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Convergence analysis for a smeared crack approach in brittle fracture
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Our analysis focuses on the mechanical energies involved in the propagation of fractures: the elastic
energy, stored in the bulk, and the fracture energy, concentrated in the crack. We consider a finite
element model based on a smeared crack approach: the fracture is approximated geometrically
by a stripe of elements and mechanically by a softening constitutive law. We define in this way a
discrete free energ;, (1 being the element size) which accounts for both elastic displacements and
fractures. Our main interest is the behavioutyf ash — 0. We prove that, for a suitable choice

of the (mesh dependent) constitutive la@;, converges to a limit functionalr, with a positive
(anisotropic) term concentrated on the crack. We discuss the mesh bias and compute it explicitly in
the case of a structured triangulation.

1. Introduction

Smeared cracking is a well known finite element model for simulating strain localization
phenomena, including the propagation of fractures. Starting from the ideas of Rashid [27] this
technique has attracted much attention in the field of computational mechanics, being continuously
studied and improved (see for instanté [4],1[28] and the references therein). Besides academic
research, smeared cracking has also been used for real life applications and has been implemented
in commercial software for structural mechanics.

In its “classical” form, the idea consists basically in replacing the fracture with a band of finite
elements (see Figufg 4). This geometrical approximation is then accompanied with a softening
constitutive law of damage type. These two aspects, geometrical and constitutive, characterize the
different versions of this approach and have been the main source of investigation and discussion.
Different authors have noted that, for some choices of the softening law, when the size of the
triangulation becomes too small the model gives a wrong mechanical response where no dissipation
occurs. Moreover, it has often been pointed out that the geometry of the mesh introduces an artificial
bias which may affect strongly the direction of propagation. These points have been treated and often
circumvented in different ways, for instance by means of constitutive laws depending on the mesh
size [25], [26] and/or by a non-local approathi[19].

Apart from physical considerations, for which we refer to the specific engineering literature,
to our knowledge a mathematical treatment of the smeared cracking model has been missing.
The model examined in this work is quite simple, compared with the complexity of some actual
engineering implementation, nonetheless it catches clearly two main aspects, i.e. scaling and mesh
bias which are fundamental in computational mechahics [21], [18]. The importance of these features
is well explained by Oliver[[25]: “A common feature of these models is their ‘non-objectivity’
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with respect to the size of the finite elements mesh when standard finite eleméftsaftinuity
are used. Obijectivity can be achieved by modifying the constitutive law and making it depend
on mesh size by introducing a parameter called ‘crack band width’ or ‘characteristic length’. For
fairly regular meshes this parameter is frequently determined in an intuitive way which, however, is
difficult to generalize in a formal manner for irregular meshes and arbitrary crack directions.” We
will see (in §2 and[§3) that our analysis gives a possible answer to the questions raised by Oliver.
The point of view adopted here is purely based on the energies related to fracture propagation
and mathematically relies strongly on the theories 8fD functions [2] andl"-convergence [15].
Without entering into technical details, let us explain briefly the main result, starting from the
continuum model. We consider a reference two-dimensional do®aimith in-plane, possibly
discontinuous, deformations. Denoting bythe displacement field, the fracture will always be
identified with the seff () whereu is discontinuous. We will consider a brittle material and assume
cracking to be governed by Griffith’s model. Thus, the energy concentrated on the fracture will be
of the formy|J (u)| (where| - | denotes the length measure ands a material parameter) while
the energy stored in the bulk will be the linearized elastic enéVgye (1)) (wheree(u) is the
symmetrized gradient of). Hence, in the continuum setting, the free energy will be of the form

Gu) = /Q We(e)) dx + y|J @)].

Fracture propagation can be modelled as an evolution associated with such an energy. Recently,
much attention has been payed to this subject, in particular as regards the quasi-static propagation
based on minimizing movements, i.e. on sequences of minimize¢s dYe refer the interested
reader to[[117],[[11],116] and [ 7]. This aspect is beyond the scope of this paper. We limit our analysis
to giving a rigorous approximation @, in terms of a smeared cracking model, which, however, is
a basic problem for time dependent models.

Our finite element model is defined in the prototype case of piecewise linear elements on a
structured mesH},; the energy is simply of the form

Glun) = / Wi (eun)).
2

The densityW, is defined by means of a damage constitutive law of the kind

oW, awe
a—h =[1—dhW*(e)]o = [1 — dhW*(e))]
€ de

)

for a suitable choice of the damage functidrwhich governs the transition between the elastic
and fracture regimes. We remark tlitepends on the elastic energy density through a rescaling
factorh which is crucial for our convergence result. We will see that this factor plays the role of the
characteristic length in [25]. Denoting kya primitive of 1— d we can clearly write

1
Wi(e) = ﬁf(hWE(e)).

We remark that a similar approach has been widely used for the approximation of the Mumford—
Shah functional both for adaptive [13],][6] and structured triangulatiobns [22] while it has been
employed in a non-local form for the propagation of fracturés [7].
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Our main interest is the convergence®f as the element sizetends to zero, or, in other terms,
to understand whe@, is an approximation o&;. More precisely, we prove that, I"-converges
(ash — 0 tends to zero and with respect to thktopology) to an energy of the form

Gy(u) = / Weew)dr+y [ ¢ ds,
Q\J (u) J ()

which reminds a similar formula obtained in_[22] for the Mumford—Shah functional. The density
¢ represents the mesh bias due to the geometry of the triangulBtidor every possible crack
direction. Indeedp depends on the normal vectorto the set/(«) and thus it depends on the
orientation of the fracture. This term is explicitly computed in the case of structured triangulations
(see BB). Unfortunately, for a general unstructured mesh it is not possible to characterize it in
a precise way since in general a unigielimit is not possible. Finally, in the case of a scale
independent law we can show that the limit ene¢gwould be identically zero. This fact explains,
in mathematical terms, why in some cases it has been observed that the dissipation was almost
vanishing for small mesh sizes.

From the technical point of view the main difficulty lies in ti&liminf inequality. Its proof
requires first a suitable application of the slicing technique, to take into account the geometry of
the triangulation, and then a “strange” one-dimensional estimate, depending at the same time on
two neighbouring sections. We recall that a convergence result of this kind, with a slightly different
fracture energy, has been obtained alsd In [1] using an “atomistic” approach by finite differences.
Generalizations of our convergence result to the case of non-local and cohesive models (or to
the case of other non-local operators) are still quite hard due to some technical problems with
symmetrized gradients. These topics will be the subject of future investigations and forthcoming
papers|[20]. Hopefully, these mathematical results, combined with comparative studies [19], will
provide a deeper understanding of softening models and some useful properties for the design of
robust finite element simulations.

