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We prove the existence, uniqueness, thermodynamic consistency, global boundedness from both
above and below, and continuous data dependence for a solution to an integrodifferential model for
nonisothermal phase transitions under nonhomogeneous mixed boundary conditions. The specific
heat is allowed to depend on the order parameter, and the convex component of the free energy may
or may not be singular.
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1. Introduction

Phase-field models have been designed to describe the evolution of the state varialesdy,
representing the absolute temperature and a scalar order parameter, respectively, during temperature-
induced phase transitions in a bogyc RY (N = 3, for instance) if no mechanical motion takes

place. For example, in a simple melting-solidification procgssattains its values in the interval

[0, 1], where{x = 0} characterizes the solid pha$g,= 1} the liquid, and0 < x < 1} isthe liquid

fraction in a mixture of both phases. Solid-solid phase transitions between two crystallographic
variants with different mechanical properties (martensite and austenite, say) may also exhibit a
similar behavior provided the experiment is uniaxial and is carried out under constant strain. Then
the stress may play the role of an order parameter characterizing the phase, but no natural restriction
on the admissible order parameter range is necessary.
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We deal here with an integrodifferential model for volume preserving nonisothermal phase
transitions that takes into account long-range interactions between particles. The physical relevance
of nonlocal interaction phenomena in phase separation and phase transition models was already
described in the pioneering papefs|[28] ahd [8]; however, only recently both isothermal and
nonisothermal models containing nonlocal terms have been analyzed in a more systematic way
(cf., e.qg., [2]-3], [9]H21], [26]). The difference between local and nonlocal models consists
in a different choice of the particle interaction potential in the free energy functional. The
nonlocal contribution to the free energy has typically the fggk (x, y) [x (x) — x (2 dy with
a given symmetric kernet(x, y); its classical local Ginzburg—Landau counterpart has the form
(v/2)|Vx(x)|? as, e.g., in[[7], with a positive parameterand can be obtained as a formal limit
asm — oo from the nonlocal one with the choiggx, y) = m"T2K (Im(x — y)|?), whereK is a
nonnegative function with support in,[@]. This follows from the formula

X(x +2/m) — x(x) 2d
V4
Qm(x)

1/m
m— 00

—»f K(zP(Vx (). 2)2dz = 2|V ()2
RN 2

meN+2K(|m(x—y>|2)|x(x>—x<y>|2dy=f K(z%)

for a sufficiently regulag, wherev = (2/N) [px K (12?)|z]? dz and$2,,(x) = m(£2 —x). We have
used the identityzx K (Iz1?)(e, 2)2dz = (1/N) [gn K (1z1?)|z|? dz for every unit vector € RY.
Let us also mention the “Penrose—Fife” potentigi2)0 |V x (x)|? (see [6/.25]). Its nonlocal version
might also deserve appropriate attention (cfl [21]), but we do not consider this issue here.

The passage from a nonlocal to a local potential changes drastically the properties of the model.
For example, the maximum principle is lost in the limit, and in general it is not possible to guarantee
without additional hypotheses that the absolute temperature remains positive during the process.

We pursue here the investigations initiated in [19] and consider a local free energy of the form

F[0, x] = cv(x)0(1 —10g0) + 8o (x) + 2(x) + (B +0)e(x) + Blx]. 1.1

wheres anda are smooth functions describing the local dependence ofithe entropy and of the
latent heat, respectively, > 0 is a constant parametdt]| x] is a nonlocal operator of the form

Blx](x. 1) = fg k(e )G (. 1) — x (v, 1)) dy (1.2)

with a bounded, symmetric kernél: 2 x 2 — R and an even smooth functio@; ¢ is a
general proper, convex, and lower semicontinuous function. Its dof@&in may be bounded or
unbounded, depending on the specific model situation. The main novelty here is that the specific heat
cy may depend on the order parametein the solid-liquid system mentioned above, for example,
we may have different valueﬁ in the solid andc%, in the liquid. Assuming that their dependence
on temperature can be neglected in each phase, we may defipe = c?, + X(c‘l, — c?,) (cf. [27,
Section IV.4]). The value of can be kept between 0 and 1 by setting in this gase Ijp 1) (the
indicator function of [0 1]).

With the above free energy, we associate the local internal er2emd entropys according to

the formulas oF
Sz_a_e’ E=F+90S, (1.3)
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that is,
S[0, xI = cv() 1090 — o (x) — (), (1.4)
E[6, x] = cv (08 + 100 + Be(x) + Blx]- '
The temperature dynamics is governed by the internal energy balance over an arbitrary control
volume2’ C £2,

E/ E[G,X]dx—l-/ (g, n)yds = ¥ (2", (1.5)
dr Jor 90

whereq is the heat flux vectom is the unit outward normal t6£2’, and ¥ (£2') is the energy
exchange through the boundary &f due to the nonlocal interactions. The order parameter
dynamics is assumed in the form

(@) x: € =6, F16, x] (1.6)

with a factoru () > 0, where we denote

FI0. 1] = /ﬂ FI6. x]dx.

and wheres, F stands for the variational derivative df with respect to the variablg. The
inclusion sign in[(1.6) accounts for the fact thatmay contain components that are noééhet
differentiable, but are convex, and the derivative can be interpreted as the subdifferential, which
may be multivalued. Conditiorj (1.6) is based on the assumption that the system tends to move
towards local minima of the free energy with a speed proportionaf idd). Using [1.1), we can

rewrite [1.6) as
(@) x: + ¢y (X)L —logd) + A'(x) + 60" (x) + (B +6)dp(x) +b[x] 3 0, .7
with the notation

blx](x. 1) i= 2 /Q K(x, WG (X (x, 1) — x (v, D) dy. (1.8)

The interaction term¥ (£2’) in (1.5) and the constitutive law for the heat flux have to comply with
the Clausius—Duhem inequality

S, + div(%) >0, (1.9)

which is understood here almost everywhere in the regularity context of Th¢orgm 2.2. Assuming
6 > 0 (this will have to be justified in the next sections), and using| (1.1) Witf (1.7)[and (1.3), we
obtain the identities

; , Vo

We assume the Fourier heat flux law
q=—«Vé,
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with a constant positive heat conductivity Then the right-hand side df (1]10) stays nonnegative
without prescribing any relationship betwegi®) and B[ x], provided that we choos& (£2') in

@3 as
w(2) = / (=blx1x + Blxl) d. (1.11)
Q/

In agreement with natural expectations, we h#wg?2) = 0. The differential form of the energy
balance[(T}5) then reads

