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A Bernoulli free-boundary problem is one of finding domains in the plane on which a harmonic
function simultaneously satisfies linear homogeneous Dirichlet and inhomogeneous Neumann
boundary conditions. For a general class of Bernoulli problems, we prove that any free boundary,
possibly with many singularities, is necessarily the graph of a function. Also investigated are
convexity and monotonicity properties of free boundaries. In addition, we obtain some optimal
estimates on the gradient of the harmonic function in question.

1. Introduction

In this paper we investigate properties of solutions of Bernoulli free-boundary problems. The
foundations for the study of this type of geometric problems, a specific example of which is
the classical Stokes-wave problem in hydrodynamics, were laid out in a substantial paper of
Shargorodsky and Toland [8].

A Bernoulli free-boundary problem[8] is to find a locally rectifiable curveS := {(u(s), v(s)) :
s ∈ R} in the(X, Y )-plane, where

s 7→ (u(s)− s, v(s)) is 2π-periodic, (1.1a)

so that there exists a functionψ harmonic in the domainΩ belowS and continuous onΩ, such that

ψ is 2π -periodic inX, (1.1b)

∇ψ(X, Y ) → (0,1) asY → −∞, uniformly inX, (1.1c)

ψ = 0 onS, (1.1d)

∂ψ

∂n
= h(Y ) almost everywhere onS. (1.1e′)

Heren denotes the outward normal toΩ at points ofS, andh is a given continuous nonnegative
function. Since formally the tangential derivative ofψ is zero almost everywhere onS, the Neumann
condition (1.1e′) has an equivalent reformulation as

|∇ψ |
2

= λ(Y ) almost everywhere onS, (1.1e)

whereλ = h2. This condition is to be satisfied in a weak sense related to the theory of Hardy
spaces (see [8, 12] for details). The object of investigation here will be the system of equations
(1.1a)–(1.1e). Since the curveS is not prescribed a priori, it is called a free boundary.
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The motivating example for the study of Bernoulli problems occurs in the theory of steady
hydrodynamic waves, whereλ(r) = −2gr for some positive constantg. In this context, the free
boundary represents the profile of a Stokes wave, i.e. a steady periodic irrotational water wave of
infinite depth, with a free surface under gravity and without surface tension (see [10]),ψ is a stream
function and(ψ

Y
,−ψ

X
) is a steady velocity field. Then (1.1d) and (1.1e) mean thatS is a streamline

at which the pressure in the flow is a constant. In hydrodynamics, a point onS where the velocity is
zero is called a stagnation point.

For a solution(S, ψ) of (1.1), a point(X, Y ) onS is called astagnation pointif λ(Y ) = 0. The
setSN of stagnation points is closed and has zero measure onS (see [8]), and it is only at stagnation
points that the free boundary need not be smooth. Indeed,S \ SN is a union of smooth arcs, whose
precise degree of regularity depends on that ofλ (see [5, 12]). The nature of the singularities of free
boundaries at stagnation points was investigated in [12]. The conclusion was that in many situations
(but not always) a free boundary which is symmetric with respect to a vertical line passing through
an isolated singular point must have a corner at that point, whose size depends on the nonlinearityλ.
That was an extension of the result proved in [2, 6] that symmetric Stokes waves of extreme form
have a corner of 120◦.

In this paper we investigate some geometric properties of free boundaries, whether singular or
not. Note that a prioriS might have a very complicated shape, especially if there are stagnation
points; in particular, it is not assumed a priori thatS is the graph of a function. We also establish
some optimal estimates on the gradient of the harmonic functionψ . There follows a brief description
of the main results obtained.

A preliminary observation is that there existsY0 with h(Y0) = 1 such thatS intersects the
horizontal lineY = Y0; whenh is a strictly decreasing function, such aY0 is unique. Some of our
results refer to the shape of the part ofS which lies either above or below the lineY = Y0. Note
thatS0 := {(X, Y0) : X ∈ R} andψ0(X, Y ) := Y − Y0 provide a solution of (1.1), which we call a
trivial solution.

Then, under the assumption that logh is decreasing and concave, we show that

• S must be globally the graph of a function, irrespective of the number of stagnation points onS.

This was previously known [8] only when there were at most countably many stagnation points
on S, although it should be said that the result in [8] is different and more general in some other
respects, as we explain in detail later. The proof here is partly based on a differential inequality
from [8], but avoids some rather intricate estimates needed there. Instead, the remaining part is
based on geometrical considerations inspired by the argument of Spielvogel [9], who was the first
to prove this result for the case of smooth solutions of the water-wave problem. (However, it is our
impression that the argument in [9] is vague and lacks sufficient rigor, and in fact the claim in the
penultimate paragraph of [9, Proof of Theorem 3b] is incorrect. Furthermore, in the case considered
here there are significant additional difficulties due to the presence of the stagnation points.)

We also generalize this result by showing that, if the above assumption onh is relaxed to a local
one, then, roughly speaking,

• a curveS with stagnation points may fail to be a graph only at a positive distance from the setSN .