2. Anisotropic limit for structured triangulations

Let £2 be an open bounded Lipschitz set? and let{T},} (for » > 0) be a regular family of
structured triangulations. For simplicity we will consider the prototype mesh represented inFigure 1
which is defined on the gridh/+/2)Z? (in such a way that the diameter of the elements)ishe
denote by, (£2, R?) the finite element set of piecewise affine functionsIgriaking values ifR?

and uniformly bounded ih.>° by some positive constaktwhich can be arbitrarily large. Note that

h/v2

FIG. 1. The structure of the triangulatiaF, .
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this constraint is purely technical and avoids truncations of the displacement field. We will always
write V;, instead ofV;, (£2, R?) and similarly for other function spaces.
Lete = e(u) be the symmetrized gradient and consider the linearized elastic energy density

p 2 A 2
We(e(u)) = nle(u)| +§|tl’€(u)| ,

where u and A are material parameters (the Lamsonstants). Leff : [0, +o0) — R be an
increasing, continuous function such that

lim SO _

t—0t t

Lo dm f@o=y. 1)
Let f;,(¢) = f(ht)/h be arescaling of and define
Wi(e()) = frn(W*(e(u))).

The discrete energy is then given by

/QWh(E(Mh))dx, up € Vp,

+00, up € LY\ V.

Gn(up) = (2

The convergence result faf;, is summarized in the following theorem.

THEOREM2.1 The functionalss,, I'-converge, with respect to thie'-topology, to the functional

/ Weé(e(m))dx +y d(v)ds, u e SBD?, |lulr= <k,
Gu) =4 J2vuw T () 3)

+00, otherwise inL1.

The densityp, appearing in the length term and depending on the novn@l/ (1), represents the
mesh bias and depends only on the discrete geometry of the triangulations (for more details we
refer to Sectiof|3). For simplicity we denote &y the one-dimensional Hausdorff measure, i.e. the
length measure.

Finally, if u;, is a family in v, which is equibounded in energy, namely wih (1)) < ¢, then
uy is strongly precompact ih” for every 1< p < 4o0.

REMARK 2.2 Note that the functioif, and its rescalingj,, introduce in the discrete energy a local
softening which depends on the sizef the elements. Scaling the constitutive law in this way is
necessary to recover in the limit the correct fracture energy. Indeed, consider the scale independent
energy

/ fWee)))dx if u €V,
2
+00 if ue L1\ V.

Ep(u) =

Then E;, converges to a functionak which is identically zero. This fact has been observed
numerically by many authors and usually referred to as non-objectivity of the triangulation: for
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h — 0 the deformation localizes in narrow bands while the energy decreases to zero. From the
theoretical point of view this effect can be explained in terms of relaxation. More precisely: for
u € HY letu, € V, converge tau with respect to theH1-norm. As f(W¢(M)) is a Lipschitz
function fromR2*2 (the space of X 2 matrices) intdR we get

’/Q[f(W"(E(uh))) — f(We(e)))]dx

<L/ leun) — )2 dx.
2
Thus

Iimsuth(uh)g/gf(We(E(u)))dX (4)

h—0

Denote byE the functional

/ F(We(e(m))dx ifu e HL,
2
+00 ifueLl\ HL

Eu) =

Note that, f being bounded from abové; is not lower semicontinuous with respect to thé
topology, and its lower semicontinuous envelope is identically zero. Sinc€{imait E is lower
semicontinuous, fronj [4) it follows that is identically zero as well.

The main consequence df-convergence is the convergence of minimizers. For instance,
denoting bydp £2 a subset of the boundaby?2, let us consider the problem

min{Gy () : u € SBD? andu = g in 3p2},

which is basically the incremental problem bf[17]. Note that, for simplicity, we do not bother with
the precise definition of the boundary condition, which should allow fractured,sh (see e.g.
[16]), nor with the irreversibility constraints, which enter in the quasi-static evolution. The direct
method of the calculus of variations yields the existence of a minimiz&Bilp2. Now, denoting

by g5, the Lagrange interpolation @f we consider the discrete problems

min{Gp (up) : up € Vy, anduy, = g, in dp$2}

and a family{u;} of minimizers. ThenG,(u;) < ¢ and by Theorem 2|1 it follows that,, is
precompact irL.. Hence, there exists a subsequemgeof u;, converging to a function in L. By
a standard result ofi-convergencey is a minimizer ofGy4 andGy, (1) — Gg(u). In other terms,
the minimizersuy, in V;, approximate the minimizer with respect to the.-topology while the
energiesGy, (uy,) converge taG e (u).

If fis concave, as is the case in most applicationd, py (19 non-increasing and<0 f'(¢) < 1.
Therefore, the damage variable= 1 — f” will be non-decreasing and such that

tIan")u d) =0, t_llrpoo di) =1.

Thus we can write

oW, owe
= we(e)) ]
151

= (1 —-dhWe)))a,
e
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which is a standard form for a damage constitutive law. Usual choices éoe

t forr <1,

— _ I = =
fO=1-e" fO=1tn1 {1 otherwise.

The first, being smooth, is more suitable for numerical computations and resembles the behaviour
of quasi-brittle materials, such as concrete. On the other hand, the second choice better reveals the
underlying idea of this approach and introduces a sharp elasto-fracture transition which is typical of
brittle materials. In this case the energy density can be written as

We(e(up)) it We(e(up)) < 1/h,

Wi (e(un)) = {1/h if We(e(un)) = 1/h.

The first regime represents clearly the elastic behaviour. The second accounts for fractures, indeed
in this case the local energy is simpi|/ h = h /4. This quantity represents the (anisotropic) length
of a crack “embedded” in the elemefitand resembles a similar argument[ofl[25]. Note that this is
the only energy “stored” iff" and thus, once a fracture is created, the element is considered traction
free, in agreement with the equilibrium (Euler—-Lagrange) equations. Finally, we remark that the
fracture criterion depends on the element &izsnd scales like Ah. This order of convergence is in
accordance with the behaviour of the strain in the vicinity of the crack tip. Indeed, it is well known
that in the continuous model the strain fielchas a singularity of the forny/r (in the standard
system(r, 6) of polar coordinates centred at the crack tip). In the discrete setting, considering the
Lagrange interpolation;, of u, the elastic energy density¢ will be just of the form ¥ k.

Finally, let us remark that the isotropic fracture energy appearing in Griffith’s model can be

written as
Y IJ (u)] =J// [v|ds = y/ ds,
J () J(u)

where |v| denotes the usual Euclidean norm. It is clear thaheasures the distortion from the
isotropic case due to the triangulati@j.

3. Definition and properties of the mesh bias

The anisotropy functiow, appearing in|1]3), can be defined in several equivalent Waysfllm
a triangle ofT}, for h = 1, i.e. with diameter equal to one, and lebe a vector inR2. For every
£ e St (the unit circle) letrz be the height of” in directioné (see Figur€|3). Then we can define

¢(v) = suplze (v, &) : £ € ST}, (5)

As a matter of facty (v) can be written more easily considering only a finite number of veétors
Indeed £ — t:£ is a one-to-one mapping 6f into 9 H, the boundary of the hexagdii obtained

by taking the union of the triangléé with a common vertex at the origin. Then we can write

¢(v) =sup(v,y) -y € dH} = sup[{v, y)| © y € IH}, (6)

which is clearly equivalent td [5). A# is a convex set, we geft(v) = suf(v, y;) : y; are the
vertices ofH}. Writing y; = 1;&; we get

¢(v) =sufz|(v. &) i =1,...,3} (7)
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where
£1=(1L0), &=2/2+2/2, &=(01,
T = \/§/2, =1, 73 = \/5/2.
It follows that¢ is a norm inR2. Its unit ball{¢(v) = 1} is represented in Figu@ 2 and shows

clearly a strong dependence on the orientation. Finally, f@m (6) we can rg¢gardfor v € S1) as
the one-dimensional measure®f, the projection off on the subspacg).

