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We establish the existence and uniqueness of the solution to some inner obstacle problems for a
coupling of a multidimensional quasilinear first-order hyperbolic equation set in a ré&gjjonith

a quasilinear parabolic one set in the complem@pt = £2 \ £2;,. The mathematical problem is
motivated by physical models for infiltration processes with saturation thresholds.

1. Introduction
1.1 Mathematical setting

Let 2 be a bounded domain &”", n > 1, with a smoothboundaryl", andT a positive real
number. This paper is devoted to the mathematical analysis of the unilateral and bilateral inner
obstacle problems for the coupling of a quasilinear advection-reaction equation of the form

T (u) = dpu — Y 9 (K () Bi) + (1, x,u) = 0,
i=1

set in ahyperbolic zon&;, = 10, T[ x £2, with a quasilinear diffusion-advection-reaction equation
of the type

Tp(u) = du — Z Ox; (0x; @ (u) + K(u)B;) + gp(t, x,u) =0,
i=1

set in aparabolic areaQ, = 10, T[ x (£2 \ £2;,), complementary to the former, and for suitable
conditions across the interface between the two reg@nand Q. The geometrical configuration
is suchthat?2 = £2,U82,; £2, ands2, are two disjoint bounded domains with Lipschitz boundaries
denotedr7, for I in {A, p}. In addition, the interfacd’, = Iy N I, is Lipschitz and such that
H' YTy, N T7\ Typ) = 0, where forg in [0, n + 1], HY denotes the-dimensional Hausdorff
measure.

For a given threshold, the (bilateral) obstacle problem @), andZ, may be formally written
in the free boundary formulation: find a bounded measurable fungtemQ = 10, T[ x £2 such
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that
0<u<6 ong, (1)
foriin{h,p}, 7Tiw)=0 onQ;N[0<u<¥], (2)
Tiu)y <0 onQiN[0<u=06], Ziu)>20 onQ;N[0=u <¥0], 3)
u=0 on]OT[xTI, u@©,-)=up oONL, (4)

subject to the transmission conditions (see Reinjark 3) along the interfgce 10, T x I}, with
thzl“hml“pandﬂ-:a(zi,ie{h,p}:

uj, =ujp,  onZu, N[B.vy, > 0], (5)
Vou).v,=0 onX,, N[0 <u <0], (6)
whereB = (B, ..., B,) andy; denotes the unit normal outward vector defift€¢tta.e. ony.

REMARK 1 The representatiof](1)3(3) is also valid for the upper unilateral obstacle prablem (
0) (resp. for the lower unilateral obstacle problem 6)) by formally replacing the lower bound
with “—o0” (resp. the upper bound withHc0”). Observe that in these situations, foin {4, p},

7; (u) are nonpositive (resp. honnegative) distributiongyn

This problem arises from several simplified physical models like infiltration processes in a
stratified subsoil viewed as two layers with different geological characteristics and such that in the
second layer we can neglect the effects of diffusivity. Indeed, when we are interested in the evolution
of any effluentc within the flow of substances moving in the subsoil, the first simplified modelling
consists in taking into account just one phase saturating the soil, made of two components without
any chemical interactions: water and componerwe assume that the distribution of temperature
T and the pressure fielgt of the fluid phase are determined, sufficiently smooth functions. Then
we invoke P. Bia and M. Combarnous [2] to write the mass conservation law dod we take
into account the existence of some saturation thresh@lder’, P) ando, (T, P); beyond them
the appearance of a new phase (liquid or solid) for the same number of components changes the
thermodynamical nature of the system, which cannot be described through a simplified balance
equation. This way, the relations governing the mass fraesjoare formally given by:

Et,x,w,) =0 onp1 < w: < 6],
Et,x,w.) <0 onpPr<w.=6], &, x,0)>0 onpr=w.<6)], where

{ k(X) ] }
E(t,x,wc) = p(T, wc) 0w — Ve (VP — po(T, w)g)
p(we)

— DivV[A(x, w.) p(T, w:)Var].

(7)

In (7), k denotes the absolute permeability at the peint the dynamic viscosity of the fluid phase

ando (T, w.) its density, defined by, at temperatur@'. Lastly, g is the gravity acceleration vector.
Furthermore, the molecular diffusion-dispersion effects have been taken into account through the
tensorA(x, -). But depending on the geological nature of the subsoil—nameBy,ir-these effects

may be neglected in favour of the effluent’s transport ones. In this situation the evolutignof
governed by a first-order quasilinear operator. This way, the connection befween (F)] ahp (1)-(6)
can be achieved for isothermal flows, without gravity effects and for a constant permeability, by
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introducing the new unknowim, = fg”“ p(t)dt = f(w.) and assuming that

k
w(f ~ue))’
In addition, the “diffusive layer’s2, is supposed to be homogeneous and isotropic, so that
A(x, f~Y(u.)) is reduced to the diagonal matrix(u.)Z,, wherev (u.) is a nonlinear function
of uc.