Suppose again that logh is globally decreasing and concave, and letS := {(X, η(X)) : X ∈ R},
whereη : R → R is continuous and 2π -periodic. We prove that

• η is a convex function ofX on any interval on whichη < Y0, whereh(Y0) = 1,
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• if X1,X2 are such thatη′(X1) = η′(X2) = 0 andη′(X) 6= 0 for allX ∈ (X1, X2), then

|∇ψ(X1, η(X1))| + |∇ψ(X2, η(X2))| 6 2. (1.2)

The convexity result is new even for the water-wave problem. Surprisingly perhaps, the estimate
(1.2) was noted in passing by Toland [10, (x), p. 15] for a restricted class of solutions of the water-
wave problem, but here we emphasize its generality and its independence fromh, and we give a
different and more transparent proof. Note that (1.2) implies that|∇ψ | 6 2 everywhere onS, and
hence by the maximum principle

|∇ψ | 6 2 everywhere inΩ. (1.3)

We also give some new results in the case when logh is decreasing andconvex. For a curveS
which is the graph of a functionη,

• if X1,X2 are such thatη′(X1) = η′(X2) = 0 andη′(X) 6= 0 for allX ∈ (X1, X2), then

|∇ψ(X1, η(X1))| + |∇ψ(X2, η(X2))| > 2, (1.4)

• η does not have any strict local minima on any interval on whichη > Y0, whereh(Y0) = 1.

A family of explicit solutions of (1.1) is used to show that the estimates (1.2)–(1.4) are sharp.
All the preceding results are derived from corresponding results about solutions of the nonlinear

pseudo-differential equation (2.5), an equation first derived in [8], the study of which is equivalent to
that of (1.1) up to the fact that a certain curve in the plane is non-self-intersecting. A new sufficient
condition for this non-self-intersection property is also given.

2. Bernoulli free boundaries

We start by collecting notation and recalling some notions and classical results from harmonic
analysis in the unit disc (see [3, 4] for more details).

We denote byLp2π , 0 < p < ∞, the space of 2π -periodic locallypth-power summable real-
valued functions, and byL∞

2π the space of 2π -periodic essentially bounded real-valued functions.

For 16 p 6 ∞, letW1,p
2π be the space of absolutely continuous 2π -periodic functionsu with weak

first derivativesu′
∈ L

p

2π . For anyu ∈ L1
2π , the conjugate functionCu is defined almost everywhere

as a Cauchy principal value integral

Cu(x) =
1

2π

∫ π

−π

cot

(
1

2
(x − y)

)
u(y)dy.

For anyp ∈ (1,∞), C mapsLp2π into itself.C does not mapL1
2π into itself but, ifu ∈ L1

2π , then
Cu ∈ L

p

2π for all p ∈ (0,1). LetH1
R be the real Hardy space of functionsu ∈ L1

2π with Cu ∈ L1
2π ,

and let alsoH1,1
R := {u ∈ W

1,1
2π : u′

∈ H1
R}.

LetD denote the open unit disc centred at 0 in the complex plane. For a holomorphic function
U : D → C, letUr(t) = U(reit ) for t ∈ R andr ∈ (0,1). For 0< p 6 ∞, the Hardy classHp

C
is the set of holomorphic functionsU : D → C such that supr∈(0,1) ‖Ur‖Lp2π

< ∞. If U ∈ Hp

C,

0 < p 6 ∞, thenU∗(t) := limr↗1Ur(t) is well defined almost everywhere, satisfiesU∗
∈ L

p

2π ,
and log|U∗

| ∈ L1
2π if U 6≡ 0.
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We now recall from [8] how the study of the free-boundary problem (1.1) is equivalent to the
study of certain nonlinear pseudo-differential equations for periodic functions of one real variable.

Throughout the paper, the continuous functionsh, λ : I → [0,∞) are related byh =
√
λ on I ,

where either
I = R and h > 0 onR, (2.1)

or
I = (−∞, ω], ω ∈ R, and h(ω) = 0, h > 0 on(−∞, ω). (2.2)

Let
I0 := {r ∈ I : h(r) > 0}. (2.3)

We also assume that
h ∈ C

1,α
loc (I0) for someα ∈ (0,1). (2.4)

When (2.1) holds, there can be no stagnation points onS.
When (2.2) holds, stagnation points, if they exist, must be located on the lineY = ω, and are

necessarily points of maximum height onS. There is no loss of generality in assuming throughout
thatω = 0. Indeed, ifω 6= 0, then one can replaceh by hω, wherehω(r) = h(r + ω), S by
Sω := {(uω(s), vω(s)) : s ∈ R}, whereuω(s) = u(s), vω(s) = v(s) − ω, andψ by ψω given by
ψω(X, Y ) = ψ(X, Y + ω) to get a new solution of (1.1).

