
Interfaces and Free Boundaries9 (2007), 133–148

Uniqueness, symmetry and full regularity of free boundary
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We study qualitative geometric properties of optimal configurations to a variational problem with free
boundary, under suitable assumptions on a fixed boundary. More specifically, we study the problem
of minimizing the flow of heat given by

∫
∂D Γ (uµ)dσ , whereD is a fixed domain andu is the

potential of a domainΩ ⊃ ∂D, with a prescribed volume onΩ \ D. Our main goal is to establish
uniqueness and symmetry results when∂D has a certain geometric property. Full regularity of the
free boundary is obtained under these symmetry conditions imposed on the fixed boundary.

1. Introduction

Given a surface∂D ⊂ Rn and a positive functionφ defined on it (temperature distribution of the
bodyD), a classical minimization problem in heat conduction asks for an optimal configuration
Ω ⊃ ∂D (insulation) that minimizes the loss of heat in a stationary situation, where the amount of
the insulating material is prescribed. This situation also models problems in electrostatics, potential
flow, fluid mechanics, among others.

Its mathematical description is as follows: For each domainΩ surroundingD, we consider the
potentialu associated to the configurationΩ, i.e., the solution of∆u = 0 inΩ \D,

u = φ on ∂D,
u = 0 on∂Ω.

The flow of heat corresponding to the configurationΩ is given by

J (Ω) :=
∫
∂D

Γ (x, uµ(x))dσ,

whereµ is the inward normal vector defined on∂D. The functionΓ : ∂D × R → R is assumed
to be convex and increasing inuµ. Important examples areΓ (t) = t (classical heat conduction
problem),Γ (t) = tp (optimal configurations in electrostatics),Γ (x, t) = max{t, C(x)} (problems
in material sciences), among many others.
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The optimization problem we are concerned with is to minimizeJ (Ω) among all configurations
Ω such that Vol(Ω \D) = 1. In other words, the variational problem we are interested in is

Minimize

{
J (u) :=

∫
∂D

Γ (x, uµ(x))dσ

∣∣∣∣ u : DC → R, u = φ on ∂D,

∆u = 0 in {u > 0} and Vol(suppu) = 1

}
. (1.1)

From the mathematical point of view, Problem (1.1) seems too hard to be directly approached.
There are two main reasons for such a technical difficulty. The first one is due to the fact that most
of the estimates we obtain involve the capacitance of the configuration,

∫
DC

|∇u|2 dx. Therefore the
suitable space to look for solutions isH 1(DC). However, normal derivative of merelyH 1 functions
is not, in principle, well defined. In the linear case, i.e., whenΓ (t) = t , this difficulty can be
overcome by obtaining an equivalent functional to minimize. The second and main difficulty of
Problem (1.1) is due to the volume constraint on the support of the temperature. Such a constraint
is very unstable under limits and perturbation arguments. In [23] the author considers the following
penalized version of Problem (1.1):

DEFINITION 1.1 Forδ > 0 setDδ := {x ∈ DC : dist(x, ∂D) < δ}. We define

Vδ := {u ∈ H 1(DC) : u > 0, ∆u > 0, ∆u = 0 inDδ, andu = φ on ∂D}

and
V :=

⋃
δ↘0

Vδ.

The penalized problem is stated as follows: Letε > 0 be fixed. We consider the function

fε :=

{
1 +

1

ε
(t − 1) if t > 1,

1 + ε(t − 1) otherwise.

Consider the problem

minimizeJε(u) :=
∫
∂D

Γ (x, uµ(x))dσ + fε(|{u > 0}|) (1.2)

overu ∈ V .
Any function in V is smooth close to the boundary ofD, thus we are allowed to properly

compute the normal derivatives of such a function. Notice that there is no volume constraint any
more. Philosophically speaking, the idea is the following: we allow any configuration to compete
in our optimization problem, regardless of the volume of the support of the temperature; however,
the functionfε will charge a lot for those configurations that have a volume bigger than 1. We hope
that if the “fee” is too high, optimal configurations of Problem (1.2) will choose to have volume 1
rather than pay for the penalization. Indeed, in [23] the following result is shown:

THEOREM 1.2 If ε is small enough, then any solution to the minimizing problem (1.2) is a solution
to our original Problem (1.1) and vice versa.
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Simplified versions of Problem (1.1) have been considered in [5] (Γ (x, t) = t , φ ≡ 1) and [6]
(Γ (x, t) = t). Existence and regularity properties of an optimal configuration of Problem (1.1) in
its full generality were derived in [23]. The main results in [23] are the following:

(1) There always exists at least one optimal configurationΩ ⊃ ∂D.
(2) The temperature distributionu : DC → R associated to the optimal configurationΩ is Lipschitz

continuous.
(3) The temperatureu growths linearly away from the free boundary∂Ω, i.e., there exists a

universal constantc > 0 such that

c dist(x, ∂Ω) 6 u(x) 6 c−1 dist(x, ∂Ω) for all x ∈ Ω.

(4) The free boundary has uniform density, i.e., there exists a universal constant 0< c < 1 such
that, for eachx0 ∈ ∂Ω,

c 6
|∂Ω ∩ B(x0, r)|

rn−1
6 1 − c,

whereB(x0, r) is then-dimensional ball centered atx0 with radiusr.
(5) The free boundary∂Ω is an analytic surface up to an(n− 1)-Hausdorff negligible set.

