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Integral formulations of the geometric eikonal equation
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We prove integral formulations of the eikonal equationut = c(x, t)|Du|, equivalent to the notion
of viscosity solution in the framework of the set-theoretic approach to front propagation problems.
We apply these integral formulations to investigate the regularity of the front: we prove that under
regularity assumptions on the velocityc, the front has locally finite perimeter in{c 6= 0}, and we give
a time-integral estimate of its perimeter.
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variation; sets of finite perimeter.

1. Introduction

We are interested in generalized time evolutions of subsetsK(t) of RN , N > 1, governed by the
following geometric law:

Vx,t = c(x, t), (1.1)

whereVx,t denotes the normal velocity of a pointx of ∂K(t) at timet . If for exampleK(t) can be
represented by

K(t) = {x ∈ RN ; u(x, t) > 0}, ∂K(t) = {x ∈ RN ; u(x, t) = 0}

for someC1 functionu : RN × [0, T ] → R such thatu(x, t) = 0 implies that the space gradient
Du(x, t) 6= 0, then a classical calculation yields

Vx,t =
ut (x, t)

|Du(x, t)|
,

whereut denotes the time derivative ofu, and| · | the usual euclidian norm onRN (|x| = 〈x, x〉1/2),
so thatu satisfies the so-calledeikonal equation

ut = c(x, t)|Du| (1.2)

for all (x, t) ∈ RN × (0, T ) such thatu(x, t) = 0. If the front∂K(t) is not assumed to be regular,
equation (1.2) gives a generalized way of studying the evolution, and the notion of viscosity solution
of this equation provides a satisfactory framework to do so. More precisely, one possible generalized
solution of the geometric evolution (1.1), called aset-theoreticsolution, is a family(K(t)) of subsets
of RN such that(x, t) 7→ 1K(t)(x) is a discontinuous viscosity solution of (1.2), where1E is the
indicator function of a setE. We refer to [13] for a complete overview of viscosity solutions, and to
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[17] for details about set-theoretic solutions. Various applications of the notion of viscosity solutions
can also be found in [5, 6, 7, 14, 19], to mention but a few. Other approaches to the problems of
propagating fronts are presented in [2, 10, 21].

Our work is motivated by a model for the dynamics of dislocation lines in a crystal, which
gives rise to a Hamilton–Jacobi equation with a non-local term. In questions related to existence for
this non-local equation, it is interesting to understand the behavior of the solutions of the eikonal
equation, and especially the regularity properties of the front∂K(t). This has been done for example
by Evans and Spruck [16] for the motion by mean curvature. In the case of the geometric eikonal
equation, the regularity of the front has recently been investigated for positive velocities by Alvarez,
Cardaliaguet and Monneau [1], and using another method by Barles and Ley [8], and their works
show that a good regularity property to investigate is that of finite perimeter. More precisely, it is
proved in [1] that theK(t)’s have finite perimeter ifc > 0 andK(0) has the interior ball property,
i.e. is the union of closed balls of some fixed radius. Cardaliaguet and Cannarsa [11] then improved
and generalized the estimates of [1]. However, results in this spirit lack for velocities with no sign.

To achieve such results, we search for analytic ways of studying the geometric equation (1.1),
and we first focus on the case of set-theoreticsubsolutions. One clue in this direction is Hadamard’s
formula in the case whereK(t) is open, bounded, and(K(t)) evolves smoothly in time: for all
φ ∈ C1(RN × [0, T ],R),

d

dt

∫
K(t)

φ(x, t)dx =

∫
K(t)

φt (x, t)dx +

∫
∂K(t)

Vx,tφ(x, t)dHN−1(x),

whereHN−1 denotes the(N − 1)-dimensional Hausdorff measure. In particular, ifVx,t 6 c(x, t)

in the classical sense, then for allφ ∈ C1(RN × [0, T ],R+), we have

d

dt

∫
K(t)

φ(x, t)dx 6
∫
K(t)

φt (x, t)dx +

∫
∂K(t)

c(x, t)φ(x, t)dHN−1(x). (1.3)

The problem is that the term
∫
∂K(t)

c(x, t)φ(x, t)dHN−1(x) does not make sense in the viscosity
solution framework: the regularity ofK(t) in terms of perimeter is unknown (actually, one of the
reasons to consider this formula is togivea meaning to this term). However, if we set

Kε(t) = {x ∈ RN ; dK(t)(x) < ε},

wheredF denotes the distance function to some closed non-empty setF ⊂ RN , thenKε(t) has
finite perimeter and one of our main results is that (1.3) admits the following integral generalization:
under standard regularity assumptions on the velocityc : RN × [0, T ] → R, we have for allt1 and
t2 satisfying 06 t1 6 t2 6 T , for almost allε > 0, and for allφ ∈ C1(RN × [0, T ],R+),[∫

Kε(t)

φ(x, t)dx

]t2
t1

6
∫ t2

t1

∫
Kε(t)

φt (x, t)dx dt +
∫ t2

t1

∫
{dK(t)=ε}

cε(x, t)φ(x, t)dHN−1(x)dt,

where we have introduced a perturbation of the velocity by

cε(x, t) = max
|y−x|6ε

c(y, t).

We find in [1], in the case wherec > 0, an integral formulation valid for any family(K(t)) such
that 1K(t) satisfies the eikonal equation almost everywhere. In our case, although the perturbation
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by ε seems restrictive at first glance, we have in compensation considerable freedom in choosingε.
As a consequence, we will prove that our integral formulation is actuallyequivalentto the notion of
set-theoretic subsolution of the eikonal equation.

After setting the notations in Section 2, we prove the integral formulation of the eikonal equation
for subsolutions (Theorem 3.1) in Section 3. Conversely, we prove in Section 4 that this integral
formulation characterizes the notion of set-theoretic subsolution of (1.1): this is Theorem 4.1. Then
in Section 5 we use the integral formulation for subsolutions to investigate regularity properties
of the K(t)’s and give a time-integral estimate of their perimeter. These results are contained
in Theorem 5.1. All the results can be adapted to the notion of set-theoreticsupersolutions, as
expected. We collect the corresponding results in Section 6. Finally, in Section 7, under a regularity
assumption on the evolution related to the non-empty interior difficulty arising in the level-set
method, we combine these results for sub- and supersolutions to prove in Theorem 7.1 that for
almost all t ∈ [0, T ], K(t) has locally finite perimeter in{c(·, t) 6= 0}, and that we have the
following estimate:∫ T

0

∫
∂∗K(t)

|c(x, t)| dHN−1(x)dt

6

[∫
K(t)

sgn(c(x, t))dx

]T
0

+ 2
∫ T

0

∫
K(t)∩{c(·,t)=0}

|ct (x, t)|

|Dc(x, t)|
1{ct<0} dHN−1(x)dt,

where∂∗K(t) is the reduced boundary ofK(t), and sgn(c) the sign ofc.

2. Notations and tools

Let us start with standard notations.B(x, r) (resp.B(x, r)) denotes the open (resp. closed) ball of
radiusr > 0 centered atx ∈ RN . The notationEc stands for the complement of a setE, andLp
denotes the Lebesgue measure onRp. Finally,C0(U, V ) (resp.C1(U, V )) is the set of continuous
(resp. continuously differentiable) functions fromU ⊂ Rp to V ⊂ Rq . We add a subscriptc to
indicate that in addition these functions have compact support inU : C0

c (U, V ), C
1
c (U, V ). Finally,

we abbreviate “upper semicontinuous" (resp. “lower semicontinuous") to usc (resp. lsc).

2.1 Viscosity solutions and set-theoretic approach

We first give the results that ensure the existence of set-theoretic sub- and supersolutions of the
eikonal equation with initial value:{

ut = c(x, t)|Du| in RN × (0, T ),

u(x,0) = u0(x) in RN .
(2.1)

For the convenience of the reader, we recall the definitions of a viscosity sub- and supersolution of
the eikonal equation and of a solution of problem (2.1):

DEFINITION 2.1 (Crandall and Lions [14]) 1. We say thatu : RN × [0, T ] → R is a viscosity
subsolution(resp.supersolution) of ut = c(x, t)|Du| in RN × (0, T ) if u is usc (resp. lsc) and
if for all test functionsφ of classC1 such thatu − φ has a local maximum (resp. minimum) at
(x, t) ∈ RN × (0, T ),

φt (x, t) 6 c(x, t)|Dφ(x, t)| (resp.>).
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2. We say thatu : RN × [0, T ] → R is aviscosity solutionof (2.1) if u is both a viscosity sub- and
supersolution ofut = c(x, t)|Du| in RN × (0, T ) and ifu(·,0) = u0.

THEOREM 2.2 (Crandall and Lions [14]) Suppose thatc : RN × [0, T ] → R is continuous,
bounded, and Lipschitz continuous with respect to the space variable. Then the problem (2.1)
has a unique uniformly continuous viscosity solutionu : RN × [0, T ] → R for every uniformly
continuous initial valueu0.

Let K(0) = Ω(0) be fixed withΩ(0) open,K(0) 6= ∅, RN , and letdK(0) denote the signed
distance function toK(0),

dK(0)(x) =

{
d∂K(0)(x) if x ∈ K(0),

−dK(0)(x) if x /∈ K(0).

Let u be the solution of (2.1) with initial valueu0 = dK(0). A technique adapted from
Barles, Soner and Souganidis ([9, Theorem 2.1]), which relies on the stability theorem for viscosity
solutions, shows that1{u>0} is also a subsolution of (1.2), while1{u>0} is a supersolution. Thus if
we setK(t) = {x ∈ RN ; u(x, t) > 0}, andΩ(t) = {x ∈ RN ; u(x, t) > 0}, we obtain a new
subsolutionu : (x, t) 7→ 1K(t)(x) and a new supersolutionu : (x, t) 7→ 1Ω(t)(x) of (1.2) in
RN × (0, T ), with respective initial values1K(0) and1Ω(0).

We notice that the upper semicontinuity ofu on RN × [0, T ] required in the definition
of subsolution is equivalent to the fact that the graph ofK : t 7→ K(t), i.e. Graph(K) =⋃
t∈[0,T ] {t} ×K(t), is closed in [0, T ]×RN . Likewise, the lower semicontinuity ofu onRN×[0, T ]

is equivalent to the graph ofΩ : t 7→ Ω(t) being open in [0, T ] × RN .
From now on we are going to focus on these so-calledset-theoretic sub-andsupersolutions

of the formu : (x, t) 7→ 1K(t)(x) andu : (x, t) 7→ 1Ω(t)(x) respectively. We first gather some
properties of the geometric evolutionst 7→ K(t) andt 7→ Ω(t). We will writeΩc(t) for (Ω(t))c.

PROPOSITION2.3 Letc satisfy the assumptions of Theorem 2.2, and letL = ‖c‖∞.

(i) Let K : [0, T ] → P(RN ) \ {∅} be such thatu : (x, t) 7→ 1K(t)(x) is a subsolution of (1.2)
in RN × (0, T ). Then for all t ∈ [0, T ] and for all s ∈ [0, T − t), we haveK(t + s) ⊂

K(t)+ B(0, Ls). In particular, the evolution is bounded on [0, T ) if K(0) is compact.
(ii) Let Ω : [0, T ] → P(RN ) \ {RN } be such thatu : (x, t) 7→ 1Ω(t)(x) is a supersolution of

(1.2) inRN × (0, T ). Then for allt ∈ [0, T ] and for alls ∈ [0, T − t), we haveΩc(t + s) ⊂

Ωc(t)+ B(0, Ls).