Any solution(S, ψ) of (1.1) gives rise to a functionw ∈ H1,1
R satisfying

λ(w){w′2
+ (1 + Cw′)2} = 1 almost everywhere, (2.5a)

and with the property that, ifW ∈ H1
C is such that

W ∗
= w′

+ i(1 + Cw′), (2.5b)

then
1/W ∈ H∞

C . (2.5c)

The curveS can then be expressed in parametric form as

S = {(−(γ + t + Cw(t)), w(t)) : t ∈ R}, (2.6)

whereγ ∈ R is a constant. Hence

t 7→ (−(t + Cw(t)), w(t)) is injective onR. (2.7)

Let
N := {t ∈ R : h(w(t)) = 0}. (2.8)

Then the set of stagnation points onS is given by

SN = {(−(γ + t + Cw(t)), w(t)) : t ∈ N }.

In what follows, the elements ofN will also be referred to as stagnation points. The setN is closed
and has zero measure.
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Conversely, suppose thatw ∈ H1,1
R satisfies (2.5) and that (2.7) holds. LetS be defined by (2.6),

whereγ ∈ R, and letΩ be the domain belowS. Then there exists a conformal mapping$ of Ω
ontoC− such that, ifψ = Im$ , then(S, ψ) is a solution of (1.1).

Following [8], we now derive further properties of solutions of (2.5). Ifw ∈ H1,1
R satisfies (2.5),

then 1/h(w) ∈ L1
2π andh(w) ∈ L∞

2π . One can define 2π-periodic functionsτ, ϑ by

τ := − logh(w), (2.9a)

ϑ := −Cτ, (2.9b)

whereτ, ϑ ∈ L
p

2π for all p ∈ (1,∞), andτ, ϑ have zero mean. It also follows that

h(w)w′
= sinϑ, (2.10a)

h(w)(1 + Cw′) = cosϑ. (2.10b)

Observe now from (2.10) that, ifS represents a free boundary parametrized by (2.6), then, for almost
all t ∈ R, −ϑ(t) represents the angle which the tangent toS at the point(−(γ + t + Cw(t)), w(t))
makes with the horizontal.

PROPOSITION2.1 Let(S, ψ) be a non-trivial solution of (1.1). LetYc := max{v(s) : s ∈ R} and
Yt := min{v(s) : s ∈ R}. Thenh(Yc) < 1 andh(Yt ) > 1.

COROLLARY 2.2 In the notation of Proposition 2.1, there existsY0 ∈ (Yt , Yc) such thath(Y0) = 1.

Proof of Proposition 2.1.Note first that, by [8, Proof of Theorem 2.7], there existsd ∈ R such that

ψ(X, Y )− Y − d → 0 asY → −∞, uniformly inX. (2.11)

Also, since (2.4) holds, [12, Theorem 2.3] shows thatS \ SN is a union ofC2,α
loc curves,ψ ∈

C
2,α
loc (Ω ∪ (S \ SN )) and

∂ψ

∂n
= h(Y ) everywhere onS \ SN . (2.12)

Consider now the functionξ in Ω given by

ξ(X, Y ) := ψ(X, Y )− Y for all (X, Y ) ∈ Ω.

Thenξ is a bounded harmonic function inΩ. Sinceψ = 0 onS, it follows that−Yc 6 ξ 6 −Yt
onS and hence, by the maximum principle,−Yc < ξ < −Yt in Ω.

LetXc andXt be such that(Xc, Yc) ∈ S and(Xt , Yt ) ∈ S. Thenξ attains its extrema inΩ at
these points. By the Hopf boundary-point lemma,

0< ξ
Y
(Xt , Yt ) = ψ

Y
(Xt , Yt )− 1,

and henceh(Yt ) > 1 by (2.12). IfSN = ∅, then similarly

0> ξ
Y
(Xc, Yc) = ψ

Y
(Xc, Yc)− 1,

andh(Yc) < 1. If SN 6= ∅, then (2.2) holds, and henceh(Yc) = 0< 1. This completes the proof of
Proposition 2.1. 2
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3. The main results

Since solutionsw of (2.5) give rise to solutions(S, ψ) of (1.1) only if (2.7) holds, it is of interest to
exhibit situations when (2.7) follows automatically from (2.5). Under the assumption that

h is strictly decreasing and logh is concave onI0, (3.1)

it was proved in [8, Theorem 3.5] that solutionsw of (2.5) for whichN is at most denumerable
satisfy

ϑ(t) ∈ (−π/2, π/2) for almost allt ∈ R, (3.2)

and hence
1 + Cw′(t) > 0 for almost allt ∈ R. (3.3)

By (2.10), (3.3) ensures that (2.7) holds and, moreover,S is globally a graph, in the sense that there
exists a continuous 2π -periodic functionη : R → R such that

S = {(X, η(X)) : X ∈ R}. (3.4)

Here we prove that, under the assumption (3.1), free boundaries must necessarily be global
graphs, irrespective of the number of stagnation points.

THEOREM 3.1 Suppose thath satisfies (3.1), and let(S, ψ) be a solution of (1.1). ThenS is of the
form (3.4) for some continuous 2π -periodic functionη : R → R.

Theorem 3.1 is an immediate consequence of the following result.