In the present paper we turn our attention to qualitative geometric properties of the free
boundary, namely symmetry, uniqueness and full regularity. Clearly, either a nonsymmetric
temperature distribution or a symmetry breaking of thex dependence upon the nonlinearityΓ ,
ruins any hope of having symmetry properties of the fixed boundary∂D transported to the free
boundary∂{u > 0}. That is why, in the present paper, we will mostly consider the problem:

PROBLEM 1 Letγ > 0 be a positive constant. Minimize{
J (u) :=

∫
∂D

Γ (uµ(x))dσ

∣∣∣∣ u : DC → R, u ≡ γ on ∂D,

∆u = 0 in {u > 0} and Vol(suppu) = 1

}
, (1.3)

whereΓ is convex and increasing.

Regarding full regularity of the free boundary, let us mention that this is one of the most
challenging questions in the theory of free boundary regularity problems. Byfull regularity
of the free boundarywe mean that∂{u > 0} = ∂red{u > 0}. It was proven in [23] that
Hn−1(∂{u > 0} \ ∂red{u > 0}) = 0. Therefore, the set of possible singular points of the free
boundary is small. Full regularity of the free boundary ensures that actually the singular set is
empty. We recall that, for instance in the free boundary problem studied in [7], in two dimensions,
the whole free boundary is regular. In a recent paper, Caffarelli, Jerison and Kenig in [10] showed a
full regularity result in three dimensions. There is hope to extend this result up to dimension 6.

Our paper is organized as follows. In Section 2 we study radial symmetry for Problem 1. We
prove that the best way of insulating a sphere is by another sphere. Due to the volume constraint, this
implies uniqueness. The strategy here is to initially study the linear case,Γ (t) = t . In this setting we
show that the temperature distribution in the optimal configuration is radial. We use this information
to compare the solutionL of the linear case with a solutionuΓ of Problem 1 with the nonlinearityΓ .
In the next section we study the case whenD is starlike with respect to a small neighborhood of the
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origin. For that section we restrict ourselves to the linear setting. Our main theorem in that section
asserts that ifD is starlike, then the solution to Problem 1 is unique. Moreover, the level sets of the
temperatureu are starlike and the free boundary∂{u > 0} is an analytic surface with no singular
points. We should point out that our full regularity result is possible because we impose a geometric
constraint on the fixed boundary∂D which we show is transported to the free boundary∂{u > 0}.
Such a geometric property, combined with further information about the behavior of∇u on the free
boundary, permits us to conclude that singular points cannot exist. The strategy to show that the
free boundary inherits the starlikeness property of∂D is to compare Problem 1 to two auxiliary
Bernoulli-type free boundary problems, where perturbation arguments are easier to apply. In the
last section, we study the relation between uniqueness and symmetry. For example we showO(n)

symmetry under the uniqueness assumption. At the end of the paper, we raise some questions and
conjectures as an invitation for the readers to further develop the theory.

2. Spherical symmetry

In this section we shall suppose our bodyD is a ball inRn. With no loss of generality we will
assumeD is centered at the origin. In some sense, this is an extreme symmetry case. The perfect
symmetry of the body makes it natural to expect that one can infer much more information about
the free boundary problem (1.3).

Let us start by a geometric argument to motivate. Let us restrict ourselves to dimensionn > 3.
Let u be a solution to Problem 1 forD = B(R), and setΩ = suppu. Let B(r1) andB(r2) be the
biggest ball insideΩ \ D and the smallest ball outsideΩ respectively. Lety1 ∈ B(r1) ∩ ∂Ω and
y2 ∈ B(r2) ∩ ∂Ω. Define

ui(x) =
γ

R2−n − r2−n
i

|x|2−n
−

γ r2−n
i

R2−n − r2−n
i

for i = 1,2.

Notice thatui is harmonic,ui |Sn−1(R) ≡ γ andui |Sn−1(ri )
≡ 0. Furthermore,

Djui(x) =
γ (2 − n)

R2−n − r2−n
i

xj |x|
−n for i = 1,2 andj = 1, . . . , n.

Thus, ifν denotes the outward normal vector on∂Ω,

(ui)ν(yi) =
γ (2 − n)

R2−n − r2−n
i

r1−n
i for i = 1,2. (2.1)

Now, from the maximum principle,u1 6 u 6 u2, hence, ify1, y2 ∈ ∂redΩ,

(u2)ν(y2) 6 uν(y2) and uν(y1) 6 (u1)ν(y1). (2.2)

On the other hand, from the free boundary condition found in [23], or even in [5], we know that
there exists a negative constantλ such that

uν ≡ λ on ∂redΩ. (2.3)

Finally, combining (2.1), (2.2) and (2.3), we end up with

rn−1
2 − r2 6 rn−1

1 − r1.
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Since the functionϕ(r) = rn−1
− r is strictly increasing on(1,∞), we conclude thatr2 6 r1.

However, from the choice ofr1 and r2 we also haver2 > r1. The conclusion is thatr1 = r2,
and therefore∂Ω has to be a sphere. Forn = 2, carrying out the same arguments withui(x) =

−γ
log |ri+(1−R)|

log |x + (1 − R)| + γ , we obtain the same conclusion.

REMARK 2.1 Let us point out that the above computation does not work, in principle, as a rigorous
proof because there is no way to guarantee, at this moment, thaty1, y2 ∈ ∂redΩ, even though in
[23] it is shown thatHn−1(∂Ω \ ∂redΩ) = 0. For those who liked this geometric proof, here are
good news: there are two ways of making this proof work. The first way is to use the fact that
the free boundary conditionuν ≡ λ also holds in the viscosity sense. In the viscosity theory, the
pointsy1, y2 are regular, thus using the linear behavior ofu close to the free boundary, we can
make inequality (2.2) hold. The second way is to jump ahead in this paper and use Theorem 3.2 to
initially ensure full regularity of the free boundary. Then we no longer need to count on luck when
using this touching-by-spheres argument.

