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We study qualitative geometric properties of optimal configurations to a variational problem with free
boundary, under suitable assumptions on a fixed boundary. More specifically, we study the problem
of minimizing the flow of heat given by, I'(u,,) do, where D is a fixed domain and is the
potential of a domain2 > 9D, with a prescribed volume of2 \ D. Our main goal is to establish
uniqueness and symmetry results widdh has a certain geometric property. Full regularity of the
free boundary is obtained under these symmetry conditions imposed on the fixed boundary.

1. Introduction

Given a surfacé@ D c R" and a positive functiogp defined on it (temperature distribution of the
body D), a classical minimization problem in heat conduction asks for an optimal configuration
£2 D 3D (insulation) that minimizes the loss of heat in a stationary situation, where the amount of
the insulating material is prescribed. This situation also models problems in electrostatics, potential
flow, fluid mechanics, among others.

Its mathematical description is as follows: For each donsaisurroundingD, we consider the
potentialu associated to the configuration, i.e., the solution of

Au=0 in2\D,
u=aeo onabD,
u=~0 onos2.

The flow of heat corresponding to the configurati@ns given by
J($2) :=/ I'(x,u,(x))do,
oD

wherep is the inward normal vector defined @mD. The functionI": 9D x R — R is assumed
to be convex and increasing ir),. Important examples ar€(t) = ¢ (classical heat conduction
problem),I" () = ¢? (optimal configurations in electrostaticg)(x, t) = maxt, C(x)} (problems
in material sciences), among many others.
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The optimization problem we are concerned with is to minimize€) among all configurations
£2 such that Vols2 \ D) = 1. In other words, the variational problem we are interested in is

Minimize {J(u) :=f I(x,uy(x))do |u: D€ - R, u=¢ondD,
oD
Au =0in{u > 0} and Voksuppu) = 1}. (1.2)

From the mathematical point of view, Problem {1.1) seems too hard to be directly approached.
There are two main reasons for such a technical difficulty. The first one is due to the fact that most
of the estimates we obtain involve the capacitance of the conﬁgurg(g@n,vmz dx. Therefore the
suitable space to look for solutionsAg! (D). However, normal derivative of merel§! functions
is not, in principle, well defined. In the linear case, i.e., whefr) = ¢, this difficulty can be
overcome by obtaining an equivalent functional to minimize. The second and main difficulty of
Problem[(L.]L) is due to the volume constraint on the support of the temperature. Such a constraint
is very unstable under limits and perturbation arguments. In [23] the author considers the following
penalized version of Probler (1.1):

DEFINITION 1.1 Fors > 0 setDs := {x € D€ : dist(x, D) < 8}. We define
Vs:={ueHYD) :u >0, Au>0, Au=0inD;, andu = ¢ ondD}

and

v::Uva.

5N\O
The penalized problem is stated as follows: ket 0 be fixed. We consider the function

1
_ {1+—(z—1) ifr>1,
fe = P ’
1+e(—1) otherwise.

Consider the problem
minimize J; (1) ::/ I'(x,u,(x))do + fe(|{u > O}]) 1.2)
aD

overu e V.

Any function in V is smooth close to the boundary &f, thus we are allowed to properly
compute the normal derivatives of such a function. Notice that there is no volume constraint any
more. Philosophically speaking, the idea is the following: we allow any configuration to compete
in our optimization problem, regardless of the volume of the support of the temperature; however,
the functionf, will charge a lot for those configurations that have a volume bigger than 1. We hope
that if the “fee” is too high, optimal configurations of Problgm [1.2) will choose to have volume 1
rather than pay for the penalization. Indeed[in [23] the following result is shown:

THEOREM1.2 Ifeis small enough, then any solution to the minimizing problemn (1.2) is a solution
to our original Problen{ (1]1) and vice versa.
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Simplified versions of Problem (1.1) have been considered inl[$} (1) = ¢, ¢ = 1) and [6]
(I'(x, 1) = r). Existence and regularity properties of an optimal configuration of Profjlern (1.1) in
its full generality were derived in [23]. The main results[ini[23] are the following:

(1) There always exists at least one optimal configuraop 9 D.

(2) Thetemperature distribution D¢ — R associated to the optimal configurati@ris Lipschitz
continuous.

(3) The temperaturee growths linearly away from the free boundady?, i.e., there exists a
universal constant > 0 such that

cdist(x, 392) < u(x) < ¢ tdist(x, 32) forallx € 2.

(4) The free boundary has uniform density, i.e., there exists a universal constantQ 1 such

that, for eachxg € 942,
< 082 N B(xo, 1)|
e 222 200

rn—l < 1- 6

whereB(xo, r) is then-dimensional ball centered &g with radiusr.
(5) The free boundargs2 is an analytic surface up to an — 1)-Hausdorff negligible set.

