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Integral formulations of the geometric eikonal equation
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We prove integral formulations of the eikonal equatign= c(x, r)| Du|, equivalent to the notion

of viscosity solution in the framework of the set-theoretic approach to front propagation problems.
We apply these integral formulations to investigate the regularity of the front: we prove that under
regularity assumptions on the velocitythe front has locally finite perimeter {a # 0}, and we give

a time-integral estimate of its perimeter.
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1. Introduction

We are interested in generalized time evolutions of sub&éts of RV, N > 1, governed by the
following geometric law:

Vi = c(x, 1), (1.1)
whereV, ; denotes the normal velocity of a pointof dK (¢) at timez. If for exampleK (¢) can be
represented by

K@) ={xeRY; u(x,r) >0}, K@) ={x e RY; u(x,r) =0}

for someC? functionu : R x [0, T] — R such that«(x, r) = 0 implies that the space gradient
Du(x, t) # 0, then a classical calculation yields

, 1
Ve, = IS
|Du(x, 1)|

whereu, denotes the time derivative of and| - | the usual euclidian norm d&" (x| = (x, x)/?),
so thatu satisfies the so-calleglkonal equation

u; = c(x,t)|Du| (1.2

for all (x,1) € RN x (0, T) such that«(x, r) = 0. If the frontd K (¢) is not assumed to be regular,
equation[(I.R) gives a generalized way of studying the evolution, and the notion of viscosity solution
of this equation provides a satisfactory framework to do so. More precisely, one possible generalized
solution of the geometric evolution (1.1), calledet-theoretisolution, is a family K (¢)) of subsets

of RV such that(x, t) — 1k (x) is a discontinuous viscosity solution ¢f (IL.2), whéseis the
indicator function of a sek. We refer to[[13] for a complete overview of viscosity solutions, and to
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[17] for details about set-theoretic solutions. Various applications of the notion of viscosity solutions
can also be found in_[5%, 6] 7, 14,]19], to mention but a few. Other approaches to the problems of
propagating fronts are presented(in[[2,[10, 21].

Our work is motivated by a model for the dynamics of dislocation lines in a crystal, which
gives rise to a Hamilton—Jacobi equation with a non-local term. In questions related to existence for
this non-local equation, it is interesting to understand the behavior of the solutions of the eikonal
equation, and especially the regularity properties of the f#@hd). This has been done for example
by Evans and Spruck [16] for the motion by mean curvature. In the case of the geometric eikonal
equation, the regularity of the front has recently been investigated for positive velocities by Alvarez,
Cardaliaguet and Monneall [1], and using another method by Barles andlLey [8], and their works
show that a good regularity property to investigate is that of finite perimeter. More precisely, it is
proved in [1] that theK (r)’s have finite perimeter if > 0 andK (0) has the interior ball property,

i.e. is the union of closed balls of some fixed radius. Cardaliaguet and Carinarsa [11] then improved
and generalized the estimates|[df [1]. However, results in this spirit lack for velocities with no sign.

To achieve such results, we search for analytic ways of studying the geometric equajion (1.1),
and we first focus on the case of set-theorstiltsolutions. One clue in this direction is Hadamard’s
formula in the case wher& (¢) is open, bounded, an (z)) evolves smoothly in time: for all
¢ € CYRN x [0, T],R),

d
g ¢@Jﬂk=i/ ¢Amndw+/ Vesd (c, ) dHY 1),
dr Jk K() K ()

whereV—1 denotes thé N — 1)-dimensional Hausdorff measure. In particularVif, < c(x, 1)
in the classical sense, then for alie C1RY x [0, T], R,), we have

d G(x,1)dx < ¢ (x, 1) dx +/ c(x, )P (x, 1) dHN 1(x). (1.3)
dr Jx K (1) K (1)

The problem is that the tenfbK(l) c(x, o (x, 1) dHN~1(x) does not make sense in the viscosity
solution framework: the regularity o€ (¢) in terms of perimeter is unknown (actually, one of the
reasons to consider this formula isgivea meaning to this term). However, if we set

Ké(t) = {x e RY; dg(y(x) < &},

wheredr denotes the distance function to some closed non-empt¥ setR", thenK¢(¢) has

finite perimeter and one of our main results is thaf|(1.3) admits the following integral generalization:
under standard regularity assumptions on the velacitR” x [0, T] — R, we have for alk; and

t2 satisfying 0< 11 < t2 < T, for almost alle > 0, and for allp € CLRN x [0, T],Ry),

7] to t
[/ ¢(x,1) dxi| < / / ¢ (x, 1) dx dr + / / e, DHp(x, 1) d'HNfl(x) dr,
Ke() fn 1 JKE(@) t1 J{dg@p=¢}

where we have introduced a perturbation of the velocity by

(x,t) = max c(y,1).

y—XIRE

We find in [1], in the case wheke> 0, an integral formulation valid for any familik (z)) such
that1k ) satisfies the eikonal equation almost everywhere. In our case, although the perturbation
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by ¢ seems restrictive at first glance, we have in compensation considerable freedom in choosing
As a consequence, we will prove that our integral formulation is actegllyvalento the notion of
set-theoretic subsolution of the eikonal equation.

After setting the notations in Section 2, we prove the integral formulation of the eikonal equation
for subsolutions (Theorefn 3.1) in Section 3. Conversely, we prove in Section 4 that this integral
formulation characterizes the notion of set-theoretic subsolutidn gf (1.1): this is Theolem 4.1. Then
in Section 5 we use the integral formulation for subsolutions to investigate regularity properties
of the K(¢)'s and give a time-integral estimate of their perimeter. These results are contained
in Theoren[5.]1. All the results can be adapted to the notion of set-thestgi@solutions, as
expected. We collect the corresponding results in Section 6. Finally, in Section 7, under a regularity
assumption on the evolution related to the non-empty interior difficulty arising in the level-set
method, we combine these results for sub- and supersolutions to prove in THeofem 7.1 that for
almost allr € [0, T], K(¢) has locally finite perimeter ifc(-,7) # 0}, and that we have the
following estimate:

T
f f le(x, )] dHN ~1(x) dr
0 0*K (1)

’ T le:(x, )]
< [/ sgn(c(x, t))dx] + 2/ / —— 1, <0 dHN () dr,
K@) 0 0 Jrkwniet.n=0 |Dc(x, 1)

whered*K (¢) is the reduced boundary &f(r), and sgiic) the sign ofc.

2. Notations and tools

Let us start with standard notation®(x, r) (resp.B(x, r)) denotes the open (resp. closed) ball of
radiusr > 0 centered at € RY. The notationE®¢ stands for the complement of a get and £?”
denotes the Lebesgue measureRdh Finally, CO(U, V) (resp.C1(U, V)) is the set of continuous
(resp. continuously differentiable) functions froth ¢ R” to V. C R?. We add a subscript to
indicate that in addition these functions have compact suppa@rt iﬁ?(U, V), Ccl(U, V). Finally,
we abbreviate “upper semicontinuous"” (resp. “lower semicontinuous") to usc (resp. Isc).

2.1 \Viscosity solutions and set-theoretic approach

We first give the results that ensure the existence of set-theoretic sub- and supersolutions of the
eikonal equation with initial value:

2.1)

u, = c(x,t)|Dul InRN x (0, T),
u(x,0) =ug(x) IinRYV.

For the convenience of the reader, we recall the definitions of a viscosity sub- and supersolution of
the eikonal equation and of a solution of probl¢m](2.1):

DEFINITION 2.1 (Crandall and Lions [14]) 1. We say that: RY x [0, 7] — R is aviscosity
subsolution(resp.supersolutioh of u; = c(x, t)|Du| in RY x (0, T) if u is usc (resp. Isc) and
if for all test functionsp of classC?! such that: — ¢ has a local maximum (resp. minimum) at
(x,1) e RN x (0, T),

¢r(x, 1) < c(x, )| Dg(x,1)| (resp.2).
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2. We say that : RN x [0, T] — R is aviscosity solutiorf (2.1) if  is both a viscosity sub- and
supersolution ofi; = c(x, 1)|Du| inRY x (0, T) and ifu(-, 0) = ug.

THEOREM 2.2 (Crandall and Lion$ [14]) Suppose that: RV x [0,7] — R is continuous,
bounded, and Lipschitz continuous with respect to the space variable. Then the problem (2.1)
has a unique uniformly continuous viscosity solution R x [0, 7] — R for every uniformly
continuous initial valuexg.

Let K(0) = 22(0) be fixed with$2(0) open,K(0) # ¥, RY, and letd ko, denote the signed
distance function t& (0),

dyko)(x) if x € K(0),

WO =1 _ag o) i x ¢ KO).

Let u be the solution of[(Z]1) with initial valueg = ZK(O). A technique adapted from
Barles, Soner and Souganidis!([9, Theorem 2.1]), which relies on the stability theorem for viscosity
solutions, shows thél, >0, is also a subsolution of (1.2), whil,,-¢; is a supersolution. Thus if
we setK (r) = {x € RY; u(x,r) > 0}, and2(t) = {x € R"; u(x,r) > 0}, we obtain a new
subsolutionu : (x,t) +— 1k (x) and a new supersolution : (x,t) +— 1oy (x) of (1.2) in
RN x (0, T), with respective initial value$g ) andlo(g).

We notice that the upper semicontinuity @fon RY x [0, T] required in the definition
of subsolution is equivalent to the fact that the graphkof: ¢ — K(¢), i.e. GraphkK) =
Ute[O,T] {t} x K(t),isclosedin [QT]xR". Likewise, the lower semicontinuity afonR" x[0, T]
is equivalent to the graph @2 :  — £2(¢) being open in [0T] x RV,

From now on we are going to focus on these so-cadledtheoretic suband supersolutions
of the formu : (x,1) — lg(x) andu : (x,t) — lg)(x) respectively. We first gather some
properties of the geometric evolutions> K (¢) ands — £2(¢). We will write 22¢(¢) for (£2(¢))°.

PROPOSITION2.3 Letc satisfy the assumptions of Theorgm|2.2, andlet ||c| .

() Let K : [0, T] — P@RM)\ {#} be such that : (x, 1) — 1k (x) is a subsolution of (1]2)
in RN x (0, T). Then for allz € [0, 7] and for alls € [0, T — ¢), we haveK(t +s) C
K (1) + B(0, Ls). In particular, the evolution is bounded on [0) if K (0) is compact.

