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We propose a degenerate Allen—Cahn/Cahn—Hilliard system coupled to a quasi-static diffusion
equation to model the motion of intergranular voids. The system can be viewed as a phase field
system with an interfacial parametgr In the limit y — 0, the phase field system models the
evolution of voids by surface diffusion and electromigration in an electrically conducting solid with a
grain boundary. We introduce a finite element approximation for the proposed system, show stability
bounds, prove convergence, and hence existence of a weak solution to this non-linear degenerate
parabolic system in two space dimensions. An iterative scheme for solving the resulting non-linear
discrete system at each time level is introduced and analysed, and some numerical experiments are
presented. In the Appendix we discuss the sharp interface limit of the above degenerate system as
the interfacial parameter tends to zero.
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1. Introduction

Small voids that form in interconnect lines in microelectronic circuits can change their shape due to
diffusion of atoms along the void surface. This surface diffusion is driven by a diffusion potential
which contains terms stemming from capillary effects, from an electrical potential and from elastic
stresses. Elastic effects are neglected in this paper but can be incorporated (see [6]). The electric field
can cause a so called “electron wind” force and this leads to the transport of atoms which results
in the migration of voids. In particular it can happen that voids which are initially contained in one
grain (i.e. a region with a certain orientation of the crystal lattice) of the interconnect can come
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FIG. 1. The(u, v) spacelC = AABC. HereA represents the void phasggrain |, andC grain II.

into contact with another grain (i.e. a region with a different lattice orientation). The modelling and
computation of the interaction between voids and grain boundaries is the subject of this paper.

There are two approaches to model the evolution of coupled grain boundary/void systems. In
the classical approach interfaces (i.e. the grain boundaries and the void surfaces) are modelled by a
sharp interface, i.e. a hypersurface. A second more recent approach models interfaces by a diffusive
interfacial layer. Let us first discuss roughly the sharp interface approach (for more detdils see [1]
and the references therein). Here a quite complicated system has to be studied. Along the void
surface a fourth order parabolic equation has to be solved whereas at grain boundaries a second
order parabolic equation holds. These equations are then coupled at triple junctions, where boundary
conditions such as angle conditions and flux balances have to hold. To approximate this problem
numerically is quite difficult since the topology of the interfaces can change drastically (e.g. voids
can attach to and detach from a grain boundary) and no satisfactory approach is known to us. For
example, in the paper|[1] quite severe symmetry conditions are assumed.

In this paper we therefore introduce a new model based on the idea of modelling the interface
by a diffusive interfacial layer (our model will be a so called phase field model). We formulate a
model for a system of two grains (we call them grain | and grain II), but natural generalizations
are possible (see e.@. [22]). Each point in space either belongs to grain I, grain Il or to the void.
We now introduce a vector order parameter (or phase figld)), where the order parameter
describes whether we are in the vgid= —1) or not(u = 1). If u = 1 (i.e. in the material), then
the order parameterdescribes whether we are in graitwl= 2/+/3) or in grain Il (v = —2/+/3).
If u = —1 it makes no sense to distinguish between the grains and we se0. This means
that the three pointda = (-1, 0), B = (1, —2/+/3) andC = (1, 2/+/3) for (u, v) are relevant to
distinguish between void, grain | and grain Il (see Fi@re 1). We ch&:@ge/3 as values foo in the
grains because this makes the closed triangular dofGaiith verticesA, B andC (see Figuré]l)
equilateral. Other values af to distinguish the grains are possible, but these would complicate
matters slightly. Our idea now is to generalize a phase field model introduced in [29], and studied
later in [10,[9], to include grain boundaries. We make use also of ideasin [14, 115, 16], where a
degenerate Allen—Cahn/Cahn-Hilliard equation was studied.

The first step is to introduce the correct free energy. It is by now well established that a
Ginzburg-Landau energy

E(u, v) :=/ |:Z|Vu|2+Z|Vv|2+yllI/(u,v)] dx,
ol 2 2

dependent on a vector-valued order parameter), for a domaing2, a parametey > 0, which is
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related to the interfacial thickness, and a nonconvex free energy dénsdy model the interfacial
energy of systems having different types of interfaces (see €.g./[2,111, 23] and the references therein).
To model the interfacial energy of our intergranular void system we need to assumg tied

three global minima at the points, B andC. As mentioned above; is related to the interfacial
thickness. It can be shown with the help of formally matched asymptotic expansions of with
convergence methods that,as— 0, £ leads to a sharp interface free energy with surface energy
densities (sometimes also called surface tensions)

1
ij _ o / 1 .o
o'l =2inf [ 1o/ Be e ijeia o), (LD)

where the infimum is over ajp € C1([—1, 1], R?) with p(—1) =i andp(1) = j. Again we refer
to [2,[11,23] for more details.

To formulate equations for the time evolution of the interfaces we introduce the potentials

w = E =—yAu+y W, (u,v) and z= g =—yAv+y W, (u, v),
Su ’ Sv ’

wheres&/su andsE /sv are theL?-representations of the variational derivativesSoith respect
to u andv respectively. The equations far andz are stated here for a smooth Later, we will
use a non-differentiablé and then we have to solve a variational inequality to computndz
(see[(I.6c) below). The potentialis the chemical potential for the diffusion of atoms in the void-
material interfacial layer anglacts as the driving force for the grain boundary motion. Taking into
account that diffusion of atoms is also caused by the electrical-fi®ld (see e.g/[[29]), we propose
that the mass fluy for the diffusion of atoms is given as

J =~y @) V[w + ag],

wherex is a constanty(u) := 1—u? is a degenerate mobility and the facfor? takes into account
that the diffusion is enhanced in the interfapd, < 1. The evolution equation far now follows
from the mass balance labw /9t + V.7 = 0. The unknowrnv models the grain boundary and as
usual we take a gradient flow dynamics, Be/dt¢ points in the direction of the negative gradient of
& with respect ta (see e.gl[22, 23]). Altogether we obtain the following set of evolution equations:
du

o V.(b(w)V[w + a¢]) =0, (1.2a)

14
ov
Ly)—+z=0, (1.2b)
ot
which are coupled to the equation for the electric potegtjal
V.(c(u)Ve) = 0. (1.2¢)

Herel(y) is a non-negative coefficient, and later we will use the scaliig$ := By and{(y) =

By?, whereg € R.o. Equation c) reduces to Laplace’s equation in the material, and is absent
in the void if we takec(«) := 1+ u. As first shown in[[13], we expect, in the case that there is no
coupling to av-equation andr = 0, that [1.2j) will model surface diffusion in the sharp interface
limit.
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The resulting system couples the degenerate Cahn—Hilliard equatioh (1.2a) to a non-degenerate
Allen—Cahn equation (1.2b). We note that this is different from a similar set of equations introduced
by Cahn and Novick-Cohem [14], where the Allen—Cahn equation was also degenerate. For this
system, which is a model for simultaneous order-disorder and phase separation, it was shown in
[32,[33] that, under an appropriate scaling and under certain assumptions on the interface geometry,
one obtains mean curvature flow and surface diffusion coupled at triple junctions in the sharp
interface limit. We obtain a similar sharp interface limit also for our system with a non-degenerate
Allen—Cahn equation. However, our sharp interface limit is different in some aspects, and leads to
some interesting new effects. For example, we derive a model where the grain boundary motion
is quasi-static, and another model where viscous effects appear in the surface diffusion equation.
Analogous results would follow for the doubly degenerate system derived in [14], if one would
work with the scaling used in this paper. We will discuss the sharp interface model in the Appendix,
Here we will only outline the results. The domaihwill split into regions wherdu, v) attains
the valuesA, B andC, and into interfacial layers separating these regions which have a thickness
that is proportional tg/. Now, depending on the scaling, we derive different geometric evolution
laws for the interfaces. Here we discuss, for ease of exposition, only the case when no coupling to
the electric field is present.

For the scaling(y) := B2 we find that the interfaces which bound the void move by surface
diffusion, i.e.

y=_M7,
= T sk,
whereV is the normal velocity of the interface, is the (mean) curvature of the interfact, is
the surface Laplacian, and ando are constants, whose precise definitions can be found in the
Appendix. For a grain boundary, we show that its mean curvature is zero. These evolution laws are
coupled at triple junctions, where angle conditions, flux conditions and continuity conditions have
to hold.

If we scale thev-equation with¢(y) := By, we obtain for void boundaries an evolution law
which combines surface diffusion and surface attachment limited kinetics (SALK). The evolution
equation is

V= %AS(—O'K + Bw))), (1.3)

wherew is a constant. This law has been derived(in| [37], and has been studied in [21]. It links
the fourth order surface diffusion flow to a second order flow, which is called motion by averaged
mean curvature (sele [37,134] for details). In this context we refer also to warklin [31] on the viscous
Cahn-Hilliard equation, for which a degenerate variant would lead td (1.3) in the sharp interface
limit. For this second scaling one obtains the mean curvature flow

BwV = ok,

as the evolution law for grain boundaries. We remark that in[[3R2, 33] a singular limit of an Allen—
Cahn/Cahn—Hilliard system has also been analyzed using different scalings.

In the recent paper_[9], the following phase field model for void electromigration was
considered:

ou

o~ V-(b@VIiw +ag) =0, w=—yAu+ y W W), V.cw)Ve)=0 (1.4)

14
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FIG. 2. The order parameters for a typical intergranular void. Noteshat(—1, 0), B = (1, —2/+/3) andC = (1, 2//3).

subject to an initial condition®(-) € [—1, 1] on « and flux boundary conditions on all three
equations. Herei(-,t) € [—1,1] c R is the conserved order parameter, where at any time

t € [0,T], u(-,t) = —1 denotes the void and(-, ) = 1 denotes the conductor, while the void
boundary is approximated by thé:, ) = O contour line inside th@:(-, )| < 1 interfacial region.

In addition,w(-, ¢) is the chemical potential an#l is a non-smooth double obstacle potential; and
hence the second equation|in {1.4) is in fact a variational inequality((see [9] for details). While, as
in (1.23—c),¢ (-, 1) is the electric potentialy € R.o is the interfacial parametes, € Rxo is a
parameter denoting the relative strength of the electric field pamp:= 1 — »2 andc(u) := 1+ u

are degenerate coefficients. The authors extended the technique of formal asymptotic expansions in
[13] to show that the zero level setsuf, the solution to[(1}4) for a fixeg > O, converge ag — 0

to an interfacd ™ (¢) with unit normaln -, evolving with normal velocity

7'[2 T —
V=——A + chquﬁ onrl(t), (1.5a)

16
wherex is the curvature of "(¢) (positive if it is curved in the direction of ). The limiting electric
potential,¢ (-, t), satisfies
oy —
Ap =0 In27() =2\ 201, e =0 onl(1), (1.5b)
nr
where 27 (¢) is the void with boundaryl"(¢). For a discussion of different approaches to
approximating[(1.5a,b), seel[9]. For further details on void electromigration seé €.g. [38, 19] and
the references therein.
The present paper extends the phase field mpdél (1.4) to take into account grain boundaries. In

summary, the evolution of intergranular voids is described by the following non-linear degenerate
parabolic system:

(P) Find functions and, v, w, z, ¢ : 2 x [0, T] — R such thatu(x, t), v(x, t)) € K and for
all (n1(x, 1), n2(x, 1)) € K,

ou

o~ V-(0@VIw+ag) =0 iner, (1.6a)

v
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E(y)z—l; +z=0 in 2r, (1.6b)
(—y Au + y‘lllf,u(u, v) —w)(n1 —u)

+(—yAv+y Y@, v) — )2 —v) =0 inQ2r, (1.6¢)
(u(x, 0), v(x,0) = @°x), v°(x)) e K Vx = (x1, x2)] € 2,
2w tadl o, o2 x (0,7],  (L.6d)
Jv v v
V.(cw)Ve) =0 in 27, (1.6€)

3 3
c(u)a—‘f=o ondL 2 x (0,77, c(u)a—‘f+¢=gi:=xliz ondy 2 x (0,71, (1.6

whereT > 0 is a fixed positive time27y = 2 x (0, T]and 2 := (—L1, L1) x (—L2, L) is
a rectangular domain iR2, representing the interconnect line, with boundasy = 912 U 3,12,
whered1£2 N 922 = ¥ and

#02=0,2U352 with 8502 :={£L1} x [-La, L7],

andv is the outward unit normal t62; see Figur€¢ 2. Henc& 2 is the insulated boundary @2,

whilst the Robin boundary conditions on the e%’) model a uniform parallel electric field, as

L1 — oo. We note that one could alternatively model this with either (a) the Dirichlet conditien

x1 or (b) the Neumann conditiorn(u)d¢/dv = £2 on 8?(2. However, in deriving energy bounds

for (P) it is convenient to have weak boundary conditions, that is, Neumann or Robin conditions.
The chosen Robin condition cagtsz ), has the added advantage that one obtains an immediate

L?(32€2) bound ong for the degenerate elliptic equatidn (1.6e).[In (L.6asdY,(y) € R-o and
a € Ry are given constants and

Y(r,s) if(r,s) ek, . 2

Y(r,s) = . th C4(K), 1.7

(r,s) {OO it (r.5) ¢ K. with ¢ € C<(K) (1.7)

is an obstacle free energy which restri¢is-, ), v(-, -)) € K. Here we assume that > O is a
concave function withy (A) = ¥ (B) = ¥ (C) =0, e.g.