THEOREM 2.2 (Radial symmetry for the linear problem) LetD be a ball inRn with radiusR, and
Γ (t) = t . Then there exists a unique minimizer to Problem 1 and it is radially symmetric. In
particular the free boundary is a sphere.

Proof. Our proof uses the Schwarz rearrangement technique (see [18]). Here are some details. Let
A be a measurable set. TheSchwarz symmetrizationof A, which we denote byA∗, is defined by
A∗

= B(r), where|B(r)| = |A|. Let f : U → R be a function. SetUc := {x ∈ U : u(x) > c}. We
define theSchwarz rearrangementof f by f ∗(x) := sup{c ∈ R : x ∈ U∗

c }. The crucial information
we shall use is that iff : U → R is inH 1(U), then∫

U

|∇f |
2 dx >

∫
U∗

|∇f ∗
|
2 dx. (2.4)

Furthermore, if∂U is piecewise analytic andf is analytic, then equality holds if and only iff =

f ∗
+ c. For this fact we refer to [15].
Let us return to our original purpose. Letu be a solution to our problem. The first observation is

that, in the linear case, i.e.,Γ (t) = t , with constant temperature distributionγ , if we apply Green’s
formula, we find

J (u) :=
∫
∂D

uµ dσ = γ−1
∫

suppu\D
|∇u|2 dx.

Notice that, from [23],∂[suppu] is an analytic surface up to anHn−1-negligible set, thus the above
computation can be made. Letu∗ be the Schwarz symmetrization ofu. Then

• u∗
|Sn−1 ≡ u|Sn−1 ≡ γ .

• Vol(suppu∗
\ B(1)) = Vol(suppu \ B(1)) = 1.

Let h denote the harmonic function in suppu∗
\B(1) with boundary values equal toγ onSn−1 and

0 on∂[suppu∗]. Notice thath competes withu in the minimization problem (1.3). We then have

J (u) = γ−1
∫

suppu\B(1)
|∇u|2 dx > γ−1

∫
suppu∗\B(1)

|∇u∗
|
2 dx

> γ−1
∫

suppu∗\B(1)
|∇h|2 dx = J (h).
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However, from the minimization property ofu, we knowJ (u) 6 J (h). Thus we have equality in the
above expression. Therefore, from the previous observation, having in mind thatu = u∗ on Sn−1,
and∂{u > 0} is an analytic surface up to a closedHn−1-negligible set (see [23]), we conclude that
u = u∗, thusu is radial. Since the minimizeru of Problem 1 was taken arbitrarily, we have shown
that any solution of Problem 1 withΓ (t) = t is radial, in particular, the free boundary is a sphere.
From the volume constraint|Ω \ B(1)| = 1, there must exist a unique solution. 2

Let us turn our attention to the nonlinear setting, i.e.,Γ is a generic increasing and convex
nonlinearity. It seems acceptable that, even in this situation, the best way of insulating a ball,B(R),
is by another ball. Thus, if our conjecture is right, the solution of Problem 1 would not depend upon
the nonlinearityΓ . Set

L(x) :=


γ

R2−n − r2−n
n

|x|2−n
−

γ r2−n
n

R2−n − r2−n
n

if n > 3,

−γ

log |r2 + (1 − R)|
log |x + (1 − R)| + γ if n = 2.

Here

rn := n

√
ωn + Rn

ωn
,

whereωn stands for the volume of the unit ball inRn, i.e.,ωn = |B(1)|. This is the solution of
Problem 1 forΓ (t) = t , provided by Theorem 2.2. Letu = uΓ be a solution of Problem 1 for a
generic nonlinearityΓ . Since we want to showu is radially symmetric, it seems natural to try to
compare it withL in terms of the optimization problems they minimize. Suppose by contradiction
thatu is not radially symmetric. In particularu 6= L. From Jensen’s inequality, we have

J (u) =

∫
Sn−1

Γ (uµ(x))dσ(x) > nωnΓ

(∫
Sn−1

uµ(x)
dσ(x)

nωn

)
> nωnΓ

(∫
Sn−1

Lµ(x)
dσ(x)

nωn

)
, (2.5)

where in the last inequality we have used the fact thatL is the only minimizer to Problem 1 with
Γ (t) = t . However, the geometry of our problem is so special that

Lµ(x) ≡ cn =


(n− 2)γ

R2−n − r2−n
n

if n > 3,

γ

log |r2 + (1 − R)|
if n = 2.

Returning to inequality (2.5), having in mind the above remark, we conclude

J (u) > nωnΓ

(∫
Sn−1

Lµ(x)
dσ(x)

nωn

)
= nωnΓ (cn)

=

∫
Sn−1

Γ (Lµ(x))dσ(x) = J (L). (2.6)

SinceL competes withu in the minimization problem (1.3), the strict inequality in (2.6) leads to a
contradiction. Summarizing, we have proven the following general theorem:
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THEOREM 2.3 (Radial symmetry for Problem 1) LetD be a ball inRn and Γ (t) be a general
convex and increasing nonlinearity. Then there exists a unique minimizer to Problem 1 and it is
radially symmetric. In particular, the free boundary is a sphere.