Proof. Let us prove (i). Sinceu : (x, t) 7→ 1K(t)(x) is a viscosity subsolution ofut = c(x, t)|Du|,
we deduce from the inequality|c| 6 L that for any fixedt ∈ [0, T ), u1 : (x, s) 7→ u(x, t + s) is
a subsolution ofut = L|Du| on RN × (0, T − t) with u1(·,0) = 1K(t). The solution of this last
equation with initial valueu2(·,0) : x 7→ max(1 − dK(t)(x),0), which is uniformly continuous,
is known and given byu2 : (x, s) 7→ max|y−x|6Ls u2(y,0). Sinceu1 andu2 satisfyu1(·,0) 6
u2(·,0), we deduce from the comparison principle (see [9, Theorem 1.3]) that for all(x, s) ∈ RN ×

[0, T − t),
u1(x, s) 6 u2(x, s), i.e. u(x, t + s) 6 max

|y−x|6Ls
u2(y,0).

Therefore ifx /∈ K(t)+B(0, Ls), then for ally with |y − x| 6 Ls, y /∈ K(t), i.e.u2(y,0) < 1. As
a resultu(x, t + s) < 1, that is,x /∈ K(t + s).
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(ii) follows from (i) since it is straightforward to check that(x, t) 7→ 1Ωc(t)(x) = 1 − u(x, t)

is a subsolution ofut = −c(x, t)|Du| in RN × (0, T ). However, we point out that we cannot
deduce from this property onΩc(t) that the evolutiont 7→ Ω(t) is bounded on [0, T ) if Ω(0) is
bounded. 2

We now state properties of regularity in time of the distance function to the fronts:

PROPOSITION2.4 Under the assumptions of Proposition 2.3,(x, t) 7→ dK(t)(x) is lsc onRN ×

[0, T ], and for allx ∈ RN , t 7→ dK(t)(x) is left continuous on(0, T ). The same conclusions hold
for (x, t) 7→ dΩc(t)(x).

Proof. We only treat the case ofK since the proof forΩ is the same.
1. Let us show that(x, t) 7→ dK(t)(x) is lsc onRN × [0, T ], by first consideringA = {(x, t) ∈

RN × [0, T ]; x /∈ K(t)}, which is open inRN × [0, T ] by assumption. Let(xn, tn) ∈ A converge to
(x, t) ∈ A. SinceK(t) is closed and non-empty for allt , the distance ofxn (resp.x) toK(tn) (resp.
K(t)) is attained by a certainyn (resp.y):{

dK(tn)(xn) = |xn − yn|,

yn ∈ K(tn),

{
dK(t)(x) = |x − y|,

y ∈ K(t).

Let us first consider the case of a finite accumulation point of(dK(tn)(xn)), given by the limit of
(|xnk − ynk |). The sequences(xnk ) and(|xnk − ynk |) converge, thus(ynk ) is bounded. Passing to a
subsequence if necessary, we can assume that it converges, say toy∞. Thus, sinceu : (x, t) 7→

1K(t)(x) is usc,u(y∞, t) > lim sup(u(ynk , tnk )) = 1, which means thaty∞ ∈ K(t) and by
definition ofy, |x − y| 6 |x − y∞|, i.e.dK(t)(x) 6 lim dK(tnk )

(xnk ). This is also true for an infinite
accumulation point, obviously. Finally, we remark that this also holds for a couple(x, t) such that
x ∈ K(t), since in this casedK(t)(x) = 0, the minimum possible value of the distance function.

2. Let us now prove the second part of the assertion: for allx ∈ RN , t 7→ dK(t)(x) is left
continuous on(0, T ). Let us fixt ∈ (0, T ), ε > 0 and a sequence(tn) converging tot from the left.
Thanks to Proposition 2.3,K(t) ⊂ K(tn)+B(0, L(t − tn)) ⊂ K(tn)+B(0, ε) for tn close enough
to t . Let y ∈ K(t) be so thatdK(t)(x) = |x − y|. Then forn large enough,y ∈ K(tn)+ B(0, ε), so
thatdK(tn)(x) 6 dK(t)(x)+ ε, and this proves thatt 7→ dK(t)(x) is left usc. 2

2.2 Semiconvex functions and subdifferential of a convex function

We refer to [12] for the notion of semiconvex function. Recall that a functionf : Ω → R defined
on a convex subsetΩ of RN is semiconvexwith constantM > 0 if x 7→ f (x)+M|x|2/2 is convex
onΩ (andsemiconcaveif −f semiconvex), which amounts to saying that for all(x, y) ∈ Ω2 and
all λ ∈ [0,1],

f (λx + (1 − λ)y) 6 λf (x)+ (1 − λ)f (y)+
M

2
λ(1 − λ)|x − y|2. (2.2)

Forf of classC2 andΩ open, this is also equivalent to saying that for allx ∈ Ω,D2f (x) > −M Id
in the sense of symmetric matrices.

We will mainly use the notion of semiconvexity for the distance function to the front. The
following lemma will be helpful:
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LEMMA 2.5 ([12, Proposition 2.2.2]) LetF 6= ∅ be a closed subsets ofRN . For all convex subsets
Ω such thatγ = infx∈Ω dF (x) > 0, the distance function toF , dF , is semiconcave onΩ with
constant 1/γ .

For the notion of subdifferential of a convex function, we refer to [20].

DEFINITION 2.6 LetΩ be a convex open subset ofRN andf : Ω → R be a convex function.
Thesubdifferentialof f atx ∈ Ω is the set

∂∗f (x) = {p ∈ RN ; ∀y ∈ Ω, f (y) > f (x)+ 〈p, y − x〉}.

If f is concave, thesuperdifferentialof f atx ∈ Ω is the set

∂∗f (x) = {p ∈ RN ; ∀y ∈ Ω, f (y) 6 f (x)+ 〈p, y − x〉}.

These sets are never empty thanks to the separation theorem. Iff is convex and differentiable atx,
then∂∗f (x) = {Df (x)}. The following lemma is straightforward but useful:

LEMMA 2.7 ([20]) Letfn, f be convex functions on a convex setΩ satisfying:

(i) For all sequencesyn → y, lim supfn(yn) 6 f (y).
(ii) There exists a sequencexn → x such that limfn(xn) = f (x).

(iii) pn ∈ ∂∗fn(xn) andpn → p.

Thenp ∈ ∂∗f (x).

2.3 BV functions and sets of finite perimeter

The results of this section are entirely taken from [15] unless explicitly stated otherwise. LetΩ be
an open subset ofRN .

2.3.1 Functions of bounded variation

DEFINITION 2.8 A functionf ∈ L1
loc(Ω) is said to havelocally bounded variationin Ω if for all

open subsetsU ⊂⊂ Ω relatively compact inΩ,

sup

{∫
U

f (x)divφ(x)dx; φ ∈ C1
c (U,R

N ), ‖φ‖∞ 6 1

}
< ∞.

We denote byBVloc(Ω) the set of functions of locally bounded variation inΩ. We also say that
f ∈ L1(Ω) hasbounded variationin Ω if the above condition holds forU = Ω. We denote by
BV (Ω) the set of functions of bounded variation inΩ.

The Riesz representation theorem then yields:

THEOREM 2.9 Letf ∈ BVloc(Ω). Then there exists a Radon measureµ onΩ and aµ-measurable
functionσ : Ω → RN such that:

1. |σ(x)| = 1µ-a.e.
2.

∫
Ω
f (x)divφ(x)dx = −

∫
Ω

〈φ(x), σ (x)〉 dµ ∀φ ∈ C1
c (Ω,RN ).

The measureµ is called thevariation measureof f , denoted by‖Df ‖, and we set [Df ] = σ‖Df ‖.
We also have, for all open subsetsU ⊂⊂ Ω relatively compact inΩ,

‖Df ‖(U) = sup

{∫
U

f (x)divφ(x)dx; φ ∈ C1
c (U,R

N ), ‖φ‖∞ 6 1

}
.
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2.3.2 Sets of finite perimeter

DEFINITION 2.10 AnLN -measurable subsetE ⊂ RN is said to have (locally) finite perimeter
in Ω if 1E has (locally) bounded variation inΩ. The variation measure of1E in Ω is in this case
denoted by‖∂E‖, and the function−σ given by Theorem 2.9 is denoted byνE .

DEFINITION 2.11 LetE ⊂ RN be a set of locally finite perimeter inΩ. We say thatx ∈ Ω

belongs to thereduced boundaryof E, ∂∗E, if:

1. ‖∂E‖(B(x, r)) > 0 for all r > 0 such thatB(x, r) ⊂ Ω,

2.
1

‖∂E‖(B(x, r))

∫
B(x,r)

νE(y)d‖∂E‖ −→
r→0

νE(x),

3. |νE(x)| = 1.

Then we have the following theorem:

THEOREM 2.12 (Gauss–Green formula) LetE ⊂ RN be a set of locally finite perimeter inΩ.
Then for allφ ∈ C1

c (Ω,RN ),∫
E

divφ(x)dx =

∫
∂∗E

〈φ(x), νE(x)〉 dHN−1(x). (2.3)

Moreover we have control on the perimeter of level sets of the distance function to a closed
non-empty set, as a consequence of the following proposition (see [1, Lemma 2.4]):

PROPOSITION2.13 For allr0, r1 > 0 andR > 0, there existsM > 0 such that for all closed
non-emptyE ⊂ RN with diameter smaller thanR, and for allr0 6 r 6 r1, the setEr = {x ∈ RN ;

dE(x) = r} satisfies
HN−1(Er) 6 M.

3. An integral formulation of the eikonal equation for subsolutions

We first focus on the notion of subsolution. All results can be adapted to supersolutions. The
corresponding results and changes in the proofs are given in Section 6.

Let c : RN × [0, T ] → R satisfy the assumptions of Theorem 2.2, and letK : [0, T ] →

P(RN ) \ {∅} be such that

1. K(0) is compact,K(t) → K(0) as t → 0 andK(t) → K(T ) as t → T in the Hausdorff
distance.

2. The graph
⋃
t∈[0,T ]{t} ×K(t) of K is closed in [0, T ] × RN .

3. u : (x, t) 7→ 1K(t)(x) is a viscosity subsolution of the eikonal equation:

ut = c(x, t)|Du| in RN × (0, T ). (3.1)

Set, for allε > 0,

Kε(t) = {x ∈ RN ; dK(t)(x) < ε}, cε(x, t) = max
|y−x|6ε

c(y, t).

The aim of this section is the proof of the following result:
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THEOREM 3.1 (Integral formulation for subsolutions) For allt1 andt2 satisfying 06 t1 6 t2 6 T ,
for almost allε > 0, and for allφ ∈ C1(RN × [0, T ],R+),∫ t2

t1

∫
Kε(t)

φt (x, t)dx dt +
∫ t2

t1

∫
{dK(t)=ε}

cε(x, t)φ(x, t)dHN−1(x)dt

>

[∫
Kε(t)

φ(x, t)dx

]t2
t1

. (3.2)

To this end, we setw(x, t) = −dK(t)(x) so that for allε > 0,

Kε(t) = {x ∈ RN ; w(x, t) > −ε}.

Let us fixε > 0 andθ : R → R satisfying the following conditions:

1. θ is non-decreasing and smooth,
2. θ(x) = 0 if x 6 −ε, θ(x) = 1 if x > 0.

Setwθ = θ ◦ w. We start by giving a semiconvexity property ofwθ :

LEMMA 3.2 For all(x, t) ∈ RN × (0, T ) such thatx /∈ K(t), there existM > 0, δ > 0 andr > 0
such that for alls ∈ (t − δ, t + δ), wθ (·, s) is semiconvex with constantM onB(x, r).

