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A Bernoulli free-boundary problem is one of finding domains in the plane on which a harmonic
function simultaneously satisfies linear homogeneous Dirichlet and inhomogeneous Neumann
boundary conditions. For a general class of Bernoulli problems, we prove that any free boundary,
possibly with many singularities, is necessarily the graph of a function. Also investigated are
convexity and monotonicity properties of free boundaries. In addition, we obtain some optimal
estimates on the gradient of the harmonic function in question.

1. Introduction

In this paper we investigate properties of solutions of Bernoulli free-boundary problems. The
foundations for the study of this type of geometric problems, a specific example of which is
the classical Stokes-wave problem in hydrodynamics, were laid out in a substantial paper of
Shargorodsky and Tolandl[8].

A Bernoulli free-boundary probleifg] is to find a locally rectifiable curve := {(u(s), v(s)) :
s € R} inthe (X, Y)-plane, where

s (u(s) —s,v(s)) is 2r-periodic (1.1a)

so that there exists a functighharmonic in the domais2 belowS and continuous of2, such that

¥ is 2r-periodic inX, (1.1b)
VY (X,Y) — (0,1) asY — —oo, uniformlyin X, (1.1¢)
v =0 onsS, (1.1d)
oy

o h(Y) almost everywhere of. (1.1€)

Heren denotes the outward normal 1@ at points ofS, and# is a given continuous nonnegative
function. Since formally the tangential derivativeypis zero almost everywhere ¢h the Neumann
condition has an equivalent reformulation as

IVy|? =A(Y) almost everywhere of, (1.1e)

wherex = h2. This condition is to be satisfied in a weak sense related to the theory of Hardy
spaces (see 8, 12] for details). The object of investigation here will be the system of equations
(1.1a)—(1.1e). Since the cungis not prescribed a priori, it is called a free boundary.
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The motivating example for the study of Bernoulli problems occurs in the theory of steady
hydrodynamic waves, whever) = —2gr for some positive constangt In this context, the free
boundary represents the profile of a Stokes wave, i.e. a steady periodic irrotational water wave of
infinite depth, with a free surface under gravity and without surface tensiori (Seeyf1i8]a stream
function andy, , —v,) is a steady velocity field. Thep (1]1d) and (1.1e) meandhaia streamline
at which the pressure in the flow is a constant. In hydrodynamics, a poiwdrere the velocity is
zero is called a stagnation point.

For a solution'S, v) of (1.1)), a point(X, Y) on S is called astagnation pointf A(Y) = 0. The
setSys of stagnation points is closed and has zero measufe(eae([8]), and it is only at stagnation
points that the free boundary need not be smooth. Inde&d s is a union of smooth arcs, whose
precise degree of regularity depends on that (fee[[5| 12]). The nature of the singularities of free
boundaries at stagnation points was investigated in [12]. The conclusion was that in many situations
(but not always) a free boundary which is symmetric with respect to a vertical line passing through
an isolated singular point must have a corner at that point, whose size depends on the nonlinearity
That was an extension of the result proved.in_[2, 6] that symmetric Stokes waves of extreme form
have a corner of 120

In this paper we investigate some geometric properties of free boundaries, whether singular or
not. Note that a priorS might have a very complicated shape, especially if there are stagnation
points; in particular, it is not assumed a priori tifats the graph of a function. We also establish
some optimal estimates on the gradient of the harmonic fungtidrnere follows a brief description
of the main results obtained.

A preliminary observation is that there exists with 4(Yp) = 1 such thatS intersects the
horizontal lineY = Yp; whent is a strictly decreasing function, suchlgis unique. Some of our
results refer to the shape of the part®fvhich lies either above or below the lie = Yp. Note
thatSo := {(X, Yo) : X € R} andyo(X, Y) := Y — Yp provide a solution of (I]1), which we call a
trivial solution.

Then, under the assumption that fogs decreasing and concave, we show that

e S must be globally the graph of a function, irrespective of the number of stagnation poifits on

This was previously knowri_[8] only when there were at most countably many stagnation points
on S, although it should be said that the resultlin [8] is different and more general in some other
respects, as we explain in detail later. The proof here is partly based on a differential inequality
from [8], but avoids some rather intricate estimates needed there. Instead, the remaining part is
based on geometrical considerations inspired by the argument of Spielvbgel [9], who was the first
to prove this result for the case of smooth solutions of the water-wave problem. (However, it is our
impression that the argument [ [9] is vague and lacks sufficient rigor, and in fact the claim in the
penultimate paragraph ofl[9, Proof of Theorem 3b] is incorrect. Furthermore, in the case considered
here there are significant additional difficulties due to the presence of the stagnation points.)