In the present paper we turn our attention to qualitative geometric properties of the free
boundary, namely symmetry, uniqueness and full regularity. Clearly, either a nonsymmetric
temperature distribution or a symmetry breaking of thdependence upon the nonlinearity,
ruins any hope of having symmetry properties of the fixed boundartransported to the free
boundaryd{u > 0}. That is why, in the present paper, we will mostly consider the problem:

PrROBLEM 1 Lety > 0 be a positive constant. Minimize

{J(u) ::/ Iy (x))do |u: D€ — R, u =y ondD,
oD

Au = 0in{u > 0} and Voksuppu) = 1}, (1.3)

wherer” is convex and increasing.

Regarding full regularity of the free boundary, let us mention that this is one of the most
challenging questions in the theory of free boundary regularity problemsfuByregularity
of the free boundarywe mean thatdo{u > O} = dreq{u > 0}. It was proven in [[28] that
H*1({u > 0} \ dreq{u > 0}) = 0. Therefore, the set of possible singular points of the free
boundary is small. Full regularity of the free boundary ensures that actually the singular set is
empty. We recall that, for instance in the free boundary problem studiéd in [7], in two dimensions,
the whole free boundary is regular. In a recent paper, Caffarelli, Jerison and Kenig in [10] showed a
full regularity result in three dimensions. There is hope to extend this result up to dimension 6.

Our paper is organized as follows. In Section 2 we study radial symmetry for Prpblem 1. We
prove that the best way of insulating a sphere is by another sphere. Due to the volume constraint, this
implies uniqueness. The strategy here is to initially study the linear £€4se~ ¢. In this setting we
show that the temperature distribution in the optimal configuration is radial. We use this information
to compare the solutioh of the linear case with a solution- of Probleni 1 with the nonlinearity .

In the next section we study the case wtigrs starlike with respect to a small neighborhood of the
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origin. For that section we restrict ourselves to the linear setting. Our main theorem in that section
asserts that iD is starlike, then the solution to Problérn 1 is unique. Moreover, the level sets of the
temperature: are starlike and the free boundatfu > 0} is an analytic surface with no singular
points. We should point out that our full regularity result is possible because we impose a geometric
constraint on the fixed bounda#y which we show is transported to the free bounday > 0}.

Such a geometric property, combined with further information about the behawar oh the free
boundary, permits us to conclude that singular points cannot exist. The strategy to show that the
free boundary inherits the starlikeness property) bf is to compare Problein 1 to two auxiliary
Bernoulli-type free boundary problems, where perturbation arguments are easier to apply. In the
last section, we study the relation between uniqueness and symmetry. For example wg(show
symmetry under the uniqueness assumption. At the end of the paper, we raise some questions and
conjectures as an invitation for the readers to further develop the theory.

2. Spherical symmetry

In this section we shall suppose our bobyis a ball inR”. With no loss of generality we will
assumeD is centered at the origin. In some sense, this is an extreme symmetry case. The perfect
symmetry of the body makes it natural to expect that one can infer much more information about
the free boundary problerp (1.3).

Let us start by a geometric argument to motivate. Let us restrict ourselves to dimensi8n
Let u be a solution to Problefr] 1 fap = B(R), and set2 = suppu. Let B(r1) and B(r2) be the
biggest ball inside2 \ D and the smallest ball outside respectively. Letyy € B(r1) N 352 and
y2 € B(rp) N 952. Define
yrZ"

14 2—
2—n |x| - 2 2—n
Re=" —r

)= e

i

fori =1, 2.

Notice thatu; is harmonicu;|s.-1g) = ¥ andu;|g.-1,,) = 0. Furthermore,

e ¥@=m) . _
D]u,(x)—mxﬂxl fOI’l—l,Zandj—l,...,n.

Thus, ifv denotes the outward normal vector &2,

) N y(@2—n) 1-n
i)y (yi) = mri

1

fori=1,2 (2.1)

Now, from the maximum principles; < u < ug, hence, ify1, y2 € 0reds2,

(u2)y(y2) <uy(y2) and u,(y1) < (u1)y(y1). (2.2)

On the other hand, from the free boundary condition found in [23], or even in [5], we know that
there exists a negative constarguch that

Finally, combining[(Z.11) [(Z2]2) anfl (3.3), we end up with

-1 -1
ry T —rp<ry T —rL
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Since the functionp(r) = r"~1 — r is strictly increasing on(1, co), we conclude that, < r1.
However, from the choice of; andro we also haves > ri. The conclusion is that; = ro,
and thereforeéd2 has to be a sphere. Far= 2, carrying out the same arguments witfi{x) =

—y ; :
oI =Rl log|x + (1 — R)| + y, we obtain the same conclusion.

REMARK 2.1 Letus point out that the above computation does not work, in principle, as a rigorous
proof because there is no way to guarantee, at this momentyithat € 9eqs2, even though in

[23] it is shown thatH"~1(8£2 \ dreqs2) = 0. For those who liked this geometric proof, here are
good news: there are two ways of making this proof work. The first way is to use the fact that
the free boundary conditiom, = A also holds in the viscosity sense. In the viscosity theory, the
points y1, y» are regular, thus using the linear behaviomotlose to the free boundary, we can
make inequality[(2]2) hold. The second way is to jump ahead in this paper and use Thegrem 3.2 to
initially ensure full regularity of the free boundary. Then we no longer need to count on luck when
using this touching-by-spheres argument.