The paper is organized as follows: in Secfipn 2 we first provide the definition of a weak solution

u to (X)—[8) through a global entropy inequality on the whole dongaiand by using the classical
Kruzhkov entropy pairs. The uniqueness property is obtained by considering the behavidar of
the hyperbolic zone and then in the parabolic one whéseharacterized by a variational inequality
that takes into account entering data fr@m. So that onQ, the notion of weak solution and entropy
solution to an obstacle problem aggquivalentin the sense proposed by K. Kobayasilin [6] for
quasilinear degenerate parabolic equations Witkdata. In Sectioﬁ]:% the existence theorem uses
a viscous regularization and the obstacle condition is relaxed thanks to a penalization procedure.
On Q, we pass to the limit with respect to the viscous parameter using classical compactness
arguments. However, 0@, we invoke the notion of aentropy process solutigrin the spirit of
R. Eymard, T. Gallo&ét & R. Herbin [4]. It allows us to describe the composite lifhitu; ), where
h is a continuous function oR and (ux); is a bounded sequence Ir°(O), whereQ is an open
bounded subset &7 (¢ > 1). Indeed, in this situation, there exists a bounded measurable function
7 on 0, 1[ x O such that up to a subsequen@ei)), tends tofol h(m (e, -)) do in L (O) weakx
(see Clainfi L for the full statement).

K(ue) = B=VP, g, x,u;)=K(us)AP.

1.2 Main assumptions on data

For technical reasons (proofs of Theorgm 2 and Proposiiion 3), we assume in this work that the
obstacled is independent of the time variable. So it will be considered as a measurable function
on £2 such tha®|, belongs toW>(£2;), i in {&, p}. In additiond|e;, is an element oHZ(QP).
Moreover,0 is compatible with the boundary condition in the sensedli@y > O for anys in 9£2.
We set

Vx € 2, Co(x)=[0,6(x)] and Cy° =[O0, esssup]

Q2

for the bilateral obstacle problem, while

Co(x) =]—00,0(x)] and Cg° =]—o0, esssup]
Q
for the (upper) unilateral obstacle problem, the reasoning for lower and upper unilateral obstacle
problems being similar.

The vector fieldB is in W2>°(Q)". In particular,B; and dy; B; are continuous on the whole
with respect to the space variable. Moreover,

Zpp Clo € Xy :B(o).v, <0} (8)

The initial dataug belongs toL>°(£2) N H&(.Q). In addition,ug € Cy(x) for a.e.x in £2.
Moreover, fori in {&, p}, the reaction terng; is in W1-°(]0, T[ x £2; x Cg°) and we set

Mg, = esssup 10,8 (2, x, u)].
(t,x,u)€]0,T[x$2; xCg°
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The transport ternK is Lipschitz continuous o’g° with a constant'Cx. Furthermore K is
nondecreasingThus we may define the nonnegative and nondecreasing function

Mi1:t €[00, T] — My(t) = ess sulﬁeN’ + %(e/\/’ -1, (9)
2

where

N= Z Mgi+’CK||diVB||LDO(Q),

i€th,p}
N3 = Z esssupg;(f, x,0” + esssupk (0)divB)™.
ie(h, py10.T[x%2; 10.7T[x$2

We also introduce the nonpositive and nonincreasing function

. . N.
M>:t €[0, T] — Ma(r) = min(0, esglnfuo)eN’ + W“(e/\/’ -1, (10)
with
Ng=— Z esssupg; (¢, x, 00" — esssupk (0) divB)*.
ieth,py10.T[x %2 10.7[x%

From now, to unify the presentation with the bilateral obstacle problem we set, for the unilateral

obstacle problem,
Cg® = [M2(T), ess sup].
2

Lastly, ¢ is a nondecreasing function wl’oo(ch) with ¢ (0) = 0, ¢’ is Lipschitz continuous

onCg° and
¢~ exists and is continuous @(CS). (11)

We point out that[(T11) is in particular satisfied whé@x € C;° : ¢'(x) = 0}) = 0, whereL is the
Lebesgue measure @

REMARK 2 The monotonicity ok and [8) show that the interfacgy,, is included in the set of
outward characteristics for the first-order operator in the hyperbolic domain. So in the transmission
zone, [(b) is useless since the data leave the hyperbolic domain. This essential property will guide us
for the statement of uniqueness; we will first consider the behaviour of a solution in the hyperbolic
area and then in the parabolic one.

1.3 Notations and function spaces

In the following,o (resp.g) is a variable inX; (resp.l;),i € {h, hp, p}. Thus,c = (¢, o) for any
tin[0, T].
We need to consider the Hilbert space
V={ve H(2,) :v=0ae.on},\ I},)

with the norm|jv||y = ||Vv||L2(9p)n, equivalent to the classical1(£2)-norm. We denote by(-, -))
the pairing betweeir andV’, and by(-, -) the pairing betweemlol(fz) andH ~1(£2). Furthermore,
for X andY two Hilbert spaces, we will make use of the Hilbert space

WO, T; X;Y)={veL*0,T; X): dv e L%0,T;Y)},
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equipped with the normiv|lwo.7.x.v) = (”atv”iz(o,r;n + ”””%2<o,r;><))1/2' In what follows, X

will be mainly taken to be}(s2) or V, andY to be H~1(£2) or V' respectively.
The function sgp denotes the Lipschitzian and bounded approximation of the function sgn
given for any positive. and any nonnegative realby

sgn,(x) = min(x/p,1) and sgn(—x) = —sgn,(x).
Lastly, to simplify the writing, we set farin {&, p}:

G;i(u,v) = gi(¢t,x,u) —div(K (v)B),
Li(u,v,w) = —|u—vldyw — |K(u) — K@)|B.Vw — sgnu — v)G; (u, v)w,

and withlp, (x) = 1if x € §2;, [, (x) = O otherwise,

L(u,v,w) = Lp(u, v, w)le,(x) + Lp(u, v, w)lg, (x),
g, x,u) = gpt, x,u)lg, (x) + gn(t, x, u)lg, (x),

1
Fu,v, w) = E{IK(M) — K@) - |K(w) — K@)| + [K(u) — K(w)[}.

2. Statement of uniqueness

We give the definition of a weak solution {g (1)}-(6) by first keeping in mind that it has to involve
an entropy criterion o, and secondly by taking into account the obstacle conditiom farhat

is why, by noting that[{[1){{6) can be viewed as an obstacle problem for a quasilinear parabolic
evolution equation thastrongly degeneratesn a fixed subdomain, we make use of related work
(I1], [8]) to propose a weak formulation through a global entropy inequality on the whotbe

latter giving rise to a variational inequality on the parabolic domain, and to an entropy inequality on
the hyperbolic one so as to ensure uniqueness.

2.1 Definition

So we now formulate

DEFINITION 1 A measurable function is aweak solutiorto (1)—[8) if
fora.erin]0, T[, u(r,-)€Cs ae.in2, ¢w)eL?0,T;V), (12
V¢ € D(Q), ¢ 20,
/Q L(u,k,l)dxdr — f Vig ) — ¢(x)|.Vedx dr + / A (k) sgnu — k)¢ dx dr

14 0 P

+ /2 Vo (6).n SGNG () — () dH" >0, (13)

hp

wherex = k0, k € [0, 1] for the bilateral obstacle problem ard= k + 6, k € [Mx(T) —
esssup ¢, 0] for the unilateral problem, and
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V¢ e LY T\ Zyp), ¢ =0,

T—>0"

ess Iim/ F(u(o + tvp), 0,k(5))B(o).vyc dH" <0, (24)
Zn\Znp

esslim/ lu(t, x) —uo(x)|dx = 0. (15)
t—0t Jo

REMARK 3 (i) When# is nonnegative orQ, the formulation for the (upper) unilateral obstacle
problem is a special case §f {13) for the bilateral obstacle problem by considegdrigonly.

(i) The link between[(R),[(3)](6) andl (IL3) can be achieved through two inequalities resulting from
(I3); that will be useful in what follows. I (13), we takéx) = 6(x), which meansg = 1 in the

case of a bilateral obstacle condition ane: 0 in the case of a unilateral one. It follows that (with

T =Tplg, + T,lge,)

0 Op

+ /2 Ve (0).vp (1 + sgn(¢ () — ¢(6)))¢ dH”
h

P

(Vo) + K w)B) .V dx dt + / g(t, x, u)¢ dx dr
0

— / 1+ sgnu — 0))7 (6)¢ dx dr. (16)
0

In (13), we takec (x) = 0 for the bilateral obstacle problem antk) = M2(T) —esssup 6 +6(x)
for the unilateral one (so that— « > 0 a.e.). One has

fuf)ﬁdxdt} (V¢(u)+K(u)B).V§dxdt+/ g(t, x,u)¢ dx dt
0 0

Op
+ /X Vi (). (L — SGM () — (1)) dH"
h

P

— / (1 —sgnu — k)7 (k)¢ dx dr. a7
0

LetV = (u, —Ig, Vo) — Ku)B) in L2(Q)"™. For any¢ in D(Q;), i in {h, p}, we take™
and¢~ as test functions i (16) anfi (17). By writing= ¢* — ¢, we deduce the existence of a
constaniC such that

‘/ V.(0;¢, V) dx dt
Qi

< Cliglizzcgy-

That meansV/ g, € Ha,,, (Qi) = {v € L?(Q)"! : divyyV € L?(Q;)}. We deduce that
Vig; Vi € H&)l/z(zhp), the topological dual of

Hob?(Znp) = (v € L3(Zhy) : 3w € HH(Q), v = wiz,, ).
In addition, we derive fron| (16) anfl (fL7) that a.e.@n

—divy o Vi, < gt x,u) — (14 sgnu — 6))7;(0),
—dive ) Vg, = gi(t, x,u) — (L —sgnu — «))7; (k).
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We multiply each inequality by in D(Q), ¢ > 0, and add up with respect toBy denoting| -, - |

the pairing betweem{g(/)z(zhp) andHool/z(Ehp) we obtain

/Qv.(a,;, Vo)dedr — Vi, -vhn + V|Qp.l)p, ] < /Q(g(t, x,u) — (14 sgnu — 0))7 (0))¢ dx dr
and
/QV.(M, Ve dedr — [Vg,.vn + Vg, vp. £ = /Q(g(t, x,u) — (L —sgnu — k)7 (k)¢ dx dr.