(i) Let 2 : [0, T] — P@N)\ {RV} be such thali : (x,) — 1g()(x) is a supersolution of
(I2) in RN x (0, T). Then for allz € [0, T] and for alls € [0, T — 1), we have2°(t + s5) C
Q°¢(t) + B(O, Ls).

Proof. Let us prove (i). Since : (x, ) — lg)(x) is a viscosity subsolution of; = c(x, t)|Dul,
we deduce from the inequality| < L that for any fixedt € [0, T), u1 : (x,s) — u(x,t + ) isS
a subsolution of;; = L|Du| onRN x (0, T — ) with u1(-, 0) = 1k (. The solution of this last
equation with initial valuasz(-, 0) : x +— max(1 — dg)(x), 0), which is uniformly continuous,
is known and given by : (x,s) = max,_,<rs u2(y, 0). Sinceuy andu; satisfyu;(-,0) <
uz(-, 0), we deduce from the comparison principle (s€e [9, Theorem 1.3]) that for,all € RY x
[O» T - t),

ur(x,s) <uzx,s), i.e ulx,t+s)< max uzy,0).

ly—xI<Ls

Therefore ifx ¢ K (1) + B(0, Ls), then for ally with |y — x| < Ls, y ¢ K (1), i.e.u»(y,0) < 1. As
aresultu(x,r+s) < 1,thatisx ¢ Kt + s).
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(i) follows from (i) since it is straightforward to check that, 1) > lgcq)(x) = 1 —u(x, 1)

is a subsolution of; = —c(x, 1)|Du| in RN x (0, T). However, we point out that we cannot
deduce from this property of2¢(¢) that the evolutionr — £2(¢) is bounded on [0T) if £2(0) is
bounded. O

We now state properties of regularity in time of the distance function to the fronts:

PROPOSITION2.4 Under the assumptions of Proposi 23,t) — dg((x) is Isc onRY x
[0, T], and for allx € RV, ¢ > dk ¢ (x) is left continuous or(0, T). The same conclusions hold
for (x,t) — d_QF(t)()C).

Proof. We only treat the case & since the proof fos?2 is the same.

1. Let us show thatx, 1) > dg)(x) is Isc onRY x [0, T], by first consideringd = {(x, 1) €
RN x [0, T]; x ¢ K(¢)}, whichis openiR" x [0, T] by assumption. Letx,, #,) € A converge to
(x,t) € A. SinceK (¢) is closed and non-empty for allthe distance of, (resp.x) to K (z,) (resp.
K (1)) is attained by a certain, (resp.y):

dk (1,)(Xn) = X0 — Yul, dgn(x) = |x —yl,
yn € K(tn), y € K(1).

Let us first consider the case of a finite accumulation poinid@f;,)(x,)), given by the limit of
(Ixn, — yn, ). The sequences,,) and(|x,, — yn,|) converge, thusy,, ) is bounded. Passing to a
subsequence if necessary, we can assume that it converges,ysay Tous, since: : (x,1) —
1k (x) is usc,u(yoo.t) = limsup(u(yy,.t,,)) = 1, which means that., € K(r) and by
definition ofy, [x — y| < |x — yool, I.€.dg ¢y (x) < lim dK(rnk)(xnk)- This is also true for an infinite
accumulation point, obviously. Finally, we remark that this also holds for a caupl® such that
x € K(1), since in this caség ) (x) = 0, the minimum possible value of the distance function.
2. Let us now prove the second part of the assertion: fox ai RV, t dg ) (x) is left
continuous on0, T). Let us fixr € (0, T), ¢ > 0 and a sequendg,) converging ta from the left.
Thanks to Propositi.IK(z) C K(t,) + B(O, L(t —t,)) C K(t,) + B(0, ¢) for t, close enough
tor. Lety € K(¢) be so thatlk;)(x) = |x — y|. Then forn large enoughy € K (,) + B(0, ¢), s0O
thatdg ) (x) < dk)(x) + €, and this proves that— dk ) (x) is left usc. O

2.2 Semiconvex functions and subdifferential of a convex function

We refer to[[12] for the notion of semiconvex function. Recall that a funcfians2 — R defined
on a convex subse? of R is semiconvewith constant > 0 if x — f(x) + M|x|2/2 is convex
on £2 (andsemiconcavé — f semiconvex), which amounts to saying that for(all y) € £22 and
all A € [0, 1],

M
FOX+A=0y) KA+ A=)+ 5AA=Dx = yI% (2.2)

For f of classC2 ands2 open, this is also equivalent to saying that fora#t 2, D2 f(x) > —M Id
in the sense of symmetric matrices.

We will mainly use the notion of semiconvexity for the distance function to the front. The
following lemma will be helpful:
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LEMMA 2.5 ([12, Proposition 2.2.2]) Lef # ¢ be a closed subsets Bf¥. For all convex subsets
2 such thaty = inf,co dr(x) > 0, the distance function t&', dr, is semiconcave ot with
constant 1y.

For the notion of subdifferential of a convex function, we refei td [20].

DEFINITION 2.6 Let$2 be a convex open subset®f and f : 2 — R be a convex function.
Thesubdifferentiabf f atx € 2 is the set

0 fx)={p eRN; Vy € 2, f() = f(X) + (p,y —x)}.
If f is concave, theuperdifferentiabf f atx € 2 is the set

Ffx)={peRY; ¥y e, f(») < fx)+(p,y—x)}
These sets are never empty thanks to the separation theorgns ¢onvex and differentiable at
thend, f (x) = {Df (x)}. The following lemma is straightforward but useful:
LEMMA 2.7 ([20]) Letf,, f be convex functions on a convex setsatisfying:

() For all sequences, — vy, limsupf,(yn) < f().
(i) There exists a sequenag — x such that limf,, (x,) = f(x).

(i) p, € 04 fu(x,) andp, — p.
Thenp € 9, f (x).

2.3 BV functions and sets of finite perimeter

The results of this section are entirely taken froml [15] unless explicitly stated otherwis®. het
an open subset @" .

2.3.1 Functions of bounded variation

DEFINITION 2.8 A functionf € Lﬁ)c([z) is said to havédocally bounded variatiorn £2 if for all

open subsets CC £2 relatively compact irf2,

SUD{/ f)divg(x)dr; ¢ € CHU,RY), [[llo < 1} < 0.
U

We denote byB Vi (£2) the set of functions of locally bounded variationsih We also say that
f e LY(£2) hasbounded variatiorin £2 if the above condition holds fo/ = §2. We denote by
BV (£2) the set of functions of bounded variationsih

The Riesz representation theorem then yields:

THEOREM2.9 Letf € BVioc(§2). Then there exists a Radon measuren 2 and au-measurable
functiono : 2 — RY such that:

1. jo(x)| =1u-ae.

2. [o f)divex)dr = — [, (p(x), 0 (x)) du V¢ € CL(2, RV).

The measurg is called thevariation measuref f, denoted by Df||, and we setDf] = o ||Df||.
We also have, for all open subséfsc c $2 relatively compact in2,

IDFIU) = SUD{/U f)dive) dr; ¢ € CHU,RY), [[¢llo < 1}.
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2.3.2 Sets of finite perimeter

DEFINITION 2.10 An £"-measurable subsé& c RY is said to havel¢cally) finite perimeter
in £2 if 1z has (locally) bounded variation if2. The variation measure dfz in £2 is in this case
denoted byj|d E|, and the function-o given by Theorerfi 2|9 is denoted by.

DEFINITION 2.11 LetE c RY be a set of locally finite perimeter if2. We say thate € 2
belongs to theeduced boundargf E, 0*E, if:

1. |I9E||(B(x,r)) > O0forallr > 0 suchthaiB(x,r) C 2,
5o L

I10EN(B(x, ) JBx,r)
3. )| = 1.

ve() dIIDE] 5 vEW),

Then we have the following theorem:

THEOREM 2.12 (Gauss—Green formula) L&t c RY be a set of locally finite perimeter if®.
Then for allp € C1(22, RY),

f div e (x) dx = / (@ (). v (1)) dHV 1 (0). 2.3)
E o*E

Moreover we have control on the perimeter of level sets of the distance function to a closed
non-empty set, as a consequence of the following proposition[(see [1, Lemma 2.4]):

ProPOSITION2.13 For allrg,r1 > 0 andR > O, there exists¥ > 0 such that for all closed
non-emptyE C RY with diameter smaller thaR, and for allrg < r < r1, the setE” = {x € RV;
dg(x) = r} satisfies

HN-YE") < M.

3. Anintegral formulation of the eikonal equation for subsolutions

We first focus on the notion of subsolution. All results can be adapted to supersolutions. The
corresponding results and changes in the proofs are given in Section 6.

Letc : RY x [0, T] — R satisfy the assumptions of Theor2.2, andKet [0,T] —
P(RN) \ {#} be such that

1. K(0) is compact,K(t) — K(0) ast — 0 andK(t) — K(T) ast — T in the Hausdorff
distance.

2. The graph\jte[0 T]{t} x K (1) of K is closed in[Q7] x RV.

3. u:(x, 1) = lg(x) is a viscosity subsolution of the eikonal equation:

ur = c(x, )| Du|l InRY x (0, T). (3.1)
Set, for alle > 0,

Ké(t) = (x e RY; dgy(x) <},  cf(x,t)= max c(y,1).

ly—x|<e

The aim of this section is the proof of the following result:
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THEOREM 3.1 (Integral formulation for subsolutions) For allandz, satisfying 0< 11 <t < T,
for almost alle > 0, and for allp € CL(R" x [0, T], R,),

o 2
f / & (x, 1) dx dr +/ / Ex, D (x, ) dHY L (x) dr
1 £(t) t1 J{dk@y=¢}

15
U b (x, t)dx] © @2
Ke(1) 1

WV

To this end, we seb(x, 1) = —dg ) (x) so that for alls > 0,
Ké(@) = {x e RY; w(x, 1) > —¢).

Let us fixe > 0 andf : R — R satisfying the following conditions:

1. 6 is non-decreasing and smooth,
2.0x)=0ifx < —¢,0x)=1ifx > 0.