We also generalize this result by showing that, if the above assumptibiisaelaxed to a local
one, then, roughly speaking,

e acurveS with stagnation points may fail to be a graph only at a positive distance from tiSg/set

Suppose again that Idgis globally decreasing and concave, anddet {(X, n(X)) : X € R},
wheren : R — R is continuous ands2-periodic. We prove that

e 7 is a convex function ok on any interval on whicly < Yg, whereh(Yp) = 1,
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o if X1, Xo are such that’(X1) = n'(X2) = 0 andn/(X) # 0 for all X € (X1, X»), then

IV (X1, n(X))| + IV (X2, n(X2)| < 2. 1.2)

The convexity result is new even for the water-wave problem. Surprisingly perhaps, the estimate
(L.2) was noted in passing by Toland [10, (x), p. 15] for a restricted class of solutions of the water-
wave problem, but here we emphasize its generality and its independencé,feord we give a
different and more transparent proof. Note that](1.2) implies|¥igt| < 2 everywhere orf, and

hence by the maximum principle

V| <2 everywherein?. 1.3)

We also give some new results in the case wherklsgdecreasing andonvex For a curveS
which is the graph of a function,

e if X3, X5 are such thay’(X1) = n'(X2) = 0 andn’/(X) # 0 for all X € (X1, X»), then
VY (X1, n(X)| + VY (X2, n(X2)| = 2, (1.4)

e 1 does not have any strict local minima on any interval on whjich Yo, whereh(Yg) = 1.

A family of explicit solutions of[(1.]L) is used to show that the estimdteg (1.2}-(1.4) are sharp.

All the preceding results are derived from corresponding results about solutions of the nonlinear
pseudo-differential equatioh (2.5), an equation first deriveldin [8], the study of which is equivalent to
that of [1.]) up to the fact that a certain curve in the plane is non-self-intersecting. A new sufficient
condition for this non-self-intersection property is also given.

2. Bernoulli free boundaries

We start by collecting notation and recalling some notions and classical results from harmonic
analysis in the unit disc (sele [3, 4] for more details).

We denote bngﬁ, 0 < p < oo, the space of 2-periodic locally p"-power summable real-
valued functions, and by.3> the space of 2-periodic essentially bounded real-valued functions.
Forl< p < oo, let Wzl;f be the space of absolutely continuous-Reriodic functions: with weak
first derivatives:’ € Lgn. Foranyu e L} _, the conjugate functiofix is defined almost everywhere
as a Cauchy principal value integral

1 /" 1
Cu(x) = —f cotl =(x —y) Ju(y)dy.
27 ), 2
For anyp € (1, 00), C mapngn into itself. C does not maFL%ﬂ into itself but, ifu € L%n, then
Cu e LY forall p € (0,1). LetH be the real Hardy space of functiomsz L3 with Cu € L3,
and let aIsc)Hﬂlé1 ={ue Wzl;rl u' € H).

Let D denote the open unit disc centred at 0 in the complex plane. For a holomorphic function
U:D— C,letU,(t) = U@re') fort € Randr € (0,1). For 0 < p < oo, the Hardy clasﬁ-{é
is the set of holomorphic functions : D — C such that sup g 1, ||U,||L;2;ﬂ <oo. IfU € H(’é,
0 < p < oo, thenU*(¢) := lim, »1 U, (¢) is well defined almost everywhere, satisflg$s L’Z’n,
and loglU*| e L} if U #0.
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We now recall from([8] how the study of the free-boundary problem]| (1.1) is equivalent to the
study of certain nonlinear pseudo-differential equations for periodic functions of one real variable.

Throughout the paper, the continuous functiéna : I — [0, co) are related by: = v/ on1,
where either

I=R and h > 0onR, (2.1)
or
I =(—o00,w], weR, and h(w)=0, h > 0on(—oo,w). (2.2)
Let
Ip:={rel:h(r) >0} (2.3)
We also assume that
heCpi(lo) forsomex € (0, 1). (2.4)

When [2.1) holds, there can be no stagnation pointS.on

When [2.2) holds, stagnation points, if they exist, must be located on th& liaew, and are
necessarily points of maximum height 8n There is no loss of generality in assuming throughout
thatw = 0. Indeed, ifw # 0, then one can repladeby i, whereh, () = h(r + w), S by
S = {(Up(s), vu(s5)) 1 s € R}, whereuy,(s) = u(s), vy,(s) = v(s) — w, andy by ¥, given by
Yo(X,Y) = ¥ (X, Y + w) to get a new solution of (1.1).