Now what follows is formal. We are interested in the bilateral obstacle problem (the reasoning for the
unilateral one being similar) and assume thak[@& < 6] is an operf{"-measurable subset ¢f.
We assume thatin (16) and[(I}) has compact suppornN[0 < u < 8]. As (1+sgnu—0))¢ =

(1—sgnu —«))¢ = 0a.e. and1+sgne (u) — ¢ (©))¢ = (L—sgn¢ ) — ¢ (k)¢ = 0H"-a.e.,
we deduce that farin {&, p},

diV(t,x)(V|Qi) =0 onQ;N[0<u~<?¥,

that is, [2). Then, fot with compact support i@ N[0 < u < ], by comparing[(1p) and (17) with
the above inequality, we get

LVIQh-Vh ~|—V‘Qp.1)p, ¢] =0,

which is [8) in a certain sense. Furthermore, if we takeith support inQ; N[0 < u = #] and in
0, N[0 = u < 9]—ifitis meaningful—we find[(). Moreover, for any nonnegativevith compact
supportinQ N[0 < u = 6],

Vigy-vi + Vg, -vp. ¢ 2/2 Ve (0).vp¢ dH"
hp

and
LVigy-vn + Vi@, vp. ¢] = /QT(G)g dx dr.
Thus,
Vo (©).vp = T(©O) H'-a.e. onZp, N[0 <u=0>6].

On Xy, N[0 =u < 0], sinceK (0) = ¢(0) = 0, for any nonnegative with compact support in
oN0=u <40,

LVi0,-Vh +V|Qp.vp,§J =0</ g(t, x,0)¢ dx dr.
0]

2.2 Study in the hyperbolic zone

We derive from[(IB) and (14) an entropy inequality on the hyperbolic domain that will be the starting
point to establish a Lipschitzian time-dependencd.t(s2;,) of a weak solution to[{1)F]6) with
respect to the corresponding initial data. To do so we need a lemma provedlas in [1]:
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LEMMA 1 Letu be a bounded measurable function@rsatisfying [I8) and (14). Then for ary
as in Definitior] 1 and any in D(J0, T[ x R"), ¢ > 0,

t—>0"

— / Lyp(u,k,0)dxdr < — esslim/ |K (u(o + tvp))|B(o).vpe(c) dH"
On Z‘h\zhp

+ f K (6)(0)|B(0).vp(c) dH". (18)
Zn\Znp

In order to use the method of doubling variables, we now need a technical result already pointed
outin [11, proof of Proposition 1]. From (1L8) we find that for any open subggtof X, andx as
in Definition[d,

essgim/ |K(u(o + tvy)) — K(k(0))|B(o).vyB(0) dH" exists (19)
U Zioc
and there existg € L*°(X|oc) such that
esséim/ Ku(o + tv))B(0o).vy,B(0) dH" = / Y (0)B(o) dH" (20)
=07 J Xioc loc

for any B in L1(Zjoc). In the following, (19) and[(20) will be used witBjoc = X, OF Zjoc =
Zp \ Zpp. We define the sequen¢®s)s-o of functions onR"*1,

V8 >0, Vp =(t,x) e R*™™ Wi(p) = ps(®) [ [ s (x),
i=1

where(ps);-0 is a standard sequence of mollifiersrnwWe apply onX), \ X, the proof developed
in [12, Lemma 33] based on properties of mollifiers on the whole boundary to state:

LEMMA 2 Letu be a bounded measurable function @p such that[(I9) holds. Then for any
continuous functiop on Q;, U X,

. - o+ -
lim f / |K(M(P))|B(U)-Vh¢<u)W6(6 — p)dH dp
§—0* On Z‘h\é\:‘hp 2
= }esslim/ |K (u(o + tvp))|B(o)vpe(o) dH"
=07 JE\Zy,
and

lim / esslim/ 1K (u(o + rvh))lB(o).vmp(u)Wg(o — p)dH" dp
o Z‘h\zf‘hp 2

§—0t n 707

=0~

= }esslim/ |K (u(o + tvp))|B(o).vhe(a) dH".
2 i\ Znp

From Lemmasg]1 arld 2 we derive:

THEOREM1 Letu; andus be two bounded measurable functions@p with u1(z, -) andua(z, -)
in Cyp a.e. onQ,, for a.e.r in 10, T[, satisfying [18) and[(J5) respectively for initial data; and
uo.2. Then

fora.e.rin]0, T[, / lui(t, -) —u2(t, )| dx < eMant / luo,1 — ug,2| dx.
Qh Qh
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Proof. We choose in (18), foe, written in variablesp = (¢, x),
K (x) = uz(f, ¥) — 0(¥) + 0(x)

in the case of an (upper) unilateral constraint, while

6(x)

) = uz(t,x)e(x) oG =0,
0 else,

for a bilateral obstacle condition, and similarly n [18) fies written in variablesp = (7, ¥).
Furthermore in[(T8) fon1,
+p ~

p(p) = 4“(%)1%(17 — P
wheres is positive and large enough, ande D(J0, T[ x R"), ¢ > 0; and similarly in[(IB) fon,.
We integrate ovep;, in the p variables foru; and in thep variables forup. We add up. Through
techniques developed inl[8] we I&t— O on the left-hand side. Then the right-hand side goes to 0,
thanks to Lemmp]2 fag; andus. It follows that

- 0 {lux —u2|9;¢ — |K(u1) — K(u2)|B.V¢}dx dt
h

< —/Q sgn(uy — u2)(gn(t, x, u1) — gn(t, x, u2))¢ dx dr.
h

For¢ = ay wherea € D(]0, T), « > 0 andy € D(R"), ¥ > 0,v = 1 on Qy, the Lipschitz
condition forg;, provides