8 1 1\? 2
v(r, s) :=§—§[<r—§> +(1—u)s2+§u(r+1)], (1.8)

whereu < 1 is a parameter. In addition, we define the degenerate diffusion coefficients
c(s)i=1+s, b(s)i=1—s2=c(s)c(—s) Vse —[1,1]. (1.9)

The variational inequality (I.6c) is obtained by taking the first variatioéi fith respect ta
andv, and taking the non-smooth characterdofnto account. The first variation can be computed
in the context of subdifferentials. We choose a characterizatian afdz in terms of variational
inequalities, as it simplifies the formulation of the discrete problem. We refer 16 [20, 28] for further
details on subdifferentials and variational inequalities.

The basic ingredients of our approach are some key energy estimates. Let us now briefly in a
formal way describe how we obtain these estimates. Multipll.Ga)‘Bw =y ~18&/5u and
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(L.68) by E(»)]7tz = [£(y)]~18&/sv yields, after integration of the sum of the two terms, the
following free energy identity:

%5(u,v)+f [y o) | Vw|? + [¢()] 12 dx = -y—la/ b(u)Vw.Vé dx. (1.10)
2 2

If we multiply 1‘ by¢ we can estimatqg b(u)Vw.V¢ dx and this enables us to control the
right hand side of (1.10), leading té*-estimates in space for the phase figldv). RelatingF to
¢ andG to b by the identities

c(s)F"(s) =1 and b(s)G"(s) = 1, (1.11)
and testing|(1.6a) witi&’ (1), (1.68) with— Av, and adding leads to

E/ |:yG(u)+M|Vv|2] dx—i—y/ [|Aul? + | Av|?] dx
dr I?) 2 I?)
= —f Vu.V(y W, + ag)dr — y_1/ VoV, de, (1.12)
2 2

where the term/, Vu.V¢ dx can be controlled if we test (1)6e) with' («). This approach will

lead to H2-estimates in space fd, v). Discrete analogues of the above testing procedures will
lead to the main a priori estimates for our finite element discretization (see S¢ction 2). It is the goal
of this paper to derive a finite element approximation of (P) that is consistent with these energy
estimates, which then enables us to establish convergence in two space dimensions. In order to
derive a discrete analogue of the energy estinjate](1.12), we need to extend a technique introduced
in [39,25] for deriving a discrete entropy bound for the thin film equation. Finally, we note that

a finite element approximation of the degenerate Allen—Cahn/Cahn—Hilliard system introduced in
[14] can be found in[3]. However due to the lack of a corresponding entropy bound, convergence
of that approximation was only established in one space dimension. Finally, we remark that no
unigueness results for degenerate fourth order parabolic equations are known, and hence no error
estimates for this finite element approximation can be expected at present.

This paper is organised as follows. In Secfipn 2 we formulate a finite element approximation of
the degenerate system (P) and derive important discrete analogues of the energy estimiates (1.10) and
(1.12). In Sectiof |3 we prove convergence, and hence existence of a weak solution to the system
(P) in two space dimensions. In both of the above sections we need to substantially extend the
techniques in[[9], since e.qg. the discrete analogug of|(1.12) and the convergenoe ¢fi«| < 1}
are both far more difficult to establish; see Lemina$ 2.4 arjd 3.2, respectively, below. This is due to
the fact that the geometry & leads to a far more complicated variational inequality compared to
the one studied ir [9]. In Secti¢n 4 we introduce and prove convergence of a “Gauss—Seidel type”
iterative scheme for solving the non-linear discrete system for the approximati@asuofv, z) at
each time level. In Sectidrj 5 we present some numerical experiments. Finally, in the Appendix we
discuss the sharp interface limit, as the interfacial parameter 0, of (P).

Notation and auxiliary results

For D c Ror D c R? we adopt the standard notation for Sobolev spaces, denoting the norm of
Wm4(D) (m € N, q € [1,00]) by || - llm,q,p and the semi-norm by- |,, 4. p. We extend these
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norms and semi-norms in the natural way to the corresponding spaces of vector, and matrix, valued
functions. Forg = 2, W™2(D) will be denoted byH" (D) with the associated norm and semi-
norm written as, respectively, |,,.p and| - |,,. p. For notational convenience, we drop the domain
subscript on the above norms and semi-norms in the Pase 2. Throughout(-, -) denotes the
standardZ? inner product over?. In addition, we define:(£2) as the measure a® and fni=
[m($2)]"Y(n, 1) for all n € L1(£2).

For later purposes, we recall the following compactness resultsX1,eX» and X3 be Banach
spaces with a compact embeddikig <— X, and a continuous embeddidfp < X3. Then we
have the compact embeddings

{n € L?(0, T; X1) : dn/dt € L?(0, T; X3)} — L%(0, T; X>2), (1.13a)
{n € L®(0, T; X1) : 9n/dt € L0, T; X3)} — C([0, T]; X2). (1.13b)

It is convenient to introduce the “inverse Laplacian” oper&orY, — Y> such that

(VIGm], Vn2) = (n1, m2)s  Vip € HY($2), (1.14)

whereY: := {n € (HY(£2)) : (n,1) = 0} andY» := {n € HY() : (n,1) = 0}. Here and
throughout,(- , -}, denotes the duality pairing betweeH1(£2))’ and H1(£2). The well-posedness
of G follows from the Lax—Milgram theorem and the Poireamequality

Inlo < Cnli+(n, ) ¥n € HX($2). (1.15)

We note also for future reference Young'’s inequality
<92+12 Vr,s€R, 0 eR (1.16)
rs < = — . s . .
2r 29.5‘ r,s >0

ThroughoutC denotes a generic constant independent,of ande, the mesh and temporal
discretization parameters and the regularization parameter. In addltion ..., ;) denotes a
constant depending on the argume{r&ts{:l.

2. Finite element approximation
We consider the finite element approximation of (P) under the following assumptions on the mesh:

(A) Let 2 be the rectangular domain-L1, L1) x (—Lo, L»). Let {T"},-0 be a quasi-uniform
family of partitionings of$2 into disjoint open triangles with 4, = diam(c) andh =
max, .7+ ho, SO that2 = |J, 7+ . In addition, it is assumed that all trianglese 7" are
right-angled.

We note that the right-angle assumption is not a severe constraint, as there exist adaptive finite
element codes that satisfy this requirement (seele.. [35]).
Associated witi7™” is the finite element space

S":={x € C(R2) : x| is a polynomial of degree orer € 7"} c H'(£2).
We introduce also

K :={(n1, n2) € [HY(2)]? : (n1(x), n2(x)) € K a.e.in2} and K" := K N[s"%.
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Let J be the set of nodes &f” and{p;};c; the coordinates of these nodes. g}};c; be the

standard basis functions f6f'; that is,x; € Sh andy;(p;) = é;; forall i, j € J. The right-angle
constraint on the partitioning is required for our approximations(efandc(-) (see [(2.12a,b) and
(2.83,b) below), but one consequence is that

/VXi.Vdex <0, i#j, VoeT (2.1)
o

We introducer” : C(22) — §”, the Lagrange interpolation operator, such thetn) (p;) = n(p;)
forall j € J. A discrete semi-inner product @i(s2) is then defined by

(n1, m2)" 1= /Q " (1) na(x) dx =Y mini(pj)na(p;), (2.2)

jeJ
wherem; := (1, x;) > 0. The induced discrete semi-norm is the, = [(n, n)*]¥/2, where
n € C(£2). We introduce also the projectiad” : L2(£2) — S” defined by
(Q"n. x)'=m.x) VxeS" (2.3)

On recalling[(1.p) and (1.11), we define functiaiisand G such that(n)V[F’(n)] = Vn and
b(mVI[G' ()] = Vn; that is,

1 1 1 1
F"(s) —— and G'(s) =

_ 1 L _ _ (2.4)
c(s) 1+ b(s) c(s)c(—s) 1—s2
We takeF, G € C*°(—1, 1) such that
F(s)=(1+5s) Iog(l—;s> +(@1—-s) and G(s) = 3[F(s) + F(=s)]; (2.5)

and, for computational purposes, we repldces for anye € (0, 1) by the regularized functions
F., G, € CZL(R) such that

Fuls) e Fe—D+(G—e+DF(e-D+36—e+D?F'(e—1), s<e—1,
e F(s) s>e—1,
Ge(s), 1= 3[Fe(s) + Fe(—s)]. (2.6)
We note for later purposes that for alE [—1, 1],
3<SF()<e™ R/ <Gl <[e2-o)] t<e™ 2.7)

Similarly to the approach i [39, 25], we introdugg : §” — [L*(£2)]?*? such that for all
n" € §" and a.e. in2,

Aq(n") is symmetric and positive semi-definite (2.8a)
A"V [Fl(")] = V. (2.8b)

The introduction of the matrice4, and =, (see below) is crucial for the construction of our finite
element approximation. Using an appropriate “standard” approach to approxitngtend b(u)

would yield a finite element approximation satisfying a discrete analogug of| (1.10), but not of
(L.13). without [(1.1IR), one does not obtain the spatial continuity of the limit funetiam two

space dimensions and hence it is not possible to prove convergence of the resulting finite element
approximation.
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We now give the construction of,. Let {e,»}l?:1 be the orthonormal vectors R? such that the
jth component ok; is §;;, i, j = 1 — 2. Given non-zero constangs, i = 1 — 2, Iet’&({;,-}l.zzl)
be the reference open trianglelitf with vertices{;’f,-}izzo, wherepyg is the origin andp; = ¢;e;,

i =1 — 2.Given as € T" with vertices{p;,}2_, such thatpj, is the right-angled vertex, there
exists a rotation matrix®, and non-zero constan{si}l.z:1 such that the mapping, : ¥ € R —
Pjo + Rsx € R? maps the verte; to pj,,i = 0 — 2, and henc& = E({q,-}l?zl) to o. For any
n" € S*, we then set

Ae(M)s = R AR, (2.9)

where? (¥) = n"(R,%) for all ¥ € & and A, (7")|5 is the 2x 2 diagonal matrix with diagonal
entriesk =1 — 2,

[AeGT™)l5 ]k

n" (pr) — 0" (po) n"(pi) — n"(pjo) I h
i = f 0" (pj, o)
_ |V F@ G0 - FGGoy ~ FLP () — FLb () P 7 P (2.10)
"~ 1 1 '

_ i h — k.
FIG (o) FL (" (p) T pi) =1 (Pi-

As RT = R;1, vy = R, V", wherex = (x1, x2)7, V = (0/0x1, 9/3x2)7, ¥ = (*1. %27 and

V = (3/0%1, 0/0%2)7 , it easily follows thatA (") constructed i (2]9) anfl (2.]10) satisfies (2.8a,b).
It is this construction that requires the right-angle constraint on the partitichtngVithout this
constraint, we could loose the prope.8a) and hence the positivity dVthé term in the
discrete analogue df (1.]10). Another consequence of this constraint is that

a’\.a".
i %X 4 <o, i#j,k=1—2VYoeT" (2.11)
s OXg 0Xy

In a similar fashion we introducg, : §" — [L*(£2)]?*2 such that for all” € $" and a.e.
in §2,

Z.(n") is symmetric and positive semi-definite (2.12a)
E:(")Vr"[GL(")] = Vi, (2.12b)

by extending the constructiop (2.9)—(2.10) for to =Z,. Similarly to {2.3), it follows from[(2.1]1),
the above construction ard (2.7) that foriglle S”,

fss(nh)vx,-.vx,»dx = /Aég(ﬁhﬁzﬁyjdfg 0, i#j,YoeT (2.13)
o

o

Obviously, the above result also holds wih replaced byA,.