Any solution(S, v) of ) gives rise to a functiowm € Hﬁl satisfying

Aw){w?+ (1+Cw'?} =1 almost everywhere, (2.5a)
and with the property that, W < H(lc is such that
W*=w'+i(1+Cuw'), (2.5b)

then
1/We Hf{f. (2.5¢c)

The curveS can then be expressed in parametric form as
S={(—-(y +t+Cw(),w®))::t eR} (2.6)
wherey € R is a constant. Hence
t = (—(t + Cw(t)), w(t)) isinjective onR. 2.7)

Let
N ={teR:h(w()) =0}. (2.8)

Then the set of stagnation points &ns given by
SN ={(=(y +t+Cw®), w®) : t € N'}.

In what follows, the elements @f” will also be referred to as stagnation points. Theéas closed
and has zero measure.
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Conversely, suppose thate H]}él satisfies) and th.7) holds. L®be defined b6),
wherey € R, and let2 be the domain below. Then there exists a conformal mappiwagof 2
ontoC_ such that, ify = Imw, then(S, ) is a solution of [(L]1).

Following [8], we now derive further properties of solutionsZ.S)nIE Hﬂlél satisfies),
then ¥V h(w) € L%ﬂ andh(w) € L5 . One can defines2-periodic functions, ¥ by

T = —logh(w), (2.93a)
= —Cr, (2.9b)
wherert, ¥ € Lgn forall p € (1, 00), andz, ¢ have zero mean. It also follows that

h(w)w' = sin®, (2.10a)
h(w)(1+ Cw') = cosv. (2.10b)
Observe now fronf (2.10) that,&f represents a free boundary parametrized by (2.6), then, for almost

allt € R, —9(¢) represents the angle which the tangen§ tat the point(—(y + ¢ + Cw(z)), w(?))
makes with the horizontal.

PROPOSITION2.1 Let(S, ¥) be a non-trivial solution of (1]1). Lef. := maxXv(s) : s € R} and
Y; ;= min{v(s) : s € R}. Thenh(Y,) < 1 andh(Y;) > 1.

COROLLARY 2.2 Inthe notation of Propositifn 2.1, there exigis= (Y;, Y,) such thak(Yp) = 1.
Proof of Propositiofi Z]1.Note first that, by([8, Proof of Theorem 2.7], there exists R such that

Y(X,Y)—Y—d—0 asY — —oo, uniformly in X. (2.11)

Also, since ) holds[ [12, Theorem 2.3] shows that Sxs is a union ofclzo’g‘ curves,y €
C2%(2U(S\ Sy)) and

loc

9
a—w =h(Y) everywhere o& \ Syr. (2.12)
n

Consider now the functiof in £2 given by
EX,Y) =vy(X,Y)—Y forall(X,Y) e £2.

Then¢ is a bounded harmonic function i2. Sinceyy = 0 on S, it follows that—Y, < & < —-Y;
onS and hence, by the maximum principleY. < & < —Y; in 2.

Let X. and X, be such thatX,., ¥,) € S and(X,, ¥;) € S. Then& attains its extrema it at
these points. By the Hopf boundary-point lemma,

0<&§ X, Y)=v,(X:, Y1) — 1,
and hencé:(Y;) > 1 by (2.12). IfSys = ¢, then similarly
0> %_y(Xm Yc) = Wy(Xc, Yc) - 11

andh(Y.) < 1. If Sy # ¢, then[[2.2) holds, and hené¢Y.) = 0 < 1. This completes the proof of
Propositiof 2.]. a
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3. The main results

Since solutionsv of (2.5) give rise to solution&S, ) of (L.1) only if (2.7) holds, it is of interest to
exhibit situations wherj (2.7) follows automatically from (2.5). Under the assumption that

h is strictly decreasing and ldgis concave or, (3.2)

it was proved in[[8, Theorem 3.5] that solutiomsof (2.5) for which /' is at most denumerable
satisfy
V(1) € (—m/2,7/2) foralmostallr € R, 3.2)

and hence
1+Cw'(t) >0 foralmostall € R. (3.3)

By (2.10), [3.3) ensures that (2.7) holds and, moreaveés,globally a graph, in the sense that there
exists a continuouss2-periodic functiory : R — R such that

S ={(X,n(X)): X e R}. (3.4)

Here we prove that, under the assumption](3.1), free boundaries must necessarily be global
graphs, irrespective of the number of stagnation points.

THEOREM3.1 Suppose thdt satisfies[(3]1), and I&S, /) be a solution of (1]1). TheS& is of the
form (3.4) for some continuous2periodic function : R — R.