15+ b

05 r / N 1

05 \ / :

-15 + 4

FIG. 2. The anisotropic unit ba{lp (v) = 1} compared with the unit circlgv| = 1}.

REMARK 3.1 Whenever the topology of the mesh is similar to that of Fiflire 1 it is possible to
compute the associated anisotropy functioMore precisely, assume that the triangulation has the
following periodicity: the union of the elements with a common vertex is a hexabahich, up to
translations, is independent of the vertex itself. Under this hypotiesis be computed as in|(6)

or (7)). For instance, considering a mesh of equilateral triangles, ti &t be a regular hexagon
and then the unit ball of the anisotropywill be a regular hexagon as well (séel[22]).

The definition ofp given in [§) is designed mainly for the proof of tieliminf inequality. For
the I'-limsup inequality we will use instead the following property.

LEMMA 3.2 LetJ be a segment ik with normalv. Let#, be an infinitesimal sequence. Assume
that for everyh, the setJ does not contain any vertex of the triangulati®y), and define the
coveringJy, as the union of the triangle® of Tj,, which intersect/ (see Figur¢[3). Then

limsup 2! — 6 yHi. (8)

n—+00 n

Proof. Let¢ e S* be such that(v) = (¢, v) (see Figuré 3). For € J let J7 be the one-
dimensional sectiofly € J; : y = z + s¢ for s € R}. Sincet is aligned with the latticgh /+/2)Z?2
it is not difficult to check that the measure §f does not depend anand is equal ta; . Thus we
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~)

Fic.3. The covering/;, of a segmeny and the height;.

have|J,,| = Hl(J)r;hn (¢, v)y+ O(hf), whereO(h,%) takes into account the behaviour close to the
endpoints of/. As h, — 0 we get[(B). O

An alternative proof can be found in[22, Lemma 3.3].

Now, let us consider the example represented in Figlre 4. A fracturé(sgts plotted with
two triangulationsT;, having different sizes. The elements covering the fracture give the smeared
representation of («). We can clearly see that such coverings form two neighbourhood$u0f
which are not uniform and depend strongly on the orientation of the curve (i.e. on its ngrmal
The difference is really evident comparing the behaviour close to the endpoin{a)ofAs shown
in the right picture, this phenomenon does not change when the size becomes smaller. In particular
it will not disappear ag — 0 and in the limit it will generate the anisotropic densjty

Finally, we remark that in the case of a general family of regular triangulations, it is not
possible to find a"-limit and thus to define an anisotropy function. Indeed, the usual regularity
property of the meshes is not enough: it is invariant under rigid motions and thus it cannot give any
information on the orientation of the elements, which by contrast is fundamental for the definition
of the coverings/;, and then in the computation ¢f| (8). Moreover, it is well known that unstructured
triangulations do not reduce these anisotropy effects. Better results are obtained when the coverings
Jj, are close to a uniform (tubular) neighbourhood/ofThis is the case when we employ adaptive
triangulations (e.gL[6] for Mumford—Shah and [7] for Griffith) or non-local functionals (glg. [9] for
Mumford—Shah and [24] for Griffith) of the form

Gh(uh)Z/th(We(E(uh))*Ph)-

The non-local operator, with weighy, and radius,, is denoted by € (e(uy,)) * p, (a convolution

with kernelp;,) while the mesh sizé is assumed to be sufficiently smaller thgnOften this radius

is called “internal length” and is considered a physical parameter depending on the properties of
the material at the meso scale. It seems interesting to understand the behaviour when the internal
length is very small, namely when, — 0: from the mechanical point of view we will expect
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e

a transition between a quasi-brittle and a brittle material, while from the mathematical point of
view we will be able to estimate the mesh bias. More precisely, let us assumg, tisadbtained

by on(z) = p(z/h)/h. Now, let f;,(t) = f(rnt)/ry. Note that here the scaling factorrig. It is
reasonable to expect that fior — O the energyG, will converge again to a functionat like (2)
where the anisotropy will be closer to the Euclidean norm. Whén= o(r;) this result has been
proved in [14] for the Mumford—Shah functional and, by similar arguments, follows froim [24] for
Griffith.

FIG. 4. Afracture set and its smeared representation for two mesh sizes.

4. The I'-limsup inequality

For our type of functional thé& -limsup inequality is almost straightforward and based on standard
arguments. For completeness we give a short sketch which touches the main points of the proof,
referring to [13] or[22] for the details in a similar case. Let us consider a sequignee0 and the
discrete functionals

/ Wile) dx, u, € Vg,
2

+o00, Uy € Lt \ Vi

G,(u) =

(For simplicity in the notation the subscrifpt is replaced by:.)

Thanks to a recent density result [12] (see also Propoditioh A.3) it is sufficient to take into
account a class of very regular functions of bounded deformation, namely those functank
thatJ (x) is the union of the disjoint segments (for i = 1, ..., m) and such that belongs to the
Sobolev spac®*>°(£2\ J (1)) (for somek arbitrarily large). By a simple translation argument, it is
not restrictive to assume thdtu) does not contain any vertex of the triangulatidns In this way
we can define, as the Lagrange interpolation @fin the space/,,. We denote by// the coverings
of Ji as defined in the previous section andAgbe their union. Clearly we can write that

limsupG, (u,) < limsup W, (e(uy)) dx +limsup | W, (e(uy)) dx.

n——+o0o n—+o00 J 2\ J, n—+oo JJ,
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As |J,] — 0, by the regularity of: and classical results on finite element interpolation, the first
limit gives the bulk energy, i.e.

lim sup W, (e(uy,)) dx g/ W€ (e(u,)) dx.
n—+o0 JQ\J, £2\J (u)

The second limit will give the fracture energy. Indeed Vage(u,)) < y, by Lemmg 3.R we can
write

limsup l Wi(e(uy,)) dx < lemsup l Wi(e(uy,)) dx < yZIlmsup

n—>+o0o JJ, i1 n—+o0o Jz Py n—>+00 n
yZ«p(v)Hl(J =7 [ emds
i=1

It follows easily that limsup_, , . G, (u,) < Gg(u).

5. The I'-liminf inequality

The proof of thel"-liminf inequality is based on a measure-theoretic argument (Lgmmja A.4) which
allows considering separately the estimate for the bulk and surface energy. As it is not restrictive,
we will consider again the sequence of functiondjsdefined in the previous section. Moreover,

for every open subset of £2, the localized functionals will be defined as

/ Wa(eu)dx, u eV,
+00, u e Ll\ Vi,
we dx +/ ds, SBD?,
Gu, A) = /A\J(u) (et J(u)ﬂA¢(v) e (10)
+o0, ue L'\ SBD?