In addition to7", let0=1 < t1 < --- < ty_1 < ty = T be a partitioning of [0T] into
possibly variable time stepg :=t, — t,—1,n = 1 — N. We setr := max,—1_.n 7,. FOr any
givene € (0O, 1), we then consider the following fully practical finite element approximation of (P):
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(Ph*) Forn > 1find (&7, U, VI, W, ZI") € [S"]° such thalU”, V") € K and

(AU Hve!, v >+f Oy ds =/ gxds Vy e st (2.14a)
0282 0282
U" — Un—l h
y<% x> + (B U HVIW! +ad"],Vx) =0 Vxes", (2.14b)
n
Vn _ yn—1 h
oy )<T—,X> +(Z" x)"=0 vyxesh (2.14c)
n

y(VU, Vnt — U™y + y(VVI, VInh — VI])
> (W —y Yy ot vith gl — oy
(28 —y L vk — v vk by e KB, (2.14d)

whereg := g i(2+ Ly) on 352 and (U2, VO) e K is an approximation ofu®, v°) € K,
e.0.U = n"ulif u¥ e C(2), and similarly forv?.

Below we recaII some well-known results (see elgl [17]) concersihdor anyo e T,
x.n" eS8 me{0,1}, pe[l, o0l andg € (2, ool

|(I — 2"l < Ch*™nl2 V€ HX(); (2.15)
(L — 7"y < CRY ™l Ve WH(2); (2.16)
/dex g/nh[xz]dx <4/ x*d; (2.17)

o o o
nh)(xnh)dx‘ <1 =7 lose < CAY™ X mo 0" 10 (2.18)

Finally, as we have a quasi-uniform family of partitionings, it follows that
(1 = Q"nlwm < CR"Inly V€ HY (). (2.19)

We defineY) := {y" € §" : (", 1) = 0} and introduce the “discrete Laplacian” operator
At " — vl such that

(At ) = =V, vx)  vx e s (2.20)

Next we introduce for alk € (0,1), ¢, : [-1,1] — [¢,2] andb, : [—-1,1] — [¢(2 — &), 1]
defined, on recallind (214), (2.6) arfd (2.7), by

1 1 1 1
c(s), be(s) = > =

FST/(S)? Fs) =0 ST b(s). (2.21)

ce(s) =

Then the following two lemmas follow immediately from the constructiogfand &, (see [9,
Lemmas 2.2 and 2.3] for details).
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LEMMA 2.1 Let the assumptions (A) hold. Then for any giver (0, 1) the functionsA,, &; :
Sh — [L*°(£2)]%*2 satisfy for ally" € K", &£ e RZ2and forallo € 7",

e6'& <mince(r ())& E <ETA("loE < maxe: (" (0)E7E <27, (2.22a)
e2—e)§"E <minb.(n" (0)E"E <ETF(n"oE <MAO" (1))ETE <ETE, (2.22b)

§1 8.0k <267 Ao (2.22¢)

LEMMA 2.2 Letthe assumptions (A) hold and let|| denote the spectral norm &#*2. Then for

any givene € (0, 1) the functionsA, : §" — [L®(£2)]?*2 and &, : S" — [L*°(£2)]?*? are such
that for allp” € K" and for allo € 7",

max|[[As(n") = ce (" ZJ)I| < gl Vee (") lo.00.0 < hol V"ol (2.:23a)
max [ £ (") = be (1" Z] )| < ho | Vb (1")]l0.00.0 < 280 |V o, (2.:230)

whereZ is the 2x 2 identity matrix.

We now derive discrete analogues of the energy estinfates (1.1¢) and (1.12) in Llenmjmas 2.3 and
[2.4 which follow.

LEMMA 2.3 Let the assumptions (A) hold an@”~1, v'~1) € k". Then for alle € (0, 1) and
for all 7, 7, > 0 there exists a solution®”, U”, V', W", Z") to the n-th step of (%) with
fU" = £U"L The 4-tuple(®?, UZ, V[, Z) is unique. In additionW” is unique if there exists
J € J suchthat/ (p;) € (-1, 1). Moreover,

(AcUIHVEL VL) + 51DL1E 00 < 31815 0,00 (2.24)
V!, VU Y| < 2lglo.a,2 17" [FLU D]lose (2.25)

and

EUE VI + 31U = UF g + y Ve = VY + 6] el 2212
+ 3y BV WG < UL VI + 30y T nlglg 0. (2.262)

where
EWE, VMY = 3y IUE + yIVEE + y My U, v, Dt (2.26D)

Proof. The derivation of the existence of a unique solutdf € S" to (2.144), and the bounds
(2.24) and[(2.2p), is straightforward, and can be foundlin [9, Lemma 2.4]. In order to prove existence
of a solution((U?, V"), W/, Z) € K" x [$"]? to (2.14b~d), we introduce, similarly to (1]14), for

q" € K" the discrete anisotropic Green’s operafdy : YY — Y such that

(Ee(g"VIGHN"). V) = (" )" Vx e s". (2.27)

It follows immediately from|(2.22p) an5) that, is well-posed. It follows fromb) and
(2.27) that
n n h Ug — Usn_l n
W2 = —ad] =y Gl | St |, (2.28)
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where\” € R. Hence |(2.14b—d) can be restated as follows: Fitiel, V') € K"(U!Y) =
{(nf,nh) e K" + 9t — U1 e )} and a Lagrange multipliek” € R such that for all

(7. n3) € K,

YVUL, V(i — UM + y(VVE, V(s — VD)
yn — yn—1 h yn — yn-1 h
+ y<g}[’]n—l[¥}v 77? - U5n> + Z(V)<¥, ng - Vgn>
£ Tn Tn
> (—y Yy, ot vl —adl + o gt —Unt — Ly (UL Vit ph — vy,
(2.29)

It follows from ) thatu?”, vy e K"(U!~1) is such that for ally, ) € K"(U!Y),

y(VU, V(i — UM) + y(VV, V(s — V)

Un — Unfl h v — anl h
A S o

n—1
Ue n n

> (—y Ut v el —Un -y Ty, Ut v b — vk (2.30)

There exists a uniqueU’’, V) € K" (U~ solving [2.3) since, on noting (2127), this is the
Euler-Lagrange variational inequality of the strictly convex minimization problem

Y

. Yih2 , Vi 12
min — —
{ 2|771|1+ 2|772|1+ 27,

ol ek Y

L) - - - - 1y
Pl R A R /e s B L A U (R s R I 8
n

1&: (U DY2VGy, 1 (g = UL DG

+

Existence of the Lagrange multiplief in (2.29) then follows from standard optimisation theory
see e.g.[[18]). Hence we have existence of a solutid@’, V), W”, Z") € K" x [$"]? to
—d). IflU(p;)| < 1 for some;j e J thenz”[1 — (U)?] # 0 and choosingn!, nf) =
(U £ 871 — (UMD, VI + (3/v/3x"[1 — UH?]) in (2.29) fors > 0 sufficiently small yields
unigueness af” and,lon noting[(2.38), uniquenessWf. Furthermore, choosing = 1 in (2.14b)
yields f U} = fU! .

Choosingy = W/ in (2.148),x = ! in (2.14¢) and(n?, n%) = (U2~%, v2=Y) in (2.149)

yields
y{Uy — Ug”_l, W + tn(Es(Uf_l)V[Wg" +a®/], VW) =0, (2.31a)

&
L) v — vt zmh gz, ZM = 0, (2.31b)
y(VU VUt = UM + (v vIvEt - v
> (W' —y Yyt veeh, ot - unyt
+(z" —y Yyt vetty, et _ymh, (2.31c)
On noting the elementary identity

Zr(r—s)=(r2—52)—|—(r—s)2 Vr,s € R,
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it follows from (2.31&—c)[(1.16)[ (2.2Rc) and the convexity-af (recall [1.7)) that

UM+ 10 = U = U+ IV + V) = Ve = Ve
+y B UYWL + [60n)] Hal ZE
<=y MY UL VI UL = U =y T U Ve, VE - vl
—ay o (B (U H VPR, VW)
<y MY R VY =y, v,

+ 37 I8 (UL OV WL + 202 [ A (U DYV @], (2.32)
Hence the desired resylt (2.26a) follows frgm (2.32), (2.26b) [and](2.24). O

LEMMA 2.4 Let the assumptions of Lemrpa P.3 hold. Then

Y(Ge(UD = Go(U!™H, ) 4y, A UL
S OUVEE+IVE = Ve = Ve + vl AV
<e Wy UL = UG + wl(VWE VIUE = U2 Y) — aVOL, VU
—y T VYL U VI, VUL =y TRV (U VT, VY] (2.33)

Proof. Choosingy = 7"[G,(U?~Y)]in [@.141) and notingf (2.12b) yields

y(Ul = Ut GLUP Y)Y 4 5, (VW 4 a@?], VU = 0 (2.34)

while choosingy = —A"V/" in (2.14¢), and noting (2.20) yields

NIV + 1V = VI = IV ] = e v = vt AV = —g(VZ, vV,
(2.35)

We now extend an argument [n [5, Theorem 2.3], where the authors treated the one-dimensional
case ofC = [—1, 1]. The casé&C = AABC c R? studied here requires some special considerations.
Letj € J. Thenfor(Ul (p;), VI (p;)) € K we distinguish the following cases. For ease of notation,
letvy, := 2/4/3.

(i) (W (p). VI (pj) € K\ oK,
(i) UZ(pj) =1, VI (pj) € (—vp, vp),
(i) UZ(py) € (=L, 1), V2 (pj) = 30U (pj) + D),
(V) UZ(pj) € (=1, 1), V2(pj) = —3upU(pj)) + D),
v) (UL (pp), Vi(pj) = (1, vp),
Vi) (U (pp), Vi(pj) = (1, —vp),
(vii) (UZ(pj), Vi (p)) = (=1,0).
In what follows, we choosé > 0 sufficiently small so that the specifie:qu, n’;) € K can be chosen
in (2.14d). In case (i), on choosin@}, n%) = (U £ 8x;. V) and(n?, nh) = (UL, V! £ 8x;),
respectively, we have

AV =y (VUL V) — (W =y, UL vEh, ) =0, (2.36a)

A] =y (VVE V) = (28 —y U VEh, )t =0. (2.36b)
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In case (ii), on choosing;?, n%) = (U?, V' £8x;) and(n}, nh) = (U — 5x;j. V"), respectively,
we haveAJl/ <0 andA]V = 0. For case (i) we choosey}, nf) = (U £ 8x;, V! £ $updx;)
and(n}, ny) = (UL, VI — 8x;), respectively, so that! + %vbA,V = 0andA} < 0. Similarly,
for case (iv), on choosingy?, ) = (U? £ 8x;, V! F 3updx;) and(y, nh) = (U2, VI + 8x)),
respectively, we obtaim]l.’ — %vbA]‘./ = 0 and AJ‘./ > 0. In case(v) we obtainAJ‘.’ < 0 and
A]U—i—%vbA]‘./ < 0, on choosingn’, n) = (U?, V! —8x;) and(n}, nk) = (U =8x;, V= Supdx)),
respectively. Similarly, for case (vi) we hawg’ > 0 andAj‘.]—%vbA}’ < 0, on choosingn?, n%) =
(U, VI + 8x;) and(nl, nh) = (U — 8x;, V' + Supdx;), respectively. Finally, in case (vii) we
thatAY + $v,AY > 0, on choosingn’, n) = (U +8x;, V' £ Sup6x)).
From [2.20),[(Z.R) and (2.1) it follows for cases (ii), (v) and (vi) that
Ul(p)) =1 = Ulp;) > UNp)Vied = AU"(p;)<O. (2.37a)
Similarly, in cases (iii), (v) and (vii),
AU = V3Ve)(pj) =0, (2.37h)

while in cases (iv), (vi) and (vii) we have

AU +V3Ve)(pj) = 0. (2.37¢)
Combining [2.36@,b) anl (2.37a—c) yields, for all cases (i)—(vii),
—[AY AU (pj) + A} AV (pp)] <O, (2.38)

Summing|[(2.3B) for allj € J yields, on noting[(2.36a,b), (2.20) ard (2.2),

y1AULE+y 1AV
<= (W —y Yy Uit i, Arumh — (z0 — Yy U, v, Ayt
= (V[W! —y =Yy =L vi-hl vury +(V[Z! -y Lyt vehl vy, (2.39)

It follows from (2.34), [(2.3F),[(2]7) and (2.B9) that

Y(Ge(U!) — Ge(UIY), 1) 4y, AU |2

+HWUVIE+ IV = Ve = VI + vyl AV

<YL = UL GLUM)Y! + w[(VIW! — y Ly, (U2~ vi-h], vur)
—y vy urt v, v

<y (UM — UL GLUM) = GLUMh)h
+ L [(VW!, VU — U]y —a(Ve!, vUI—t
—y vyt veh, vory — y iyt v, v

e WU — U2 Y2 + n (VW VIUE - UFY) —a(VeR, VU
—y Y VYL UL VY, VUL — N VY, U VY, vV

and hence the desired res{ilt (2.33). O
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The results of the preceding two lemmas will now be used to derive fundamental a priori estimates.

