
Interfaces and Free Boundaries9 (2007), 285–306

A nonlocal phase-field model with nonconstant specific heat†
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We prove the existence, uniqueness, thermodynamic consistency, global boundedness from both
above and below, and continuous data dependence for a solution to an integrodifferential model for
nonisothermal phase transitions under nonhomogeneous mixed boundary conditions. The specific
heat is allowed to depend on the order parameter, and the convex component of the free energy may
or may not be singular.
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1. Introduction

Phase-field models have been designed to describe the evolution of the state variablesθ > 0 andχ ,
representing the absolute temperature and a scalar order parameter, respectively, during temperature-
induced phase transitions in a bodyΩ ⊂ RN (N = 3, for instance) if no mechanical motion takes
place. For example, in a simple melting-solidification process,χ attains its values in the interval
[0,1], where{χ = 0} characterizes the solid phase,{χ = 1} the liquid, and{0< χ < 1} is the liquid
fraction in a mixture of both phases. Solid-solid phase transitions between two crystallographic
variants with different mechanical properties (martensite and austenite, say) may also exhibit a
similar behavior provided the experiment is uniaxial and is carried out under constant strain. Then
the stress may play the role of an order parameter characterizing the phase, but no natural restriction
on the admissible order parameter range is necessary.
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We deal here with an integrodifferential model for volume preserving nonisothermal phase
transitions that takes into account long-range interactions between particles. The physical relevance
of nonlocal interaction phenomena in phase separation and phase transition models was already
described in the pioneering papers [28] and [8]; however, only recently both isothermal and
nonisothermal models containing nonlocal terms have been analyzed in a more systematic way
(cf., e.g., [2]–[3], [9]–[21], [26]). The difference between local and nonlocal models consists
in a different choice of the particle interaction potential in the free energy functional. The
nonlocal contribution to the free energy has typically the form

∫
Ω
k(x, y) |χ(x) − χ(y)|2 dy with

a given symmetric kernelk(x, y); its classical local Ginzburg–Landau counterpart has the form
(ν/2)|∇χ(x)|2 as, e.g., in [7], with a positive parameterν, and can be obtained as a formal limit
asm → ∞ from the nonlocal one with the choicek(x, y) = mN+2K(|m(x − y)|2), whereK is a
nonnegative function with support in [0,1]. This follows from the formula∫

Ω

mN+2K(|m(x − y)|2)|χ(x)− χ(y)|2 dy =

∫
Ωm(x)

K(|z|2)

∣∣∣∣χ(x + z/m)− χ(x)

1/m

∣∣∣∣2 dz

m→∞
−→

∫
RN
K(|z|2)〈∇χ(x), z〉2 dz =

ν

2
|∇χ(x)|2

for a sufficiently regularχ , whereν = (2/N)
∫
RN K(|z|

2)|z|2 dz andΩm(x) = m(Ω−x). We have
used the identity

∫
RN K(|z|

2)〈e, z〉2 dz = (1/N)
∫
RN K(|z|

2)|z|2 dz for every unit vectore ∈ RN .
Let us also mention the “Penrose–Fife” potential(ν/2)θ |∇χ(x)|2 (see [6, 25]). Its nonlocal version
might also deserve appropriate attention (cf. [21]), but we do not consider this issue here.

The passage from a nonlocal to a local potential changes drastically the properties of the model.
For example, the maximum principle is lost in the limit, and in general it is not possible to guarantee
without additional hypotheses that the absolute temperature remains positive during the process.

We pursue here the investigations initiated in [19] and consider a local free energy of the form

F [θ, χ ] = cV (χ)θ(1 − logθ)+ θσ (χ)+ λ(χ)+ (β + θ)ϕ(χ)+ B[χ ], (1.1)

whereσ andλ are smooth functions describing the local dependence onχ of the entropy and of the
latent heat, respectively;β > 0 is a constant parameter,B[χ ] is a nonlocal operator of the form

B[χ ](x, t) :=
∫
Ω

k(x, y)G(χ(x, t)− χ(y, t))dy (1.2)

with a bounded, symmetric kernelk : Ω ×Ω → R and an even smooth functionG; ϕ is a
general proper, convex, and lower semicontinuous function. Its domainD(ϕ) may be bounded or
unbounded, depending on the specific model situation. The main novelty here is that the specific heat
cV may depend on the order parameterχ . In the solid-liquid system mentioned above, for example,
we may have different valuesc0

V in the solid andc1
V in the liquid. Assuming that their dependence

on temperature can be neglected in each phase, we may definecV (χ) = c0
V + χ(c1

V − c0
V ) (cf. [27,

Section IV.4]). The value ofχ can be kept between 0 and 1 by setting in this caseϕ = I[0,1] (the
indicator function of [0,1]).

With the above free energy, we associate the local internal energyE and entropyS according to
the formulas

S = −
∂F

∂θ
, E = F + θS, (1.3)
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that is, {
S[θ, χ ] = cV (χ) logθ − σ(χ)− ϕ(χ),

E[θ, χ ] = cV (χ)θ + λ(χ)+ βϕ(χ)+ B[χ ].
(1.4)

The temperature dynamics is governed by the internal energy balance over an arbitrary control
volumeΩ ′

⊂ Ω,
d

dt

∫
Ω ′

E[θ, χ ] dx +

∫
∂Ω ′

〈q,n〉 ds = Ψ (Ω ′), (1.5)

whereq is the heat flux vector,n is the unit outward normal to∂Ω ′, andΨ (Ω ′) is the energy
exchange through the boundary ofΩ ′ due to the nonlocal interactions. The order parameter
dynamics is assumed in the form

µ(θ)χt ∈ −δχF [θ, χ ] (1.6)

with a factorµ(θ) > 0, where we denote

F [θ, χ ] =

∫
Ω

F [θ, χ ] dx,

and whereδχF stands for the variational derivative ofF with respect to the variableχ . The
inclusion sign in (1.6) accounts for the fact thatF may contain components that are not Fréchet
differentiable, but are convex, and the derivative can be interpreted as the subdifferential, which
may be multivalued. Condition (1.6) is based on the assumption that the system tends to move
towards local minima of the free energy with a speed proportional to 1/µ(θ). Using (1.1), we can
rewrite (1.6) as

µ(θ)χt + c′V (χ)θ(1 − logθ)+ λ′(χ)+ θσ ′(χ)+ (β + θ)∂ϕ(χ)+ b[χ ] 3 0, (1.7)

with the notation

b[χ ](x, t) := 2
∫
Ω

k(x, y)G′(χ(x, t)− χ(y, t))dy. (1.8)

The interaction termΨ (Ω ′) in (1.5) and the constitutive law for the heat flux have to comply with
the Clausius–Duhem inequality

St + div

(
q
θ

)
> 0, (1.9)

which is understood here almost everywhere in the regularity context of Theorem 2.2. Assuming
θ > 0 (this will have to be justified in the next sections), and using (1.1) with (1.7) and (1.3), we
obtain the identities

θ

(
St + div

(
q
θ

))
= Et + div q − Ft − θtS −

〈q,∇θ〉
θ

= Et + div q + µ(θ)χ2
t −

〈q,∇θ〉
θ

+ b[χ ]χt − B[χ ]t . (1.10)

We assume the Fourier heat flux law
q = −κ∇θ,
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with a constant positive heat conductivityκ. Then the right-hand side of (1.10) stays nonnegative
without prescribing any relationship betweenµ(θ) andB[χ ], provided that we chooseΨ (Ω ′) in
(1.5) as

Ψ (Ω ′) =

∫
Ω ′

(−b[χ ]χt + B[χ ]t )dx. (1.11)

In agreement with natural expectations, we haveΨ (Ω) = 0. The differential form of the energy
balance (1.5) then reads

Et + div q = −b[χ ]χt + B[χ ]t , (1.12)

that is,

(cV (χ)θ + λ(χ)+ βϕ(χ))t + b[χ ]χt − κ∆θ = 0. (1.13)

