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A phase field model for
the electromigration of intergranular voids
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We propose a degenerate Allen–Cahn/Cahn–Hilliard system coupled to a quasi-static diffusion
equation to model the motion of intergranular voids. The system can be viewed as a phase field
system with an interfacial parameterγ . In the limit γ → 0, the phase field system models the
evolution of voids by surface diffusion and electromigration in an electrically conducting solid with a
grain boundary. We introduce a finite element approximation for the proposed system, show stability
bounds, prove convergence, and hence existence of a weak solution to this non-linear degenerate
parabolic system in two space dimensions. An iterative scheme for solving the resulting non-linear
discrete system at each time level is introduced and analysed, and some numerical experiments are
presented. In the Appendix we discuss the sharp interface limit of the above degenerate system as
the interfacial parameterγ tends to zero.
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1. Introduction

Small voids that form in interconnect lines in microelectronic circuits can change their shape due to
diffusion of atoms along the void surface. This surface diffusion is driven by a diffusion potential
which contains terms stemming from capillary effects, from an electrical potential and from elastic
stresses. Elastic effects are neglected in this paper but can be incorporated (see [6]). The electric field
can cause a so called “electron wind” force and this leads to the transport of atoms which results
in the migration of voids. In particular it can happen that voids which are initially contained in one
grain (i.e. a region with a certain orientation of the crystal lattice) of the interconnect can come
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FIG. 1. The(u, v) spaceK = 4ABC. HereA represents the void phase,B grain I, andC grain II.

into contact with another grain (i.e. a region with a different lattice orientation). The modelling and
computation of the interaction between voids and grain boundaries is the subject of this paper.

There are two approaches to model the evolution of coupled grain boundary/void systems. In
the classical approach interfaces (i.e. the grain boundaries and the void surfaces) are modelled by a
sharp interface, i.e. a hypersurface. A second more recent approach models interfaces by a diffusive
interfacial layer. Let us first discuss roughly the sharp interface approach (for more details see [1]
and the references therein). Here a quite complicated system has to be studied. Along the void
surface a fourth order parabolic equation has to be solved whereas at grain boundaries a second
order parabolic equation holds. These equations are then coupled at triple junctions, where boundary
conditions such as angle conditions and flux balances have to hold. To approximate this problem
numerically is quite difficult since the topology of the interfaces can change drastically (e.g. voids
can attach to and detach from a grain boundary) and no satisfactory approach is known to us. For
example, in the paper [1] quite severe symmetry conditions are assumed.

In this paper we therefore introduce a new model based on the idea of modelling the interface
by a diffusive interfacial layer (our model will be a so called phase field model). We formulate a
model for a system of two grains (we call them grain I and grain II), but natural generalizations
are possible (see e.g. [22]). Each point in space either belongs to grain I, grain II or to the void.
We now introduce a vector order parameter (or phase field)(u, v), where the order parameteru
describes whether we are in the void(u = −1) or not(u = 1). If u = 1 (i.e. in the material), then
the order parameterv describes whether we are in grain I(v = 2/

√
3) or in grain II (v = −2/

√
3).

If u = −1 it makes no sense to distinguish between the grains and we setv = 0. This means
that the three pointsA = (−1,0), B = (1,−2/

√
3) andC = (1,2/

√
3) for (u, v) are relevant to

distinguish between void, grain I and grain II (see Figure 1). We choose±2/
√

3 as values forv in the
grains because this makes the closed triangular domainK with verticesA,B andC (see Figure 1)
equilateral. Other values ofv to distinguish the grains are possible, but these would complicate
matters slightly. Our idea now is to generalize a phase field model introduced in [29], and studied
later in [10, 9], to include grain boundaries. We make use also of ideas in [14, 15, 16], where a
degenerate Allen–Cahn/Cahn–Hilliard equation was studied.

The first step is to introduce the correct free energy. It is by now well established that a
Ginzburg–Landau energy

E(u, v) :=
∫
Ω

[
γ

2
|∇u|2 +

γ

2
|∇v|2 + γ−1Ψ (u, v)

]
dx,

dependent on a vector-valued order parameter(u, v), for a domainΩ, a parameterγ > 0, which is
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related to the interfacial thickness, and a nonconvex free energy densityΨ can model the interfacial
energy of systems having different types of interfaces (see e.g. [2, 11, 23] and the references therein).
To model the interfacial energy of our intergranular void system we need to assume thatΨ has
three global minima at the pointsA,B andC. As mentioned above,γ is related to the interfacial
thickness. It can be shown with the help of formally matched asymptotic expansions or withΓ -
convergence methods that, asγ → 0, E leads to a sharp interface free energy with surface energy
densities (sometimes also called surface tensions)

σ ij = 2 inf
p

∫ 1

−1
|p′(s)|

√
1
2Ψ (p(s))ds, i, j ∈ {A,B,C}, (1.1)

where the infimum is over allp ∈ C1([−1,1],R2) with p(−1) = i andp(1) = j . Again we refer
to [2, 11, 23] for more details.

To formulate equations for the time evolution of the interfaces we introduce the potentials

w =
δE
δu

= −γ∆u+ γ−1Ψ,u(u, v) and z =
δE
δv

= −γ∆v + γ−1Ψ,v(u, v),

whereδE/δu andδE/δv are theL2-representations of the variational derivatives ofE with respect
to u andv respectively. The equations forw andz are stated here for a smoothΨ . Later, we will
use a non-differentiableΨ and then we have to solve a variational inequality to computew andz
(see (1.6c) below). The potentialw is the chemical potential for the diffusion of atoms in the void-
material interfacial layer andz acts as the driving force for the grain boundary motion. Taking into
account that diffusion of atoms is also caused by the electrical field−∇φ (see e.g. [29]), we propose
that the mass fluxJ for the diffusion of atoms is given as

J = −γ−1b(u)∇[w + αφ],

whereα is a constant,b(u) := 1−u2 is a degenerate mobility and the factorγ−1 takes into account
that the diffusion is enhanced in the interface,|u| < 1. The evolution equation foru now follows
from the mass balance law∂u/∂t + ∇.J = 0. The unknownv models the grain boundary and as
usual we take a gradient flow dynamics, i.e.∂v/∂t points in the direction of the negative gradient of
E with respect tov (see e.g. [22, 23]). Altogether we obtain the following set of evolution equations:

γ
∂u

∂t
− ∇.(b(u)∇[w + αφ]) = 0, (1.2a)

`(γ )
∂v

∂t
+ z = 0, (1.2b)

which are coupled to the equation for the electric potentialφ,

∇.(c(u)∇φ) = 0. (1.2c)

Here`(γ ) is a non-negative coefficient, and later we will use the scalings`(γ ) := βγ and`(γ ) :=
βγ 2, whereβ ∈ R>0. Equation (1.2c) reduces to Laplace’s equation in the material, and is absent
in the void if we takec(u) := 1 + u. As first shown in [13], we expect, in the case that there is no
coupling to av-equation andα = 0, that (1.2a) will model surface diffusion in the sharp interface
limit.
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The resulting system couples the degenerate Cahn–Hilliard equation (1.2a) to a non-degenerate
Allen–Cahn equation (1.2b). We note that this is different from a similar set of equations introduced
by Cahn and Novick-Cohen [14], where the Allen–Cahn equation was also degenerate. For this
system, which is a model for simultaneous order-disorder and phase separation, it was shown in
[32, 33] that, under an appropriate scaling and under certain assumptions on the interface geometry,
one obtains mean curvature flow and surface diffusion coupled at triple junctions in the sharp
interface limit. We obtain a similar sharp interface limit also for our system with a non-degenerate
Allen–Cahn equation. However, our sharp interface limit is different in some aspects, and leads to
some interesting new effects. For example, we derive a model where the grain boundary motion
is quasi-static, and another model where viscous effects appear in the surface diffusion equation.
Analogous results would follow for the doubly degenerate system derived in [14], if one would
work with the scaling used in this paper. We will discuss the sharp interface model in the Appendix,
§A. Here we will only outline the results. The domainΩ will split into regions where(u, v) attains
the valuesA,B andC, and into interfacial layers separating these regions which have a thickness
that is proportional toγ . Now, depending on the scaling, we derive different geometric evolution
laws for the interfaces. Here we discuss, for ease of exposition, only the case when no coupling to
the electric field is present.

For the scaling̀ (γ ) := βγ 2 we find that the interfaces which bound the void move by surface
diffusion, i.e.

V = −
Mσ

4
∆sκ,

whereV is the normal velocity of the interface,κ is the (mean) curvature of the interface,∆s is
the surface Laplacian, andM andσ are constants, whose precise definitions can be found in the
Appendix. For a grain boundary, we show that its mean curvature is zero. These evolution laws are
coupled at triple junctions, where angle conditions, flux conditions and continuity conditions have
to hold.

If we scale thev-equation with`(γ ) := βγ , we obtain for void boundaries an evolution law
which combines surface diffusion and surface attachment limited kinetics (SALK). The evolution
equation is

V =
M

4
∆s(−σκ + βωV), (1.3)

whereω is a constant. This law has been derived in [37], and has been studied in [21]. It links
the fourth order surface diffusion flow to a second order flow, which is called motion by averaged
mean curvature (see [37, 34] for details). In this context we refer also to work in [31] on the viscous
Cahn–Hilliard equation, for which a degenerate variant would lead to (1.3) in the sharp interface
limit. For this second scaling one obtains the mean curvature flow

βωV = σκ,

as the evolution law for grain boundaries. We remark that in [32, 33] a singular limit of an Allen–
Cahn/Cahn–Hilliard system has also been analyzed using different scalings.

In the recent paper [9], the following phase field model for void electromigration was
considered:

γ
∂u

∂t
− ∇.(b(u)∇[w + αφ]) = 0, w = −γ∆u+ γ−1Ψ

′
(u), ∇.(c(u)∇φ) = 0 (1.4)



ELECTROMIGRATION OF INTERGRANULAR VOIDS 175

∂
+
2 Ω∂

−
2 Ω

∂1Ω

∂1Ω

��@@

��

@@

Ω

(u, v) = A

void
(u, v) = C(u, v) = B

grain IIgrain I

|u| < 1HHu = 1,

|v| < 2/
√

3

}

PP
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subject to an initial conditionu0(·) ∈ [−1,1] on u and flux boundary conditions on all three
equations. Hereu(·, t) ∈ [−1,1] ⊂ R is the conserved order parameter, where at any time
t ∈ [0, T ], u(·, t) = −1 denotes the void andu(·, t) = 1 denotes the conductor, while the void
boundary is approximated by theu(·, t) = 0 contour line inside the|u(·, t)| < 1 interfacial region.
In addition,w(·, t) is the chemical potential andΨ is a non-smooth double obstacle potential; and
hence the second equation in (1.4) is in fact a variational inequality (see [9] for details). While, as
in (1.2a–c),φ(·, t) is the electric potential,γ ∈ R>0 is the interfacial parameter,α ∈ R>0 is a
parameter denoting the relative strength of the electric field, andb(u) := 1 − u2 andc(u) := 1 + u

are degenerate coefficients. The authors extended the technique of formal asymptotic expansions in
[13] to show that the zero level sets ofuγ , the solution to (1.4) for a fixedγ > 0, converge asγ → 0
to an interfaceΓ (t) with unit normalnΓ , evolving with normal velocity

V = −
π2

16
∆sκ + α

π

4
∆sφ onΓ (t), (1.5a)

whereκ is the curvature ofΓ (t) (positive if it is curved in the direction ofnΓ ). The limiting electric
potential,φ(·, t), satisfies

∆φ = 0 inΩ+(t) := Ω \Ω−(t),
∂φ

∂nΓ
= 0 onΓ (t), (1.5b)

where Ω−(t) is the void with boundaryΓ (t). For a discussion of different approaches to
approximating (1.5a,b), see [9]. For further details on void electromigration see e.g. [38, 19] and
the references therein.

The present paper extends the phase field model (1.4) to take into account grain boundaries. In
summary, the evolution of intergranular voids is described by the following non-linear degenerate
parabolic system:

(P) Find functions andu, v,w, z, φ : Ω × [0, T ] → R such that(u(x, t), v(x, t)) ∈ K and for
all (η1(x, t), η2(x, t)) ∈ K,

γ
∂u

∂t
− ∇.(b(u)∇[w + αφ]) = 0 inΩT , (1.6a)
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`(γ )
∂v

∂t
+ z = 0 inΩT , (1.6b)

(−γ∆u+ γ−1ψ,u(u, v)− w)(η1 − u)

+ (−γ∆v + γ−1ψ,v(u, v)− z)(η2 − v) > 0 inΩT , (1.6c)

(u(x,0), v(x,0)) = (u0(x), v0(x)) ∈ K ∀x ≡ (x1, x2)
T

∈ Ω,

∂u

∂ν
= b(u)

∂[w + αφ]

∂ν
=
∂v

∂ν
= 0 on∂Ω × (0, T ], (1.6d)

∇.(c(u)∇φ) = 0 inΩT , (1.6e)

c(u)
∂φ

∂ν
= 0 on∂1Ω × (0, T ], c(u)

∂φ

∂ν
+ φ = g± := x1 ± 2 on∂±

2 Ω × (0, T ], (1.6f)

whereT > 0 is a fixed positive time,ΩT := Ω × (0, T ] andΩ := (−L1, L1) × (−L2, L2) is
a rectangular domain inR2, representing the interconnect line, with boundary∂Ω = ∂1Ω ∪ ∂2Ω,
where∂1Ω ∩ ∂2Ω = ∅ and

∂2Ω = ∂−

2 Ω ∪ ∂+

2 Ω with ∂±

2 Ω := {±L1} × [−L2, L2],

andν is the outward unit normal to∂Ω; see Figure 2. Hence∂1Ω is the insulated boundary ofΩ,
whilst the Robin boundary conditions on the ends∂±

2 Ω model a uniform parallel electric field, as
L1 → ∞. We note that one could alternatively model this with either (a) the Dirichlet conditionφ =

x1 or (b) the Neumann conditionc(u)∂φ/∂ν = ±2 on∂±

2 Ω. However, in deriving energy bounds
for (P) it is convenient to have weak boundary conditions, that is, Neumann or Robin conditions.
The chosen Robin condition on∂±

2 Ω, (1.6f), has the added advantage that one obtains an immediate
L2(∂2Ω) bound onφ for the degenerate elliptic equation (1.6e). In (1.6a–d),γ, `(γ ) ∈ R>0 and
α ∈ R>0 are given constants and

Ψ (r, s) :=

{
ψ(r, s) if (r, s) ∈ K,
∞ if (r, s) 6∈ K,

with ψ ∈ C2(K), (1.7)

is an obstacle free energy which restricts(u(·, ·), v(·, ·)) ∈ K. Here we assume thatψ > 0 is a
concave function withψ(A) = ψ(B) = ψ(C) = 0, e.g.

ψ(r, s) :=
8

9
−

1

2

[(
r −

1

3

)2

+ (1 − µ)s2
+

2

3
µ(r + 1)

]
, (1.8)

whereµ < 1 is a parameter. In addition, we define the degenerate diffusion coefficients

c(s) := 1 + s, b(s) := 1 − s2
= c(s)c(−s) ∀s ∈ −[1,1]. (1.9)

The variational inequality (1.6c) is obtained by taking the first variation ofE with respect tou
andv, and taking the non-smooth character ofΨ into account. The first variation can be computed
in the context of subdifferentials. We choose a characterization ofw andz in terms of variational
inequalities, as it simplifies the formulation of the discrete problem. We refer to [20, 28] for further
details on subdifferentials and variational inequalities.