REMARK 3.3 In this lemma, the key point is local uniformity with respect tos of the
semiconvexity constantM.

Proof. Sincex /∈ K(t), the lower semicontinuity of(x, t) 7→ dK(t)(x) given by Proposition 2.4
implies that there existγ > 0, δ > 0 andr > 0 such thatdK(s)(y) > γ for everys ∈ (t − δ, t + δ)

andy ∈ B(x, r). But then thanks to Lemma 2.5,y 7→ dK(s)(y) is semiconcave onB(x, r) with
constant 1/γ . The conclusion now follows from [12, Proposition 2.1.12] on the semiconvexity of
the composite of a smooth function with a semiconvex function. 2

We are now ready to begin the proof of Theorem 3.1.

3.1 Equation satisfied bywθ in the viscosity sense

This subsection closely follows the ideas of Soner [21] (see also [9, Theorem 3.1]). We provide the
proof of the following proposition for sake of completeness.

PROPOSITION3.4 wθ : (x, t) 7→ θ(−dK(t)(x)) is a subsolution of(wθ )t = cε(x, t)|Dwθ | in
RN × (0, T ).

Proof. According to Proposition 2.4,w is usc onRN × [0, T ]. Sinceθ is continuous and non-
decreasing,wθ is also usc.

Step 1.Letφ be of classC1 and such thatwθ−φ attains a local maximum at(x0, t0) ∈ RN×(0, T ),
which we can assume equal to 0, i.e.wθ (x0, t0) = φ(x0, t0). Let y0 be such thaty0 ∈ K(t0) and
w(x0, t0) = −|x0 − y0| (if x0 ∈ K(t0), theny0 = x0). Setψ(z, t) = φ(z+ x0 − y0, t). Let us show
thatu − ψ : (z, t) 7→ 1K(t)(z) − ψ(z, t) has a local maximum at(y0, t0), which will enable us to
use the fact thatu is a subsolution of (3.1). Forz close toy0, andt close tot0,

−ψ(z, t) = −φ(z+ x0 − y0, t) 6 −wθ (z+ x0 − y0, t)
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becausewθ − φ has a local maximum at(x0, t0) where it vanishes. Since by definition we have
w(z+ x0 − y0, t) = −dK(t)(z+ x0 − y0), for z ∈ K(t) we get

−ψ(z, t) 6 −θ(−dK(t)(z+ x0 − y0)) 6 −θ(−|x0 − y0|)

by definition ofdK(t), and becauseθ is non-decreasing. But

−θ(−|x0 − y0|) = −θ(w(x0, t0)) = −φ(x0, t0) = −ψ(y0, t0)

and1K(t)(z) = 1K(t0)(y0) = 1, sou(z, t)−ψ(z, t) 6 u(y0, t0)−ψ(y0, t0). Moreover,−ψ(z, t) →

−ψ(y0, t0) as(z, t) → (y0, t0), thus in a neighborhood of(y0, t0),

−ψ(z, t) 6 1 − ψ(y0, t0). (3.3)

Therefore ifz /∈ K(t), then1K(t)(z) = 0, 1K(t0)(y0) = 1, and (3.3) means that, again,u(z, t) −

ψ(z, t) 6 u(y0, t0)− ψ(y0, t0), which is the desired result.

Step 2. Since u is a subsolution of (3.1), according to Step 1 we haveψt (y0, t0) 6
c(y0, t0)|Dψ(y0, t0)|, that is,

φt (x0, t0) 6 c(y0, t0)|Dφ(x0, t0)|.

This is where we see the interest of perturbing the equation withcε and of truncating withθ ,
because ifdK(t0)(x0) = |x0 − y0| 6 ε, thenc(y0, t0) 6 cε(x0, t0), and thereforeφt (x0, t0) 6
cε(x0, t0)|Dφ(x0, t0)|. Moreover if on the contrarydK(t0)(x0) = −w(x0, t0) = |x0 − y0| > ε, then
sincew is usc, it follows thatw(x, t) < −ε in a neighborhood of(x0, t0), thuswθ (x, t) = 0 locally
and the equation is still satisfied. 2

3.2 Variational equation satisfied bywθ

PROPOSITION3.5 For all test functionsφ ∈ C1
c (RN × (0, T ),R+),∫ T

0

∫
RN
wθ (x, t)φt (x, t)dx dt +

∫ T

0

∫
RN
cε(x, t)|Dwθ (x, t)|φ(x, t)dx dt > 0. (3.4)

Proof. In order to prove this proposition, we apply a technique of regularization ofwθ in time by
sup-convolution: we define forσ > 0,

wσθ (x, t) = max
(y,s)∈RN×[0,T ]

{
wθ (y, s)−

1

σ
[|x − y|2 + (t − s)2]

}
. (3.5)

This is justified:wθ is usc, so(y, s) 7→ wθ (y, s)−
1
σ

[|x − y|2 + (t − s)2] is also usc. In addition,
wθ is bounded, so

(y, s) 7→ wθ (y, s)−
1

σ
[|x − y|2 + (t − s)2]

is coercive. Consequently, the supremum is indeed a maximum. Moreover it is known that (3.5)
defines a locally Lipschitz continuous function onRN × [0, T ] (while wθ was only Lipschitz
continuous with respect to the space variable), converging pointwise towθ asσ converges to 0.
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Step 1.Let us show, in the spirit of Step 1 of the previous proof, thatwσθ is a viscosity subsolution
of (wσθ )t = [cε]h(σ)(x, t)|Dwσθ | in RN × (h(σ ), T − h(σ)), whereh(σ) ∈ (0,1] tends to 0 as
σ → 0, and where we have set

[cε]α(x, t) = max
|(y,s)−(x,t)|6α

cε(y, s).

Let (x0, t0) ∈ RN ×(0, T ). There exists(y0, s0) ∈ RN × [0, T ] such thatwσθ (x0, t0) = wθ (y0, s0)−
1
σ

[|x0 − y0|
2
+ (t0 − s0)

2]. We setu = (x0, t0), v = (y0, s0) for the sake of readability. Then

0 6 wσθ (u) = wθ (v)−
1

σ
|u − v|

2 6 1 −
1

σ
|u − v|

2,

so|u − v| 6 σ 1/2
=: h(σ) and hencev ∈ RN × (0, T ) for u ∈ RN × (h(σ ), T − h(σ)). Therefore

we can use the equation satisfied bywθ in RN × (0, T ) to deduce the equation satisfied bywσθ in
RN × (h(σ ), T − h(σ)), as in [18].

Step 2.Let φ ∈ C1
c (RN × (0, T ),R+), andU be an open and relatively compact subset ofRN ×

(0, T ) such thatφ vanishes onU c. We can chooseσ so small thatU ⊂ RN × (h(σ ), T − h(σ)),
and thenwσθ is a viscosity subsolution of(wσθ )t = [cε]h(σ)(x, t)|Dwσθ | in U thanks to Step 1.

Since wσθ is locally Lipschitz continuous, it is differentiable almost everywhere and the
inequality(wσθ )t 6 [cε]h(σ)(x, t)|Dwσθ | actually holds a.e. inU (see [7]). Therefore,∫

RN×(0,T )
[(wσθ )t − [cε]h(σ)(x, t)|Dwσθ |]φ 6 0,

this integral being in fact taken onU . Butwσθ is locally Lipschitz continuous and therefore belongs

toW1,∞
loc , and its a.e. time derivative coincides with its time derivative in the sense of distributions.

Thus ∫
RN×(0,T )

[wσθ φt + [cε]h(σ)(x, t)|Dwσθ |φ] > 0. (3.6)

Now we want to pass to the limit in this expression asσ → 0 by applying the dominated
convergence theorem.

Step 3.To do so we notice thatwσθ φt and [cε]h(σ)φ are bounded onU uniformly inσ since|wσθ | 6 1
andc is bounded. Moreoverwσθ converges pointwise towθ asσ → 0 as we recalled above, and
[cε]h(σ) converges pointwise tocε. It only remains to deal with the term|Dwσθ |.

To this end, we fix a sequence(σn) converging to 0+. There exists a subset̂U ⊂ U such that
LN (U \ Û ) = 0 andDwθ , Dw

σn
θ are defined on̂U for all n. Let us show that(Dwσnθ ) converges

a.e. toDwθ on Û asn → ∞:

LEMMA 3.6 For almost all(x, t) ∈ Û ,Dwσnθ (x, t) → Dwθ (x, t) asn → ∞.

Proof. First case:x /∈ K(t). Let us fix, thanks to Lemma 3.2,M > 0, δ > 0 andr > 0 such
that for alls ∈ (t − δ, t + δ), wθ (·, s) is semiconvex with constantM onB(x, r). For alln, choose
(yn, sn) ∈ RN × (0, T ) realizing the supremum:wσnθ (x, t) = wθ (yn, sn)−

1
σn

[|x−yn|
2
+ (t− sn)

2].
Recall that|(x, t)− (yn, sn)| 6 h(σn) → 0, so that we can assume that for alln,

ψ : y 7→ wθ (y, t)+
M

2
|y|2 and ψn : y 7→ wθ (y, sn)+

M

2
|y|2 (3.7)

are convex onB(x, r), and thatyn ∈ B(x, r).



GEOMETRIC EIKONAL EQUATION 263

We know, thanks to Corollary 10.14 of [20], thatDwσnθ (x, t) =
2
σn
(yn − x). Let us compute

Dwθ (yn, sn): for z close toyn,

wθ (z, sn)−
1

σn
[|x − z|2 + (t − sn)

2] 6 wθ (yn, sn)−
1

σn
[|x − yn|

2
+ (t − sn)

2],

so

wθ (z, sn) 6 wθ (yn, sn)+
1

σn
{|x − z|2 − |x − yn|

2
}.

But |x − z|2 − |x − yn|
2

= |z− yn|
2
+ 2〈z− yn, yn − x〉, so we obtain

wθ (z, sn) 6 wθ (yn, sn)+
2

σn
〈z− yn, yn − x〉 +

1

σn
|z− yn|

2.

Therefore 2
σn
(yn − x) is a Fréchet superdifferential (see [12]) forwθ (·, sn) at yn. But, in addition,

wθ (·, sn) is semiconvex onB(x, r) 3 yn, so differentiable atyn, and its gradient equals2
σn
(yn − x)

(see [12, Proposition 3.1.5]). To sum up, for alln we haveDwσnθ (x, t) = Dwθ (yn, sn) =: pn.
Sincesn → t andwθ is usc, for all sequenceszn → z we have lim supψn(zn) 6 ψ(z), where

ψn andψ are defined by (3.7). Moreoveryn → x and sincewσnθ converges pointwise towθ , we
have

ψn(yn) = w
σn
θ (yn, t)+

M

2
|yn|

2
−→
n→∞

wθ (x, t)+
M

2
|x|2 = ψ(x).

But pn = Dw
σn
θ (x, t) = Dwθ (yn, sn), so (pn) is bounded: for alls, wθ (s, ·) is ‖θ ′

‖∞-Lipschitz
continuous, so‖Dwθ‖∞ 6 ‖θ ′

‖∞, and the same holds forDwσnθ independently ofn. We can extract
a subsequence(nk) such that(pnk ) converges to somep ∈ RN . ThenDψnk (ynk ) = pnk +Mynk →

p + Mx. As a consequence, thanks to Lemma 2.7,p + Mx ∈ ∂∗ψ(x). But wθ is differentiable
at (x, t) with respect tox, so∂∗ψ(x) reduces to its gradientDwθ (x, t) + Mx, which shows that
p +Mx = Dwθ (x, t) +Mx, andp = Dwθ (x, t). This holds for all converging subsequences of
(pn), sopn → Dwθ (x, t), that is,Dwσnθ (x, t) → Dwθ (x, t) asn → ∞.