THEOREM 2.2 (Radial symmetry for the linear problem) LBtbe a ball inR” with radiusR, and
I’(r) = t. Then there exists a unique minimizer to Problgm 1 and it is radially symmetric. In
particular the free boundary is a sphere.

Proof. Our proof uses the Schwarz rearrangement techniquel(see [18]). Here are some details. Let
A be a measurable set. TBehwarz symmetrizatioof A, which we denote byl*, is defined by

A* = B(r), where|B(r)| = |A|. Let f: U — R be a function. Set/, := {x € U : u(x) > c}. We

define theSchwarz rearrangemewnf f by f*(x) := supc € R : x € U}}. The crucial information

we shall use is that if : U — Ris in HY(U), then

f|V.f|2dx>f |V £*|? dx. (2.4)
U U*

Furthermore, ifdU is piecewise analytic and is analytic, then equality holds if and only ff =
f* + c. For this fact we refer ta [15].

Let us return to our original purpose. Liebe a solution to our problem. The first observation is
that, in the linear case, i.€;(t) = ¢, with constant temperature distributipn if we apply Green’s

formula, we find
J(u) ::/ iy do = y_lf |Vu|? dx.
aD suppu\D

Notice that, from[[2B]3[suppu] is an analytic surface up to &t"~1-negligible set, thus the above
computation can be made. L€t be the Schwarz symmetrization@f Then

L] u*lSnfl = M|Sn71 =Y.

e \Vol(suppu™* \ B(1)) = Vol(suppu \ B(1)) = 1.

Let # denote the harmonic function in supp\ B(1) with boundary values equal foonS"~1 and
0 ond[suppu*]. Notice thath competes with: in the minimization problen{ (1]3). We then have

Jw) = *1/ |Vul?dx > y*lf |Vu*|? dx
suppu\ B(1) suppu*\B(1)

S VA dx = J(h.
suppu*\B(1)
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However, from the minimization property of we knowJ (1) < J (k). Thus we have equality in the
above expression. Therefore, from the previous observation, having in mind that* on $" 1,
andd{u > 0} is an analytic surface up to a closgfl~1-negligible set (seé [23]), we conclude that
u = u*, thusu is radial. Since the minimizer of Problen{ 1 was taken arbitrarily, we have shown
that any solution of Problefr] 1 with'(r) = ¢ is radial, in particular, the free boundary is a sphere.
From the volume constrainf2 \ B(1)| = 1, there must exist a unique solution. O

Let us turn our attention to the nonlinear setting, i.E.,is a generic increasing and convex
nonlinearity. It seems acceptable that, even in this situation, the best way of insulatingB Ball,
is by another ball. Thus, if our conjecture is right, the solution of Proplem 1 would not depend upon
the nonlinearityl". Set
2—
+|x|2—n _ Y "

—_— ifn>3
RZ—VL . r}%_n = ’

Lx):= | R —ri
-y
log|rz + (1 — R)|

o +R?
ry = —,
Wy

wherew, stands for the volume of the unit ball R", i.e.,w, = |B(1)|. This is the solution of
Problen{ 1 forI"(r) = ¢, provided by Theoreth 2.2. Let = u be a solution of Problefn 1 for a
generic nonlinearity”. Since we want to show is radially symmetric, it seems natural to try to
compare it withZ in terms of the optimization problems they minimize. Suppose by contradiction
thatu is not radially symmetric. In particular # L. From Jensen’s inequality, we have

loglx+(1—R)|+y ifn=2

Here

do (x)
J(u) = / I'(uy(x)) do(x) > na),,F(/ 1y, (x) )
sn—1 §n—1 nwy
> nwnf(/ L,(x) da(x))’ (2.5)
§n-1 nwy

where in the last inequality we have used the fact ih# the only minimizer to Problefn] 1 with
I'(t) = t. However, the geometry of our problem is so special that

TPy
Ly)=c, =1 K" =

4 if n =2

log|r2 + (1 — R)|

Returning to inequality (2]5), having in mind the above remark, we conclude
J(u) > nw,ll"(/ L, (x) da(x)) = nw, I'(c;)
sn-1 nwy
= fS P @) do(x) = J(L). (2.6)

SinceL competes with: in the minimization problend (1]3), the strict inequality jn (2.6) leads to a
contradiction. Summarizing, we have proven the following general theorem:
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THEOREM 2.3 (Radial symmetry for Problefih 1) Lé? be a ball inR" and I"(r) be a general
convex and increasing nonlinearity. Then there exists a unique minimizer to Prpplem 1 and it is
radially symmetric. In particular, the free boundary is a sphere.