In real materials, the dependence ofcV on the phase may be very strong (the specific heat in
water is considerably higher than both in ice and in vapor, for instance). Introducing the term
cV (χ) into the above system may however create substantial difficulties from both the physical and
mathematical viewpoints, which can again be illustrated on the two-phase system mentioned above.
More specifically, consider the thermodynamically insulated (i.e., with homogeneous Neumann
boundary conditions) relaxed Stefan problem corresponding to the choiceϕ = I[0,1], λ′(χ) = L,
σ ′(χ) = −L/θc, B[χ ] ≡ 0, whereL and θc are positive constants (the latent heat and phase
transition temperature, respectively),c′V (χ) = c̄ := c1

V −c0
V . Thermodynamic equilibria are located

on the curve

∂I[0,1](χ) 3 c̄θ(logθ − 1)+
L

θc
(θ − θc),

or, equivalently,

χ ∈ H
(
c̄θ(logθ − 1)+

L

θc
(θ − θc)

)
,

whereH is the maximal monotone extension of the Heaviside function. We see that ifc1
V < c0

V ,
as in the water-vapor system, then the only (stable!) equilibrium for both very high and very
low temperatures isχ = 0, which is an obvious physical paradox. Between water and ice, this
contradiction does not occur.

We focus here on mathematical problems arising in connection with this model. On the boundary
of Ω, we prescribe nonhomogeneous mixed boundary conditions. Our main results include the
proof of existence and uniqueness of a global solution(θ, χ) to (1.7) and (1.13) on the whole time
axis (0,∞). We also prove thatθ is uniformly bounded from above and below on(0,∞), with
the intention to study the asymptotic behaviort → ∞ in the future. Note that there are only few
works in the literature dealing with the convergence of trajectories towards equilibrium for nonlocal
phase-field systems. The case of analytic potentialsϕ has been solved first in [11] and then in
[17] for a time-relaxed model and in [13] for a time-discrete scheme. The nonsmooth case is not
straightforward even if the nonlocal term is absent (see [23]), and deserves special attention.

The paper is organized as follows. The main results are stated in Section 2. Section 3 is devoted
to some auxiliary results on a class of differential inclusions, on maximum principles for parabolic
equations with nonconstant coefficients and nonhomogeneous mixed boundary conditions, and on
L∞-estimates based on Moser-type iterations. Uniqueness is proved in Section 4, existence and
global boundedness in time in Section 5.
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2. Main results

Consider a bounded domainΩ ⊂ RN , N > 1, and the time interval [0,∞). ForT ∈ (0,∞] (∞
included) we denote byQT = Ω × (0, T ) the open space-time cylinder, and byΣT its lateral
boundary∂Ω × (0, T ). We use, for the sake of simplicity, the same symbolH for bothL2(Ω) and
L2(Ω; RN ), andH 1 for H 1(Ω).

We rewrite system (1.13), (1.7), putting, for simplicity and without loss of generality,κ = 1, in
the form

(cV (χ)θ + λ(χ)+ βϕ(χ))t + b[χ ]χt −∆θ = 0, (2.1)

µ(θ)χt + c′V (χ)θ(1 − logθ)+ λ′(χ)+ θσ ′(χ)+ (β + θ)∂ϕ(χ)+ b[χ ] 3 0, (2.2)

to be satisfied in a sense specified below, withb[χ ] defined in (1.8), and prescribe the boundary and
initial conditions

∂nθ + γ (θ − θΓ ) = 0 onΣ∞, (2.3)

θ(0) = θ0, χ(0) = χ0 in Ω, (2.4)

where∂n denotes the outward normal derivative, and the data fulfil the following hypothesis.

HYPOTHESIS2.1 We fix positive constantsβ, c0, θ̄Γ , µ∗, C0, θ∗, and assume that:

(i) γ ∈ L∞(∂Ω) is a nonnegative function.
(ii) There exist constantsψ∗ > ψ∗ > 0 such thatψ∗ > ψ1(x) > ψ∗ a.e., whereψ1 ∈ H 1 is

the eigenfunction with unitH -norm corresponding to the smallest eigenvalueλ1 > 0 of the
elliptic problem

−∆ψ1 = λ1ψ1 in Ω, ∂nψ1 + γψ1 = 0 on∂Ω. (2.5)

(iii) ϕ : R → [0,∞] is a proper, convex, and lower semicontinuous function,D(ϕ) is its domain,
and 0∈ ∂ϕ(0).

(iv) σ, λ ∈ W2,∞(D(ϕ)).
(v) G ∈ W2,∞(D(ϕ) − D(ϕ)), G(z) = G(−z) for all z ∈ (D(ϕ) − D(ϕ)), k ∈ L∞(Ω × Ω),

k(x, y) = k(y, x) a.e. inΩ ×Ω.
(vi) cV ∈ W2,∞(D(ϕ)), cV (z) > c0 > 0 for all z ∈ D(ϕ).

(vii) θΓ ∈ L∞(Σ∞), (θΓ )t ∈ L2
loc(Σ∞), θΓ > 0 a.e. inΣ∞.

(viii) µ is locally Lipschitz inR+, µ(τ) > µ∗(1 + τ) for all τ ∈ R+.
(ix) For anyC > 0 setDC(ϕ) = {χ ∈ D(ϕ); ∂ϕ(χ) ∩ [−C,C] 6= ∅}, and assume thatχ0 ∈

L∞(Ω), χ0(x) ∈ DC0(ϕ) a.e. inΩ.
(x) θ0 ∈ H 1

∩ L∞(Ω), θ0(x) > θ∗ a.e. inΩ.

If γ vanishes on some part of∂Ω, then (2.3) is a mixed Neumann–Robin boundary condition.
Below in Remark 2.3, we will show some sufficient conditions for Hypothesis 2.1(ii) to hold.
Note also that by [5, Example 2.3.4],∂ϕ is maximal monotone, henceDC(ϕ) is a closed (possibly
unbounded or degenerate) interval for everyC > 0.

We are in a position to state the existence theorem.
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THEOREM 2.2 Let Hypothesis 2.1 hold. Then there exists at least one pair(θ, χ) with the
regularity

θ ∈ L∞(Q∞) ∩ L∞(0,∞;H 1), θt ∈ L2
loc(0,∞;L2(Ω)), (2.6)

θ(x, t) > 0 a.e. inQ∞, (2.7)

χ ∈ L∞

loc(Q∞), χt ∈ L∞(Q∞); ∃C > 0 : χ(x, t) ∈ DC(ϕ) a.e. inQ∞, (2.8)

satisfying (2.2), (2.4) a.e., together with∫
Ω

((cV (χ)θ+λ(χ)+βϕ(χ))t+b[χ ]χt )w dx+

∫
Ω

〈∇θ,∇w〉 dx+

∫
∂Ω

γ (θ−θΓ )w ds = 0, (2.9)

for every test functionw ∈ H 1. Moreover, there exist two positive constantsθ andθ (independent
of t) such that the following uniform upper and lower bounds hold:

θ < θ(x, t) < θ for a.e.(x, t) ∈ Q∞. (2.10)

REMARK 2.3 Hypothesis 2.1(ii) is fulfilled for example ifγ ≡ 0. Thenλ1 = 0 andψ1 is a constant
function. Another easy case is whenΩ = (a1, b1)× · · · × (aN , bN ) is an orthogonal parallelepiped
with γ constant on each side. As a last example, let us mention the case where both∂Ω andγ are
of classC∞. The first eigenfunctionψ1 is defined as a minimizer of the Rayleigh functional

R(u) =

∫
Ω

|∇u|2 dx +

∫
∂Ω

γ u2 ds

on the setS1
1 := {u ∈ H 1

; |u|H = 1}, andλ1 is given asλ1 = min{R(u); u ∈ S1
1}. The functionψ1

thus satisfies the variational equation∫
Ω

〈∇ψ1,∇w〉 dx +

∫
∂Ω

γψ1w ds = λ1

∫
Ω

ψ1w dx (2.11)

for everyw ∈ H 1. Choosingw = ψ+

1 ,w = ψ−

1 (the positive and negative parts ofψ1, respectively),
we see that bothψ+

1 ,ψ−

1 , as well as|ψ1| = ψ+

1 +ψ−

1 , satisfy the variational equation (2.11). Then
|ψ1| is a weak solution of the problem