THEOREM2.1 Let the assumptions (A) hold an@?, V9 e k". Then for alls € (0,1),h > 0
and for all time partitiongt,}"_,, the solution{(®”, UZ, V', W, ZH)}N_, to (P*7) is such that
fU" = fU%n=1- N,and

N
2 n2 n n—1,2 n n—1,2
y max ULIF+y max ||V ||1+y;[|Ug — U v - v
S 1 111/2 2 1mi2 yn —yn-12
+Z’"[V_ 15 (U2 HIY2YW G+ e 2L +z<y>‘% ]
n h

n=1
< ClIUAE+ IV + v A+ TIglG4,0)].  (2.40)

In addition
= up —Us P Y2y 12
VZTHQ[ . £ ] +VT_/ Z|U€"—U€"_ lo
n=1 Tn 1 n=1
< ClyIU2AG+yIVAE +y A+ TIgl3 0] (241)
and

N N
y max (Ge(UD, 1" +y ) ml AU +y Y nldV!
- n=1 n=1

N
<Y(G WD), 1) + 02> | "[FLUI D113 4,0

n=1

+CML+y 2+ e Ay IUAT + v IV +y A+ TIglg 0,001 (242)

Proof. Summing[(2.26a) from = 1 tok shows for anyt < N that

k k
EWEVE+ 3y Y N0 U Y+ 1V = VI + e )l Z2 iy
n=1

n=1

k
+ 3y D nllE MY WIE < W2 VO + 3Py ulglE h0-  (243)
n=1

The desired resulf (Z.:40) then follows frof (2.48), (2]26b),](2[2), [2.[L7), (2.14c) and the fact that
U (pj), VI(p))) € K,Vj € J,n =0 — N.Then [2.4]L) follows from[(1.14)[ (3.3), (2.14b),
(2.221,c),[(2.3P)[(2.24) and (2140); skk [9, Theorem 2.6] for details.

Finally, summing[(2.33) from = 1 to k& and noting[(1.]J7)[(2]2)[ (2.17) and (2.22b) implies for
anyk < N that
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k k
Y(GeUH. D +y Y wl UG +y ) ml AR
n=1 n=1

k
PG, " + Y ey UL — UL+ eV, VU]
n=1
+ ¥ ¥ 2,00 k[ Max U2+ max V3]
n=0—k n=0—k

-1 d — n—1\11/2 n2 172 d n n—1,2 12
+ [g 3 wllE U HIY2Yw, |o] [Z LU — U |1] . (2.44)
n=1

n=1

The desired resulf (2.42) then follows from (3.44), (2.25), (1.16), [2.40)[and (2.41). O
LEMMA 2.5 Let (u°, 0) € K N [WLr(£2)]? with P> 2, and let the assumptions (A) hold. On

choosing(U?, V9) = (z"u®, 7"v0) it follows that (U2, V9) e K" is such that for alk > 0,
U213+ 1v23 + <G8<U£>, " < c. (2.45)
Proof. This follows from [2.16),[(2]6) and (2.5). O

REMARK 2.1 The approximation () of (P) requires solving fo(®”, U, W") over the whole
domain £2, due to the non-degeneracy df.(-) and Z.(-) (see [@a b)). For computational
speed it would be more convenient to solve @ just in the conductor and interfacial regions,
Ur—t > —1, and for(U?, W) just in the interfacial regionU"~1| < 1. With this in mind, we
recall Remark 2.10 iri [9] and introduce the following approximation of (P). Adopting the notation
.) and[(2.10), lett,, &, : " — [L>(£2)]?*2 be such thatl,(n")|, := R, AX(7")ls R] and
Z:(M)o = Ry B} (A”)IURT where

Sy, 0 it 7" (pj) =10"(pjo) = —1,
LA Gl ] = {[As(ﬁh)la]kk otherwise

(27 O] = {[ES("h)Hkk otherwise

We note that the key identities, with, (") in (2.84,b) replaced byt (n") and &, (") in (2.124,b)
replaced b;Cg(n ), still hold. We then mtroduce the approxmatld?ﬁ(f)of (P), which is the same

as (P°7) butwith A, (U? %) in (2.144) replaced byt, (U?~%) and &, (U2~ in (2.141) replaced by
HE(U" . As A () andug() are now degenerate, existence of a solutidfi, U”, Vi, W ZE)

to (Ph T) does not appear to be trivial. However, this can easily be established by spl|tt|ng the nodes
into passive and active sets (see €.¢. [4]). Moreover, one can showlthat”, Z7) is unique.
Furthermore, one can establish analogues of the energy estifnatés (2.40) and (2.41). Unfortunately,
it does not appear possible to establish an analogue of the key energyte (21%2*))for (

3. Convergence

Let

t—1t,— t, —t
Ua(t) = T” Lun + ”r Ut telthorta] n > 1, (3.1a)
n n

Uf(y:=ur, U (t):=U"'1, 1€ (thot, 1], n > 1. (3.1b)
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We note for future reference that

U
U —UF = (t —17) 8:, te(to1.tn), n>1, (3.2)
wherer,t := 1, ands, := 1,_1. We also introduce
T(@t) =1, € (ty—1,t],n =1 (3.3)

Using the above notation, and introducing analogous notatioVfoW,", Z and @, we can
restate (P7) as: Find @, (U, Vi), Wi, ZF) € L®(0, T; S")xC([0, T]; K")x[L>(0, T; §")]?
such that for ally € L>(0, T; $"),

T T T
/(Ag(Ug)VQ)j,Vx)err// cbjxdsdtsz gx dsdr, (3.4a)
0 0 0282 0 0282

r o lau, \"
/ M aj,x> +<EE<U;W[W;+a¢j],vX>] dr =0, (3.4b)
0

! IVe ! + \h
/0 (S5 x) +zh 0t =0, (3.40)

where for a.at € (0, T),
y[(VUF. VInt = USD) + (V. Ving — V)]
> W =y M (U VOt — U (2 =y (U V) s — VM
v, nhy e K", (3.4d)
LEMMA 3.1 Let % 1% € K n[WLr(2)]? with p > 2, and £u® € (-1, ). Let {T", U?,
VO, {t,}V_,, e}n=0 be such that

() W2, v2) = (@"u®, x"0;
(i) £2 and{7"},-0 fulfil assumptions (A)¢ € (0, 1) with e — 0 ash — 0, andt, < C1,_1 <
Cez, n=2— N.

Then there exists a subsequencg(df!, U,, V., W, ZH)},, where(@f, U,, Ve, W, Z}) solve
(P7), and functions

ueL®0,T; H(2)) N HXO, T; (HX(2))), (3.5a)
v e L®0,T; H(2)) N HYO, T; L3(R2)), ze L%(27), (3.5b)

such that(u(x, 1), v(x, 1)) € K for a.e.(x, 1) € 27, u(-,0) = u°(), v(-,0) = v9(-) in L2(£2),
fu(-,t)= fulfora.ar e (0,T), and ass — 0,

Ue, U — u and V,, VE > weaks in L®(0, T; HY(2)), (3.6a)
U, 0 .

G 8; — ga—b; weakly inL%(0, T; HY(2)), (3.6b)
aV, d .

a: N a—l; and Z} — z weakly in L2(27), (3.6¢)

Ue, UX - u and V., V¥ > strongly inL?(0, T; L*(2)), (3.7a)

E.(U;) = bw)Z and A (U;)— cw)Z strongly iNL2(0, T; L°(£2)), (3.7b)
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forall s € [2, 00). If in additionu® € H?(£2) with 3u®/3v = 0 on3s2 and

aZ/OT I [FL(U]I§ 3,0 Ot < C. (3.8)
thenu in addition to [[3.5p) satisfies

u e L%0, T; H*(2)) (3.9)

and there exists a subsequencé¢af}, satisfying [3.6p,b)[ (3.Ta,b) andas— O,
AU, A'UE - Au weakly inL%(27), (3.10a)
U, UX > u  weaklyinL?(0, T; WL (£2)), for anys € [2, 00), (3.10b)
Ug, UX - u  stronglyinL?(0, T; C%¢(2)), forany¢ € (0, 1), (3.10c)
Ue, Uf > u  strongly inL?(0, T; H(£2)). (3.10d)

Similarly, if in additionv® € H2(£2) with 3v°/3v = 0 ond<2, thenw in addition to [(3.5p) satisfies
ve L300, T: H3(R2)) (3.11)
and there exists a subsequenc¢laf, satisfying [(3.6p,c)[(3.Ta) and As— 0,

AV, AVE - Av weakly in L?(27), (3.12a)
Ve, VE v weaklyinL2(0, T; Wl¥(2)), foranys € [2, 00), (3.12b)
Ve,VE v stronglyinL?(0, T; C%(2)), forany¢ € (0, 1), (3.12¢)
Ve, VE v stronglyinL?(0, T; H(2)). (3.12d)

Proof. Noting the definitiong(3.1a,b], (3.3), the boundqin (P.24), (2.#0),|(2.41] and (2.42) together
with (1.15), [2.45) and our assumption (i) imply that

—11/20 g+ 112 42 )2 )2
”[AE(Ug )] V®g ||L2(QT)+ ”¢g ||L2(O,T;L2(32.Q))+ ”Ug ”Loc(o’T;Hl(_Q))dl_ ”Vg ||LDC(0’T;H1(Q))

au, || v, |2
+ |2 + |2 = +I[EUNY2VW)2,
el ot € e 1L2(2r)
t 20,1 HY(2)) L2(0,T;: HL(2))
au, |2 150U ||? VAR
4 Hg_8 4 12| 71/290e n H A P2 Ry, < C.
I |l r200,1: HL(2) I N2y 19 N2y
(3.13a)
and
hyr+2 hys+2
Furthermore, we deduce frofn (B.2) ahd (3]13a) that
+,2 4,2
”U&‘ - Ug ”LZ(O,T;H]'(.Q)) + ”VS - Vg ”LZ(O,T;Hl(.Q))
2 2
aU, av,
< Hr £ T—= <Cr. (3.14)
I N 20,1 H2(2)) I llr200,7;H1(02)
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Hence on noting| (3.18a), BLAW/. (-, 1), Vi (-, 1)) € K", and [1.13R), with e.gX; = H(£2),
X2 = L¥(£2) andX3 = H™*(£2), we can choose a subsequefce,;, U., V., W, Z1)}; such
that the convergence resulfts (3.5a/b), (3.6a—c)[and (3.7a) hold.[Then (3.5a,b) and Thgorem 2.1 imply,
on noting [(1.13p), assumption (i) aid (2.16), that the subsequence satisfies the additional initial and
integral conditions.