3. Starlikeness and full regularity of the free boundary

In the previous section we studied a very special symmetry, namely the spherical symmetry. As we
pointed out, this is an extreme symmetry case which enables strong results such as Théorem 2.3. In
this section we shall explore a milder restriction on the bddyrhe geometric property we shall be
concerned with is starlikeness. Here is its definition.

DEFINITION 3.1 LetE C R" be a set andg € E. We saykF is starlike with respect tag if for
anyx € E and anyr € [0, 1], we havertxg + (1 —t)x € E.

For instance, any convex body is starlike with respect to all of its points. Even assuming a less
restrictive assumption, we shall be able, in the linear setting, to prove uniqueness and full regularity
of the free boundary. The main theorem of this section is the following.

THEOREM3.2 LetD c R”" be starlike with respect to any point of a small neighborhood of the
origin, sayB.(0), and let/"(r) = ¢. Then there exists a unique minimizeof Problenj 1. Moreover
the level set$u > «} are starlike with respect t8, (0). Furthermore the free boundary is an analytic
surface with no singular points, i.@eg{u > 0} = d{u > 0}.

The proof of this theorem will be developed throughout this section. The idea is to consider
a “starlike version” ofu given by an appropriate rearrangement and compare it wvéhd with
solutions to auxiliary free boundary problems.

It is worth pointing out that the linear setting of our problem is closely related to Bernoulli-type
problems that have been studied by many authors. For the Bernoulli problem on convex domains, a
Perron-type method has been successfully applied to prove existence, uniqueness and convexity of
the solution[[13], 14]. Acker has proven some deep results about solutions of the Bernoulli problem
under convexity and starlikeness assumptions (see, for instance, [1, 2]). One of the major difficulties
to properly relate Problefr] 1 to a Bernoulli-type problem, though, is that; for 3, one cannot
ensure full regularity of the free boundary of our original variational problem. Our strategy will
then be to compare a special solution of Prodlém 1, whose free boundary can be shown to be fully
regular, to solutions of certain Bernoulli problems. Once full regularity of the free boundary of a
solution of Problenf]1 is established, we will be able to apply the usual techniques employed in
Bernoulli-type problems. Indeed, Lemina]3.6 is essentially due to Acker and Meyeér in [3]. Lemma
[3.7 is inspired by [15], while Theorem 3]11 is an adaptation of a beautiful geometric argument due
to Henrot and Shahgholian in [12]. For completeness, we shall carry out all the details and necessary
modifications.

Hereafter, we fix a solutiomto Probleni L withI"(r) = r and we assume tha&t C R” is starlike
with respect to any point i, (0). As pointed out before, there exists a constast A(x) such that
the following free boundary condition holds:

Uy =X ONdeglu > 0}. (3.1)

This leads us to consider the following two auxiliary free boundary problems:
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PrRoOBLEM 2 (Alt—Caffarelli) Minimize
J() = / (Vo2 + 3250 dr (3.2)
D

over{v e HY(D®) : v =y onaD}.
PrRoOBLEM 3 (Bernoulli free boundary problem) Find a dom&n> D and a functiony such that
[ Ay =0 in2\D,

Y=y onaD, 3.3)
v =0, |Vy|=1 onasf.

For completeness let us briefly discuss the starlike rearrangement we shall make use of. A point
x € R" can be represented in spherical coordinate§-as, ..., 6,-1), wherer € Rg andf =
01, ...,0,_1) € T := [0, 7]" 2 x [—7, n]. Let E be a bounded set containimy (0) and define
gp(r) = 1P Let G,(r) = n%r""’ be a primitive ofg,. We define
E@®) ={r>¢e:(0) € E},
10 = [ gd
E®)

h(©) = 1) + G (e),
R(O) = G;l(h(e)).

We then define the-starlike rearrangemendf E by
Ey:={(r,0) eR{ x T :0<r < RO} (3.4)

Notice that, in our case, if we extendy y inside of D, from the maximum principle; attains
its maximum, namely, at each point 0B, (0). Thus, any level seu > «} containsB, (0) and so
it is suitable for starlike rearrangement.

We finally define thep-decreasing starlike rearrangemeott «, denoted:*, by

supla € RBL tx € {u>alj} forx e[suppu];,

up(x) = {O otherwise. (3:5)

We defineu* = u3. We shall use the following powerful result.
THEOREM 3.3 (Property of the starlike rearrangement) In our setting,
1) Vol({u* > 0}) < L.

(2)/ |w*|2dx</ |Vu|? dx.
D€ D¢

The first part of this theorem follows from the fact that for any dom&aim B (0), VOI(E) =
Vol (Eg) together with the inequalityg > u), for any p > 1. The second part follows from the

general fact that ib ¢ Wé”’(U) then [, [Vv|?dx > [, |Vvy|? dx. For the proofs of these facts
V4
and further details, we refer to [15]. We need some lemmas.
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LEmMMA 3.4 Under the hypothesis of Theorém|3.2, and the notation abévs,a minimizer of
Problen{ 1. Furthermore the free boundaty* > 0} is an analytic surface with no singular points,
i.e.,dred{u® > 0} = 9{u™ > 0}.