Theorenj 3.1 is an immediate consequence of the following resuilt.

THEOREM3.2 Suppose thdt satisfies[(3]1). Letv be a solution of[(Z2]5) such thdt (2.7) holds.
Thenw satisfies[(33).

The key point here is that the assumptions of Theofenjs 3. ahd 3.2 admit the possibility that the
set of stagnation points might be nondenumerable. This was not the case in [8, Theorem 3.5], where
the denumerability oV was crucial. On the other hand, [fi [8] the fact that](2.7) holds was not an
assumption, but a conclusion. Therefore Thedrerh 3.2 is neither weaker nor stronger than, but rather
complementary to[ [8, Theorem 3.5].

The next result is a local version of Theorgm|3.2, for solutiensf (2.5) for which A" # ¢,
where [2:) holds witlw = 0. The aim is to determine intervalslk\ A" on which

1+Cw' > 0. (3.5
THEOREM 3.3 Suppose that there existe (—oo, 0) such that
h is strictly decreasing and ldgis concave ond, 0). (3.6)

Let w be a solution of[(2]5) which satisfigs (2.7) and for whi¢h# ¢. Then there existg € [$, 0),
which depends only on miR(w), such that, for any, b € N with (a, b)) Cc R\ N, the following
hold.

(i) If w() €[B,0) forallz € (a, b), then[3.5) holds everywhere @, b).
(i) If d € (a,b) is such thatw(d) = B andw(t) € [B,0) for all t € [d, b), then [3.5) holds
everywhere ond, b).
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(iii)y If ¢ € (a,b) is such thatw(c) = B andw(r) € [B,0) for all 1 € (a, c], then [3.}) holds
everywhere ofia, c].

Theorenj 3B means that for any solution[of [1.1) there exists a horizontal strip, determined by
the linesY = g andY = 0, such that any arc & \ Sys contained in this strip and having end-points
on either of these two lines, but at least one end-point on theYliae O, is necessarily the graph
of a function. In particular, ifS has infinitely many stagnation points on a period, then the local
rectifiability of S shows that, among the countably many arcs §fSxs with endpoints inSyy, all
but finitely many on a period &f are contained in such a strip, and therefore are necessarily graphs.
The next result can be used to deduce another geometric property of free boundaries.

PrROPOSITION3.4 Suppose that satisfies[(3]1) anad satisfies[(2]5). Let1, so with s1 < s2 be
such thati(w(s1)) = h(w(s2)) = 1 andh(w(s)) > 1 foralls € (s1, s2). Then?’ > 0 on(sy, 52).

Indeed, forS of the form [3.4), lety € (Y}, Y.) be such that(Yo) = 1, given by Corollary
[2.2. Propositiof 3]4 shows that,Xf1, X» with X1 < X» are such that(X1) = n(X2) = Yp and
n(X) < Ypforall X € (X1, X»), thenp is a convex function on the intervaX, X»). A much more
difficult problem would be to exhibit situations in which any smooth ar§ @ining two stagnation
points is the graph of a convex function; the only result currently known is [7], that there exist such
solutions wherk(r) = c(—r)*, wherec > 0 anda € [1/2, o0).

The following result provides bounds for solutions|of {2.5) wten|(3.1) holds.

THEOREM3.5 Suppose thét satisfies[(3]1), and let be a solution of(2]5) for whicl (3.2) holds.
Letrs, to be such thatry, ;) C R\ N.
(i) Suppose that;, 1, € R\ N, w'(t1) = w'(z) = 0, and either 0 w’ > 0 on (1, t2), Or
0#£w' <0on(, ). Then

h(w(11)) + h(w(2)) < 2. (3.7)
(i) Suppose that; ¢ R\ N, € N, w'(t1) =0, 0% w’ > 0on(z, t2). Thenh(w(ty)) < 2.
(iii) Supposethat; e M, tp e R\ N, w'(t1) =0, 0% w’ < 0o0n(1, t2). Thenk(w(r)) < 2.
Note that in Theorefn 3|5 the requirement that|(3.2) holds is an extremely weak restriction when
h is decreasing and ldgis concave, since by [8, Theorem 3.5] and Theofem 3.2 it is satisfied

automatically for all solutions of (2.5) with at most countably many stagnation points, as well as
for those, with any number of stagnation points, which correspond to free boundaries.