—/ lug — uola’ (¢) dx dt < M;,h / | — upla(t) dx dr.
On On

Whena is an element of a sequence approximatipg), for ¢ outside a set of measure zero, the
desired inequality is obtained thanks to the initial conditfor] (15)ufoandu; and to Gronwall’'s
lemma. |

2.3 Study in the parabolic zone

We now consider the behaviour of a weak solutioto (T)—[§) on the parabolic domain. With this
in view, we characterize on Q,, through astrongvariational inequality (in the sense of J.-L. Lions
[10]) including the contribution of entering data from the hyperbolic zone. Indeed:

PropPOsSITION1 Letu be a bounded measurable function@rsuch thatVe (u) € LZ(Q,,)" and
(T3) holds. Therd,u € L2(0, T; V). Furthermore, for any in L?(0, T; V) such that for a.e. in
10, T[, ¢~ 1(v(t, ) € Cy a.e. on2,,

T
/0 (01, v—¢p (n))) dt—}-/Q (Vo) + K (u)B) . V(v—¢(u)) dx dl—l—/Q gp(t, x, u)(v—¢ (u)) dx dt

+ esslim/ K (u(o +7v)B(0) (v — d) dH" > 0. (21)
Zhp

t—>0"
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Proof. Thanks to a density argumen{, [16) arfd|(17) still hold for any nonnegativie
D(0, T; H}(£2)). Now letg € D(0, T; V). Let ¢ be an extension ap to D(0, T; Hi(£2)) and
take¢ = @&, in (I6) and[[Iy), where, € W1>(£2), 0 < &, < 1, and for any positive,

£ (x) = 1 ifxe.(_Zp,
EYT10 ifx e 82y, dist(x, I7p) > 0, IVE e < Clo.

To pass to the limit ag — 0F, we claim that due td (19) (sele [1]),

lim K (u)¢B.V&, dx dr = ess Iim/ K (o + tvp))e(o)B.v, dH".
Z‘hp

0—0t Jo, =0~

This way, for anyp in DO, T; V), ¢ > 0,
f udrp dx dr < / (V¢(u)+K(u)B).V<pdxdt+/ gp(t, x, u)p dx dr
Qp Qp QP

+ f Vo (©).vp(1+ sgnu — 6))p dH"
Ehp

— / (14 sgnu — 6))7,(6)¢ dx dr
Op

+ esslim/ Ku(o + tv,))e(o)B.v, dH" (22)
t—>0" Zip
and
/ udrp dx dr > / (Vo) + K@m)B) .Vodx dr + / gp(t, x, u)pdx dt
0p 0p

P

+ / V6 (1).vn (1 — S — K))g dH"
b))

hp

- / (1 - Sgrtu — )T, (k) dx o
Qp

+ esslim/ K (o + tvp))e(o)B.v, dH". (23)
Ehp

t—>0"

We writep = ¢ — ¢~ and use[(22)E(23) witpt and¢~. Sinceu is bounded and (u) €
L2(0, T; V) we find that there exists a constahsuch as

T
f / udy dx dr
0 Je,

which ensures thatu € L2(0, T; V') (see Appendix of [3]). Thus,

Vo € DO, T; V), < Cllellzo, vy

T T
Yo € DO, T; V), —/ / udrp dx dr = / ((Ou, @)) dt.
0 Je, 0

Thus by density, we may rewrit€ (22) arid [(23) within L2(0, T; V). Then we considep =
(v —¢w)t andyp = (v — ¢(u))~ respectively, withv as in the statement of Proposit@w 1
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so that, due to the obstacle condition fgr(1 + sgnu — 8))(v — ¢(u))™ = 0 and respectively
(1 —sgnu —«))(v — ¢ (u))~ = 0 a.e. onQ, andH"-a.e. onxy,. By adding up, mequaht;[@l)
follows, which completes the proof of Propositjgn 1.

2.4 The uniqueness theorem

Theoren| 1L ensures a uniqueness property in the hyperbolic zone. In the parabolic one, the lack
of regularity of the partial time derivative of a weak solution [f¢ ()—(6) requires doubling the
time variable and uses a suitable time-integration by parts formula. Furthermore, to deal with the
convective terms, we assume that

¢ — K o ¢~ Lis Lipschitz continuous o (C3°). (24)
Then we have:
THEOREM 2 Under [[24) probleni {1)H6) admits at most one weak solution.