Proof. Notice that, due to the volume constraint, in principte does not compete with in
Problenf 1. To overcome this difficulty, we shall use Thedrer 1.2. Consider the functional

() = /wsumda + f.(1E > O},

for ¢ small enough so that Theor¢gm 1.2 applies. A& the harmonic function equal foon d D
and 0 ond{u* > 0}. From Theorerh 3|3, we obtain

Je(u) = y‘lfDC |Vuo)|?dr +1 > y‘lch |Vu*(x)[? dx + 1
> y‘lch IVAG)Pdx +1 > Je(h) > Je(w).

We conclude that, first of ally* = h. Furthermore, it is a minimizer to the penalized version
of Problem[1. Hence, from Theorgm [L.2; is a solution to Problerpi]1. In particular, we have
Vol({u* > 0} \ D) = 1.

For the second part of the lemma, we notice that, simle> 0} is starlike with respect to
all points in B.(0), for eachz € a{u™ > 0} there exists a con€ that containsB.(0) such that
a{u* > 0} N C = {x}. This proves that the free boundatiu* > 0} is Lipschitz. Moreover, since
u* is a minimizer to Proble@ Lu* =0in{x € D€ : u* > 0} and there exists a constarit > 0
such that

ulb=—-2" onodedu” > 0}.

Now, as we have already anticipated, we can interpret our free boundary condition in the viscosity
sense (for a more general situation, where degenerate operators govern the systern, see [19]). Thus,
we can apply Caffarelli's theorem inl[8] (Lipschitz free boundaries @¢) to conclude that

a{u* > 0} is a CcL® surface. Afterwards, having in mind our free boundary condition, /by [16]

we deduce the analyticity of the free boundafy™* > 0}. |

We now turn our attention to Problgm 3, withreplaced by.*. We need some notations. For any
setA Cc R",andr > 0, we setA = {rx : x € A}. LetV be the set of all bounded simply connected
domainsU c R” containing the origin, and denote BY the boundaries of elementsih In 9V
we define the metric

0(S1, S2) :=sup|log | : tS1 N So # @}.

For eachS € 9V let U € V be the bounded simply connected domain for whi¢h= S. We say
S1 < Sif U c UxandSy < Sy if Ur C Uz, whereU; € VandaU; = §; fori = 1, 2. In what
follows, we will need the Lavrent’ev principle. A proof can be foundini [17].

LEMMA 3.5 (Lavrent'ev principle) Lets;, S» andS1, S» ben — 1-hypersurfaces iaV. Let £2
(resp. £2) be the annular domain whose boundaries $rend S> (resp.$1 and S») and letU
(resp.U) be the harmonic function if2 (resp.s2), equal to 1 ors (resp.S1) and 0 onS, (resp.Sy).
Letz > 1 be such thas; < 1S andS, < S,. If tx; € S; NtS; and|VU; (x;)| exist, then

VU (x2)| > 1|VU (tx2)| and VU (x1)| < t|VU (tx)].
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The next lemma concerns uniqueness. We observe that the main difficulty of uniqueness results
for free boundary variational problems is the lack of regularity of the free boundary, as pointed
out in the “fake” proof of radial symmetry presented in Section 2. The advantage of dealing with
Problen{ B is that solutions are supposed to be full regular. The next lemma is a consequence of the
Lavrent'ev principle.

LEMMA 3.6 The function:* is the only classical solution to Probl¢m 3, wheris replaced by.*.

Proof. From Lemmd 3}4u* is a classical solution to Problgnm 3, wherés replaced by.*. Let
(¢, 2) be another solution to Problgm 3. Defifie= 952 and F (u*) = 3{u* > O}. If (¢, 22) #
(u*, {u* > 0}), there would exist & > 1 such that logy = p(S, F(u*)). Thus,S < roF (u™) and
Fw*) < 1pS. Furthermore, eithes N7 F (u*) # @ orpS N F(u*) # @. We might assume without
loss of generality that there exists a poigito € S N toF (u*) (if 108 N F(u*) # ¥ we proceed
similarly). Notice that, since our fixed domaih is assumed to be starlike, we ha¥B < 7dD.
Finally, applying Lemmé 35 fof; = $1 = 8D, S2 = S, $» = F(u*) and = 1o, we obtain

A" = |Vu™(x0)| = to| Vi (tox0)| = for”,

which is a contradiction. Thus, has to beF (1*) and therefore the lemma is proven. O

Our next step is to relate our original problem to Probf¢m 2 and the latter to Prpplem 3. We stress
that the advantage of dealing with Problgin 2 instead of our original Prdhlem 1 is that the former
does not have volume constraint. This makes it much easier to construct perturbation arguments as
will be explicit in the proof of the next lemma.