The basic ingredients of our approach are some key energy estimates. Let us now briefly in a
formal way describe how we obtain these estimates. Multiplying (1.6a) byγ−1w = γ−1δE/δu and
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(1.6b) by [̀ (γ )]−1z = [`(γ )]−1δE/δv yields, after integration of the sum of the two terms, the
following free energy identity:

d

dt
E(u, v)+

∫
Ω

[γ−1b(u)|∇w|
2
+ [`(γ )]−1z2] dx = −γ−1α

∫
Ω

b(u)∇w.∇φ dx. (1.10)

If we multiply (1.6e) byφ we can estimate
∫
Ω
b(u)∇w.∇φ dx and this enables us to control the

right hand side of (1.10), leading toH 1-estimates in space for the phase field(u, v). RelatingF to
c andG to b by the identities

c(s)F ′′(s) = 1 and b(s)G′′(s) = 1, (1.11)

and testing (1.6a) withG′(u), (1.6b) with−∆v, and adding leads to

d

dt

∫
Ω

[
γG(u)+

l(γ )

2
|∇v|2

]
dx + γ

∫
Ω

[|∆u|2 + |∆v|2] dx

= −

∫
Ω

∇u.∇(γ−1Ψ,u + αφ)dx − γ−1
∫
Ω

∇v.∇Ψ,v dx, (1.12)

where the term
∫
Ω

∇u.∇φ dx can be controlled if we test (1.6e) withF ′(u). This approach will
lead toH 2-estimates in space for(u, v). Discrete analogues of the above testing procedures will
lead to the main a priori estimates for our finite element discretization (see Section 2). It is the goal
of this paper to derive a finite element approximation of (P) that is consistent with these energy
estimates, which then enables us to establish convergence in two space dimensions. In order to
derive a discrete analogue of the energy estimate (1.12), we need to extend a technique introduced
in [39, 25] for deriving a discrete entropy bound for the thin film equation. Finally, we note that
a finite element approximation of the degenerate Allen–Cahn/Cahn–Hilliard system introduced in
[14] can be found in [3]. However due to the lack of a corresponding entropy bound, convergence
of that approximation was only established in one space dimension. Finally, we remark that no
uniqueness results for degenerate fourth order parabolic equations are known, and hence no error
estimates for this finite element approximation can be expected at present.

This paper is organised as follows. In Section 2 we formulate a finite element approximation of
the degenerate system (P) and derive important discrete analogues of the energy estimates (1.10) and
(1.12). In Section 3 we prove convergence, and hence existence of a weak solution to the system
(P) in two space dimensions. In both of the above sections we need to substantially extend the
techniques in [9], since e.g. the discrete analogue of (1.12) and the convergence ofw on {|u| < 1}

are both far more difficult to establish; see Lemmas 2.4 and 3.2, respectively, below. This is due to
the fact that the geometry ofK leads to a far more complicated variational inequality compared to
the one studied in [9]. In Section 4 we introduce and prove convergence of a “Gauss–Seidel type”
iterative scheme for solving the non-linear discrete system for the approximations of(u, v,w, z) at
each time level. In Section 5 we present some numerical experiments. Finally, in the Appendix we
discuss the sharp interface limit, as the interfacial parameterγ → 0, of (P).

Notation and auxiliary results

ForD ⊂ R orD ⊂ R2, we adopt the standard notation for Sobolev spaces, denoting the norm of
Wm,q(D) (m ∈ N, q ∈ [1,∞]) by ‖ · ‖m,q,D and the semi-norm by| · |m,q,D. We extend these
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norms and semi-norms in the natural way to the corresponding spaces of vector, and matrix, valued
functions. Forq = 2, Wm,2(D) will be denoted byHm(D) with the associated norm and semi-
norm written as, respectively,‖ · ‖m,D and| · |m,D. For notational convenience, we drop the domain
subscript on the above norms and semi-norms in the caseD ≡ Ω. Throughout〈·, ·〉 denotes the
standardL2 inner product overΩ. In addition, we definem(Ω) as the measure ofΩ and −

∫
η :=

[m(Ω)]−1
〈η,1〉 for all η ∈ L1(Ω).

For later purposes, we recall the following compactness results. LetX1, X2 andX3 be Banach
spaces with a compact embeddingX1 ↪→ X2 and a continuous embeddingX2 ↪→ X3. Then we
have the compact embeddings

{η ∈ L2(0, T ;X1) : ∂η/∂t ∈ L2(0, T ;X3)} ↪→ L2(0, T ;X2), (1.13a)

{η ∈ L∞(0, T ;X1) : ∂η/∂t ∈ L2(0, T ;X3)} ↪→ C([0, T ];X2). (1.13b)

It is convenient to introduce the “inverse Laplacian” operatorG : Y1 → Y2 such that

〈∇[Gη1],∇η2〉 = 〈η1, η2〉∗ ∀η2 ∈ H 1(Ω), (1.14)

whereY1 := {η ∈ (H 1(Ω))′ : 〈η,1〉 = 0} andY2 := {η ∈ H 1(Ω) : (η,1) = 0}. Here and
throughout,〈· , ·〉∗ denotes the duality pairing between(H 1(Ω))′ andH 1(Ω). The well-posedness
of G follows from the Lax–Milgram theorem and the Poincaré inequality

|η|0 6 C(|η|1 + |〈η,1〉|) ∀η ∈ H 1(Ω). (1.15)

We note also for future reference Young’s inequality

rs 6
θ

2
r2

+
1

2θ
s2

∀r, s ∈ R, θ ∈ R>0. (1.16)

ThroughoutC denotes a generic constant independent ofh, τ andε, the mesh and temporal
discretization parameters and the regularization parameter. In additionC(a1, . . . , aI ) denotes a
constant depending on the arguments{ai}

I
i=1.

2. Finite element approximation

We consider the finite element approximation of (P) under the following assumptions on the mesh:

(A) Let Ω be the rectangular domain(−L1, L1) × (−L2, L2). Let {T h}h>0 be a quasi-uniform
family of partitionings ofΩ into disjoint open trianglesσ with hσ := diam(σ ) andh :=
maxσ∈T h hσ , so thatΩ =

⋃
σ∈T h σ . In addition, it is assumed that all trianglesσ ∈ T h are

right-angled.

We note that the right-angle assumption is not a severe constraint, as there exist adaptive finite
element codes that satisfy this requirement (see e.g. [35]).

Associated withT h is the finite element space

Sh := {χ ∈ C(Ω) : χ |σ is a polynomial of degree one∀σ ∈ T h} ⊂ H 1(Ω).

We introduce also

K := {(η1, η2) ∈ [H 1(Ω)]2 : (η1(x), η2(x)) ∈ K a.e. inΩ} and Kh := K ∩ [Sh]2.
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Let J be the set of nodes ofT h and {pj }j∈J the coordinates of these nodes. Let{χj }j∈J be the
standard basis functions forSh; that is,χj ∈ Sh andχj (pi) = δij for all i, j ∈ J . The right-angle
constraint on the partitioning is required for our approximations ofb(·) andc(·) (see (2.12a,b) and
(2.8a,b) below), but one consequence is that∫

σ

∇χi .∇χj dx 6 0, i 6= j, ∀σ ∈ T h. (2.1)

We introduceπh : C(Ω) → Sh, the Lagrange interpolation operator, such that(πhη)(pj ) = η(pj )

for all j ∈ J . A discrete semi-inner product onC(Ω) is then defined by

〈η1, η2〉
h :=

∫
Ω

πh(η1(x)η2(x))dx =

∑
j∈J

mjη1(pj )η2(pj ), (2.2)

wheremj := 〈1, χj 〉 > 0. The induced discrete semi-norm is then|η|h := [〈η, η〉h]1/2, where
η ∈ C(Ω). We introduce also the projectionQh : L2(Ω) → Sh defined by

〈Qhη, χ〉
h

= 〈η, χ〉 ∀χ ∈ Sh. (2.3)

On recalling (1.9) and (1.11), we define functionsF andG such thatc(η)∇[F ′(η)] = ∇η and
b(η)∇[G′(η)] = ∇η; that is,

F ′′(s) =
1

c(s)
=

1

1 + s
and G′′(s) =

1

b(s)
=

1

c(s)c(−s)
=

1

1 − s2
. (2.4)

We takeF,G ∈ C∞(−1,1) such that

F(s) = (1 + s) log

(
1 + s

2

)
+ (1 − s) and G(s) =

1
2[F(s)+ F(−s)]; (2.5)

and, for computational purposes, we replaceF,G for any ε ∈ (0,1) by the regularized functions
Fε,Gε ∈ C2,1(R) such that

Fε(s) :=

{
F(ε − 1)+ (s − ε + 1)F ′(ε − 1)+

1
2(s − ε + 1)2F ′′(ε − 1), s 6 ε − 1,

F (s) s > ε − 1,

Gε(s), := 1
2[Fε(s)+ Fε(−s)]. (2.6)

We note for later purposes that for alls ∈ [−1,1],
1
2 6 F ′′

ε (s) 6 ε−1, 1
2F

′′
ε (s) 6 G′′

ε (s) 6 [ε(2 − ε)]−1 6 ε−1. (2.7)

Similarly to the approach in [39, 25], we introduceΛε : Sh → [L∞(Ω)]2×2 such that for all
ηh ∈ Sh and a.e. inΩ,

Λε(η
h) is symmetric and positive semi-definite, (2.8a)

Λε(η
h)∇πh[F ′

ε(η
h)] = ∇ηh. (2.8b)

The introduction of the matricesΛε andΞε (see below) is crucial for the construction of our finite
element approximation. Using an appropriate “standard” approach to approximatec(u) andb(u)
would yield a finite element approximation satisfying a discrete analogue of (1.10), but not of
(1.12). Without (1.12), one does not obtain the spatial continuity of the limit functionu in two
space dimensions and hence it is not possible to prove convergence of the resulting finite element
approximation.
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We now give the construction ofΛε. Let {ei}2
i=1 be the orthonormal vectors inR2 such that the

j th component ofei is δij , i, j = 1 → 2. Given non-zero constantsζi , i = 1 → 2, let σ̂ ({ζi}2
i=1)

be the reference open triangle inR2 with vertices{p̂i}2
i=0, wherep̂0 is the origin and̂pi = ζiei ,

i = 1 → 2. Given aσ ∈ T h with vertices{pji }
2
i=0 such thatpj0 is the right-angled vertex, there

exists a rotation matrixRσ and non-zero constants{ζi}2
i=1 such that the mappingRσ : x̂ ∈ R2

→

pj0 + Rσ x̂ ∈ R2 maps the vertex̂pi to pji , i = 0 → 2, and hencêσ ≡ σ̂ ({ζi}
2
i=1) to σ . For any

ηh ∈ Sh, we then set

Λε(η
h)|σ := Rσ Λ̂ε (̂η

h)|̂σR
T
σ , (2.9)

whereη̂h(̂x) ≡ ηh(Rσ x̂) for all x̂ ∈ σ̂ andΛ̂ε (̂ηh)|̂σ is the 2× 2 diagonal matrix with diagonal
entries,k = 1 → 2,

[Λ̂ε (̂η
h)|̂σ ]kk

:=


η̂h(p̂k)− η̂h(p̂0)

F ′
ε (̂η

h(p̂k))− F ′
ε (̂η

h(p̂0))
≡

ηh(pjk )− ηh(pj0)

F ′
ε(η

h(pjk ))− F ′
ε(η

h(pj0))
if ηh(pjk ) 6= ηh(pj0),

1

F ′′
ε (̂η

h(p̂0))
≡

1

F ′′
ε (η

h(pj0))
if ηh(pjk ) = ηh(pj0).

(2.10)

As RTσ ≡ R−1
σ , ∇ηh ≡ Rσ ∇̂η̂h, wherex ≡ (x1, x2)

T , ∇ ≡ (∂/∂x1, ∂/∂x2)
T , x̂ ≡ (̂x1, x̂2)

T and
∇̂ ≡ (∂/∂x̂1, ∂/∂x̂2)

T , it easily follows thatΛε(ηh) constructed in (2.9) and (2.10) satisfies (2.8a,b).
It is this construction that requires the right-angle constraint on the partitioningT h. Without this
constraint, we could loose the property (2.8a) and hence the positivity of the|∇w|

2 term in the
discrete analogue of (1.10). Another consequence of this constraint is that∫

σ̂

∂χ̂i

∂x̂k

∂χ̂j

∂x̂k
d̂x 6 0, i 6= j, k = 1 → 2, ∀σ ∈ T h. (2.11)

In a similar fashion we introduceΞε : Sh → [L∞(Ω)]2×2 such that for allηh ∈ Sh and a.e.
in Ω,

Ξε(η
h) is symmetric and positive semi-definite, (2.12a)

Ξε(η
h)∇πh[G′

ε(η
h)] = ∇ηh, (2.12b)

by extending the construction (2.9)–(2.10) forΛε to Ξε. Similarly to (2.1), it follows from (2.11),
the above construction and (2.7) that for allηh ∈ Sh,∫

σ

Ξε(η
h)∇χi .∇χj dx ≡

∫
σ̂

Ξ̂ε (̂η
h)∇̂χ̂i .∇̂χ̂j d̂x 6 0, i 6= j, ∀σ ∈ T h. (2.13)

Obviously, the above result also holds withΞε replaced byΛε.
In addition toT h, let 0 = t0 < t1 < · · · < tN−1 < tN = T be a partitioning of [0, T ] into

possibly variable time stepsτn := tn − tn−1, n = 1 → N . We setτ := maxn=1→N τn. For any
givenε ∈ (0,1), we then consider the following fully practical finite element approximation of (P):
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(Ph,τε ) Forn > 1 find (Φnε , U
n
ε , V

n
ε ,W

n
ε , Z

n
ε ) ∈ [Sh]5 such that(Unε , V

n
ε ) ∈ Kh and

〈Λε(U
n−1
ε )∇Φnε ,∇χ〉 +

∫
∂2Ω

Φnε χ ds =

∫
∂2Ω

gχ ds ∀χ ∈ Sh, (2.14a)

γ

〈
Unε − Un−1

ε

τn
, χ

〉h
+ 〈Ξε(U

n−1
ε )∇[W n

ε + αΦnε ],∇χ〉 = 0 ∀χ ∈ Sh, (2.14b)

`(γ )

〈
V nε − V n−1

ε

τn
, χ

〉h
+ 〈Znε , χ〉

h
= 0 ∀χ ∈ Sh, (2.14c)

γ 〈∇Unε ,∇[ηh1 − Unε ]〉 + γ 〈∇V nε ,∇[ηh2 − V nε ]〉

> 〈W n
ε − γ−1ψ,u(U

n−1
ε , V n−1

ε ), ηh1 − Unε 〉
h

+ 〈Znε − γ−1ψ,v(U
n−1
ε , V n−1

ε ), ηh2 − V nε 〉
h

∀(ηh1, η
h
2) ∈ Kh, (2.14d)

whereg := g±
≡ ±(2 + L1) on ∂±

2 Ω and(U0
ε , V

0
ε ) ∈ Kh is an approximation of(u0, v0) ∈ K,

e.g.U0
ε ≡ πhu0 if u0

∈ C(Ω), and similarly forV 0
ε .