−∆|ψ1| = λ1|ψ1| in Ω, ∂n|ψ1| + γ |ψ1| = 0 on∂Ω. (2.12)

By [24, Chap. 2, Thm. 5.1], we have, denotingH r
= W r,2(Ω),H 0

= H , that∣∣|ψ1|
∣∣
H2+r 6 Cr

(∣∣λ1|ψ1|
∣∣
H r +

∣∣|ψ1|
∣∣
H1+r

)
(2.13)

for every integerr > 0 with some constantsCr > 0 provided the right-hand side is well defined.
This is the case forr = 0, hence we may iterate in (2.13) forr = 1,2, . . . until we obtain|ψ1| ∈

C2(Ω̄) takingr sufficiently large. The function|ψ1| does not vanish inΩ, by Maximum Principle I
in [4, Part II, Chap. 2]. Assuming that there existsx ∈ ∂Ω such that|ψ1(x)| = 0 also leads to a
contradiction. Indeed, we find a ball lying entirely inΩ and touching∂Ω at the pointx. Maximum
Principle III in [4, Part II, Chap. 2] then shows that∂n(|ψ1(x)|) < 0, which contradicts (2.12).
Henceψ1 does not vanish in̄Ω. This argument also shows that this eigenfunction of problem (2.5)
is unique up to a constant multiple.
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To conclude this section, we state a result on uniqueness and continuous data dependence for
(2.1–2.4).

THEOREM 2.4 Let Hypothesis 2.1 hold, and let(θ1, χ1), (θ2, χ2) be solutions to (2.1–2.4) in the
sense of Theorem 2.2 associated with boundary and initial dataθΓ 1, θ01, χ01 and θΓ 2, θ02, χ02,
respectively. Put̂θ = θ1 − θ2, χ̂ = χ1 −χ2, θ̂Γ = θΓ 1 − θΓ 2, χ̂0 = χ01−χ02, θ̂0 = θ01− θ02. Then
for everyT > 0 there exists a constantCT > 0 such that∫ T

0

∫
Ω

|θ̂ (x, t)|2 dx dt + max
t∈[0,T ]

∫
Ω

|χ̂(x, t)|2 dx

6 CT

(
|θ̂0|

2
H + |χ̂0|

2
H +

∫ T

0

∫
∂Ω

γ θ̂2
Γ (x, t)ds dt

)
. (2.14)

3. Auxiliary results

In this section we provide some auxiliary results that are used in the remainder of the paper. The first
part of this section deals with the continuity of solution operators to general differential inclusions,
while the second one recalls some parabolic maximum principle results and a variant of the Moser
iteration scheme.

3.1 Solution operators to differential inclusions

Consider a functionalϕ as in Hypothesis 2.1(iii). For a given initial conditionχ0, a fixed final time
T > 0, and a given functionθ ∈ L1(QT ), we solve the following differential inclusion:

α(θ)χt + ∂ϕ(χ) 3 f [χ, θ ] a.e. inQT , χ(x,0) = χ0(x) a.e. inΩ, (3.1)

whereα : R → R is a given function, andf : L1(QT )×L
1(QT ) → L1(QT ) is a given continuous

operator satisfying the following hypothesis.

HYPOTHESIS3.1 There exist positive constantsα0, L,C such that:

(i) α0 6 α(θ) for all θ ∈ R.
(ii) |α(θ1)− α(θ2)| 6 L|θ1 − θ2| for all θ1, θ2 ∈ R.

(iii) |f [χ, θ ](x, t)| 6 C a.e. inQT for all χ, θ ∈ L1(QT ) such thatχ(x, t) ∈ D(ϕ) a.e. inQT .
(iv) |f [χ1, θ ] − f [χ2, θ ]|L1(Qt )

6 L|χ1 − χ2|L1(Qt )
for all χ1, χ2, θ ∈ L1(QT ) andt ∈ [0, T ].

This is slightly different from [19, Subsection 3.1], wheref is assumed to be Lipschitz
continuous also with respect toθ . Here,f is only continuous, and we therefore only get the
following weaker result.

PROPOSITION3.2 Let Hypothesis 3.1 hold, and letDC(ϕ) be as in Hypothesis 2.1. Then, for
everyθ ∈ L1(QT ), and for everyχ0 ∈ L∞(Ω) with χ0(x) ∈ DC(ϕ) a.e. inΩ, there exists a unique
solutionχ ∈ L∞(QT ) to (3.1) such thatχt ∈ L∞(QT ), and we have

χ(x, t) ∈ DC(ϕ), |f [χ, θ ](x, t)− α(θ(x, t))χt (x, t)| 6 C a.e. inQT . (3.2)

Moreover, let{θ (n)} be a sequence that converges strongly inL1(QT ) to θ , let χ (n)0 ∈ L∞(Ω) be

initial conditions such thatχ (n)0 (x) ∈ DC(ϕ) a.e. inΩ andχ (n)0 → χ0 in L1(Ω), and letχ (n), χ be

the respective solutions to (3.1). Thenχ (n) → χ , χ (n)t → χt strongly inL1(QT ).
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REMARK 3.3 As a complement to the above proposition, notice that the strong continuity
L1(QT ) → Lp(QT ) of the solution mapping for 16 p < ∞ follows from the uniformL∞-bound
(3.2). Indeed, testing (3.1) byχt , we obtain the identity

ϕ(χ)t = −α(θ)χ2
t + f [χ, θ ]χt a.e. inQT . (3.3)

If θ (n), θ, χ (n), χ are as in Proposition 3.2, theL∞-bounds (3.2) show thatχ (n) → χ , χ (n)t → χt ,
ϕ(χ (n))t → ϕ(χ)t , strongly in anyLp(QT ) for 1 6 p < ∞.

The proof of Proposition 3.2 is based on properties of the corresponding space-independent
problem. For a given initial conditionχ0 ∈ D(ϕ) and a given functionθ ∈ L1(0, T ), we consider
the differential inclusion

α(θ(t))χ̇(t)+ ∂ϕ(χ(t)) 3 g(t) a.e. in(0, T ), χ(0) = χ0, (3.4)

whereα : R → R is as in Hypothesis 3.1 andg ∈ L∞(0, T ) is such that

|g(t)| 6 C a.e. in(0, T ). (3.5)

We recall from [19, Proposition 3.4] the following result.

PROPOSITION3.4 Let Hypotheses 3.1(i)–(ii) and (3.5) hold. Then, for everyθ ∈ L1(0, T ) and
everyχ0 ∈ DC(ϕ), there exists a unique solutionχ ∈ W1,∞(0, T ) to (3.4), and we have

χ(t) ∈ DC(ϕ) ∀t ∈ [0, T ], |g(t)− α(θ(t))χ̇(t)| 6 C a.e. in(0, T ). (3.6)

Moreover, there exists a positive constantC# depending only onC, α0, andL such that the solutions
χ1, χ2 ∈ W1,∞(0, T ) associated withχ01, χ02 ∈ DC(ϕ), θ1, θ2 ∈ L1(0, T ), andg1, g2 ∈ L∞(0, T )
with the constraint (3.5), satisfy the inequality

|χ̇1 − χ̇2|(t)+
d

dt
|χ1 − χ2|(t) 6 C#(|θ1 − θ2|(t)+ |g1 − g2|(t)) a.e. in(0, T ). (3.7)

We now use (3.7) to prove the convergence statement in Proposition 3.2.