Proof. Letu; andu> be two weak solutions t¢ [1]4(6). Thanks to Lemimia 1 and Theptem 1, we
know thatu; = u» a.e. onQy,. In addition,6 being independent of the time variable Oy we may
choose in[(2]), for1 written in variables{t x)

vi(t, x) = ¢ (ug)(t, x) —

sgn, (@ (), x) — ¢(u2)(7, x)),

I| ”oo

and in [21) foru, written in variables(?, x)

v2(t, x) = ¢ (u2)(t, x) +

sgn, (¢ (un)(t, x) — ¢ (u2) (i, x)).

|| “oo

as(t, r)—y( Zt)pa(%>,

wherey € D(0, T[), y > 0, and$ is small enough fors to belong toD(]0, T[x]0, T[). To
simplify the writing we add a tilde to any function in thievariable;q stands for(z, x) while §
stands for(z, x). By adding up (and setting,, s (u1, ii2) = sgn), (¢ (u1) — ¢ (ii2))as), we obtain

For any positive$, set

/ ((0uq — Ojuz, wy,s(u1, ii2))) dr df + / Vi (u1) — ¢ (2)}.Vw,, s(uz, iiz) dg di
10.7[x 0, 10,7[xQ,
<- / (K (u1) — K (32)}B. V. s(u1. iip) dg oF
10 T[XQp
+ / K (ii2)(B — B).Vw,, s(u1, iiz) dg df
10 T[XQp

- / {gp(q, u1) — gp(q, ii2)}wy s (u1, iip) dg df
]OsT[XQp

T
— / esslim/ K@ui(o 4+ tvp))Bovywy s(uy, o) dHZle
0 Znp

T—>0"

t—0"

T
+ / ess Iim/ K(ua(o + tvh))é.vhwu,g(ul, i) ng dr.
0 Ehp
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To deal with the first term on the left-hand side, we use a time-integration by parts formula in
the same spirit as ir_[5, the Mignot—-Bamberger lemma). For the second integral on the right-
hand side, a Green formula is used sirfcg (24) ensureskttiat) = (K o ¢~ 1)(¢(ii2)) belongs

to L2(0, T’; Hl(Qp)). For the boundary integrals we argue that due to uniqueness in the hyperbolic
zone,uz(6 + tvy) = u1(6 + tvy) fora.e.(a, r). This way, as a consequence[0f](20),

=0~

T
/ ess Iim/ K (u2(G + tvp))B.vywy, 5 (us, iip) dHZ dt
0 Znp

T
=/ esslim/ K@ui(o + rvh))é.vhwﬂ,g(ul, ii2) dH dt
0 Znp

t—>0"

T
=// Y (@) wy s(uy, i) dHZ dr,
0 Znp

wherey € L*(X},). It follows that

uy
- f (/ sgn, (¢(r) — ¢(ﬁ2))dr> dras dg df
]O’T[pr ii2

uy
- / </ sgn, (¢ (u1) — ¢(r)) dr) dras dg df
]O,T[XQ], ip

< IBlL~(0,, /]O o V) K@) V503,72 g
,T[x

Qp

+ / AV(K (i2) (B — B))wy. s (u1, i) dg dF
10,7[x Q)

_ / K (ii2) (B — B).vpw, (s, iiz) dg F
10.T[x Zpp

— / {g(q, u1) — g(q, u2)}wy s(u1, itz) dg df
0,T[xQp

/ / y(o)wy s(uy, iip) dHy dt—l—/ / Y (&) wy,s(u1, it2) dHL dr.
Ehp 2

We letu — 0. For the first integral on the right-hand side we refef td (24) and use the Saks lemma
to deduce that it goes to 0. Thus one has

— / lug — i2|(3; s + O;rs) dg df
lo 1[><Qp

< / |div(K (ii2) (B — B))|as dg df + / |K (ii2) (B — B).vp|as dg dF
10.7[x Q) 10, T[x Xy,

+Mgp/ lug — iio|as dth—i—/ / / ly(t,s) — y(t, s)|as ds dt df.
OT[XQ[; rhp

We return to the definition afs to express its partial derivatives with respect &md7. This way we
may pass to the limit witld through the classical argument of the Lebesgue points for an integrable
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function on ]Q T'[: all the terms on the right-hand side tend toB)l{eing smooth) except the first
integral in the third line. The end is classical: it uses a piecewise linear approximatigydor

¢ outside a set of measure zero. Thank$ 19 (15) and to Gronwall’s lemma we complete the proof of
TheorenP. O

3. The existence property
3.1 The obstacle problem to the second order

We intend to approximate the weak solution ¢ (I)—(6) by a sequence of solutions to viscous
problems deduced fron](1)4(6) by adding a diffusion term only in the hyperbolic area. This is
in accordance with the proposed physical modelling of two layers in the subsoil with different
geological characteristics. So for any positiyeve introduce

Ten() = du — Y 0 (€05, p () + K () Bi) + g (t, x, u),
i=1

and we consider the free boundary problem: find a measurable and bounded fupaiio® such
that formally (for the bilateral obstacle problem)

O0<u.<6 ongQ, (25)

Tpy(ug)=0 onQ,N[0<uc <0, Tep(ue)=0 onQ,N[0 < u <0, (26)
Ten(ue) <O onQp N[0 <ue=0], Zep(ue) 20 onQ,N[0=ue <0, (27)
Tp(ue) <0 onQ,N[0 < uc =0], Tp(ue) 20 onQ,N[0=u.<6], (28)
ue=0 onX, u.0)=ug ong, (29)

and to have a well-posed problem, we express the transmission conditions across the interface
(which will be discussed in Remdrk 6)

—eVoue).vy =Vo(ue).v, onZy, N[0 < ue < 6], (30)
Ue|Qy =Uel, ONZpp. (31)