The proof of [[3.7p) can be found in the proof of Lemma 3.1[in [9]. Moreover, the proofs of
the results[(3]9){(3.10b) and the result@nin (3.10¢) are also iri [9, Lemma 3.1], where they are

derived from the key entropy bou 3b). We now estallish (B.10¢)forFor anyz € (0, 1),
s € 2/(L—1¢),00) and anys € (2/(1 — ¢),s), we have, on noting the compact embedding

Wl’i(.Q) s CQC(@), ) andb)1
e — Ul 20,7006 () < NUe — Ul 20,7 wis )

+ +,1-
< ”US - Ug ||iz(0,T;H1(Q))||U8 - Ug ||L2(qO,T;W1’S(Q))

< 92, (3.15)

whereq = 2(s — 5)/(s — 2)5 € (0, 1). Combining %E) assumption (i) and the established result
3.10

on U, in (3.10¢) yields the desired result 61 in ).
We now prove[(3.10d). We have

VU —wl? <‘/Q V(U — u).Vudx dr
T

L2($2r)
- / VU} —7"u).VU} dx dr| + / V(r"u —u).VU} dxdt|, (3.16a)
Q2r fr
where, on notind (2.20) anfd (2]17),
T
/ VU —2"u).VU} dxdt| = ‘—/ (AuF,uf —atuyt o
Qr 0

< CIA U 2op Il UF = 7"ull 2y ) (3.16b)

Combining [3.16@,b)[ (3.6a}, (3.134), (2.1%), [3.8), (B.7a) pnd](3.14) y[elds 3.10d).
Finally, the proof of the result§ (3.11)—(3.12d) fiar is exactly the same as the proof pf (3.9)—-

(3.109) forU,. O

REMARK 3.1 The conditions:® € H?(£2) with 3u®/dv = 0 onds2 for the results[(3.10a—d), and
similarly for v2, can be replaced by a restriction enin terms ofi (see[[8, Lemma 3.1]), but they

are not particularly restrictive. The assumptipn}(3.8) holds;ifx, r) = 1 for all x € 982 and

t € [0, T], and this condition held in all our numerical experiments providee= 1 on 3,2 and
either L1 is chosen sufficiently large df is chosen sufficiently small. This can be made rigorous
for the approximationR*7) (see Remarl), as the degeneracyEpfleads to finite speed of
propagation of the numerical material interfacial regidn,| < 1: at each time level it can move
locally at most one mesh point (seé [4]). Finally, the assumption (ii) yields no real restriction on the
time step size in terms ofh, as the requirement — 0 wheni — 0 is very weak. Note also that

the positive constar@ in (ii) can be chosen arbitrarily.

From [3.13h),[(2.22a,b), (221}, (1.9) ahd (3]10c) we see that we can only cEmbland

VW on the sets wherd, (U, ) and Z,(U;") are bounded below independentlysfand hence
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of 2 on noting (ii), i.e. on the sets where> —1 andju| < 1, respectively. Therefore in order to
construct the appropriate limits &s— 0, we introduce the following open subsetss®f For any
8 € (0,1), we define for a.a. € (0, T),

Bs(t) ={x e 2 :|lu(x,n)| <1-8CDst):={xe2:—1+8 <u(x, 1)}, (3.17a)

Bs.i(t) := {x € Bs(t) : [u(x,1)| < %(H u(x, 1) —8)}, (3.17b)
Bs +(t) :={x € Bs(t) : v(x,1) — \/ié(ljL u(x,t)) € [—5/\/5, 0]}, (3.17¢)
Bs (1) :={x € Bs(t) 1 v(x,1t) + \/ié(ljL u(x, 1)) €[0,8/+/3]}. (3.17d)

From [3.10F) and (3.12c) we deduce that there exist positive congta@itssuch that

u(y1, 1) = u(y2, ] + [v(y1. 1) — v(y2. D] < Cx(@)|y1 — y2l*
Vy1,y2 € 2 fora.are (0,T). (3.18)
As fu(-, 1) = fu® e (-1, 1) fora.a. € (0, T), it follows that there exists & € (0,1 — | £u°))

such thaiDs, (t) D B, (1) # ¢ fora.ar € (0, T). Itimmediately follows from[(3.17a~d) and (3]18)
fora.a.r € (0, T) and for anys1, 82 € (0, o) with §1 > §> that if

either y1 € Bs,(¢t) andyz € dBs,(t) or y1 € Ds,(t) andyz € 9D;,(¢) with yo & 952

then
Cx(Oly1 — y2l° = lu(ys, 1) — u(yz, )| > 81 — 82, (3.193)

and ifyy € Bs, 1 (¢t) andys € 3 Bs, ;(t) with yo ¢ 952 then
Cx()ly1 — y2l* = lu(y1, 1) — u(y2, O] + [v(y1, 1) — v(y2, )| > \/%(81 —82), (3.19b)

whered Bs(t), dDs(t) anddBs ;(¢t) are the boundaries of the respective sets. This implies that for
a.a.rt € (0, 7) and anys € (0, &p), there exists ang(8, r) such that for allk < ho(6, t) there exist
collections of triangle§ ; , (1) C T ;(t) C T} (1) C T" such that

Bs(t) C Bj():= | J T CBsa). Dst) cDi(t):= |J &cCDsp), (320a)
oeT} s oeT} ;)

Bs () C BY ()= | @ CBs2i). (3.20b)

oeT) s (1)
Clearly, from [3.17j,b) we have
82 <81 <80 = ho(82,1) < ho(81,1).

For a.as € (0, T) and any fixeds < (0, 30), wheredg := min{so, 1/2}, it follows from (3.17~d),
(3.10¢), ) and our assumption (ii) of Lemmd 3.1 that there existg@nr) < ho(3, r) such
that forh < ho(8, 1),
1-28 <|UE(x,1)| Vx & Bs(t), |UX(x,1)| <1-8/2 Vx e Bs(t), (3.21a)
UE(, 1) < —1425 Yx &Ds(t), —1+8/2<UX(x,1) Vx € Dy(0); (3.21b)
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IVE(x, 1] < %(l—k UE(x,1) Vx € Bs (1), (3.22a)
VEQx, 1) — %(H UE(x,1)) €[-25//3,0] Vx € Bs (1), (3.22b)
VE@ )+ %(H UE(x,1)€[0,25/~/3]  Vx e Bs_(1); (3.22¢)
and
e < 6. (3.23)

LEMMA 3.2 Let all the assumptions of Lemnja B.1 hold. Then for a.a. {0, 7) there exist
functions

¢ (1) € Hipe(u(, 1) > =1}, w(-, 1) € Hige({lu(-, )] < 1)), (3.24)
where{u(-,t) > =1} i={x € 2 :u(x,t) > =1} and{ju(-, )| < 1} :={x € 2 : |u(x,1)| < 1},
such that on extracting a further subsequence from the subsequencel., V., W.5, Z1)}, in
Lemmd 3.1, a& — O we have

A(UVST — Hyym—1yc(u)Vp  weakly in L2(27), (3.25a)
E.(UHVOS — Hyu-ypb)Ve  weakly in L2(27), (3.25b)
Ee(U)VWS — Hyu<yb@)Vw  weakly in L3(27), (3.25¢)

whereH, -~ —1y andHyj, <1y are the characteristic functions of the seis> —1} = {(x, 1) € 27 :
u(x,t) > =1} and{|u| < 1} :={(x,1) € 27 : |lu(x, t)| < 1}, respectively.
Moreover for a.at € (0, T), (u(-, t), v(-,t)) € K andw(-, t), z(-, t) satisfy

/ [y V.V (71 — ) + (v~ (s v) — )1 — )] dlx
{luC,0)|<1}

+/ [yVo.V(nz = v) + (v o, v) — 2)(2 — v)] dx >0
2
Y(n1,m2) € K with suppiny —u) C {lu(,0)] <1}.  (3.26)
Finally if « # 0, on assuming that
u(x,t) =1 Vx € 0282, fora.a.r € (0,7), (3.27)

it follows that

o} — ¢ weaklyinL?(0, T; L?(9,52)) ash — O. (3.28)
Proof. This lemma is a generalisation of Lemma 3.4[ih [9]. The proof of the regults|(3.24), for
(3.254,b) and (3.28) can be found there, on using the resulg Gnin (3.173),[(3.20a) anfl (3.2]1b).

The key difference here is the identificationwfon {|x| < 1} via the variational inequality (3.26),
which is now more delicate to establish. On recalling|(3[9), {3.11)[anfl (1.7), let

a" = —yAu+y Y, v), @’ = —yAv+y I, (u,v) € L3(027).

Fora.ar € (0, T), we definew(-, t) on{|u(-, )| < 1} such that
a“(.0) = 5@ 0 =z.0) ifoenel-Zd+uCn)0),
w(, 1) =13 a"(, 1) if v(-,1) =0, (3.29)
at(-, 1) + \/i@(a”(-, 1) —z(, 1) if v(, 1) € (O, %(Hu(-, .
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We will deduce below that for a.a. (0, T),
a’(,0)=z(,0) if 0| < %3(1—1—u(~,t)). (3.30)

It follows from (3.134) and (2.22b) that

18U VW 72, < C (3:31)

Hence ) implies that there exists a vector functfore L2(£27) such that on extracting a
further subsequence frod;, U, Ve, Wi, ZH)}, in Lemmd 3.1,

E.(U7)VWSH — f weakly inL?(27) ash — O. (3.32)

We now identify the functiory. R
First, we consider a fixedl € (0, 3p). It follows from (1.9), [2.2),[(2.23b)[ (3.21a) arld (3.113a)
that for a.ar € (0, T) and for allz < hq(8, 1),

be(1—8/2)|VW DG 5,0)
co. (3.33)

(L= 8/BIVWS (DB gy = b(L = 8/DIVWF (.11 5.0

<
<[ EUDNYPYWH (L nIE <

From [3.33),[(3.2da)[ (2.2Pb}, (3.41b) ahd (3.23), foraa(0, T) and for all < To(8, t) we have
(B UNHVWHC DG gy < Max (U ) EUDIYPVWHC DIE o\ sy

X€R2\Bas(t)
< C@)b,(1—45) < C(r)ymaxds, e) < C(1)8. (3.34)

On noting [[3.13p) we have, for aac (0, T),
AU Dlo+ 14 V(L 0)lo < C0). (3.35)

This implies for a.at € (0, T) thatash — 0,
ANUF( 1) = Au ),  AVIC 1) = Av(, 1) weakly inL2(R2); (3.36)
see 9, (3.18)] for details. Recalling the notat|36a ,b), we see from caséé & AV =0,

(iii) AU+ fAJV =0and (|v)AJU }AJ" = 0in the proof of Lemm.4 on not|r.2. 1b),
m—c) anb) that for arae (0, T) and for alli < ho(5/2, 1),

WS, 0= —yAUSC 0+ y 7 u (U7 0, VoG D),
ZFe 0= —y VIO +y W, US G, V() onBsp(n);  (3.37a)
WEC £ EZ5 60 ==y AUFCD +y u U7 (o, Ve ()]
+ Sy AVEC ) +y LU (oL VGl on By s (1),
(3.37h)
It follows from (3.374,b),[(3.36)[ (3.1Dc], (3.12c) ahd (3.6¢) for aa.(0, T) that ash — 0,
W, 0) = a" (1), ZF(. 1) = a’¢.0)y=z(,1) weaklyinL?(Bs (1)),
Wj(-, 1) —a"(, 1)+ %(a”(-, 1) —z(-, 1)) weakly in Lz(Bg,i(t)).
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This together with[(3.49) anfl (3.33) implies that
W, 1) = w(, 1) weaklyin HY(Bs(r)). (3.38)
Combining [[3:3R)[(3.38) anfl (3]7b) shows for a.a. (0, T') that ash — O,
(Eg(US_)VWj)(-, t) = b(u(-, t))Vw(,t) weakly ian(Bg(t)).