Proof of Proposition 3.2.For givenθ ∈ L1(QT ) andχ0 ∈ L∞(Ω) with χ0(x) ∈ DC(ϕ) a.e.,
we obtain the existence of a unique solution to (3.1) by the Banach contraction argument in the
same way as in the proof of [19, Proposition 3.2]. To prove the continuity of the solution mapping,
consider the sequencesχ (n)0 , θ (n), χ (n) as above. For almost allx ∈ Ω, we use (3.7) withθ1(t) =

θ(x, t), θ2(t) = θ (n)(x, t), χ1(t) = χ(x, t), χ2(t) = χ (n)(x, t), g1(t) = f [χ, θ ](x, t), g2(t) =

f [χ (n), θ (n)](x, t). Integrating overΩ × (0, t) for t ∈ (0, T ], and using Hypothesis 3.1, we obtain∫ t

0

∫
Ω

|χt − χ
(n)
t |(x, s)dx ds +

∫
Ω

|χ − χ (n)|(x, t)dx − |χ0 − χ
(n)
0 |L1(Ω)

6 C#
∫ t

0

∫
Ω

(|θ − θ (n)| + L|χ − χ (n)|)(x, s)dx ds

+ C#
∫ t

0

∫
Ω

|f [χ, θ ] − f [χ, θ (n)]|(x, s)dx ds, (3.8)
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and Gronwall’s argument yields∫ t

0

∫
Ω

|χt − χ
(n)
t |(x, s)dx ds +

∫
Ω

|χ − χ (n)|(x, t)dx

6 eC
#Lt

(
|χ0 − χ

(n)
0 |L1(Ω) + C#

∫ t

0

∫
Ω

(|θ − θ (n)| + |f [χ, θ ] − f [χ, θ (n)]|)(x, s)dx ds

)
,

(3.9)

which concludes the proof. 2

3.2 The maximum principle and Moser iteration

We derive here an elementary maximum principle result in the case of mixed type boundary
conditions. For a fixed final timeT > 0, we consider inQT , for given functionsa : QT → R,
uΓ : ΣT → R, u0 : Ω → R, R : QT × R → R, the evolution problem

∫
Ω

autw dx +

∫
Ω

〈∇u,∇w〉 dx +

∫
∂Ω

γ (u− uΓ )w ds =

∫
Ω

R(x, t, u)w dx ∀w ∈ H 1,

u(x,0) = u0(x) a.e.
(3.10)

under the following hypothesis.

HYPOTHESIS3.5 The data in (3.10) have the following properties:

(i) a ∈ L∞(QT ), a(x, t) > a∗ > 0 a.e.
(ii) γ ∈ L∞(∂Ω), γ > 0 a.e.

(iii) ∃h ∈ L∞(0, T ): |R(x, t, u1)− R(x, t, u2)| 6 h(t)|u1 − u2| a.e.∀u1, u2 ∈ R.
(iv) R(·, ·,0) ∈ L2(QT ), R(x, t,0) 6 0 a.e.
(v) uΓ ∈ L2(ΣT ), (uΓ )t ∈ L2(ΣT ), uΓ 6 0 a.e.

(vi) u0 ∈ H 1, u0 6 0 a.e.

PROPOSITION3.6 Let Hypothesis 3.5 hold. Then Problem (3.10) admits a unique solutionu ∈

L2(QT ) such thatut ∈ L2(QT ), ∇u ∈ L∞(0, T ;H). Moreover, we haveu(x, t) 6 0 a.e. inQT .

Sketch of the proof.For a sufficiently large discretization parametern ∈ N, we consider the time-
discrete problem with time stepδ = T/n,

1

δ

∫
Ω

ak(uk − uk−1)w dx +

∫
Ω

〈∇uk,∇w〉 dx +

∫
∂Ω

γ (uk − uΓ k)w ds

=

∫
Ω

Rk(x, uk)w dx ∀w ∈ H 1, k = 1, . . . , n, (3.11)

whereu0 is defined as in (3.10), and whereak(x), Rk(x, ·) for x ∈ Ω, anduΓ k(x) for x ∈ ∂Ω, are
the integral means of the corresponding functions in (3.10) over the time interval [(k−1)δ, kδ]. The
existence ofuk ∈ H 1 is obtained e.g. from the Lax–Milgram lemma, recursively fork = 1, . . . , n,
whenevern > T |h|∞/a∗. Choosingw = u+

k (the positive part ofuk) in (3.11), and assuming that
uk−1 6 0 a.e., we obtain∫

Ω

ak

δ
|u+

k |
2 dx +

∫
Ω

|∇u+

k |
2 dx +

∫
∂Ω

γ |u+

k |
2 ds 6 |h|∞

∫
Ω

|u+

k |
2 dx. (3.12)
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We haveak(x) > a∗, henceuk 6 0 a.e. for allk = 1, . . . , n. Choosing noww = uk − uk−1 in
(3.11), we derive in a standard way a priori estimates that enable us to pass to the limit asn → ∞

and prove the existence of a nonpositive solution to (3.10). To check that this solution is unique,
consider two solutionsu1, u2 and set̄u = u1

− u2. We now test the difference of (3.10), written for
u1 andu2, by a suitable regularization of̄ut , Galerkin for instance, choosing basis functions from
the complete orthonormal system{ψk; k ∈ N} in H of eigenfunctions of the problem

−∆ψk = λkψk in Ω, ∂nψk + γψk = 0 on∂Ω. (3.13)

Passing to the limit in the Galerkin approximations, we obtain

a∗

∫ t

0

∫
Ω

|ūt |
2 dx dτ 6 |h|∞

∫ t

0

∫
Ω

|ūūt | dx dτ, (3.14)

henceū = 0 by Gronwall’s lemma. 2

COROLLARY 3.7 Let Hypotheses 3.5(i)–(iii) hold, and let (iv)–(vi) be replaced by

(iv)′ R(·, ·,0) ∈ L2(QT ), R(x, t,0) 6 R∗ a.e.
(v)′ uΓ ∈ L2(ΣT ), (uΓ )t ∈ L2(ΣT ), uΓ 6 u∗

Γ a.e.
(vi)′ u0 ∈ H 1, u0 6 u∗ a.e.

with some positive constantsR∗, u∗
Γ , u

∗. SetK = max{u∗, u∗
Γ }, consider some constantB1 >

R∗/K, and fort ∈ [0, T ] put

H(t) =
1

a∗

∫ t

0
(B1 + h(τ))dτ.

Then Problem (3.10) has a unique solution with the regularity from Proposition 3.6 such that

u(x, t) 6 KeH(t) a.e. (3.15)

Proof. For (x, t) ∈ QT andv ∈ R setvΓ (x, t) = uΓ (x, t) − KeH(t), R̃(x, t, v) = R(x, t, v +

KeH(t))−KḢ(t)a(x, t)eH(t). ThenR̃ fulfils the conditions 3.5(iii)–(iv), sincẽR(·, ·,0) ∈ L2(QT )

and

R̃(x, t,0) = R(x, t,KeH(t))−KḢ(t)a(x, t)eH(t)

6 R(x, t,0)+KeH(t)(h(t)− a(x, t)Ḣ (t))

6 R∗
+KeH(t)(h(t)− a(x, t)Ḣ (t))

6

(
1 −

a(x, t)

a∗

)
(R∗

+Kh(t)eH(t)) 6 0.

A functionv onQT with appropriate regularity is a solution to the equation∫
Ω

avtw dx +

∫
Ω

〈∇v,∇w〉 dx +

∫
∂Ω

γ (v − vΓ )w ds =

∫
Ω

R̃(x, t, v)w dx ∀w ∈ H 1 (3.16)

with initial conditionv(x,0) = v0 := u0(x) − K if and only if u(x, t) := v(x, t) + KeH(t) is a
solution to Problem (3.10). SincẽR, a, γ , vΓ , andv0 fulfil Hypothesis 3.5, from Proposition 3.6
it follows thatv is uniquely determined andv(x, t) 6 0 a.e. Henceu is uniquely determined and
satisfies the desired growth condition (3.15). 2
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COROLLARY 3.8 Let Hypotheses 3.5(i)–(iii) hold, and let (iv)–(vi) be replaced by

(iv)′′ R(·, ·,0) ∈ L2(QT ), R(x, t,0) > 0 a.e.
(v)′′ uΓ ∈ L2(ΣT ), (uΓ )t ∈ L2(ΣT ), uΓ > 0 a.e.