LEMMA 3.7 Letv be a minimizer of Problern| 2 with replaced byr*. Then the free boundary
a{v > 0} is an analytic surface with no singular points.

Proof. We follow the same idea of the proof of Lemina]3.4. bebe a minimizer of Problern| 2
with A replaced byr*. Let v* be the 2-decreasing starlike rearrangement.ofs in Lemmd 3.4

we easily conclude, with the aid of Theorgm|3.3, trats also a minimizer of Problefr] 2. Define
vT := max{v, v*} andv~ := min{v, v*}. Notice thatv* andv— are admissible for Probleﬁi 2 (not
for Probleni 1 or even for its penalized version, though). Furthermore, we easily observe that

JH +J@wT) =JW) + J*) =2minJ.
Thusvt andv~ are also minimizers of Proble@ 2.L&x ;= {v™ > 0} \ D. Notice that
AT —v)=AWT -0 =0 in2".
Moreoverp®™ —v > 0in 32~ andvt —v* > 0in £2~. From the maximum principle, we conclude

that either

(1) v*=vin2,o0r

2) v* >vin 2, or

B)v>v*in2~.

Notice that, if(2) happens, then, by the continuity @f it must be the case that supg: suppv*.

But this would violate Theorein 3.3. {B) happens, then, again by the continuitywfsuppv* C
suppv. However, if this is the case, we would conclude thé&*) < J(v), a contradiction. Thus,
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we conclude that* = v in 27, which clearly impliesv* = v and thereforev is starlike with
respect taB. (0).

Now, by the same argument as in Lemimg 3.4, we obtain the full regularity of the free boundary
a{v > 0}. Indeed, the fact that the free boundary is starlike with respe@.t0) implies its
Lipschitz regularity. Furthermore, frornl[9], satisfies the free boundary condition

vy = —A%  0Ndreg{v > 0},

in the viscosity sense. Invoking/[8] and afterwards [16], we deduce the analyticity of the whole free
boundary. Since was taken to be an arbitrary minimizer of Problem 2, the proof is finished.

The next lemma unifies the results we have so far by relating Prgflem 1 and Pfgblem 2. As we shall
see, from the full regularity results we have obtained, we shall be able to relate these problems to
Problen 8 where we could obtain a uniqueness result. As already pointed out a couple of times,
unigueness of variational problems with free boundary is, in general, quite hard, so the idea is to use
the auxiliary Probler]3, where, from Lemina]3.6, we have uniqueness of classical solutions, and
compare:* with a solution of Probler|2, in terms of Probléin 3.

LEMMA 3.8 With the hypothesis of Theordm B.2 and the notation previously set, the funétion
is the only minimizer to Problefr] 2 with replaced by.*.

Proof. From Lemmg 343{u* > 0} is a smooth surface and from the free boundary condition,
we haveu} = —1* ond{u* > 0}. Lemmg 3.} guarantees the full regularity of the free boundary
d{v > 0} of any solutiorw of Problenj 2 withx replaced by.*. Furthermore, from the free boundary
condition established i [7], we also havg= —1* ond{v > 0}. We conclude that both* andv

are classical solutions to Probléfn 3. Lenima 3.6 finally implies- v. O

We are ready to make the last step toward the proof of Thelorgm 3.2. Basically, the only information
left is whetherm is equal to its rearrangement.

LEMMA 3.9 With the hypothesis of Theordm B.2 and the notation previously set, the funétion
is the only solution to Problefr] 1.

Proof. Again, it seems quite hard to show this directly. We will use Proljlem 2 to compare a solution
o of Problen] 1 and*. Indeed, consider the functional in Problgn 2 witheplaced by.*, i.e.,

J(v) = / (IVol? + (%) xp=0)) dx.
DC

We have shown that* is the unique minimizer of in {v € HY(DC) : v = y ondD}. Furthermore,
we have verified that Vo{u* > 0} \ D) = 1. Thus, ifw is any solution to Problefr] 1, then

J(w):/ |Vw|2dx+(,\*)2=f IVu*)? dx + (A2 = J ™).
DC DC

Lemmd 3.8 implies» = u*. Sincew was taken to be an arbitrary solution to Prob[gm 1, Lefnmla 3.9
is proven. ]

Finally, combining Lemmds 3.4 apd B.9 we conclude the proof of Theprgm 3.2.
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REMARK 3.10 As pointed out in the introduction, full regularity of the free boundary of
minimizers of Problemi]2, without any further assumptionadd, is a very challenging question.

It has been proven that in dimensions 2 and 3 the singular set on the free boundary of minimizers of
Problenj 2 is empty. Furthermore, there are indications that this should be the case for any dimension
up to 6; however, there is a prediction that one could find a counterexample in dimension 7. The full
regularity of the free boundary in Theorém|3.2, and its impact in Lefnja 3.7, are possible because
we impose a geometric restriction 6.

Let us mention that, from the machinery developed above, one can infer the convexity of the free
boundary in the case wherfgis a convex body.