Setwy = 6 o w. We start by giving a semiconvexity propertyof:

LEMMA 3.2 Forall(x, 1) € RV x (0, T) such thatc ¢ K (1), there exist¥ > 0,8 > 0 andr > 0
such thatforalk € (r — 8,1 + 8), wg (-, s) is semiconvex with constat on B(x, r).

REMARK 3.3 In this lemma, the key point is local uniformity with respect soof the
semiconvexity constari.

Proof. Sincex ¢ K(z), the lower semicontinuity ofx, t) — dk)(x) given by Propositio@4
implies that there exist > 0,8 > 0 andr > 0 such that/x ) (y) > y for everys € (t — 8, t + §)
andy € B(x,r). But then thanks to Lemnfa 2.5, — dk)(y) is semiconcave oB(x, r) with
constant 1y. The conclusion now follows froni_[12, Proposition 2.1.12] on the semiconvexity of
the composite of a smooth function with a semiconvex function. |

We are now ready to begin the proof of Theoiemn] 3.1.

3.1 Equation satisfied byy in the viscosity sense

This subsection closely follows the ideas of Soher [21] (see @lso [9, Theorem 3.1]). We provide the
proof of the following proposition for sake of completeness.

PROPOSITION3.4 wy : (x,t) > O(—dk)(x)) is a subsolution ofwy); = c®(x, 1)|Dwy| in
RN x (0, T).

Proof. According to Propositiof 2|4y is usc onRY x [0, T]. Since# is continuous and non-
decreasingwy is also usc.

Step 1. Let¢ be of classC! and such thaiy — ¢ attains a local maximum &to, 7o) € RN x (0, T),
which we can assume equal to 0, @, (xo, f0) = ¢ (xo, f0). Let yo be such thatg € K(70) and
w(xg, o) = —|xo0 — yo| (if xo0 € K (t0), thenyg = xp). Sety (z, t) = ¢(z + xo0 — yo, t). Let us show
thatu — v @ (z,1) = 1k (2) — ¥ (z, 1) has a local maximum &b, 7o), which will enable us to
use the fact thai is a subsolution of (3]1). Farclose toyg, andr close torg,

—Y(z,t) = —¢p(z+x0— yo,1) < —wy(z + x0 — Yo, 1)
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becausavy — ¢ has a local maximum atxg, t9) where it vanishes. Since by definition we have
w(z 4+ x0 — Yo, 1) = —dg ) (z + x0 — o), for z € K (t) we get

—¥(z,1) < —0(=dg)(z + x0 — y0)) < —0(—|x0 — yol)
by definition ofdk ), and becausg is non-decreasing. But
—0(—lx0 — yol) = —8(w(x0, 10)) = —¢(x0, 10) = —Y¥ (yo. f0)

andlg ) (z) = 1k o) (yo) = 1, s0u(z, t) — ¥ (z, 1) < u(yo, to) — ¥ (yo, to). Moreover,—v(z, t) —
—¥ (yo, to) as(z, t) — (yo, to), thus in a neighborhood @y, o),

_I/I(Z»t) < 1_10()’0, lo)~ (33)

Therefore ifz ¢ K(1), thenlg)(z) = 0, 1k (yo) = 1, and [[3.B) means that, agair(z, 1) —
¥(z, ) < u(yo, to) — ¥ (yo, to), Which is the desired result.

Step 2.Since u is a subsolution of[(3]1), according to Step 1 we hawgyo, f0) <
c(yo, 10)| DY (yo, 10)|, that is,

@1 (x0, 10) < c(yo, t0)| D¢ (x0, t0)]-

This is where we see the interest of perturbing the equation afitand of truncating withp,
because ildg ) (x0) = |xo — yol < &, thenc(yo, t0) < ¢®(xo, f0), and thereforep, (xo, 10) <

c®(xg, t0)| D¢ (xo, to)|. Moreover if on the contraryk ;) (xo) = —w(xo, to) = |xo — yo| > &, then
sincew is usc, it follows thatw(x, r) < —e in a neighborhood ofxg, f9), thuswg (x, t) = 0 locally
and the equation is still satisfied. O

3.2 \Variational equation satisfied by

ProOPOSITION3.5 For all test functiong < C}(RN x (0,T),Ry),

T T
/ / wy (x, )P, (x, t) dx dt—i—/ / cf(x,t)|Dwg(x, t)|¢(x,t)dxdr > 0. (3.4)
0 JRV o JRrRN

Proof. In order to prove this proposition, we apply a technique of regularizatianyaf time by
sup-convolution: we define fer > 0,

1
wi(x,1)=  max {we<y, ) — =[x =y + (- s)zl}. (3.5)
(v,5)eRYN x[0,T] o

This is justified:ws is usc, sy, s) = we(y, s) — 2[1x — y|2 + (¢ — s)?] is also usc. In addition,
wyg IS bounded, so
( T Y
y,8) > we(y,s) a[lx YT+ @ —5)]
is coercive. Consequently, the supremum is indeed a maximum. Moreover it is knowh that (3.5)
defines a locally Lipschitz continuous function &V x [0, T] (while ws was only Lipschitz
continuous with respect to the space variable), converging pointwisg &so converges to 0.
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Step 1. Let us show, in the spirit of Step 1 of the previous proof, thitis a viscosity subsolution
of wY); = [¢]]"(x, )| Dw]| in RN x (h(0), T — h(c)), whereh(s) € (0, 1] tends to O as
o — 0, and where we have set
[cf1%(x, 1) = max  c®(y,s).
[(,8)—(x,1)|<e
Let (xo, fo) € RN x (0, T). There existsyo, so) € RY x [0, T] such thatwg (xo, f0) = wa (yo, s0) —
L1x0 — yol? + (to — 50)?]. We setu = (xo, o), V = (yo. so) for the sake of readability. Then

1 1
0 < wf (W) =wp(V) — =Ju—vZP<1— =ju—vp
o o

soju—v| < o¥/2 =: h(o) and hence € RN x (0, T) foru € RN x (h(o), T — h(o)). Therefore
we can use the equation satisfieddy in RN x (0, T) to deduce the equation satisfied g in
RN x (h(o), T — h(0)), as in [18].
Step 2.Let¢ € C}(RN x (0, T),R,), andU be an open and relatively compact subseR8f x
(0, T) such thatp vanishes orU¢. We can choose so small that/ ¢ RN x (h(o), T — h(0)),
and therw{ is a viscosity subsolution afvg), = [c*]"®)(x, t)| Dw] | in U thanks to Step 1.
Since wy is locally Lipschitz continuous, it is differentiable almost everywhere and the
inequality(wg), < [¢*]")(x, 1)| Dwg| actually holds a.e. itV (see|[7]). Therefore,

[ 1w =T w nioug e <o
RN x(0,T)

this integral being in fact taken dii. But wy is locally Lipschitz continuous and therefore belongs
to W=, and its a.e. time derivative coincides with its time derivative in the sense of distributions.
Thus

/ [wgé + 1" (x. | Dug 9] > . (3.6)
RN x(0,T)

Now we want to pass to the limit in this expressionsas— 0 by applying the dominated
convergence theorem.

Step 3. To do so we notice thatg ¢, and ¥]"®)¢ are bounded oty uniformly ino sincelwg | < 1
andc is bounded. Moreovew; converges pointwise tay aso — 0 as we recalled above, and
[c£]"©) converges pointwise t& . It only remains to deal with the terpw |.

To this end, we fix a sequence,) converging to 0. There exists a subsét ¢ U such that
LN\ U) = 0 andDwy, Dw§" are defined ori/ for all n. Let us show thatDwg") converges
a.e.toDwy onU asn — oo:

LEMMA 3.6 For almost allx, ) € U, Dwg" (x,t) — Dwg(x,t) asn — oo.

Proof. First casex ¢ K(¢). Let us fix, thanks to Lemma 3.2/ > 0,8 > 0 andr > 0 such

thatforalls € (t — 68, ¢ + &), wy(-, s) is semiconvex with constat on B(x, r). For alln, choose
(Vs sn) € RN x (0, T) realizing the supremumof” (x, £) = we (Yn, n) — =[x — a2+ (2 — 5,)?].

0,

Recall thati(x, t) — (yu, sp)| < h(o,) — 0, so that we can assume that ?orrall

M M
Yoy we(y, 1)+ Elyl2 and ¥, 1y = wy(y, sp) + Elyl2 (3.7)

are convex orB(x, r), and thaty, € B(x, r).
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We know, thanks to Corollary 10.14 df [20], th&w," (x, 1) = %(yn — x). Let us compute
Dwg (yy, sp): for z close toy,,

1 1
we (2, 0) — =[x - 2+ (t = 52)] < wo (Vs 0) — —lx - ynl? + (1 = 50)?],
n

n
SO
< i 12 _ 2
we(z,sn)\we(yn,sn)Jr(I {lx —zI” = Ix — yal}.

n

But |x — z|2 — |x — yu|? = |2 — yal2 + 2(z — Yu, yu — x), SO We obtain

2 1
wo (2, ) < Wo(Wns Sn) + — (2 = Vs Yu — X) + —1|z — yul?.
o/ On

Therefore% (y» — x) is a Fréchet superdifferential (see[12]) fos (-, s,) at y,. But, in addition,

wy (-, $,) IS Semiconvex omB(x, r) > y,, so differentiable ay,, and its gradient equalg%(yn —x)

(seel[12, Proposition 3.1.5]). To sum up, forralive haveDwg" (x,7) = Dwo(Yn, Sp) =: Pu.
Sinces, — t andwy is usc, for all sequenceg — z we have limsupy, (z,) < ¥ (z), where

¥ andyr are defined by[(3]7). Moreovey, — x and sincew," converges pointwise tayg, we

have

|2

o M M
Y (yn) = wy (yn,t)‘i‘?b]n —> wy(x, 1) + —|x|7 = P (x).
n— 00 2

But p, = Dwg” (x,1) = Dwg(yn, $p), SO (py) is bounded: for alk, wy (s, -) is ||0||«-Lipschitz
continuous, s¢iDwg |lco < 118’10, and the same holds faDwg” independently ofi. We can extract

a subsequendey) such thai p,,) converges to somg € RN, ThenDyy,, (Yn,) = puy + Myn, —

p + Mx. As a consequence, thanks to Lenmg 2.7 Mx € 9,y (x). But wy is differentiable

at (x, t) with respect tar, sod,v (x) reduces to its gradierwy (x, r) + Mx, which shows that
p+ Mx = Dwy(x,t) + Mx, andp = Dwy(x, t). This holds for all converging subsequences of
(pn), SOp, — Dwg(x, t), that iS,Dwg” (x,1) = Dwg(x,t) asn — oo.