Second case:x ∈ K(t). Sincewσnθ > wθ andwσnθ 6 maxwθ = 1, for all n we havewσnθ (x, t) =

wθ (x, t) = 1. A result due to Stampacchia (see for instance [15]) asserts thatDwθ = Dw
σn
θ = 0

almost everywhere on{wθ = 1} since allwσnθ andwθ are Lipschitz continuous with respect to the
space variable. SoDwσnθ (x, t) → Dwθ (x, t) asn → ∞ for almost all(x, t) such thatx ∈ K(t). 2

Finally,Dwσθ is bounded onU uniformly in σ : as we have seen above,‖Dwσθ ‖∞ 6 ‖θ ′
‖∞ for all

σ > 0. The use of the dominated convergence theorem is justified and proves Proposition 3.5.2

3.3 The integral formulation

We are now ready to conclude the proof of Theorem 3.1. Fix 0< α1 < α2 < ε.

Step 1.We first notice that an approximation argument shows that (3.4) also holds for the following
functionθ , although it is not of classC1:

1. θ is non-decreasing and continuous,
2. θ(x) = 0 if x 6 −α2, θ(x) = 1 if x > −α1,
3. θ is affine on [−α2,−α1].
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Now we would like to transform the second term of (3.4) so as to get rid of|Dwθ |. To do so
we interpret it as a jacobian thanks to the co-area formula (see [15]), which yields, for allφ ∈

C1
c (RN × (0, T ),R+),∫ T

0

∫
RN
wθ (x, t)φt (x, t)dx dt +

∫ T

0

∫ 1

0

∫
{wθ (·,t)=τ }

cε(x, t)φ(x, t)dHN−1(x)dτ dt > 0, (3.8)

where the integral from 0 to 1 represents the values taken bywθ (·, t).

Step 2.For τ ∈ (0,1), wθ (x, t) = τ ⇔ w(x, t) = θ−1(τ ) ⇔ dK(t)(x) = −θ−1(τ ) ∈ (α1, α2).
Moreover, Proposition 2.3 shows that the diameter ofK(t) is uniformly bounded on [0, T ].
Therefore Proposition 2.13 guarantees the existence of a constantM > 0 such that for allτ ∈ (0,1),

HN−1({wθ (·, t) = τ }) 6 M. (3.9)

Step 3.Let us now transform each of the terms of (3.8) so as to get rid ofwθ . For the first term, we
simply notice that∫ T

0

∫
RN
wθ (x, t)φt (x, t)dx dt =

∫ T

0

∫
{w(·,t)>−α2}

wθ (x, t)φt (x, t)dx dt

sinceθ(σ ) = 0 if σ 6 −α2. In the second term, let us make the change of variableτ = θ(−σ) for
σ ∈ (α1, α2) andτ ∈ (0,1). In this casewθ (x, t) = τ ⇔ θ(w(x, t)) = θ(−σ) ⇔ w(x, t) = −σ .
Therefore we obtain, for allφ ∈ C1

c (RN × (0, T ),R+) and allα1, α2 satisfying 0< α1 < α2 < ε,∫ T

0

∫
{w(·,t)>−α2}

wθ (x, t)φt (x, t)dx dt

+
1

α2 − α1

∫ α2

α1

∫ T

0

∫
{w(·,t)=−σ }

cε(x, t)φ(x, t) dHN−1(x)dt dσ > 0, (3.10)

where we have switched the integration order betweent andσ , which is permitted since for all
(t, σ ) in the bounded domain(0, T )× (α1, α2),∣∣∣∣∫

{w(·,t)=−σ }

cε(x, t)φ(x, t)dHN−1(x)

∣∣∣∣ 6 M‖c‖∞‖φ‖∞ (3.11)

whereM denotes the constant given by (3.9).

Step 4.We now use the freedom in the choice ofα1 andα2 to deduce from (3.10) a pointwise
property of the integrand. To this end, we apply the Lebesgue–Besicovitch differentiation theorem
(see for instance [15]) to the function

σ 7→

∫ T

0

∫
{w(·,t)=−σ }

cε(x, t)φ(x, t)dHN−1(x)dt,

which lies inL1
loc(0, ε) for anyφ ∈ C1

c (RN × (0, T ),R+) thanks to (3.11). Fixingσ ∈ (0, ε) and
choosingα1 = σ − τ , α2 = σ + τ2 in (3.10) withτ → 0, we deduce, sincewθ → 1Kσ (t) for this
choice ofα1 andα2, that for almost allσ ∈ (0, ε),∫ T

0

∫
{w(·,t)>−σ }

φt (x, t)dx dt +
∫ T

0

∫
{w(·,t)=−σ }

cε(x, t)φ(x, t)dHN−1(x)dt > 0. (3.12)
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Step 5.What we have done holds for a fixedφ ∈ C1
c (RN × (0, T ),R+) andε > 0. We now extend

the result to allφ ∈ C1
c (RN × (0, T ),R+) andε > 0, using the fact thatC1

c (RN × (0, T ),R+),
equipped with theC1 norm, andR, are separable. This shows that (3.12) holds for almost allσ > 0,
all ε > σ and allφ ∈ C1

c (RN × (0, T ),R+).
Let us fix such aσ > 0. Lettingε → σ in (3.12) gives the integral formulation for test functions

with compact support: since{w(·, t) > −ε} = Kε(t) and{w(·, t) = −ε} = {dK(t) = ε}, we have
for almost allε > 0, and allφ ∈ C1

c (RN × (0, T ),R+),∫ T

0

∫
Kε(t)

φt (x, t)dx dt +
∫ T

0

∫
{dK(t)=ε}

cε(x, t)φ(x, t)dHN−1(x)dt > 0. (3.13)

Step 6.To conclude, it remains to generalize (3.13) to test functions with no assumption on the
support. Let 0< t1 < t2 < T andα be a smooth non-negative function equal to 1 on [t1, t2] and
having compact support in(0, T ). Letφ ∈ C1(RN × [0, T ],R+) with compact support in the space
variable. Applying (3.13) toαφ yields, for almost allε > 0,∫ T

0

∫
Kε(t)

α(t)φt (x, t)dx dt +
∫ T

0

∫
Kε(t)

αt (t)φ(x, t)dx dt

+

∫ T

0

∫
{dK(t)=ε}

cε(x, t)α(t)φ(x, t)dHN−1(x)dt > 0,

which gives (3.2) whenα converges to the indicator function of [t1, t2]:∫ t2

t1

∫
Kε(t)

φt (x, t)dx dt −

[∫
Kε(t)

φ(x, t)dx

]t2
t1

+

∫ t2

t1

∫
{dK(t)=ε}

cε(x, t)φ(x, t) dHN−1(x)dt > 0.

This holds for almost allt1 andt2 in (0, T ) and therefore for all 0< t1 6 t2 < T since1Kε(t) →

1Kε(t0) in L1(RN ) as t → t−0 thanks to Propositions 2.4 and 2.13 (indeed, the latter guarantees
that all sets of the form{dK(t0) = ε} have zeroLN measure). This being also true fort1 → 0+

and t2 → T − by assumption 1 before Theorem 3.1, we see that (3.2) also holds fort1 = 0 and
t2 = T . Moreover, since the evolution is bounded, the time-dependent domain of integrationKε(t)

is uniformly bounded. Thus ifφ does not have compact support in the space variable either, after
truncatingφ in a C1 way off a large ball if necessary, we see that (3.2) holds forφ ∈ C1(RN ×

[0, T ],R+). This concludes the proof of Theorem 3.1.

4. Conversely: from the integral formulation to the notion of subsolution

In this section we are interested in the converse of Theorem 3.1:

THEOREM 4.1 Letc : RN×[0, T ] → R satisfy the assumptions of Theorem 2.2 andK : [0, T ] →

P(RN ) \ {∅} be such that

1. K is uniformly bounded on [0, T ].
2. The graph

⋃
t∈[0,T ]{t} ×K(t) of K is closed in [0, T ] × RN .

3. Inequality (3.2) holds for all 06 t1 6 t2 6 T , for almost allε > 0 small enough and for all
φ ∈ C1(RN × [0, T ],R+).

Thenu : (x, t) 7→ 1K(t)(x) is a viscosity subsolution ofut = c(x, t)|Du| in RN × (0, T ).
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During the proof of this theorem, we will need to use neighborhoods of a particular form and
the corresponding notion of open sets:

DEFINITION 4.2 A set of the formB(x, r) × (t − h, t ] with r > 0, h > 0 is called aleft
neighborhoodof (x, t) ∈ RN × (0, T ). We say thatU ⊂ RN × (0, T ) is left openif U contains a
left neighborhood of each of its points.

We also define the corresponding notion of viscosity left subsolution, in which the test is
restricted to left neighborhoods:

DEFINITION 4.3 LetU ⊂ RN × (0, T ) be left open. We say thatu is aviscosity left subsolution
of ut = c(x, t)|Du| in U if u is usc onRN × [0, T ] and if for all (x, t) ∈ U , for all test functions
φ of classC1 onRN × (0, T ) such thatu− φ has a maximum on a left neighborhood of(x, t), we
haveφt (x, t) 6 c(x, t)|Dφ(x, t)|.

It is easy to see that all classical results on viscosity solutions (stability, invariance, how a
subsolution provides a set-theoretic subsolution) still hold for this notion of subsolution, under the
only assumption in the stability theorem that the upper relaxed semilimit lim sup∗(un) of (un) (see
[7]) satisfies

lim sup∗(un)(x, t) = lim sup{un(xn, tn); tn → t, tn 6 t, xn → x},

i.e. we ask that the lim sup be achieved through lower times. We are now ready to begin the proof
of Theorem 4.1.

Proof of Theorem 4.4.The fact that
⋃
t∈[0,T ]{t} × K(t) is closed in [0, T ] × RN ensures that

(x, t) 7→ 1K(t)(x) is usc. For the rest of the proof let us fixε0 such that (3.2) holds for almost all
ε ∈ (0, ε0).

Step 1.Let us first prove that for all(x0, t0) ∈ RN × (0, T ) such thatx0 ∈ Kε0(t0), t 7→ dK(t)(x0)

is left continuous att0. If this were not true, there would existt0 ∈ (0, T ), x0 ∈ Kε0(t0), η > 0 and
a sequencetn → t−0 such that for alln > 1,

dK(t0)(x0)+ η < dK(tn)(x0). (4.1)

Let us chooseα ∈ (0, η/2) andφ ∈ C1
c (B(x0, α),R+) with φ(x0) > 0. Assumption 3 implies that

(3.2) holds withε = dK(t0)(x0)+ δ for almost allδ ∈ (0, η/2) small enough. Let us apply it to the
time-independent function(x, t) 7→ φ(x) betweentn andt0 for such aδ:∫ t0

tn

∫
{dK(t)=ε}

cε(x, t)φ(x) dHN−1(x)dt >

[∫
Kε(t)

φ(x)dx

]t0
tn

.

But [
∫
Kε(t)

φ(x)dx]t0tn =
∫
Kε(t0)

φ(x)dx because (4.1) implies thatKε(tn) ∩ B(x0, α) = ∅ for all
n > 1. Moreover∫ t0

tn

∫
{dK(t)=ε}

cε(x, t)φ(x)dHN−1(x)dt 6 (t0 − tn)M‖c‖∞‖φ‖∞,

whereM denotes the bound onHN−1({dK(t) = ε}) given by Proposition 2.13. Lettingn tend to∞,
we deduce that ∫

Kε(t0)

φ(x)dx 6 0,
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which in view of the choice ofφ implies thatx0 /∈ Kε(t0), i.e. dK(t0)(x0) > ε = dK(t0)(x0) + δ.
This is absurd and proves the claim.