5.1 Estimate for the bulk energy and compactness

ForO< 4§ < llets’ > Obesuchthaf(r) > (1-8)r A8 . ForA C 2andn > OletA, ={x € A:
d(x,9A) > n}. First we will show that (ifz is sufficiently large) for every. € V, there exists
v € SBD (depending ord) such that|jv — u||;1 < |lu|lpoh,G,(u, A)/8 and

(1-6) / We(ew)) dr 4+ c8H (T (v) N Ay) < Gu(uy, A), (11)
2\J (V)

where the parameter> 0 depends only on the geometry of the mesh. From this estimate we will
prove both compactness and the lower inequality for the bulk energy.

The proof of @.) follows closely [13] and therefore we just give a short sketchffe) =
L—8t A8 andf2(t) = fo(hut)/ hy = (L— 8)t A (8'/hy). Then

Wa(e@)) = fu(We(e))) > f)(We(ew))).
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Using the functionf?, we can clearly distinguish the elastic and fracture regimes. Indeed,

5 e . A-=8We(ew)) if h,(1—-8)Wee)) <§,
T (W) = {a’/hn if ho(1—8)We(ew) >4,

According to this behaviour we introduce the (relatively closed)&ée/t/hich represents the smeared
fracture and is obtained by the intersectiondofvith all the trianglesl” whereh,, (1 — §) W¢(e(u))
> ¢&'. Finally, we defined) = A \ A% and using this notation we obtain the lower bound

Gn(u, A) > (1—8)/b We(e(u)) dx + 8'|A%|/ hy. (12)
Ap\J (u)

Let the functionw be defined as

p=Ju in A,bl,
0 elsewhere.

Obviouslyv € SBD? andJ (v) C BAE. Sincev = u in AZ, from ) we get easilyjv — ull;1 <
|| Looh G (u, A) /8, while inequality ) will be obtained by estimating thé-measure off (v)
in terms of|A2|/hn. Clearly J (v) is covered by the boundaries of the elemehtwhich form Aﬁ.
For a suitable constaat(independent of,,) we can write|T| = ch, H1(dT) for every triangleT .
Therefore we could get (11) froh (12) i N A| = ch, HY(3T N A). Unfortunately, this bound
is not always true: it may happen that an eleniBrdrosses the boundary df in such a way that
|T N Al is less tharch, H1(dT N A). This small difficulty can be easily overcome by considering
the estimate only in the sdt, and choosing sufficiently large, in such a way thaj, < ».

Now we can prove the liminf inequality for the bulk energy. gt € V,, converge tox in
L1(£2). For an open subset of £2, after passing to a subsequence (not relabelled) we can assume
without loss of generality that

liminf G, (u,, A) = IiT G,(u,, A) < +o0. (13)
n—+00

n——+00

Now, for§ > 0 letv, € SBD satisfy [1]). Since
lv, — un”Ll < upllLohn Gy (up, A)/S/

we getv, — u in L1(£2). Then for every open set C £2 by lower semicontinuity we obtain

1-=29) We(e(u)) dx < liminf (1= 9) / We(e(vy)) dx
Ag\J @) n—>+00 A\ ()
< liminf G, (u,, A).
+00

n—

Taking the supremum ag™ 0 we get the localized lower inequality for the bulk energy:

/ We(e(u)) dx < liminf G, (un, A). (14)
A\J (1) n—4o00
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Finally, we can prove compactness. ugte V, be a sequence with bounded energy. &er 0
letv, € SBD satisfying [I1) forA = §2, namely

(1-9) W (e(vn)) dx + c8H (I (Un) N 2y) < G(un) < C.
QV]\](UM)

By [9] it follows that v,, is precompact irLl(.Qn). Since||v, — u,| < h,C/8' the sequence,, is
precompact irLl(.Qn). As § is arbitrarily small andt,, is uniformly bounded irn.*°(£2) it follows
easily that,, is precompact ir.1(£2).

5.2 Slicing estimate for the fracture energy

Let us consider a sequenag € V, converging ta: in L1(£2) and satisfying). In this section
we have to prove that

liminf G, (u,, A) > y/ ¢ (v) ds.
Jw)NA

i
n—-+00
The first step will be the following: for every vector of the foim= ¢ /|¢|, where¢ € Z2, we have

iminf GG, ) >y [ el (15)
n— 400 JEW)NA

for a suitable choice of: < ¢ to be specified later. As a matter of fact, it will be sufficient to show
that

liminf [ f,(ulDgub)?) dx > y/ nel(v, )| ds.
+00 Ja JEWNA

Indeed, by Propositign Al2 we get
We(e)) = pule@)® = ulle@)l|® > ul(g, e)€) > = u|Deub |2

and then f,, being non-decreasing, we can write

Wa(eW)) = fu(WE(eW))) > fu(n|Deul|?).

As anticipated, in this section we will use the slicing technique and thus we will need some
more notation (see FigurE]s 6 zﬂ_‘]d 7). Eoe ¢/|¢| and¢ € Z2 letg’ e {&} be such thal(, £')| =
min; |(£, &)|. (The vectoi’ will replace& = in the slicing estimates.) Let us denoteby= (£) and
by Z = (¢') the subspaces generateddgandé’. Now, considering a squar@, obtained as the
union of two trianglesr;, of T;, (see Figur+:|5), we defiﬂé andb,% as the lengths of the sections
of Q,, in directions¢ and&’ respectively. Then|Z},| = hibicée wherece = |(&/, £1)]. Note that
the intersection of the set of knots, /+/2)Z2 and the subspacg will be a uniform grid of the
form b5Z.
At this point, for the sake of clarity, it is better to consider separately the easief eage (for
i =1,...,3)and the general cage# &;.
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h5 K5

s b

FIG.5. Some examples for the definitionlq% andbf,.

5.2.1 Slicing estimate foE = &. Let A be an open subset 6. Forz € Z let A%? be the
sectionfx € A :x =z +t§forr e R}. Forz bﬁZ we denote byﬁlff,'Z the closed stripe obtained

as the union of the (closed) squa@%Z which are contained id and which cover the sectiof <
as represented in Fig 6. As the safgz are pairwise disjoint (up to a set of measure zero) we
can write

/Afn(MIDgu,quz)dx> >, /As fo(u Deus ) d. (16)

zehﬁZ
For every striped’-* let us denote by, A5-* anddg A5-* the left and right sides ofté-%, i.e.
WAL ={x e A% ix =z +sE), IRAST ={x € AST x = (z+bf) + sE).

Let /5% and 5 denote the restrictions of} respectively toaLAi’z and aRAi*Z. By abuse of
notation, we will considet;* andr;** to be defined also on a one-dimensional lattice of the form
i (fori = 0,...,k, andk, depending ory) which represents the knots lying on the slices
aL,RAi*Z. Then, whenever possible, we will drop the dependenceamdz and we will denote by
Ii the valuels < (ih5).