THEOREM 3.2 Suppose thath satisfies (3.1). Letw be a solution of (2.5) such that (2.7) holds.
Thenw satisfies (3.3).

The key point here is that the assumptions of Theorems 3.1 and 3.2 admit the possibility that the
set of stagnation points might be nondenumerable. This was not the case in [8, Theorem 3.5], where
the denumerability ofN was crucial. On the other hand, in [8] the fact that (2.7) holds was not an
assumption, but a conclusion. Therefore Theorem 3.2 is neither weaker nor stronger than, but rather
complementary to, [8, Theorem 3.5].

The next result is a local version of Theorem 3.2, for solutionsw of (2.5) for whichN 6= ∅,
where (2.2) holds withω = 0. The aim is to determine intervals inR \N on which

1 + Cw′ > 0. (3.5)

THEOREM 3.3 Suppose that there existsδ ∈ (−∞,0) such that

h is strictly decreasing and logh is concave on [δ,0). (3.6)

Letw be a solution of (2.5) which satisfies (2.7) and for whichN 6= ∅. Then there existsβ ∈ [δ,0),
which depends only on minR(w), such that, for anya, b ∈ N with (a, b) ⊂ R \N , the following
hold.

(i) If w(t) ∈ [β,0) for all t ∈ (a, b), then (3.5) holds everywhere on(a, b).
(ii) If d ∈ (a, b) is such thatw(d) = β andw(t) ∈ [β,0) for all t ∈ [d, b), then (3.5) holds

everywhere on [d, b).
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(iii) If c ∈ (a, b) is such thatw(c) = β andw(t) ∈ [β,0) for all t ∈ (a, c], then (3.5) holds
everywhere on(a, c].

Theorem 3.3 means that for any solution of (1.1) there exists a horizontal strip, determined by
the linesY = β andY = 0, such that any arc ofS \SN contained in this strip and having end-points
on either of these two lines, but at least one end-point on the lineY = 0, is necessarily the graph
of a function. In particular, ifS has infinitely many stagnation points on a period, then the local
rectifiability of S shows that, among the countably many arcs ofS \ SN with endpoints inSN , all
but finitely many on a period ofS are contained in such a strip, and therefore are necessarily graphs.

The next result can be used to deduce another geometric property of free boundaries.

PROPOSITION3.4 Suppose thath satisfies (3.1) andw satisfies (2.5). Lets1, s2 with s1 < s2 be
such thath(w(s1)) = h(w(s2)) = 1 andh(w(s)) > 1 for all s ∈ (s1, s2). Thenϑ ′ > 0 on(s1, s2).

Indeed, forS of the form (3.4), letY0 ∈ (Yt , Yc) be such thath(Y0) = 1, given by Corollary
2.2. Proposition 3.4 shows that, ifX1, X2 with X1 < X2 are such thatη(X1) = η(X2) = Y0 and
η(X) < Y0 for allX ∈ (X1, X2), thenη is a convex function on the interval(X1, X2). A much more
difficult problem would be to exhibit situations in which any smooth arc ofS joining two stagnation
points is the graph of a convex function; the only result currently known is [7], that there exist such
solutions whenh(r) = c(−r)α, wherec > 0 andα ∈ [1/2,∞).

The following result provides bounds for solutions of (2.5) when (3.1) holds.

THEOREM 3.5 Suppose thath satisfies (3.1), and letw be a solution of (2.5) for which (3.2) holds.
Let t1, t2 be such that(t1, t2) ⊂ R \N .

(i) Suppose thatt1, t2 ∈ R \ N , w′(t1) = w′(t2) = 0, and either 06≡ w′ > 0 on (t1, t2), or
0 6≡ w′ 6 0 on(t1, t2). Then

h(w(t1))+ h(w(t2)) 6 2. (3.7)

(ii) Suppose thatt1 ∈ R \N , t2 ∈ N , w′(t1) = 0, 0 6≡ w′ > 0 on(t1, t2). Thenh(w(t1)) 6 2.
(iii) Suppose thatt1 ∈ N , t2 ∈ R \N , w′(t1) = 0, 0 6≡ w′ 6 0 on(t1, t2). Thenh(w(t2)) 6 2.

Note that in Theorem 3.5 the requirement that (3.2) holds is an extremely weak restriction when
h is decreasing and logh is concave, since by [8, Theorem 3.5] and Theorem 3.2 it is satisfied
automatically for all solutionsw of (2.5) with at most countably many stagnation points, as well as
for those, with any number of stagnation points, which correspond to free boundaries.

COROLLARY 3.6 Suppose thath satisfies (3.1), and letw be a solution of (2.5) for which (3.2)
holds. Thenh(w(t)) 6 2 for all t ∈ R.

When interpreted in terms of free boundaries, Theorem 3.5 and Corollary 3.6 lead to the
estimates (1.2) and (1.3).

We now give some new results in the case when (2.1) holds and

h is strictly decreasing and logh is convex onR. (3.8)

The following result is an analogue of Theorem 3.5 when (3.8) holds instead of (3.1).