Step 2.A straightforward consequence of (3.13) is that, under assumption 3, we also have, for
almost allε ∈ (0, ε0), σ ∈ (0, ε), and for allφ ∈ C1

c (RN × (0, T ),R+),∫ T

0

∫
Kσ (t)

φt (x, t)dx dt +
∫ T

0

∫
{dK(t)=σ }

cε(x, t)φ(x, t)dHN−1(x)dt > 0, (4.2)

sinceφ > 0 andcσ 6 cε. Let us integrate inequality (4.2) forσ between 0 and some fixedε ∈ (0, ε0)

and switch the order of integration betweent andσ :∫ T

0

∫ ε

0

∫
Kσ (t)

φt (x, t)dx dσ dt +
∫ T

0

∫ ε

0

∫
{dK(t)=σ }

cε(x, t)φ(x, t)dHN−1(x)dσ dt > 0. (4.3)

Now switching the order betweenx andσ , we get∫ ε

0

∫
Kσ (t)

φt (x, t)dx dσ =

∫
Kε(t)

(ε − dK(t)(x))φt (x, t)dx. (4.4)

Moreover, since|DdK(t)| = 1 a.e. on
⋃

0<σ<ε{dK(t) = σ } = Kε(t) \K(t), we have, thanks to the
co-area formula,∫ ε

0

∫
{dK(t)=σ }

cε(x, t)φ(x, t)dHN−1(x)dσ =

∫
Kε(t)\K(t)

cε(x, t)φ(x, t)dx,

and we deduce from (4.3) that∫ T

0

∫
Kε(t)

(ε − dK(t)(x))φt (x, t)dx dt +
∫ T

0

∫
Kε(t)\K(t)

cε(x, t)φ(x, t)dx dt > 0. (4.5)

Separating the test function into(x, t) 7→ θn(t)φ(x), with θn andφ of classC1, and lettingθn →

θ = 1[t1,t2] with 0< t1 < t2 < T , we deduce from (4.5) that∫
Kε(t2)

(ε − dK(t2)(x))φ(x)dx

6
∫
Kε(t1)

(ε − dK(t1)(x))φ(x)dx +

∫ t2

t1

∫
Kε(t)\K(t)

cε(x, t)φ(x)dx dt. (4.6)

This holds for almost allt1 andt2, and therefore for all 0< t1 6 t2 < T thanks to Step 1 and the
fact that all sets of the form{dK(t0) = ε} have zeroLN measure. Seeing (4.6), we could be tempted
to try to prove thatw : (x, t) 7→ −dK(t)(x) is a subsolution ofwt = cε(x, t)|Dw| on

Aε = {(x, t) ∈ RN × (0, T ); 0< dK(t)(x) < ε}

so that if (x, t) ∈ Aε, thenx ∈ Kε(t) \ K(t). Unfortunately, this last assertion does not make
sense sinceAε is not open. Indeed,K(t) may “shrink” suddenly ast increases. However, Step 1
implies thatAε is left open. Indeed, if(x, t) ∈ Aε, thens 7→ dK(s)(x) is left continuous att with
0< dK(t)(x) < ε.
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Let us now go back to (4.6), and show thatw : (x, t) 7→ −dK(t)(x) is a viscosity left subsolution
of wt = cε(x, t)|Dw| in Aε. Take(x, t) ∈ Aε andψ of classC1 on RN × (0, T ) such thatw − ψ

has a maximum equal to 0 on a left neighborhood of(x, t). Then for certainr > 0 andh > 0, and
for all (x, t) ∈ B(x, r)× [t − h, t ] ⊂ Aε,

−dK(t)(x) 6 ψ(x, t), (4.7)

the inequality being an equality at(x, t). Takingt1 = t − h, t2 = t in (4.6), and using the freedom
in the choice ofφ to letφ converge to the Dirac mass atx yields

ε − dK(t)(x) 6 ε − dK(t−h)(x)+

∫ t

t−h

cε(x, t)dt.

Then we can use (4.7) to obtain

ψ(x, t) 6 ψ(x, t − h)+

∫ t

t−h

cε(x, t)dt.

Dividing by h > 0 and lettingh → 0+ gives−ψt (x, t) + cε(x, t) > 0, which means thatw
is a left subsolution ofwt = cε(x, t)|Dw| in Aε, since|Dψ(x, t)| = 1. Indeed,−dK(t) is locally
semiconvex aroundx thanks to Lemma 2.5, and smaller thanψ(·, t), which is smooth, with equality
at x. Therefore−dK(t) is differentiable atx with −DdK(t)(x) = Dψ(x, t), but |DdK(t)(x)| = 1
whenever this gradient exists.

As a consequence of the stability theorem,1{w>−ε/2} is a left subsolution ofwt = cε(x, t)|Dw|

in Aε, and therefore also inRN × (0, T ). Indeed, ifx /∈ Kε(t), thenw(x, t) < −
3
4ε, which remains

true in a neighborhood of(x, t) sincew is usc. Thus1{w>−ε/2}(y, s) = 0 in a neighborhood of
(x, t). Moreover ifx ∈ K(t), thenw(x, t) > −

1
4ε, which this time does not necessarily hold on a

neighborhood, but remains true on aleft neighborhood of(x, t) sincew is left continuous. Therefore
1{w>−ε/2}(y, s) = 1 on a left neighborhood of(x, t). In both cases, if1{w>−ε/2}−ψ has a maximum
on a left neighborhood of(x, t) with ψ of classC1, thenψt (x, t) 6 0 = Dψ(x, t), so the equation
is satisfied in the viscosity sense.

We have just proved that1{w>−ε/2} is a left subsolution ofwt = cε(x, t)|Dw| in RN × (0, T ).
But RN × (0, T ) is open in the usual sense, so1{w>−ε/2} is actually a viscosity subsolution of
wt = cε(x, t)|Dw| in RN×(0, T )without restriction on the neighborhoods, since a local maximum
is in particular a maximum on some left neighborhood.

Now sincew(x, t) > −ε/2 ⇔ dK(t)(x) 6 ε/2, the stability theorem shows, asε tends to 0, that
u : (x, t) 7→ 1K(t)(x) is a subsolution ofut = c(x, t)|Du| on RN × (0, T ), which is the desired
conclusion. Indeed,cε converges uniformly toc sincec is Lipschitz continuous with respect tox,
and if εn → 0+ is fixed, then

1K(t)(x) = lim sup{1{dK(tn)6εn/2}(xn); tn → t, xn → x, εn → 0}.

In order to see that, let us fix a sequence(xn, tn) converging to(x, t). We notice that ifx ∈ K(t),
then1K(t)(x) = 1 > sup1{dK(tn)6εn/2}(xn). Moreover ifx /∈ K(t), then(x, t) does not belong to the
graph ofK which is closed, and thus is located at a positive distance from this graph, which implies
that forn large enough,1K(t)(x) = 0 = 1{dK(tn)6εn/2}(xn). Therefore

1K(t)(x) > lim sup{1{dK(tn)6εn/2}(xn); tn → t, xn → x, εn → 0}.
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To conclude it suffices to construct a sequence(xn, tn) converging to (x, t) such that
1{dK(tn)6εn/2}(xn) → 1K(t)(x). Takexn = x and tn = t . If x /∈ K(t), we have just seen that
1K(t)(x) = 0 = 1{dK(t)6εn/2}(x) for n large enough. Ifx ∈ K(t), thenx ∈ Kεn/2(t) so that
1{dK(t)6εn/2}(x) = 1 = 1K(t)(x). 2

5. Regularity of the front

In this section we use the integral formulation to derive estimates related to the regularity ofK(t),
and more precisely its perimeter, by studying the limit of (3.2) asε tends to 0. To this end we make
the following assumptions in addition of those of Theorem 2.2:

(A1) c is of classC1,Dc is locally Lipschitz continuous with respect to the space variable.
(A2) Dc(x, t) 6= 0 if c(x, t) = 0.

THEOREM 5.1 Letc : RN × [0, T ] → R satisfy the assumptions of Theorem 2.2 and(A1), (A2).
LetK : [0, T ] → P(RN ) \ {∅} be such that:

1. K(0) is compact,K(t) → K(0) as t → 0 andK(t) → K(T ) as t → T in the Hausdorff
distance.

2. The graph
⋃
t∈[0,T ]{t} ×K(t) of K is closed in [0, T ] × RN .

3. u : (x, t) 7→ 1K(t)(x) is a subsolution of the eikonal equation (3.1).

Then the following hold:

(i) For a.a.t ∈ [0, T ], c(·, t)1K(t) has bounded variation in{c(·, t) < 0}.
(ii) For a.a.t ∈ [0, T ], K(t) has locally finite perimeter in{c(·, t) < 0}.

(iii) Denoting by(·)− the negative part of a quantity (x− = max(−x,0)), we have∫ T

0

∫
∂∗K(t)

c−(x, t)dHN−1(x)dt < ∞,

an upper bound for this integral being given by

−

[∫
K(t)

1{c<0}(x, t)dx

]T
0

+

∫ T

0

∫
K(t)∩{c(·,t)=0}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt.

Proof of Theorem 5.1(i).we split this rather long proof into several lemmas. In what follows,BR =

B(0, R) will denote a large ball that containsKε(t) for all t ∈ [0, T ] andε 6 1, andKε(t) stands
for Kε(t).

LEMMA 5.2 For allθ > 0 small enough, for almost all 0< ε 6 ε0 6 1,

∫ T

0

∫
Kε(t)∩{c(·,t)=−θ}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt

+

∫ T

0

∫
{dK(t)=ε}

1{c<−θ}(x, t)c
ε0(x, t)dHN−1(x)dt >

[∫
Kε(t)

1{c<−θ}(x, t)dx

]T
0
. (5.1)
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Proof. Let us fixθ > 0 and 0< ε 6 ε0 6 1 such that (3.2) holds with thisε. For allη ∈ (0, θ), let
Tη be a smooth non-increasing function equal to 1 in(−∞,−θ − η] and 0 in [−θ,∞). Then (3.2)
can be applied toφη = Tη ◦ c with t1 = 0 andt2 = T .