Clearly on every stripeﬁlﬁz we can writeDguf, in terms of7;’* andrﬁ’z. As ¢ is aligned with
the edges of the elements, for every triangleve have either

£ Zfl—li i £ Vri“‘ﬁi i
Dzu> = ——= =D'l, or Dzu; = -——-—"=D'r,.
Uy ]’li n §Up /’li n
Thus
kn—1
/AE, Fa(ul Deul Py dx = > (T fu (| D 1 ?) + |T| fu (| D))
o i=0
kn—1

= > ((3bfee) B fa(ul D' |?) + (3b5ce) B fu (I D).
i=0
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Y &
ll-‘rl Qﬂ r;l+1
n
AbF
ap A5* IR AS* I
l;l; bi r;lz
§
g/ — EJ_
z z+ bﬁ Z

FiG. 6. Representation of the slicing for= &1; I/, denotess™ (ih5) etc.

Forne = hi/h,, andue = u/ne, we define the one-dimensional functional

kn—1 kn—1
n . n 1 '
Falln) = 3 I fuel D'y = meh, 3 f O ae D' ). (17)
i=0 i=0 'n
Then we can write
/Ag,z FauIDgug Py dx > (3bhce) Falln) + (3b5ce) Fa(ra).- (18)

Let /5 andr; be the (right and left) extensions &f° andrs™ to A (for everyz € b57)
defined byl (x + &) = I5%(x) for x € 8, A5% andrs (x — t&') = ri*(x) for x € dgAS=. If
x ¢ Ai*z foranyz € b5Z then we set; = r; = 0. Note that by definitio; andrs are piecewise
affine on the squarle,’Z and are possibly discontinuous anngAf;Z. Moreover we have the
following property.

LEMMA 5.1 The sequencé§ andr,f converge ta: in L1(A).

Proof. Let m, and M, be piecewise constant functions on the squa@ésdefined bym, =
min guﬁ and M, = max gui, for everyQi (note thatui takes scalar values). Léte N, and

n
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fori, j € Nwith |i| < k and|j| < k let us introduce the functiow,ﬁ’j(x) = ui(x + yi& +z;&)
wherey; = (i/k)h} andz; = (i/k)b5. Finally, we consider the function’* andm* given by

My (x) = max{wy/ (x)},  mj(x) = minfw};/ (x)}.
L] l,]

Clearlyw;’ — u® for everyi, j and soM* andm* converge ta:é as well. Forp > 0 letA, =

{(x e A:d(x,0A) > n}. As ui is piecewise affine and uniformly boundedIiif¥ it follows that for
everys > 0 there exist#, sufficiently large, such that for everye A, we have

My(x) = My(x) =8, my(x) < mu(x) +6.

Then forn sufficiently large we can writQM,’f - M,,||L1(A”) < 6]A,| and similarly formﬁ. Since
8 is arbitrary, by a diagonal argument it follows thef, andm,, converge ta:6 as well. In the set

A, we havem, < lﬁ < M,; thus we gelfl — uf, and the same fo«f. Forn ~\, 0 we deduce the
convergence iL1(A). O

Forw € Z let us denote byé’“’ the restriction oﬂf, to the sectiotd®*. By definitions;,” = lﬁ’z
for everyw € [z,z + bf’;). Hence we can write

Z+b5
biF,ﬂﬁ@):/ Fp(5™) dw
Z

and similarly forr; . Then from ) an8) we get

/Afn(MDsuilz)dx >y /Ag FouIDgugPydx > Y7 ((5bhes) Fay®) + (3bsce) Fa(ry)

zebiZ s
> (%CS) / Fn(lﬁ’w) dw + (%Cg) / Fn(”',f’w) dw.
z VA

By Lemm,lﬁ converges tai x4 in L1(R2) and thusls™™ converges taié-* x4 for Hl-a.e.
w € Z. Hence we get (see for instancel[10])

liminf F,(I57) > yre#(J (u57) N ASY),
n——+00

Clearly the same holds fmﬁ’w. From this inequality we conclude easily; indeed, by Fatou’s lemma
and Proposition A2 we get

Iiminf/ fo(u|Dgul %) dx > )/Cg/ Te#(J (") N ASY) dw
n—>400 |4 7

= y/ Te#(J W) N ASY) dw = y/ Te|(v, £)| ds.
) JE@)NA
REMARK 5.2 Note that it is not possible to use simply one-dimensional restriction of the
functional G,, as given by Fubini’s theorem. Such a choice would result in a wrong estimate of the
surface energy due to the fact that the corresponding one-dimensional functional would be defined
on a non-uniform lattice. In some sense the triangulation introduces a sort of non-local effect at
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the element scalk, which makes it impossible to consider directly the one-dimensional sections.
Indeed,G,, has been restricted first to the “smeared” secmjrf forz e bﬁZ and then, through the
functionsli andrﬁ, to the “real” sectiodé* for w € Z.

5.2.2 Slicing estimate fog # &. For& # & (in a similar way as fog = §&;) we define
forz € biZ the stripeA,%vZ obtained this time as the union of the quadrilatev@fsZ which are

contained im4 and which cover the sectioff %, as represented in Fig 7.The @ﬁsz are always
the union of two neighbouring triangles @f, which can form either a square or a parallelogram.
Clearly, we can write the analogue pf[16), i.e.

fa(pt| Dgul|?) dx > ~ fuulDgu|?) dx.
A . Ad

zebi

Now, the definition of a suitable section in directipis more delicate, as the latti¢k, //2)Z?
is not aligned withs. As a matter of fact, we need first to replace the m&siwith a meshT,
having knots in the Iattic(aé’bﬁZ) X (shf,Z). This passage is done by means of a local transform,
i.e. mapping the quadrilaterza@t.i‘Z to parallelogramst’z (see FigurE|7). In this way every knot
of T,, is mapped to a knot, of T,;, and each stripsszili*Z is mapped into a stripr;Z for which we
can defined, BS anddg BS* as we did in the previous section (see FidUre 7). Finally, preserving

the values at corresponding knots, the functim§1$defined on the mesH,) will be replaced bwﬁ
(defined on the mesh) given byvﬁ (x)) = ui(xn).

REMARK 5.3 We remark that this transform does not coincide with the linear mapping of
(hn/N2)Z2 into (é’bﬁZ) X (ghiZ). Such a (simpler) choice would not be right for our purposes.
Moreover, observe that the me$}) is not periodic with respect tbf,s. As shown in Figuré?, the
orientation of the elements inside the parallelogra?ﬁé is no longer uniform.

Now we can defineﬁ’Z andr,f’Z as the restrictions odiﬁ respectively toaLBfl’Z and BRBfl’Z.
The knots off; lying on 8L,RB§;Z define a uniform lattice: for simplicity of notation, we will write
it in the formihi fori = —k,, ..., k, (k, depending orr). As in the previous section, whenever
possible we will drop the dependence{andz and writel!, for l;”:’z(ihn). Finally, we will denote
again byl,% andr,f their (right and left) extensions. Note thét converges taé in L1(A) and thus
by Lemm the same holds ﬁSrandrﬁ.

