel7, Ch. 0.8]) is then

of the form—V - [ixV + 1, wherefiy is uniformly continuous oy &_ and onax&, . We define

o = lim  f[x(y) and o = lim ix(y)
yeE_,y—0 ye&y,y—0

Now letoy be the coefficient function oR? given by

ox =0 onR4.
By Theorenj 3.1]1, for alk € 952, N §2 and allz € ]1, oo[ the operator-V -0V + 1 is a topological
isomorphism betweew 1! (R?) and W17 (R?). Let x € ]0, ax] be such that

||GX — llanoo(ﬂxg;B((cd)) S[Up] ||(—V . O'Xv + 1)_l||B(W—1.t(Rd);Wl,t(Rd)) < 1/2 (335)
tel2,q

Such apy exists because the second factor is finite by Rerpark 3.6 and the first factor can be
made arbitrarily small by the properties 6§ and oy for By — 0. Definelly as the inverse
image of 8x€ under @y. Finally, for anyx € £ \ 952, let By C 2 be an open ball around

x which does not interse@s2,. (Clearly, the restriction of the coefficient function By is then
uniformly continuous.) The systen®y,, ..., Ox.}, {Uxlxeenin,, {Bxlxen\a5, together form an

open covering of2. Let Ox,, ..., Ox., Ux 1, - ., U, Bx,.1, .- ., Bx, be an open subcovering

and n1, ..., Mk, Mk+ls - -+ Oms Nmstds - - - » Nn D€ @ partition of unity oven? subordinate to this
subcovering. Recalling (3.4), from now on we set min(s(2), ¢). Assume € {1, ..., k}. We put

v = ﬂlu|0x,m- Then, due to the property € Wol'z(fz) and Lemm9ul satisfies an equation

V.-V +v = fi (3.36)

wherep, = plo, ne andf; € w110y, N 2). Becausd (3.27) is also a topological isomorphism
if ¢ is replaced by there, we get; € W' (Ox, N £2), which givesju; € Wy (£2). Let next! be in
{k+1,...,m}. Then the property € W&’Z(Q) and Lemm9 imply that; := o, satisfies
an equation[(3:36), where this tirpeg := Mg, and f; € WL Uy,). Moreover, it is clear that both
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v; and f; have their supports ibly,. We transform[(3.36) via thél—mappingqﬁx,. This leads to the
following equation for the transformed objects

—V ., Vi + 0= fi (3.37)

on By, &, where f; € W—11(B,&). Additionally, f; has its support iy, £, which is also true fo#;.
Let &; be the following coefficient function, defined &¢:

5 — iy, onpyE,
oy, ONRY\ By E.

Becausef; and?; have their supports ifx, £, (3.37) can be extended to an equation on the whole
R¢4; namely, ifV; is the extension of; by zero to the whol®?, then

V.- VVi+Vi==V.-o,VVi+V,+ V- (ox, —6)VV, = F, (3.38)
with F; € W—L(R?). By definition, one has
llow, = G1ll oo a; By = Nox = fixi ooy, ;B(Cay)-

This, together with[{3.35) and Lemrha 3.7, implies that - &;V 4+ 1 : W (RY) — wW—1/(R%)
is also a topological isomorphism for our specifiedConsequentlyy; € W!(R?), which gives
U € Wol”(,Bx,é’), and hence; = ’Ilu|ux, € W&”(Z/{X,). Since the support ofju is in U, we obtain
nu € W&”(Q) foralll =k+1,...,m.Lastly,ifl € {m+1,...,n}, then one also ends up with an
equation for; := nulg, of type [3.36). The corresponding right hand sides am i’ (By,) (see

Lemm). By Propositi@.l thep|s, € W' (Bx,), which yieldsyu € Wy (£2), and finally
ue Wol"((z). Exploiting this and iterating the above considerations one improves the summability

of Vu in the light of Lemm step by step and finally one ends up wkthwol‘q(fz). This proves
the assertion fok = 1 and one; > 3. Theg's from [2, ¢[ are obtained by Remafk 3.6. For all other
A’'S we obtain the assertion by the compactness of the resolvent and the fact thaithdii < 0
can be an eigenvalue. Finally, the cgse 2 is obtained by duality.

REMARK 3.15 The proof shows—under our assumptionds?, N 2—that the limitation forg
comes exclusively from the boundary points.

REMARK 3.16 The reader may possibly ask why in case (ii) we restrict ourseluést@. The
answer is: the essential aim of this paper is to prove the isomorphism property farhéch is
larger than the space dimensi@nin this spirit, the two-dimensional case (even under more general
assumptions) is covered by [27].df > 3 an analogue of Propositipn 8.3, givigg> d, cannot

be expected (seé [21]). Nevertherleds= 3 as the ‘physical’ dimension seems to us the most
important case.

REMARK 3.17 If £2, does not touch the boundary &f, then one can prove the analogous result
for the Neumann operator, namektV - uV + A provides a topological isomorphism between
wla(2) and(W—L14 (2))* for ag > 3 and allx from the open right half-plane. In this case one
uses Zanger's result [57] instead of that of Jerison—Kenig.
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REMARK 3.18 The result generalizes to the case where finitely ni8ngomains are included in

£2 at positive distance to each other and the coefficient function is uniformly continuous on each of
them and, of course, on the complement of their union.