THEOREM3.11 Under the hypothesis of Theorgm|3.2Difs a convex body, then so is any level
set{u > «} of the minimizer of Problerp]1.

Proof. SinceD is convex, it is starlike with respect to all of its points. From Theofem 3.2, there
exists a unique solution to Probléin 1, its level sets are starlike with respect to all paintarl the

free boundary{u > 0} is a smooth surface with no singular points. In particular, the free boundary
condition—u, = A > 0 holds at any point of the free boundary.

Set2 = suppu, let 2* := €o(£2) be the convex hull of2, andu* the harmonic function on
£2*\ D, equal toy ondD and 0 ond$2*. DefineU, = {x € £2* : u*(x) > c}. From [11], these are
convex sets. Lep be a generic point oAU.. We may assume, with no loss of generality, thas
the origin and the exterior normal derivative at @isLetz € 0£2* N {x1 > 0} be the farthest point
to {x1 = 0}. Notice that, since2* = T0(£2), z can be taken to belong 2 N d£2*. On the open
set2* N {x1 > 0}, consider the harmonic functian(x) = u*(x) + B{x, e1) with0 < 8 < A. By
the maximum principley achieves its maximum either abr at O.

We claim thaw attains its maximum at the origin. Indeed, Bt= B(z + e1, 1). By Lemmd 3.8
of the present paper, Lemma 4.10(in [7] and the maximum principle, there exists a seguence
such that lim_, o u*(z,)/dist(z,,, B) > A. If v achieved its maximum at we would have

v(zn) — v(2) S u*(z,) (zn — 2, €1)
dist(z,, B) ~ dist(z,, B) ' dist(z,, B)

>Ai+0@m) —B, (3.6)

which contradicts the choice @f
Thus,v attains its maximum at the origin. But this impliggx*(0)| > 8. Sinceg < A andy
were taken arbitrarily, we conclude thatu*(x)| > A forall x € 2*\ D.
Now, the assertion of Theorém 3|11 follows as a consequence of LEmma 3.5. Indeed, with the
notation previously set, for & ¢ < 1, consider2* = {rx : x € 2%}, letrg := supt : t2* C 2}
andy € 9r£2* N 952. Applying Lemmd 3.5, we obtain

1 1
A= Vu()l = —|Vu*(x /)| = —A.
fo fo

In conclusion,2* = £2. Hence, the optimal configuration supfs convex and then, from [11], so
is any level sefu > «}. O

4. Uniqueness and) (n) symmetries

Letu andv be two different solutions of our general free boundary variational profjlerh (1.1). Since
u = v ondD and both are harmonic near ituif, coincides withv,, on any tiny open subset 6D,
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thenu = v on the wholeD€. On the other hand, the sét:= {x € 3D | u,(x) = vu(x)} has to
be nonempty, otherwise, say, > v, in 8D and, since is increasingJaD I(x,u,(x))dS(x) >
faD I'(x, v, (x))dS(x). Moreover, for any domaiy surroundingD, i.e., D C U, there must exist
a¢ € aU such that(¢) = v(§); otherwise, by the maximum principle, say> u in U \ D and
therefore,, < u, on someH"~1-noneligible subset 0§ D, and thuszD I'(x,u,(x)dS(x) >
faD I'(x,v,(x))dS(x). In RR?, the above comment provides a nice stratification of théiset 0}
N {v > 0} dividing it into regions where: > v andv > u. In other words, there are curves
joining points ofd{u > 0} N d{v > 0} andd D, so thatu = v alongy;.

The above paragraph brings some general information that, depending upon the geoetry of
might yield uniqueness results. We should point out, though, that to establish a general uniqueness
result, if true, seems to be a very hard task. Symmetry results for the general nonlinear variational
free boundary problen (1.1), or even its simplified version, Proplem 1, seem also very challenging.
For instance, one of the most common ways of proving symmetry results is by rearrangement
techniques. That was our strategy to deliver the results in the previous section as well as to obtain
the starting radial symmetry result for the linear setting in Section 2. Notice that rearrangement
techniques work fine in the linear setting of our problem, i.e., wihgn) = r with constant
temperature distributiory = y. That is because, in this situation, our functional is equivalent to
the energy functional and if one minimizes the latter, it will automatically be harmonic in its set of
positivity. For the general problem, one has to search for minimizers among subharmonic functions;
see for instance, the penalized versjon](1.2). Now,if an admissible function for Problein (IL.2),
it seems hard to control the sign of the Laplacian of its rearrangement. Another difficulty in using
rearrangement techniques for the nonlinear problem is that our functional is equivalent to

() ::/ QuY (IVul?)(D%u - Vu, Vu) + T(|\Vu))|Vu| + uY (|Vu|?) Au) dx,
DC

whereY (+2)¢ = I'(r). The functionalj does not seem to behave well under rearrangements. Thus,
in order to establish symmetry results for Problém](1.1), we have to search for a different type of
geometric argument other than rearrangements.