On

Second caset € K (). Sincewy" > wg andw," < maxwy = 1, for alln we havew;" (x, 1) =
wy(x, 1) = 1. Aresult due to Stampacchia (see for instafnce [15]) assertthat= Dwg" = 0
almost everywhere ofw, = 1} since allw," andwy are Lipschitz continuous with respect to the
space variable. SDwg" (x,1) = Dwg(x,t) asn — oo for almost all(x, ¢) such thatt € K(¢). O

Finally, Dw{ is bounded o uniformly ino: as we have seen above)wy [l < [10']l« for all
o > 0. The use of the dominated convergence theorem is justified and proves Profposjtiofi3.5.

3.3 Theintegral formulation
We are now ready to conclude the proof of Theofem 3.1. Fix&, < a2 < «.

Step 1. We first notice that an approximation argument shows fhat (3.4) also holds for the following
functiond, although it is not of clas€'®:

1. 6 is non-decreasing and continuous,
2.0x)=0ifx < —a2,0(x) =1ifx > —oy,
3. 9 is affine on Fay, —a1].
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Now we would like to transform the second term pf {3.4) so as to get rifhafy|. To do so
we interpret it as a jacobian thanks to the co-area formula [see [15]), which yields, thrall
CXRN x (0,T),Ry),

T T p1
f / we (x, )Py (x, 1) dx dt + / / f Ex, Dp(x, 1) dHN1(x)dr dr > 0, (3.8)
0o JRVN 0 JOo J{wy(.t)=t}

where the integral from 0 to 1 represents the values takamyloy 7).

Step 2.Fort € (0,1), wy(x,1) = T & w(x, 1) = 07 1(1) & dgpy(x) = —071(1) € (o1, a2).
Moreover, Propositiofi 2|3 shows that the diameterkaf) is uniformly bounded on [0T].
Therefore Propositign 2.13 guarantees the existence of a constand such that for alt < (0, 1),

HYN L({wo (-, 1) = 7)) < M. (3.9)

Step 3. Let us now transform each of the terms[of {3.8) so as to get richof-or the first term, we
simply notice that

T T
/ / we(x,r>¢z<x,r>dxdr:/ / w Cx, D)y (x, 1) e
0 RN 0 {w(,1)>—az}

sinced (o) = 0if o < —a2. In the second term, let us make the change of variabled (—o) for
o € (a1, a2) andt € (0, 1). Inthis casavg(x,1) =t & O(w(x, 1)) =0(—0) & w(x,t) = —0.
Therefore we obtain, for alh € C}(RN x (0, T), R;) and alla1, ap satisfying O< a1 < a2 < &,

T
/ f we (x. )by (. 1) ce
0 {w(-,t)>—a}

1 o2 T
+ / f f Ex,Dg(x, 1) dHY Y(x)drdo >0, (3.10)
a1 JO {w(,t)=—0}

o2 — o1

where we have switched the integration order betweand o, which is permitted since for all
(z, o) in the bounded domai(®, T) x (a1, a2),

[{( g 0@ W | < Mol (3.11)
w(-,t)=—c

whereM denotes the constant given y (3.9).

Step 4.We now use the freedom in the choice®f and«; to deduce from[(3:10) a pointwise
property of the integrand. To this end, we apply the Lebesgue—Besicovitch differentiation theorem
(see for instance [15]) to the function

T
o / f Ex, D (x, 1) dHY L (x) dr,
0 {w(,t)=—0}
. . . 1 1 N ..
which lies inLi (0, ¢) for any¢ € C-(RY x (0, T), Ry) thanks to[(3.11). Fixing € (0, ¢) and

choosingyy = 0 — 7,00 = 0 + 72 in (3.10) withr — 0, we deduce, sincey — 1k () for this
choice ofa;, andao, that for almost alb € (0, &),

T T
/ / ¢,(x,t)dxdt+/ / Ex,Ngx, ) dHYN T(x)dr > 0. (3.12)
0 {w(,t)>—0} 0 {w(,t)=—0}
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Step 5. What we have done holds for a fixede C}(RN x (0, T),R;) ande > 0. We now extend
the result to allp € CXRYN x (0, T),Ry) ande > 0, using the fact tha€X(RY x (0, T), Ry),
equipped with the’* norm, andR, are separable. This shows tHat (3.12) holds for almost &ll0,
alle > o andallp € CERN x (0, T),R,).

Letus fix such @ > 0. Lettinge — o in (3.12) gives the integral formulation for test functions
with compact support: sincev(-, 1) > —¢} = K°(t) and{w(-, t) = —¢} = {dk) = ¢}, we have
for almost alle > 0, and allp € CX[RY x (0, T), R}),

T T
/ & (x, 1) dx dr +/ / Ex, NP, 1)y dHN L(x)dr > 0. (3.13)
0 JKe) 0 J{dkwpy=¢e}

Step 6.To conclude, it remains to generalie (3.13) to test functions with no assumption on the
support. Let O< 11 < o < T anda be a smooth non-negative function equal to 1 ans] and
having compact support i®, 7). Let¢ € CL(RN x [0, T], R,) with compact support in the space
variable. Applying[(3:IB) ta¢ yields, for almost alk > 0,

T T
// a(t)¢,(x,t)dxdt+// o () (x, 1) dx o
0o Jkew 0o Jke@
T
+// & (x, Da®)d(x, ) dHN (x) dr > 0,
0 J{dkuy=e}

which gives[(3.:R) wher converges to the indicator function af [,]:

123 12 173
f / b (x, 1) dx dr — U d(x, 1) d.xi| +/ f Ex, P (x, 1) dHN L(x)dr > 0.
t1 JKE() Ke(t) 1 t J{dkn=¢}

This holds for almost all; andr in (0, T) and therefore for all O< 11 < 12 < T sincelge) —

lkeu in LYRY) ast — 15 thanks to Propositiorfs 2.4 afd 213 (indeed, the latter guarantees
that all sets of the fornidg,) = ¢} have zeroLY measure). This being also true far — 0t

andr, — T~ by assumption 1 before Theor3.1, we see fhat (3.2) also holds fer0 and

to = T. Moreover, since the evolution is bounded, the time-dependent domain of integkdtion

is uniformly bounded. Thus ip does not have compact support in the space variable either, after
truncatinge in a C* way off a large ball if necessary, we see that](3.2) holdspfar C1(RY x

[0, T], R4). This concludes the proof of Theor¢m|3.1.

4. Conversely: from the integral formulation to the notion of subsolution
In this section we are interested in the converse of Thebreim 3.1:

THEOREM4.1 Letc : RN x[0, T] — R satisfy the assumptions of Theorem|2.2 &nd[0, 7] —
P(RN) \ {#} be such that

1. K is uniformly bounded on [07].

2. The grathte[O’Tl {t} x K(t) of K isclosed in[QT] x RV.

3. Inequality [[3:R) holds for all & #1 < » < T, for almost alle > 0 small enough and for all
¢ € CYRN x [0, T],Ry).

Thenu : (x, 1) — 1k (x) is a viscosity subsolution of; = c(x, t)|Dul in RY x (0, T).
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During the proof of this theorem, we will need to use neighborhoods of a particular form and
the corresponding notion of open sets:

DEFINITION 4.2 A set of the formB(x,r) x (¢t — h,t] with » > 0, 2 > 0 is called aleft
neighborhoodf (x, 1) € RN x (0, T). We say that/ ¢ RY x (0, T) is left openif U contains a
left neighborhood of each of its points.

We also define the corresponding notion of viscosity left subsolution, in which the test is
restricted to left neighborhoods:

DEFINITION 4.3 LetU c RY x (0, T) be left open. We say thatis aviscosity left subsolution
of u; = c(x, )|Du| in U if u is usc onRY x [0, 7] and if for all (x, r) € U, for all test functions
¢ of classCt onRY x (0, T) such thau — ¢ has a maximum on a left neighborhood(ef ¢), we
haveg; (x, 1) < c(x, 1)|Do(x, 1)|.

It is easy to see that all classical results on viscosity solutions (stability, invariance, how a
subsolution provides a set-theoretic subsolution) still hold for this notion of subsolution, under the
only assumption in the stability theorem that the upper relaxed semilimit lif(ggpof (u,) (see
[7]) satisfies

limsup®(u,)(x, t) = limsup(u, (x,, t,); tn — t, t, < t, x5 — X},
i.e. we ask that the lim sup be achieved through lower times. We are now ready to begin the proof
of Theoreni 411.

Proof of Theorem 4.4The fact thatU,E[O’T]{t} x K(t) is closed in [0T] x RN ensures that
(x,1) — 1k (x) is usc. For the rest of the proof let us fig such that[(3]2) holds for almost all
e € (0, &0).

Step 1. Let us first prove that for allxg, 7o) € RY x (0, T') such thateg € K0(tg), t > dk ) (x0)
is left continuous aty. If this were not true, there would exigt e (0, T'), xo € K*°(¢p), n > 0 and
asequence, — fy suchthatforalh > 1,

dx (1) (x0) + 1 < dk ) (x0). (4.1)

Let us choose € (0, n/2) and¢ € C}(B(xo, a), Ry) with ¢ (xg) > 0. Assumption 3 implies that
(3:2) holds withe = dg ) (x0) + 8 for almost alls € (0, n/2) small enough. Let us apply it to the
time-independent functio¢x, t) — ¢ (x) betweerr, andrg for such &s:

/7 fo
/ ’ / c(x, )P (x) dHN L(x)dr > |:/ ¢ (x) dx:| .
tn Hdxy=€} Ke(1) th

But [ng(t)qS(x)dx]ﬁg = fo(zo) ¢ (x) dx because (4]1) implies that®(s,) N B(xo, ) = ¥ for all
n > 1. Moreover

fo
/ / ¢ (x, ) (x) dHN L (x) dr < (1o — t) M| cll ool oo
ty  J{dg@py=¢)

whereM denotes the bound (MN_l({dK(,) = ¢}) given by Propositi03. Lettingtend toco,
we deduce that

/ ¢(x)dr <0,
K* (t0)
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which in view of the choice 0§ implies thatxg ¢ K°(to), i.€.dk ) (x0) = & = dk ) (x0) + 6.
This is absurd and proves the claim.