3. Starlikeness and full regularity of the free boundary

In the previous section we studied a very special symmetry, namely the spherical symmetry. As we
pointed out, this is an extreme symmetry case which enables strong results such as Theorem 2.3. In
this section we shall explore a milder restriction on the bodyD. The geometric property we shall be
concerned with is starlikeness. Here is its definition.

DEFINITION 3.1 LetE ⊂ Rn be a set andx0 ∈ E. We sayE is starlike with respect tox0 if for
anyx ∈ E and anyt ∈ [0,1], we havetx0 + (1 − t)x ∈ E.

For instance, any convex body is starlike with respect to all of its points. Even assuming a less
restrictive assumption, we shall be able, in the linear setting, to prove uniqueness and full regularity
of the free boundary. The main theorem of this section is the following.

THEOREM 3.2 LetD ⊂ Rn be starlike with respect to any point of a small neighborhood of the
origin, sayBε(0), and letΓ (t) = t . Then there exists a unique minimizeru of Problem 1. Moreover
the level sets{u > α} are starlike with respect toBε(0). Furthermore the free boundary is an analytic
surface with no singular points, i.e.,∂red{u > 0} = ∂{u > 0}.

The proof of this theorem will be developed throughout this section. The idea is to consider
a “starlike version” ofu given by an appropriate rearrangement and compare it withu and with
solutions to auxiliary free boundary problems.

It is worth pointing out that the linear setting of our problem is closely related to Bernoulli-type
problems that have been studied by many authors. For the Bernoulli problem on convex domains, a
Perron-type method has been successfully applied to prove existence, uniqueness and convexity of
the solution [13, 14]. Acker has proven some deep results about solutions of the Bernoulli problem
under convexity and starlikeness assumptions (see, for instance, [1, 2]). One of the major difficulties
to properly relate Problem 1 to a Bernoulli-type problem, though, is that, forn > 3, one cannot
ensure full regularity of the free boundary of our original variational problem. Our strategy will
then be to compare a special solution of Problem 1, whose free boundary can be shown to be fully
regular, to solutions of certain Bernoulli problems. Once full regularity of the free boundary of a
solution of Problem 1 is established, we will be able to apply the usual techniques employed in
Bernoulli-type problems. Indeed, Lemma 3.6 is essentially due to Acker and Meyer in [3]. Lemma
3.7 is inspired by [15], while Theorem 3.11 is an adaptation of a beautiful geometric argument due
to Henrot and Shahgholian in [12]. For completeness, we shall carry out all the details and necessary
modifications.

Hereafter, we fix a solutionu to Problem 1 withΓ (t) = t and we assume thatD ⊂ Rn is starlike
with respect to any point inBε(0). As pointed out before, there exists a constantλ = λ(u) such that
the following free boundary condition holds:

uν ≡ λ on ∂red{u > 0}. (3.1)

This leads us to consider the following two auxiliary free boundary problems:
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PROBLEM 2 (Alt–Caffarelli) Minimize

J (v) :=
∫
DC
(|∇v|2 + λ2χ{v>0})dx (3.2)

over{v ∈ H 1(DC) : v ≡ γ on ∂D}.

PROBLEM 3 (Bernoulli free boundary problem) Find a domainΩ ⊃ D and a functionψ such that∆ψ = 0 inΩ \D,

ψ = γ on ∂D,
ψ = 0, |∇ψ | = λ on ∂Ω.

(3.3)

For completeness let us briefly discuss the starlike rearrangement we shall make use of. A point
x ∈ Rn can be represented in spherical coordinates as(r, θ1, . . . , θn−1), wherer ∈ R+

0 andθ =

(θ1, . . . , θn−1) ∈ T := [0, π ]n−2
× [−π, π ]. Let E be a bounded set containingBε(0) and define

gp(r) = rn−1−p. LetGp(r) =
1

n−p
rn−p be a primitive ofgp. We define

E(θ) := {r > ε : (r, θ) ∈ E},

l(θ) :=
∫
E(θ)

gp(r)dr,

h(θ) := l(θ)+Gp(ε),

R(θ) := G−1
p (h(θ)).

We then define thep-starlike rearrangementof E by

E∗
p := {(r, θ) ∈ R+

0 × T : 0 6 r 6 R(θ)}. (3.4)

Notice that, in our case, if we extendu by γ inside ofD, from the maximum principle,u attains
its maximum, namelyγ , at each point ofBε(0). Thus, any level set{u > α} containsBε(0) and so
it is suitable for starlike rearrangement.

We finally define thep-decreasing starlike rearrangementof u, denotedu∗
p, by

u∗
p(x) :=

{
sup{α ∈ R+

0 : x ∈ {u > α}
∗
p} for x ∈ [suppu]∗p,

0 otherwise.
(3.5)

We defineu∗
= u∗

2. We shall use the following powerful result.

THEOREM 3.3 (Property of the starlike rearrangement) In our setting,

(1) Vol({u∗ > 0}) 6 1.

(2)
∫
DC

|∇u∗
|
2 dx 6

∫
DC

|∇u|2 dx.

The first part of this theorem follows from the fact that for any domainE ⊃ Bε(0), Vol(E) =

Vol(E∗

0) together with the inequalityu∗

0 > u∗
p for anyp > 1. The second part follows from the

general fact that ifv ∈ W
1,p
0 (U) then

∫
U

|∇v|p dx >
∫
U∗
p

|∇v∗
p|
p dx. For the proofs of these facts

and further details, we refer to [15]. We need some lemmas.
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LEMMA 3.4 Under the hypothesis of Theorem 3.2, and the notation above,u∗ is a minimizer of
Problem 1. Furthermore the free boundary∂{u∗ > 0} is an analytic surface with no singular points,
i.e.,∂red{u

∗ > 0} = ∂{u∗ > 0}.