COROLLARY 3.6 Suppose that satisfies[(3]1), and lab be a solution of[(2]5) for whiclf (3,2)
holds. Them(w(t)) < 2forallr € R.
When interpreted in terms of free boundaries, Theofem 3.5 and Corpllgry 3.6 lead to the
estimateq(1]2) an@ (1.3).
We now give some new results in the case wiier (2.1) holds and
h is strictly decreasing and ldgis convex onR. (3.8)

The following result is an analogue of Theorgm| 3.5 wijen| (3.8) holds instepd pf (3.1).

THEOREM3.7 Suppose thdt satisfies[(3.]8), and let be a solution of[(2]5) for whiclj (3.2) holds.
Let 11, o with 11 < £ be such thaw’(11) = w'(r2) = 0, and either O w’ > 0 on (1, t2), Or
0#£w <0on(, 12). Then

h(w(t1)) + h(w(t2)) = 2. (3.9)
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COROLLARY 3.8 Suppose that satisfies[(3.J8), and lab be a solution of[(2]5) for whicH (3.2)
holds. Letsy, s with s1 < s2 be such that(w(s1)) = h(w(s2)) = 1 andh(w(s)) < 1 for all
s € (s1, s2). Thenw does not have any strict local minima(s, s2).

In terms of free boundaries, Theorgm|3.7 leads to the estifnate (1.4), while Cdrollary 3.8 has an
obvious interpretation.

The next result gives a sufficient condition for solutions]of|(2.5) to give rise to free boundaries
whenh satisfies[(3.8).

THEOREM 3.9 Suppose thdtsatisfies[(3.]8), and let be a solution of (2]5) such thatw(r)) < 2
forall + € R. Then [3.2) holds, and hence so ddes|(3.3).

We conclude this section by showing, by means of a family of examples of explicit solutions
of (2.3), that the results of Theorém 3.5, Corollary] 3.6 and Thepren 3.7 are sharp, at least for non-
singular solutions. The examples below are obtained by slightly modifying thosk in [8, Subsection
2.9.1]. Letr : R — (0, o) be given byr(r) = e=2 forall r € R, and leth := +/A. For0< b < 1,
let

1
wp (1) = 3 10g(L + b2+ 2bcost) forallt e R. (3.10)

Thenw; is a non-singular solution df (3.5). Since lbgs decreasing and affine @& # satisfies the
assumptions of both Theoreins]3.5 &nd 3.7. Note that, foralR,

AMwp (1) = 1+ b% + 2b cost, (3.11)
andw, (r) = 0 if and only ifr = nx for somen € Z. Itis immediate froml) that, for all € Z,
h(wp(nm)) + h(wp((n + D)) = 2,
hence the results of Theorems]3.5 pnd 3.7 are sharp. Also, since
maxh(wy(t)):t e R}y =1+b forallbe][0,1),

it follows that the result of Corollary 3.6 is also sharp.

4. Proofs of the main results

We now give the proofs of the results in the previous section. We start with general considerations
which are relevant for all the proofs.

If J is any open interval containedt\ \ then, since[(2]4) holds, it follows frormn [12, Theorem
2.1] thatw € C2%(J). Itis proved in[8] that

loc

/ W (w@) ,
(Clogh(w))' (1) — h(w (D) Cw (1)
_ 1 /” logh(w(®)) + (W' (w@)/h(w®)))(w(s) —w(t)) —logh(w(s)) d
= — - - s.  (4.1)
i | P ¢

The formula[(4.]1), which is just an identity based on the definition of a conjugate function, is valid
for all # € J under the present regularity assumptionsiandw. SinceJ C R \ A was arbitrary,
(4.7) is valid everywhere oR \ NV.



BERNOULLI FREEBOUNDARY PROBLEMS 375

One can now see that,if is a solution of), thent € Cl’“(R \ N) and, foralls ¢ R\ N,

loc

, h (w(t)) [ cosd(t) . .
B (1) — o) (h(w(t)) - 1) >0 ifloghis concave (4.2)
and ,
() — b W) (COS@(I) - 1) <0 iflogh is convex (4.3)
h(w(@)) \ h(w(?))

The estimate[ (4]2) is one of the key ingredients in the prodfiof [8, Theorem 3.5]. Se2 also [11]
for smooth solutions of the water-wave problem.