E; +divg = —b[x]x: + Blx]:, (1.12)

that is,
(v (OO + 200 + Be(x))i + blxlx: — kA6 =0. (1.13)

In real materials, the dependence @f on the phase may be very strong (the specific heat in
water is considerably higher than both in ice and in vapor, for instance). Introducing the term
cy (x) into the above system may however create substantial difficulties from both the physical and
mathematical viewpoints, which can again be illustrated on the two-phase system mentioned above.
More specifically, consider the thermodynamically insulated (i.e., with homogeneous Neumann
boundary conditions) relaxed Stefan problem corresponding to the cpoied|o 15, A'(x) = L,

o'(x) = —L/6., B[x] = 0, whereL and§,. are positive constants (the latent heat and phase
transition temperature, respectively),(x) = ¢ := c%, —c?,. Thermodynamic equilibria are located

on the curve

_ L
0110,100) > €8(10g6 — 1) + == (6 — o),

or, equivalently,

X € ﬁ(&@(loge -1+ 5(9 - 90)>,

where $) is the maximal monotone extension of the Heaviside function. We see tbﬂ;—ltéa‘ c?/,

as in the water-vapor system, then the only (stable!) equilibrium for both very high and very
low temperatures i = 0, which is an obvious physical paradox. Between water and ice, this
contradiction does not occur.

We focus here on mathematical problems arising in connection with this model. On the boundary
of §2, we prescribe nonhomogeneous mixed boundary conditions. Our main results include the
proof of existence and uniqueness of a global solutigry ) to (1.7) and[(1.23) on the whole time
axis (0, co). We also prove tha# is uniformly bounded from above and below @ co), with
the intention to study the asymptotic behavior> oo in the future. Note that there are only few
works in the literature dealing with the convergence of trajectories towards equilibrium for nonlocal
phase-field systems. The case of analytic potentialeas been solved first in [11] and then in
[17] for a time-relaxed model and in_[13] for a time-discrete scheme. The nonsmooth case is not
straightforward even if the nonlocal term is absent (sek [23]), and deserves special attention.

The paper is organized as follows. The main results are stated in Sgction 2. Section 3 is devoted
to some auxiliary results on a class of differential inclusions, on maximum principles for parabolic
equations with nonconstant coefficients and nonhomogeneous mixed boundary conditions, and on
L>-estimates based on Moser-type iterations. Uniqueness is proved in gction 4, existence and
global boundedness in time in Sectjdn 5.
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2. Main results

Consider a bounded domaia ¢ RV, N > 1, and the time interval [0). For T e (0, oo] (co
included) we denote byY; = 2 x (0, T) the open space-time cylinder, and By its lateral
boundaryd$2 x (0, T). We use, for the sake of simplicity, the same symidior both L?(£2) and
L2(2; RY), andH! for H1(£2).

We rewrite systeni (1.13), (1.7), putting, for simplicity and without loss of generality,1, in
the form

(cv ()0 + A(x) + Be(xX))r + blx]x: — 46 =0, (2.1)
(@) x: + ¢y (x)0(L—log8) + A'(x) + 60" (x) + (B + 6)dp(x) +b[x] 3 0, (2.2)

to be satisfied in a sense specified below, Ww[tp] defined in [[1.8), and prescribe the boundary and
initial conditions

o +y@O —06r)=0 onXs, 2.3)
0(0) =6p, x(0) =xo ing, (2.4)

wheread, denotes the outward normal derivative, and the data fulfil the following hypothesis.
HYPOTHESIS2.1 We fix positive constani$, co, Or, i+, Co, 6, and assume that:

(i) y € L*°(84£2) is a nonnegative function.

(i) There exist constantg* > v, > 0 such thaty* > y1(x) > ¥, a.e., wherey; € Hlis
the eigenfunction with unit/-norm corresponding to the smallest eigenvalye> 0 of the
elliptic problem

—AY1=My1 INR, Y1+ yyYy1=0 onois. (2.5)

(i) ¢ : R — [0, co] is a proper, convex, and lower semicontinuous functi(y) is its domain,
and Oe d¢(0).
(iv) 0,1 € W22 (D(p)).
(V) G € W22 (D(p) — D(p)), G(z) = G(—z) forall z € (D(p) — D(p)), k € LX(2 x £2),
k(x,y) =k(y,x)a.e.inf2 x £2.
(Vi) cy € W2®(D(g)), cv(z) = co > 0 forallz € D(p).
(Vii) Or € L®(Zu), (0r); € L3 (Zx0), Or > 0 a.e. inYu.
(viii) w is locally Lipschitz inR™, x(t) > u«(1+7) forall r € R™.
(ix) ForanyC > 0 setDc(p) = {x € D(p); dp(x) N [-C, C] # @}, and assume thafy €
L>®(£2), xo(x) € Dc, () a.e. ing2.
(X) o € HL N L®(£2), Op(x) > 6, a.e. ing.

If y vanishes on some part 6£2, then [2.8) is a mixed Neumann—Robin boundary condition.
Below in RemarK 2J3, we will show some sufficient conditions for Hypothesis 2.1(ii) to hold.
Note also that by [5, Example 2.3.4]p is maximal monotone, hend®¢ (¢) is a closed (possibly
unbounded or degenerate) interval for ev€ry 0.

We are in a position to state the existence theorem.
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THEOREM2.2 Let Hypothesi§ 2|1 hold. Then there exists at least one (faix) with the
regularity
0 € L®(Qu0o) NL®(0,00; HY), 6, € L2.(0, 00; L2(£2)), (2.6)
O(x,1) >0 a.e.inQq, 2.7)
X € Ligg(Q0), X1 € L(Qo);  3C>0:x(x,1) €Dclp) ae.inQe, (2.8)

satisfying [2.2),[(2}4) a.e., together with
/_(2((CV(X)9+)~(X)+/390(X))z+b[X]Xz)de+/Q(V9, Vw) dx+/a:z y(@—6r)wds =0, (2.9)

for every test functionv € H. Moreover, there exist two positive constaftandd (independent
of ¢) such that the following uniform upper and lower bounds hold:

0 <0(x,t) <0 forae.(x,t) € Q. (2.10)