Below we recall some well-known results (see e.g. [17]) concerningSh for any σ ∈ T h,
χ, ηh ∈ Sh,m ∈ {0,1}, p ∈ [1,∞] andq ∈ (2,∞]:

|(I − πh)η|m 6 Ch2−m
|η|2 ∀η ∈ H 2(Ω); (2.15)

|(I − πh)η|m,q 6 Ch1−m
|η|1,q ∀η ∈ W1,q(Ω); (2.16)∫

σ

χ2 dx 6
∫
σ

πh[χ2] dx 6 4
∫
σ

χ2 dx; (2.17)∣∣∣∣∫
σ

(I − πh)(χηh)dx

∣∣∣∣ 6 |(I − πh)(χηh)|0,1,σ 6 Ch1+m
|χ |m,σ |ηh|1,σ . (2.18)

Finally, as we have a quasi-uniform family of partitionings, it follows that

|(I −Qh)η|m 6 Ch1−m
|η|1 ∀η ∈ H 1(Ω). (2.19)

We defineY h2 := {ηh ∈ Sh : 〈ηh,1〉 = 0} and introduce the “discrete Laplacian” operator
∆h : Sh → Y h2 such that

〈∆hηh, χ〉
h

= −〈∇ηh,∇χ〉 ∀χ ∈ Sh. (2.20)

Next we introduce for allε ∈ (0,1), cε : [−1,1] → [ε,2] andbε : [−1,1] → [ε(2 − ε),1]
defined, on recalling (2.4), (2.6) and (2.7), by

cε(s) :=
1

F ′′
ε (s)

>
1

F ′′(s)
= c(s), bε(s) :=

1

G′′
ε (s)

>
1

G′′(s)
= b(s). (2.21)

Then the following two lemmas follow immediately from the construction ofΛε andΞε (see [9,
Lemmas 2.2 and 2.3] for details).
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LEMMA 2.1 Let the assumptions (A) hold. Then for any givenε ∈ (0,1) the functionsΛε, Ξε :
Sh → [L∞(Ω)]2×2 satisfy for allηh ∈ Kh, ξ ∈ R2 and for allσ ∈ T h,

εξT ξ 6 min
x∈σ

cε(η
h(x))ξT ξ 6 ξTΛε(η

h)|σ ξ 6 max
x∈σ

cε(η
h(x))ξT ξ 6 2ξT ξ, (2.22a)

ε(2 − ε)ξT ξ 6 min
x∈σ

bε(η
h(x))ξT ξ 6 ξTΞε(η

h)|σ ξ 6 max
x∈σ

bε(η
h(x))ξT ξ 6 ξT ξ, (2.22b)

ξTΞε(η
h)|σ ξ 6 2ξTΛε(η

h)|σ ξ. (2.22c)

LEMMA 2.2 Let the assumptions (A) hold and let‖ · ‖ denote the spectral norm onR2×2. Then for
any givenε ∈ (0,1) the functionsΛε : Sh → [L∞(Ω)]2×2 andΞε : Sh → [L∞(Ω)]2×2 are such
that for allηh ∈ Kh and for allσ ∈ T h,

max
x∈σ

‖[Λε(η
h)− cε(η

h)I](x)‖ 6 hσ |∇[cε(η
h)]|0,∞,σ 6 hσ |∇ηh|σ|, (2.23a)

max
x∈σ

‖[Ξε(η
h)− bε(η

h)I](x)‖ 6 hσ |∇[bε(η
h)]|0,∞,σ 6 2hσ |∇ηh|σ|, (2.23b)

whereI is the 2× 2 identity matrix.

We now derive discrete analogues of the energy estimates (1.10) and (1.12) in Lemmas 2.3 and
2.4 which follow.

LEMMA 2.3 Let the assumptions (A) hold and(Un−1
ε , V n−1

ε ) ∈ Kh. Then for allε ∈ (0,1) and
for all h, τn > 0 there exists a solution(Φnε , U

n
ε , V

n
ε ,W

n
ε , Z

n
ε ) to the n-th step of (Ph,τε ) with

−
∫
Unε = −

∫
Un−1
ε . The 4-tuple(Φnε , U

n
ε , V

n
ε , Z

n
ε ) is unique. In addition,W n

ε is unique if there exists
j ∈ J such thatUnε (pj ) ∈ (−1,1). Moreover,

〈Λε(U
n−1
ε )∇Φnε ,∇Φ

n
ε 〉 +

1
2|Φnε |

2
0,∂2Ω

6 1
2|g|20,∂2Ω

, (2.24)

|〈∇Φnε ,∇U
n−1
ε 〉| 6 2|g|0,∂2Ω |πh[F ′

ε(U
n−1
ε )]|0,∂2Ω (2.25)

and

E(Unε , V nε )+
1
2[γ |Unε − Un−1

ε |
2
1 + γ |V nε − V n−1

ε |
2
1] + [`(γ )]−1τn|Z

n
ε |

2
h

+
1
2γ

−1τn|[Ξε(U
n−1
ε )]1/2∇W n

ε |
2
0 6 E(Un−1

ε , V n−1
ε )+

1
2α

2γ−1τn|g|
2
0,∂2Ω

, (2.26a)

where
E(Unε , V nε ) := 1

2[γ |Unε |
2
1 + γ |V nε |

2
1] + γ−1

〈ψ(Unε , V
n
ε ),1〉

h. (2.26b)

Proof. The derivation of the existence of a unique solutionΦnε ∈ Sh to (2.14a), and the bounds
(2.24) and (2.25), is straightforward, and can be found in [9, Lemma 2.4]. In order to prove existence
of a solution((Unε , V

n
ε ),W

n
ε , Z

n
ε ) ∈ Kh

× [Sh]2 to (2.14b–d), we introduce, similarly to (1.14), for
qh ∈ Kh the discrete anisotropic Green’s operatorGh

qh
: Y h2 → Y h2 such that

〈Ξε(q
h)∇[Gh

qh
ηh],∇χ〉 = 〈ηh, χ〉

h
∀χ ∈ Sh. (2.27)

It follows immediately from (2.22b) and (1.15) thatGh
qh

is well-posed. It follows from (2.14b) and
(2.27) that

W n
ε ≡ −αΦnε − γGh

Un−1
ε

[
Unε − Un−1

ε

τn

]
+ λn, (2.28)
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whereλn ∈ R. Hence (2.14b–d) can be restated as follows: Find(Unε , V
n
ε ) ∈ Kh(Un−1

ε ) :=
{(ηh1, η

h
2) ∈ Kh : ηh1 − Un−1

ε ∈ Y h2 } and a Lagrange multiplierλn ∈ R such that for all
(ηh1, η

h
2) ∈ Kh,

γ 〈∇Unε ,∇(η
h
1 − Unε )〉 + γ 〈∇V nε ,∇(η

h
2 − V nε )〉

+ γ

〈
Gh
Un−1
ε

[
Unε − Un−1

ε

τn

]
, ηh1 − Unε

〉h
+ `(γ )

〈
V nε − V n−1

ε

τn
, ηh2 − V nε

〉h
> 〈−γ−1ψ,u(U

n−1
ε , V n−1

ε )− αΦnε + λn, ηh1 − Unε 〉
h

− γ−1
〈ψ,v(U

n−1
ε , V n−1

ε ), ηh2 − V nε 〉
h.

(2.29)

It follows from (2.29) that(Unε , V
n
ε ) ∈ Kh(Un−1

ε ) is such that for all(ηh1, η
h
2) ∈ Kh(Un−1

ε ),

γ 〈∇Unε ,∇(η
h
1 − Unε )〉 + γ 〈∇V nε ,∇(η

h
2 − V nε )〉

+ γ

〈
Gh
Un−1
ε

[
Unε − Un−1

ε

τn

]
, ηh1 − Unε

〉h
+ `(γ )

〈
V nε − V n−1

ε

τn
, ηh2 − V nε

〉h
> 〈−γ−1ψ,u(U

n−1
ε , V n−1

ε )− αΦnε , η
h
1 − Unε 〉

h
− γ−1

〈ψ,v(U
n−1
ε , V n−1

ε ), ηh2 − V nε 〉
h. (2.30)

There exists a unique(Unε , V
n
ε ) ∈ Kh(Un−1

ε ) solving (2.30) since, on noting (2.27), this is the
Euler–Lagrange variational inequality of the strictly convex minimization problem

min
(ηh1,η

h
2)∈K

h(Un−1
ε )

{
γ

2
|ηh1|

2
1 +

γ

2
|ηh2|

2
1 +

γ

2τn
|[Ξε(U

n−1
ε )]1/2∇Gh

Un−1
ε
(ηh1 − Un−1

ε )|20

+
`(γ )

2τn
|ηh2 − V n−1

ε |
2
0 + 〈γ−1ψ,u(U

n−1
ε , V n−1

ε )+ αΦnε , η
h
1〉
h

+ 〈γ−1ψ,v(U
n−1
ε , V n−1

ε ), ηh2〉
h

}
.

Existence of the Lagrange multiplierλn in (2.29) then follows from standard optimisation theory
(see e.g. [18]). Hence we have existence of a solution((Unε , V

n
ε ),W

n
ε , Z

n
ε ) ∈ Kh

× [Sh]2 to
(2.14b–d). If|Unε (pj )| < 1 for somej ∈ J thenπh[1 − (Unε )

2] 6≡ 0 and choosing(ηh1, η
h
2) ≡

(Unε ± δπh[1 − (Unε )
2], V nε ± (δ/

√
3)πh[1 − (Unε )

2]) in (2.29) forδ > 0 sufficiently small yields
uniqueness ofλn and, on noting (2.28), uniqueness ofWε. Furthermore, choosingχ ≡ 1 in (2.14b)
yields −

∫
Unε = −

∫
Un−1
ε .

Choosingχ ≡ W n
ε in (2.14b),χ ≡ Znε in (2.14c) and(ηh1, η

h
2) ≡ (Un−1

ε , V n−1
ε ) in (2.14d)

yields

γ 〈Unε − Un−1
ε ,W n

ε 〉
h

+ τn〈Ξε(U
n−1
ε )∇[W n

ε + αΦnε ],∇W n
ε 〉 = 0, (2.31a)

`(γ )〈V nε − V n−1
ε , Znε 〉

h
+ τn〈Z

n
ε , Z

n
ε 〉
h

= 0, (2.31b)

γ 〈∇Unε ,∇[Un−1
ε − Unε ]〉 + γ 〈∇V nε ,∇[V n−1

ε − V nε ]〉

> 〈W n
ε − γ−1ψ,u(U

n−1
ε , V n−1

ε ), Un−1
ε − Unε 〉

h

+ 〈Znε − γ−1ψ,v(U
n−1
ε , V n−1

ε ), V n−1
ε − V nε 〉

h. (2.31c)

On noting the elementary identity

2r(r − s) = (r2
− s2)+ (r − s)2 ∀r, s ∈ R,
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it follows from (2.31a–c), (1.16), (2.22c) and the convexity of−ψ (recall (1.7)) that

1
2γ [|Unε |

2
1 + |Unε − Un−1

ε |
2
1 − |Un−1

ε |
2
1 + |V nε |

2
1 + |V nε − V n−1

ε |
2
1 − |V n−1

ε |
2
1]

+ γ−1τn|[Ξε(Un−1
ε )]1/2∇W n

ε |
2
0 + [`(γ )]−1τn|Z

n
ε |

2
h

6−γ−1
〈ψ,u(U

n−1
ε , V n−1

ε ), Unε − Un−1
ε 〉

h
− γ−1

〈ψ,v(U
n−1
ε , V n−1

ε ), V nε − V n−1
ε 〉

h

−αγ−1τn〈Ξε(U
n−1
ε )∇Φnε ,∇W

n
ε 〉

6 γ−1
〈ψ(Un−1

ε , V n−1
ε 〉 − ψ(Unε , V

n
ε ),1〉

h

+
1
2γ

−1τn[|[Ξε(Un−1
ε )]1/2|∇W n

ε |
2
0 + 2α2

|[Λε(Un−1
ε )]1/2∇Φnε |

2
0]. (2.32)

Hence the desired result (2.26a) follows from (2.32), (2.26b) and (2.24). 2

LEMMA 2.4 Let the assumptions of Lemma 2.3 hold. Then

γ 〈Gε(U
n
ε )−Gε(U

n−1
ε ),1〉

h
+ γ τn|∆

hUnε |
2
h

+
1
2`(γ )[|V

n
ε |

2
1 + |V nε − V n−1

ε |
2
1 − |V n−1

ε |
2
1] + γ τn|∆

hV nε |
2
h

6 ε−1γ |Unε − Un−1
ε |

2
h + τn[〈∇W n

ε ,∇[Unε − Un−1
ε ]〉 − α〈∇Φnε ,∇U

n−1
ε 〉

− γ−1
〈∇ψ,u(U

n−1
ε , V n−1

ε ),∇Unε 〉 − γ−1
〈∇ψ,v(U

n−1
ε , V n−1

ε ),∇V nε 〉]. (2.33)

Proof. Choosingχ ≡ πh[G′
ε(U

n−1
ε )] in (2.14b) and noting (2.12b) yields

γ 〈Unε − Un−1
ε ,G′

ε(U
n−1
ε )〉h + τn〈∇[W n

ε + αΦnε ],∇Un−1
ε 〉 = 0; (2.34)

while choosingχ ≡ −∆hV nε in (2.14c), and noting (2.20) yields

1
2`(γ )[|V

n
ε |

2
1 + |V nε − V n−1

ε |
2
1 − |V n−1

ε |
2
1] = `(γ )〈V nε − V n−1

ε ,−∆hV nε 〉
h

= −τn〈∇Z
n
ε ,∇V

n
ε 〉.

(2.35)

We now extend an argument in [5, Theorem 2.3], where the authors treated the one-dimensional
case ofK = [−1,1]. The caseK = 4ABC ⊂ R2 studied here requires some special considerations.
Let j ∈ J . Then for(Unε (pj ), V

n
ε (pj )) ∈ K we distinguish the following cases. For ease of notation,

let vb := 2/
√

3.

(i) (Unε (pj ), V
n
ε (pj )) ∈ K \ ∂K,

(ii) Unε (pj ) = 1, V nε (pj ) ∈ (−vb, vb),
(iii) Unε (pj ) ∈ (−1,1), V nε (pj ) =

1
2vb(U

n
ε (pj )+ 1),

(iv) Unε (pj ) ∈ (−1,1), V nε (pj ) = −
1
2vb(U

n
ε (pj )+ 1),

(v) (Unε (pj ), V
n
ε (pj )) = (1, vb),

(vi) (Unε (pj ), V
n
ε (pj )) = (1,−vb),

(vii) (Unε (pj ), V
n
ε (pj )) = (−1,0).

In what follows, we chooseδ > 0 sufficiently small so that the specified(ηh1, η
h
2) ∈ K can be chosen

in (2.14d). In case (i), on choosing(ηh1, η
h
2) ≡ (Unε ± δχj , V

n
ε ) and(ηh1, η

h
2) ≡ (Unε , V

n
ε ± δχj ),

respectively, we have

AUj := γ 〈∇Unε ,∇χj 〉 − 〈W n
ε − γ−1ψ,u(U

n−1
ε , V n−1

ε ), χj 〉
h

= 0, (2.36a)

AVj := γ 〈∇V nε ,∇χj 〉 − 〈Znε − γ−1ψ,v(U
n−1
ε , V n−1

ε ), χj 〉
h

= 0. (2.36b)
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In case (ii), on choosing(ηh1, η
h
2) ≡ (Unε , V

n
ε ± δχj ) and(ηh1, η

h
2) ≡ (Unε − δχj , V

n
ε ), respectively,

we haveAUj 6 0 andAVj = 0. For case (iii) we choose(ηh1, η
h
2) ≡ (Unε ± δχj , V

n
ε ±

1
2vbδχj )

and(ηh1, η
h
2) ≡ (Unε , V

n
ε − δχj ), respectively, so thatAUj +

1
2vbA

V
j = 0 andAVj 6 0. Similarly,

for case (iv), on choosing(ηh1, η
h
2) ≡ (Unε ± δχj , V

n
ε ∓

1
2vbδχj ) and(ηh1, η

h
2) ≡ (Unε , V

n
ε + δχj ),

respectively, we obtainAUj −
1
2vbA

V
j = 0 andAVj > 0. In case(v) we obtainAVj 6 0 and

AUj +
1
2vbA

V
j 6 0, on choosing(ηh1, η

h
2) ≡ (Unε , V

n
ε −δχj ) and(ηh1, η

h
2) ≡ (Unε −δχj , V

n
ε −

1
2vbδχj ),

respectively. Similarly, for case (vi) we haveAVj > 0 andAUj −
1
2vbA

V
j 6 0, on choosing(ηh1, η

h
2) ≡

(Unε , V
n
ε + δχj ) and(ηh1, η

h
2) ≡ (Unε − δχj , V

n
ε +

1
2vbδχj ), respectively. Finally, in case (vii) we

thatAUj ±
1
2vbA

V
j > 0, on choosing(ηh1, η

h
2) ≡ (Unε + δχj , V

n
ε ±

1
2vbδχj ).