Proof of Propositiof 3 4.1t follows from (3.1) that:’ < 0 on/o. Using also the fact that cé(s) <
h(w(s)) for all s € (s1, s2), it is immediate from[(4]2) that’ > 0 on(sy, s2). O

At the heart of the proofs of Theorems|d.5,|3.7 3.9 lies the combinatipn pf[(4.2)/(4.3) with the
following new algebraic identity satisfied by solutions|of {2.5) everywherR qnV:

2
%(h (Zw) — hw) COS’?) = h(w)h' (w)w’ — h'(w)w’ cos? + h(w) siny ¥’
= w/hz(w){ﬁ/ W w) (cosﬁ B 1> } 4.4
h(w) \ h(w)

Proof of Theorerh 3|5Suppose first that we are in the situation (i), and wit @' > 0 on(z1, 12).
It follows from (4.4) using[(4.R) that

h2(w(1))

— h(w(t)) cosv(tr) isincreasing ofity, t2). (4.5)
Sinced € (—n/2, 7/2), it follows that (11) = 9 (2) = 0. Hence we deduce frorh (4.5) that

h2(w(t1)) h2(w(t2))

5 —h(w(r)) < 5 — h(w(t2)),

or, equivalently,
(h(w(t1)) — h(w(2)))(h(w(t1)) + h(w(r2)) — 2) < 0. (4.6)
But w(r1) < w(r) by assumption, and hence, sinicés strictly decreasingi(w(t1)) > h(w(t2)).
The required conclusion follows frorp (4.6).
Suppose now that we are in the situation (i), but witkQuv’ < 0 on (71, ). Instead of[(4.5),
we now have that

h2(w(t))

— h(w(t)) cosv (¢r) is decreasing of¥y, r2), 4.7)

and the required conclusion follows by an argument similar to that of the previous case.
Suppose now that we are in the situation (ii). It follows as above that, forall, t2),
W2 (w(t1)) h2(w (1))
o~ hw(m) <
The required conclusion is obtained by passing to the limif in (4.8) @51, using the fact that
h(w(t)) — 0ast  tp, Sincer, € N.
The analysis in the situation (iii) is entirely analogous. This completes the proof of Theorem
[3.5. O

— h(w(t)) cosd (1). (4.8)



376 E. VARVARUCA

Proof of Corollary[3.6. Recall thatr has zero mean, whete= —logh(w). If h(w) = ¢, where
¢ > 0is a constant, then necessarily- 1. Suppose thdt(w) # c. Let#; € R be such that

w(ty) = minfw(@) : t € R} (4.9)

Thenw'(11) = 0 andh(w(t1)) > 1. Sinceh is decreasing, it suffices to prove thgiw(r1)) < 2.
Let7 > 1 be such thak(w(?)) = 1 andh(w(r)) > 1 for allt € (11, 7). By Propositior] 3.4,
¥ () > O0forallt € (11, 7). Sincev(r1) = 0, it follows that®(r) > 0 for all t+ € (¢1, 1), and
therefore 0% w’ > 0 on(t1, 7). There exists, > 1 with (¢1, ) C R\ N such thatw’ > 0 on
(11, t2), and either, € R\ N andw’(t) = 0, ort, € NV. In either case we conclude from Theorem
[3.5 thath (w(r1)) < 2, which is the required result. (]

Proof of Theore?lt suffices to consider the case whegOw’ > 0 on(1y, t2), since the other
case can be treated in an entirely similar way. It follows frbm|(4.4) uing (4.3) that

2
. h (’Z(t)) — h(w(t)) cosv (¢r) is decreasing ol¥y, 12),
so that
¥, h?
w — h(w(t1) > % — hw(2),

or, equivalently,
(h(w(t1)) — h(w(12))) (h(w(t1)) + h(w(r2)) — 2) = 0.

Sincew(t1) < w(rp) andh is strictly decreasing, the required conclusion follows. O

Proof of Corollary[3.8. Suppose for contradiction thaf € (s1, s2) is a strict local minimum ofv.
Thenw’(sg) = 0. Lets € (so, s2) be such that

w(§) = max{w(s) : s € [so, s2]}.

Then there existy, 2 with so < 711 < 2 < § such thatw/(r1) = w/(r2) = 0and 0# w’ > 0
on (t1, ). Now Theoren{ 3]7 yield# (w(r1)) + h(w(t2)) > 2, which contradicts the fact that
h(w(t)) < 1 andh(w(r2)) < 1. Hence no strict local minima af in (s1, s2) exist. O

Proof of Theorerfi 3]9Sincev is continuous, 2-periodic, and has zero meaR(¥) is a compact
interval which contains 0. We shall prove thet2 ¢ R(¢) and—n/2 ¢ R(%).