We now work towards establishing the variational inequality (3.26). Forras.(0, T), let
(n1,n2) € K with n1(-) = u(-,t) + &£(-) and sup§ C Bss(¢). For the ensuing analysis it is
necessary to prescribe the following extensions in order to control the support of a mollified version
of & (seeEO) below). Le® := (—Lj1, L1) x (— Lz, Lz) whereL, = 2L By reflection about
x; ==£L;,i =1 — 2, there exist extensiong-, t),s e HY(Q) and(71, 72) € [Hl(Q)]Zsuch that
(1(x), F2(x)) € Kfora.ex € 2, 71() = U(-, )+E () with suppé C {x € 2 : [ii(x, 1)| < 1-35},
andni|o = i, u(-, D)o = u(-, 1), & = &. Applying the standard Friedrichs mollifier g, u(-, t)
andg, we see that there exiéig"(Rz) functions whose restrictions 1@ satisfy

0,y e KN[C®@P, 0’ =u®Cn+E00) inc®@),
0 = w0 > ut ), §Y - g stronglyinH(2) ast — oo. (3.39)
Moreover, there exists afp(5) € N such that
suppe© C Bas(t) VL = £o(9). (3.40)
It follows that(x(e), ée)) e K", where
1 O=USC+ Ry @ EQO) xg) =Ry,

andRiU+ :S§h — §h i =1— 2, aresuchthatforalf € S" andforallj € J,

x(pj) if |lUS(pj, 1)+ x(ppI <1
[Rys GONp) = { 1= Ut (pjut) i US(pj )+ x(pp) > 1, (3.41)
-1- U+(p,,t) if Uf (pj. 1)+ x(pj) < —1,
and
x(pj) it 1x (P < J5(L+x1” ().
[RZ GOYp)) = f<1+x“><p,~)) it x(pj) > f<1+x“><p,)> (3.42)

A+ ")) i xp) < A+ 1" (B
We note from|[(3.411)[(3:20a) ar[d (3]40) that foréalt £(8) and for allh < ho(26, 1),

suppRy, . (x"€©) c suppr&® c Bs (). (3.43)
Moreover, it follows from[(3.411)[(3.42) and (3]39) that
7" e® —RL (e < 7w O 0 = UFC O, (3.44a)

4 l
'y = RE g < Fllx"u @ 0 = UF Gl + 17" = RY L (g O]

Z 17" O 0 —USC 0 (3.44b)

N
5|
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We now choosén”, ng) = (X{e), Xé‘f)) in (13.43) and analyse the subsequent terms. First, we

infer from (2.20), |(3.35){ (3.44a) and (2|17) that (-, 1), x.” () and&© () satisfy

(VUF, VO = UD) = (VU V") = (A" Uf (1 = Ry @)
<COIT"uOC 1) - UFC 0l (3.45)

similarly to {3.4%), we deduce fron (220}, (335), (3J#4b) dnd (2.17) Wkt 1), x4” () and

néw(-) satisfy

(VVE, VD = V) — (Vv v — v < caoylnuO ¢ty — UF C, 0)lo. (3.46)

Next, it follows from [3.48),[(2.17)[ (3.44a], (1.7). (2]18), (3.38) dnd (2.15)tha¢. 1), V=, 1),
Wi, 0, x\P () ands O () satisfy

(W =y (U, V), i\ — U — wih —y Yy, s, v, 1Y)

SHWE =y MU V). U = Ry sl
+ WS =y Yy U, V), 7Oy — (W — Ty (U, V), e O
CIL+ Welo.gyollIm"u®@ ¢, ) = UF (-, D)lo + hlx"E©|q]

<
<COUr"u O 1) = UF (¢, Dlo+hlED ] (3.47)

Similarly, it follows from (3.44b), [(2.17),| (2.18), (3.13a) a,15) tEE (-, 1), VEC, 1),
ZF (0, 132 () andny) () satisfy

g Vg_)v ﬂhng) - Vg+)|
<COUr"u®C, 0 = UFCDlo+h@+ 0 12]. (3.48)

Combining [3.4p)4(3.48), noting (3}4d), (3.10d)), (3112d), (B-38), [3.5C),|(2.15) and léttirgo,

we find, on possibly extracting another subsequence fifo#", U,, V., W', Z1)},, that

_ _ _ 12 _ _
(ZF =y U, Vo), xS = v =z -y,

/ [yVu. V@ —u®) + ¢, v) — w)(@? — u®)]dx
Bs (1)
+ fg [yVo.vms —v) + (W, w, v) =20y —vldx > rP@),  (3.49)

where|r©(1)] < Clu — u®)(-, 1)o. Letting ¢ — oo in (3.49) [3.39) shows that(., 1), v(-, 1),
w(-, 1), z(-, t) andn; () satisfy

/ [yVu.V(n —u) + (v "2 ., v) — w)(n1 — w)] dx
Bs (1)

+ /Q [y V0.V (2 — v) + (0, ) — (2 — v)]dx > 0. (3.50)
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Repeating[(3.33)[ (3.34) and (3.874)—(3.50) fomadl (0, 50) shows, on recallind (3.1c), that
(3.24) forw, and [3.2p) hold; and, on noting (3]34) ahd (3.32), the desired rpsult]3.25c). In addition,
we deduce the identity (3.80). Of course, the identifies {3.29)[and]| (3.30) can be deduced from the
derived variational inequality (3.26), and hence their omission in the statement of the lemia.

REMARK 3.2 The assumptior (3.27) is similar to the assumption]| (3.8) (see R¢mérk 3.1).

THEOREM3.1 Let the assumptions of Lem@.z hold. Then there exists a subsequence of
(@}, Ue, Vo, W, z+)},, where(®;, U, V., W, Z1) solve (P-7), and functionsg, u, v, w, z)
sat|sfy|ng D) [(@B]9)(B11) a Cl@, 24). In add|t|onhas-> 0 the following hold: K3_726_]a—c)
(3.7a,b),|(3.1da—d), (3.1Pa—d) ahd (3.28—d). FurthermareQ) = u°(.), v( 0) =10 in LZ(2)
andfu(-,t) = fu®fora.ar e (0, 7). Moreover forally € L2(0, T; HY(2)),

T T
/ c(u)V(b.Vndxdt—i—/ ¢ndsdt =/ f gndsdr, (3.51a)
fu>—1 0 Joe 0 Joe
T
y/ <8u > dt+/ bw)V[w + a¢].Vndr dr =0, (3.51Db)
o \dr '/, {ul<1)
T v T
Ly) <—,n>dt+/ (z,n)dr =0; (3.51c)
o \01 0

where fora.at € (0, T), (u(-, t), v(-,t)) € K andw(-, 1), z(-, t) satisfy

/ [y ViV (51 — 1) + ("0 (e, v) — w) (1 — )] dx
{luC,0)|<1}

+ /_Q[J/Vv.v(nz —v) + (Vﬁllﬁ,v(u, v) —2)(2 —v)]dx >0
VY(n1, n2) € K with supp(n1 — u) C {lu(, t)| < 1}. (3.52)

Proof. Only (3.51&-c) need to be established[as {3.52) was shown in LEmima 3.2 above. The proof
of (3.514,b) can be found ial[9, Theorem 3.6], gnd (3.51c) is similarly established. O

4. Solution of the discrete system

We now discuss algorithms for solving the resulting system of algebraic equations for
(@r,Ur, v, wh, z" arising at each time level from the approximatior:{. As (2.144) in

(P" ) is mdependent ofur, v, w", Z"), we solve it first to obtain®”; then solve|(2.14b—d)

for (U2, V', W', ZI"). Solving [2.14] -) is straightforward, as it is Imear With the obwous notation,
the syste 4b—d) can be rewritten as: Ried!, V"), W, Z") € KJ x [R7]? such that

y MU + rnA"—le'; =ry, (4.1a)
LYIMYE + 15, MZE =1y, (4.1b)
(x1—UH" (yBUL = MW + (x2 — VO (y BV — MZ?)
> (1 —-UD s+ (xa—VD's, VY(x1.x2 €K7, (4.10)
whereM, B and. A"~ are symmetri¢7 x J matrices,7 := #J, with entries

M= (xi, x))"s Bij = (Vxi, V), Af‘fl = (U YV, V).
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We note for later use, agj{l xj =1, thathJ:1 Bij = ijzl Al'.'j_l = 0. In addition,

ry=y MU —an, A eRT .y = t(n)MYET e R,
sp0= =y MY LR VY eRT, sy = —y My UL VI e R
where [ Uz~ VI D)) = v (U, [VET1)). Let A"t = Ap — Ay — AT, with A, and
Ap being the lower triangular and diagonal parts of the mattix®, and similarly for3. We use
this formulation in constructing our “Gauss—Seidel type” iterative method to (4.1a-c).
Given (U0, v0) wn0 710y ¢ K x [$h]?, for k > 1 find (UDK, vioky, wik znky
€ K" x [$"]? such that
y MUK + 1,(Ap — AWK =y + 7, AT WEFT, (4.2a)
LMY + 5 MZE =y, (4.2b)
(x1— UM (yBp — BUM* — MWER + (x2 — VIR (v (Bp — BL)Vir — Mzih
> (01— U sy + yBLUP* ™M + (x2 = VIR (s, + yBL VYV (x1. x2) € K.
(4.2¢)

The above is the natural extension of the iterative methad in [9] for solving the corresponding non-
linear algebraic system arising from the corresponding finite element approximafiorj of (1.4). Below,
we prove convergence gf (4]2a—c) for our non-linear sysfem (R.14b—d) using an energy method.

THEOREM4.1 Let the assumptions (A) hold. Then fa?-0, v-0), w0, 7m0y ¢ k" x [57]2
the sequencg Uk, viiky, wik znky, <4 generated by the algorith 2a—c) satisfies
U2 = UMl — 0, ([Z.W D12V W) — Wbl — 0, (4.32)
v —vrkig—o0, |z'—zM, -0 ask — oo. (4.3b)
Proof. The proof is similar to the proof of Theorem 4.1 [d [9]. LBt = U" — U™, Fk =
Vi — yrk Pk o= Wi — Wik and QF 1= ZI — ZIF. Now subtractmga) fron.a) and
testing the resulting equation witP yields

yIPT ME* + 0[P (Ap — A P* = 0 [P]T AL P* Y (4.42)
and similarly it follows from subtracting (4.2b) frorn (4]1b) that
LI ME* + 1[0 MQ" = 0. (4.4b)

Choosing(x 1. x2) = (UK, Vi+)yin ( -) 4.1¢) and(x 1, x2) = (UL, V1) in -) 4.20) yields
—y[LENT (Bp — BL)E* + [FXT (Bp — BL)FX + [EX]" MP* + [FF]T MQ*
—y[ENT Bl E* + [FN"BLF*1.  (4.5)
Combining [4.4h,b) andl (4.5) yields
v2LEXT (Bp — BL)EX + [F¥T (Bp — BL)F]
+ [ PKIT (Ap — Ap) P* + [L()] Y [QF]T M QX
<yALENT BI EFY + [FMTBL F*1 + 1,[PY]T AT PA-L. (4.6)
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We now split the diagonal matridp := Ap, + Ap,, where(Ap,);; = — Zj;i Al'.’j‘l and

(Ap,)ii == — 277:,'+1v47j_1 = A;i — (Ap,)ii, ON noting that4”~11 = 0. Then, on noting from
(2.13) that(A.);; > 0, we have

J J J T
[PTTALP! = 3 PE Y (AL P <5 ) D (Al (PH? + (P
=1 j=1 i=1j=1

J J
=3 (Ap)ii(PH?+ 3D (Apyj; (PIH2. 4.7)
i=1 j=1

Combining [4.6),[(4]7) and a similar argument f&ron noting[(2.11), yields

y?LEN" BE* + [E")" Bp, E* + [F11" BE* + [F*]" Bp, F*]
+alle)] Y[ T MON + [PFT AL PE 4+ [PHT Ap, PH]
<yAENMT B BN+ [FE Y Bp, ] + o [PA T Ap AL (4.8)
Therefore{y?(LEX]" Bp, EX+[F¥]" Bp, F*)+1,[PX]" Ap, P¥}i >0 is a decreasing sequence. Since
it is bounded below, it has a limit. Combining this ahd [4.8) yields
U —UM 1 — 0,  |VP=Vr -0, |Z!—ZF)y — 0,