From (2.20), (2.2) and (2.1) it follows for cases (ii), (v) and (vi) that

Unε (pj ) = 1 ⇒ Unε (pj ) > Unε (pi) ∀i ∈ J ⇒ ∆hUnε (pj ) 6 0. (2.37a)

Similarly, in cases (iii), (v) and (vii),

∆h(Unε −
√

3Vε)(pj ) > 0, (2.37b)

while in cases (iv), (vi) and (vii) we have

∆h(Unε +
√

3Vε)(pj ) > 0. (2.37c)

Combining (2.36a,b) and (2.37a–c) yields, for all cases (i)–(vii),

−[AUj ∆
hUnε (pj )+ AVj ∆

hV nε (pj )] 6 0. (2.38)

Summing (2.38) for allj ∈ J yields, on noting (2.36a,b), (2.20) and (2.2),

γ |∆hUnε |
2
h + γ |∆hV nε |

2
h

6 −〈W n
ε − γ−1ψ,u(U

n−1
ε , V n−1

ε ),∆hUnε 〉
h

− 〈Znε − γ−1ψ,v(U
n−1
ε , V n−1

ε ),∆hV nε 〉
h

= 〈∇[W n
ε − γ−1ψ,u(U

n−1
ε , V n−1

ε )],∇Unε 〉 + 〈∇[Znε − γ−1ψ,v(U
n−1
ε , V n−1

ε )],∇V nε 〉. (2.39)

It follows from (2.34), (2.35), (2.7) and (2.39) that

γ 〈Gε(U
n
ε )−Gε(U

n−1
ε ),1〉

h
+ γ τn|∆

hUnε |
2
h

+
1
2`(γ )[|V

n
ε |

2
1 + |V nε − V n−1

ε |
2
1 − |V n−1

ε |
2
1] + γ τn|∆

hV nε |
2
h

6 γ 〈Unε − Un−1
ε ,G′

ε(U
n
ε )〉

h
+ τn[〈∇[W n

ε − γ−1ψ,u(U
n−1
ε , V n−1

ε )],∇Unε 〉

− γ−1
〈∇ψ,v(U

n−1
ε , V n−1

ε ),∇V nε 〉]

6 γ 〈Unε − Un−1
ε ,G′

ε(U
n
ε )−G′

ε(U
n−1
ε )〉h

+ τn[〈∇W n
ε ,∇[Unε − Un−1

ε ]〉 − α〈∇Φnε ,∇U
n−1
ε 〉

− γ−1
〈∇ψ,u(U

n−1
ε , V n−1

ε ),∇Unε 〉 − γ−1
〈∇ψ,v(U

n−1
ε , V n−1

ε ),∇V nε 〉]

6 ε−1γ |Unε − Un−1
ε |

2
h + τn[〈∇W n

ε ,∇[Unε − Un−1
ε ]〉 − α〈∇Φnε ,∇U

n−1
ε 〉

− γ−1
〈∇ψ,u(U

n−1
ε , V n−1

ε ),∇Unε 〉 − γ−1
〈∇ψ,v(U

n−1
ε , V n−1

ε ),∇V nε 〉]

and hence the desired result (2.33). 2
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The results of the preceding two lemmas will now be used to derive fundamental a priori estimates.

THEOREM 2.1 Let the assumptions (A) hold and(U0
ε , V

0
ε ) ∈ Kh. Then for allε ∈ (0,1), h > 0

and for all time partitions{τn}Nn=1, the solution{(Φnε , U
n
ε , V

n
ε ,W

n
ε , Z

n
ε )}

N
n=1 to (Ph,τε ) is such that

−
∫
Unε = −

∫
U0
ε , n = 1 → N , and

γ max
n=1→N

‖Unε ‖
2
1 + γ max

n=1→N
‖V nε ‖

2
1 + γ

N∑
n=1

[|Unε − Un−1
ε |

2
1 + |V nε − V n−1

ε |
2
1]

+

N∑
n=1

τn

[
γ−1

|[Ξε(U
n−1
ε )]1/2∇W n

ε |
2
0 + [`(γ )]−1

|Znε |
2
h + `(γ )

∣∣∣∣V nε − V n−1
ε

τn

∣∣∣∣2
h

]
6 C[γ ‖U0

ε ‖
2
1 + γ ‖V 0

ε ‖
2
1 + γ−1(1 + T |g|20,∂2Ω

)]. (2.40)

In addition

γ

N∑
n=1

τn

∣∣∣∣G[
Unε − Un−1

ε

τn

]∣∣∣∣2
1
+ γ τ−1/2

N∑
n=1

|Unε − Un−1
ε |

2
0

6 C[γ ‖U0
ε ‖

2
1 + γ ‖V 0

ε ‖
2
1 + γ−1(1 + T |g|20,∂2Ω

)] (2.41)

and

γ max
n=1→N

〈Gε(U
n
ε ),1〉

h
+ γ

N∑
n=1

τn|∆
hUnε |

2
h + γ

N∑
n=1

τn|∆
hV nε |

2
h

6 γ 〈Gε(U
0
ε ),1〉

h
+ α2

N∑
n=1

τn|π
h[F ′

ε(U
n−1
ε )]|20,∂2Ω

+C(T )[1 + γ−2
+ ε−1τ1/2][γ ‖U0

ε ‖
2
1 + γ ‖V 0

ε ‖
2
1 + γ−1(1 + T |g|20,∂2Ω

)]. (2.42)

Proof. Summing (2.26a) fromn = 1 tok shows for anyk 6 N that

E(U kε , V kε )+
1
2γ

k∑
n=1

[|Unε − Un−1
ε |

2
1 + |V nε − V n−1

ε |
2
1] + [`(γ )]−1

k∑
n=1

τn|Z
n
ε |

2
h

+
1
2γ

−1
k∑
n=1

τn|[Ξε(U
n−1
ε )]1/2∇W n

ε |
2
0 6 E(U0

ε , V
0
ε )+

1
2α

2γ−1tk|g|
2
0,∂2Ω

. (2.43)

The desired result (2.40) then follows from (2.43), (2.26b), (2.2), (2.17), (2.14c) and the fact that
(Unε (pj ), V

n
ε (pj )) ∈ K, ∀j ∈ J , n = 0 → N . Then (2.41) follows from (1.14), (2.3), (2.14b),

(2.22b,c), (2.19), (2.24) and (2.40); see [9, Theorem 2.6] for details.
Finally, summing (2.33) fromn = 1 to k and noting (1.7), (2.2), (2.17) and (2.22b) implies for

anyk 6 N that
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γ 〈Gε(U
k
ε ),1〉

h
+ γ

k∑
n=1

τn|∆
hUnε |

2
h + γ

k∑
n=1

τn|∆
hV nε |

2
h

6 γ 〈Gε(U
0
ε ),1〉

h
+

k∑
n=1

[ε−1γ |Unε − Un−1
ε |

2
0 + τn|α〈∇Φnε ,∇U

n−1
ε 〉|]

+ γ−1tk|ψ |2,∞,K[ max
n=0→k

‖Unε ‖
2
1 + max

n=0→k
‖V nε ‖

2
1]

+

[
ε−1

k∑
n=1

τn|[Ξε(U
n−1
ε )]1/2∇W n

ε |
2
0

]1/2[ k∑
n=1

τn|U
n
ε − Un−1

ε |
2
1

]1/2
. (2.44)

The desired result (2.42) then follows from (2.44), (2.25), (1.16), (2.40) and (2.41). 2

LEMMA 2.5 Let (u0, v0) ∈ K ∩ [W1,p(Ω)]2 with p > 2, and let the assumptions (A) hold. On
choosing(U0

ε , V
0
ε ) ≡ (πhu0, πhv0) it follows that(U0

ε , V
0
ε ) ∈ Kh is such that for allh > 0,

‖U0
ε ‖

2
1 + ‖V 0

ε ‖
2
1 + 〈Gε(U

0
ε ),1〉

h 6 C. (2.45)

Proof. This follows from (2.16), (2.6) and (2.5). 2

REMARK 2.1 The approximation (Ph,τε ) of (P) requires solving for(Φnε , U
n
ε ,W

n
ε ) over the whole

domainΩ, due to the non-degeneracy ofΛε(·) and Ξε(·) (see (2.22a,b)). For computational
speed it would be more convenient to solve forΦnε just in the conductor and interfacial regions,
Un−1
ε > −1, and for(Unε ,W

n
ε ) just in the interfacial region,|Un−1

ε | < 1. With this in mind, we
recall Remark 2.10 in [9] and introduce the following approximation of (P). Adopting the notation
(2.9) and (2.10), let̃Λε, Ξ̃ε : Sh → [L∞(Ω)]2×2 be such that̃Λε(ηh)|σ := Rσ Λ̂

?
ε (̂η

h)|̂σR
T
σ and

Ξ̃ε(η
h)|σ := Rσ Ξ̂

?
ε (̂η

h)|̂σR
T
σ , where

[Λ̂?ε (̂η
h)|̂σ ]kk :=

{
0 if η̂h(pjk ) = η̂h(pj0) = −1,
[Λ̂ε (̂ηh)|̂σ ]kk otherwise;

[Ξ̂ ?
ε (̂η

h)|̂σ ]kk :=

{
0 if η̂h(pjk ) = η̂h(pj0) = ±1,
[Ξ̂ε (̂ηh)|̂σ ]kk otherwise.

We note that the key identities, withΛε(ηh) in (2.8a,b) replaced bỹΛε(ηh) andΞε(ηh) in (2.12a,b)
replaced bỹΞε(ηh), still hold. We then introduce the approximation (P̃h,τε ) of (P), which is the same
as (Ph,τε ) but withΛε(Un−1

ε ) in (2.14a) replaced bỹΛε(Un−1
ε ) andΞε(Un−1

ε ) in (2.14b) replaced by
Ξ̃ε(U

n−1
ε ). As Λ̃ε(·) andΞ̃ε(·) are now degenerate, existence of a solution(Φnε , U

n
ε , V

n
ε ,W

n
ε , Z

n
ε )

to (̃Ph,τε ) does not appear to be trivial. However, this can easily be established by splitting the nodes
into passive and active sets (see e.g. [4]). Moreover, one can show that(Unε , V

n
ε , Z

n
ε ) is unique.

Furthermore, one can establish analogues of the energy estimates (2.40) and (2.41). Unfortunately,
it does not appear possible to establish an analogue of the key energy estimate (2.42) for (P̃h,τε ).

3. Convergence

Let

Uε(t) :=
t − tn−1

τn
Unε +

tn − t

τn
Un−1
ε , t ∈ [tn−1, tn], n > 1, (3.1a)

U+
ε (t) := Unε , U−

ε (t) := Un−1
ε , t ∈ (tn−1, tn], n > 1. (3.1b)
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We note for future reference that

Uε − U±
ε = (t − t±n )

∂Uε

∂t
, t ∈ (tn−1, tn), n > 1, (3.2)

wheret+n := tn andt−n := tn−1. We also introduce

τ̄ (t) := τn, t ∈ (tn−1, tn], n > 1. (3.3)

Using the above notation, and introducing analogous notation forVε,W
+
ε , Z

+
ε andΦ+

ε , we can
restate (Ph,τε ) as: Find(Φ+

ε , (Uε, Vε),W
+
ε , Z

+
ε ) ∈ L∞(0, T ; Sh)×C([0, T ];Kh)×[L∞(0, T ; Sh)]2

such that for allχ ∈ L∞(0, T ; Sh),∫ T

0
〈Λε(U

−
ε )∇Φ

+
ε ,∇χ〉 dt +

∫ T

0

∫
∂2Ω

Φ+
ε χ ds dt =

∫ T

0

∫
∂2Ω

gχ ds dt, (3.4a)∫ T

0

[
γ

〈
∂Uε

∂t
, χ

〉h
+ 〈Ξε(U

−
ε )∇[W+

ε + αΦ+
ε ],∇χ〉

]
dt = 0, (3.4b)∫ T

0

[
`(γ )

〈
∂Vε

∂t
, χ

〉h
+ 〈Z+

ε , χ〉
h

]
dt = 0, (3.4c)

where for a.a.t ∈ (0, T ),

γ [〈∇U+
ε ,∇[ηh1 − U+

ε ]〉 + 〈∇V +
ε ,∇[ηh2 − V +

ε ]〉]

> [〈W+
ε − γ−1ψ,u(U

−
ε , V

−
ε ), η

h
1 − U+

ε 〉
h

+ 〈Z+
ε − γ−1ψ,v(U

−
ε , V

−
ε ), η

h
2 − V +

ε 〉
h]

∀(ηh1, η
h
2) ∈ Kh. (3.4d)

LEMMA 3.1 Let (u0, v0) ∈ K ∩ [W1,p(Ω)]2 with p > 2, and−
∫
u0

∈ (−1,1). Let {T h, U0
ε ,

V 0
ε , {τn}

N
n=1, ε}h>0 be such that

(i) (U0
ε , V

0
ε ) ≡ (πhu0, πhv0);

(ii) Ω and{T h}h>0 fulfil assumptions (A),ε ∈ (0,1) with ε → 0 ash → 0, andτn 6 Cτn−1 6
Cε2, n = 2 → N .

Then there exists a subsequence of{(Φ+
ε , Uε, Vε,W

+
ε , Z

+
ε )}h, where(Φ+

ε , Uε, Vε,W
+
ε , Z

+
ε ) solve

(Ph,τε ), and functions

u ∈ L∞(0, T ;H 1(Ω)) ∩H 1(0, T ; (H 1(Ω))′), (3.5a)

v ∈ L∞(0, T ;H 1(Ω)) ∩H 1(0, T ;L2(Ω)), z ∈ L2(ΩT ), (3.5b)

such that(u(x, t), v(x, t)) ∈ K for a.e.(x, t) ∈ ΩT , u(·,0) = u0(·), v(·,0) = v0(·) in L2(Ω),
−
∫
u(·, t) = −

∫
u0 for a.a.t ∈ (0, T ), and ash → 0,

Uε, U
±
ε → u and Vε, V

±
ε → v weak-∗ in L∞(0, T ;H 1(Ω)), (3.6a)

G
∂Uε

∂t
→ G

∂u

∂t
weakly inL2(0, T ;H 1(Ω)), (3.6b)

∂Vε

∂t
→

∂v

∂t
and Z+

ε → z weakly inL2(ΩT ), (3.6c)

Uε, U
±
ε → u and Vε, V

±
ε → v strongly inL2(0, T ;Ls(Ω)), (3.7a)

Ξε(U
−
ε ) → b(u)I and Λε(U

−
ε ) → c(u)I strongly inL2(0, T ;Ls(Ω)), (3.7b)
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for all s ∈ [2,∞). If in additionu0
∈ H 2(Ω) with ∂u0/∂ν = 0 on∂Ω and

α2
∫ T

0
|πh[F ′

ε(U
−
ε )]|

2
0,∂2Ω

dt 6 C, (3.8)

thenu in addition to (3.5a) satisfies

u ∈ L2(0, T ;H 2(Ω)) (3.9)

and there exists a subsequence of{Uε}h satisfying (3.6a,b), (3.7a,b) and ash → 0,

∆hUε,∆
hU±

ε → ∆u weakly inL2(ΩT ), (3.10a)

Uε, U
±
ε → u weakly inL2(0, T ;W1,s(Ω)), for anys ∈ [2,∞), (3.10b)

Uε, U
±
ε → u strongly inL2(0, T ;C0,ζ (Ω)), for anyζ ∈ (0,1), (3.10c)

Uε, U
±
ε → u strongly inL2(0, T ;H 1(Ω)). (3.10d)

Similarly, if in additionv0
∈ H 2(Ω) with ∂v0/∂ν = 0 on∂Ω, thenv in addition to (3.5b) satisfies

v ∈ L2(0, T ;H 2(Ω)) (3.11)

and there exists a subsequence of{Vε}h satisfying (3.6a,c), (3.7a) and ash → 0,

∆hVε,∆
hV ±

ε → ∆v weakly inL2(ΩT ), (3.12a)

Vε, V
±
ε → v weakly inL2(0, T ;W1,s(Ω)), for anys ∈ [2,∞), (3.12b)

Vε, V
±
ε → v strongly inL2(0, T ;C0,ζ (Ω)), for anyζ ∈ (0,1), (3.12c)