Now an approximation argument shows that (3.2) also holds forTη defined as follows:

1. Tη is non-increasing and continuous,
2. Tη(x) = 1 if x 6 −θ − η, θ(x) = 0 if x > −θ ,
3. Tη is affine on [−θ − η,−θ ],

andφη = Tη ◦ c. Since

(φη)t = ct (T
′
η ◦ c) = −

1

η
ct1{−θ−η<c<−θ},

we get

∫ T

0

∫
Kε(t)∩{−θ−η<c<−θ}

(
−

1

η

)
ct dx dt +

∫ T

0

∫
{dK(t)=ε}

cε(x, t)φη(x, t)dHN−1(x)dt

>

[∫
Kε(t)

φη(x, t)dx

]T
0
. (5.2)

We want to letη tend to 0 in (5.2). Thanks to the co-area formula,∫ T

0

∫
Kε(t)∩{−θ−η<c<−θ}

(
−

1

η

)
ct (x, t)dx dt

6
∫ T

0

∫
Kε(t)∩{−θ−η<c<−θ}

1

η
|ct (x, t)|1{ct<0}(x, t)dx dt

=
1

η

∫ T

0

∫
−θ

−θ−η

∫
Kε(t)∩{c(·,t)=σ }

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dσ dt. (5.3)

The co-area formula can be applied sincec is Lipschitz continuous with respect to the space variable
and of classC1, so that assumption (A2) implies that ifθ is small enough andη ∈ (0, θ), thenDc
is bounded away from 0 on{−θ − η < c < −θ} ∩ {BR × [0, T ]}. As a standard consequence of
assumptions (A1) and (A2), there existsσ0 > 0 such that the map

σ 7→

∫ T

0

∫
Kε(t)∩{c(·,t)=σ }

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt

is usc on(−σ0, σ0) for all 0 6 ε 6 1 (with the convention thatK0(t) = K(t)). In particular forθ
small enough, asη tends to 0, the last term of (5.3) satisfies

lim sup
η→0

1

η

∫ T

0

∫
−θ

−θ−η

∫
Kε(t)∩{c(·,t)=σ }

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dσ dt

6
∫ T

0

∫
Kε(t)∩{c(·,t)=−θ}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt. (5.4)
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Moreover, forε 6 ε0,∫ T

0

∫
{dK(t)=ε}

cε(x, t)φη(x, t)dHN−1(x)dt

6
∫ T

0

∫
{dK(t)=ε}

cε0(x, t)φη(x, t)dHN−1(x)dt

−→
η→0

∫ T

0

∫
{dK(t)=ε}

1{c<−θ}(x, t)c
ε0(x, t)dHN−1(x)dt, (5.5)

and [∫
Kε(t)

φη(x, t)dx

]T
0

−→
η→0

[∫
Kε(t)

1{c<−θ}(x, t)dx

]T
0
. (5.6)

Combining (5.2) to (5.6) then gives (5.1). 2

Intermediate step.LetΩt = {x ∈ RN ; c(x, t) < −θ} for θ chosen small enough so that (5.1) holds.
Sincec is of classC1, for ε0 6 1 small enough depending onθ , cε0 < 0 on

⋃
t∈[0,T ](BR∩Ωt )×{t},

socε0 = −(cε0)− on this set. Since in additioncε0 is Lipschitz continuous with respect to the space
variable because of its definition (with‖Dcε0‖∞ 6 ‖Dc‖∞), by a regularization argument there
existsc satisfying the following assumptions:

(i) c is of classC1 on RN × [0, T ],

(ii) c is Lipschitz continuous with respect to the space variable,

with ‖Dc‖∞ 6 ‖Dcε0‖∞,

(iii ) 0 6 c 6 (cε0)− in
⋃

t∈[0,T ]

(BR ∩Ωt )× {t}.

(5.7)

Then (5.1) gives, for almost all 0< ε 6 ε0 and allc satisfying (5.7),∫ T

0

∫
{dK(t)=ε}

1{c<−θ}(x, t)c(x, t)dHN−1(x)dt

6
∫ T

0

∫
{dK(t)=ε}

1{c<−θ}(x, t)(c
ε0)−(x, t)dHN−1(x)dt

6 −

[∫
Kε(t)

1{c<−θ}(x, t)dx

]T
0

+

∫ T

0

∫
Kε(t))∩{c(·,t)=−θ}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt. (5.8)

Let us fixc satisfying (5.7). Now we want, thanks to the control given by (5.8), to estimate the
total variation ofc(·, t)1Kε(t), and then letε tend 0 to get an estimate onc(·, t)1K(t). To this end, we
introduceaε(x, t) = c(x, t)1Kε(t)(x). Proposition 3.2 of [3] on the product of a BV function and a
regular function shows that for allt ∈ [0, T ] and allε > 0, aε(·, t) ∈ BV (RN ), and if [Daε(·, t)]
denotes the vector-valued variation measure ofaε(·, t) as defined in Theorem 2.9, we have

[Daε(·, t)] = −c(·, t)νKε(t)HN−1
b∂∗Kε(t) + 1Kε(t)Dc(·, t)LN . (5.9)
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Now let us introduce two notations:

1. For a fixedt ∈ [0, T ] andθ > 0,Xθt denotes the set of vector-valued functionsφ ∈ C1(BR,RN )
vanishing onBR ∩Ωc

t with ‖φ‖∞ 6 1.
2. Xθ is the set of all functionsφ such thatφ(·, t) ∈ Xθt for all t ∈ [0, T ], with φ andDφ

measurable onRN × [0, T ], and‖Dφ‖∞ < ∞.

LEMMA 5.3 For allθ > 0 small enough,

sup
φ∈Xθ

{∫ T

0

∫
K(t)

c−(x, t)1{c<−θ}(x, t)divx φ(x, t)dx dt

}
6 M(θ), (5.10)

where divx stands for the divergence with respect to the space variable, and where

M(θ) = LN (K(0))+ TLN (BR)‖Dc‖∞

+

∫ T

0

∫
K(t)∩{c(·,t)=−θ}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt.

Proof. Fix θ > 0 small enough and chooseε0 6 1 so that (5.8) holds for almost allε 6 ε0 and all
c satisfying (5.7). Letφ ∈ Xθ . Sinceaε(·, t) vanishes offBR for ε 6 ε0, we have thanks to (5.9),
after extendingφ(·, t) to RN in a C1 way so as to obtain a function with compact support in the
space variable,∫ T

0

∫
RN
aε(x, t)divx φ(x, t)dx dt

=

∫ T

0

∫
∂∗Kε(t)

1{c<−θ}(x, t)c(x, t)〈φ(x, t), νKε(t)(x)〉 dHN−1(x)dt

−

∫ T

0

∫
Kε(t)

1{c<−θ}(x, t)〈Dc(x, t), φ(x, t)〉 dx dt. (5.11)

The integration in time is justified since each of the expressions under the time integral signs is
integrable on(0, T ) by Fubini’s theorem. Forφ ∈ Xθ ,∫ T

0

∫
∂∗Kε(t)

1{c<−θ}(x, t)c(x, t)〈φ(x, t), νKε(t)(x)〉 dHN−1(x)dt

6
∫ T

0

∫
{dK(t)=ε}

1{c<−θ}(x, t)c(x, t)dHN−1(x)dt (5.12)

since∂∗Kε(t) ⊂ ∂Kε(t) = {dK(t) = ε}, and1{c<−θ}(x, t)c(x, t) > 0 thanks to (5.7)(iii). But (5.8)
gives an upper bound of this term for almost all 0< ε 6 ε0:∫ T

0

∫
{dK(t)=ε}

1{c<−θ}(x, t)c(x, t)dHN−1(x)dt

6 LN (Kε0(0))+

∫ T

0

∫
Kε0(t)∩{c(·,t)=−θ}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt. (5.13)
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In addition, forφ ∈ Xθ andε 6 ε0,∣∣∣∣∫ T

0

∫
Kε(t)

1{c<−θ}(x, t)〈Dc(x, t), φ(x, t)〉 dx dt

∣∣∣∣
6 TLN (BR)‖Dc‖∞ 6 TLN (BR)‖Dcε0‖∞ 6 TLN (BR)‖Dc‖∞ (5.14)

because of (5.7)(ii) and by definition ofcε0. Let us introduce a variation measure on{(x, t) ∈

RN × [0, T ]; c(x, t) < −θ} with respect to the space variable by the following formula:

‖Dxaε‖ = sup
φ∈Xθ

{∫ T

0

∫
RN
aε(x, t)divx φ(x, t)dx dt

}
.

We deduce from (5.11) to (5.14) thatε 7→ ‖Dxaε‖ is bounded on(0, ε0]. Moreover(aε) converges
to a : (x, t) 7→ c(x, t)1K(t)(x) in L1 asε tends to 0. But it is straightforward to see that‖Dx(·)‖ is
lsc for the topology ofL1(RN × (0, T )) (see [15, Theorem 1, p. 172]). This implies thata has finite
‖Dx(·)‖ variation, with

‖Dxa‖ 6 lim inf
ε→0

‖Dxaε‖

6 LN (K(0))+ TLN (BR)‖Dc‖∞

+

∫ T

0

∫
K(t)∩{c(·,t)=−θ}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt = M(θ).

The integral term in the last inequality comes when lettingε0 → 0 in (5.13) by dominated
convergence. Indeed,Kε0(t) → K(t) everywhere and the domination comes from the fact that
Dc is bounded away from 0 on the set{c = −θ} ∩ {BR × [0, T ]}. The inequality‖Dxa‖ 6 M(θ)

amounts to saying that for allc satisfying (5.7),

sup
φ∈Xθ

{∫ T

0

∫
K(t)

c(x, t)1{c<−θ}(x, t)divx φ(x, t)dx dt

}
6 M(θ).

Now a convolution argument shows that we can makec converge uniformly to(cε0)− on [0, T ] ×

BR with c satisfying (5.7). Therefore going to the limit in the previous inequality by dominated
convergence, and then finally lettingε0 → 0 by the same argument, we get the result. 2

We are finally ready to letθ → 0. SetX = X0 and for allt ∈ [0, T ], Xt = X0
t , whereX0 andX0

t

are defined before Lemma 5.3. In particular anyφ ∈ X vanishes outside{c < 0}.

LEMMA 5.4

sup
φ∈X

{∫ T

0

∫
K(t)

c(x, t)divx φ(x, t)dx dt

}
6 M(0). (5.15)

Proof. Letφ ∈ X. Consider the truncation functionT θ , a continuous and piecewise affine function,
such thatT θ (s) = 1 for s 6 −2θ , andT θ (s) = 0 for s > −θ . We regularizeT θ to get a sequence
(T θn ) of functions converging uniformly toT θ , whose derivatives converge pointwise to(T θ )′, and
such that there exists a constantC > 0 satisfying‖(T θn )

′
‖∞ 6 C/θ for all n. Then (5.10) can be

applied to(T θn ◦ c)φ. But

divx(T
θ
n ◦ c)φ = ((T θn )

′
◦ c)〈φ,Dc〉 + (T θn ◦ c)divx φ.
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As n goes to infinity, we deduce from the dominated convergence theorem that∫ T

0

∫
K(t)

c−(x, t)

(
−

1

θ

)
1{−2θ<c<−θ}(x, t)〈φ(x, t),Dc(x, t)〉 dx dt

+

∫ T

0

∫
K(t)

c−(x, t)(T
θ

◦ c)divx φ(x, t)dx dt 6 M(θ).

As θ tends to 0, the first term converges to 0: the domination comes from the fact that
|c−(x, t)(−

1
θ
)1{−2θ<c<−θ}(x, t)| 6 1

θ
(2θ) = 2 and the domain of integration is bounded. The

second term converges to ∫ T

0

∫
K(t)

c−(x, t)divx φ(x, t)dx dt.

Moreover, recall thatθ 7→ M(θ) is usc on(−σ0, σ0) for σ0 small enough, which implies that
lim supθ→0M(θ) 6 M(0). Given thatc− = −c on {c < 0}, we get the desired result in the limit as
θ → 0. 2

The following lemma is a consequence of (5.15) and will be proved at the end of this section for the
sake of readability:

LEMMA 5.5 For almost allt ∈ [0, T ],

sup
φ∈Xt

{∫
K(t)

c(x, t)divφ(x)dx

}
< ∞.

We deduce from this lemma and the definition ofXt that for almost allt ∈ [0, T ], c(·, t)1K(t)
has bounded variation in{c(·, t) < 0}, and assertion (i) of Theorem 5.1 is proved.