Going back to the energy, the next step is to write the directional deringiué in terms off}
andry, . Unfortunately, in this canguf, has a more complicated form due to the fact ¢t not
aligned with the mesf;,. As ufl is linear we can write its derivativﬁguﬁ as a difference quotient
along the heighhi. Letd = |¢ - &'| be the projection of on&’. It is now necessary to distinguish
two cases (see Fig 7):@5 is a square we get in the left and right triangle respectively

hs Dgul, = 1P — [(1— 0)r! +611]
= U1y — Q= 0)(rl — 1) = hE DY (I, ),
hE Deub = [(L— 0) 4+ oritY] — ol
= i =) — Q=) = 1Y = B DY (L, 1)
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FIG. 7. Representation of the slicing for# &;.
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if Qi is not a square we get

e Deul = [(1— )L 07144 — 1
= @ = 1) + 00, = 1Y) = Dy (U, ),

hy Dewsy = ™ = [(1 = 0)r,, +61;]
= (=) + 00y, = 1) = b Dl ).
Now, we will write the energy in the stripeﬁli*Z considering separately the left and right
contributions, i.e.

kn—1

/AS_Z Fi@Dgu Py de = Y (T fu(l Dy (s r)1P) + T f (2] D s 7))
n i=—kp
ky,—1 ' '
= (b5ce) Y 3h5(fu(ul DL U, r)1?) + fu (el Digl, 1))

i=—ky
This formula suggests the definition of the functional

kn—1
Fallyor) = > (308 £ (I DL (s )P + 305 £ (I Dig (U, 1) 1P)).

i=—ky

Again, forw € Z we denote by5" the restriction of} to the sectiordé*. As 5" = 15 and
Y =yt forw € (z, z + by) we get

z+b§
[ puiparac=e [ B g
n Z
It follows that
/Afn(MIDguilz)dx > /As fn(M|DsM§,|2)dx>Cs/ZE§’w(lﬁ’w,FS’w)dw-
zehiZ "
In the rest of this section we will prove that

imi Swsw Swy &w §w

liminf F70 (5 rit) > yng(J () 0 ASY),

By a standard localization argument, we can assumeAhatis an intervall = (—k, k) and that
J &%) = {0}. Moreover, by an approximation argument, it is not restrictive to assume that
t A 1. Thus, under these conditions, it is sufficient to show that

liminf F5¥ (5%, r5%) > pe. (19)

i
n—-+400

The proof does not rely on the one of the previous section. Indeed, here each tEyrdegfends
both oni,, andr,, and thus it is not possible to consider separately the left and right contributions.
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As a matter of fact, the proof is based on a sui_table control of the difference bem{e(é,n )
and Dy (I, r,). For this reason, let us defieg = r, — I, (for —k, < i < k,) and denote by, its
piecewise linear interpolation. Cleary — 0 in L. Depending again on WhethQ’f,’z is a square
or not we have
R D, 1) — W DY (b, 1) = (L= O) (i — 15FY) — (1 — 0) (] — 1})
or
B Dig(ln ra) = D (I 1) = 0, = L) = 00, = 1),

which give respectively

(L= 0)(ett = €}) = hi (Dl rw) — Dy (ln. a)). (20)

0(e™ — el)) = h5(Di(Un. ra) — D (ln. 7). (21)
For convenience we introduce another intetal= (—k’, k') for 0 < k¥’ < k and defineg,, =
max{|e’,| : ihi € I'}. For a suitable indey, let y, = jnh,’% be such that = e(y,). Now we will
assume two different cases, according as limuinf, ¢, > 0 or liminf,_, ;o e, = O.
Let us assume first that limipf. &, = ¢’ > 0. Possibly passing to a subsequence, we can

assume that, — y for y € [—k/, k’]. Sincee, — 0, for§ > 0 andn sufficiently large there exists
an indexi, suchthaty — § < inhﬁ < yandle’| < é,/2. Thus from) anl) we can write

e =1
> BEIDL (. ) — Dig(Un, )| = (0 A (L= 0)) Y et — e |.
i=iy i=iy
Since the last term gives the variationegfin (inhfl, jnhi) we get
jn—1
> " BSIDL (. 1) — Dig(Un, )| = (0 A (L= 0))lely — et | > 2c@,,
i=iy
where the constanrtdepends only oA. Hence,
jn_l j"_l j"_l
208, < Y 5Dy (n.ra) — Dign. 1)l < Y W5IDL (U r) |+ Y WD )l

i=iy i=iy i=iy
Therefore one of the two terms on the right hand side is greater than or e@aal teet us assume
it is the first. Now we will show that

jn_l
> " BEIDY (. )| > ¢'E2/8, (22)

i=iy
wherec’ > 0 does not depend onands. Let L, : I — R be a piecewise affine function defined at
the knots'hi by

0 fori < iy,
L= L= 4 h5\DL (. r)| foriy +1<i < ji,

Ly fori > j,.
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Note thatLy = Y/ 5| DY, (1, r4)| > cé,. Thus

jn_l
> SHSIDL Uy ) > %/I|L;|2dy > c'&2/s. (23)
i=iy,

Now we can show that for sufficiently large we have

j)‘l_l
> 305 fu DL . 1)) = S (24)

i=iy

This inequality is obvious if, for some indeéxwe haveh,,MDi(ln, )2 > 1; indeed, asf (r) =
t A 1 we then have

Fa (I DY (Lyy 1)) = (1) h) f (| DY (s 7)) = 1/ by,

which gives) since: = i/ h,. Otherwise we havi, | D (I, ra)|? < 1 for every index and
then by [28),
jn_l jn—l
ST L £ DL o)D) = 3 S BEIDY (U r) 2 > 82 /5.
i=ip i=iy
Ase, — ¢ > 0, for § sufficiently small we get the required inequality.
In order to deducd (19) from (R4) it is sufficient to remark that, by symmetry, we can apply the

same reasoning for another indéxsuch thaty < i;hi <y+34.
Now, let us consider the case limjnf, ¢, = 0. Foré > 0 we define

5 l21/8, t] <8/ hn,
gn(t) = .
1/h,, otherwise.

It is easy to see thal (1) < f,(t?) + 1/8°. We recall that/ (ué?) = {0} and we denote byuf*]
its jump. Fors > O let j, > 0 be such thajnhi N 83. Then forn > 1 andy’ = /It we get

jn—1
FRR5s,re®y = Y (3h5 fa(u DL (s ra) 1P) + 395 fu (121 Dig (G, 7))
i:_jn
jn—1
> Y (3h5eh (W DY ra)) + 3h8h (14 Dig (I, 1)) — 36.
i:_jn
Now we distinguish between two cases. First we assume that for everyiiggdexjy, ..., j,—1
we havelp' D} (I, ra)| A |/ Dig (L, ra)| < 8/h. Then

jn_l
C . .
Friln® ™) = 5 D (gl D, ra)| + I | Dig 1)) = 36.

i==Jn
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Remembering thaDQ(l,,, rp) = DguS * and similarly forD! 2y, rp), We can write

FE2(s 67y > & Zh§|Dgu§Z|—38> /l(u 9)'ldy — 3s.