Our aim is to prove first thaf (25]—(B1) has a unique weak solution and secondly to establish some
estimates suitable for the study of the behaviour of the sequengs.o whene goes to 0. We

obtain an existence result f¢r (29)—31) by using the artificial viscosity method—to regujarize

and by relaxing the obstacle condition. That is why we start by introducing a Lipschitz bounded
extensionk* andg, fori in {A, p}, of K andg; outsideCg° through (for a generic functioy)

f (@) if z € Cg°,
7@ = { flcg) if z <lege,
f(esssupg 9) if z > esssup 6,

wherelcgo = minCg° depending on the unilateral or bilateral case. #&ave choose an increasing

Lipschitz extensionp* outsideCS®, so that due td (31)¢*)~? exists and is a continuous function
on¢*(Cy°).
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Then, for any positive parametgrwe set; = ¢*+nlg andg(x, u) = —u"+w—0(x))T fora
bilateral constraint (while for a unilateral obstacle condittois reduced t@(x, u) = (u — 0(x))™)
and leth, , be acl(£2) approximation of., = Io,(x) + €lg, such that

dN >0,Ve >0,Vnp >0, O0<Ai, <N ae.ins,
Ve ylloo < C(€)/n  hey — Ae @.€.0n2 asn — 0.

This way we obtain (see e.@.[7])

THEOREM3 There exists a unique solution
e,y € WO, T; HF(2) N H?(£2); L3(2)) N L™®(Q)

to the nondegenerate-penalized problem:

H * * * 1
dttey — dlv(kg,,,(x)Vqﬁn(ug,n) + K*(ue,y)B) + 8" (t, x, e ) = —;ﬁ(x, uepy) ae.onQ, (32)
uen(0,-) =ug a.e.inf2. (33)

Now we state soma priori estimates fo(u. ,),~o that are sufficient to study its limit when
goesto 0. SetQ, =10, s[ x £2,5in]0, T].

PROPOSITION2 There exists a consta@tindependent of and» such that:

Vi €[0,T], Ma(t) <uey(t,-) < Mi(t) a.e.ins2, (34)
1B, e )l 100y < C, (35)
1/2- 7
122V e 120y < C- (36)
o € Y20 ix
Vs €10.7]. el uen)lZzg ) + 5 kel Ve 5. )32 g < C. (37)

whereM1 andM> are defined in{9) an (10) ardﬁ(x) = fg [(@*), () dr.

Proof. For (34) we use a cut-off method it by considering the.?(Q,)-scalar product of (32)
and Sgl:f(ug‘n — M1(¢)) for the majorization by, and— SgIY, (ue,y — M2(1)) for the minorization
by M>. A cut-off method inL* also provides[(35). From the energy equality satisfied Dy we
derive [36). To conclude we take thef (Q,)-scalar product of (32) and8t¢;(u€,,,). Concerning
the penalized term, we have

€

< / (e — O) 0,7 (e )
1 J10,s[x£2

€ /
=- / (e — ) (@7 (e — )T +0)3 (e, — )" dxdr
n J10,s[x2

€ (”e,n_6)+
=_ / 3 (/ T(¢)) (t +6) d‘L’) dx dr
n J10,s[x2 0

€ (ue,ry(sv')79)+
= ;/ </ T(¢)) (t +6) dr) dx > 0.
2 0
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The same reasoning and the same sign condition holé oy ,)~. We bound the convective and
reactive terms by using (B4), (36) and the Young inequality (See [9]). Thanks to the density of
D(O, T; H}(2) N H3(2)) in W(O, T; HY(2) N H3(2); L?(2)), the diffusive term is integrated
by parts and then with respecttoNote that the constar in (36) depends oii¢ (uo)||H&(_Q) and

(Il

u 1 .
lluoll H(2)

If the parametee is fixed, (7 (e, n))n=0 remains at least in a bounded subsetd Q). As a

result, the compact embedding of the latter spaceifi@) and the continuity of¢*) ! provide
the existence of a measurable functianand a subsequence—still denoted ,),~o—such that
whenn goes to 0, (uc ;) =0 goes taue in L7(Q), 1 < g < 400, and(q&,’;(ue,n))wo goes top (uc)
weakly in H1(Q) and strongly irc®([0, T]; L2(£2)). This leads to

THEOREM4 Problem[(ZB)+(31) has at least a weak solutipsuch that

Vi €10, T[, wuc(t,)eCy a.e.ing, (38)
¢ (ue) € W(O, T; HY(2); L3(R2)), (39)
ucs(0,)=ug a.e.ing2, (40)

and for any in W(0, T: H}(®2): L?(22)), v(T. ) = uc(T. -) a.e.in2, such that for anyin [0, T1,
¢~ 1(v(t, ) € Cp a.e. on2,

/atv<v—¢>(u€>>dxdr+/ he ()Y (e).V (v — b (ue)) dx e
0 0
+/ K(uS)B'V(U_¢(Me))dxdt+/ gt x, ue)(v — ¢ (ue)) dr dr
Q 0
—f(ue—wat(v—«p(ue))dxdt
0

+ /Q (1o — v(0, ) (@ (uo) — v(0, ) dx > O. (41)

ReEMARK 4 In (38), [40),[(4]L) the trace af with respect to the time variable has to be understood,
foranyzin [0, T], asuc(t, -) = ¢ (P (ue)(t, -)).