Step 2.A straightforward consequence ¢f (313) is that, under assumption 3, we also have, for
almost alle € (0, e0), o € (0, ), and for allp € CERN x (0, T), R,),

T T
/ / ¢ (x, 1) dx dr + / / e, Do (x, ) dHY L(x)dr >0, (4.2)
0 () 0 J{dkun=0}

sincep > 0andc? < . Letus integrate inequalitfy (4.2) ferbetween 0 and some fixeds (0, eq)
and switch the order of integration betweesindo :

T 5 T £
/ / / ¢ (x, 1) dx do dr + f / / Ex, NP, ) dHYN t(x)dodr > 0. (4.3)
0 0 (1) 0 0 {dK(l)IU}

Now switching the order betweenando, we get
| [ sendrar= [ - deonsind (4.4)
0 (1) Ke (1)

Moreover, sinceéDdk )| = 1 a.e. o Jo_, .. {dk) = 0} = K°(t) \ K(t), we have, thanks to the
co-area formula,

// cg(x,t)qb(x,t)dHN_l(x)da=/ ¢ (x, N (x, 1) dr,
0 J{dgy=0} KE(O\K (1)

and we deduce froni (4.3) that
T T
/ / (e —drg (X)) (x, 1) dx dr + / / cf(x,Hp(x,t)dxdr > 0. (4.5)
0 JK:(@) 0 JKe(M\K(1)

Separating the test function inte, r) — 6, (t)¢(x), with 6, and¢ of classC?, and lettingd, —
0 = 1j,.1,) With 0 < 11 < 12 < T, we deduce fron{ (4]5) that

/ (6 — dr ) (x))9(x) dx
Ke(12)

2
< / (& — dk (1) (X))@ (x) dx +/ / c*(x,)p(x)dxdr.  (4.6)
Ke(1) 11 EO\K (@)

This holds for almost all; andt,, and therefore for all O< 1 < o < T thanks to Step 1 and the
fact that all sets of the forrfik ) = ¢} have zeroC" measure. Seeinfj (4.6), we could be tempted
to try to prove thaw : (x, ) — —dg ) (x) is a subsolution ofy, = ¢®(x, r)| Dw| on

Ae ={(x,1) e RN x (0, T); 0 < dg((x) < &}

so that if (X, 7) € A, thenx € K*(r) \ K (7). Unfortunately, this last assertion does not make
sense sincel, is not open. Indeedk (r) may “shrink” suddenly as increases. However, Step 1
implies thatA, is left open. Indeed, itx, t) € A, thens — dg ) (x) is left continuous at with
0<dgp(x) <e.
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Let us now go back t¢ (4.6), and show that (x, r) = —dk ) (x) is a viscosity left subsolution
of w, = ¢ (x, 1)|Dw| in A,. Take(x,7) € A, andy of classCt onRY x (0, T) such thatw —
has a maximum equal to 0 on a left neighborhood@f). Then for certain- > 0 andz > 0, and
forall (x,r) € B(xX,r) x [t —h,t] C A,

—dg ) (x) < Y(x,1), (4.7)

the inequality being an equality &, 7). Takingss =7 — h, r2 = 7 in (4.6), and using the freedom
in the choice ofp to let¢ converge to the Dirac massayields

r
e —dgp(X) <& —dgg_p) +[ cf(x, 1) dr.
i—h

Then we can us¢ (4.7) to obtain
7
vED<YEi-n+ [ dEnd.
i—h

Dividing by » > 0 and lettingh — 0T gives —y,(x,7) + ¢¢(x,7) > 0, which means thaiv
is a left subsolution ofv, = ¢®(x, 1)|Dw| in A, since|Dy (x, 1)| = 1. Indeed,—d , is locally
semiconvex around thanks to Lemmp 2|5, and smaller thag, 7), which is smooth, with equality
atx. Therefore—d ;, is differentiable ate with —Ddg 7 (x) = Dy (x, 1), but |Ddg 3 (x)| = 1
whenever this gradient exists.

As a consequence of the stability theordm),>_. 2 is a left subsolution ofv; = ¢*(x, t)| Dw|
in A, and therefore also RY x (0, T). Indeed, ifx ¢ K°(1), thenw(x, 1) < —%s, which remains
true in a neighborhood dfy, ¢) sincew is usc. Thusl,>_./2(y,s) = 0 in a neighborhood of
(x,t). Moreover ifx € K(t), thenw(x, ) > —7118, which this time does not necessarily hold on a
neighborhood, but remains true oteé neighborhood ofx, ¢) sincew is left continuous. Therefore
Liw>—¢/2)(y, ) = 1onaleft neighborhood @k, ¢). In both cases, it(,,>_, /2 — ¥ has a maximum
on a left neighborhood dfx, ) with v of classC?, theny, (x, r) < 0= Dy (x, 1), so the equation
is satisfied in the viscosity sense.

We have just proved thdf,,>_./2 is a left subsolution ofv; = ¢®(x, t)|Dw]| in RN x (0, T).
But RV x (0, T) is open in the usual sense, $g,>_.,2 is actually a viscosity subsolution of
w, = c®(x, 1)|Dw|in RN x (0, T') without restriction on the neighborhoods, since a local maximum
is in particular a maximum on some left neighborhood.

Now sincew(x, t) > —&/2 & di ) (x) < &/2, the stability theorem shows, asends to 0, that
u: (x,1) — lgp(x) is a subsolution of, = c(x,t)|Du| onRY x (0, T), which is the desired
conclusion. Indeed;® converges uniformly te sincec is Lipschitz continuous with respect i
and ife,, — Ot is fixed, then

1K(t)(x) =lim sup{l{d,((,")@n/z}(xn); h —>t, X —> X, & —> 0}.

In order to see that, let us fix a sequerigg, t,,) converging to(x, ). We notice that ifc € K (¢),
thenlg () (x) = 1 > suplia,,  <e,/2)(xn). Moreoverifx ¢ K(t), then(x, ) does not belong to the
graph ofK which is closed, and thus is located at a positive distance from this graph, which implies
that forn large enoughlk ) (x) = 0 = {4y,  <e,/2) (Xn). Therefore

1k (x) = lim Sup{l{dk(m@n/z}(xn); ty —> t, X, = x, &, — O}
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To conclude it suffices to construct a sequengg,f,) converging to (x,t) such that
Yk <en/2d(n) = Lk (x). Takex, = x andt, = r. If x ¢ K(t), we have just seen that
1gy(x) = 0 = Ly <en/2(x) for n large enough. Ifc € K(z), thenx € K®/2(t) so that
Lidg i <en/2y () = 1= 1g (1 (x). O

5. Regularity of the front

In this section we use the integral formulation to derive estimates related to the reguldtity)of
and more precisely its perimeter, by studying the limif of|(3.2) sends to 0. To this end we make
the following assumptions in addition of those of Theofen 2.2:

(A1) cis of classC?, Dc is locally Lipschitz continuous with respect to the space variable.
(A2) Dc(x,t) #0if c(x,1) =0.

THEOREMS5.1 Letc : RN x [0, T] — R satisfy the assumptions of Theorpm|2.2 gAd), (A2).
LetK : [0, T] — P@RN)\ {4} be such that:

1. K(0) is compact,K(t) — K(0) ast — 0 andK(t) — K(T) ast — T in the Hausdorff
distance.

2. The grathte[0 T]{t} x K (1) of K is closed in[07] x RV,

3. u:(x,1) — 1k (x) is a subsolution of the eikonal equati¢n (3.1).

Then the following hold:

(i) Fora.ar €[0, T], c(-, 1)1k has bounded variation i (-, ) < 0}.
(i) Fora.a.r € [0, T], K (¢) has locally finite perimeter ifc(-, 1) < 0}.
(iif) Denoting by () the negative part of a quantity ( = max(—x, 0)), we have

T
/ / c—(x, ) dHNL(x) dr < o0,
0 Jo*K(®)

an upper bound for this integral being given by

e, 0] t)I N—1
— Lecoi(x, 1) dxi| / / <0y (x, 1) dH™ T (x) dr.
[/K(z) =0 K ()Nf{e(-,1)=0) |De(x, 1) Liei<0

Proof of Theore 1(i)we split this rather long proof into several lemmas. In Whﬂfo”oﬁlﬁ,:
B(0, R) will denote a large ball that contairk® (¢) for all # € [0, T] ande < 1, andKé(¢) stands
for K&(r).

LEMMA 5.2 Foralld > 0 small enough, for almostall@ ¢ < g9 < 1,

e, O Vo1
< , 1 d dr
/ /F(t)ﬂ{c( 1)=—0} |DC(_X t)| {[ O}()C ) H ()C)

a

+ / / Liee_a)(x, )¢ (x, 1) dHN—l(x) dr > |:/ Liec—py(x, 1) dxi| . (5.2)
dg (r=¢} KE&(1)

0
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Proof. Letus fix¢ > 0 and O< ¢ < o < 1 such thaf{(3]2) holds with this For ally € (0, 6), let
T,, be a smooth non-increasing function equal to {-wo, —6 — n] and 0 in [0, co). Then [3.2)
can be applied tg, = T, ocwithry =0andr, =T

Now an approximation argument shows that}(3.2) also hold¥ falefined as follows:

1. T, is non-increasing and continuous,
2. T,(x) =1lifx < -0 —1n,0x)=0ifx > —
3. T, is affine on -6 — n, —0],

and¢, = T, o c. Since
1
(¢r])t = Ct(T;; oc) = _;Ctl{—e—n<c<—0}v

we get

T 1 T
f f <——>c, dx dr + / / c(x, y(x, 1) dHN_l(x) dr
0 JKe@)N{—0—n<c<—0)} n 0 J{dkwpy=¢)