Suppose that/2 € R(¥). Then there exist, ro with 11 < 2 such thaw (11) = 0, 9 (¢2) = /2,
and 0< 9 < m/2 on(ry, t2). It follows from (4.4) using[(4]3) that

2
P w®) — h(w(t)) cosv (¢) is decreasing of¥y, 12),
so that
2 2
h (wz(tl)) ~ h(w(ty) > h (wz(tz)) - 0.

But this contradicts the assumption thatv(z)) < 2 for allr € R. Hencer /2 ¢ R(%).
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Suppose now thatr/2 € R(¥). Then there existy, r» with 11 < 2 such that} (r1) = —n/2,
¥ (r2) =0, and—7/2 < ¥ < 0 on(ry, 12). It follows from (4.4) using[(4.3) that

h2(w(t))

— h(w(t)) cosy(tr) isincreasing ofit1, t2),

so that 5 )
h h
0~ (U;(fl)) < (wz(tz)) — hw(t)).
which again contradicts the assumption thab(¢)) < 2 for allr € R. Hence—n/2 ¢ R(#). This
completes the proof of Theorgm B.9. a

The proof of the following lemma is elementary, and is therefore omitted.

LEMMA 4.1 Let;j : (—oo, 0) — R be a function of clas€'! with j(x) — oo asx 0, and for
which there exists < 0 such thatj is convex on §, 0). Then for everyx € (—oo, §] there exists
B €[8, 0) such that

Jj@) +j(x)(y—x) <j(y) forallx e[p,0) andy € [a, 0). (4.10)

Proof of Theorenj 3|3Let § be as in the statement of the theorem. Applying Lemimé& 4.1 with
Jj = —logh ande := minR(w) yields 8 € [§, 0) such that, for all with w(z) € [8, 0) and for all
seR\W,

logii(w(®)) + (h'(w(®))/ h(w(®))(w(s) — w(t)) — logh(w(s)) > 0. (4.11)

Let J c R\ N be a non-trivial interval such that(z) € [B, 0) for all € J. It follows from

(4.7) and[(4.111) that, for all € J,

§'(r) — @) (COSN” _ 1) >0. (4.12)
h(w(t)) \ h(w(?))
Note also that, for alt € J,
W (w(t)) < 0. (4.13)

The burden of the proof of Theordm B.3 is carried by the following lemma.

LEMMA 4.2 Letw be a solution of[(Z]5) which satisfigs (R.7) and for which ¢.

If d € R\ N andb € N are such thatd, b)) C R\ N and [4.12),[(4.13) hold oni[ b), then
cost > 0onfd,b).

Similarly, if « € A andc € R\ A are such thata, ¢c) ¢ R\ N and [4.12),[(4.13) hold on
(a, c], then co®? > 0on(a,c].

Assuming for the moment that Lemrpa 4.2 is true, we show how the proof of Thgorém 3.3
follows.
Suppose that we are in the situation (i). THen (#.12) pnd{(4.13) hold,a@n. Letzo € (a, b) be
such that
w(to) = minfw () : t € [a, b]}.

Then [4.12) and (4.13) hold on each of the intervalso] and [ro, »). The first part of Lemmp 4,2
applied withd := tg yields cos? > 0 on [t, b), while the second part of that lemma applied with
¢ = tg Yyields cos? > 0 on(a, 7o]. The conclusion follows.



378 E. VARVARUCA

In the situation (i), the conclusion is immediate from the first part of Lerhmp 4.2, and in the
situation (iii) it follows from the second part of that lemma.
This completes the proof of Theor¢m[3.3, provided that Lefnmja 4.2 is true. O

Lemm4 4.2 also leads to a quick proof of Theofenj 3.2.

Proof of Theorem 3]2Sinceh satisfies[(3]1), it follows thaf (4.12) ar{d (4113) hold&n, N. If

N = @, then the required result follows easily (sek [8, the sentence following (4.28N).# &,

then it is immediate from Lemnja 4.2 that abs- 0 onR \ V' and therefore, by (2.10by, satisfies
|

(3.3) as required.
It now remains to prove Lemnja 4.2.

Proof of Lemmé 4]2We prove only the first part of the lemma, since the second part follows by
entirely similar arguments. The proof ultimately rests on an application of the following classical
theorem in the global differential geometry of plane curves (see e.g. Amann [1, Theorem 24.15,
p. 340] and the references therein) to a suitably devised Jordan curve.

THEOREM4.3 Leto : [a, b] — C be a parametrization of a Jordan curve, wheiis a function
of classC! with o/ (a) = ¢’(b) and|o’| > 0 on [u, b]. Let ¢ : [a, b] — R be a continuous function
such that

o'(t) =o' @) explip(t)} forallt e [a,b].

Theng (b) — ¢ (a) equals either2 or —2rx.
We also use the following lemméls [8, Proof of Lemma 4.16 and Proof of Lemma 4.17].