Proof. Notice that, due to the volume constraint, in principleu∗ does not compete withu in
Problem 1. To overcome this difficulty, we shall use Theorem 1.2. Consider the functional

Jε(ξ) :=
∫
∂D

ξµ(x)dσ + fε(|{ξ > 0}|),

for ε small enough so that Theorem 1.2 applies. Leth be the harmonic function equal toγ on ∂D
and 0 on∂{u∗ > 0}. From Theorem 3.3, we obtain

Jε(u) = γ−1
∫
DC

|∇u(x)|2 dx + 1 > γ−1
∫
DC

|∇u∗(x)|2 dx + 1

> γ−1
∫
DC

|∇h(x)|2 dx + 1 > Jε(h) > Jε(u).

We conclude that, first of all,u∗
= h. Furthermore, it is a minimizer to the penalized version

of Problem 1. Hence, from Theorem 1.2,u∗ is a solution to Problem 1. In particular, we have
Vol({u∗ > 0} \D) = 1.

For the second part of the lemma, we notice that, since{u∗ > 0} is starlike with respect to
all points inBε(0), for eachz ∈ ∂{u∗ > 0} there exists a coneC that containsBε(0) such that
∂{u∗ > 0} ∩ C = {x}. This proves that the free boundary∂{u∗ > 0} is Lipschitz. Moreover, since
u∗ is a minimizer to Problem 1,∆u∗

= 0 in {x ∈ DC : u∗ > 0} and there exists a constantλ∗ > 0
such that

u∗
ν ≡ −λ∗ on ∂red{u

∗ > 0}.

Now, as we have already anticipated, we can interpret our free boundary condition in the viscosity
sense (for a more general situation, where degenerate operators govern the system, see [19]). Thus,
we can apply Caffarelli’s theorem in [8] (Lipschitz free boundaries areC1,α) to conclude that
∂{u∗ > 0} is a C1,α surface. Afterwards, having in mind our free boundary condition, by [16]
we deduce the analyticity of the free boundary∂{u∗ > 0}. 2

We now turn our attention to Problem 3, withλ replaced byλ∗. We need some notations. For any
setA ⊂ Rn, andt > 0, we settA = {tx : x ∈ A}. Let V be the set of all bounded simply connected
domainsU ⊂ Rn containing the origin, and denote by∂V the boundaries of elements inV. In ∂V
we define the metric

ρ(S1, S2) := sup{|log t | : tS1 ∩ S2 6= ∅}.

For eachS ∈ ∂V let U ∈ V be the bounded simply connected domain for which∂U = S. We say
S1 6 S2 if U1 ⊂ U2 andS1 < S2 if U1 ⊂ U2, whereUi ∈ V and∂Ui = Si for i = 1,2. In what
follows, we will need the Lavrent’ev principle. A proof can be found in [17].

LEMMA 3.5 (Lavrent’ev principle) LetS1, S2 and S̃1, S̃2 be n − 1-hypersurfaces in∂V. Let Ω
(resp.Ω̃) be the annular domain whose boundaries areS1 and S2 (resp. S̃1 and S̃2) and letU
(resp.Ũ ) be the harmonic function inΩ (resp.Ω̃), equal to 1 onS1 (resp.S̃1) and 0 onS2 (resp.S̃2).
Let t > 1 be such thatS1 6 t S̃1 andS2 6 t S̃2. If txi ∈ Si ∩ t S̃i and|∇Ui(xi)| exist, then

|∇Ũ (x2)| > t |∇U(tx2)| and |∇Ũ (x1)| 6 t |∇U(tx1)|.
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The next lemma concerns uniqueness. We observe that the main difficulty of uniqueness results
for free boundary variational problems is the lack of regularity of the free boundary, as pointed
out in the “fake” proof of radial symmetry presented in Section 2. The advantage of dealing with
Problem 3 is that solutions are supposed to be full regular. The next lemma is a consequence of the
Lavrent’ev principle.

LEMMA 3.6 The functionu∗ is the only classical solution to Problem 3, whereλ is replaced byλ∗.

Proof. From Lemma 3.4,u∗ is a classical solution to Problem 3, whereλ is replaced byλ∗. Let
(ψ,Ω) be another solution to Problem 3. DefineS = ∂Ω andF(u∗) = ∂{u∗ > 0}. If (ψ,Ω) 6=

(u∗, {u∗ > 0}), there would exist at0 > 1 such that logt0 = ρ(S, F (u∗)). Thus,S 6 t0F(u
∗) and

F(u∗) 6 t0S. Furthermore, eitherS ∩ t0F(u
∗) 6= ∅ or t0S ∩ F(u∗) 6= ∅. We might assume without

loss of generality that there exists a pointt0x0 ∈ S ∩ t0F(u
∗) (if t0S ∩ F(u∗) 6= ∅ we proceed

similarly). Notice that, since our fixed domainD is assumed to be starlike, we have∂D 6 t0∂D.
Finally, applying Lemma 3.5 forS1 = S̃1 = ∂D, S2 = S, S̃2 = F(u∗) andt = t0, we obtain

λ∗
= |∇u∗(x0)| > t0|∇ψ(t0x0)| = t0λ

∗,

which is a contradiction. Thus,S has to beF(u∗) and therefore the lemma is proven. 2

Our next step is to relate our original problem to Problem 2 and the latter to Problem 3. We stress
that the advantage of dealing with Problem 2 instead of our original Problem 1 is that the former
does not have volume constraint. This makes it much easier to construct perturbation arguments as
will be explicit in the proof of the next lemma.