Proof of Theorem 5.1(ii).Fix a t such thatc(·, t)1K(t) has bounded variation in{c(·, t) < 0}. For
all η > 0, 1/c(·, t) is of classC1 on {x ∈ RN ; c(x, t) < −η} and Lipschitz continuous. It follows
from Proposition 3.2 of [3] that1K(t) has bounded variation, whenceK(t) has finite perimeter, in
{x ∈ RN ; c(x, t) < −η} for all η > 0. This proves assertion (ii) of Theorem 5.1:K(t) has locally
finite perimeter in{c(·, t) < 0} for almost allt ∈ [0, T ].

Proof of Theorem 5.1(iii).

Step 1.As in the intermediate step before Lemma 5.3, let us fixθ > 0 small enough so that (5.1)
holds, and takeε0 6 1 small enough depending onθ andc satisfying (5.7). Now (5.9) can be applied
to a : (x, t) 7→ c(x, t)1K(t) and shows that for almost allt ∈ [0, T ],

[Da(·, t)] = −c(·, t)νK(t)HN−1
b∂∗K(t) + 1K(t)Dc(·, t)LN in {c(·, t) < 0},

which amounts to saying that for almost allt ∈ [0, T ], for all φ of classC1 on RN with compact
support in{c(·, t) < 0},∫

K(t)

c(x, t)divφ(x)dx

=

∫
∂∗K(t)

c(x, t)〈φ(x), νK(t)(x)〉 dHN−1(x)−

∫
K(t)

〈Dc(x, t), φ(x)〉 dx. (5.16)
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Now let φ be of classC1 on BR and vanish off{c(·, t) < −θ} for someθ > 0. We can assume
without changing any of the integrals in (5.16) thatφ has compact support in{c(·, t) < 0}, so that
(5.16) holds forφ.

Step 2.Fix φ ∈ Xθ . Thanks to (5.16) we have∫ T

0

∫
K(t)

1{c<−θ}(x, t)c(x, t)divx φ(x, t)dx dt

=

∫ T

0

∫
∂∗K(t)

1{c<−θ}(x, t)c(x, t)〈φ(x, t), νK(t)(x)〉 dHN−1(x)dt

−

∫ T

0

∫
K(t)

1{c<−θ}(x, t)〈Dc(x, t), φ(x, t)〉 dx dt. (5.17)

Let us go back to (5.11): by dominated convergence, the first and third terms of this equality
respectively converge asε → 0 to the first and third terms of (5.17), which shows that∫ T

0

∫
∂∗Kε(t)

1{c<−θ}(x, t)c(x, t)〈φ(x, t), νKε(t)(x)〉 dHN−1(x)dt

−→
ε→0

∫ T

0

∫
∂∗K(t)

1{c<−θ}(x, t)c(x, t)〈φ(x, t), νK(t)(x)〉 dHN−1(x)dt.

Therefore, lettingε → 0, c → (cε0)− andε0 → 0 in estimate (5.8) now shows, since∂∗Kε(t) ⊂

∂Kε(t) = {dK(t) = ε}, that∫ T

0

∫
∂∗K(t)

1{c<−θ}(x, t)c(x, t)〈φ(x, t), νK(t)(x)〉 dHN−1(x)dt

6 −

[∫
K(t)

1{c<−θ}(x, t)dx

]T
0

+

∫ T

0

∫
K(t)∩{c(·,t)=−θ}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt. (5.18)

We will need two additional notations:

1. For a fixedt ∈ [0, T ] andθ > 0, X̂θt denotes the set of vector-valued functionsφ ∈ C0(BR,RN )
vanishing onBR ∩Ωc

t with ‖φ‖∞ 6 1.
2. X̂θ is the set of all functionsφ such thatφ(·, t) ∈ X̂θt for all t ∈ [0, T ], with φ measurable on

RN × [0, T ].

An approximation argument shows that (5.18) holds forφ ∈ X̂θ .

Step 3.We give a lemma in the spirit of Lemma 5.5, whose proof will also be given at the end of
this section:

LEMMA 5.6 For allθ > 0:

(i) For almost allt ∈ [0, T ],

sup
φ∈X̂θt

{∫
∂∗K(t)

c−(x, t)〈φ(x), νK(t)(x)〉 dHN−1(x)

}
< ∞. (5.19)
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(ii) Moreover,

sup
φ∈X̂θ

{∫ T

0

∫
∂∗K(t)

c−(x, t)〈φ(x, t), νK(t)(x)〉 dHN−1(x)dt

}

=

∫ T

0
sup
φ∈X̂θt

{∫
∂∗K(t)

c−(x, t)〈φ(x), νK(t)(x)〉 dHN−1(x)

}
dt. (5.20)

We keep in mind that (5.18) gives an upper bound for the left-hand side of this equality. Now
we show that for allθ > 0 andt ∈ [0, T ] such that (5.19) holds andK(t) has finite perimeter in
{x ∈ RN ; c(x, t) < −θ} (which is true for almost allt thanks to the proof of Theorem 5.1(ii)), the
supremum actually equals∫

∂∗K(t)

c−(x, t)1{c<−θ}(x, t)dHN−1(x). (5.21)

Let suchθ > 0 andt ∈ [0, T ] be fixed. LetC ⊂ {c(·, t) < −θ} be compact. SinceK(t) has finite
perimeter in{x ∈ RN ; c(x, t) < −θ}, C ∩ ∂∗K(t) is a set of finiteHN−1 measure. Therefore the
integral ∫

C∩∂∗K(t)

c−(x, t)dHN−1

is finite and according to Lusin’s theorem (see [15] for instance), we know that for alln > 1, there
exists a compact setCn ⊂ C ∩ ∂∗K(t) such thatνK(t) restricted toCn is continuous and

HN−1([C ∩ ∂∗K(t)] \ Cn) < 1/n. (5.22)

We fix n > 1. For allη > 0 small enough so thatC + B(0, η) ⊂ {c(·, t) < −θ}, we considerφη
such thatφη ∈ C0

c (Cn + B(0, η)), ‖φη‖ 6 1 andφη coincides withνK(t) onCn. The existence of
φη is guaranteed by [15, Theorem 1, p. 13]. Thenφη ∈ X̂θt and∫
∂∗K(t)

c−(x, t)〈φη(x), νK(t)(x)〉 dHN−1(x)

=

∫
Cn

c−(x, t)dHN−1(x)+

∫
∂∗K(t)

1[Cn+B(0,η)]\Cn(x)c−(x, t)〈φη(x), νK(t)(x)〉 dHN−1(x).

As η goes to 0,∣∣∣∣∫
∂∗K(t)

1[Cn+B(0,η)]\Cn(x)c−(x, t)〈φη(x), νK(t)(x)〉 dHN−1(x)

∣∣∣∣
6 ‖c‖∞

∫
∂∗K(t)

1[Cn+B(0,η)]\Cn(x) dHN−1(x) → 0

thanks to the dominated convergence theorem. Therefore∣∣∣∣∫
∂∗K(t)

c−(x, t)〈φη(x), νK(t)(x)〉 dHN−1(x)−

∫
C∩∂∗K(t)

c−(x, t)dHN−1(x)

∣∣∣∣
−→
η→0

∫
[C∩∂∗K(t)]\Cn

c−(x, t)dHN−1(x) 6 ‖c‖∞

1

n
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thanks to (5.22). We have constructed functionsφη ∈ X̂θt such that the integral∫
∂∗K(t)

c−(x, t)〈φη(x), νK(t)(x)〉 dHN−1(x)

is arbitrarily close to the integral
∫
C∩∂∗K(t)

c−(x, t)dHN−1(x), which in turn, by takingC = Cp =

B(0, p)∩{x; d{c(·,t)>−θ}(x) > 1/p}, asp → ∞ by monotone convergence can be made arbitrarily
close to

∫
∂∗K(t)

c−(x, t)1{c<−θ}(x, t)dHN−1(x). This proves (5.21).

Step 4.Combining the results of Steps 2 and 3, we have, for allθ > 0,

∫ T

0

∫
∂∗K(t)

c−(x, t)1{c<−θ}(x, t)dHN−1(x)dt

6 −

[∫
K(t)

1{c<−θ}(x, t)dx

]T
0

+

∫ T

0

∫
K(t)∩{c(·,t)=−θ}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt.

If we let θ → 0 in this estimate, since the right-hand side is upper semicontinuous, the Beppo-Levi
monotone convergence theorem shows that

∫ T
0

∫
∂∗K(t)

c−(x, t)dHN−1(x)dt is finite and

∫ T

0

∫
∂∗K(t)

c−(x, t)dHN−1(x)dt

6 −

[∫
K(t)

1{c<0}(x, t)dx

]T
0

+

∫ T

0

∫
K(t)∩{c(·,t)=0}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt,

and this finally proves the third assertion of Theorem 5.1.

Proof of Lemma 5.5.If the lemma were not true, there would existA ⊂ [0, T ] with positive measure
such that for allt ∈ A, supφ∈Xt

{
∫
K(t)

c(x, t)divφ(x)dx} = ∞. Let ε > 0 be fixed. For allM > 0,
set

EM =

{
t ∈ A; ∃φ ∈ Xt with ‖Dφ‖∞ 6 M,

∫
K(t)

c(x, t)divφ(x)dx > 1/ε

}
,

which is non-empty forM large enough. We also point out thatA =
⋃
M>0EM . Let us fixM

large enough so thatEM 6= ∅. We want to constructφ ∈ X such that‖Dφ‖∞ 6 M and for all
t ∈ EM ,

∫
K(t)

c(x, t)divφ(x, t)dx > 1/ε. In order to do so, we will need the notion of measurable
selection. For more details than those given below, we refer to [4].

We recall that if(Ω,A) is a measurable space, andY is a complete separable metric space, a
mapF : Ω → P(Y ) whose images are closed subsets ofY is said to bemeasurableif for all open
subsetsU ⊂ Y , F−1(U) = {ω ∈ Ω; F(ω) ∩ U 6= ∅} ∈ A. A measurable mapf : Ω → Y such
that for allω ∈ Ω, f (ω) ∈ F(ω), is called ameasurable selectionof F .

If Z is another complete separable metric space, we say thatg : Ω×Y → Z is Carathéodoryif
for all ω ∈ Ω, g(ω, ·) is continuous, and for allx ∈ Y , g(·, x) is measurable. In order to construct
our functionφ, we use the following measurable selection theorem:

THEOREM 5.7 ([4, Theorem 8.2.9]) Let(Ω,A) be a measurable space. LetY and Z be two
complete separable metric spaces, andF : Ω → P(Y ) andG : Ω → P(Z) be two measurable
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maps with closed images. Letg : Ω × Y → Z be a Carathéodory map. Then the mapω 7→ {x ∈

F(ω); g(ω, x) ∈ G(ω)} is measurable. Moreover if

∀ω ∈ Ω, g(ω, F (ω)) ∩G(ω) 6= ∅,

then there exists a measurable selectionf of F such that for allω ∈ Ω, g(ω, f (ω)) ∈ G(ω).

We apply Theorem 5.7 with

Ω = EM , Z = R,

Y = {φ ∈ C1(BR); ‖φ‖∞ 6 1 and|Dφ‖∞ 6 M} with the norm‖φ‖∞ + ‖Dφ‖∞,

F (t) = {φ ∈ Xt ; ‖Dφ‖∞ 6 M}, G(t) = [1/ε,∞),

g(t, φ) =

∫
K(t)

c(x, t)divφ(x)dx.

We first notice thatY andZ are complete separable metric spaces, and thatF andG have closed
images. Moreover,G is constant, thus measurable.

1. For allt ∈ [0, T ], F(t) = {φ ∈ Y ; supBR∩{c(·,t)>0}
|φ(x)| = 0}, and Theorem 5.7 applied to

F1(t) = Y , G1(t) = {0}, g1(t, φ) = supBR∩{c(·,t)>0}
|φ(x)| shows thatF is measurable on [0, T ].