4.9
[E:(UIDHIYV2v(W? — WiK)|g— 0 ask — oo. (4.9)

Furthermore, multiplyinga) with’1:= (1, ..., 1), noting that4"~'1 = 0 and recalling the
splitting of 4"~ yields
y (U = U ) = T ATV - W) = 02T Ap, W - Wi
= 5,17 Ap, P — 7,17 Ap, P*"1 > 0, (4.10)
where we have again used the fact tha{ P¥]” Ap, P*};>0 has a limit. Combining (4]9)[ (4.10),

(2.9) and[(1.15) yields the desired res[ilt (4.3a). Similarly, multiphfing {4.2b) wfith2(1, .., 1)

yields, on noting[(419),
eyyvrk vt ph = g T Mzt — 1T M2 ask — oo. (4.11)

The desired resulf {4.8b) then follows from (4.1[), (4.1b),|(4[9)] (2.2)[and]|(1.15). O

We note that|(4.2a—c) can be solved explicitly for= 1 — 7. In particular, let7? =
ry+ (A WP+ ATWEE), 72 = 1y 5 = sy + y(BLUDS 4+ BIUMEY) and$? = 5,
+y(BLy™k + BT vrk=hy Then([U"¥];, [V™*];) is the solution of: FindU;, V;) € K such that

(1] = UD(C1LUj = by) + (13 = V))(C2V; —b2) 20 V(i m3) € K, (412)
where
~1 -2
[M;;]2 LM < Mt 5
C11=V<Bjj+ﬁ o ComyBy+ =, hi=§+— = =g+
rn-Ajj Tn T"‘Ajj Tn
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Clearly, the unique solution tp (4.]12) is
(U;. Vj) = Pic(b1/C1, b2/ C2),

where I,ﬁc(xl, xo) is the orthogonal projection of the point= (x1, x2)7 € R2 onto K with respect
to theR? inner product(p, ¢)c = p” Cq, with C = (glcg) The projectiony = P{.(x) can be
computed as follows:

1. If x € K, theny = x, else

2. If x1 > 1theny := (1, max—2/+/3, min{x2, 2/v/3})7, else

3. If xo > 0thenv := (2,2/v/3)7, elsev := (2, —2//3)7.

4. a=(x+ Q0" vc/lvlE.

5. y = (=1,0)" + min{max, 0}, 1}v.

Hence the solution of (4.Pa—c) fgr=1— T is

= n—1~1 =2 <2
([Un,k]‘ [V”’k] N = PC< MJJKj + TnA” £] K] + Tnij ) (4133.)
S0 e T R IM2 + ny A8y LM+ v B
I — y MU 7 — LM IVE;
[Wit); =~ e P T ——. (4.13b)

rn_A;?lfl ‘L’n./\/ljj

We note that for the approximatioﬁ;(’f) (see Remarl), there exiswith A;.'j‘l = 0. For
thosej, (4.13%,b) is modified as follows:

Ul Np) = -1 = (UM V) = (-1,0), (4.14a)
1, kY romk 2 .{1 &+ Tl ”)
Ul " (p)) =1 = (U"1;, [VEF]) = (1, maX{ ﬁ,mm 73 ©0M;; 758, ,

(4.14b)

and in both casesZ]¥]; is then defined as i c b). We note thal;tl#‘1 = 0, [W*]; is not
defined and not required.

5. Numerical results
Throughout this section, we uﬂlﬁ) fgrin ), and for the initial data® to (P) choose a
circular void with radiusk € R. g and centrey € R<; that is,
-1 r(x) < R—64/2,
0 . (r(x)—R
u (x) = pe(y, R; x) := §sin| ———

u

1, r(x) 2 R+é4/2,

7t>, |r(x) — R| < 8,/2, wherer(x):=|x —y|,

(5.1)
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wheres, := (1 — u/4) =12y is the interfacial thickness af. For the initial profilev?, on letting
8y := (1 — w)~Y2y 7, we choose

—1, yi — X < _‘Sv/za
. P — X
0(x) = \/ig[uo(x) + 1]p;,(y; x), where p(y; x) = Sln<yl 'n), lyi — xi| < 84/2,
v
la yl — X >8U/27
(5.2)

for a vertical { = 1) and a horizontali(= 2) grain boundary, respectively. Note that the interfacial
thickness of«? and v? is in line with the asymptotics of the phase field approach (A.2) and
(A.1)). Unless stated otherwise, we will always use the scdlipg := 2 and set = 1075,

For the iterative algorithm| (4.ba—c) we set, for > 1, (UXO, vO0, wr0, z10) =
wr=t vr=t wr=l zn=hy where (U9, V9 = (7"u® "0 and W0 = —yA'UQ +
y 2w, (U0, VO] 720 = —y A0 4y Lnh [y, (UO, V)], and adopted the stopping criterion

max{|UM — UM =Yg oo, [VIE — VIR ) < 1ol

with rol = 1077, and then settingU”, V", W, ZI) = (UMK, vk wmk zmky,

Throughout, the given domaif? = (—L1, L1) x(—Lg2, L) is partitioned into right-angled
isosceles triangles. Here we assume thatand L, are integer multiples of. := min{L1, Lo}.
On using the adaptive finite element code Alberta 1.2 (s€e [35]), we implemented the same mesh
refinement strategy as inl[9]. In particular, to improve efficiency we use the approximﬁﬁém (
(see Remark 2|1 anf (4.14a,b)). Now we have to solveligx W}) only in the interfacial region,
|U"1| < 1, while the solutior{V, Z") has to be found wher@”~1 > —1. However, the evolution
will concentrate inside the two interfacial regiofig’ | < 1 and|U"~Y = 1, |V/!| < 2/4/3.
Hence we use a refined mesh with mesh gize= 2%2L /Ny in these interfacial regions, and a
coarser mesh of mesh sizge = 23/2L /N, away from the interfaces. Herér andN, are parameters
(seell9, 85]). We note that as long as the ratjg' N is kept fixed through a convergence experiment
with = — 0, the quasi-uniformity assumption in (A) will not be violated. Furthermore, we choose
Ny such that there are always approximately 8 mesh points across the interface in each direction.
In particular, foru > 0 we will always havehy < 33—‘?;/;1, whereas fow < 0 we ensure that
hy < HEA - V2ym,

For our first experiments we chooge= 0 in (1.8). That means that the functignis symmetric
with respect to the three verticds B andC of K. In particular, the surface energies associated with
the three different interfaces will be the same, and hence we should observe detj2®e contact
angle at triple junctions between the void and the two grains. In order to check the accuracy of
our approximation, we compare the evolution of an initially circular void between two horizontally
aligned grains with the true steady state solution. It was shown by [26] that the true solution for the
void boundary consists of four symmetric branches, where one branch is given by

x2 = f(x1) = —acosh + (a® — )cf)l/2 for x1 € [—asing, 0]. (5.3)

Herea = (z—&rz;)"? With A = 7 R? being the total area of the void and 2 27/3 being the
contact angle between grains and void. We chose the following paramete?%’for L1=Ly=
05,y =1/247,0 =0, T = 1072, 7, = r = 5 x 10°8. For the initial profile we chos.l) and
(G.2) withi =2,y = (0,0), R = 0.25. The refinement parameters wevg = 256 andN, = 2.
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FIG. 3. (y = 1/247, o = 0) Comparison between computed solution (red) and true solution (blue; see the pdf file for colour
plots). The final triangulation is shown on the right.

The comparison between true solution and the numerically steady state can be seen ifi|Figure 3,
where we also include a detailed plot at a triple junction and a plot of the mesh at #infe One

can see that the true solution and our computation are almost graphically indistinguishable. A short
remark on the way we plot the solutigtv,, V,) is due. In our figures we show the zero level sets

of the functionp(U,, V) to visualise the void boundary, whepgy) := max{|y — A|> — |y — B|?,

ly — Al — |y — C|?}. In addition, we give the zero contour line Bf whereU, > 0, in order to

show the grain boundaries.

In a further experiment, we investigated the evolution of a circular void when it attaches to a

vertical grain boundary. To this end, we set the following parameter$fdr)( L1 = 1, L, = 0.5,

y = 1/24r7, a = 57, T = 0.012,7, = ¢ = 5 x 10°8. For the initial profile we chos.l) and

@) withi = 1,y = (0,0), R = 0.25. The refinement parameters wé¥g = 256 andV, = 32.

The evolution is shown in Figufg 4. We can observe that once the void has attached to the grain
boundary, it settles into a steady shape inside the grain boundary, which then drifts through the
conductor.

We also include an experiment that produces a travelling wave solution in the absence of
electromigration, first mentioned in [30] (see alsal[27]). For the initial profile we chose a straight
horizontal line foru?, as described by, in ) withy = (0, 0), and a straight line with a segment
of a circle for9, i.e. ) withp;, replaced by

pc(y + (0, R), R; x), x1<y1,

R;x) =

Pay: 5 ) P1p(¥: X), X1 > y1,
with y = (-0.3, —0.3), R = 0.25. The refinement parameters we¥g = 256 andN, = 2. We
used the scaling(y) = By with 8 € {1, 1/24x} and the following parameters foP{?): L1 = 1,
Ly = 05,y = 1/247,a = 0, as well asT = 0.14,7, =t = 5x 10 % for 8 = 1 and
T =26x103 1, =1 =5x 108 for g = 1/24r. The evolution is shown in Figufe 5. We note
that the travelling wave solutions reported|inl[30, 27] are for a limiting motion that differs slightly
from our sharp interface limif (A.13). In particular, there the material boundaries move by surface
diffusion, whereas here, in the limjit — 0, we find that they evolve by a combination of surface
diffusion and surface attachment limited kinetics ($e€l (1.3)).
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O] 19 i

FIG. 4. (v = 1/24r, o = 57) Solution (Ue, Ve) at timest = 0, 2 x 1073, 2.6 x 1073, 2.8 x 1073, 3 x 1073, 4 x
1073, 6x 1073, 8 x 1073, 0.012.

FIG.5. (¥ = 1/24r, « = 0) Solution(Ug, V¢) at timest = 0, 0.02, 0.06, 0.1, 0.14 for 8 = 1 (left); andr = 0, 2 x
1074, 8 x 1074, 1.4 x 1073, 2 x 1073, 2.6 x 103 for B = 1/24x (right).

5.1 Different scalings

In this subsection, we provide numerical simulations that highlight the difference between the two
scalingst(y) = y and{(y) = y? and their respective sharp interface limits, as discussed in the
Appendix. We conducted the following convergence experiments for the evolution of a circular
void in a vertical grain boundary under the influence of electromigration. We repeated the same
experiment with decreasing values pf i.e. y = 1/127,1/24x,1/48x. In particular, we set

Li =L, =05T =4x103, 1, =1 = 288ym)? x 107, ¢ = 48ym x 10° and used

the appropriate refinement parametéfs = (32/3)(1/yx) and N, = N;/8. Considerations
using formal asymptotic expansions (sge (A.12)) show that in the sharp interface limit the grain
boundaries have zero curvature and & €6gree contact angle with the boundary. This can be
observed in the convergence experiment, wherg fgetting smaller the grain boundaries get closer
and closer to straight lines. See Figufe 6, where we plot the results<fot /127, y = 1/24r and

y =1/48x.
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|

FIG.6. (@ = 57) Solution(Ug, V;) attimest =0, T =4 x 1073 for y =1/12n,y = 1/24x andy = 1/48r.

FIG. 7. (@ = 5r) Solution(U, V) attimest =0, 0.04, T = 0.056 fory = 1/12r,y = 1/247r andy = 1/48r.

The same experiment for the scalit@/) := y leads to a dramatically different evolution, as
this now models surface diffusion combined with surface attachment limited kinetics (SALK) (see
(A.13)). For the new scaling, we repeated the previous experiment on a slightly larger dorirain
order to see more of the ensuing evolution. We used the following parametets:1, L, = 0.5,

T =0.056,7, = T = 1152y7)2 x 10~7, ¢ = 48y x 10~ and used the appropriate refinement
parametersV; = (32/3)(1/yn), N. = Ny /8. In Figurg 7 one can see that the void detaches from
the grain boundary. Note also the very good agreement between the resultsdecreased.