REMARK 2.3 Hypothesig 2]1(ii) is fulfilled for examplejf = 0. Theni1 = 0 andy, is a constant
function. Another easy case is whéh= (a1, b1) x - - - X (an, by) is an orthogonal parallelepiped
with y constant on each side. As a last example, let us mention the case wheéeattdy are
of classC. The first eigenfunctiony; is defined as a minimizer of the Rayleigh functional

R(u):/ |Vu|2dx+/ yuzds
Q a8

onthe setS] := {u € HY; |u|y = 1}, andiy is given asky = min{R(u); u € Si}. The functionyry
thus satisfies the variational equation

/ (Vir1, Vw)dx+/ yyriw ds =K1/ Yiw dx (2.11)
2 082 2

foreveryw € H'. Choosingw = ¥, w = ¥y (the positive and negative partsyf, respectively),
we see that botly;, v; ", as well agy| = v + y;, satisfy the variational equation (2]11). Then
|yr1] is a weak solution of the problem

=AW =AYl N2, oYl +ylY1l =0 ondsf. (2.12)
By [24, Chap. 2, Thm. 5.1], we have, denotifif = W"2(£2), H® = H, that

||w1||H2+r < Cr (|)\1|‘ﬁ1| H" + ||¢1||Hl+r) (213)

for every integer- > 0 with some constantS, > 0 provided the right-hand side is well defined.
This is the case for = 0, hence we may iterate i (2]13) for= 1, 2, ... until we obtain|y1| €
C?(R2) takingr sufficiently large. The functiohy| does not vanish it2, by Maximum Principle |

in [4, Part 1l, Chap. 2]. Assuming that there exists 92 such thatiyr1(x)| = 0 also leads to a
contradiction. Indeed, we find a ball lying entirely§h and touching 2 at the pointc. Maximum
Principle 11l in [4, Part Il, Chap. 2] then shows thaé{(]v¥1(x)]) < 0, which contradictg (2.12).
Hencey; does not vanish i2. This argument also shows that this eigenfunction of pr (2.5)
is unique up to a constant multiple.
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To conclude this section, we state a result on uniqueness and continuous data dependence for
2.1f2.9).
THEOREM2.4 Let Hypothesig 2]1 hold, and I€t;, x1), (62, x2) be solutions to[(2]{=2.4) in the
sense of Theore@ 2 associated with boundary and initial @ata9o1, Xo1 and 92, 602, x02,
respectively. PUl = 61 — 62, ¥ = x1— x2,0r = 6r1—06r2, X0 = xo1— x02, 6o = 61— fo2- Then
for everyT > O there exists a consta@tr > 0 such that

T
/ /|é(x,t)|2dxdt+ max/ 1% (x, 1)]% dx
0 Je te[0,7] J

T
< cr<|9o|%, + 1703 +/0 /Q y2(x, 1) ds dt). (2.14)
d

3. Auxiliary results

In this section we provide some auxiliary results that are used in the remainder of the paper. The first
part of this section deals with the continuity of solution operators to general differential inclusions,
while the second one recalls some parabolic maximum principle results and a variant of the Moser
iteration scheme.

3.1 Solution operators to differential inclusions

Consider a functionap as in Hypothesis 2] 1(iii). For a given initial conditio, a fixed final time
T > 0, and a given functiof € L1(Q7), we solve the following differential inclusion:

a@)x: +0p(x) > flx,0] ae.inQr, x(x,0 = xo(x) a.e.ins, (3.1)

wherea : R — Ris a given function, ang : LY(Q7) x LY(Q7) — L1(Q7) is a given continuous
operator satisfying the following hypothesis.

HYPOTHESIS3.1 There exist positive constantg, L, C such that:

(i) ap < (@) forallo € R.
(i) |a(f1) — a(62)| < L|61 — 02| for all 61, 62 € R.
(i) |f[x.0](x,0)| < C a.e.inQr forall x,0 € L1(Q7) such thaty (x, r) € D(p) a.e. inQr.
(V) 1f[x1. 0] — flx2. 0)l300,) < LIx1— x2l1g,) forall x1. x2.6 € L*(Qr) and: € [0, T].
This is slightly different from [[19, Subsection 3.1], wheyeis assumed to be Lipschitz
continuous also with respect tb Here, f is only continuous, and we therefore only get the
following weaker result.

PrROPOSITION3.2 Let Hypothesi$ 3|1 hold, and 18 (¢) be as in Hypothesis 3.1. Then, for
everyd € L1(Q7), and for everyyg € L™ (£2) with xo(x) € Dc(p) a.e. ing2, there exists a unique
solutiony € L*®(Q7) to (3.1) such thag, € L>*(Q7), and we have

x(x,1) € Dele),  |fIx, 01(x, 1) —a @@, D))x(x, )| <C ae.inQr. (3.2)

Moreover, let{6™} be a sequence that converges strongly. hQ7) to 6, let X(”) € L*®(82) be
initial conditions such thag™ (x) € Dc(p) a.e. ine2 andx(”) — xoin L1(£2), and letx ™, x be
the respective solutions t@.l). Thet) — x, x” — x, strongly inL1(Q7).
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REMARK 3.3 As a complement to the above proposition, notice that the strong continuity
LY(Q7) — LP(Qr) of the solution mapping for ¥ p < oo follows from the uniformZ>-bound
(3.2). Indeed, testing (3.1) by, we obtain the identity

oGO = —a@x?+ flx.0lx ae.inQr. (3.3)

If 0,6, x™, x are as in Propositign 3.2, tHe®-bounds|(3.R) show that™ — x, x™ — x,
9(x")i = ()1, strongly in anyL?(Qr) for 1 < p < oo.

The proof of Propositiofi 3|2 is based on properties of the corresponding space-independent
problem. For a given initial conditiopo € D(¢) and a given functio® € L1(0, T), we consider
the differential inclusion

a(@@)x (1) +0¢p(x () > g@) ae.in0,T), x(O = xo, (3.4)
wherea : R — Ris as in Hypothesis 3|1 ande L>°(0, T) is such that
lg()] < C a.e.in(0,T). (3.5

We recall from[[19, Proposition 3.4] the following result.
PrROPOSITION3.4 Let Hypothesels 3.1(i)—(ii) anfl (8.5) hold. Then, for everg L1(0, T) and
every xo € D¢ (¢), there exists a unique solutigne W1(0, T') to ), and we have
x(®) €Dclp) Vte[0,T], |gt)—a@@®)x®|<C ae.inO,T7). (3.6)

Moreover, there exists a positive constafitdepending only o€, oo, andL such that the solutions
X1, x2 € WH(0, T) associated witho1, x02 € Dc(9), 01,62 € L1(0, T), andgy, g2 € L>(0, T)
with the constrain{ (3]5), satisfy the inequality

d ,
Ix1 — xal(®) + E'Xl — x2l(t) < C*(101 — 62](1) + |g1 — g2l(1)) a.e.in(0, 7). (3.7)

We now use[(3]7) to prove the convergence statement in Propdgsitjon 3.2.