Indeedg1 is Carathéodory:g1(·, φ) is clearly usc, whence measurable.
2. Next we see thatt 7→ g(t, φ) is measurable on [0, T ] for all φ ∈ C1(BR), because of Fubini’s

theorem, since(x, t) 7→ 1K(t)(x)c(x, t)divφ(x) ∈ L1(RN × [0, T ]). Moreoverφ 7→ g(t, φ) is
continuous since the domain of integration is bounded andc is bounded, which shows thatg is
Carathéodory.

3. The supremum of measurable functions on a set that depends in a measurable way ont is
measurable (cf. [4, Theorem 8.2.11]), so Steps 1 and 2 show that

h : t 7→ sup
φ∈F(t)

{∫
K(t)

c(x, t)divφ(x)dx

}
is measurable on [0, T ]. But EM = h−1((1/ε,∞)) ∩ A, henceEM is Lebesgue measurable. By
restriction, the mapsF ,G andg(·, φ) (∀φ ∈ Y ) are measurable onEM .

The assumptions of the measurable selection theorem are satisfied, and after extending offEM
by multiplying the measurable selection obtained by1EM which is measurable, we get the existence
of φ ∈ X such that for allt ∈ EM ,∫

K(t)

c(x, t)divx φ(x, t)dx > 1/ε,

and this integral vanishes on [0, T ] \ EM . Integrating this inequality between 0 andT , taking the
supremum forφ ∈ X on the left-hand side, and lettingM go to infinity we conclude, sinceA =⋃
M>0EM , that

sup
φ∈X

{∫ T

0

∫
K(t)

c(x, t)divx φ(x, t)dx dt

}
>
L(A)
ε

.

Since this is true for allε > 0, and sinceL(A) > 0, lettingε → 0 contradicts (5.15) and concludes
the proof of Lemma 5.5.
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Proof of Lemma 5.6(i).The proof is in every way similar to the previous one, with the following
modifications:

1. We need not considerEM since there is no first order derivative condition. SoΩ is the set of
t ∈ [0, T ] such thatK(t) has finite perimeter in{c(·, t) < 0}, which is known to have full
measure.

2. C1(BR) is replaced byC0(BR) with the‖ · ‖∞ norm, andXt is replaced byX̂θt .
3. g is defined byg(t, φ) =

∫
∂∗K(t)

c−(x, t)〈φ(x, t), νK(t)(x)〉 dHN−1(x), the main argument to

verify thatg is Carathéodory being thatHN−1({c(·, t) < −θ} ∩ ∂∗K(t)) is finite for all t ∈ Ω.

Proof of Lemma 5.6(ii).We start by noticing that the “6” inequality of (5.20) is obvious. Now we
know, thanks to (i), that there existsA of zero measure such that fort ∈ Ω \ A,

sup
φ∈X̂θt

{∫
∂∗K(t)

c−(x, t)〈φ(x), νK(t)(x)〉 dHN−1(x)

}
< ∞.

Let ε > 0 be fixed. We apply Theorem 5.7 with

Y = {φ ∈ C0(BR); ‖φ‖∞ 6 1} with the norm‖φ‖∞, Z = R,

F (t) = X̂θt ,

G(t) =

[
sup
φ∈X̂θt

{∫
∂∗K(t)

c−(x, t)〈φ(x), νK(t)(x)〉 dHN−1(x)

}
− ε,∞

)
,

g(t, φ) =

∫
∂∗K(t)

c−(x, t)〈φ(x), νK(t)(x)〉 dHN−1(x).

All the maps considered are measurable thanks to the previous proof. Indeed, another use of
Theorem 5.7 withY1 = Z1 = R, F1(t) = R, G1(t) = [0,∞), and g1(y, t) = y −

sup
φ∈X̂θt

{
∫
∂∗K(t)

c−(x, t)〈φ(x), νK(t)(x)〉 dHN−1(x)} + ε shows thatG is measurable, which was
the only missing verification.

As in the proof of Lemma 5.5, we obtain the existence ofφ ∈ X̂θ such that for allt ∈ Ω \ A,∫
K(t)

c(x, t)divx φ(x, t)dx > sup
φ∈X̂θt

{∫
K(t)

c(x, t)divφ(x)dx

}
− ε.

Integrating this inequality between 0 andT , and then lettingε → 0 proves (5.20).

6. Corresponding results for supersolutions

We state in this section the counterparts for supersolutions of the main results proved up to now, and
give the modifications needed for the proofs.

6.1 The integral formulation for supersolutions

Let c : RN × [0, T ] → R satisfy the assumptions of Theorem 2.2, andΩ : [0, T ] → P(RN )\{RN }

be such that

1. Ω is uniformly bounded on [0, T ], Ω(t) → Ω(0) ast → 0 andΩ(t) → Ω(T ) ast → T in the
Hausdorff distance.
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2. The graph
⋃
t∈[0,T ]{t} ×Ω(t) of Ω is open in [0, T ] × RN .

3. u : (x, t) 7→ 1Ω(t)(x) is a viscosity supersolution of the eikonal equation

ut = c(x, t)|Du| in RN × (0, T ).

Set for allε > 0,

Ωε(t) = {x ∈ RN ; dΩc(t)(x) > ε}, cε(x, t) = min
|y−x|6ε

c(y, t).

Then we have:

THEOREM 6.1 For all t1 and t2 satisfying 06 t1 6 t2 6 T , for almost allε > 0, and for all
φ ∈ C1(RN × [0, T ],R+),∫ t2

t1

∫
Ωε(t)

φt (x, t)dx dt +
∫ t2

t1

∫
{dΩc(t)=ε}

cε(x, t)φ(x, t) dHN−1(x)dt

6

[∫
Ωε(t)

φ(x, t)dx

]t2
t1

. (6.1)

REMARK 6.2 The fact thatu is a supersolution of the equation does not guarantee, unlike the case
of subsolutions, that the evolution is bounded. This is why assumption 1 has to be stronger for
supersolutions.

The only changes in the proof are:

1. w(x, t) = dΩc(t)(x).

2. We takeθ : R → R non-decreasing of classC∞ such thatθ = 0 in (−∞,0], θ = 1 in [ε,∞).
3. The equivalent of Proposition 3.5 is proved by a regularization by inf-convolution instead of

sup-convolution.

All arguments then follow in the same way.

6.2 The converse implication for supersolutions

The converse theorem for supersolutions naturally becomes:

THEOREM 6.3 Letc : RN×[0, T ] → R satisfy the assumptions of Theorem 2.2 andΩ : [0, T ] →

P(RN ) \ {RN } be such that

1. Ω is uniformly bounded on [0, T ].
2. The graph

⋃
t∈[0,T ]{t} ×Ω(t) of Ω is open in [0, T ] × RN .

3. Inequality (6.1) holds for all 06 t1 6 t2 6 T , for almost allε > 0 small enough and for all
φ ∈ C1(RN × [0, T ],R+).

Thenu : (x, t) 7→ 1Ω(t)(x) is a viscosity supersolution ofut = c(x, t)|Du| in RN × (0, T ).

In the proof of this result, the only change occurs when switching the integration order between
x andσ (the equivalent of (4.4)), and we get∫ ε

0

∫
Ωσ (t)

φt (x, t)dx dσ =

∫
Ω(t)

dΩc(t)(x)φt (x, t)dx,

which is exactly what we need to comply with the inequalities for supersolutions.
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6.3 Regularity of the front

The analogue of Theorem 5.1 when we work on (6.1) is the following:

THEOREM 6.4 Letc : RN × [0, T ] → R satisfy the assumptions of Theorem 2.2 and(A1), (A2).
LetΩ : [0, T ] → P(RN ) \ {RN } be such that:

1. Ω is uniformly bounded on [0, T ], Ω(t) → Ω(0) ast → 0 andΩ(t) → Ω(T ) ast → T in the
Hausdorff distance.

2. The graph
⋃
t∈[0,T ]{t} ×Ω(t) of Ω is open in [0, T ] × RN .

3. u : (x, t) 7→ 1Ω(t)(x) is a supersolution of the eikonal equation (3.1).

Then the following hold:

(i) For a.a.t ∈ [0, T ], c(·, t)1Ω(t) has bounded variation in{c(·, t) > 0}.
(ii) For a.a.t ∈ [0, T ], Ω(t) has locally finite perimeter in{c(·, t) > 0}.

(iii) Denoting by(·)+ the positive part of a quantity (x+ = max(x,0)), we have∫ T

0

∫
∂∗Ω(t)

c+(x, t)dHN−1(x)dt < ∞,

an upper bound for this integral being given by[∫
Ω(t)

1{c>0}(x, t)dx

]T
0

+

∫ T

0

∫
Ω(t)∩{c(·,t)=0}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt.

The only modification is basically to switch all{c < 0} to {c > 0} and use the modified
truncationTη, a continuous non-decreasing and piecewise affine function equal to 0 in(−∞, θ ] and
1 in [θ + η,∞) so as to isolate the set{c > 0} instead of{c < 0}.

7. Global estimate

We finally synthesize the results of Theorems 5.1 and 6.4 in order to get a global estimate.

THEOREM 7.1 Letc : RN × [0, T ] → R satisfy the assumptions of Theorem 2.2 and(A1), (A2),
and letΩ : [0, T ] → P(RN ) andK : [0, T ] → P(RN ) \ {∅} be such that:

1. K(0) is compact and for allt ∈ [0, T ], Ω(t) ⊂ K(t).
2. K(t) → K(0) andΩ(t) → Ω(0) in the Hausdorff distance ast → 0,
K(t) → K(T ) andΩ(t) → Ω(T ) in the Hausdorff distance ast → T .

3. Graph(K) is closed in [0, T ] × RN andu : (x, t) 7→ 1K(t)(x) is a subsolution of the eikonal
equation (3.1).

4. Graph(Ω) is open in [0, T ] × RN andu : (x, t) 7→ 1Ω(t)(x) is a supersolution of the eikonal
equation (3.1).

5. LN+1(Graph(K) \ Graph(Ω)) = 0.

Then for a.a.t ∈ [0, T ], K(t) has locally finite perimeter in{c(·, t) 6= 0}, and if sgn(r) denotes the
sign ofr ∈ R (sgn(r) = r/|r| if r 6= 0, sgn(0) = 0), we have the following estimate:
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0

∫
∂∗K(t)

|c(x, t)| dHN−1(x)dt

6

[∫
K(t)

sgn(c(x, t))dx

]T
0

+ 2
∫ T

0

∫
K(t)∩{c(·,t)=0}

|ct (x, t)|

|Dc(x, t)|
1{ct<0}(x, t)dHN−1(x)dt.

REMARK 7.2 The existence ofΩ andK satisfying assumptions 1, 3 and 4 is ensured by Theorem
2.2 and the paragraph that follows it. Assumption 2 avoids pathological behavior of the front at
times 0 andT , and assumption 5 is related to the so-called non-empty interior difficulty (see [9]).

Proof. SinceLN+1(Graph(K) \ Graph(Ω)) = 0, we haveLN (K(t) \ Ω(t)) = 0 for almost all
t ∈ [0, T ]. ThereforeK(t) has locally finite perimeter in{c(·, t) 6= 0} for almost allt such thatK(t)
has locally finite perimeter in{c(·, t) < 0} andΩ(t) has locally finite perimeter in{c(·, t) > 0}, and
then∂∗Ω(t) = ∂∗K(t). Finally, using the fact that|c| = c− + c+, we deduce the global estimate
by summing the estimates of Theorems 5.1 and 6.4. 2
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