THEOREM 3.7 Suppose thath satisfies (3.8), and letw be a solution of (2.5) for which (3.2) holds.
Let t1, t2 with t1 < t2 be such thatw′(t1) = w′(t2) = 0, and either 06≡ w′ > 0 on (t1, t2), or
0 6≡ w′ 6 0 on(t1, t2). Then

h(w(t1))+ h(w(t2)) > 2. (3.9)
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COROLLARY 3.8 Suppose thath satisfies (3.8), and letw be a solution of (2.5) for which (3.2)
holds. Lets1, s2 with s1 < s2 be such thath(w(s1)) = h(w(s2)) = 1 andh(w(s)) < 1 for all
s ∈ (s1, s2). Thenw does not have any strict local minima in(s1, s2).

In terms of free boundaries, Theorem 3.7 leads to the estimate (1.4), while Corollary 3.8 has an
obvious interpretation.

The next result gives a sufficient condition for solutions of (2.5) to give rise to free boundaries
whenh satisfies (3.8).

THEOREM 3.9 Suppose thath satisfies (3.8), and letw be a solution of (2.5) such thath(w(t)) 6 2
for all t ∈ R. Then (3.2) holds, and hence so does (3.3).

We conclude this section by showing, by means of a family of examples of explicit solutions
of (2.5), that the results of Theorem 3.5, Corollary 3.6 and Theorem 3.7 are sharp, at least for non-
singular solutions. The examples below are obtained by slightly modifying those in [8, Subsection
2.9.1]. Letλ : R → (0,∞) be given byλ(r) = e−2r for all r ∈ R, and leth :=

√
λ. For 06 b < 1,

let

wb(t) = −
1

2
log(1 + b2

+ 2b cost) for all t ∈ R. (3.10)

Thenwb is a non-singular solution of (2.5). Since logh is decreasing and affine onR, h satisfies the
assumptions of both Theorems 3.5 and 3.7. Note that, for allt ∈ R,

λ(wb(t)) = 1 + b2
+ 2b cost, (3.11)

andw′

b(t) = 0 if and only if t = nπ for somen ∈ Z. It is immediate from (3.11) that, for alln ∈ Z,

h(wb(nπ))+ h(wb((n+ 1)π)) = 2,

hence the results of Theorems 3.5 and 3.7 are sharp. Also, since

max{h(wb(t)) : t ∈ R} = 1 + b for all b ∈ [0,1),

it follows that the result of Corollary 3.6 is also sharp.

4. Proofs of the main results

We now give the proofs of the results in the previous section. We start with general considerations
which are relevant for all the proofs.

If J is any open interval contained inR\N then, since (2.4) holds, it follows from [12, Theorem
2.1] thatw ∈ C

2,α
loc (J ). It is proved in [8] that

(C logh(w))′(t)−
h′(w(t))

h(w(t))
Cw′(t)

=
1

4π

∫ π

−π

logh(w(t))+ (h′(w(t))/h(w(t)))(w(s)− w(t))− logh(w(s))

sin2 t−s
2

ds. (4.1)

The formula (4.1), which is just an identity based on the definition of a conjugate function, is valid
for all t ∈ J under the present regularity assumptions onh andw. SinceJ ⊂ R \N was arbitrary,
(4.1) is valid everywhere onR \N .
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One can now see that, ifw is a solution of (2.5), thenϑ ∈ C
1,α
loc (R \N ) and, for allt ∈ R \N ,

ϑ ′(t)−
h′(w(t))

h(w(t))

(
cosϑ(t)

h(w(t))
− 1

)
> 0 if logh is concave, (4.2)

and

ϑ ′(t)−
h′(w(t))

h(w(t))

(
cosϑ(t)

h(w(t))
− 1

)
6 0 if logh is convex. (4.3)

The estimate (4.2) is one of the key ingredients in the proof of [8, Theorem 3.5]. See also [11]
for smooth solutions of the water-wave problem.

Proof of Proposition 3.4.It follows from (3.1) thath′ < 0 onI0. Using also the fact that cosϑ(s) <
h(w(s)) for all s ∈ (s1, s2), it is immediate from (4.2) thatϑ ′ > 0 on(s1, s2). 2

At the heart of the proofs of Theorems 3.5, 3.7 and 3.9 lies the combination of (4.2)/(4.3) with the
following new algebraic identity satisfied by solutions of (2.5) everywhere onR \N :

d

dt

(
h2(w)

2
− h(w) cosϑ

)
= h(w)h′(w)w′

− h′(w)w′ cosϑ + h(w) sinϑ ϑ ′

= w′h2(w)

{
ϑ ′

−
h′(w)

h(w)

(
cosϑ

h(w)
− 1

)}
. (4.4)

Proof of Theorem 3.5.Suppose first that we are in the situation (i), and with 06≡ w′ > 0 on(t1, t2).
It follows from (4.4) using (4.2) that

t 7→
h2(w(t))

2
− h(w(t)) cosϑ(t) is increasing on(t1, t2). (4.5)

Sinceϑ ∈ (−π/2, π/2), it follows thatϑ(t1) = ϑ(t2) = 0. Hence we deduce from (4.5) that

h2(w(t1))

2
− h(w(t1)) 6

h2(w(t2))

2
− h(w(t2)),

or, equivalently,
(h(w(t1))− h(w(t2)))(h(w(t1))+ h(w(t2))− 2) 6 0. (4.6)

But w(t1) < w(t2) by assumption, and hence, sinceh is strictly decreasing,h(w(t1)) > h(w(t2)).
The required conclusion follows from (4.6).