T
> [/ ¢,7(x,t)dxi| . (5.2
Ke(t) 0

We want to let; tend to 0 in[(5.R). Thanks to the co-area formula,

r 1
/ / <——>c,(x,t)dxdt
0 JKe(@)N{—0—n<c<—0) n

T 1
§/ /7 _|Ct(x7t)|1{c,<0}(xat)dth
0 JKe(@)N{—0—n<c<—0} 1

17 lce (x, 1) N-1
= - ———— 1, <0y (x, 1) dH™ T (x) do d. 5.3
f f /‘”(t)ﬂ{c( =0} |Dc(x, )] =0 (>3)

The co-area formula can be applied sinég Lipschitz continuous with respect to the space variable
and of clas<C1, so that assumption (A2) implies thatdfis small enough ang € (0, 9), then D¢

is bounded away from 0 of-0 — < ¢ < —0} N {Bg x [0, T]}. As a standard consequence of
assumptions (Al) and (A2), there exists> 0 such that the map

|Ct(x 3] N—1
o= <0y (x, 1) dH (x) dr
/ /Kf(z)n{c( =0} |De(x, )] Ler<o)

is usc on(—oo, og) for all 0 < ¢ < 1 (with the convention thak°(r) = K (r)). In particular forg
small enough, ag tends to 0O, the last term df (5.3) satisfies

e (x| Vo1
limsu / / / ——— 1, <oy (x, ) AH" T (x) do dt
ey ety 1D ] 0

ler (x, 1) N—1
————— 1, <0 (x, 1) dH" T (x) dr. 5.4
/ /é(z)m{c( n=—6} |Dc(x, 1)] <0 (>4)
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Moreover, fore < &g,
T
f f ¢ (x, 1)y (x, 1) dHV ~L(x) dr
di =€}
T
</ / 0 (x, D)y (x, 1) dHN "1 (x) it
{dxy=¢}

/ / Liee—gy(x, )cO(x, ) dHV L(x) dr,  (5.5)
77%0 d[((l) 8

and

T T
|:/ ¢,7(x, 1) dxi| — [/ 1{C<,9}(x, t) dxi| . (56)
Ke(0) o 0 L/ke) 0
Combining [(5.2) to[(5)6) then gives (5.1). O

Intermediate stepLet 2, = {x € R"; ¢(x, 1) < —80} for 6 chosen small enough so that (5.1) holds.
Sincec is of classC?, for g < 1 small enough depending 6nc® < 0 onU,E[O’T] (BrN2,) x {t},
S0c¢0 = —(c®0)_ on this set. Since in additiari® is Lipschitz continuous with respect to the space
variable because of its definition (withDc®0||o, < ||Dclloo), by a regularization argument there
existsc satisfying the following assumptions:

(i ¢is of classCt onRY x [0, 77,
(i) ¢ is Lipschitz continuous with respect to the space variable

with || D€]loo < | Dc™|loo, (5.7
(i) 0< e < (c)_in U (Br N 2,) x {t}.
t€l[0,T]

Then[5.1) gives, for almost all & ¢ < &g and allc satisfying [5.}),
T
f / Lie—py(x, )E(x, 1) dHN ~L(x) dr
dK(,)—F

T
< / / Lo oy (s () (x, 1) dHY 1) i
dg =€}

T
<- [ [t r)dx}
Ke(1) 0

lcr(x, 1) N_1
/ /F(t))mc( P \De(x. 1] 1{Cz<0} (x,1) dH (x) dr. (5.8)

Let us fixc satisfying [5.). Now we want, thanks to the control given[by]|(5.8), to estimate the
total variation ofc(-, t) 1k« (), and then let tend O to get an estimate o1, t) 1 ;). To this end, we
introducea; (x, t) = c(x, t)1g=(;(x). Proposition 3.2 of [3] on the product of a BV function and a
regular function shows that for alle [0, T] and alle > 0, a.(-,t) € BV(RY), and if [Da, (-, 1)]
denotes the vector-valued variation measure. 6f, 1) as defined in Theorefn 2.9, we have

[Daé‘(‘v t)] = _E(a t)vKg(l)Hll_\(;;I](:“'(t) + 1KF([)DE(, t)L:N (59)



272 A. MONTEILLET

Now let us introduce two notations:

1. Forafixed € [0, T]andé > 0, XY denotes the set of vector-valued functigne C1(Bg, RV)
vanishing onB g N 2¢ with ||¢]loe < 1.

2. X9 is the set of all functiong such thatp(-,¢) € X? for all + € [0, T], with ¢ and D¢
measurable oRY x [0, T], and|| D¢ ||« < 0o.

LEMMA 5.3 Forallé > 0 small enough,

T
sup{f / C(x,t)l{c<9}(x,t)divx¢(x,t)dxdt} < M(@0), (5.10)
K(t)

peXx?
where diy stands for the divergence with respect to the space variable, and where

M@©®) = LN (K () + TLY (Br)|Dclloo

|Ct(x [)| N—1
——— 1, <oy (x, 1) dH" 77 (x) dr.
/ /K(t)ﬂ{c( =—0) |Dc(x, 1)] ter=<0)

Proof. Fix 6 > 0 small enough and choosg < 1 so that[(5.8) holds for almost all< o and all

¢ satisfying [5.7). Letp € X?. Sincea, (-, t) vanishes offB  for ¢ < o, we have thanks t¢ (5.9),
after extendingp (-, r) to RV in a C* way so as to obtain a function with compact support in the
space variable,

T
//ag(x,t)divxqb(x,t)dxdt
0 RN
T
_ / / Lo gy (x, 6, (@ (x, 1), vie (o (1)) FHY 1) do
0*Ke(t)

T
_ / / Liew—o)(x. D{DE(x, 1), b (x, 1)) dlr . (5.11)
Ke(t)

The integration in time is justified since each of the expressions under the time integral signs is
integrable on(0, 7') by Fubini's theorem. Fop € X?,

T
/ / Lo oy (s 6 (@ (x. 1), vice (o (1)) FHY L) die
K@)

T
< / / Lie—py(x, De(x, N AHN ) dr (5.12)
di =€}

sinced*K*(t) C 0K*(t) = {dk ) = €}, andli.<—_g(x, t)c(x, t) > O thanks to[(5]7)(iii). Buf(5]8)
gives an upper bound of this term for almost akkQ: < &o:

T
/ / Liew_g(x. 0E(x, 1) dHY (o) di
d]((,)—s

N e ! le: (x, )| N1
< LV (K (0)) + S ) e (. D AN () . (5.13)
KO )Nfe(-,n=—0) 1Dc(x, )]
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In addition, for¢ € X ande < o,

Licc—oy(x, t)(DC(x, 1), ¢ (x, 1)) dx Of

K&(1)
< TLYBR)IDC|oo < TLY (BR)IDc®|loo < TLY (BR)IDellos (5.14)

because of( (5]7)(ii) and by definition of°. Let us introduce a variation measure i, t) €
N % [0, T]; c(x, 1) < —6} with respect to the space variable by the following formula:

T

|Dyac| = sup{/ / ag(x,t)divx(b(x,t)d.xdt}.
pex? LJO JRN

We deduce fron|(5.11) t¢ (5.]14) that—> | Dya.| is bounded o0, o). Moreover(a.) converges

toa: (x,1) — c(x, )1k (x) in L1 ase tends to 0. But it is straightforward to see thj@, (-)| is

Isc for the topology of.1(RY x (0, T)) (seel[15, Theorem 1, p. 172]). This implies thdtas finite

| D, (+)|| variation, with

| Dyall < liminf || Dya.||
e—0

< LYK () + TLY(BR)|Dclloo

s (x, 1) N—1

——— 1, <0y (x, 1) K (x)dr = M ().
/ /K(z)m{c( H=—0) | Dc(x, 1)] }

The integral term in the last inequality comes when lettipg— 0 in (5.13) by dominated

convergence. Indeed¢o(r) — K(t) everywhere_and the domination comes from the fact that

Dc is bounded away from 0 on the det= —60} N {Br x [0, T]}. The inequalityl| Dya| < M)

amounts to saying that for allsatisfying [5.7),

T
sup{f / E(x,t)l{c<9}(x,t)divx¢(x,t)dxdt} < M(@®).
K (1)

pex?

Now a convolution argument shows that we can makenverge uniformly tac®)_ on [0, 7] x
B g with ¢ satisfying [5.F). Therefore going to the limit in the previous inequality by dominated
convergence, and then finally letting — O by the same argument, we get the result. |

We are finally ready to let — 0. SetX = x° and for allz € [0, T], X; = X°, wherex® and x°
are defined before Lemrpa b.3. In particular gng X vanishes outsidg < 0}.

LEMMA 5.4 .
sup{/ / C(x,t)divxtp(x,t)dxdt} < M(0). (5.15)
K(1)

peX
Proof. Let¢ e X. Consider the truncation functidf, a continuous and piecewise affine function,
such thatr?(s) = 1 fors < —20, andT?(s) = 0 fors > —6. We regularize'? to get a sequence
(1% of functions converging uniformly t@, whose derivatives converge pointwise(')’, and
such that there exists a constaht> 0 satisfying||(7,?)'|« < C/6 for all n. Then [5.1ID) can be
applied to(T? o c)¢. But

div, (T o c)p = ((T?) o ¢) (¢, Dc) + (T7 o ¢) divy ¢.
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As n goes to infinity, we deduce from the dominated convergence theorem that

r 1
/ / C—(x,t)<—5>1{—29<c<—9}(x,t)(qb(x,l), Dc(x, 1)) dx dr
o Jk®

T
+/ / c_(x, )(T? o ¢) divy ¢ (x, 1) dx dr < M(0).
0 K1)

As 6 tends to O, the first term converges to 0: the domination comes from the fact that
le— (x, (=3 L—29<c<—0)(x, )] < 2(20) = 2 and the domain of integration is bounded. The
second term converges to

T
/ / c_(x,t)divy ¢ (x, 1) dx dr.
0 K (1)

Moreover, recall thad — M () is usc on(—oayp, op) for og small enough, which implies that
limsupy_,o M (@) < M(0). Given thatc_ = —c on{c < 0}, we get the desired result in the limit as
6 — 0. O

The following lemma is a consequencelof (5.15) and will be proved at the end of this section for the
sake of readability:

LEMMA 5.5 Foralmostalt € [0, T],
Sup{/ c(x,t)div¢(x)dx} < 0.
peX; WUK(1)
We deduce from this lemma and the definitionXyfthat for almost alk < [0, T, c(-, 1)1k ()
has bounded variation ifa(-, t) < 0}, and assertion (i) of Theorgm 5.1 is proved.