(vi)′′ u0 ∈ H 1, u0(x) > u∗ψ1(x) a.e.

with some positive constantu∗, whereψ1 is the positive eigenfunction corresponding to the smallest
eigenvalueλ1 > 0 of (3.13) fork = 1. Consider any constantB2 > λ1, and fort ∈ [0, T ] put

H(t) =
1

a∗

∫ t

0
(B2 + h(τ))dτ.

Then Problem (3.10) has a unique solution with the regularity from Proposition 3.6 and such that

u(x, t) > u∗ψ1(x)e
−H(t) a.e.

Proof. For(x, t) ∈ QT andv ∈ R setR̃(x, t, v) = −R(x, t,−v+u∗ψ1(x)e
−H(t))+u∗e

−H(t)(λ1−

aḢ (t))ψ1(x), andvΓ (x, t) = −uΓ (x, t). ThenR̃ fulfils again the conditions 3.5(iii)–(iv), since
R̃(·, ·,0) ∈ L2(QT ) and

R̃(x, t,0) = −R
(
x, t, u∗ψ1(x)e

−H(t)
)
+ u∗e

−H(t)(λ1 − aḢ (t))ψ1(x)

6 −R(x, t,0)+ u∗ψ1(x)e
−H(t)(λ1 + h(t)− a(x, t)Ḣ (t))

6 u∗ψ1(x)e
−H(t)

(
1 −

a(x, t)

a∗

)
(λ1 + h(t)) 6 0.

As in the proof of Corollary 3.7, we have a one-to-one correspondence between the solutionv to
(3.16) with initial conditionv(x,0) = u∗ψ1(x)−u0(x) and the solutionu(x, t) = u∗ψ1(x)e

−H(t)
−

v(x, t) to Problem (3.10). By Proposition 3.6 we have againv 6 0 a.e., and the assertion
immediately follows. 2

Consider now inQT the problem

∫
Ω

autw dx +

∫
Ω

〈∇u,∇w〉 dx +

∫
∂Ω

γ (u− uΓ )w ds

=

∫
Ω

(r(x, t)+ h1(x, t)u+ h2(x, t)u|log |u| |)w dx ∀w ∈ H 1,

u(x,0) = u0(x) a.e.

(3.17)

under Hypotheses 3.5(i)–(ii), whereuΓ has the regularity as in (v), and with given functions
r, h1, h2 ∈ L∞(QT ), assuming that

0 6 r(x, t) 6 r∗, 0 6 uΓ (x, t) 6 u∗
Γ ,

|hi(x, t)| 6 h∗ for i = 1,2, u∗ψ1(x) 6 u0(x) 6 u∗
(3.18)

a.e. in the respective domains, wherer∗, h∗, u∗
Γ , u∗, u

∗ are fixed positive constants. Set

K = max{u∗, u∗
Γ },

A = max{0, logK,− log(u∗ψ∗)},

B = max{λ1, r
∗/K} + (2 + A)h∗,

C =
1

a∗

(B + h∗),

whereψ∗ > 0 is a uniform lower bound forψ1(x).
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PROPOSITION3.9 Problem (3.17) has a unique solution, and

u∗ψ1(x)e
−H(t) 6 u(x, t) 6 KeH(t) a.e., (3.19)

where

H(t) =
1

a∗

∫ t

0
(B + h∗eCτ )dτ.

Proof. For all admissible values of the arguments, set

R(x, t, u) = r(x, t)+ h1(x, t)u+ h2(x, t)umin{|log |u| |, A+ eCt }. (3.20)

ThenR(x, t,0) = r(x, t) ∈ [0, r∗], and

|∂uR(x, t, u)| 6 h∗(2 + A+ eCt ) a.e.

We may thus apply Corollaries 3.7–3.8 and conclude that the solution to (3.10) satisfies the estimates
(3.19). It remains to check thatu is a solution to (3.17). From (3.19) it follows that

log(u∗ψ∗)−H(t) 6 logu(x, t) 6 logK +H(t) a.e., (3.21)

hence the constraintA+ eCt in (3.20) is never active, and the assertion follows. 2

Finally, we derive here a global in time Moser-type estimate (cf. [1]) for nonhomogeneous mixed
boundary conditions. We follow in principle the scheme of [22], showing in addition the explicit
dependence upon some parameters of the problem, which is needed in the proof of Theorem 2.2.
We state the result in the space

L∞

loc(Q∞) := {u : Ω × (0,∞) → R; u|QT ∈ L∞(QT ) for all T > 0}.

We will also make repeated use of the well-known interpolation inequality

|v|H 6 A(η|∇v|H + η−N/2
|v|L1(Ω)), (3.22)

which holds for everyv ∈ H 1 and everyη ∈ (0,1), with a positive constantA that depends onΩ,
but neither onv nor onη.

PROPOSITION3.10 Given a nonnegative functionγ ∈ L1(∂Ω), consider the problem

∫
Ω

a(x, t)utw dx +

∫
Ω

〈∇u,∇w〉 dx +

∫
∂Ω

γ (x)(h(x, t, u)− uΓ (x, t))w ds

=

∫
Ω

H[u]w dx ∀w ∈ H 1,

u(x,0) = u0(x) a.e.,

(3.23)

under the assumption that there exist positive constantsH0, H1, Ch, a0, a1, A0, U,UΓ , E0 such that
the following holds:

(i) The mappingH : L∞

loc(Q∞) → L∞

loc(Q∞) has the property that

u(x, t)H[u](x, t) 6 H1|u(x, t)| +H0|u(x, t)|
2 a.e. inQ∞, ∀u ∈ L∞

loc(Q∞).
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(ii) h is a Carath́eodory function onQ∞ × R such thath(x, t, u)u > Chu
2 a.e. for allu ∈ R.

(iii) a, at ∈ L∞(Q∞) are such thata0 6 a(x, t) 6 A0 and|at (x, t)| 6 a1 a.e. inQ∞.
(iv) u0

∈ L∞(Ω), |u0(x)| 6 U a.e. inΩ.
(v) uΓ ∈ L∞(Σ∞), |uΓ (x, t)| 6 UΓ a.e. onΣ∞.

(vi) There exists a solutionu ∈ L∞

loc(Q∞)∩L
2
loc(0,∞;H 1) to (3.23) such thatut ∈ L2

loc(0,∞;H),
satisfying the a priori estimate∫

Ω

|u(x, t)| dx 6 E0 a.e. in(0,∞).

Then there exists a positive constantC∗ depending only onA (cf. (3.22)),|Ω|, |γ |L1(∂Ω), Ch, U ,
UΓ , a0, andA0 such that

|u(t)|L∞(Ω) 6 C∗(1 + a1 +H0)
1+N/2(1 +H1 + E0) for a.e.t > 0. (3.24)

Proof. We prove Proposition 3.10 under the additional hypothesis

U = UΓ = Ch = H1 = E0 = 1. (3.25)

The general result is then easily obtained via the transformation

γ̃ = Chγ, ũ = u/K, K = max{E0, H1, U,UΓ /Ch}. (3.26)

During the proof we will denote byCi , i = 1,2, . . . , some positive constants depending only onA,
|Ω|, |γ |L1(∂Ω), a0, andA0.

Fork ∈ N, setw = u|u|2
k
−2 in (3.23). In what follows, we make use of the identity

a(x, t)utu|u|
2k−2

= 2−k ∂

∂t
(a(x, t)|u|2

k

)− 2−kat |u|
2k ,

and of the inequality∫
Ω

〈∇u,∇(u|u|2
k
−2)〉 dx +

∫
∂Ω

γ (h(x, t, u)− uΓ )u|u|
2k−2 ds

>
2k − 1

22k−2

∫
Ω

|∇(u|u|2
k−1

−1)|2 dx +

∫
∂Ω

γ (|u|2
k

− |u|2
k
−1)ds.