Proof of Propositio.For givend e L1(Q7) andxo € L>®(£2) with xo(x) € Dc(p) a.e.,
we obtain the existence of a unique solution[to](3.1) by the Banach contraction argument in the
same way as in the proof of [19, Proposition 3.2]. To prove the continuity of the solution mapping,

consider the sequencgé"), 6, x as above. For almost all € £2, we use[(3]7) withby (1) =

0(x,1), 02(t) = 0 (x,1), xa(t) = x(x, 1), x2(t) = x™(x,0), g1(t) = flx,01(x, 1), g2(t) =
FIx®,0™](x, 1). Integrating over2 x (0, ) for r € (0, T}, and using Hypothesjs 3.1, we obtain

t
f/|xt—xf”)|(x,s)dxds+/ X = x ™G dx = Ix0 — xg" 111
0 J 2
1
<c#/ /(|0—9<”>|+L|x—x<”>|>(x,s>dxds
0 JR

# t — (n)
+C/O/Qlf[x,9] fIx,0™]l(x, s)dxds, (3.8)
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and Gronwall’'s argument yields

t
//|xf—x,‘”)|(x,s)dxds+/ X — x ™), 1) dx
0 2 2

t
< ec#L’<IX0—X(§n)|L1(9> +c#/0 /Que — 0™+ | flx. 6] — f[x,e“”]n(x,s)dxds),
(3.9)

which concludes the proof. O

3.2 The maximum principle and Moser iteration

We derive here an elementary maximum principle result in the case of mixed type boundary
conditions. For a fixed final tim& > 0, we consider inQr, for given functionsa : Q7 — R,
ur Xy — Ryug: 2 - R, R: Qr x R — R, the evolution problem

/autwdx—i—/(Vu,Vw)dx—i—/ y(u—uﬂwds:/ R(x,t,u)wdx Yw e HY,
2 2 082 2

u(x,0) =ug(x) a.e.
(3.10)
under the following hypothesis.

HypoTHESIS3.5 The data i (3.10) have the following properties:

(i) a e L*®(Q7),a(x,t) > a, >0a.e.
(i) y e L®0£),y >0a.e.
(iii) 3 e L0, T): |R(x,t,u1) — R(x,t,u2)| < h(t)|luy — uz| a.eNuy, uz € R.
(iv) R(-,-,0) € L3(Q7), R(x,1,0) <O a.e.
(V) ur € L3(Zr), (ur); € LA(Z7),ur <0a.e.
(Vi) up € H', up < 0 a.e.

PROPOSITION3.6 Let Hypothesi§ 3]5 hold. Then Problegm (3.10) admits a unique solutien
L2(Q7) such that; € L2(Q7), Vu € L*®(0, T; H). Moreover, we have(x, 1) < 0 a.e. inQr.

Sketch of the proofFor a sufficiently large discretization parametee N, we consider the time-
discrete problem with time step= T'/n,

1
—/ ay (ug —uk—l)wdx+/ (Vuk,Vw)dx+/ y(ug — urp)wds
5 Jo I?) a0

=/ Ri(x,up)wdx VYw € HY k=1,....n, (3.11)
Q

whereug is defined as i (3.10), and whetg(x), Rk (x, -) for x € £2, andu ¢ (x) for x € 3£2, are
the integral means of the corresponding functionf in {3.10) over the time intéevall)s, k5]. The
existence ofi; € H' is obtained e.g. from the Lax—Milgram lemma, recursivelyifet 1, ..., n,
whenevemn > T|h|s/ax. Choosingw = u,j (the positive part ofix) in ), and assuming that
ur—1 < 0a.e., we obtain

f “—"|u,j|2dx+/ |w,j|2dx+/ y|u,j|2ds<|h|oo/ |} |? dx. (3.12)
20 7) a2 17
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We haveay (x) > a4, henceup < 0 a.e. forallk = 1,...,n. Choosing howw = uy — ugx—1 in

(3.17), we derive in a standard way a priori estimates that enable us to pass to the tirrit as

and prove the existence of a nonpositive solutior] o {3.10). To check that this solution is unique,
consider two solutions?, x2 and se# = u* — u2. We now test the difference df (3]10), written for

u! andu?, by a suitable regularization af, Galerkin for instance, choosing basis functions from
the complete orthonormal systei; k € N} in H of eigenfunctions of the problem

—AY =MW iN2, Y +yyYr =0 o0nas2. (3.13)

Passing to the limit in the Galerkin approximations, we obtain

t t
a*/ / lit; )% dx dr < |h|oo/ f |iii; | dx dr, (3.14)
0 JR 0 J

hencei: = 0 by Gronwall’'s lemma. |
COROLLARY 3.7 Let Hypothesds 3.5(i)—(iii) hold, and let (iv)—(vi) be replaced by

(iv)' R(-,-,0) € L2(Qr), R(x,1,0) < R* a.e.
(V) ur € L2(Z7), (ur); € LA(Zr), ur < uj- ae.
(Vi) up € HY, ug < u* ae.

with some positive constant®®*, u}., u*. SetK = max{u*, u}.}, consider some constafy >
R*/K, and forz € [0, T] put

1 t
H@) = a_/o (B1 + h(z))dr.