Suppose now that we are in the situation (i), but with 06≡ w′ 6 0 on (t1, t2). Instead of (4.5),
we now have that

t 7→
h2(w(t))

2
− h(w(t)) cosϑ(t) is decreasing on(t1, t2), (4.7)

and the required conclusion follows by an argument similar to that of the previous case.
Suppose now that we are in the situation (ii). It follows as above that, for allt ∈ (t1, t2),

h2(w(t1))

2
− h(w(t1)) 6

h2(w(t))

2
− h(w(t)) cosϑ(t). (4.8)

The required conclusion is obtained by passing to the limit in (4.8) ast ↗ t2, using the fact that
h(w(t)) → 0 ast ↗ t2, sincet2 ∈ N .

The analysis in the situation (iii) is entirely analogous. This completes the proof of Theorem
3.5. 2



376 E. VARVARUCA

Proof of Corollary 3.6. Recall thatτ has zero mean, whereτ = − logh(w). If h(w) ≡ c, where
c > 0 is a constant, then necessarilyc = 1. Suppose thath(w) 6≡ c. Let t1 ∈ R be such that

w(t1) = min{w(t) : t ∈ R}. (4.9)

Thenw′(t1) = 0 andh(w(t1)) > 1. Sinceh is decreasing, it suffices to prove thath(w(t1)) 6 2.
Let t̃ > t1 be such thath(w(t̃)) = 1 andh(w(t)) > 1 for all t ∈ (t1, t̃). By Proposition 3.4,
ϑ ′(t) > 0 for all t ∈ (t1, t̃). Sinceϑ(t1) = 0, it follows thatϑ(t) > 0 for all t ∈ (t1, t̃), and
therefore 06≡ w′ > 0 on (t1, t̃). There existst2 > t1 with (t1, t2) ⊂ R \ N such thatw′ > 0 on
(t1, t2), and eithert2 ∈ R \N andw′(t2) = 0, or t2 ∈ N . In either case we conclude from Theorem
3.5 thath(w(t1)) 6 2, which is the required result. 2

Proof of Theorem 3.7.It suffices to consider the case when 06≡ w′ > 0 on(t1, t2), since the other
case can be treated in an entirely similar way. It follows from (4.4) using (4.3) that

t 7→
h2(w(t))

2
− h(w(t)) cosϑ(t) is decreasing on(t1, t2),

so that
h2(w(t1))

2
− h(w(t1)) >

h2(w(t2))

2
− h(w(t2)),

or, equivalently,

(h(w(t1))− h(w(t2)))(h(w(t1))+ h(w(t2))− 2) > 0.

Sincew(t1) < w(t2) andh is strictly decreasing, the required conclusion follows. 2

Proof of Corollary 3.8. Suppose for contradiction thats0 ∈ (s1, s2) is a strict local minimum ofw.
Thenw′(s0) = 0. Let s̃ ∈ (s0, s2) be such that

w(s̃) = max{w(s) : s ∈ [s0, s2]}.

Then there existt1, t2 with s0 6 t1 < t2 6 s̃ such thatw′(t1) = w′(t2) = 0 and 0 6≡ w′ > 0
on (t1, t2). Now Theorem 3.7 yieldsh(w(t1)) + h(w(t2)) > 2, which contradicts the fact that
h(w(t1)) < 1 andh(w(t2)) < 1. Hence no strict local minima ofw in (s1, s2) exist. 2

Proof of Theorem 3.9.Sinceϑ is continuous, 2π -periodic, and has zero mean,R(ϑ) is a compact
interval which contains 0. We shall prove thatπ/2 /∈ R(ϑ) and−π/2 /∈ R(ϑ).

Suppose thatπ/2 ∈ R(ϑ). Then there existt1, t2 with t1 < t2 such thatϑ(t1) = 0,ϑ(t2) = π/2,
and 0< ϑ < π/2 on(t1, t2). It follows from (4.4) using (4.3) that

t 7→
h2(w(t))

2
− h(w(t)) cosϑ(t) is decreasing on(t1, t2),

so that
h2(w(t1))

2
− h(w(t1)) >

h2(w(t2))

2
> 0.