Vε, V
±
ε → v strongly inL2(0, T ;H 1(Ω)). (3.12d)

Proof. Noting the definitions (3.1a,b), (3.3), the bounds in (2.24), (2.40), (2.41) and (2.42) together
with (1.15), (2.45) and our assumption (i) imply that

‖[Λε(U
−
ε )]

1/2
∇Φ+

ε ‖
2
L2(ΩT )

+ ‖Φ+
ε ‖

2
L2(0,T ;L2(∂2Ω))

+ ‖U (±)ε ‖
2
L∞(0,T ;H1(Ω))

+ ‖V (±)ε ‖
2
L∞(0,T ;H1(Ω))

+

∥∥∥∥τ̄1/2∂Uε

∂t

∥∥∥∥2

L2(0,T ;H1(Ω))

+

∥∥∥∥τ̄1/2∂Vε

∂t

∥∥∥∥2

L2(0,T ;H1(Ω))

+ ‖[Ξε(U
−
ε )]

1/2
∇W+

ε ‖
2
L2(ΩT )

+

∥∥∥∥G ∂Uε∂t
∥∥∥∥2

L2(0,T ;H1(Ω))

+ τ−1/2
∥∥∥∥τ̄1/2∂Uε

∂t

∥∥∥∥2

L2(ΩT )

+

∥∥∥∥∂Vε∂t
∥∥∥∥2

L2(ΩT )

+ ‖Z+
ε ‖

2
L2(ΩT )

6 C,

(3.13a)

and

‖∆hU+
ε ‖

2
L2(ΩT )

+ ‖∆hV +
ε ‖

2
L2(ΩT )

6 C. (3.13b)

Furthermore, we deduce from (3.2) and (3.13a) that

‖Uε − U±
ε ‖

2
L2(0,T ;H1(Ω))

+ ‖Vε − V ±
ε ‖

2
L2(0,T ;H1(Ω))

6

∥∥∥∥τ̄ ∂Uε∂t
∥∥∥∥2

L2(0,T ;H1(Ω))

+

∥∥∥∥τ̄ ∂Vε∂t
∥∥∥∥2

L2(0,T ;H1(Ω))

6 Cτ. (3.14)
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Hence on noting (3.13a), (3.14),(Uε(·, t), Vε(·, t)) ∈ Kh, and (1.13a), with e.g.X1 ≡ H 1(Ω),
X2 ≡ Ls(Ω) andX3 ≡ H−1(Ω), we can choose a subsequence{(Φ+

ε , Uε, Vε,W
+
ε , Z

+
ε )}h such

that the convergence results (3.5a,b), (3.6a–c) and (3.7a) hold. Then (3.5a,b) and Theorem 2.1 imply,
on noting (1.13b), assumption (i) and (2.16), that the subsequence satisfies the additional initial and
integral conditions.

The proof of (3.7b) can be found in the proof of Lemma 3.1 in [9]. Moreover, the proofs of
the results (3.9)–(3.10b) and the result onUε in (3.10c) are also in [9, Lemma 3.1], where they are
derived from the key entropy bound (3.13b). We now establish (3.10c) forU±

ε . For anyζ ∈ (0,1),
s ∈ (2/(1 − ζ ),∞) and anys̄ ∈ (2/(1 − ζ ), s), we have, on noting the compact embedding
W1,s̄(Ω) ↪→ C0,ζ (Ω), (3.14) and (3.10b),

‖Uε − U±
ε ‖L2(0,T ;C0,ζ (Ω)) 6 ‖Uε − U±

ε ‖L2(0,T ;W1,s̄ (Ω))

6 ‖Uε − U±
ε ‖

q

L2(0,T ;H1(Ω))
‖Uε − U±

ε ‖
1−q

L2(0,T ;W1,s (Ω))

6 Cτ q/2, (3.15)

whereq = 2(s − s̄)/(s − 2)s̄ ∈ (0,1). Combining (3.15), assumption (ii) and the established result
onUε in (3.10c) yields the desired result onU±

ε in (3.10c).
We now prove (3.10d). We have

‖∇(U+
ε − u)‖2

L2(ΩT )
6

∣∣∣∣∫
ΩT

∇(U+
ε − u).∇udx dt

∣∣∣∣
+

∣∣∣∣∫
ΩT

∇(U+
ε − πhu).∇U+

ε dx dt

∣∣∣∣ +

∣∣∣∣∫
ΩT

∇(πhu− u).∇U+
ε dx dt

∣∣∣∣, (3.16a)

where, on noting (2.20) and (2.17),∣∣∣∣∫
ΩT

∇(U+
ε − πhu).∇U+

ε dx dt

∣∣∣∣ =

∣∣∣∣− ∫ T

0
〈∆hU+

ε , U
+
ε − πhu〉h dt

∣∣∣∣
6 C‖∆hU+

ε ‖L2(ΩT )
‖U+

ε − πhu‖L2(ΩT )
. (3.16b)

Combining (3.16a,b), (3.6a), (3.13b), (2.15), (3.9), (3.7a) and (3.14) yields (3.10d).
Finally, the proof of the results (3.11)–(3.12d) forVε is exactly the same as the proof of (3.9)–

(3.10d) forUε. 2

REMARK 3.1 The conditionsu0
∈ H 2(Ω) with ∂u0/∂ν = 0 on∂Ω for the results (3.10a–d), and

similarly for v0, can be replaced by a restriction onτ1 in terms ofh (see [8, Lemma 3.1]), but they
are not particularly restrictive. The assumption (3.8) holds ifUε(x, t) = 1 for all x ∈ ∂2Ω and
t ∈ [0, T ], and this condition held in all our numerical experiments providedu0

= 1 on∂2Ω and
eitherL1 is chosen sufficiently large orT is chosen sufficiently small. This can be made rigorous
for the approximation (̃Ph,τε ) (see Remark 2.1), as the degeneracy ofΞ̃ε leads to finite speed of
propagation of the numerical material interfacial region,|Uε| < 1: at each time level it can move
locally at most one mesh point (see [4]). Finally, the assumption (ii) yields no real restriction on the
time step sizeτ in terms ofh, as the requirementε → 0 whenh → 0 is very weak. Note also that
the positive constantC in (ii) can be chosen arbitrarily.

From (3.13a), (2.22a,b), (2.21), (1.9) and (3.10c) we see that we can only control∇Φ+
ε and

∇W+
ε on the sets whereΛε(U−

ε ) andΞε(U−
ε ) are bounded below independently ofε, and hence
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of h on noting (ii), i.e. on the sets whereu > −1 and|u| < 1, respectively. Therefore in order to
construct the appropriate limits ash → 0, we introduce the following open subsets ofΩ. For any
δ ∈ (0,1), we define for a.a.t ∈ (0, T ),

Bδ(t) := {x ∈ Ω : |u(x, t)| < 1 − δ} ⊂ Dδ(t) := {x ∈ Ω : −1 + δ < u(x, t)}, (3.17a)

Bδ,I (t) := {x ∈ Bδ(t) : |v(x, t)| < 1
√

3
(1 + u(x, t)− δ)}, (3.17b)

Bδ,+(t) := {x ∈ Bδ(t) : v(x, t)−
1

√
3
(1 + u(x, t)) ∈ [−δ/

√
3,0]}, (3.17c)

Bδ,−(t) := {x ∈ Bδ(t) : v(x, t)+
1

√
3
(1 + u(x, t)) ∈ [0, δ/

√
3]}. (3.17d)

From (3.10c) and (3.12c) we deduce that there exist positive constantsCx(t) such that

|u(y1, t)− u(y2, t)| + |v(y1, t)− v(y2, t)| 6 Cx(t)|y1 − y2|
ζ

∀y1, y2 ∈ Ω for a.a.t ∈ (0, T ). (3.18)

As −
∫
u(·, t) = −

∫
u0

∈ (−1,1) for a.a.t ∈ (0, T ), it follows that there exists aδ0 ∈ (0,1 − |−
∫
u0

|)

such thatDδ0(t) ⊃ Bδ0(t) 6≡ ∅ for a.a.t ∈ (0, T ). It immediately follows from (3.17a–d) and (3.18)
for a.a.t ∈ (0, T ) and for anyδ1, δ2 ∈ (0, δ0) with δ1 > δ2 that if

either y1 ∈ Bδ1(t) andy2 ∈ ∂Bδ2(t) or y1 ∈ Dδ1(t) andy2 ∈ ∂Dδ2(t) with y2 6∈ ∂Ω

then
Cx(t)|y1 − y2|

ζ > |u(y1, t)− u(y2, t)| > δ1 − δ2, (3.19a)

and ify1 ∈ Bδ1,I (t) andy2 ∈ ∂Bδ2,I (t) with y2 6∈ ∂Ω then

Cx(t)|y1 − y2|
ζ > |u(y1, t)− u(y2, t)| + |v(y1, t)− v(y2, t)| >

1
√

3
(δ1 − δ2), (3.19b)

where∂Bδ(t), ∂Dδ(t) and∂Bδ,I (t) are the boundaries of the respective sets. This implies that for
a.a.t ∈ (0, T ) and anyδ ∈ (0, δ0), there exists anh0(δ, t) such that for allh 6 h0(δ, t) there exist
collections of trianglesT hB,δ,I (t) ⊂ T hB,δ(t) ⊂ T hD,δ(t) ⊂ T h such that

Bδ(t) ⊂ Bhδ (t) :=
⋃

σ∈T h
B,δ(t)

σ ⊂ Bδ/2(t), Dδ(t) ⊂ Dhδ (t) :=
⋃

σ∈T h
D,δ(t)

σ ⊂ Dδ/2(t), (3.20a)

Bδ,I (t) ⊂ Bhδ,I (t) :=
⋃

σ∈T h
B,δ,I (t)

σ ⊂ Bδ/2,I (t). (3.20b)

Clearly, from (3.17a,b) we have

δ2 < δ1 < δ0 ⇒ h0(δ2, t) 6 h0(δ1, t).

For a.a.t ∈ (0, T ) and any fixedδ ∈ (0, δ̂0), wherêδ0 := min{δ0,1/2}, it follows from (3.17a–d),
(3.10c), (3.12c) and our assumption (ii) of Lemma 3.1 that there exists anĥ0(δ, t) 6 h0(δ, t) such
that forh 6 ĥ0(δ, t),

1 − 2δ 6 |U±
ε (x, t)| ∀x 6∈ Bδ(t), |U±

ε (x, t)| < 1 − δ/2 ∀x ∈ Bδ(t), (3.21a)

U±
ε (x, t) 6 −1 + 2δ ∀x 6∈ Dδ(t), −1 + δ/2< U±

ε (x, t) ∀x ∈ Dδ(t); (3.21b)
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|V ±
ε (x, t)| <

1
√

3
(1 + U±

ε (x, t)) ∀x ∈ Bδ,I (t), (3.22a)

V ±
ε (x, t)−

1
√

3
(1 + U±

ε (x, t)) ∈ [−2δ/
√

3,0] ∀x ∈ Bδ,+(t), (3.22b)

V ±
ε (x, t)+

1
√

3
(1 + U±

ε (x, t)) ∈ [0,2δ/
√

3] ∀x ∈ Bδ,−(t); (3.22c)

and
ε 6 δ. (3.23)

LEMMA 3.2 Let all the assumptions of Lemma 3.1 hold. Then for a.a. t∈ (0, T ) there exist
functions

φ(·, t) ∈ H 1
loc({u(·, t) > −1}), w(·, t) ∈ H 1

loc({|u(·, t)| < 1}), (3.24)

where{u(·, t) > −1} := {x ∈ Ω : u(x, t) > −1} and{|u(·, t)| < 1} := {x ∈ Ω : |u(x, t)| < 1},
such that on extracting a further subsequence from the subsequence{(Φ+

ε , Uε, Vε,W
+
ε , Z

+
ε )}h in

Lemma 3.1, ash → 0 we have

Λε(U
−
ε )∇Φ

+
ε → H{u>−1}c(u)∇φ weakly inL2(ΩT ), (3.25a)

Ξε(U
−
ε )∇Φ

+
ε → H{|u|<1}b(u)∇φ weakly inL2(ΩT ), (3.25b)

Ξε(U
−
ε )∇W

+
ε → H{|u|<1}b(u)∇w weakly inL2(ΩT ), (3.25c)

whereH{u>−1} andH{|u|<1} are the characteristic functions of the sets{u > −1} := {(x, t) ∈ ΩT :
u(x, t) > −1} and{|u| < 1} := {(x, t) ∈ ΩT : |u(x, t)| < 1}, respectively.

Moreover for a.a.t ∈ (0, T ), (u(·, t), v(·, t)) ∈ K andw(·, t), z(·, t) satisfy∫
{|u(·,t)|<1}

[γ∇u.∇(η1 − u)+ (γ−1ψ,u(u, v)− w)(η1 − u)] dx

+

∫
Ω

[γ∇v.∇(η2 − v)+ (γ−1ψ,v(u, v)− z)(η2 − v)] dx > 0

∀(η1, η2) ∈ K with supp(η1 − u) ⊂ {|u(·, t)| < 1}. (3.26)

Finally if α 6= 0, on assuming that

u(x, t) = 1 ∀x ∈ ∂2Ω, for a.a.t ∈ (0, T ), (3.27)

it follows that
Φ+
ε → φ weakly inL2(0, T ;L2(∂2Ω)) ash → 0. (3.28)

Proof. This lemma is a generalisation of Lemma 3.4 in [9]. The proof of the results (3.24) forφ,
(3.25a,b) and (3.28) can be found there, on using the results onDδ(t) in (3.17a), (3.20a) and (3.21b).
The key difference here is the identification ofw on {|u| < 1} via the variational inequality (3.26),
which is now more delicate to establish. On recalling (3.9), (3.11) and (1.7), let

au := −γ∆u+ γ−1ψ,u(u, v), av := −γ∆v + γ−1ψ,v(u, v) ∈ L2(ΩT ).

For a.a.t ∈ (0, T ), we definew(·, t) on {|u(·, t)| < 1} such that

w(·, t) ≡


au(·, t)−

1
√

3
(av(·, t)− z(·, t)) if v(·, t) ∈ [− 1

√
3
(1 + u(·, t)),0),

au(·, t) if v(·, t) = 0,
au(·, t)+

1
√

3
(av(·, t)− z(·, t)) if v(·, t) ∈ (0, 1

√
3
(1 + u(·, t))].