LEMMA 3.7 Letv be a minimizer of Problem 2 withλ replaced byλ∗. Then the free boundary
∂{v > 0} is an analytic surface with no singular points.

Proof. We follow the same idea of the proof of Lemma 3.4. Letv be a minimizer of Problem 2
with λ replaced byλ∗. Let v∗ be the 2-decreasing starlike rearrangement ofv. As in Lemma 3.4
we easily conclude, with the aid of Theorem 3.3, thatv∗ is also a minimizer of Problem 2. Define
v+ := max{v, v∗

} andv− := min{v, v∗
}. Notice thatv+ andv− are admissible for Problem 2 (not

for Problem 1 or even for its penalized version, though). Furthermore, we easily observe that

J (v+)+ J (v−) = J (v)+ J (v∗) = 2 minJ.

Thusv+ andv− are also minimizers of Problem 2. LetΩ− := {v− > 0} \D. Notice that

∆(v+
− v) = ∆(v+

− v∗) = 0 inΩ−.

Moreover,v+
−v > 0 in ∂Ω− andv+

−v∗ > 0 inΩ−. From the maximum principle, we conclude
that either

(1) v∗
= v in Ω−, or

(2) v∗ > v in Ω−, or
(3) v > v∗ in Ω−.

Notice that, if(2) happens, then, by the continuity ofv∗ it must be the case that suppv ( suppv∗.
But this would violate Theorem 3.3. If(3) happens, then, again by the continuity ofv, suppv∗ (
suppv. However, if this is the case, we would conclude thatJ (v∗) < J (v), a contradiction. Thus,
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we conclude thatv∗
= v in Ω−, which clearly impliesv∗

= v and thereforev is starlike with
respect toBε(0).

Now, by the same argument as in Lemma 3.4, we obtain the full regularity of the free boundary
∂{v > 0}. Indeed, the fact that the free boundary is starlike with respect toBε(0) implies its
Lipschitz regularity. Furthermore, from [9],v satisfies the free boundary condition

vν ≡ −λ∗ on ∂red{v > 0},

in the viscosity sense. Invoking [8] and afterwards [16], we deduce the analyticity of the whole free
boundary. Sincev was taken to be an arbitrary minimizer of Problem 2, the proof is finished.2

The next lemma unifies the results we have so far by relating Problem 1 and Problem 2. As we shall
see, from the full regularity results we have obtained, we shall be able to relate these problems to
Problem 3 where we could obtain a uniqueness result. As already pointed out a couple of times,
uniqueness of variational problems with free boundary is, in general, quite hard, so the idea is to use
the auxiliary Problem 3, where, from Lemma 3.6, we have uniqueness of classical solutions, and
compareu∗ with a solution of Problem 2, in terms of Problem 3.

LEMMA 3.8 With the hypothesis of Theorem 3.2 and the notation previously set, the functionu∗

is the only minimizer to Problem 2 withλ replaced byλ∗.

Proof. From Lemma 3.4,∂{u∗ > 0} is a smooth surface and from the free boundary condition,
we haveu∗

ν ≡ −λ∗ on ∂{u∗ > 0}. Lemma 3.7 guarantees the full regularity of the free boundary
∂{v > 0} of any solutionv of Problem 2 withλ replaced byλ∗. Furthermore, from the free boundary
condition established in [7], we also havevν ≡ −λ∗ on ∂{v > 0}. We conclude that bothu∗ andv
are classical solutions to Problem 3. Lemma 3.6 finally impliesu∗

= v. 2

We are ready to make the last step toward the proof of Theorem 3.2. Basically, the only information
left is whetheru is equal to its rearrangement.

LEMMA 3.9 With the hypothesis of Theorem 3.2 and the notation previously set, the functionu∗

is the only solution to Problem 1.

Proof. Again, it seems quite hard to show this directly. We will use Problem 2 to compare a solution
ω of Problem 1 andu∗. Indeed, consider the functional in Problem 2 withλ replaced byλ∗, i.e.,

J (v) :=
∫
DC
(|∇v|2 + (λ∗)2χ{v>0})dx.

We have shown thatu∗ is the unique minimizer ofJ in {v ∈ H 1(DC) : v ≡ γ on ∂D}. Furthermore,
we have verified that Vol({u∗ > 0} \D) = 1. Thus, ifω is any solution to Problem 1, then

J (ω) =

∫
DC

|∇ω|
2 dx + (λ∗)2 =

∫
DC

|∇u∗
|
2 dx + (λ∗)2 = J (u∗).

Lemma 3.8 impliesω = u∗. Sinceω was taken to be an arbitrary solution to Problem 1, Lemma 3.9
is proven. 2

Finally, combining Lemmas 3.4 and 3.9 we conclude the proof of Theorem 3.2.
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REMARK 3.10 As pointed out in the introduction, full regularity of the free boundary of
minimizers of Problem 2, without any further assumption on∂D, is a very challenging question.
It has been proven that in dimensions 2 and 3 the singular set on the free boundary of minimizers of
Problem 2 is empty. Furthermore, there are indications that this should be the case for any dimension
up to 6; however, there is a prediction that one could find a counterexample in dimension 7. The full
regularity of the free boundary in Theorem 3.2, and its impact in Lemma 3.7, are possible because
we impose a geometric restriction on∂D.

Let us mention that, from the machinery developed above, one can infer the convexity of the free
boundary in the case whereD is a convex body.