1—7]n

By the lower semicontinuity of the total variation (with respect to fietopology), we get
I|m|nf ESS(15%, 5%y > b)) — 38,
n——+00 )

which gives|[(ID) fos sufficiently small.
Now we assume that for some indewe havelu’ D} ORI Di RUn,ma)| > 8/ h. Then,gn
being Lipschitz continuous with constants] by (20) and@]l) we can erte

|85 (1' DY (L, 1)) — g5 (W Dl (L, 1))| < —m/Di(ln,rn)—u/D;(ln,rnn < ¢/ hE,

wherec depends o8, & and .. Then, assuming for instance that D (L, )| > 8/h we get
g (' Dig(ln, ra)) = 1/ hy, and so

W DL Uy, ) + g2 (1 Dy Uy, 1)) = 2/ hy — cén/ h5.
It follows that

380 (I DY U, 1) |?) + 3 gn IDY (s 7)) = 3152/ hy = cén/ ) = ne — '
As e, — 0 we get the right inequality.

5.3 Estimate of the surface energy

Now we can complete the proof of the-liminf inequality for the length energy. In the previous
two subsections we have shown tfjaf](15) holds true for every sequgred,, converging ta: in
L1(£2). Thus, for eveng = ¢/|¢| with ¢ € Z2, we have

F—liminfGn(u,A)>y/ ngl(v,§)|ds:y/ Ve ds, (25)
n—+00 JEWNA

Jw)NA
where

_fmelv. 8) ifx e JE (u),
Vet = {O otherwise.

For d. = ds andu(A) = I'-liminf,_, oG, (u, A), by Propositio A4 we are allowed to take in
@) the pointwise supremum of the famil¢ . Hence it will be sufficient to show that sup: (x) >
¢(v). Forx € J(u) letv = v(x) be the normal toJ (1) and lety (v) = 7;|{v, &)| for an index
i=1,...,3. Letut = uT(x) andu~ = u~(x) be the traces af on J(u). If (ut —u=,&) #0
thenx € J% (u) andyg, (x) = ng | (v, &)| = (v, &)|. Obviously Sup ¥e (x) = til(v, &)l = ¢(v).
On the contrary, ifut —u~, &) = 0 theny (x) = 0. In this case let us take a sequesgavhich
converges td; with £¥ £ & for everyk € N. Asu™ —u~ # 0 and the vector§* and¢; are
independent, it follows tha* — u—, £€) # 0. Thereforex € J£* () and e (x) = ng|(v, £)].

Sinceng = hf,/hn, by the definition of the heigmi itis clear thaty.x converges tay;, = 7; (see
also Figurg b). Then sup/: (x) > sup, ¥zr (x) = 7l (v, &) = ¢ (v).
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A. Some technical results
A.1 Basic facts about the spada D

In this appendix we recall briefly some results about the sg® of special functions with
bounded deformation. We will always assume tkeais an open, bounded, Lipschitz setli?.
A vector fieldu € L1(£2,R?) belongs toSBD($2) if the symmetrized distributional derivative
Eu = %(Du + Du') is a finite measure which can be written as

Eu=ew)l"+ @t —u") 0o vHL J ).

For simplicity we will denote bylx the Lebesgue measure anddbythe one-dimensional Hausdorff
measure. Wheg(u) € LP(22,R%?) for p > 1 andH1(J(u)) < +oo we will say thatu e
SBDP(£2).

The following compactness and lower semicontinuity result is provedin [5]; the extension to
anisotropic energies can be found|in][23].

PROPOSITIONA.1 Let¢ be a norm irR? andu; be a sequence ifiB D?(2) such that
/ We (e (i) d + HE i) + oo < C.
£2\J (ug)

Then there exist a subsequengeof u; and a functioru € SBD?($2) such thatu, — u in
LY(2,R?), e(u,) — e(u) in L1(£22, R?*?) and

¢(v)ds < liminf ¢ (v) ds.
J(u) nH00 T (up)

For¢ e S we denote byZ the subspacé ) generated by and byJ¢ (1) the subset of (u)
where(u™ —u~, &) # 0. Forz € Z let 252 be the sectiofix € 2 : x = z + & for r € R} and let
u-% be the (scalar) function

W) = (u(z +18), €).
The functions inSB D($2) have the following slicing properties![2].

PROPOSITIONA.2 Letu € SBD(£2). Fora.e£ e S* and for a.ez € Z the functionu?-? belongs
to SBV (£25:%). Moreover, for every open s@& C £2 we have

/HO(J(ug’Z) N B%%)dz =/ [(v, £)| ds.
4 JEw)NB

The I'-limsup inequality is based on the following density result, which follows from [12] and
Reshentyak’s theorem (see eld. [3, Theorem 2.39]). (It is enough to check that the seguence

defined in[12] satisfies, H1L J (ux) — vHIL J () in the sense of measures.)

PROPOSITIONA.3 Let ¢ be a norm inR2. Then for everyu € SBD?(2) N L™ (82, R?) there
exists a sequence, in SBD2(£2) such thatJ(u,) is a finite union of disjoint segments,, €
Wk-20(2, R?) (for k arbitrarily large),|lus oo < ||1]loo @and

up —u iINLYR2,R?), e(u,) — e) inL3(2,R>*?),

lim / ¢(v)ds < ¢(v)ds.
J(un) J(u)

n——+00
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A.2 The supremum of a family of measures
This measure-theoretic result, proved e.gLin [8], is used for tieinf inequality.

PrROPOSITIONA.4 Denote byA(£2) the collection of open sets containediin Let 1 : A(£2) —
[0, +00) be superadditive on open sets with disjoint compact closures ahdkt positive Borel
measure irf2. Lety; be a family of positive Borel functions such that

/ Yidd < u(A) forall A e A(£2).
A
Then

/ supy;(x)da < w(A) forall A € A(R2).
A i

Acknowledgements

This work has been partially supported by Istituto Nazionale di Alta Matematica through the grant
“Mathematical Challenges in Nanomechanics”.