SetΦk = u|u|2
k−1

−1. Then we get, using Ḧolder’s and Young’s inequalities,

2−k d

dt

∫
Ω

a(x, t)|Φk|
2 dx +

2k − 1

22k−2

∫
Ω

|∇Φk|
2 dx +

∫
∂Ω

γ |Φk|
2 ds

6

(∫
∂Ω

γ |Φk|
2 ds

)1−2−k(∫
∂Ω

γ ds

)2−k

+ a12−k

∫
Ω

|Φk|
2 dx

+

∫
Ω

(H0|Φk|
2
+ |Φk|

2(1−2−k))dx

6 (1 − 2−k)

∫
∂Ω

γ |Φk|
2 ds + 2−k

∫
∂Ω

γ ds

+ a12−k

∫
Ω

|Φk|
2 dx + (H0 + 1)

∫
Ω

|Φk|
2 dx + 2−k

|Ω|.
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SettingH2 := 1 + a1 +H0 and multiplying the above inequality by 2k, we find that

d

dt

∫
Ω

a(x, t)|Φk|
2 dx + 2

∫
Ω

|∇Φk|
2 dx 6 2kH2

∫
Ω

|Φk|
2 dx + |Ω| +

∫
∂Ω

γ ds. (3.27)

We now use the interpolation inequality (3.22) to derive the inequalities∫
Ω

|Φ1|
2 dx 6 2A2(η2

|∇Φ1|
2
H + η−NE2

0), (3.28)∫
Ω

|Φk|
2 dx 6 2A2(η2

|∇Φk|
2
H + η−N

|Φk−1|
4
H ) for k > 1. (3.29)

Fork = 1, we infer from (3.27) and (3.28) that

d

dt

∫
Ω

a(x, t)|Φ1|
2 dx + 2

∫
Ω

|∇Φ1|
2 dx

6 4H2A
2
(
η2

∫
Ω

|∇Φ1|
2 dx + η−NE2

0

)
+ |Ω| +

∫
∂Ω

γ ds.

Choosingη = 1/(2A
√
H2), we find that

d

dt

∫
Ω

a(x, t)|Φ1|
2 dx +

∫
Ω

|∇Φ1|
2 dx 6 C1H

1+N/2
2 . (3.30)

Fork > 1, we chooseη = 1/(A
√

2k+1H2), we conclude from (3.27) and (3.29) that

d

dt

∫
Ω

a(x, t)|Φk|
2 dx + |∇Φk|

2
H 6 C2(1 + (2kH2)

1+N/2
|Φk−1|

4
H ). (3.31)

Using again (3.29) withη = 1/(
√

2A), it follows for a.e.t > 0 that

d

dt

∫
Ω

a(x, t)|Φ1|
2 dx + |Φ1(t)|

2
H 6 C3H

1+N/2
2 ,

d

dt

∫
Ω

a(x, t)|Φk|
2 dx + |Φk(t)|

2
H 6 C4(1 + (2kH2)

1+N/2
|Φk−1(t)|

4
H ).

By assumption, we havea0|Φk(t)|
2
H 6

∫
Ω
a(x, t)|Φk|

2 dx 6 A0|Φk(t)|
2
H , and|Φk(0)|2H 6 |Ω|.

Hence,

|Φ1(t)|
2
H 6 C5H

1+N/2
2 ,

|Φk(t)|
2
H 6 C6

(
1 + (2kH2)

1+N/2 max
06τ6t

|Φk−1(τ )|
4
H

)
.

Define now
zk(t) = max

06τ6t
|u(τ)|

L2k (Ω)
= max

06τ6t
|Φk(τ )|

2−k

H .

Then we have

z1(t) 6 C7H
(1+N/2)/2
2 ,

zk(t) 6 C2−k

8 (2kH2)
(1+N/2)2−k

max{1, zk−1(t)}.
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In particular, puttingyk(t) = max{1, zk(t)}, we get

y1(t) 6 C9H
(1+N/2)/2
2 ,

yk(t) 6 (C10H
(1+N/2)
2 )2

−k

2k(1+N/2)2−k

yk−1(t) for k > 2.

Hence, we conclude that

logyk(t) 6
k∑

j=1

2−j (log(C11H
1+N/2
2 )+ j (1 +N/2) log 2)

6 (1 +N/2)(C12 + logH2),

independently ofk andt > 0. Thus, it suffices to chooseC∗
= exp(C12(1 + N/2)), and conclude

that
sup

t>0,k∈N
|u(t)|

L2k (Ω)
6 C∗H

1+N/2
2 = C∗(1 + a1 +H0)

1+N/2.

Formula (3.24) now follows from (3.25–3.26). 2

4. Proof of the uniqueness result

We start with the proof of Theorem 2.4. Relation (2.2) is for (almost) allx ∈ Ω of the form (3.4),
with

α(θ) =
µ(θ)

β + θ
,

g = f [θ, χ ] = −
1

β + θ
(c′V (χ)θ(1 − logθ)+ λ′(χ)+ θσ ′(χ)+ b[χ ]).

Within the rangeθ < θ < θ andχ ∈ DC(ϕ), χt 6 C of admissible values for the solutions (taking
indeedθ = min{θ1, θ2} etc.), all nonlinearities in (2.1–2.2) are Lipschitz continuous. Using the
notation from Theorem 2.4, we obtain, as a consequence of (3.7), for a.e.(x, t) ∈ Q∞ the estimate

|χ̂t (x, t)| +
∂

∂t
|χ̂(x, t)| 6 R0

(
|θ̂ (x, t)| + |χ̂(x, t)| +

∫
Ω

|χ̂(y, t)| dy

)
, (4.1)

with some constantR0. Let us fix someT > 0. In what follows, we denote byR1, R2, . . . suitable
constants depending possibly onT , but independent of the solutions. Integrating (4.1) overΩ, we
find by Gronwall’s argument that∫

Ω

|χ̂(y, t)| dy 6 R1

(∫
Ω

|χ̂0(y)| dy +

∫ t

0

∫
Ω

|θ̂ (y, τ )| dy dτ

)
. (4.2)

Hence, testing (4.1) bye−R0t , and using (4.2), we get∫ t

0
|χ̂t (x, τ )| dτ + |χ̂(x, t)| 6 R2

(
|χ̂0(x)| +

∫ t

0
|θ̂ (x, τ )| dτ +

∫ t

0

∫
Ω

|θ̂ (y, τ )| dy dτ

)
(4.3)
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for a.e.x ∈ Ω and everyt ∈ [0, T ]. In particular,∫ t

0

∫
Ω

|χ̂t (x, τ )| dx dτ 6 R3

(∫
Ω

|χ̂0(x)| dx +

∫ t

0

∫
Ω

|θ̂ (x, τ )| dx dτ

)
. (4.4)

We now multiply (4.3) by|χ̂(x, t)| and integrate overΩ to get, for allt ∈ [0, T ],∫
Ω

|χ̂(x, t)|2 dx 6 R4

(
|χ̂0|

2
H +

∫ t

0

∫
Ω

|θ̂ (x, τ )|2 dx dτ

)
. (4.5)

The crucial point is to exploit (2.9) properly. Notice first that we have

b[χ ]χt (x, t) = 2B[χ ]t (x, t)+ 2
∫
Ω

k(x, y)G′(χ(x, t)− χ(y, t))χt (y, t)dy. (4.6)

We integrate the difference of the two equations (2.9), written for(θ1, χ1) and(θ2, χ2), from 0 tot ,
rewriting the termsb[χi ](χi)t according to (4.6). We test the result byθ̂ (x, t). Using the Lipschitz
continuity of all nonlinearities (ϕ is Lipschitz continuous onDC(ϕ) with constantC), and writing
Θ̂(x, t) =

∫ t
0 θ̂ (x, τ )dτ , Θ̂Γ (x, t) =

∫ t
0 θ̂Γ (x, τ )dτ , we infer for eacht > 0 that

c0

∫
Ω

|θ̂ (x, t)|2 dx +
d

dt

(
1

2

∫
Ω

|∇Θ̂|
2 dx +

1

2

∫
∂Ω

γ Θ̂2 ds −

∫
∂Ω

γ Θ̂Θ̂Γ ds

)
+

∫
∂Ω

γ Θ̂θ̂Γ ds

6 R5

(
|θ̂0|

2
H + |χ̂0|

2
H +

∫
Ω

|χ̂(x, t)|2 dx +

∫ t

0

∫
Ω

∫
Ω

k(x, y)|χ̂t (y, τ )| |θ̂ (x, t)| dx dy dτ

)
.