But this contradicts the assumption thath(w(t)) 6 2 for all t ∈ R. Henceπ/2 /∈ R(ϑ).
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Suppose now that−π/2 ∈ R(ϑ). Then there existt1, t2 with t1 < t2 such thatϑ(t1) = −π/2,
ϑ(t2) = 0, and−π/2< ϑ < 0 on(t1, t2). It follows from (4.4) using (4.3) that

t 7→
h2(w(t))

2
− h(w(t)) cosϑ(t) is increasing on(t1, t2),

so that

0<
h2(w(t1))

2
6
h2(w(t2))

2
− h(w(t2)),

which again contradicts the assumption thath(w(t)) 6 2 for all t ∈ R. Hence−π/2 /∈ R(ϑ). This
completes the proof of Theorem 3.9. 2

The proof of the following lemma is elementary, and is therefore omitted.

LEMMA 4.1 Letj : (−∞,0) → R be a function of classC1 with j (x) → ∞ asx ↗ 0, and for
which there existsδ < 0 such thatj is convex on [δ,0). Then for everyα ∈ (−∞, δ] there exists
β ∈ [δ,0) such that

j (x)+ j ′(x)(y − x) 6 j (y) for all x ∈ [β,0) andy ∈ [α,0). (4.10)

Proof of Theorem 3.3.Let δ be as in the statement of the theorem. Applying Lemma 4.1 with
j := − logh andα := minR(w) yieldsβ ∈ [δ,0) such that, for allt with w(t) ∈ [β,0) and for all
s ∈ R \N ,

logh(w(t))+ (h′(w(t))/h(w(t)))(w(s)− w(t))− logh(w(s)) > 0. (4.11)

Let J ⊂ R \ N be a non-trivial interval such thatw(t) ∈ [β,0) for all t ∈ J . It follows from
(4.1) and (4.11) that, for allt ∈ J ,

ϑ ′(t)−
h′(w(t))

h(w(t))

(
cosϑ(t)

h(w(t))
− 1

)
> 0. (4.12)

Note also that, for allt ∈ J ,
h′(w(t)) 6 0. (4.13)

The burden of the proof of Theorem 3.3 is carried by the following lemma.

LEMMA 4.2 Letw be a solution of (2.5) which satisfies (2.7) and for whichN 6= ∅.
If d ∈ R \ N andb ∈ N are such that(d, b) ⊂ R \ N and (4.12), (4.13) hold on [d, b), then

cosϑ > 0 on [d, b).
Similarly, if a ∈ N andc ∈ R \ N are such that(a, c) ⊂ R \ N and (4.12), (4.13) hold on

(a, c], then cosϑ > 0 on(a, c].

Assuming for the moment that Lemma 4.2 is true, we show how the proof of Theorem 3.3
follows.

Suppose that we are in the situation (i). Then (4.12) and (4.13) hold on(a, b). Let t0 ∈ (a, b) be
such that

w(t0) = min{w(t) : t ∈ [a, b]}.

Then (4.12) and (4.13) hold on each of the intervals(a, t0] and [t0, b). The first part of Lemma 4.2
applied withd := t0 yields cosϑ > 0 on [t0, b), while the second part of that lemma applied with
c := t0 yields cosϑ > 0 on(a, t0]. The conclusion follows.



378 E. VARVARUCA

In the situation (ii), the conclusion is immediate from the first part of Lemma 4.2, and in the
situation (iii) it follows from the second part of that lemma.

This completes the proof of Theorem 3.3, provided that Lemma 4.2 is true. 2

Lemma 4.2 also leads to a quick proof of Theorem 3.2.

Proof of Theorem 3.2.Sinceh satisfies (3.1), it follows that (4.12) and (4.13) hold onR \ N . If
N = ∅, then the required result follows easily (see [8, the sentence following (4.28)]). IfN 6= ∅,
then it is immediate from Lemma 4.2 that cosϑ > 0 onR \N and therefore, by (2.10b),w satisfies
(3.3) as required. 2

It now remains to prove Lemma 4.2.

Proof of Lemma 4.2.We prove only the first part of the lemma, since the second part follows by
entirely similar arguments. The proof ultimately rests on an application of the following classical
theorem in the global differential geometry of plane curves (see e.g. Amann [1, Theorem 24.15,
p. 340] and the references therein) to a suitably devised Jordan curve.

THEOREM 4.3 Letσ : [a, b] → C be a parametrization of a Jordan curve, whereσ is a function
of classC1 with σ ′(a) = σ ′(b) and|σ ′

| > 0 on [a, b]. Let φ : [a, b] → R be a continuous function
such that

σ ′(t) = |σ ′(t)| exp{iφ(t)} for all t ∈ [a, b].

Thenφ(b)− φ(a) equals either 2π or −2π .

We also use the following lemmas [8, Proof of Lemma 4.16 and Proof of Lemma 4.17].

LEMMA 4.4 Let [d, b) ⊂ R \N and suppose that (4.12) and (4.13) hold on [d, b). Let e ∈ [d, b).
If ` ∈ Z is such thatϑ(e) > `π + π/2, then

ϑ(t) > `π + π/2 for all t ∈ (e, b).