REFERENCES

1. ALICANDRO, R., FOCARDI, M., & GELLI, M. S. Finite-difference approximation of energies in fracture
mechanicsAnn. Scuola Norm. Sup. Pisa Cl. Sci. 29(2000), 671-709.  Zbl 1072.49020 MR 1817714
2. AMBROSIO, L., CoscCIA, A., & DAL MAsSO, G. Fine properties of functions with bounded deformation.
Arch. Ration. Mech. Anall39(1997), 201-238.| Zbl 0890.49019 MR 1480240
3. AMBROSIO, L., Fusco, N., & PALLARA, D. Functions of Bounded Variation and Free Discontinuity
Problems Oxford Math. Monogr., Oxford Univ. Press, New York (2000). Zbl 0890.49019 MR 1857292
4. BAZANT, Z. P.,&LIN, F. B. Nonlocal smeared cracking model for concrete fractuigtructural Engrg.
114(1988), 2493-2510.
5. BELLETTINI, G., CoscCIA, A., & DAL MAsO, G. Compactness and lower semicontinuity properties in
SBD(£2). Math. Z.228(1998), 337-351.| Zbl 0914.46007 MR 1630504
6. BOURDIN, B., & CHAMBOLLE, A. Implementation of an adaptive finite-element approximation of the
Mumford—Shah functionaNumer. Math85 (2000), 609-646. Zbl 0961.65062 MR 1771782
7. BOURDIN, B., FRANCFORT, G. A., & MARIGO, J. J. Numerical experiments in revisited brittle fracture.
J. Mech. Phys. Solid48 (2000), 797—826. Zbl 0995.74057 MR 1745759
8. BRAIDES, A. Approximation of Free-Discontinuity Problemisecture Notes in Math. 1694, Springer,
Berlin (1998). | Zbl 0909.49001 MR 1651773
9. BRAIDES, A., & DAL MAsO, G. Non-local approximation of the Mumford—Shah functiorzdlc. Var.
Partial Differential Equations$ (1997), 293-322., Zbl 0873.49009 MR 1450713
10. GHAMBOLLE, A. Image segmentation by variational methods: Mumford and Shah functional and the
discrete approximationSIAM J. Appl. Math55 (1995), 827-863. Zbl 0830.49015 MR 1331589
11. CHAMBOLLE, A. Adensity resultin two-dimensional linearized elasticity, and applicatiarch. Ration.
Mech. Anal167(2003), 211-233.] Zbl 1030.74007 MR 1978582
12. GHAMBOLLE, A. An approximation result for special functions with bounded deformatiorMath.
Pures Appl. (983 (2004), 929-954.  Zbl pre02118455 MR 2074682
13. CHAMBOLLE, A., & DAL MAso, G. Discrete approximation of the Mumford—Shah functional in
dimension twoM2AN Math. Model. Numer. Ana33 (1999), 651-672.] Zbl 0943.49011 MR 1726478


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1072.49020&format=complete
http://www.ams.org/mathscinet-getitem?mr=1817714
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0890.49019&format=complete
http://www.ams.org/mathscinet-getitem?mr=1480240
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0890.49019&format=complete
http://www.ams.org/mathscinet-getitem?mr=1857292
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0914.46007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1630504
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0961.65062&format=complete
http://www.ams.org/mathscinet-getitem?mr=1771782
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0995.74057&format=complete
http://www.ams.org/mathscinet-getitem?mr=1745759
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0909.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1651773
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0873.49009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1450713
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0830.49015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1331589
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1030.74007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1978582
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre02118455&format=complete
http://www.ams.org/mathscinet-getitem?mr=2074682
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0943.49011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1726478

330 M. NEGRI

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

CORTESANI, G., & TOADER, R. A density result in SBV with respect to non-isotropic energies.
Nonlinear Anal.38 (1999), 585-604.] Zbl 0939.49024 MR 1709390

DaL MAso, G. An Introduction tolI"-ConvergenceProgr. Nonlinear Differential Equations Appl. 8,
Birkhauser, Boston, MA (1993), Zbl 0816.49001 MR 1201152

DaL MAsO, G., FRRANCFORT, G. A., & TOADER, R. Quasistatic crack growth in nonlinear elasticity.
Arch. Ration. Mech. Anall76(2005), 165-225.| Zbl 1064.74150 MR 2186036

FRANCFORT, G. A., & MARIGO, J. J. Reuvisiting brittle fracture as an energy minimization problem.
J. Mech. Phys. Solidé6 (1998), 1319-1342. Zbl 0966.74060 MR 1633984

GRrASSL, P., & JRASEK, M. On mesh bias of local damage models for concrétacture Mechanics of
Concrete Structure~FRAMCOS-5, Vail, CO, 2004), 255-262.

JRASEK, M. Nonlocal models for damage and fracture: comparison of approakctiemat. J. Solids
Structures35 (1998), 4133-4145/ Zbl 0930.74054 MR 1638122

LUssARD|, L., & NEGRI, M. Convergence of non-local finite element energies for fracture mechanics.
Numer. Funct. Anal. Optin28 (2007), 83—109.

MOSLER, J., & MESCHKE, G. Embedded crack vs. smeared crack models: a comparison of elementwise
discontinuous crack path approaches with emphasis on mestCoiagaut. Methods Appl. Mech. Engrg.
193(2004), 3351-3375/ Zbl 1060.74606

NEGRI, M. The anisotropy introduced by the mesh in the finite element approximation of the Mumford—
Shah functionalNumer. Funct. Anal. Optin20 (1999), 957-982.] Zbl 0953.49024 MR 1728172

NEGRI, M. A finite element approximation of the Griffith’s model in fracture mechariitaner. Math.
95(2003), 653—-687.] Zbl 1068.74060 MR 2013123

NEGRI, M. A non-local approximation of free discontinuity problemsS®V and SBD. Calc. Var.
Partial Differential Equation®5 (2006), 33—62./ Zbl pre05009624 MR 2183354

QLIVER, J. A consistent characteristic length for smeared cracking mddeld. Numer. Methods Engrg.
28(1989), 461-474.| Zbl 0676.73066

ORTIZ, M., & GIANNAKOPOULOS, K. Crack propagation in monolithic ceramics under mixed mode
loading.Internat. J. Fracture44 (1990), 233—-258.

RasHID, Y. R. Analysis of prestressed concrete pressure vessatdear Engrg. Desigii (1968), 334—
344.

WEIHE, S., KROPLIN, B., & DE BORsT, R. Classification of smeared crack models based on material
and structural propertiemternat. J. Solids Structured5 (1998), 1289-1308. Zbl 0932.74005


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0939.49024&format=complete
http://www.ams.org/mathscinet-getitem?mr=1709990
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0816.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1201152
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1064.74150&format=complete
http://www.ams.org/mathscinet-getitem?mr=2186036
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0966.74060&format=complete
http://www.ams.org/mathscinet-getitem?mr=1633984
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0930.74054&format=complete
http://www.ams.org/mathscinet-getitem?mr=1638122
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1060.74606&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0953.49024&format=complete
http://www.ams.org/mathscinet-getitem?mr=1728172
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1068.74080&format=complete
http://www.ams.org/mathscinet-getitem?mr=2013123
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre05009624&format=complete
http://www.ams.org/mathscinet-getitem?mr=2183854
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0676.73066&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0932.74005&format=complete

	Introduction
	Anisotropic limit for structured triangulations
	Definition and properties of the mesh bias 

	The -limsup inequality
	The -liminf inequality
	Estimate for the bulk energy and compactness
	Slicing estimate for the fracture energy
	Slicing estimate for =_i
	Slicing estimate for =_i

	Estimate of the surface energy

	Some technical results
	Basic facts about the space SBD
	The supremum of a family of measures