REMARK 3.19 The isomorphy property claimed in Theorlem] 1.1 remains true in the case of real
spaceswol’q(fz), w—14(£2) and real.’s, because for thesethe operator-V - 1V + A commutes

with complex conjugation.

REMARK 3.20 Letg be any number as in Theorgm J1.1 and assume..,a; € L'(£2),

b1, ...,bg € L°(£2), c € L'(£2). Then, under suitable conditions ary, z, the first order operator
d
0 a(b
W (2) 5 u s Z<al—” 4 X ”’)) teue WLi(Q) (3.39)
= 0x; dax;

is relatively compact with respect toV - uV. Hence, if—V - 1V is perturbed by[(3.39), it also has
Wol’q(ﬂ) as its domain of definition.

4. Nonsmooth interfaces: a counterexample

The reader may have possibly asked himself whetherCthgroperty is necessary or may be
weakened without changing the result. The following counterexample [(see [21]) shows that the
situation changes dramatically if the interface has only one corner point. In particular, this shows
that piecewiseC® is (by far) not sufficient for our result. Namely, quite parallel to the classical
example of Meyers (seé [44]) the integrability exponent for the gradient of the solution of the
(planar) homogeneous elliptic equation tends to 2 in dependence on a certain parameter.

The background for the considerations in this section is the well known connection between
singularities for the solution of an elliptic equation and the eigenvalues of an associated operator
pencil of Sturm—Liouville operators (see [43] br [21]).

We consider the following coefficient function @?:

1 .
(0 t2> if x,y >0,

t 0
<0 t) elsewhere ofiR?, ¢ > 0,

nx,y) =

and, correspondingly, the elliptic problem
V-uVu =0. (4.1)

Proceeding as in [43] we are looking for solutiohs W'-2(]0, 2x[) of the (generalized) Sturm—
Liouville equation
—(boit) — Mbrit) — Ab1ii’ — A2boii = 0, (4.2)

combined with the compatibility conditions
w(/2) =v(n/2), w(0)=v(2n),
(b20gw + Abiw)|o = (b20gv + Ab1V) |27, (4.3)
(b20gw + Abyw) |z 2 = (b20gv + Ab1V) |72,

if w= ﬁ|[0’n/g] andv = ﬁ|[n/2,2n]-
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The coefficient functionsg, b1, b, are defined as follows:

__|cog6+1?sirte  if6 €0, /2,

bo®) =1, it 0 € [/2, 27,
[ sirP6 +r2cof6 if 6 €0, /2],

b2(0) =1, if 0 € [7/2, 2], (4.4)
| (?—1)sindcossd if 6 €0, 7/2],

b10) =1 ¢ if 0 € [x/2, 27].

In order to determine thewith the smallest possible (positive) real part, we use the ansatz functions
(seell17])

w(0) 1= c4 (1 cosh + i sind)* + c_(t cosh — i sind)”*,
v(0) ;= dy cosAO + d_ sinAf

with unknown coefficientss. andd... Using [4.8) and (4]4), we can eliminate to get the equations

dy(t* —cos2rr) —d_sin2rx =0,

. N (4.5)
dysin2tA+d_(t" —coszra) =0.
Obviously, the systeni (4.5) is nontrivially solvablednp, d_ iff
(t* — cos 2r))? + sirf 27A = 0,
or, what is the same,
th 41
COS ) = = coshirInr). (4.6)

Writing coshiA In#) = cogiX In¢) and taking into account the identity
60—t

.0 .
Cc0SH — €coSt = —2Sin +Tsm >

shows that{(4]6) is equivalent to
(A . A :
sm(E(Zn +i Int)) sm(E(Zn —1i Int)) =0.
This is the case iff N
5(271 +ilnt) =2kn, kel
Thus, the, with the smallest (positive) real part is

N 82 A4 int
= 1 .
472 +1In%r ~ 4x2 +In?¢

One easily notices that as— oo, the real parts of thesegs converge to zero. Assume thatvith
M € (0, 1) is a complex number an@, € W12(0, 27) a corresponding function which satisfies
(4.2) together with the compatibility conditiorjs (4.3). Then the function

u(x1, x2) i= (x2 + x3)*2i; (argxy + ixz)) € Wa2(R?)
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is a solution of equatior (4.1) in the distributional sense. Moreayedoes not vanish identically,

and hence its absolute value has a strictly positive lower bound at least on a (nontrivial) subinterval
of (0, 27). Thus,u € Wli‘cq(IRiz) for g € [2,2/(1—9RA)), but not forg = 2/(1 — RA). If we let

t tend tooo, these solutions lack any common (local) integrability exponent larger than 2 for their
first order derivatives.

REMARK 4.1 The above example is not restricted to two dimensions. One can add arbitrarily many
dimensions by extending the solution constantly in these directions—at least in a neighbourhood of
zero.