The nonlinearityl” reflects in a rather nonlocal free boundary condition given by [see [23])

/aD 0 I (x, uy (x)[Hy(x, y)u,(y)] = const (4.1)

for any y € odrea{r > 0}. Here H is a kernel related to the Green’s function of the domain
{u > 0} \ D. Of course, in general, for different nonlinearities, dayand I>, there should exist
different optimal configurations; andu». In other words, what happens in the radial symmetry
case is very special. Indeed, we can state the following proposition.

PROPOSITION4.1 Suppose Proble.l) admits an optimal configuratforior I"(r) = ¢, that
satisfies

ul,=c onab. (4.2)
AssumeH" 1(3D) = 1. Thenu' is the only solution of Problen@.l) for any strictly convex
nonlinearityI" (z).

Proof. Letu!" be a solution of Problenh (1.1). Our first claim is that, necessarily,

uf; =cr 0nobD.
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Indeed, suppose not. From Jensen’s inequality, the minimality propertieS ahdu*, the strict
convexity ofI" and [4.2), we obtain

/ rt)dn"* = F(/ ut, dH"—l) < F(/ ul! dH”‘1>
oD aD aD

</ F(ull;)dH”’lgf r)dn",
aD aD

which is a contradiction. This also shows thétis a solution of Problen] (1].1) for any strictly
convex nonlinearity™. If so, taking into account that{; = ¢y, we obtain

I'(c) =I'(cr),
which implies, agd” is strictly increasinge = ¢, and therefore from the observation made at the
beginning of this sectiony* = u’ in D€. O

It is worth pointing out that for Problef 1, i.e., for a constant temperature distribgtisny,
a Serrin-type result ensures that the above phenomenon occurs onlyfwisea ball. For fully
regular free boundaries, a proof of this fact can be found.ih [20] (seelalso [21]). A stability result
pertaining to this remark can be found|in [4]. It is also interesting to notice that, Whisrconvex,
we can always, by a scaling argument, asstfiel(9 D) = 1.

The type of symmetry we will be particularly interested in for the rest of this section is invariance
under the group (n). Let O be an orthogonal transformation h(n). Clearly, if we hope to have
any kind of symmetry with respect {0 of the free boundary, it is better to assuféD) = D,
d(Ox)) = ¢(x) andI'(O(x), t) = I' (x, t). Under these natural assumptions, we obtain

THEOREM4.2 (O (n) symmetries) LetO € O(n) be an orthogonal transformation. Suppose
Problem[(I.1l) has a unique solution. Theis invariant unde©.

Proof. Letu be the minimizer of Problenj (1.1). Define
uo(x) 1= u(Ox).
SinceQ preserves volume, one concludes easily that
Isuppuo| = [suppu| = 1.
We also verify, sincé (D) = D and¢ (O(x)) = ¢ (x), thatup(x) = ¢(x) ondD. Furthermore
Aup(x) =0 in suppip, Vup(x) = OTVu(Ox).

Thus,up competes with: in Problem [(I.]L). From the fact thidet(©)| = 1, we obtain, by the
change of variables theorem,

J(up) = /w I (Vuo (), p(x))) do = /aD F(Vu(Ox), Op(x))) do

=/ FUVu(), w () do = ().
oD

From the uniqueness assumeg, = u. Therefore, any level set af is invariant undel© and in
particular so is the free boundary. O
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COROLLARY 4.3 AssumeD is starlike with respect to a small neighborhood of the origin and
I'(t) = t. SupposeD is symmetric with respect to the plae = {x1 = 0}. Then the solution to
Problenf 1 is symmetric with respect to the plahand so is its free boundary.

Proof. Consider the orthogonal transformation
O(Xl, x27 M x}’l) = (_-xl’ -x25 ceey xn)-

Apply Theorenj 3P and afterwards Theorem 4.2. O

We finish this paper with some remarks. It seems to us that the nonuniqueness phenomenon
for Problem[1 is more related to the topology/geometry of the fixed domeithan to the
nonlinearityI". We are therefore led to state the following conjecture:

CONJECTUREL LetD C R" be a domain. Assume there exists a unique solutjoio Problenj [L
with I"(r) = t. Then, for any other strictly convex increasing nonlineaiity Problen] 1 has a
unique solution: .

Another natural conjecture is convexity of the free boundary for Proplem 1, with a general
nonlinearityI".

CONJECTURE2 Let D < R”" be a convex domain. Then there exists a convex optimal
configuration{u > 0} of Problenf 1.

Notice that, if Conjecturf]2 is affirmatively answered, we would obtain Lipschitz regularity of
the full free boundary. Froni [23], the reduced free boundary is an analytic surface; however, the
nonlocal free boundary condition (4.1) does not allow us to deduce, via Caffarelli’s viscosity theory,
full 1« regularity of the free boundary, even though it seems quite reasonable to expect it.

QUESTION1 LetD C R” be a convex domain. Assume Problein 1 has a unique solution. Is the
free boundary fully regular?
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