LEMMA 4.4 Letld, b) C R\ N and suppose thdt (4]12) afid (4.13) hold @r#)). Lete € [d, b).
If £ € Zis such that?(e) > ¢x + /2, then

B (t) > ¢r +m/2 forallt € (e, b).

LEMMA 4.5 Let[d, b) C R\ N and suppose thdt (4]12) afd (4.13) hold @r¥)). Let f € [d, b)
be such that cog(f) < 0. If m € Z is such that

2mr + /2 < O (f) < 2mmw + 3n/2,
then there existg € [ f, b) such that? is strictly increasing onf, g] and
v (g) = 2mm + 31/2.

Let _
S ={(t+Cw@),w():teR} (4.14)

which by assumption is a non-self-intersecting curve. (The cSrie obtained from the curve
given by [2.6) by reflection with respect to a vertical line.) Observe that, for almastsalt) is the
angle between the tangentfaat (t + Cw(¢), w(z)) and the horizontal.

To prove Lemma 4.2, we argue by contradiction and assume that there gxis{g, ») with
cos?(f) < 0, which means

?(f) € [2mm + /2, 2mm + 3x/2] for somem € Z. (4.15)
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Sincew(d) = B andw(z) > B forallr € [d, b), it follows thatw’(d) > 0, so that
¥ (d) € [2kn, (2k + )] for somek € Z. (4.16)
Lemmg 4.4 shows thalk(f) > 2kn — /2, and so it follows from[(4.75) that necessarily
m > k. (4.17)
Letg € (f, b) be given by Lemmp 4]5, so that
B (g) = 2mm + 37 /2.

Let E < 0 be such that
E > maX{w(t) :t €[d, g]},

and letp € (g, b) be such that
w(p)=E and w@) < E forallz € (g, p).
It follows thatw’(p) > 0, and hence there exisisc Z such that
?(p) € [2n7, (2n + Dx]. (4.18)

It follows from Lemmd 4.4 that
n>m+1 (4.19)

Lety : R — C be given by
y():=t+Cw®)+iw() forallreR,

and lety : [d, p] — C be the restriction of to [d, p]. It is obvious that, for somes, g2 € R with
g1 < d, p < g2, one can construct a functigh: [¢1, g2] — C, where

7(q) :=u(g) +iv(g) forallg e[qa,q2],

such thaty is an extension of, and it has the following additional properties:

u,v:[q1, q2] = R are of clas<?, (4.20a)
W(@)2+1(q)2 >0 forallg € [q1. q2]. (4.20b)
v >0 onjg,dU[p,q2], (4.20c)
v'(q1) =v'(q2) = 1, (4.20d)
u'(q1) = u'(g2) = 0. (4.20e)

Let F be such that
F <minfu(q) : q € [q1. q2]}-
Let A; be the semicircle having as diameter the segment joining the pomts(g1)) and

(u(q1), v(q1)), and situated below this segment. L&t be the semicircle having as diameter the
segment joining the point@ (¢2), v(g2)) and(F, v(g2)), and situated above this segment.
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Let rq1, rp with r1 < g1, r2 > g2 and consider &l functiony, : [r1,r2] — C which is an
extension ofy such that

Ye(r)) = F +iv(q),  v«(r2) = F +iv(g2), (4.21a)
vi(r1) = yi(r2) = —i, |y.(r)| >0 forallr € [r,ral, (4.21b)
Y«llr,q1] 1S @n injective parametrization ofy, (4.21c)
Y«llq2,rp] 1S @N injective parametrization of. (4.214d)

Let 7 := r» andy with 71 < r1 be such thay, has an extension td{, 7»] as aC? function such
that

v«(r1) = F +iv(q2), (4.22a)
y;(r) =—i forallr €[ry,r1]. (4.22b)

Itis very easy to prove thai, : [F1, 72] — C constructed above provides a parametrization of a
Jordan curve with a continuously varying tangent. Let us write

va(r) = lyl(r)expliv.(r)} forallr e [F1, 72,

whered, : [r1, 72] — R is a continuous function which extends: [d, ¢g] — R. It follows from

(4.18), [4.18) and (4.20) that

De(q1) = 2km + /2, V:(q2) =2nw +1/2.

Using [(4.2]) and (4.22) we deduce that

U (F1) = 2k — /2, 0.(2) = 2nw + 37/2.

Therefore
Vi (F2) — V4 (F1) = 2(n — k) + 2m, (4.23)
where, by[(4.17) and (4.19),
n—k>1 (4.24)
But the validity of [4.2B) with[(4.24) is in contradiction to Theorpm|4.3. This completes the proof
of Lemmd4.2. O
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