(3.29)
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We will deduce below that for a.a.t ∈ (0, T ),

av(·, t) ≡ z(·, t) if |v(·, t)| < 1
√

3
(1 + u(·, t)). (3.30)

It follows from (3.13a) and (2.22b) that

‖Ξε(U
−
ε )∇W

+
ε ‖

2
L2(ΩT )

6 C. (3.31)

Hence (3.31) implies that there exists a vector functionf ∈ L2(ΩT ) such that on extracting a
further subsequence from{(Φ+

ε , Uε, Vε,W
+
ε , Z

+
ε )}h in Lemma 3.1,

Ξε(U
−
ε )∇W

+
ε → f weakly inL2(ΩT ) ash → 0. (3.32)

We now identify the functionf .
First, we consider a fixedδ ∈ (0, δ̂0). It follows from (1.9), (2.21), (2.22b), (3.21a) and (3.13a)

that for a.a.t ∈ (0, T ) and for allh 6 ĥ0(δ, t),

δ(1 − δ/4)|∇W+
ε (·, t)|

2
0,Bδ(t) = b(1 − δ/2)|∇W+

ε (·, t)|
2
0,Bδ(t) 6 bε(1 − δ/2)|∇W+

ε (·, t)|
2
0,Bδ(t)

6 |([Ξε(U
−
ε )]

1/2
∇W+

ε )(·, t)|
2
0 6 C(t). (3.33)

From (3.33), (3.20a), (2.22b), (3.21b) and (3.23), for a.a.t ∈ (0, T ) and for allh 6 ĥ0(δ, t) we have

|(Ξε(U
−
ε )∇W

+
ε )(·, t)|

2
0,Ω\Bδ(t)

6 max
x∈Ω\B2δ(t)

bε(U
−
ε (x))|([Ξε(U

−
ε )]

1/2
∇W+

ε )(·, t)|
2
0,Ω\Bδ(t)

6 C(t)bε(1 − 4δ) 6 C(t)max(4δ, ε) 6 C(t)δ. (3.34)

On noting (3.13b) we have, for a.a.t ∈ (0, T ),

|∆hU+
ε (·, t)|0 + |∆hV +

ε (·, t)|0 6 C(t). (3.35)

This implies for a.a.t ∈ (0, T ) that ash → 0,

∆hU+
ε (·, t) → ∆u(·, t), ∆hV +

ε (·, t) → ∆v(·, t) weakly inL2(Ω); (3.36)

see [9, (3.18)] for details. Recalling the notation (2.36a,b), we see from cases (i)AUj = AVj = 0,

(iii) AUj +
1

√
3
AVj = 0 and (iv)AUj −

1
√

3
AVj = 0 in the proof of Lemma 2.4, on noting (2.20), (3.1b),

(3.22a–c) and (3.20b), that for a.a.t ∈ (0, T ) and for allh 6 ĥ0(δ/2, t),

W+
ε (·, t) ≡ − γ∆hU+

ε (·, t)+ γ−1ψ,u(U
−
ε (·, t), V

−
ε (·, t)),

Z+
ε (·, t) ≡ − γ∆hV +

ε (·, t)+ γ−1ψ,v(U
−
ε (·, t), V

−
ε (·, t)) onBδ,I (t); (3.37a)

W+
ε (·, t)±

1
√

3
Z+
ε (·, t) ≡ [−γ∆hU+

ε (·, t)+ γ−1ψ,u(U
−
ε (·, t), V

−
ε (·, t))]

±
1

√
3
[−γ∆hV +

ε (·, t)+ γ−1ψ,v(U
−
ε (·, t), V

−
ε (·, t))] on Bδ,±(t).

(3.37b)

It follows from (3.37a,b), (3.36), (3.10c), (3.12c) and (3.6c) for a.a.t ∈ (0, T ) that ash → 0,

W+
ε (·, t) → au(·, t), Z+

ε (·, t) → av(·, t) ≡ z(·, t) weakly inL2(Bδ,I (t)),

W+
ε (·, t) → au(·, t)±

1
√

3
(av(·, t)− z(·, t)) weakly inL2(Bδ,±(t)).
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This together with (3.29) and (3.33) implies that

W+
ε (·, t) → w(·, t) weakly inH 1(Bδ(t)). (3.38)

Combining (3.32), (3.38) and (3.7b) shows for a.a.t ∈ (0, T ) that ash → 0,

(Ξε(U
−
ε )∇W

+
ε )(·, t) → b(u(·, t))∇w(·, t) weakly inL2(Bδ(t)).

We now work towards establishing the variational inequality (3.26). For a.a.t ∈ (0, T ), let
(η1, η2) ∈ K with η1(·) ≡ u(·, t) + ξ(·) and suppξ ⊂ B3δ(t). For the ensuing analysis it is
necessary to prescribe the following extensions in order to control the support of a mollified version
of ξ (see (3.40) below). Let̃Ω := (−L̃1, L̃1) × (−L̃2, L̃2), whereL̃i := 3

2Li . By reflection about
xi = ±Li , i = 1 → 2, there exist extensions̃u(·, t), ξ̃ ∈ H 1(Ω̃) and(̃η1, η̃2) ∈ [H 1(Ω̃)]2 such that

(̃η1(x), η̃2(x)) ∈ K for a.e.x ∈ Ω̃, η̃1(·) ≡ ũ(·, t)+ξ̃ (·)with supp̃ξ ⊂ {x ∈ Ω̃ : |̃u(x, t)| < 1−3δ},
andη̃i |Ω ≡ ηi , ũ(·, t)|Ω ≡ u(·, t), ξ̃ |Ω ≡ ξ . Applying the standard Friedrichs mollifier tõηi , ũ(·, t)
andξ̃ , we see that there existC∞

0 (R
2) functions whose restrictions toΩ satisfy

(η
(`)
1 , η

(`)
2 ) ∈ K ∩ [C∞(Ω)]2, η

(`)
1 (·) ≡ u(`)(·, t)+ ξ (`)(·) in C∞(Ω),

η
(`)
i → ηi, u(`)(·, t) → u(·, t), ξ (`) → ξ strongly inH 1(Ω) as` → ∞. (3.39)

Moreover, there exists aǹ0(δ) ∈ N such that

suppξ (`) ⊂ B2δ(t) ∀` > `0(δ). (3.40)

It follows that(χ (`)1 , χ
(`)
2 ) ∈ Kh, where

χ
(`)
1 (·) ≡ U+

ε (·, t)+R1
U+
ε
(πhξ (`)(·)), χ

(`)
2 ≡ R2

U+
ε
(πhη

(`)
2 ),

andRi
U+
ε

: Sh → Sh, i = 1 → 2, are such that for allχ ∈ Sh and for allj ∈ J ,

[R1
U+
ε
(χ)](pj ) :=

χ(pj ) if |U+
ε (pj , t)+ χ(pj )| 6 1,

1 − U+
ε (pj , t) if U+

ε (pj , t)+ χ(pj ) > 1,
−1 − U+

ε (pj , t) if U+
ε (pj , t)+ χ(pj ) < −1,

(3.41)

and

[R2
U+
ε
(χ)](pj ) :=


χ(pj ) if |χ(pj )| 6 1

√
3
(1 + χ

(`)
1 (pj )),

1
√

3
(1 + χ

(`)
1 (pj )) if χ(pj ) > 1

√
3
(1 + χ

(`)
1 (pj )),

−
1

√
3
(1 + χ

(`)
1 (pj )) if χ(pj ) < −

1
√

3
(1 + χ

(`)
1 (pj )).

(3.42)

We note from (3.41), (3.20a) and (3.40) that for all` > `0(δ) and for allh 6 h0(2δ, t),

suppR1
U+
ε
(πhξ (`)) ⊂ suppπhξ (`) ⊂ Bδ(t). (3.43)

Moreover, it follows from (3.41), (3.42) and (3.39) that

|πhξ (`) −R1
U+
ε
(πhξ (`))|h 6 |πhu(`)(·, t)− U+

ε (·, t)|h, (3.44a)

|πhη
(`)
2 −R2

U+
ε
(πhη

(`)
2 )|h 6 1

√
3
[|πhu(`)(·, t)− U+

ε (·, t)|h + |πhξ (`) −R1
U+
ε
(πhξ (`))|h]

6 2
√

3
|πhu(`)(·, t)− U+

ε (·, t)|h. (3.44b)
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We now choose(ηh1, η
h
2) ≡ (χ

(`)
1 , χ

(`)
2 ) in (3.4d) and analyse the subsequent terms. First, we

infer from (2.20), (3.35), (3.44a) and (2.17) thatU+
ε (·, t), χ

(`)
1 (·) andξ (`)(·) satisfy

|〈∇U+
ε ,∇(χ

(`)
1 − U+

ε )〉 − 〈∇U+
ε ,∇(π

hξ (`))〉| = |〈∆hU+
ε , (I −R1

U+
ε
)(πhξ (`))〉h|

6 C(t)|πhu(`)(·, t)− U+
ε (·, t)|0. (3.45)

Similarly to (3.45), we deduce from (2.20), (3.35), (3.44b) and (2.17) thatV +
ε (·, t), χ

(`)
2 (·) and

η
(`)
2 (·) satisfy

|〈∇V +
ε ,∇(χ

(`)
2 − V +

ε )〉 − 〈∇V +
ε ,∇(π

hη
(`)
2 − V +

ε )〉| 6 C(t)|πhu(`)(·, t)− U+
ε (·, t)|0. (3.46)

Next, it follows from (3.43), (2.17), (3.44a), (1.7), (2.18), (3.38) and (2.15) thatU±
ε (·, t), V

±
ε (·, t),

W+
ε (·, t), χ

(`)
1 (·) andξ (`)(·) satisfy

|〈W+
ε − γ−1ψ,u(U

−
ε , V

−
ε ), χ

(`)
1 − U+

ε 〉
h

− 〈W+
ε − γ−1ψ,u(U

−
ε , V

−
ε ), π

hξ (`)〉|

6 |〈W+
ε − γ−1ψ,u(U

−
ε , V

−
ε ), (I −R1

U+
ε
)(πhξ (`))〉h|

+ |〈W+
ε − γ−1ψ,u(U

−
ε , V

−
ε ), π

hξ (`)〉 − 〈W+
ε − γ−1ψ,u(U

−
ε , V

−
ε ), π

hξ (`)〉h|

6 C[1 + |Wε|0,Bδ(t)][ |π
hu(`)(·, t)− U+

ε (·, t)|0 + h|πhξ (`)|1]

6 C(t)[|πhu(`)(·, t)− U+
ε (·, t)|0 + h|ξ (`)|2]. (3.47)

Similarly, it follows from (3.44b), (2.17), (2.18), (3.13a) and (2.15) thatU±
ε (·, t), V

±
ε (·, t),

Z+
ε (·, t), χ

(`)
2 (·) andη(`)2 (·) satisfy

|〈Z+
ε − γ−1ψ,v(U

−
ε , V

−
ε ), χ

(`)
2 − V +

ε 〉
h

− 〈Z+
ε − γ−1ψ,v(U

−
ε , V

−
ε ), π

hη
(`)
2 − V +

ε 〉|

6 C(t)[|πhu(`)(·, t)− U+
ε (·, t)|0 + h(1 + |η

(`)
2 |2)]. (3.48)

Combining (3.45)–(3.48), noting (3.4d), (3.10d), (3.12d), (3.38), (3.6c), (2.15) and lettingh → 0,
we find, on possibly extracting another subsequence from{(Φ+

ε , Uε, Vε,W
+
ε , Z

+
ε )}h, that

u(·, t), v(·, t), w(·, t), z(·, t) andu(`)(·, t), η(`)i (·) satisfy∫
Bδ(t)

[γ∇u.∇(η
(`)
1 − u(`))+ (γ−1ψ,u(u, v)− w)(η

(`)
1 − u(`))] dx

+

∫
Ω

[γ∇v.∇(η
(`)
2 − v)+ (γ−1ψ,v(u, v)− z)(η

(`)
2 − v)] dx > r(`)(t), (3.49)

where|r(`)(t)| 6 C|(u − u(`))(·, t)|0. Letting ` → ∞ in (3.49) (3.39) shows thatu(·, t), v(·, t),
w(·, t), z(·, t) andηi(·) satisfy∫

Bδ(t)

[γ∇u.∇(η1 − u)+ (γ−1ψ,u(u, v)− w)(η1 − u)] dx

+

∫
Ω

[γ∇v.∇(η2 − v)+ (γ−1ψ,v(u, v)− z)(η2 − v)] dx > 0. (3.50)
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Repeating (3.33), (3.34) and (3.37a)–(3.50) for allδ ∈ (0, δ̂0) shows, on recalling (3.10c), that
(3.24) forw, and (3.26) hold; and, on noting (3.34) and (3.32), the desired result (3.25c). In addition,
we deduce the identity (3.30). Of course, the identities (3.29) and (3.30) can be deduced from the
derived variational inequality (3.26), and hence their omission in the statement of the lemma.2

REMARK 3.2 The assumption (3.27) is similar to the assumption (3.8) (see Remark 3.1).

THEOREM 3.1 Let the assumptions of Lemma 3.2 hold. Then there exists a subsequence of
{(Φ+

ε , Uε, Vε,W
+
ε , Z

+
ε )}h, where(Φ+

ε , Uε, Vε,W
+
ε , Z

+
ε ) solve (Ph,τε ), and functions(φ, u, v,w, z)

satisfying (3.5a,b), (3.9), (3.11) and (3.24). In addition, ash → 0 the following hold: (3.6a–c),
(3.7a,b), (3.10a–d), (3.12a–d) and (3.28–d). Furthermore,u(·,0) = u0(·), v(·,0) = v0(·) in L2(Ω)

and−
∫
u(·, t) = −

∫
u0 for a.a.t ∈ (0, T ). Moreover, for allη ∈ L2(0, T ;H 1(Ω)),∫

{u>−1}

c(u)∇φ.∇η dx dt +
∫ T

0

∫
∂2Ω

φη ds dt =

∫ T

0

∫
∂2Ω

gη ds dt, (3.51a)

γ

∫ T

0

〈
∂u

∂t
, η

〉
∗

dt +
∫

{|u|<1}

b(u)∇[w + αφ].∇η dx dt = 0, (3.51b)

`(γ )

∫ T

0

〈
∂v

∂t
, η

〉
dt +

∫ T

0
〈z, η〉 dt = 0; (3.51c)

where for a.a.t ∈ (0, T ), (u(·, t), v(·, t)) ∈ K andw(·, t), z(·, t) satisfy∫
{|u(·,t)|<1}

[γ∇u.∇(η1 − u)+ (γ−1ψ,u(u, v)− w)(η1 − u)] dx

+

∫
Ω

[γ∇v.∇(η2 − v)+ (γ−1ψ,v(u, v)− z)(η2 − v)] dx > 0

∀(η1, η2) ∈ K with supp(η1 − u) ⊂ {|u(·, t)| < 1}. (3.52)

Proof. Only (3.51a–c) need to be established, as (3.52) was shown in Lemma 3.2 above. The proof
of (3.51a,b) can be found in [9, Theorem 3.6], and (3.51c) is similarly established. 2

4. Solution of the discrete system

We now discuss algorithms for solving the resulting system of algebraic equations for
(Φnε , U

n
ε , V

n
ε ,W

n
ε , Z

n
ε ) arising at each time level from the approximation (Ph,τ

ε ). As (2.14a) in
(Ph,τε ) is independent of(Unε , V

n
ε ,W

n
ε , Z

n
ε ), we solve it first to obtainΦnε ; then solve (2.14b–d)

for (Unε , V
n
ε ,W

n
ε , Z

n
ε ). Solving (2.14a) is straightforward, as it is linear. With the obvious notation,

the system (2.14b–d) can be rewritten as: Find((Unε , V
n
ε ),W

n
ε , Z

n
ε ) ∈ KJ × [RJ ]2 such that

γMUnε + τnAn−1W n
ε = r1, (4.1a)

`(γ )MV nε + τnMZnε = r2, (4.1b)

(χ1 − Unε )
T (γBUnε −MW n

ε )+ (χ2 − V nε )
T (γBV nε −MZnε )

> (χ1 − Unε )
T s1 + (χ2 − V nε )

T s2 ∀(χ1, χ2) ∈ KJ , (4.1c)

whereM,B andAn−1 are symmetricJ × J matrices,J := #J , with entries

Mij := 〈χi, χj 〉
h, Bij := 〈∇χi,∇χj 〉, An−1

ij := 〈Ξε(U
n−1
ε )∇χi,∇χj 〉.
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We note for later use, as
∑J
j=1χj = 1, that

∑J
j=1Bij =

∑J
j=1A

n−1
ij = 0. In addition,

r1 := γMUn−1
ε − ατnAn−1Φnε ∈ RJ , r2 := `(γ )MV n−1

ε ∈ RJ ,

s1 := −γ−1Mψ ,u(U
n−1
ε , V n−1

ε ) ∈ RJ , s2 := −γ−1Mψ ,v(U
n−1
ε , V n−1

ε ) ∈ RJ ,

where [ψ ,•(Un−1
ε , V n−1

ε )]j := ψ,•([Un−1
ε ]j , [V n−1

ε ]j ). LetAn−1
≡ AD −AL −ATL, withAL and

AD being the lower triangular and diagonal parts of the matrixAn−1, and similarly forB. We use
this formulation in constructing our “Gauss–Seidel type” iterative method to solve (4.1a–c).