Then Problem[(3.70) has a unique solution with the regularity from PropoEitipn 3.6 such that
u(x,t) < Ke'®  ae. (3.15)

Proof. For (x,7) € Qr andv € R setvr(x,1) = ur(x,1) — Kef®, I?(x,tN, v) = R(x,t,v+
Kef'®)y — K H()a(x, t)e”® . ThenR fulfils the condition$ 3.5(iii)—(iv), sinc&(-, -, 0) € L2(Q7)
and
R(x,7,0) = R(x,t, Ke" )y — KH()a(x, t)e"®
< R(x, 1,00+ KO (h(t) — a(x, HH (1))
< R*+ Ke"O(h(t) — a(x, N H (1))

N

ax

, 1
(1 - m)(R* + Kh(ne®) <.
A function v on Q7 with appropriate regularity is a solution to the equation

/ av;w dx +/ (Vv, Vw) dx +/ y(v—vr)wds = / R(x,t,v)wdx VYwe H! (3.16)
2 Q IR 2
with initial conditionv(x, 0) = vg := uo(x) — K if and only if u(x, 1) := v(x,t) + Kef'® is a
solution to Proble O). SincR, a, v, vr, andug fulfil Hypothesi, from Propositi.6
it follows thatv is uniquely determined ang(x, r) < 0 a.e. Hence: is uniquely determined and
satisfies the desired growth conditi¢n (3.15). O
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COROLLARY 3.8 Let Hypothesds 3.5(i)—(iii) hold, and let (iv)—(vi) be replaced by

(iv)” R(-,-,0) € L3 Qr), R(x,t,0) > 0a.e.
)" ur € LA Z7), (ur), € LA Z7),ur >0a.e.
(vi)” ug € HY uo(x) > u 1 (x) ae.

with some positive constant,, whereyq is the positive eigenfunction corresponding to the smallest
eigenvalue.; > 0 of (3.I3) fork = 1. Consider any constaBy > 11, and forr € [0, T] put

1 t
H(t) = a_/o (B2 + h(z)) dr.

Then Problem[(3.30) has a unique solution with the regularity from Propofitipn 3.6 and such that
uC, 1) = ur(x)e 10 ae.
Proof. For(x,) € Qr andv € R setR(x, t, v) = —R(x,t, —v+up1(x)e ) fu,e 1O (g —
aH(t))y1(x), andvr(x, 1) = —ur(x,t). ThenRr fulfils again the conditioné%].S(iii)—(iv), since
R(.,-,0) € L3(Qr) and
R(x,1,0) = —R(x, t, usy1(x)e D) + ue ™D (g — aH (1)) y1(x)
< =R, 1,0) + upr(x)e O (g + h(t) — alx, ) H(1))
a(x,t)

Ay

< uspr(x)e HO (1 - )(xl + k(1)) <O0.

As in the proof of Corollary 3]7, we have a one-to-one correspondence between the solation
(3.18) with initial conditionv(x, 0) = w1 (x) —uo(x) and the solutiom (x, r) = .y (x)e H® —
v(x, 1) to Problem [(3.10). By Propositign 3.6 we have again< 0 a.e., and the assertion
immediately follows. ]

Consider now inQ 7 the problem

/autwdx+f(Vu,Vw)dx+/ y(u —ur)wds
2 Q AR

= /(r(x,t)+h1(x,t)u+h2(x,t)ullog|u| Dwdx Yw e HY, (3.17)
2

u(x,0) =ug(x) a.e.

under Hypotheses 3.5(i)—(ii), whetg- has the regularity as in (v), and with given functions
r, h1, hp € L*°(Qr), assuming that

Ogr(xat)gr*v Og”l"(x’t)gu?a
lhi(x, )] <h* fori=1,2, wuupi(x) <uolx) <u’

a.e. in the respective domains, wheter*, uj., u,, u™ are fixed positive constants. Set

(3.18)

K = maxu®, u}.},
A = max0, log K, — log(u.v)},
B =max{r1, r*/K} + (2+ A)h*,
1
C = (B +h",
Ay

wherey, > 0 is a uniform lower bound foyr1 (x).
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PropPOsITION3.9 Problem[(3.3]7) has a unique solution, and
u*lﬁl(x)e_H([) u(x,1) < Ke'D  ae, (3.19)

where L
H(t) = —/ (B + h*eCT) dr.
ax Jo

Proof. For all admissible values of the arguments, set
R(x,t,u) = r(x, 1) + hi(x, Hu + ha(x, Hyumin{|log |u| |, A + '}, (3.20)
ThenR(x,t,0) = r(x,t) € [0, r*], and
|0, R(x, t,u)| < R+ A+e“)  ae.

We may thus apply Corollari¢s 3[7—B.8 and conclude that the solutipn t¢ (3.10) satisfies the estimates
(3.19). It remains to check thatis a solution to[(3.1]7). Fronj (3.]19) it follows that

log(u«ys) — H@) < logu(x,t) <logK + H(t) ae., (3.21)
hence the constraint + ¢ in (3.20) is never active, and the assertion follows. 0

Finally, we derive here a global in time Moser-type estimate [(¢f. [1]) for nonhomogeneous mixed
boundary conditions. We follow in principle the scheme[ofl [22], showing in addition the explicit
dependence upon some parameters of the problem, which is needed in the proof of Theprem 2.2.
We state the result in the space

Lige(Qo0) = {u: 2 x (0,00) — R; u|g, € L>(Qr) forall T > 0}.
We will also make repeated use of the well-known interpolation inequality
olr < AVl + 07Nl g)), (3.22)

which holds for every € H* and every; € (0, 1), with a positive constam that depends or,
but neither orv nor ony.

PROPOSITION3.10 Given a nonnegative functigne L1(3£2), consider the problem

fa(x,t)u,wdx-i—/ (Vu,Vw)dx+f y(x)(h(x,t,u) —up(x,t))wds
2 2 082
=/ Hulwdx Vw e HY, (3.23)
2

u(x,0 =up(x) a.e,

under the assumption that there exist positive constdgtél1, Cy, ag, a1, Ao, U, Ur, Eg such that
the following holds:

(i) The mappingH : L.(Qx) — L2.(0Qs) has the property that

loc loc

u(x, )H[ul(x,t) < Hilu(x, t)| + Holu(x, N° a.e.inQu, Yu € Ly (00).
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(i) his a CaratBodory function orQ, x R such thati(x, 7, u)u > Cpu? a.e. for allu € R.

(i) a,a, € L*°(Q) are such thatg < a(x, ) < Agand|a;(x, 1)| < a1 a.e. iNQcc.

(iv) u®e L>®(2), |ux)| < U a.e.inf2.

(V) ur € L®(Xso), lur(x,1)| < Ur a.e. onX.

(vi) There exists a solutiom € LX.(Qs)NL2 (0, 00; HY) to ) suchthat, € L2 (0, co; H),

- e loc loc loc
satisfying the a priori estimate

/ lu(x,t)|dx < Eg a.e.in(0, co).
fos

Then there exists a positive constatit depending only o (cf. )),|Q|, ¥ IL100) Chy U,
Ur, ag, andAg such that
lu(t)| =@y < C*(A+ a1 + H)*NV/?(1+ Hy + Eo) foraer > 0. (3.24)
Proof. We prove Proposition 3.10 under the additional hypothesis
U=Ur=Cy=H =Ey=1. (3.25)
The general result is then easily obtained via the transformation
7 =Cpy, i=u/K, K =maxEoq, H,U,Ur/Cp). (3.26)

During the proof we will denote bg;,i = 1, 2, ..., some positive constants depending onlyAn
|‘Q|1 |y|L1(39), ao, andAO.