THEOREM 3.11 Under the hypothesis of Theorem 3.2, ifD is a convex body, then so is any level
set{u > α} of the minimizer of Problem 1.

Proof. SinceD is convex, it is starlike with respect to all of its points. From Theorem 3.2, there
exists a unique solution to Problem 1, its level sets are starlike with respect to all points inD, and the
free boundary∂{u > 0} is a smooth surface with no singular points. In particular, the free boundary
condition−uν ≡ λ > 0 holds at any point of the free boundary.

SetΩ = suppu, letΩ? := co(Ω) be the convex hull ofΩ, andu? the harmonic function on
Ω?

\D, equal toγ on ∂D and 0 on∂Ω?. DefineUc = {x ∈ Ω? : u?(x) > c}. From [11], these are
convex sets. Lety be a generic point on∂Uc. We may assume, with no loss of generality, thaty is
the origin and the exterior normal derivative at 0 ise1. Let z ∈ ∂Ω?

∩ {x1 > 0} be the farthest point
to {x1 = 0}. Notice that, sinceΩ?

= co(Ω), z can be taken to belong to∂Ω ∩ ∂Ω?. On the open
setΩ?

∩ {x1 > 0}, consider the harmonic functionv(x) = u?(x) + β〈x, e1〉 with 0 < β < λ. By
the maximum principle,v achieves its maximum either atz or at 0.

We claim thatv attains its maximum at the origin. Indeed, letB = B(z+ e1,1). By Lemma 3.8
of the present paper, Lemma 4.10 in [7] and the maximum principle, there exists a sequencezn → z

such that limn→∞ u?(zn)/dist(zn, B) > λ. If v achieved its maximum atz, we would have

0 >
v(zn)− v(z)

dist(zn, B)
>

u?(zn)

dist(zn, B)
+ β

〈zn − z, e1〉

dist(zn, B)
> λ+O(n)− β, (3.6)

which contradicts the choice ofβ.
Thus,v attains its maximum at the origin. But this implies|∇u?(0)| > β. Sinceβ < λ andy

were taken arbitrarily, we conclude that|∇u?(x)| > λ for all x ∈ Ω?
\D.

Now, the assertion of Theorem 3.11 follows as a consequence of Lemma 3.5. Indeed, with the
notation previously set, for 0< t < 1, considertΩ?

= {tx : x ∈ Ω?
}, let t0 := sup{t : tΩ?

⊂ Ω}

andχ ∈ ∂tΩ?
∩ ∂Ω. Applying Lemma 3.5, we obtain

λ = |∇u(χ)| >
1

t0
|∇u?(χ/t0)| >

1

t0
λ.

In conclusion,Ω?
= Ω. Hence, the optimal configuration suppu is convex and then, from [11], so

is any level set{u > α}. 2

4. Uniqueness andO(n) symmetries

Let u andv be two different solutions of our general free boundary variational problem (1.1). Since
u ≡ v on∂D and both are harmonic near it, ifuµ coincides withvµ on any tiny open subset of∂D,
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thenu ≡ v on the wholeDC . On the other hand, the setΘ := {χ ∈ ∂D | uµ(χ) = vµ(χ)} has to
be nonempty, otherwise, sayuµ > vµ in ∂D and, sinceΓ is increasing,

∫
∂D
Γ (x, uµ(x))dS(x) >∫

∂D
Γ (x, vµ(x))dS(x). Moreover, for any domainU surroundingD, i.e.,D ⊂ U , there must exist

a ξ ∈ ∂U such thatu(ξ) = v(ξ); otherwise, by the maximum principle, sayv > u in U \ D and
therefore,vµ < uµ on someHn−1-noneligible subset of∂D, and thus

∫
∂D
Γ (x, uµ(x))dS(x) >∫

∂D
Γ (x, vµ(x))dS(x). In R2, the above comment provides a nice stratification of the set{u > 0}

∩ {v > 0} dividing it into regions whereu > v andv > u. In other words, there are curvesγi
joining points of∂{u > 0} ∩ ∂{v > 0} and∂D, so thatu ≡ v alongγi .

The above paragraph brings some general information that, depending upon the geometry ofD,
might yield uniqueness results. We should point out, though, that to establish a general uniqueness
result, if true, seems to be a very hard task. Symmetry results for the general nonlinear variational
free boundary problem (1.1), or even its simplified version, Problem 1, seem also very challenging.
For instance, one of the most common ways of proving symmetry results is by rearrangement
techniques. That was our strategy to deliver the results in the previous section as well as to obtain
the starting radial symmetry result for the linear setting in Section 2. Notice that rearrangement
techniques work fine in the linear setting of our problem, i.e., whenΓ (t) = t with constant
temperature distribution,φ ≡ γ . That is because, in this situation, our functional is equivalent to
the energy functional and if one minimizes the latter, it will automatically be harmonic in its set of
positivity. For the general problem, one has to search for minimizers among subharmonic functions;
see for instance, the penalized version (1.2). Now, ifu is an admissible function for Problem (1.2),
it seems hard to control the sign of the Laplacian of its rearrangement. Another difficulty in using
rearrangement techniques for the nonlinear problem is that our functional is equivalent to

J(u) :=
∫
DC
(2uΥ ′(|∇u|2)〈D2u · ∇u,∇u〉 + Γ (|∇u|)|∇u| + uΥ (|∇u|2)∆u)dx,

whereΥ (t2)t = Γ (t). The functionalJ does not seem to behave well under rearrangements. Thus,
in order to establish symmetry results for Problem (1.1), we have to search for a different type of
geometric argument other than rearrangements.