Given ((Un,0ε , V n,0ε ),W n,0
ε , Zn,0ε ) ∈ Kh

× [Sh]2, for k > 1 find ((Un,kε , V n,kε ),W n,k
ε , Zn,kε )

∈ Kh
× [Sh]2 such that

γMUn,kε + τn(AD −AL)W n,k
ε = r1 + τnATLW

n,k−1
ε , (4.2a)

`(γ )MV n,kε + τnMZn,kε = r2, (4.2b)

(χ1 − Un,kε )T (γ (BD − BL)Un,kε −MW n,k
ε )+ (χ2 − V n,kε )T (γ (BD − BL)V n,kε −MZn,kε )

> (χ1 − Un,kε )T (s1 + γBTLU
n,k−1
ε )+ (χ2 − V n,kε )T (s2 + γBTLV

n,k−1
ε ) ∀ (χ1, χ2) ∈ KJ .

(4.2c)

The above is the natural extension of the iterative method in [9] for solving the corresponding non-
linear algebraic system arising from the corresponding finite element approximation of (1.4). Below,
we prove convergence of (4.2a–c) for our non-linear system (2.14b–d) using an energy method.

THEOREM 4.1 Let the assumptions (A) hold. Then for((Un,0ε , V n,0ε ),W n,0
ε , Zn,0ε ) ∈ Kh

× [Sh]2

the sequence((Un,kε , V n,kε ),W n,k
ε , Zn,kε )k>0 generated by the algorithm (4.2a–c) satisfies

‖Unε − Un,kε ‖1 → 0, |[Ξε(U
n−1
ε )]1/2∇(W n

ε −W n,k
ε )|0 → 0, (4.3a)

‖V nε − V n,kε ‖1 → 0, |Znε − Zn,kε |h → 0 ask → ∞. (4.3b)

Proof. The proof is similar to the proof of Theorem 4.1 in [9]. LetEk := Unε − Un,kε , F k :=
V nε − V n,kε , P k := W n

ε − W n,k
ε andQk := Znε − Zn,kε . Now subtracting (4.2a) from (4.1a) and

testing the resulting equation withP k yields

γ [P k]TMEk + τn[P
k]T (AD −AL)P k = τn[P

k]TATLP
k−1

; (4.4a)

and similarly it follows from subtracting (4.2b) from (4.1b) that

`(γ )[Qk]TMF k + τn[Q
k]TMQk

= 0. (4.4b)

Choosing(χ1, χ2) ≡ (Un,kε , V n,kε ) in (4.1c) and(χ1, χ2) ≡ (Unε , V
n
ε ) in (4.2c) yields

− γ [[Ek]T (BD − BL)Ek + [F k]T (BD − BL)F k] + [Ek]TMP k + [F k]TMQk

> −γ [[Ek]TBTLE
k−1

+ [F k]TBTLF
k−1]. (4.5)

Combining (4.4a,b) and (4.5) yields

γ 2[[Ek]T (BD − BL)Ek + [F k]T (BD − BL)F k]
+ τn[[P k]T (AD −AL)P k + [`(γ )]−1γ [Qk]TMQk]

6 γ 2[[Ek]TBTLE
k−1

+ [F k]TBTLF
k−1] + τn[P k]TATLP

k−1. (4.6)
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We now split the diagonal matrixAD := AD1 + AD2, where(AD1)ii := −
∑i−1
j=1A

n−1
ij and

(AD2)ii := −
∑J
j=i+1A

n−1
ij = Aii − (AD1)ii , on noting thatAn−11 = 0. Then, on noting from

(2.13) that(AL)ij > 0, we have

[P k]TATLP
k−1

=

J∑
i=1

P ki

J∑
j=1

(ATL)ijP
k−1
j 6 1

2

J∑
i=1

J∑
j=1

(AL)ji [(P ki )
2
+ (P k−1

j )2]

=
1
2

J∑
i=1

(AD2)ii(P
k
i )

2
+

1
2

J∑
j=1

(AD1)jj (P
k−1
j )2. (4.7)

Combining (4.6), (4.7) and a similar argument forB, on noting (2.1), yields

γ 2[[Ek]TBEk + [Ek]TBD1E
k
+ [F k]TBF k + [F k]TBD1F

k]

+ τn[[`(γ )]−1γ [Qk]TMQk
+ [P k]TAn−1P k + [P k]TAD1P

k]

6 γ 2[[Ek−1]TBD1E
k−1

+ [F k−1]TBD1F
k−1] + τn[P k−1]TAD1P

k−1. (4.8)

Therefore,{γ 2([Ek]TBD1E
k
+[F k]TBD1F

k)+τn[P k]TAD1P
k
}k>0 is a decreasing sequence. Since

it is bounded below, it has a limit. Combining this and (4.8) yields

|Unε − Un,kε |1 → 0, |V nε − V n,kε |1 → 0, |Znε − Zn,kε |h → 0,

|[Ξε(Un−1
ε )]1/2∇(W n

ε −W n,k
ε )|0 → 0 ask → ∞.

(4.9)

Furthermore, multiplying (4.2a) with 1T := (1, . . . ,1), noting thatAn−11 = 0 and recalling the
splitting ofAn−1 yields

γ (Un,kε − Un−1
ε ,1〉

h
= τn1

TATL(W
n,k−1
ε −W n,k

ε ) = τn1
TAD1(W

n,k−1
ε −W n,k

ε )

= τn1
TAD1P

k
− τn1

TAD1P
k−1

→ 0, (4.10)

where we have again used the fact that{τn[P k]TAD1P
k
}k>0 has a limit. Combining (4.9), (4.10),

(2.2) and (1.15) yields the desired result (4.3a). Similarly, multiplying (4.2b) with 1T := (1, . . . ,1)
yields, on noting (4.9),

`(γ )(V n,kε − V n−1
ε ,1〉

h
= −τn1

TMZn,kε → −τn1
TMZnε ask → ∞. (4.11)

The desired result (4.3b) then follows from (4.11), (4.1b), (4.9), (2.2) and (1.15). 2

We note that (4.2a–c) can be solved explicitly forj = 1 → J . In particular, let r̂1 :=
r1 + τn(ALW n,k

ε + ATLW
n,k−1
ε ), r̂2 := r2, ŝ1 := s1 + γ (BLUn,kε + BTLU

n,k−1
ε ) and ŝ2 := s2

+ γ (BLV n,kε +BTLV
n,k−1
ε ). Then([Un,kε ]j , [V n,kε ]j ) is the solution of: Find(Uj , Vj ) ∈ K such that

(ηh1 − Uj )(C1Uj − b1)+ (ηh2 − Vj )(C2Vj − b2) > 0 ∀(ηh1, η
h
2) ∈ K, (4.12)

where

C1 := γ

(
Bjj +

[Mjj ]2

τnAn−1
jj

)
, C2 := γBjj +

`(γ )Mjj

τn
, b1 := ŝ1

j +
Mjj r̂

1
j

τnAn−1
jj

, b2 := ŝ2
j +

r̂2
j

τn
.
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Clearly, the unique solution to (4.12) is

(Uj , Vj ) ≡ PCK(b1/C1, b2/C2),

where PCK(x1, x2) is the orthogonal projection of the pointx = (x1, x2)
T

∈ R2 ontoK with respect

to theR2 inner product〈p, q〉C := pTCq, with C =
(
C1 0
0 C2

)
. The projectiony = PCK(x) can be

computed as follows:

1. If x ∈ K, theny = x, else

2. If x1 > 1 theny := (1,max{−2/
√

3,min{x2,2/
√

3}})T , else

3. If x2 > 0 thenv := (2,2/
√

3)T , elsev := (2,−2/
√

3)T .

4. α := 〈x + (1,0)T , v〉C/‖v‖
2
C .

5. y := (−1,0)T + min{max{α,0},1}v.

Hence the solution of (4.2a–c) forj = 1 → J is

([Un,kε ]j , [V
n,k
ε ]j ) ≡ PCK

( Mjj r̂
1
j + τnAn−1

jj ŝ1
j

γ [Mjj ]2 + τnγAn−1
jj Bjj

,
r̂2
j + τn̂s

2
j

`(γ )Mjj + γ τnBjj

)
, (4.13a)

[W n,k
ε ]j =

r̂1
j − γMjj [Un,kε ]j

τnAn−1
jj

, [Zn,kε ]j =
r̂2
j − `(γ )Mjj [V n,kε ]j

τnMjj

. (4.13b)

We note that for the approximation (P̃h,τε ) (see Remark 2.1), there existj with An−1
jj = 0. For

thosej , (4.13a,b) is modified as follows:

Un−1
ε (pj ) = −1 ⇒ ([Un,kε ]j , [V

n,k
ε ]j ) ≡ (−1,0), (4.14a)

Un−1
ε (pj ) = 1 ⇒ ([Un,kε ]j , [V

n,k
ε ]j ) ≡

(
1,max

{
−

2
√

3
,min

{
2

√
3
,

r̂2
j + τn̂s

2
j

`(γ )Mjj + γ τnBjj

}})
,

(4.14b)

and in both cases [Zn,kε ]j is then defined as in (4.13b). We note that asAn−1
jj = 0, [W n,k

ε ]j is not
defined and not required.

5. Numerical results

Throughout this section, we use (1.8) forψ in (1.7), and for the initial datau0 to (P) choose a
circular void with radiusR ∈ R>0 and centrey ∈ R2; that is,

u0(x) = ρc(y, R; x) :=


−1, r(x) 6 R − δu/2,

sin

(
r(x)− R

δu
π

)
, |r(x)− R| < δu/2

1, r(x) > R + δu/2,

, wherer(x) := |x − y|,

(5.1)
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whereδu := (1−µ/4)−1/2γπ is the interfacial thickness ofu0. For the initial profilev0, on letting
δv := (1 − µ)−1/2γπ , we choose

v0(x) =
1

√
3
[u0(x)+ 1]ρli (y; x), where ρli (y; x) :=


−1, yi − xi 6 −δv/2,

sin

(
yi − xi

δv
π

)
, |yi − xi | < δv/2,

1, yi − xi > δv/2,
(5.2)

for a vertical (i = 1) and a horizontal (i = 2) grain boundary, respectively. Note that the interfacial
thickness ofu0 andv0 is in line with the asymptotics of the phase field approach (see (A.2) and
(A.1)). Unless stated otherwise, we will always use the scaling`(γ ) := γ 2 and setε = 10−5.

For the iterative algorithm (4.2a–c) we set, forn > 1, (Un,0ε , V n,0ε ,W n,0
ε , Zn,0ε ) ≡

(Un−1
ε , V n−1

ε ,W n−1
ε , Zn−1

ε ), where (U0
ε , V

0
ε ) ≡ (πhu0, πhv0) and W0

ε ≡ −γ∆hU0
ε +

γ−1πh[ψ,u(U0
ε , V

0
ε )] Z

0
ε ≡ −γ∆hV 0

ε + γ−1πh[ψ,v(U0
ε , V

0
ε )]; and adopted the stopping criterion

max{|Un,kε − Un,k−1
ε |0,∞, |V

n,k
ε − V n,k−1

ε |0,∞} < tol,

with tol = 10−7, and then setting(Unε , V
n
ε ,W

n
ε , Z

n
ε ) ≡ (Un,kε , V n,kε ,W n,k

ε , Zn,kε ).
Throughout, the given domainΩ = (−L1, L1) ×(−L2, L2) is partitioned into right-angled

isosceles triangles. Here we assume thatL1 andL2 are integer multiples ofL := min{L1, L2}.
On using the adaptive finite element code Alberta 1.2 (see [35]), we implemented the same mesh
refinement strategy as in [9]. In particular, to improve efficiency we use the approximation (P̃h,τε )
(see Remark 2.1 and (4.14a,b)). Now we have to solve for(Unε ,W

n
ε ) only in the interfacial region,

|Un−1
ε | < 1, while the solution(V nε , Z

n
ε ) has to be found whereUn−1

ε > −1. However, the evolution
will concentrate inside the two interfacial regions|Un−1

ε | < 1 and|Un−1
ε | = 1, |V n−1

ε | < 2/
√

3.
Hence we use a refined mesh with mesh sizehf = 23/2L/Nf in these interfacial regions, and a
coarser mesh of mesh sizehc = 23/2L/Nc away from the interfaces. HereNf andNc are parameters
(see [9, §5]). We note that as long as the ratioNf /Nc is kept fixed through a convergence experiment
with h → 0, the quasi-uniformity assumption in (A) will not be violated. Furthermore, we choose
Nf such that there are always approximately 8 mesh points across the interface in each direction.

In particular, forµ > 0 we will always havehf 6 3
√

2
32 γπ , whereas forµ < 0 we ensure that

hf 6 3
√

2
32 (1 − µ)−1/2γπ .

For our first experiments we chooseµ = 0 in (1.8). That means that the functionΨ is symmetric
with respect to the three verticesA,B andC ofK. In particular, the surface energies associated with
the three different interfaces will be the same, and hence we should observe a 120◦ degree contact
angle at triple junctions between the void and the two grains. In order to check the accuracy of
our approximation, we compare the evolution of an initially circular void between two horizontally
aligned grains with the true steady state solution. It was shown by [26] that the true solution for the
void boundary consists of four symmetric branches, where one branch is given by

x2 = f (x1) := −a cosθ + (a2
− x2

1)
1/2 for x1 ∈ [−a sinθ,0]. (5.3)

Herea = ( A
2θ−sin(2θ) )

1/2 with A = πR2 being the total area of the void and 2θ = 2π/3 being the

contact angle between grains and void. We chose the following parameters for (P̃h,τε ): L1 = L2 =

0.5, γ = 1/24π , α = 0, T = 10−2, τn = τ = 5 × 10−8. For the initial profile we chose (5.1) and
(5.2) with i = 2, y = (0,0), R = 0.25. The refinement parameters wereNf = 256 andNc = 2.
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FIG. 3. (γ = 1/24π , α = 0) Comparison between computed solution (red) and true solution (blue; see the pdf file for colour
plots). The final triangulation is shown on the right.

The comparison between true solution and the numerically steady state can be seen in Figure 3,
where we also include a detailed plot at a triple junction and a plot of the mesh at timet = T . One
can see that the true solution and our computation are almost graphically indistinguishable. A short
remark on the way we plot the solution(Uε, Vε) is due. In our figures we show the zero level sets
of the functionp(Uε, Vε) to visualise the void boundary, wherep(y) := max{|y −A|

2
− |y −B|

2,

|y − A|
2

− |y − C|
2
}. In addition, we give the zero contour line ofVε whereUε > 0, in order to

show the grain boundaries.
In a further experiment, we investigated the evolution of a circular void when it attaches to a

vertical grain boundary. To this end, we set the following parameters for (P̃h,τε ): L1 = 1,L2 = 0.5,
γ = 1/24π , α = 5π , T = 0.012,τn = τ = 5 × 10−8. For the initial profile we chose (5.1) and
(5.2) with i = 1, y = (0,0), R = 0.25. The refinement parameters wereNf = 256 andNc = 32.
The evolution is shown in Figure 4. We can observe that once the void has attached to the grain
boundary, it settles into a steady shape inside the grain boundary, which then drifts through the
conductor.

We also include an experiment that produces a travelling wave solution in the absence of
electromigration, first mentioned in [30] (see also [27]). For the initial profile we chose a straight
horizontal line foru0, as described byρl2 in (5.2) withy = (0,0), and a straight line with a segment
of a circle forv0, i.e. (5.2) withρli replaced by

ρq(y, R; x) :=

{
ρc(y + (0, R), R; x), x1 < y1,

ρl2(y; x), x1 > y1,

with y = (−0.3,−0.3), R = 0.25. The refinement parameters wereNf = 256 andNc = 2. We
used the scaling̀(γ ) = βγ with β ∈ {1,1/24π} and the following parameters for (P̃h,τε ): L1 = 1,
L2 = 0.5, γ = 1/24π , α = 0, as well asT = 0.14, τn = τ = 5 × 10−6 for β = 1 and
T = 2.6 × 10−3, τn = τ = 5 × 10−8 for β = 1/24π . The evolution is shown in Figure 5. We note
that the travelling wave solutions reported in [30, 27] are for a limiting motion that differs slightly
from our sharp interface limit (A.13). In particular, there the material boundaries move by surface
diffusion, whereas here, in the limitγ → 0, we find that they evolve by a combination of surface
diffusion and surface attachment limited kinetics (see (1.3)).
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

FIG. 4. (γ = 1/24π , α = 5π ) Solution(Uε, Vε) at timest = 0, 2 × 10−3, 2.6 × 10−3, 2.8 × 10−3, 3 × 10−3, 4 ×

10−3, 6 × 10−3, 8 × 10−3, 0.012.
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FIG. 5. (γ = 1/24π , α = 0) Solution(Uε, Vε) at timest = 0, 0.02, 0.06, 0.1, 0.14 for β = 1 (left); andt = 0, 2 ×

10−4, 8 × 10−4, 1.4 × 10−3, 2 × 10−3, 2.6 × 10−3 for β = 1/24π (right).