Fork € N, setw = uu|? =2 in 3:23). In what follows, we make use of the identity
aJ .
ax, Ouulu® 2 = 27 (@G D) = 27 K arluf®

and of the inequality

/<w,wu|u|2k-2>>dx+/ y(h(x. t,u) — upyulul* =2 ds
2 082
2k_1 2k—171 2 2k 2k71
> oz [ IV R dr [yl s

Setd, = u|u|2H*1. Then we get, using dlder’'s and Young'’s inequalities,

d k-1
2*’“—/ a(x,t)|¢k|2dx+w/ |v¢k|2dx+/ y| P2 ds
2 2 082

dr
1-27k 2=k
<(/ y|®k|2ds> (f yds) +a12—kf|q>k|2dx
082 082 22
+/ (Hol @y )2 + #4227 dx
22
g(l—z—k)f y|<1§k|2ds+2_k/ y ds
082 082

+a12_k/ |4>k|2dx+(Ho+1)/ |Pr |2 dx + 27582].
22 22
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SettingH> := 1+ a1 + Ho and multiplying the above inequality by Ave find that

E/ a(x,t)|(1§k|2dx+2/ |quk|2dx<2kH2/ |¢k|2dx+|9|+/ y ds. (3.27)
dr Jo Q Q ¥,

We now use the interpolation inequalify (3.22) to derive the inequalities
/9 |®12dx < 2422 VD113 + N ED), (3.28)
/Q |0 12dx < 24221Vl + 7N |@pa|)  fork > 1. (3.29)
Fork = 1, we infer from[(3.2]7) and (3.28) that

d
—f a(x,t)|<1>1|2dx+2/ |Vq|? dx
dr I?) I?)

< 4H2A2(n2/ |V&q|%dx + n—NEg> +182] +/ y ds.
2 982
Choosingy = 1/(2A+/ H»), we find that

d
—/ a(x,t)|¢1|2dx+/ Vo1 2 dx < C1Hy TN/, (3.30)
dr Q Q

Fork > 1, we choose = 1/(A+/2¥+1H,), we conclude fron{(3.27) and (3]29) that

d
Ef a(e, D\ @iy + [V < Col+ (2 Ho) /2y 11%). (331)
2

Using again[(3.29) withy = 1/(+/2A), it follows for a.e.r > 0 that

d 14N /2
E/ a(x, N|@1)2dx + [@1(1)|% < C3Hy ™2,
2

d
E[ga(x,o@uzdx +1®p(1)1% < Ca(L+ 2 H)M N 21011 (1)[5).
By assumption, we haveo| @k ()13, < [g alx, 1)|@k>dx < AolPr(1)[7, and|Px(0)|5 < |£21.
Hence,

14+N/2
|B1(1)|% < CsHy ™2,

D ()% < Co(1+ @ H)™N2 max |#41(0)[f;).
o<t
Define now .
(1) = max |u(z = max |®x(7)|% .
Zk() 0<r < |M( )|L2k(.Q) 0<‘[<t| k( )|H

Xt

Then we have

21t C7H2(1+N/2)/2’

)
2k (1)

NN

—k —k
Cs (2 Hp)MND27 max(1, zi—1(1)).
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In particular, puttingy; (t) = max1, zx(¢)}, we get

1+N/2)/2
y1(t) < CoHSN/P/2,
) <

1+N/2) 27k —k
V() < (CaoHy TNPHZTRANZTy, (1) fork > 2

Hence, we conclude that

k
logyi(r) <Y 277 (log(C11H, /%) + j(1+ N/2) log 2)

j=1
< (14 N/2)(C12+ log Hp),

independently ok andr > 0. Thus, it suffices to choog&* = exp(C12(1 + N/2)), and conclude
that

sup |M(I)IL21<(Q) < C*H21+N/2:C*(1+a1+H0)1+N/2'
t20,keN
Formula [3:24) now follows fronj (3.25=3126). 0

4. Proof of the uniqueness result
We start with the proof of Theorefm 2.4. Relatipn {2.2) is for (almost) al £2 of the form [3.4),
with

_ n®)
«®) =g

g=fl0.x]1= (cy GO —logh) + 1" (x) + 60’ (x) + blx]).

B+0

Within the range) < 6 < 6 andy € Dc(p), x; < C of admissible values for the solutions (taking
indeedd = min{6y, 6,} etc.), all nonlinearities in (21{-2.2) are Lipschitz continuous. Using the
notation from Theoremn 2.4, we obtain, as a consequen¢e ¢f (3.7), foxatec QO the estimate

0 n
e 01+ 131 < Ro<|e<x, ISR +/Q 20D dy), @.)

with some constanky. Let us fix somel” > 0. In what follows, we denote bR1, Ry, ... suitable
constants depending possibly ®nbut independent of the solutions. Integratipg](4.1) aeme
find by Gronwall’'s argument that

t
/ Xy, Dldy < R1</ I)Eo(y)ldy+f / 10y, f)ldydf>- (4.2)
2 2 0 Jo
Hence, testinl) by~ R0’ and usingZ), we get

t t t
/0I)?z(x,f)ldf+|)?(x,t)|<R2<|20(X)|+/0 |9(x,f)|df+/o /Qlé’(y,f)ldydf> (4.3)



300 P. KREJCI ET AL.

fora.e.x € 2 and every € [0, T]. In particular,

t t
/fmt(x,rndxdrgzes(/ |f<o<x>|dx+f f |é<x,r>|dxdr). (4.4)
0 2 2 0 2

We now multiply [4.3) by % (x, #)| and integrate ovef to get, for allr € [0, T,

t
/|;z(x,t)|2dx<R4<|f<o|§,+/ f |é(x,r)|2dxdr). (4.5)
22 0 JR

The crucial point is to exploif (2}9) properly. Notice first that we have

blxIx:(x, 1) = 2B[x]:(x, 1) + 2/Q k(x, )G (x (x, 1) = x (v, D)) xe (y, 1) dy. (4.6)
We integrate the difference of the two equatidns|(2.9), writtertéfary1) and (62, x2), from O toz,
rewriting the terms[ x;] (x;): according to) We test the result &g, r). Using the Lipschitz

continuity of all nonlinearities« is Lipschitz continuous o¢ (¢) with constantC), and writing
Ox,1) = [p0(x, 1) dt, Or(x,1) = [y 0r(x, T) dr, we infer for each > 0 that

1 N ~ A A
co/ 16(x, )% dx + — ( / IVO|?dx + = / y@zds—/ y@@pds>+/ y®0Or ds
2 Joe IR a0
t
<R5<|90|§1+|)€o|§1+/;2|)?(x,t)lzdx+/(] fg/ﬂ/coc,y)mt(y,rn|e(x,z>|dxdydr).