Proof of Theorerﬁ_E]l(ii).Fix at such that(-, 1)1k has bounded variation ife(-, r) < 0}. For
allp > 0, 1/c(-, 1) is of classC on{x € RV; ¢(x, 1) < —n} and Lipschitz continuous. It follows
from Proposition 3.2 of [3] that k) has bounded variation, whendg(¢) has finite perimeter, in
{x € RN ¢(x,1) < —n} for all n > 0. This proves assertion (i) of TheorKI(t) has locally
finite perimeter inc(-, t) < 0} for almost allr € [0, T].

Proof of Theorerpi 5]1(iii).

Step 1.As in the intermediate step before Lemma| 5.3, let ugfix 0 small enough so that (5.1)
holds, and takeg < 1 small enough depending érandc satisfying[5.F). Now{(5]9) can be applied
toa: (x,t) — c(x, t)1g ) and shows that for almost alle [0, 7],

[Da(, )] = =2, vy Higeg o + 1k DeC, HLY infe(, 1) < 0},

which amounts to saying that for almost alk [0, T], for all ¢ of classC! on R¥ with compact
support infc(-, t) < 0},

/ C(x, 1) dive (x) dx
K ()

=/ E(XJ)(d)(X),VK(r)(X))dHN_l(X)—/ (De(x, 1), ¢(x))dx.  (5.16)
0*K (1) K (1)
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Now let ¢ be of classC! on By and vanish off{c(-, 1) < —6} for some# > 0. We can assume
without changing any of the integrals [n (5]16) tigahas compact support ife (-, r) < 0}, so that

(518) holds forp.
Step 2.Fix ¢ € X?. Thanks to[(5.16) we have

T
/ f Licc—py(x, t)c(x, 1) divy ¢ (x, t) dx df
K(t)
T
- / f Lie <) (6. 0ECe D (. 1), Vi () dHY L)
o Joko

T
—// Lic<—oy(x, ){DC(x, 1), ¢ (x, 1)) dx dr. (5.17)
K1)

Let us go back to[(5.11): by dominated convergence, the first and third terms of this equality
respectively converge as— O to the first and third terms df (5.17), which shows that

T
/ f Lie<—0) (X, T, (P (x, 1), vge () dHN () e
o Jorkew

/ f Lo <o) (e D2Cx, {6 (. 1), vy (0)) AV 1) .
e—0 *K (1)

Therefore, letting — 0,¢ — (¢?°)_ andeg — 0 in estimate[(5]8) now shows, singéK*(¢) C
0KE:(t) = {dK(;) = ¢}, that

T
/ / Lo o) (x. DECe, D) (. 1), vy () AV 1) de
K (1)

T
- |:/ Lic<—oy(x, t)dx:|
0

t
/ /K(f)ﬂ{ P ||gc(z; t))|| (e, <0y (X, 1) dH¥ " 1(x)dr.  (5.18)

N

We will need two additional notations:

1. Forafixed € [0, T]and6 > 0, X? denotes the set of vector-valued functigns C(Bg, RY)
vanishing onBr N £27 with ||¢[ec < 1.
2. X? is the set of all functiong such that (-, ) € f(f for all # € [0, T], with ¢ measurable on
N x [0, T].

An approximation argument shows that (§.18) holdsgfar X,

Step 3We give a lemma in the spirit of Lemnia 5.5, whose proof will also be given at the end of
this section:

LEMMA 5.6 Foralld > 0:
(i) Foralmostallr € [0, T7],

sup{ / c- (@ D{P (), vr (1) () dHNl(x>} < o0. (5.19)
pex? K@)
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(i) Moreover,

T
SUp{/ / - (D@ (x, 1), Vi (1) (X)) dHN‘l(x)dt}
0 Jo*K (1)

peX?

T

= / SUD{/ c—(x, 1){P(x), vk (1) (X)) dHNl(X)} dr.  (5.20)

0 ekt ok

We keep in mind tha{(5.18) gives an upper bound for the left-hand side of this equality. Now
we show that for alp > 0 andr € [0, T] such that[(5.19) holds ank (z) has finite perimeter in

{x € RN; ¢(x,1) < —60} (which is true for almost all thanks to the proof of Theor.l(ii)), the
supremum actually equals

/ c—(x, 1) Loy (x, NAHY L(x). (5.21)
9* K (1)

Let suchd > 0 andr € [0, T] be fixed. LetC C {c(-,t) < —60} be compact. Sinc& (¢) has finite
perimeter in{x € RN; c(x,1) < —0}, C N 3*K (r) is a set of finite®¥ ~1 measure. Therefore the

integral
/ c_(x,t) dHN-1
CNo*K (1)

is finite and according to Lusin’s theorem (see| [15] for instance), we know that ferall, there
exists a compact s€t, C C N 9*K (¢) such thab ) restricted toC, is continuous and

HNY[C N K(D]\ Cp) < 1/n. (5.22)

We fixn > 1. For ally > 0 small enough so that + B(0, n) C {c(-,t) < —6}, we consider,
such thaw, < C?(C,, + B(0, n)), ll¢yll < 1 andg, coincides withvg ) on C,. The existence of

¢y is guaranteed by [15, Theorem 1, p. 13]. Thigne )?f and
[ e v o
0*K (1)

= / e (x, )y dHN " x) + /B K()1[cn+B<o,n>]\cn(x)c_(x,r)<¢n(x>,vKg)(x))dHN—l(x).
n * t

As n goesto O,

/a ‘o Lic,+BO NG, X)c—(x, 1) {y(x), Vi (1) (X)) dHN 1 (x)
*K(t

< ||C||oo/ Lc,+Bo.mne, ®) dHY 1 (x) — 0
*K (1)

thanks to the dominated convergence theorem. Therefore

/3 ‘o e (x, 1){dn (), Vi (ry () ARV " (x) — / c_(x, 0y dHN ()
* t

CNI*K (1)

1
N c—(x, N AHY () < leflos=
=0 Jicna*k (1)]\Cy "
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thanks to[(5.22). We have constructed functigpse X? such that the integral
[ e twnia .o @)
K (1)

is arbitrarily close to the integrd|. . . ,, ¢ (x, 1) dH" ~1(x), which in turn, by taking® = C, =
B(0, p)N{x; dic(.n>—-6)(x) > 1/p}, asp — oo by monotone convergence can be made arbitrarily
close tofy. ;¢ (x, 1) Lje<—g) (x, 1) dHN=1(x). This proves[(5.21).

Step 4. Combining the results of Steps 2 and 3, we have, fof all 0,
T
f f (0, Djeepy(x, ) dHV L (x) dr
9*K (1)

lc: (x, )] N—1
< - Lice—oy(x, 1) dx] / f ——— 1, <0y (x, 1) OH (x) dr.
|:/K(z) fe==0) KO)N{e(n=—0) | Dc(x, 1)l <0

If we let6 — 0 in this estimate, since the right-hand side is upper semicontinuous, the Beppo-Levi
monotone convergence theorem shows ﬁafa*m” c_(x, 1) dHN~1(x) dr is finite and

T
f / c_(x, ) dHNL(x) dr
0 Jo*K@)

e (x, 1) N1
<[ 1.2 (x,t)dxi| / / 1 DLy e dHY ) o,
[/K(r) <0 KOnfe,n=0 1Dc(x, )] =<0

and this finally proves the third assertion of Theofen 5.1.

Proof of Lemma5]51f the lemma were not true, there would existc [0, T'] with positive measure
such that for alk € A, SURyex, {me c(x,t)dive(x)dx} = co. Lete > 0 be fixed. For alM > 0,
set

Ey = {t € A; d¢ € X, with | D¢ |lco < M, / c(x,t)dive(x)dx > 1/8},
K1)

which is non-empty forM large enough. We also point out that= J,,. o Em. Let us fix M
large enough so that,, # @. We want to construcp € X such that| D¢l < M and for all

te Ey, fK([) c(x,t)dive(x, t)dx > 1/e. In order to do so, we will need the notion of measurable
selection. For more details than those given below, we refér to [4].

We recall that if(£2, .A) is a measurable space, arids a complete separable metric space, a
mapF : 2 — P(Y) whose images are closed subset¥ o said to beaneasurablef for all open
subsetd/ c ¥, FY(U) = {w € 2; F(w)NU # ¥} € A. A measurable mag : 2 — Y such
that for allw € 2, f(w) € F(w), is called aneasurable selectioof F.

If Z is another complete separable metric space, we say th& x Y — Z is Carathéodoryif
forall w € £2, g(w, -) is continuous, and for alt € Y, g(-, x) is measurable. In order to construct
our functiong, we use the following measurable selection theorem:

THEOREMS.7 ([4, Theorem 8.2.9]) Lets2, A) be a measurable space. LEtand Z be two
complete separable metric spaces, &hd 2 — P(Y) andG : 2 — P(Z) be two measurable
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maps with closed images. Let: 2 x Y — Z be a Carathéodory map. Then the map> {x €
F(w); g(w, x) € G(w)} is measurable. Moreover if

Vo € 2, g(o, F(w)NG() # 9,
then there exists a measurable selectfarf F such that for allb € 2, g(w, f(w)) € G(w).
We apply Theorerp 5|7 with
Q=Ey, Z=R,

Y = (¢ € CY(Br); ¢l
F(1) ={¢ € Xs; | Dol

g(t,p) = / c(x, t)dive (x) dx.
K(t)

land|Dgllec < M}  with the normiig|leo + 1D lloo,
M}, G(t) =[1/g, 00),

VAS/N

We first notice thalt and Z are complete separable metric spaces, andEhatd G have closed
images. Moreovel; is constant, thus measurable.

1.Forallt € [0, T], Ft) = {¢p € Y; SUPERm{c(.,t)>O}|¢(x)| = 0}, and Theore 7 applied to
Fi1(t) =Y, G1(t) = {0}, g1(¢, 9) = supERm{c(,7,)>0}|¢(x)| shows thatF' is measurable on [T].
Indeedg is Carathéodoryg1(-, ¢) is clearly usc, whence measurable.