The last term on the right-hand side of the above inequality can be estimated, using (4.4), as∫ t

0

∫
Ω

∫
Ω

k(x, y)|χ̂t (y, τ )| |θ̂ (x, t)| dx dy dτ 6 R6

∫
Ω

|θ̂ (x, t)| dx
∫ t

0

∫
Ω

|χ̂t (y, τ )|dy dτ

6 R7

(∫
Ω

|θ̂ (x, t)|2 dx

)1/2(∫
Ω

|χ̂0(x)|
2 dx +

∫ t

0

∫
Ω

|θ̂ (x, τ )|2 dx dτ

)1/2

.

Combining the last two inequalities again with the Gronwall lemma, we obtain for eacht ∈ [0, T ]
the estimate∫ t

0

∫
Ω

|θ̂ (x, τ )|2 dx dτ +

∫
Ω

|∇Θ̂(x, t)|2 dx +

∫
∂Ω

γ Θ̂2(s, t)ds

6 R8

(
|θ̂0|

2
H + |χ̂0|

2
H +

∫ t

0

∫
∂Ω

γ θ̂2
Γ (s, τ )ds dτ +

∫ t

0

∫
Ω

|χ̂(x, τ )|2 dx dτ

)
. (4.7)

We now multiply (4.7) by 2R4, add the result to (4.5), and see that Gronwall’s argument can be
applied again to arrive at the final estimate∫
Ω

|χ̂(x, t)|2 dx+

∫ t

0

∫
Ω

|θ̂ (x, τ )|2 dx dτ 6 R8

(
|θ̂0|

2
H+|χ̂0|

2
H+

∫ t

0

∫
∂Ω

γ θ̂2
Γ (s, τ )ds dτ

)
. (4.8)

With this, Theorem 2.4 is proved. 2
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5. Proof of the existence result

This section is devoted to the proof of Theorem 2.2 (i.e. the existence of weak solutions to
system (2.1–2.4), (2.6–2.8)). We use a standard technique: we first truncate system (2.1–2.2), prove
existence of solutions to the truncated problem, and finally show that the solution of this system is
also a solution of the original system, removing the truncation.

Assuming Hypothesis 2.1 to hold, we proceed as follows: first solve the problem corresponding
to (2.1–2.4), in which we regularize the coefficientµ and the logarithmic contribution in (2.2),
replaceθ by |θ | at suitable places, and then derive upper and lower bounds forθ that will allow us
to conclude that the solution of the modified problem satisfies also (2.1–2.4), (2.6–2.8). For some
sufficiently large cut-off parameter% > 1, which will be specified later, we introduce forθ ∈ R the
functions

µ%(θ) =

{
µ(|θ |) for |θ | 6 %,

µ(%)+ µ∗(|θ | − %) for |θ | > %,
(5.1)

L%(θ) =

0 for θ 6 0,
logθ for 0< θ < %,

log% for θ > %,

(5.2)

and consider the following problem:

PROBLEM 5.1 ForT > 0 find a pair(θ, χ) with the regularity (2.6) and (2.8) restricted to the time
interval [0, T ], solving a.e. inQT the system of equations

(cV (χ)θ + λ(χ)+ βϕ(χ))t + b[χ ]χt −∆θ = 0, (5.3)

µ%(θ)χt + c′V (χ)θ(1 − L%(θ))+ λ′(χ)+ θσ ′(χ)+ (β + |θ |)∂ϕ(χ)+ b[χ ] 3 0, (5.4)

with boundary and initial conditions (2.3–2.4), in the sense of Theorem 2.2.

LEMMA 5.2 For each fixed% > 1, there exists at least one solution to Problem 5.1. Moreover,
there exist positive numbersc%,T < C%,T such thatc%,T 6 θ(x, t) 6 C%,T a.e.

Proof. Consider the Faedo–Galerkin approximations

θm(x, t) =

m∑
k=1

θk(t)ψk(x),

where{ψk; k ∈ N} is the complete orthonormal system inH of eigenfunctions of the problem
(3.13), and where theθk(t) satisfy the system of equations∫

Ω

(cV (χ)θ
m)tψk dx +

∫
Ω

〈∇θm,∇ψk〉 dx +

∫
∂Ω

γ (θm − θΓ )ψk ds

= −

∫
Ω

(
(λ(χ)+ βϕ(χ))t + b[χ ]χt

)
ψk dx, k = 1, . . . , m, (5.5)

µ%(θ
m)χt + c′V (χ)θ

m(1 − L%(θ
m))+ λ′(χ)+ θσ ′(χ)+ (β + |θm|)∂ϕ(χ)+ b[χ ] 3 0, (5.6)

with initial conditions

θk(0) =

∫
Ω

θ0ψk dx, (5.7)

χ(x,0) = χ0(x). (5.8)
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It follows from Proposition 3.2 and Remark 3.3 that (5.6) defines a mapping that with eachθm ∈

L1(QT ) associates continuouslyχ, χt andϕ(χ)t in anyLp(QT ). Equation (5.5) therefore has the
form ∫

Ω

F [θm]θmt ψk dx + λkθk =

∫
∂Ω

γ θΓψk ds +

∫
Ω

H [θm]ψk dx, (5.9)

with continuous operatorsF,H : L1(QT ) → Lp(QT ) for suitably chosenp > 1, and such that
C̃1 > F [θ ](x, t) > c0, |H [θ ](x, t)| 6 C̃1 a.e. for allθ ∈ L1(QT ) with a constantC̃1 > 0
independent ofθ . The matrixAjk[θ ](t) =

∫
Ω
F [θ ](x, t)ψj (x)ψk(x)dx is symmetric and positive

definite, hence Lipschitz continuous solutionsθ1(t), . . . , θm(t) to (5.9), (5.7) are well defined on
[0, T ]. Testing (5.9) byθ̇k, and summing overk, yields∫

Ω

F [θm]|θmt |
2 dx +

d

dt

(
1

2

∫
Ω

|∇θm|
2 dx +

1

2

∫
∂Ω

γ |θm|
2 ds −

∫
∂Ω

γ θΓ θ
m ds

)
= −

∫
∂Ω

γ (θΓ )tθ
m ds +

∫
Ω

H [θm]θmt dx

6

(∫
∂Ω

γ |(θΓ )t |
2 ds

)1/2(∫
∂Ω

γ |θm|
2 ds

)1/2

+ C̃2

(∫
Ω

|θmt |
2 dx

)1/2

. (5.10)

Integrating from 0 tot ∈ (0, T ], we obtain from Gronwall’s argument the estimate

|θmt |L2(QT )
+ |∇θm|L∞(0,T ;H) + sup

[0,T ]

∫
∂Ω

γ |θm|
2 ds 6 C̃3, (5.11)

with constantsC̃2, C̃3 > 0 independent ofm (depending possibly onT , butT is kept fixed here).
Selecting a subsequence if necessary, we may pass to the limit in (5.5–5.6) asm → ∞ to obtain the
existence result.