The last term on the right-hand side of the above inequality can be estimated[using (4.4), as

t t
///k(x,y)l)?r(ysf)l|9(x,t)|dxdydr<R6/ |9(x,t)|dX/ / [X:(y, ©)|dydt
0 JRJS2 2 0 J2
. 1/2 ' . 1/2
<R7(/ |9(x,t)|2dx) (/ |;20(x)|2dx+/ / |9(x,t)|2dxdr> )
2 2 0 2

Combining the last two inequalities again with the Gronwall lemma, we obtain forreadB, T
the estimate

t
//|é(x,r)|2dxdr+/ |v@(x,r)|2dx+/ y©2?(s, 1) ds
0 J 2 982

t t
<R8(|eo|%,+|>zo|§,+f/ ye%(s,r>dsdr+f/|>2<x,r>|2dxdr). 4.7)
0 082 0 22

We now multiply [4.7) by &4, add the result td (4}5), and see that Gronwall’s argument can be
applied again to arrive at the final estimate

t t
/|2<x,z)|2dx+//|9<x,r>|2dxdr<R8<|eo|§,+|;zo|§,+// ye,%(s,r)dsdr). (4.8)
2 0 J 0 Jos2

With this, Theoren 214 is proved. a
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5. Proof of the existence result

This section is devoted to the proof of Theorem|2.2 (i.e. the existence of weak solutions to
system[(ZJI=2]4)[ (2.6—2.8)). We use a standard technique: we first truncate §ystgm|(2.1-2.2), prove
existence of solutions to the truncated problem, and finally show that the solution of this system is
also a solution of the original system, removing the truncation.

Assuming Hypothes[s 2.1 to hold, we proceed as follows: first solve the problem corresponding
to (2.3£2.4), in which we regularize the coefficigntand the logarithmic contribution i (2.2),
replaced by |0| at suitable places, and then derive upper and lower boundstfat will allow us
to conclude that the solution of the modified problem satisfies pIsp| (2]1{2.4), (2.6-2.8). For some
sufficiently large cut-off parameter > 1, which will be specified later, we introduce fére R the
functions

w(l01) for 18] < o,
9= 5.1
#a) {M(Q)+M*(|9| —p) for|0| > o, (5.1)
0 foro <0,
Lo(®) =4 logo for0<6 <o, (5.2)
loge for6 > o,

and consider the following problem:

PrROBLEM 5.1 ForT > 0 find a pair(9, x) with the regularity[(Z.p) and (2.8) restricted to the time
interval [Q, T'], solving a.e. inQ7 the system of equations

(v (08 + 200 + Be(O): + blx1x: — A0 =0, (5.3)
1o @) x: 4 ¢y (O — Lo(©)) + ' (x) 4 60" (x) + (B + 10139 (x) + b[x] 3 0, (5.4)
with boundary and initial condition§ (3[3—2.4), in the sense of Theprem 2.2.

LEMMA 5.2 For each fixe¢ > 1, there exists at least one solution to Probfenj 5.1. Moreover,
there exist positive numbetg 7 < C,, 7 such that, r < 6(x,1) < C, 7 a.e.

Proof. Consider the Faedo—Galerkin approximations
m
0" (x. 1) = Y O() Y (x),
k=1

where{y; k € N} is the complete orthonormal system #h of eigenfunctions of the problem
(3.13), and where the () satisfy the system of equations

/(cv(xw’"),wkdw/ <vem,vwk>dx+/ Y (O — O)y ds
22 2 082

=—/Q(<x<x>+ﬁ¢<x»t+b[x]xt)wkdx, k=1....m, (55
1o O™ X + €y COB™ (L — Ly(@™) + 30 +00"GO) + (B + 16" N300 + bx] 50, (56)

with initial conditions
01 (0) = /Q by d. (5.7)
x(x,0) = xo(x). (5.8)
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It follows from Propositio 3]2 and Remdrk B.3 that {5.6) defines a mapping that witho&aeh
L1(Q7) associates continuousy, x; ande(x); in any L? (Qr). Equation [(5.p) therefore has the
form

[ Femor s+ uen = [ yoruds+ [ HOm 5.9)
2 082 2

vyith continuous operatorg, H : Ll(QT)~—> L?(Qr) for suitably choserp > 1, and §uch that
C1 > F[A](x,t) > co, |H[O](x,1)] < C1 a.e. foralld e L1(Qr) with a constantC; > 0
independent of. The matrixA;([0](t) = f_Q F[6](x, )y (x) ¥ (x) dx is symmetric and positive

definite, hence Lipschitz continuous solutiahst), .. ., 6, () to (5.9), [5.7) are well defined on
[0, T]. Testing ) byoy, and summing ovet, yields

d/1 1
/F[e'"]|9;"|2dx+—<—/ |V9m|2dx+—f y|9m|2ds—/ y@FOmds>
2 dr\2 /o 2 Jae FYe)

__ / Y (Or)6™ ds + / HI6™0" dx
a2 2

1/2 12 172
<</ )/|(9F)z|2ds> (/ y|9’"|2ds) +C2</ |9,’"|2dx)  5.10)
082 082 2

Integrating from O ta € (O, T'], we obtain from Gronwall’s argument the estimate
60" l2igr + 190" o + sup [ yi6" s < G (5.11)
[0,7]Jog2

with constant<’,, C3 > 0 independent of: (depending possibly off, but 7' is kept fixed here).
Selecting a subsequence if necessary, we may pass to the limit/in ($.5-&.6)-aso to obtain the
existence result.