2. Next we see that— g(¢, ¢) is measurable on [@] for all ¢ € C1(B), because of Fubini's
theorem, sincéx, 1) > lg(x)c(x, ) divg(x) € LYRN x [0, T]). Moreoverg > g(t, ¢) is
continuous since the domain of integration is bounded @islbounded, which shows thatis
Carathéodory.

3. The supremum of measurable functions on a set that depends in a measurablervigy on
measurable (cfl]4, Theorem 8.2.11]), so Steps 1 and 2 show that

h:tr sup {/ c(x,t)ddib(x)d.x}
PeF (1) K(t)

is measurable on [@']. But Ey = h~1((1/e, o0)) N A, henceE), is Lebesgue measurable. By
restriction, the map#', G andg(-, ¢) (V¢ € Y) are measurable oy, .

The assumptions of the measurable selection theorem are satisfied, and after extenfdijpg off
by multiplying the measurable selection obtainedlby, which is measurable, we get the existence
of ¢ € X such thatforalt € Ey,

/ c(x,)divy ¢p(x,t)dx > 1/e,
K (1)

and this integral vanishes on,[D] \ Ej,. Integrating this inequality between 0 afiq taking the
supremum fokp € X on the left-hand side, and letting go to infinity we conclude, sincda =
Upr=0 Eum, that

L(A)

T
sup{/ / c(x,t)divxgb(x,t)dxdt} > —
pex LJO JK(@) &

Since this is true for a# > 0, and sinceC(A) > 0, lettinge — 0 contradicts[(5.1]5) and concludes
the proof of Lemma 5.5.
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Proof of Lemma 5]6(i).The proof is in every way similar to the previous one, with the following
modifications:

1. We need not considdt,,; since there is no first order derivative condition. Sas the set of
t € [0, T] such thatK (¢) has finite perimeter ifc(-,¢) < 0}, which is known to have full
measure. _ .

2. CY(Bp) is replaced byC%(B ) with the || - || norm, andX, is replaced byx?.

3. g is defined byg(r, ) =[5 c—(x, (P (x, 1), V(1) (X)) dHN-1(x), the main argument to
verify thatg is Carathéodory being th&tV —1({c(-, 1) < =6} N 8*K (¢)) is finite for allt € £2.
Proof of Lemma@ 5]6(ii).We start by noticing that the<” inequality of {5.20) is obvious. Now we

know, thanks to (i), that there exis#sof zero measure such that foe 2 \ A,

SUD{/ c—(x, ) {p(x), vy (%)) dHN_l(x)} < oo.
pext Lok (@)
Lete > 0 be fixed. We apply Theorem 5.7 with

Y ={¢ € C°Br); llplloo <1} withthe norm|glle. Z =R,

F(r)= XY,
G(1) = [ sup{ / e (x, (P (x), Vi 1y (X)) dHN—lm} — &, oo),
peX? LT K@)

g(t.§) = / e (x. (@ (), vr o (1)) FHY 1),
0*K (1)

All the maps considered are measurable thanks to the previous proof. Indeed, another use of
Theorem[5]7 withyy = Z; = R, Fi(t) = R, G1(r) = [0,00), and g1(y,1) = y —
SUR,c 39 {fa*K(z) c—(x, 1) {p(x), vk (1) (x)) dHV~1(x)} + ¢ shows thatG is measurable, which was
the only missing verification.
As in the proof of Lemm5, we obtain the existencesaf X? such that for alt € 22 \ 4,

/ c(x,t)divy ¢ (x,)dx > Sup{/ c(x,t)dive (x) dx} —&.
K (1) pek? VKO

Integrating this inequality between 0 afidand then letting — 0 proves|[(5.20).

6. Corresponding results for supersolutions

We state in this section the counterparts for supersolutions of the main results proved up to now, and
give the modifications needed for the proofs.

6.1 The integral formulation for supersolutions

Letc : RY x [0, T] — R satisfy the assumptions of Theorpm|2.2, and[0, 7] — P(RV)\ {RV}
be such that

1. £2 is uniformly bounded on [0T'], £2(t) — £2(0) ast — 0 and$2(¢r) — 2(T) ast — T inthe
Hausdorff distance.
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2. The grapIU,E[O,T]{t} x £2(t) of 2 isopenin[0T] x RN

3. u:(x,1) = lo(x) is aviscosity supersolution of the eikonal equation
u; = c(x,t)|Dul inRN x (0, 7).

Set for alle > 0,

Q°(1) = {x e RY; doe(y(x) > &), co(x. 1) = min_c(y.0).

y—x|e
Then we have:

THEOREM®6.1 For allty andt, satisfying 0< 11 < 12 < T, for almost alle > 0, and for all
¢ € CHRN x [0, T], Ry),

7] 2
/ / ¢, (v, 1) dr i + / / ce (e, D (x, 1) dHY () di
1 JRE@) 11 Hdgep=¢}

15
< [/ q)(x,t)dx] 2. (6.1)
£4(1) 11

REMARK 6.2 The fact that is a supersolution of the equation does not guarantee, unlike the case
of subsolutions, that the evolution is bounded. This is why assumption 1 has to be stronger for
supersolutions.

The only changes in the proof are:

[

Lwx, ) = d_QC(,)(x).

. We taked : R — R non-decreasing of clagd™ such thatt = 0in (—o0,0],0 = 1in [e, 00).

3. The equivalent of Propositign 3.5 is proved by a regularization by inf-convolution instead of
sup-convolution.

N

All arguments then follow in the same way.

6.2 The converse implication for supersolutions
The converse theorem for supersolutions naturally becomes:

THEOREM6.3 Letc : RN x[0, T] — R satisfy the assumptions ofTheor2.2 and[0, 7] —
P@RN) \ {RV} be such that

1. £2 is uniformly bounded on [0T].

2. The graphJ, o 71{7} x £2(1) of 2 isopenin [0 T] x RY.

3. Inequality [(6.]1) holds for all &< #1 < 2 < T, for almost alle > 0 small enough and for all
¢ € CYRN x [0, T], Ry).

Thenu : (x, 1) — 1o (x) is a viscosity supersolution @f = c(x, t)|Du| in RN x (0, 7).

In the proof of this result, the only change occurs when switching the integration order between
x ando (the equivalent 0f(4]4)), and we get

f/ ¢t(x,r>dxdo=/ dae (¥ (x. 1) dx.
0 40) (1)

which is exactly what we need to comply with the inequalities for supersolutions.
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6.3 Regularity of the front
The analogue of Theorgm $.1 when we work[on](6.1) is the following:

THEOREM6.4 Letc : RN x [0, T] — R satisfy the assumptions of Theorem|2.2 gad), (A2).
Let$2 : [0, 7] — P@RY) \ {R"} be such that:

1. £2 is uniformly bounded on [0T'], £2(r) — £2(0) ast — 0 and$2(tr) — 2(T) ast — T inthe
Hausdorff distance.

2. The graph\jte[0 it} x £2(1) of 2isopenin[Q7T] x RV,

3. u:(x,1) — 1o (x) is a supersolution of the eikonal equatipn3.1).

Then the following hold:
(i) Fora.ar €[0, T], c(-, 1)1 has bounded variation ifa(-, r) > O}.

(i) Fora.a.r € [0, T], £2(¢) has locally finite perimeter ifc(-, r) > 0}.
(iif) Denoting by (-)+ the positive part of a quantity{ = max(x, 0)), we have

T
/ / c(x, 1) dHY 1(x) dr < oo,
0 Jaew

an upper bound for this integral being given by

ey (x, 1) _
Lio—oy(x, ) dx / / L 1 <0y (x, DAHY T (x) dr.
[/Q(z) te>0y(x 1) i| 2nic(.n=0} |Dc(x, )] fer<0) (X 1) )

The only modification is basically to switch alt < 0} to {¢ > 0} and use the modified
truncation7,,, a continuous non-decreasing and piecewise affine function equal {6-@in 0] and
1in [0 + n, co) so as to isolate the s@t > 0} instead of{c < 0}.

7. Global estimate
We finally synthesize the results of Theordmg 5.1[anfd 6.4 in order to get a global estimate.

THEOREM7.1 Letc: RN x [0, T] — R satisfy the assumptions of Theorem|2.2 gad), (A2),
andlet2 : [0, T] — P(RY) andK : [0, T] — P@RN) \ {#} be such that:

1. K(0) is compact and for all € [0, T], 2(¢) C K(¢).

2. K(t) — K(0) and$2(r) — $£2(0) in the Hausdorff distance as— 0,
K@) — K(T) and$f2(t) — £2(T) in the Hausdorff distance as— T.

3. GraphK) is closed in [0T] x RY andu : (x,f) — 1k (x) is a subsolution of the eikonal
equation[(3]1).

4. Graphi$2) is openin [0T] x RY andu : (x,1) — lg)(x) is a supersolution of the eikonal
equation[(3.]L).

5. LN+t1(GraphK) \ Graph)) =0

Then for a.at € [0, T], K(¢) has locally finite perimeter ifc(-, t) # 0}, and if sgrir) denotes the
sign ofr € R (sgn(r) = r/|r| if r # 0, sgn0) = 0), we have the following estimate:
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T
/ / le(x, )| dHY 71 (x) dt
0 Jo*K@)

! T le: (x, 1)
< |:/ sgn(c(x, t)) dx] + 2/ / ————— 1, <0 (x, 1) dHN 1 (x) dr.
K@) 0 o Jrkmnict,n=0 1Dc(x, 1)]

REMARK 7.2 The existence al andK satisfying assumptions 1, 3 and 4 is ensured by Theorem
[2.2 and the paragraph that follows it. Assumption 2 avoids pathological behavior of the front at
times 0 andr’, and assumption 5 is related to the so-called non-empty interior difficulty[(see [9]).

Proof. Since£LN+1(GraphK) \ Graph2)) = 0, we haveC" (K (1) \ £2(1)) = 0 for almost all
t € [0, T]. ThereforekK () has locally finite perimeter ifc (-, t) # 0} for almost all: such thatk ()
has locally finite perimeter ifc(-, ) < 0} and$2(¢) has locally finite perimeter ifx(-, t) > 0}, and
thend*2(r) = 0*K (¢). Finally, using the fact that| = ¢_ + ¢4, we deduce the global estimate

by summing the estimates of Theorgmg 5.1[an{ 6.4. O
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