LEMMA 4.5 Let [d, b) ⊂ R \N and suppose that (4.12) and (4.13) hold on [d, b). Let f ∈ [d, b)
be such that cosϑ(f ) 6 0. If m ∈ Z is such that

2mπ + π/2 6 ϑ(f ) 6 2mπ + 3π/2,

then there existsg ∈ [f, b) such thatϑ is strictly increasing on [f, g] and

ϑ(g) = 2mπ + 3π/2.

Let
S̃ := {(t + Cw(t), w(t)) : t ∈ R}, (4.14)

which by assumption is a non-self-intersecting curve. (The curveS̃ is obtained from the curveS
given by (2.6) by reflection with respect to a vertical line.) Observe that, for almost allt , ϑ(t) is the
angle between the tangent tõS at (t + Cw(t), w(t)) and the horizontal.

To prove Lemma 4.2, we argue by contradiction and assume that there existsf ∈ [d, b) with
cosϑ(f ) 6 0, which means

ϑ(f ) ∈ [2mπ + π/2,2mπ + 3π/2] for somem ∈ Z. (4.15)
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Sincew(d) = β andw(t) > β for all t ∈ [d, b), it follows thatw′(d) > 0, so that

ϑ(d) ∈ [2kπ, (2k + 1)π ] for somek ∈ Z. (4.16)

Lemma 4.4 shows thatϑ(f ) > 2kπ − π/2, and so it follows from (4.15) that necessarily

m > k. (4.17)

Let g ∈ (f, b) be given by Lemma 4.5, so that

ϑ(g) = 2mπ + 3π/2.

LetE < 0 be such that
E > max{w(t) : t ∈ [d, g]},

and letp ∈ (g, b) be such that

w(p) = E and w(t) < E for all t ∈ (g, p).

It follows thatw′(p) > 0, and hence there existsn ∈ Z such that

ϑ(p) ∈ [2nπ, (2n+ 1)π ]. (4.18)

It follows from Lemma 4.4 that
n > m+ 1. (4.19)

Let γ : R → C be given by

γ (t) := t + Cw(t)+ iw(t) for all t ∈ R,

and letγ̃ : [d, p] → C be the restriction ofγ to [d, p]. It is obvious that, for someq1, q2 ∈ R with
q1 < d, p < q2, one can construct a function̂γ : [q1, q2] → C, where

γ̂ (q) := u(q)+ iv(q) for all q ∈ [q1, q2],

such thatγ̂ is an extension of̃γ , and it has the following additional properties:

u, v : [q1, q2] → R are of classC1, (4.20a)

u′(q)2 + v′(q)2 > 0 for all q ∈ [q1, q2], (4.20b)

v′ > 0 on [q1, d] ∪ [p, q2], (4.20c)

v′(q1) = v′(q2) = 1, (4.20d)

u′(q1) = u′(q2) = 0. (4.20e)

Let F be such that
F < min{u(q) : q ∈ [q1, q2]}.

Let A1 be the semicircle having as diameter the segment joining the points(F, v(q1)) and
(u(q1), v(q1)), and situated below this segment. LetA2 be the semicircle having as diameter the
segment joining the points(u(q2), v(q2)) and(F, v(q2)), and situated above this segment.
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Let r1, r2 with r1 < q1, r2 > q2 and consider aC1 function γ∗ : [r1, r2] → C which is an
extension ofγ̂ such that

γ∗(r1) = F + iv(q1), γ∗(r2) = F + iv(q2), (4.21a)

γ ′
∗(r1) = γ ′

∗(r2) = −i, |γ ′
∗(r)| > 0 for all r ∈ [r1, r2], (4.21b)

γ∗|[r1,q1] is an injective parametrization ofA1, (4.21c)

γ∗|[q2,r2] is an injective parametrization ofA2. (4.21d)

Let r̃2 := r2 andr̃1 with r̃1 < r1 be such thatγ∗ has an extension to [r̃1, r̃2] as aC1 function such
that

γ∗(r̃1) = F + iv(q2), (4.22a)

γ ′
∗(r) = −i for all r ∈ [r̃1, r1]. (4.22b)

It is very easy to prove thatγ∗ : [r̃1, r̃2] → C constructed above provides a parametrization of a
Jordan curve with a continuously varying tangent. Let us write

γ ′
∗(r) = |γ ′

∗(r)| exp{iϑ∗(r)} for all r ∈ [r̃1, r̃2],

whereϑ∗ : [r̃1, r̃2] → R is a continuous function which extendsϑ : [d, g] → R. It follows from
(4.16), (4.18) and (4.20) that

ϑ∗(q1) = 2kπ + π/2, ϑ∗(q2) = 2nπ + π/2.

Using (4.21) and (4.22) we deduce that

ϑ∗(r̃1) = 2kπ − π/2, ϑ∗(r̃2) = 2nπ + 3π/2.

Therefore

ϑ∗(r̃2)− ϑ∗(r̃1) = 2(n− k)π + 2π, (4.23)

where, by (4.17) and (4.19),

n− k > 1. (4.24)

But the validity of (4.23) with (4.24) is in contradiction to Theorem 4.3. This completes the proof
of Lemma 4.2. 2
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