5.1 Different scalings

In this subsection, we provide numerical simulations that highlight the difference between the two
scalings`(γ ) = γ and`(γ ) = γ 2 and their respective sharp interface limits, as discussed in the
Appendix. We conducted the following convergence experiments for the evolution of a circular
void in a vertical grain boundary under the influence of electromigration. We repeated the same
experiment with decreasing values ofγ , i.e. γ = 1/12π,1/24π,1/48π . In particular, we set
L1 = L2 = 0.5, T = 4 × 10−3, τn = τ = 288(γ π)2 × 10−7, ε = 48γπ × 10−5 and used
the appropriate refinement parametersNf = (32/3)(1/γπ) andNc = Nf /8. Considerations
using formal asymptotic expansions (see (A.12)) show that in the sharp interface limit the grain
boundaries have zero curvature and a 90◦ degree contact angle with the boundary. This can be
observed in the convergence experiment, where forγ getting smaller the grain boundaries get closer
and closer to straight lines. See Figure 6, where we plot the results forγ = 1/12π , γ = 1/24π and
γ = 1/48π .
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FIG. 6. (α = 5π ) Solution(Uε, Vε) at timest = 0, T = 4 × 10−3 for γ = 1/12π , γ = 1/24π andγ = 1/48π .
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FIG. 7. (α = 5π ) Solution(Uε, Vε) at timest = 0, 0.04, T = 0.056 forγ = 1/12π , γ = 1/24π andγ = 1/48π .

The same experiment for the scaling`(γ ) := γ leads to a dramatically different evolution, as
this now models surface diffusion combined with surface attachment limited kinetics (SALK) (see
(A.13)). For the new scaling, we repeated the previous experiment on a slightly larger domainΩ in
order to see more of the ensuing evolution. We used the following parameters:L1 = 1,L2 = 0.5,
T = 0.056,τn = τ = 1152(γ π)2 × 10−7, ε = 48γπ × 10−5 and used the appropriate refinement
parametersNf = (32/3)(1/γπ), Nc = Nf /8. In Figure 7 one can see that the void detaches from
the grain boundary. Note also the very good agreement between the results asγ is decreased.

5.2 Different contact angles

In this subsection, we report on contact angles for the triple junction that are different from the
symmetric case 2π/3. Since different contact angles are observed in practice, this is an important
and desirable feature of our phase field model. In order to achieve different triple junction angles,
we have to choose the obstacle potentialΨ (see (1.7)) such that the grain and material boundaries
have different surface energies. To this end, we use (1.8) withµ 6= 0.

Assume we are given the ratio of the surface energies for the grain and material boundaries,
σA/σB , where we have adopted the notation of the Appendix (see (A.9)). Then this angle law,
whereσB = σC is the surface energy of the material boundary andσA is the surface energy of the
grain boundary, yields

θA = 2 arccos

(
1

2

σgrain

σmat

)
.
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Using (A.4) we compute forµ ∈ (−2,4/7) that

σgrain

σmat
=

2
3π(1 − µ)1/2

2
3π(1 − µ/4)1/2

= 2

(
1 − µ

4 − µ

)1/2

. (5.4)

In the derivation of (A.4) it is assumed that the first order solution to the variational inequality
(1.6c) leads after a suitable rescaling to a minimizer in (1.1). However, it is not straightforward to
establish this rigorously. In any case, one can also compute the above ratio numerically. To this end,
one splits the domainΩ into two pure phasesi, j ∈ {A,B,C}, with a vertically or horizontally
aligned straight phase boundary between them. Using this setup for the initial profiles of(u0, v0),
one computes the evolution of (P̃h,τε ) until a steady state has been reached. This resulting standing
wave will then approximate the energy minimizing profile in (1.1), and hence provides a numerical
value for the energy densityσ .

For the caseµ = 1/2, we computed the different surface energies for the grain and material
boundaries in this way and obtained a ratioσgrain/σmat ≈ 0.758, i.e. almost exactly the value 2/

√
7

derived from (5.4). This suggests a triple junction with angles 135◦ and twice 112.5◦, which is
confirmed by the numerical results shown in Figure 8, where we have used the same parameters as
for Figure 3. Note that the true steady state solution is again defined by (5.3).
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FIG. 8. (γ = 1/24π , µ = 1/2 (left) andγ =
√

2/24π , µ = −1 (right)) Comparison between computed solution (red) and
true solution (blue) forθA = 135◦ andθA = 102◦, respectively.

Next, we computed the different surface energies for the grain and material boundaries
numerically for the caseµ = −1 and obtained a ratioσgrain/σmat ≈ 1.26, i.e. almost exactly the
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value(8/5)1/2 derived from (5.4). This suggests a triple junction with degrees 102◦ and twice 129◦.
This is confirmed by the numerical results shown in Figure 8, where we used the same parameters
for (̃Ph,τε ) as before, exceptγ =

√
2/24π .

A. Formal asymptotic expansions

In this appendix we give a short discussion of the sharp interface limit of (1.6a–f) whenγ → 0.
A more detailed analysis of the formal asymptotic expansions can be found in [7]. To identify the
limit, three different types of expansions have to be used. In regions where either a grain or a void
is present we use an outer expansion. Close to interfaces separating either a void and a grain or
two grains an inner expansion is used. A third type of expansion has to be performed at a triple
junction. All these expansions have to be matched. We refer to [11, 24, 32, 23] for details on the
method of formally matched asymptotic expansions for systems with triple junctions, and we state
here only the results if one applies the method to our system. However, it should be noted that the
above references only consider smooth potentials. Therefore we have to be particularly careful with
the asymptotics at triple junctions with our obstacle potential, as we have to deal with a variational
inequality as opposed to an equation.

The equations for the outer expansion imply that the vector(u, v) attains to leading order one
of the valuesA,B,C. That is, in the sharp interface limit,(u, v) will be eitherA, B orC, and there
are interfaces separating these regions. For the electric potentialφ we find that it solves Laplace’s
equation in the regions where(u, v) is eitherB orC.

Now the inner expansion has to be used to determine the governing equations on the interface.
There are three interfaces (curves in two dimensions) for which we seek these laws. LetΓ ij =

(Γ ij (t))t>0 with either(i, j) = (A,B), (B,C) or (C,A) be a smooth evolving curve, describing
an interface between regions occupied byi andj .

As usual in the theory of formally matched asymptotic expansions for phase field systems,
one introduces new coordinates(ρ, s). Heres is an arclength parameter along the interface and
ρ = γ−1d is a rescaled signed distance whered(x, t) is the signed distance of a pointx to Γ ij (t),
which is positive ifx belongs to phasej . In the following we will suppress the indicesij if no
confusion arises.

Considering (1.6c), we find that the leading order solution, which we denote by(u0, v0), has the
following structure. At a grain boundary,Γ BC , with

lim
ρ→−∞

(u0, v0)(ρ) = B = (1,−2/
√

3) and lim
ρ→∞

(u0, v0)(ρ) = C = (1,2/
√

3),

we conclude that(u0, v0) = (1, v̄) with

v̄(ρ) =
2

√
3


1 if ρ > ρg :=

π

2
√

1 − µ
,

sin

(
π

2

ρ

ρg

)
if |ρ| 6 ρg,

−1 if ρ < −ρg,

(A.1)

is a solution. A simple computation shows that we have to requireµ ∈ (−2,4/7) in order to make
sure that(u0, v0) solves the variational inequality. Similarly, at a material boundary,Γ AB , with

lim
ρ→−∞

(u0, v0)(ρ) = A = (−1,0) and lim
ρ→∞

(u0, v0)(ρ) = B = (1,−2/
√

3),
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we deduce that(u0, v0) = (ū,−(1 + ū)/
√

3) with

ū(ρ) =


1 if ρ > ρm :=

π
√

4 − µ
,

sin

(
π

2

ρ

ρm

)
if |ρ| 6 ρm,

−1 if ρ < −ρm

(A.2)

is to leading order a solution of the variational inequality (1.6c). The solution of the material
boundaryCA is then given, through symmetry, as(u0, v0)(ρ) = (ū, (1 + ū)/

√
3)(−ρ).

For later use we compute the interfacial energy

σ =

∫
∞

−∞

[ 1
2((∂ρu0)

2
+ (∂ρv0)

2)+ Ψ (u0, v0)] dρ =

∫
∞

−∞

[(∂ρu0)
2
+ (∂ρv0)

2] dρ

= 2
∫

∞

−∞

√
(∂ρu0)2 + (∂ρv0)2

√
1
2Ψ (u0, v0)dρ (A.3)

of the solutions(u0, v0) above. The formula (A.3) coincides withσ ij in (1.1) if (u0, v0), upon
rescaling, is not only a stationary point but in fact the minimum in (1.1) (see [36]). Numerical
computations indicate that(u0, v0) is indeed the minimizer in (1.1). For the solutions(u0, v0) =

(1, v̄) at the grain boundary, and(u0, v0) = (ū,±(1 + ū)/
√

3) at the material boundary, we obtain

σgrain =
2
3π(1 − µ)1/2 and σmat =

2
3π(1 − µ/4)1/2, (A.4)

respectively.
To derive equations for the grain boundary and the void boundaries, a solvability condition for

the first order equation in (1.6c) has to be used (see [12, 24] for similar approaches). If we employ
this approach in our context, we infer, depending on the scaling in (1.6b), for the grain boundary
that

κ = 0 if `(γ ) := βγ 2 and βωV = σκ if `(γ ) := βγ, (A.5)

whereω :=
∫

∞

−∞
(∂ρv0)

2 dρ = σgrain =
2
3π(1 − µ)1/2, on recalling (A.3)–(A.4). Obviously, the

factorsω and σ cancel in (A.5). However, for later developments, concerning triple junctions,
we do not remove them. Let us remark on the scaling`(γ ) := βγ 2. In order to derive an
asymptotic expansion around a sharp interface solution we require zero curvature,κ = 0, of the
grain boundaries. Finally, we point out that (1.6b) degenerates on grain boundaries, i.e. we obtain
∂u/∂t = 0, and (1.6e) has no interfacial structure on grain boundaries sincec(u0) is constant. In
order to derive the governing equation for the void boundary we have to use an approach introduced
in [13]. There the authors showed that the diffusion equation (1.6a) gives

−V[u0]ji = M∂ss(w0 + αφ0), (A.6)

where [u0]ji denotes the jump across the interfaceΓ ij (the value forρ → ∞ minus the value
for ρ → −∞) andM :=

∫
∞

−∞
b(u0(ρ))dρ = ρm = π(4 − µ)−1/2 . Exploiting (1.6b) and the

variational inequality gives to the orderO(1), on recalling (A.3),

σκ = [u0]ji w0 if `(γ ) := βγ 2 and σκ = [u0]ji w0 + βωV if `(γ ) := βγ, (A.7)

whereω :=
∫

∞

−∞
(∂ρv0)

2 dρ =
1
4σmat =

1
6π(1 − µ/4)1/2.
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For the material interfaces(i, j) = (A,B), (C,A), and the grain interface(B,C), we derive
from (A.5), (A.6) and (A.7) for the scaling̀(γ ) := βγ that

−2VAB = MAB∂ss(w
AB
0 + αφAB0 ), 2wAB0 + βωABVAB = σABκAB , (A.8a)

2VCA = MCA∂ss(w
CA
0 + αφCA0 ), −2wCA0 + βωCAVCA = σCAκCA, (A.8b)

βωBCVBC = σBCκBC, (A.8c)

where, on recalling (A.4), we have

ωBC = σBC = σgrain =
2
3π(1 − µ)1/2, MAB

= MCA
= π(4 − µ)−1/2,

4ωAB = 4ωCA = σAB = σCA = σmat =
2
3π(1 − µ/4)1/2.

The evolution laws (A.8a,b) for the material interfaces combine surface diffusion and surface
attachment limited kinetics (SALK), which was discussed in [37]; see also [21].

If we choose the scaling̀(γ ) := βγ 2 instead of̀ (γ ) := βγ in the evolution equation (1.6b)
we derive from (A.6), (A.5) and (A.7) that

VAB = −
1
2M

AB∂ss(
1
2σ

ABκAB + αφAB0 ), VCA = −
1
2M

CA∂ss(
1
2σ

CAκCA − αφCA0 ),

σBCκBC = 0.

Therefore under this scaling the evolution of the void interface is given by surface diffusion (see
[13]), whereas the grain boundaries have zero mean curvature, i.e. they are in equilibrium. It remains
to derive the equations at a triple junction. From now on, we will always denote by superscriptsA,
B andC quantities that are defined on the interfacesBC, CA andAB, respectively. Using the
approach in [11], where an asymptotic expansion close to the triple junction was considered, we
obtain

0 =

∑
i∈{A,B,C}

σ iτ iΓ ,

whereτ1
Γ , τ

2
Γ andτ3

Γ are the tangents to the interfaces at the triple junction all pointing away from
the triple junction. This is the force balance at the triple junction and a simple computation shows
that the above identity is equivalent to Young’s law,

sinθA

σA
=

sinθB

σB
=

sinθC

σC
, (A.9)

whereθA, θB andθC are the angles that the regionsA, B andC form at the triple junction. Using
the ideas in [32, 24] we can also derive a flux balance condition

MC∂s(w
C
0 + αφC0 )+MB∂s(w

B
0 + αφB0 ) = 0 (A.10)

at the triple junction.
It remains to determine an additional condition at the triple junction, which is related to the fact

that the chemical potential is continuous. In fact, similarly to [32, 24], we derive that at the triple
junction

wC0 = wB0 . (A.11)
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We remark that the choice of scaling`(γ ) := βγ orβγ 2 does not affect the conditions (A.9), (A.10)
and (A.11) at the triple junction, as the equation (1.6b) was not used to derive them. Of course, under
the scaling̀ (γ ) := βγ 2 we deduce from (A.7) and (A.11) that at the triple junction

σCκC = −σBκB .

Finally, when an interface meets the external boundary, further boundary conditions have to hold
which can be derived as in [24, 32]. We include these conditions in the summary below.

To summarize, we obtain, depending on the scaling in (1.6b), the following two sharp interface
problems. In both cases we find that at a triple junction the identities (A.9), (A.10) and (A.11) have
to hold forw andφ. When an interface meets an external boundary a 90◦ angle condition has to
hold. In addition, at points where the material boundary intersects∂Ω, we have∂s(wi + αφi) = 0
for i ∈ {B,C}. Firstly, the scaling̀ (γ ) := βγ 2 leads to

VC = −
1
2M

C∂ss(
1
2σ

CκC + αφC) onΓ C,

VB = −
1
2M

B∂ss(
1
2σ

BκB − αφB) onΓ B ,

0 = κA onΓ A.

(A.12)

Whilst for the scaling̀ (γ ) := βγ , we obtain

±2V i = M i∂ss(w
i
+ αφi) onΓ i for i ∈ {B,C},

βωiV i = σ iκ i ± 2wi onΓ i for i ∈ {B,C},

βωAVA = σAκA onΓ A,

(A.13)

where in the± option we take the top fori = B and the bottom fori = C. Furthermore, in both
cases the limiting electric potential satisfies

∆φ = 0 inΩ \ΩA(t),
∂φ

∂nΓ
= 0 onΓ B ∪ Γ C

whereΩA(t) is the void with boundaryΓ B ∪ Γ C .
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