To derive the bounds forθ , we first estimateχt using Proposition 3.2 and (5.4), taking into
account (3.3). Note that the term|θ(1 − L%(θ))| is bounded from above independently oft by a
constant multiple of 1+ |θ |(1 + log%). We thus deduce the following bound on theχ -component
of the solution(θ, χ) to Problem 5.1:

|χt |L∞(QT ) + |ϕ(χ)t |L∞(QT ) 6 c1(1 + log%)2. (5.12)

Here and below,c1, c2, . . . denote constants independent of% andT . Having still in mind weak
solutions in the sense of Theorem 2.2, we rewrite (5.3) formally as

cV (χ)θt −∆θ = µ%(θ)χ
2
t − c′V (χ)χtθL%(θ)+ θσ (χ)t + |θ |ϕ(χ)t . (5.13)

We are thus in the situation of (3.17–3.18) with the choiceu = θ , and

a(x, t) = cV (χ), r(x, t) =
µ%(θ)

1 + |θ |
χ2
t ,

h1(x, t) = σ(χ)t + sign(θ)

(
ϕ(χ)t +

µ%(θ)

1 + |θ |
χ2
t

)
,

h2(x, t) = −c′V (χ)χt
L%(θ)

|log |θ | |
,

uΓ = θΓ , u0
= θ0, u∗ = θ∗/ψ

∗,

and the upper and lower bounds forθ follow from Proposition 3.9. 2
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REMARK 5.3 If we examine the proof more closely, we see that the hypothesis on(θΓ )t can be
relaxed using the trace theorem for functions fromH 1 for N > 2. The argument still works for
(θΓ )t ∈ L2(0, T ;Lp(∂Ω)) with p > 2(N − 1)/N , or (θΓ )t ∈ L2(0, T ;H−1/2(∂Ω)), if ∂Ω is
smooth.

The uniqueness and continuous dependence result in Theorem 2.4 holds indeed for problem
(5.3–5.4), (2.3–2.4) as well. We can therefore extend the solution to (5.3–5.4), (2.3–2.4) to the
whole time interval [0,∞) and obtain the following result.

COROLLARY 5.4 There exists a solution to (5.3), (5.4), (2.3–2.4) in the sense of Theorem 2.2
on Q∞ with the properties (2.7–2.8), and functionsθ l%, θ

u
% : (0,∞) → (0,∞) such thatθ l% is

nonincreasing,θu% (T ) is nondecreasing, andθ l%(T ) 6 θ(x, t) 6 θu% (T ) for a.e.(x, t) ∈ QT and for
all T > 0.

We see in particular that we can remove the absolute values in (5.3–5.4). Our aim is now to
prove that the solution to Problem 5.1 satisfies also (2.1–2.4), (2.6–2.8) for suitably chosen%. To
this end, we derive a uniform upper bound forθ . Then, choosing% above this bound, we will check
that the solution to (5.3–5.4) is the desired solution to (2.1–2.2).

Equation (5.3) is of the form as in Proposition 3.10, with

u = θ, a(x, t) = cV (χ), h(x, t, u) = u, (5.14)

H[u] = −(λ(χ)+ βϕ(χ))t − b[χ ]χt − c′V (χ)χtu. (5.15)

Referring to Proposition 3.10, we havea0 = c0, Ch = 1, andU + UΓ + A0 6 c2. The other
parameters, however, namelya1, H0, H1, andE0, do depend on% by (5.12). Hypothesis 2.1 and
(5.12) yield

a1 +H0 +H1 6 c3(1 + log%)2. (5.16)

It remains to determine the dependence ofE0 on %. To do so, we test (5.3) byψ1 from (2.5). This
yields

d

dt

∫
Ω

cV (χ)θψ1 dx +

∫
Ω

〈∇θ,∇ψ1〉 dx +

∫
∂Ω

γ (θ − θΓ )ψ1 ds

= −

∫
Ω

((λ(χ)+ βϕ(χ))t + b[χ ]χt )ψ1 dx. (5.17)

If γ ≡ 0, we may takeψ1 ≡ 1, and using the symmetry ofB[χ ], we deduce from (5.17) that∫
Ω

cV (χ)θ(x, t)dx =

∫
Ω

cV (χ0)θ0 dx +

∫
Ω

(λ(χ0)+ βϕ(χ0)+ B[χ0])dx

−

∫
Ω

(λ(χ)+ βϕ(χ)+ B[χ ])(x, t)dx

6 c4. (5.18)

Assume now that
∫
∂Ω
γ ds > 0. Thenλ1 > 0, and we have

d

dt

∫
Ω

cV (χ)θψ1 dx + λ1

∫
Ω

θψ1 dx =

∫
∂Ω

γ θΓψ1 ds −

∫
Ω

((λ(χ)+ βϕ(χ))t + b[χ ]χt )ψ1 dx.
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From Hypothesis 2.1 and estimate (5.12), we infer that

d

dt

∫
Ω

cV (χ)θψ1 dx + c5

∫
Ω

cV (χ)θψ1 dx 6 c6(1 + log%)2. (5.19)

Hence,
∫
Ω
θψ1 dx 6 c7(1 + log%)2, and using Hypothesis 2.1(ii), we obtain the final estimate

E0 6 c8(1 + log%)2. (5.20)

Referring to (3.24) in Proposition 3.10, we find that

θ(x, t) 6 c9(1 + log%)4+N (5.21)

for a.e.(x, t) ∈ Q∞. Taking now any% such that

% > c9(1 + log%)4+N ,

we see that the solution to Problem 5.1 is also a solution to (2.1–2.4), (2.6–2.8), and the upper bound
in (2.10) is satisfied. It remains to derive the uniform (in time) lower bound in (2.10). To this end,
let us consider the function

z = logθ − logθ > 0 a.e. inQ∞,

with θ defined in (2.10). Using (2.2), we rewrite (2.9) as∫
Ω

cV (χ)θtw dx +

∫
Ω

〈∇θ,∇w〉 dx +

∫
∂Ω

γ (θ − θΓ )w ds

=

∫
Ω

(µ(θ)χ2
t − c′V (χ)χtθ logθ + θσ (χ)t + θϕ(χ)t )w dx. (5.22)

We now choosew = v/θ with v ∈ H 1 to obtain∫
Ω

cV (χ)
θt

θ
v dx +

∫
Ω

1

θ
〈∇θ,∇v〉 dx +

∫
∂Ω

γ

(
1 −

θΓ

θ

)
v ds

=

∫
Ω

(
|∇θ |2

θ2
+
µ(θ)

θ
χ2
t − c′V (χ)χt logθ + σ(χ)t + ϕ(χ)t

)
v dx. (5.23)

In terms ofz, we have∫
Ω

(cV (χ)z)tv dx +

∫
Ω

〈∇z,∇v〉 dx +

∫
∂Ω

γ

(
θΓ

θ
ez − 1

)
v ds

= −

∫
Ω

(
|∇θ |2

θ2
+
µ(θ)

θ
χ2
t + (σ (χ)+ ϕ(χ))t

)
v dx. (5.24)

We are thus again in the situation of Proposition 3.10, withh(x, t, u) = (θΓ /θ̄)(e
u

− 1) suitably
extended foru < 0, and it only remains to find a uniformL1-bound forz as in Proposition 3.10(vi).
We proceed as above and test (5.24) byψ1. This yields

d

dt

∫
Ω

(cV (χ)z+ ϕ(χ)+ σ(χ))ψ1 dx + λ1

∫
Ω

zψ1 dx +

∫
∂Ω

γ

(
θΓ

θ
ez − 1 − z

)
ψ1 ds 6 0.
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The caseγ ≡ 0,λ1 = 0 is again straightforward. Forλ1 > 0 we notice that(θΓ /θ)ez−1−z > −c10,
hence a uniform bound forz in L1(Ω) follows again from the uniform Gronwall lemma. From
Proposition 3.10 we conclude that

z(x, t) 6 c11 a.e. inQ∞. (5.25)

Hence,θ(x, t) > θ̄ e−c11 a.e., which completes the proof of Theorem 2.2. 2
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