To derive the bounds fof, we first estimatey; using Propositiofi 3]2 anfl ($.4), taking into
account@). Note that the ten®i(1 — L,(6))| is bounded from above independentlyzaby a
constant multiple of & |6|(1 + loge). We thus deduce the following bound on thecomponent
of the solution(f, x) to Problenj 51

Ixelzecor) + 1900 Lo0r) < c1(1+ logo)?. (5.12)

Here and belowg, c2, ... denote constants independentgoénd 7. Having still in mind weak
solutions in the sense of Theorém|2.2, we rewfite| (5.3) formally as

cv (00 — A0 = 1g(O)x7 — ¢ COXOLo(©) + 00 ()i + 1019(X):- (5.13)
We are thus in the situation ¢ (3]17=3.18) with the chaice 6, and
Ho(®) 5
T+01%

. 0
hi(x,t) =0 (x) + sngn(9)<<ﬂ(x)z + fj-(IG)I x12>,
Ly(6)

lloglo]|’
ur =0r, u’=00, u,=0,/v"

alx,t) =cy(x), rkx,t)=

ha(x,t) = —cy (O X

and the upper and lower bounds tbfollow from Propositiorj 3.9. O
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REMARK 5.3 If we examine the proof more closely, we see that the hypothesig-opcan be
relaxed using the trace theorem for functions frém for N > 2. The argument still works for
6r); € L%0, T; LP(3£2)) with p > 2(N — 1)/N, or (6r), € L%, T; H Y2(32)), if 982 is
smooth.

The uniqueness and continuous dependence result in Théorem 2.4 holds indeed for problem

(5:315.3), [(2.3=2]4) as well. We can therefore extend the solution Td (5345.4], (2.3-2.4) to the

whole time interval [0co) and obtain the following result.

COROLLARY 5.4 There exists a solution tp (5.3), (6.4), {2.3}2.4) in the sense of Théorém 2.2
on Qo With the propertiesB.S), and functioffs 6% : (0,00) — (0, c0) such thatg) is
nonincreasing@g(T) is nondecreasing, ar@(T) < O(x, 1) < 0,(T) fora.e.(x,t) € Qr and for

all T > 0.

We see in particular that we can remove the absolute valu¢s i (5.3-5.4). Our aim is now to

prove that the solution to Problgm b.1 satisfies glsd [2.1-2.4)[(2]6—2.8) for suitably ¢hoken
this end, we derive a uniform upper bound fofThen, choosing above this bound, we will check

that the solution td (5]8=5.4) is the desired solutiorf o] (2.1-2.2).
Equation[(5.B) is of the form as in Propositjon 3.10, with

u=20, ax,t)y=cy(x), h(x,t,u)=u, (5.14)
H[u] = =00 + BoOO): — blxlx: — ¢y (O xeu. (5.15)

Referring to Propositiop 3.10, we hawg = co, C, = 1, andU + Ur + Ao < c2. The other
parameters, however, namely, Ho, H1, and Eq, do depend o by (5.12). Hypothesis 2.1 and

(512) yield

a1+ Ho+ Hi < c3(1+10go)?. (5.16)

It remains to determine the dependenceZgfon ¢. To do so, we tesf (5.3) by from (2.3). This
yields

d
d_/ Cv(X)Ql/fldX—i-/ (VQ,VI/fl)dx-i-/ y(@ —0r)y1ds
rJo Q 992

. /Q (00 + BoOO): + blxlxyadr.  (5.17)

If y = 0, we may takey1 = 1, and using the symmetry &f x], we deduce fron{(5.17) that
/Q eV (0B, 1) dr = /g ev (xo)fo dr + /9 (:(x0) + Be(x0) + Blxo) dx

_ /Q(/\(X) + BoCO + BlxD(x. 1) dx
<ca (5.18)

Assume now thaf(m y ds > 0. Thenr1 > 0, and we have

d
d—/ 0v(x)91/f1dx+h/ 6y dr = yerwlds—/((A(x>+ﬁw(x>),+b[x]xt>wldx.
t Jo 0 2

082
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From Hypothesif 2|1 and estimdte (5.12), we infer that
d
g | evoomdrses [ evioopade < o1+ logo)? (5.19)
2 2

dt
Hence, [, 6y1dx < c7(1+ log 0)2, and using Hypothe.l(ii), we obtain the final estimate

Eo < cg(1+logo)?. (5.20)
Referring to[(3.2]4) in Propositign 310, we find that
O(x. 1) < co(1+logo)* (5.21)

fora.e.(x, 1) € Q. Taking now any such that
0 > co(1+logo)*™V,

we see that the solution to Problgm|5.1 is also a solutidn tp[(Z2]142.4), (2.6—2.8), and the upper bound
in (2.10) is satisfied. It remains to derive the uniform (in time) lower bounf in(2.10). To this end,
let us consider the function

z=1logf —logh >0 a.e.inQq,
with 6 defined in[(2.2D). Using (2.2), we rewrife (2.9) as

/ cv(x)e,wdx—i—/ (V@,Vw)dx+/ y(© —0r)wds
22 2 082
_ /Q WO X2 — ¢y GO X0 1098 + 60 (0)r +0p(0Dwdr.  (5.22)

We now choosey = v/6 with v € H? to obtain

1
/Cv(X)&Ud)C-I—/ —(V@,Vv)dx—i—/ y(l—e—r)vds
2 0 20 F¥e) 0

vo|? 0
=/Q<| | +&X2_c’v(x)x,|oge+a(x),+g0()()l>vdx. (5.23)

62 o

In terms ofz, we have

f(Cv(X)Z);vdx+/(Vz,Vv)dx+/ y<errez—1>vds
Q Q E¥e; 0

Vo |? 0
:_[9(| |+MX¥2+(O(X)+‘P(X))1)UdX. (5.24)

62 0

We are thus again in the situation of Proposifion B.10, with, ¢, u) = (61 /6)(e* — 1) suitably
extended for < 0, and it only remains to find a unifori!-bound forz as in Propositioh 3.30(vi).
We proceed as above and t¢st (5.24)hy This yields

d 0
d—/ (6v(x)z+¢(x)+0(x))1/f1dx+K1/ zwlder/ V(rrez —1—z>¢1ds <0.
L Jo Q 902 0
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The case = 0,11 = Ois again straightforward. Far > 0 we notice thatd; /0)e*—1—z > —c1o,
hence a uniform bound far in L1(£2) follows again from the uniform Gronwall lemma. From
Propositiorf 3.T0 we conclude that

z(x,1) <c11 a.e.inQq. (5.25)
Henced(x, 1) > fe~“11 a.e., which completes the proof of Theoren 2.2. O
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