5.2 Different contact angles

In this subsection, we report on contact angles for the triple junction that are different from the
symmetric cases2/3. Since different contact angles are observed in practice, this is an important
and desirable feature of our phase field model. In order to achieve different triple junction angles,
we have to choose the obstacle potentiasee [(1.J)) such that the grain and material boundaries
have different surface energies. To this end, we[us¢ (1.8)vigO0.

Assume we are given the ratio of the surface energies for the grain and material boundaries,
o4 /o8, where we have adopted the notation of the Appendix (A.9)). Then this angle law,
whereo 2 = o€ is the surface energy of the material boundary @Ads the surface energy of the
grain boundary, yields

l .
94 =2 arcco{— Ugra'").

Omat
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Using [A.4) we compute for € (-2, 4/7) that

Ograin _ %”(1_101/2 <1—M>l/2

Omat %Jt(l—,ud/4)1/2 C\4—p

In the derivation of [(A.) it is assumed that the first order solution to the variational inequality
(1.64) leads after a suitable rescaling to a minimize[ in|(1.1). However, it is not straightforward to
establish this rigorously. In any case, one can also compute the above ratio numerically. To this end,
one splits the domai into two pure phases j € {A, B, C}, with a vertically or horizontally
aligned straight phase boundary between them. Using this setup for the initial profités of),
one computes the evolution d?ﬁ(vf) until a steady state has been reached. This resulting standing
wave will then approximate the energy minimizing profile[in[1.1), and hence provides a numerical
value for the energy density.

For the caset = 1/2, we computed the different surface energies for the grain and material
boundaries in this way and obtained a ratigain/omat ~ 0.758, i.e. almost exactly the valug-27
derived from [(5.}4). This suggests a triple junction with angles®° 1% twice 115°, which is
confirmed by the numerical results shown in Figdure 8, where we have used the same parameters as
for Figure[3. Note that the true steady state solution is again defin¢d by (5.3).

(5.4)

N
oo8l- \ o0
o \ 00
o0 \ o0
\
\
\
\
\
\
/
/
/2
/
o 4
006 / 4 oo
74
74 /
o8- 4 oo
Z
7
01
A oa

0

FIG.8. (v = 1/24r, u = 1/2 (left) andy = +/2/24x, . = —1 (right)) Comparison between computed solution (red) and
true solution (blue) fop4 = 135 ands? = 102, respectively.

Next, we computed the different surface energies for the grain and material boundaries
numerically for the casp = —1 and obtained a ratiograin/omat ~ 1.26, i.e. almost exactly the



ELECTROMIGRATION OF INTERGRANULAR VOIDS 205

value(8/5)*/2 derived from|(5.4). This suggests a triple junction with degree$ 46 twice 129.
This is confirmed by the numerical results shown in Figure 8, where we used the same parameters
for (P*7) as before, except = v/2/24r.

A. Formal asymptotic expansions

In this appendix we give a short discussion of the sharp interface linfit of| (1.6a—f) whenO.

A more detailed analysis of the formal asymptotic expansions can be found in [7]. To identify the
limit, three different types of expansions have to be used. In regions where either a grain or a void
is present we use an outer expansion. Close to interfaces separating either a void and a grain or
two grains an inner expansion is used. A third type of expansion has to be performed at a triple
junction. All these expansions have to be matched. We refér fo [11, 24, B2, 23] for details on the
method of formally matched asymptotic expansions for systems with triple junctions, and we state
here only the results if one applies the method to our system. However, it should be noted that the
above references only consider smooth potentials. Therefore we have to be particularly careful with
the asymptotics at triple junctions with our obstacle potential, as we have to deal with a variational
inequality as opposed to an equation.

The equations for the outer expansion imply that the vegtop) attains to leading order one
of the valuesA, B, C. That is, in the sharp interface limity, v) will be eitherA, B or C, and there
are interfaces separating these regions. For the electric pot¢ntialfind that it solves Laplace’s
equation in the regions whe(e, v) is eitherB or C.

Now the inner expansion has to be used to determine the governing equations on the interface.
There are three interfaces (curves in two dimensions) for which we seek these lawd/ Let
(Fij(t)),>0 with either (i, j) = (A, B), (B, C) or (C, A) be a smooth evolving curve, describing
an interface between regions occupied land ;.

As usual in the theory of formally matched asymptotic expansions for phase field systems,
one introduces new coordinatés, s). Heres is an arclength parameter along the interface and
p = vy~ d is a rescaled signed distance whéke, 1) is the signed distance of a pointo I (¢),
which is positive ifx belongs to phasg. In the following we will suppress the indicég if no
confusion arises.

Considering[(1.6c), we find that the leading order solution, which we dendiebyo), has the
following structure. At a grain boundary;2¢, with

Jlim (o, vo)(p) = B =(1,-2/¥/3) and lim (uo, v0)(p) = C = (1,2/~/3),

we conclude thatug, vg) = (1, v) with

T
1 if =,
, SR Ve
(0) = —=1sin( =L\ i A.l
w)="75 S'”(ng) if 1p| < pg, (A1)
-1 if p < —pg,

is a solution. A simple computation shows that we have to requiee(—2, 4/7) in order to make
sure thatuo, vo) solves the variational inequality. Similarly, at a material bound&d#, with

lim (uo, vo)(p) = A =(-1,0) and p"m (uo. v0)(p) = B = (1. —2//3),
p—>—00 — 0



206 J. W. BARRETT, H. GARCKE AND R. NURNBERG

we deduce thatuo, vo) = (i, —(1 + i) /+/3) with

i
1 if = ,
SRR
u(p) = Sm(li) if 1ol < pm, (AZ)
2 pm
-1 if p < —pm

is to leading order a solution of the variational inequalfty (IL.6¢c). The solution of the material
boundaryC A is then given, through symmetry, s, vo)(p) = (it, (1 + it) /v/3)(—p).
For later use we compute the interfacial energy

o= / [3((8,u0)% + (3,v0)®) + ¥ (1o, v0)] dp = / [(3,10)? + (3,v0)?] dp

—00 —

=2 / @102 + @002/ 39 (o vo) dp (A3)

of the solutions(uo, vo) above. The formulg (A]3) coincides with'/ in (1.) if (uo, vo), upon
rescaling, is not only a stationary point but in fact the minimum[in](1.1) (see [36]). Numerical
computations indicate thaito, vo) is indeed the minimizer irf (I}1). For the solutiofg, vo) =

(1, v) at the grain boundary, ar@o, vo) = (i1, £(1 + 1) /+/3) at the material boundary, we obtain

Ograin = %TF(]— - M)l/z and omat= %77(1 - M/4)1/2» (A.4)

respectively.

To derive equations for the grain boundary and the void boundaries, a solvability condition for
the first order equation ifi (I.6c) has to be used (see [12, 24] for similar approaches). If we employ
this approach in our context, we infer, depending on the scalirlg in|(1.6b), for the grain boundary
that

k=0 ifey):=By? and BwV =ok if &(y):= By, (A.5)

wherew = [ (3,v0)2dp = ograin = 57(1 — w)Y/2, on recalling )). Obviously, the
factorsw and o cancel in [(A.5). However, for later developments, concerning triple junctions,
we do not remove them. Let us remark on the scalitg) := By2. In order to derive an
asymptotic expansion around a sharp interface solution we require zero curxatar®, of the

grain boundaries. Finally, we point out thiat (1.6b) degenerates on grain boundaries, i.e. we obtain
ou/dt = 0, and [(1.6g) has no interfacial structure on grain boundaries singgis constant. In

order to derive the governing equation for the void boundary we have to use an approach introduced
in [13]. There the authors showed that the diffusion equafion](1.6a) gives

—Vluo)! = My (wo + agpo), (A.6)

where po]{ denotes the jump across the interfacé (the value forp — oo minus the value

for p — —oo0) andM = [ b(uo(p))dp = pm = m(4— pn)~¥2 . Exploiting ) and the
variational inequality gives to the ordé(1), on recalling|[(A.3),

oK = [uo]{wo if £(y):=pBy? and ok = [uo]{wo + BwV if L(y) = By, (A.7)

wherew := % (3,v0)%dp = Fomar= 57(1 — n/HY2



ELECTROMIGRATION OF INTERGRANULAR VOIDS 207

For the material interface@, j) = (A, B), (C, A), and the grain interfaceB, C), we derive

from (A.5), (A.6) and[(A.T) for the scaling(y) := By that
—2VAB = pABy,, (wéB + ad)éw), 2w€3 + B ABYAB = 5ABAB (A.83a)
2V = Mo (wi? + agdh),  —2w§?t + B AV = g ACA, (A.8b)

BaPCVEC = 5B, BC, (A.8c)
where, on recallind (Al4), we have

0B = 08¢ = ogan= (1 — Y2 = MAP =M =n4— V2

4(()AB — 4(,()CA — UAB — O_CA = Omat= %7’[(1— M/4)1/2

The evolution laws[(A.8a,b) for the material interfaces combine surface diffusion and surface
attachment limited kinetics (SALK), which was discussed if [37]; see also [21].
If we choose the scaling(y) := By? instead oft(y) := By in the evolution equation (1.pb)

we derive from[(A.B),[(A.b) and (A]7) that

AB 1a/AB 1 _AB AB AB CA 134CA 1 _CA _CA CA
% = —zM aS‘S 20' K + 0{(]50 ), V = _EM 8ss 20’ K — Ol¢0 ),
oBCBC =0,

Therefore under this scaling the evolution of the void interface is given by surface diffusion (see
[13]), whereas the grain boundaries have zero mean curvature, i.e. they are in equilibrium. It remains
to derive the equations at a triple junction. From now on, we will always denote by superggripts

B and C quantities that are defined on the interfadS, CA and AB, respectively. Using the
approach in[[11], where an asymptotic expansion close to the triple junction was considered, we

obtain
0= Z o'y,
ic{A,B,C}

wherer}, 11% andrfi are the tangents to the interfaces at the triple junction all pointing away from
the triple junction. This is the force balance at the triple junction and a simple computation shows
that the above identity is equivalent to Young'’s law,

sing4  sing®  sing¢
A T 4B T T gC

(A.9)

o

whered4, 08 ande¢ are the angles that the regioas B andC form at the triple junction. Using
the ideas in[32, 24] we can also derive a flux balance condition

M3 (w§ +ag§) + MEd(w§ +agf) =0 (A.10)

at the triple junction.

It remains to determine an additional condition at the triple junction, which is related to the fact
that the chemical potential is continuous. In fact, similarlyltd [32, 24], we derive that at the triple
junction

w§ =w§. (A.11)
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We remark that the choice of scalifigy) := By or B2 does not affect the conditiorfs (4.9), (A]10)

and [A.T]) at the triple junction, as the equatjon (IL.6b) was not used to derive them. Of course, under
the scaling(y) := By we deduce from (Al7) and (A.11) that at the triple junction

O’CKC = —UBKB.

Finally, when an interface meets the external boundary, further boundary conditions have to hold
which can be derived as in [24,132]. We include these conditions in the summary below.

To summarize, we obtain, depending on the scalinfy in [1.6b), the following two sharp interface
problems. In both cases we find that at a triple junction the identities (A.9),](A.10) and (A.11) have
to hold forw and¢. When an interface meets an external boundary°aa®@@le condition has to
hold. In addition, at points where the material boundary interseetswe haved; (w’ + a¢’) = 0
fori € {B, C}. Firstly, the scaling(y) := By? leads to

VC = —IMCa,(30CkC +agC) onr€,
V8 = —3MP0,(Go"k? —agP) onr?, (A.12)
0=«4 onr4.

Whilst for the scaling(y) := By, we obtain

+2V = Midg(w' +a¢?)  onIifori e {B,C},
BV = okl + 2w! onIfori e {B, C}, (A.13)
,Ba)AVA = oAk onr4,

where in thet option we take the top far = B and the bottom foi = C. Furthermore, in both
cases the limiting electric potential satisfies
d¢

Ap=0 in2\N24¢), —=0 onrurc
anr

where24 (1) is the void with boundary™8 U I"C.
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