5. Parabolic operators

Very often elliptic operators in divergence form occur as the elliptic part of parabolic operators
(seel[5] or[29]). In this section we will deduce functional-analytic properties for the corresponding
parabolic operators from our elliptic regularity result.Xfis a complex Banach space, then we
denote byWw™" (]0, T[; X) the set of elements fro’ (0, T[; X) whose distributional derivatives
with respect to time also belong 13 (JO, T'[; X). The main result reads as follows:

THEOREMb5.1 Let A be a bounded domain with Lipschitz boundary amda measurable,
essentially bounded, elliptic coefficient function which takes its values in the set of real, symmetric
d x d matrices. Assume that e ]1, oo[ is such that

—V .oV Wyl (A) > W (A)

is a topological isomorphism. Theéndr — V - pV has maximal parabolic regularity i —14(A),
precisely: Ifr e 11, oo[ is fixed, then for anyf e L’(]0, T[; W—19(A)) there is exactly one
functionw € L (10, T[; Wh4(A)) n W7 (10, T[; W —14(A)) such that

ow

S, —VopVw=[ and w0 =0 (6.1

COROLLARY 5.2 Under the above assumptiord’ - pV generates an analytic semigroup on
wLa(a).

In order to prove Theorefn §.1 we first establish some auxiliary results:
THEOREM5.3 LetA be a Lipschitz domain and as in the previous theorem. Assume ]1, oof
and letA, be theL(A) realization ofV - pV, with domainD,. Thend/dt — A, hes maximal

regularity overL?(A), in other words: Ifr € ]1, oo[ is fixed, then for anyf € L"(]0, T[; L1(A))
there is exactly on@ € L"(]0, T[; D) N WL (0, T[; L9(A)) such that[(5]1) is satisfied.

Proof. The semigroup generated By on L2(A) admits upper Gaussian estimates (5ée [8]lor [6]),
which implies maximal parabolic regularity dt¥ spaces [30] (see also [18]).

THEOREM5.4 Under the assumptions of Theorém|54V - pV)Y/2 provides a topological
isomorphism betweeW(}'S(A) andL®(A) and betweerL* (A) andW~15(A) forall s € [¢/, q].

Proof. First, interpolation (see Theorejn B.5) and duality show th&t - pV is a topological
isomorphism betweemv&’s(/\) and W—Ls(A) for all s € [¢/, q]. A deep result of[[B, Thm. 4]
yields the continuity of the map

(—=V - pVY2: Wyt (A) — L (A) (5.2)
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for all s € 11, oo[. By duality one obtains the continuity of
(=V - o2 L5 (A) > W5 (A) (5.3)

for all s € ]1, oo[. Hence, fors € [¢’, g] we can estimate

_Vv. -1/2 ,
”( v ,OV) ”B(L“'(A);Wé"s(/\))
<NV - 2D s cay w2 anl =V - 2 gy apomids -

This proves thaf (5]2) is in fact a topological isomorphism i€ [¢’, 4]. Being an isomorphism
betweenL® (A) andW 1 (A) follows from this by duality. O
COROLLARY 5.5 Let D, denote the domain of th&?(A) realization of -V - pV. Then
(=V - pV)¥/2 provides a topological isomorphism betwekp and W&"’(A).

Proof. —V - pV is a topological isomorphism betwedp, and L7(A) while (=V - oV)2is a
topological isomorphism betweeﬁé’q(A) andLi(A). O

We now give the proof of Theoren %.1. It is clear that the established isomorphisms for
(=V - pV)¥2 induce the following isomorphisms:

(=V V) Y2 L7q0, T[; W19(A)) — L™ (|0, T[; L1(A)), (5.9)
(=V - pV)Y2: L7(10, T[; Dg) — L7 (10, T[; Wy (4)), (5.5)
(=V-pW¥Y2:whrqo, T[; LY(A)) — WL (0, T[; W14 (A)). (5.6)

Further, it is well known that the solution of (5.1)) is obtained as
t
w(t) = / e=IVPY £(5) ds.
0

Hence, the parabolic solution operator commutes Wit - pV)¥/2. Consequently, the maximal
regularity property onL4(A) transfers via the isomorphisnis (5.4)—(5.6) to the spéice-4(A).
Corollary[5.2 follows from the well known fact that maximal parabolic regularity implies the
generation property of an analytic semigroup.

REMARK 5.6 The authors are convinced that the results on the parabolic operators are adequate
instruments for the treatment of (even nonautonomous) semilinear and quasilinear parabolic
problems. The key point concerning quasilinear equations of the type, say,

ow

o V.-Gw)uVw = H(t, w, Vw)
is that for three-dimensional domains apd> 3 suitable interpolation spaces betwd@gl"’ and
Ww—14 embed continuously into ®lder spaces. Thus, @ is a strictly positiveC® function, then the
coefficient functionss (w)u are of the same quality as(in the spirit of Theorerp I]1). Hence, the
domains of the operatofé - G (w)uV do not depend on if u runs through a suitable interpolation
space (see€_[46])—which is often required in quasilinear parabolic theory. We will study these
matters in detail elsewhere.
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