The nonlinearityΓ reflects in a rather nonlocal free boundary condition given by (see [23])∫
∂D

∂tΓ (x, uµ(x))[Hν(x, y)uν(y)] ≡ const, (4.1)

for any y ∈ ∂red{u > 0}. HereH is a kernel related to the Green’s function of the domain
{u > 0} \D. Of course, in general, for different nonlinearities, sayΓ1 andΓ2, there should exist
different optimal configurationsu1 andu2. In other words, what happens in the radial symmetry
case is very special. Indeed, we can state the following proposition.

PROPOSITION4.1 Suppose Problem (1.1) admits an optimal configurationu`, for Γ (t) = t , that
satisfies

u`µ ≡ c on ∂D. (4.2)

AssumeHn−1(∂D) = 1. Thenu` is the only solution of Problem (1.1) for any strictly convex
nonlinearityΓ (t).

Proof. Let uΓ be a solution of Problem (1.1). Our first claim is that, necessarily,

uΓµ ≡ cΓ on ∂D.
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Indeed, suppose not. From Jensen’s inequality, the minimality properties ofuΓ andu`, the strict
convexity ofΓ and (4.2), we obtain∫

∂D

Γ (u`µ)dHn−1
= Γ

(∫
∂D

u`µ dHn−1
)

6 Γ

(∫
∂D

uΓµ dHn−1
)

<

∫
∂D

Γ (uΓµ )dHn−1 6
∫
∂D

Γ (u`µ)dHn−1,

which is a contradiction. This also shows thatu` is a solution of Problem (1.1) for any strictly
convex nonlinearityΓ . If so, taking into account thatuΓµ ≡ cΓ , we obtain

Γ (c) = Γ (cΓ ),

which implies, asΓ is strictly increasing,c = cΓ , and therefore from the observation made at the
beginning of this section,u` ≡ uΓ in DC . 2

It is worth pointing out that for Problem 1, i.e., for a constant temperature distributionφ ≡ γ ,
a Serrin-type result ensures that the above phenomenon occurs only whenD is a ball. For fully
regular free boundaries, a proof of this fact can be found in [20] (see also [21]). A stability result
pertaining to this remark can be found in [4]. It is also interesting to notice that, whenD is convex,
we can always, by a scaling argument, assumeHn−1(∂D) = 1.

The type of symmetry we will be particularly interested in for the rest of this section is invariance
under the groupO(n). LetO be an orthogonal transformation inO(n). Clearly, if we hope to have
any kind of symmetry with respect toO of the free boundary, it is better to assumeO(D) = D,
φ(O(x)) = φ(x) andΓ (O(x), t) = Γ (x, t). Under these natural assumptions, we obtain

THEOREM 4.2 (O(n) symmetries) LetO ∈ O(n) be an orthogonal transformation. Suppose
Problem (1.1) has a unique solution. Thenu is invariant underO.

Proof. Let u be the minimizer of Problem (1.1). Define

uO(x) := u(Ox).

SinceO preserves volume, one concludes easily that

|suppuO| = |suppu| = 1.

We also verify, sinceO(D) = D andφ(O(x)) = φ(x), thatuO(x) = φ(x) on ∂D. Furthermore

∆uO(x) = 0 in suppuO, ∇uO(x) = OT
∇u(Ox).

Thus,uO competes withu in Problem (1.1). From the fact that|det(O)| = 1, we obtain, by the
change of variables theorem,

J (uO) =

∫
∂D

Γ (〈∇uO(x), µ(x)〉)dσ =

∫
∂D

Γ (〈∇u(Ox),Oµ(x)〉)dσ

=

∫
∂D

Γ (〈∇u(y), µ(y)〉)dσ = J (u).

From the uniqueness assumed,uO ≡ u. Therefore, any level set ofu is invariant underO and in
particular so is the free boundary. 2
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COROLLARY 4.3 AssumeD is starlike with respect to a small neighborhood of the origin and
Γ (t) = t . SupposeD is symmetric with respect to the planeP = {x1 = 0}. Then the solution to
Problem 1 is symmetric with respect to the planeP and so is its free boundary.

Proof. Consider the orthogonal transformation

O(x1, x2, . . . , xn) := (−x1, x2, . . . , xn).

Apply Theorem 3.2 and afterwards Theorem 4.2. 2

We finish this paper with some remarks. It seems to us that the nonuniqueness phenomenon
for Problem 1 is more related to the topology/geometry of the fixed domainD than to the
nonlinearityΓ . We are therefore led to state the following conjecture:

CONJECTURE1 LetD ⊂ Rn be a domain. Assume there exists a unique solutionu` to Problem 1
with Γ (t) = t . Then, for any other strictly convex increasing nonlinearityΓ , Problem 1 has a
unique solutionuΓ .

Another natural conjecture is convexity of the free boundary for Problem 1, with a general
nonlinearityΓ .

CONJECTURE2 Let D ⊂ Rn be a convex domain. Then there exists a convex optimal
configuration{u > 0} of Problem 1.

Notice that, if Conjecture 2 is affirmatively answered, we would obtain Lipschitz regularity of
the full free boundary. From [23], the reduced free boundary is an analytic surface; however, the
nonlocal free boundary condition (4.1) does not allow us to deduce, via Caffarelli’s viscosity theory,
full C1,α regularity of the free boundary, even though it seems quite reasonable to expect it.

QUESTION 1 LetD ⊂ Rn be a convex domain. Assume Problem 1 has a unique solution. Is the
free boundary fully regular?
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