Proof. The obstacle conditiori (B8) follows frorp (35), while [40) comes frn (33) and from the
strong convergence Gt (uc ;))y>0 to ¢ (uc) in CO([0, T]; L%(£2)). To obtain [(41) we take the
L?(Q)-scalar product of (32) and— ¢;(ue,n). To study the penalized term, we write

1 1
——/ (tey — O (v — ¢y (ue,n)) dx dt = ——/ (ey — O (v — @™ (ue ) dx dr
nJo nJo

+ / (e, — 0)Tue , dx dr,
0

where on the right-hand side the first term is nonnegative and the second one goes to 0 (due to
(35)). The same reasoning is still true for the negative pag(f -). For the evolution term, we
artificially introduce the quantity; ¢ (v)(¢ (v) — ¢*(uc ,)). Then we integrate by parts in time and

use the definition of. This allows us to take the-limit. Just note that in the diffusive term we take

in fact the “liminf” and apply the weak convergence of gradient&%Q). O
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Now, we observe that

PROPOSITION3 If u3 anduz are two weak solutions t¢ (B8)—(41) for initial data1 anduo 2
respectively, then (withl, = M, + M,,),

fora.e.r in 10, 77, / lur(t, x) — ua(t, x)| dx < / lug.1 — uo 2| dx M’
2 2

Proof. We develop the same reasoning (on the wi@Jeas in Theorer|2 (o) by doubling the

time variable and using the same test functions (recall@hiatindependent of the time variable

on the wholeQ). Observe that there are no boundary integrals here. Moreover, to deal with the
evolution terms, we perform first an integration by parts with respect to the time variable assuming
thatas has a compact support in,]J0[ x]0, T[. Then we apply the integration formula proved in

[9] through some convexity inequalities:

LEMMA 3 Letu be a bounded (by a constamt) measurable function o@, and f a function
defined on2 x [—M, M] such that for any in 2, » — f(x, 1) is nondecreasing and continuous
and for allx in [-M, M], x — f(x, 1) is measurable and bounded @nandd, (-, u) € L1(Q).
Then, for anyx € C1([0, T]), @ > 0, such that«(7) = «(0) = 0,

/uB,(f(x,u)a)dxdt:/(/uf(x,r)dr)atadxdt
0 ] v

for any measurable functianbounded by on £2.
This way,

/]o _ u1d,(sgn, (¢ (u1) — ¢ (iiz))as) dg dr — /]o ii20;(SQ), (¢ (u1) — ¢ (ii2))ats) dg o

T[xQ

uy
= / (/ sgn, (¢ (r) — ¢>(ﬁ2))dr) d0es dg df
10.7[x0 \Jii,

iz
- / ( / Sgn, (¢ (u1) —¢>(r>)dr> 505 dg .
10,T[xQ \Ju1

The conclusion follows. O

3.2 The viscous limit

The uniqueness property stated in Proposi@n 3 ensures that the whole sequenieo
converges ta,. whenn goes to 0. Thus, by considering the priori estimates of Propositign 2 for
(ue,n)n>0, W& may derive some estimates fat).-o. Indeed, we have

PrROPOSITION4
(ue)e>0 is a bounded sequencein®(Q), (42)

and there exists a constafiindependent of such that

2IVPwO L2,y + IV Wl 120, < C. (43)
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Relations[(4R) and (43) are not sufficient to study the behaviour of the sequengey when
€ goes to 0: we also need an estimate ®f:. in a suitable space. For this purpose, we prove that
u, satisfies an entropy inequality @hthat will also be used as a starting point to establish (13) for
the corresponding-limit.

PrOPOSITIONS Assume that
612, belongs toH?($2y,). (44)

Then there exists a constafitindependent of such that
19ruell 207112y < C- (45)

Proof. We setx(x) = k0(x), k € [0, 1] for a bilateral constraint, and(x) = k + 6(x), M2(T) —
esssup ¢ < k < O for a unilateral obstacle condition. We consider e Q)-scalar product of

32 andw;"’ = sgn), (¢, (ue,n) —¢n(k))¢, wheres € D(]—oo, T[x$2),¢ > 0. We observe first that

the penalized term is nonnegative. The other integrals are subjected to the following transformations:
For the evolution term, with,, (uc ,, k) = f”f’” sgn, (¢;(v) — ¢y () dr,

K

/a,ué,nw;"’dxdtzf 01 (e p, k) dx dr
0] o

- _f IM(ue,n,K)azg“dxdt—/ L (0, K)2(0, ) v,
o Q
For the diffusion term,
/ hen Vg (te )V dedr = / hean V(@) (ue.n) — ¢y (). V" dx
¢ 0

+ / Dy Vb (k). V" e dir.
0

We develop the partial derivatives in the first term on the right-hand side and we use the fact that
sgn, () is nondecreasing. To take the limitjnwe recall that due t§ (34) and (3T, (e, €))y=0

is a bounded sequence H(Q) N L>(Q), uniformly with respect tay and so, thanks to the
convergence properties 0fc ),-o0 to uc, converges tav;, = sgr, (¢ (ue) — ¢(x))¢ strongly in
L1(Q), 1< g < +o0o, and weakly inH1(Q). Having taken the-limit, we use the Green formula

in the second diffusion term by dividing the integration range i@p (wherer. = ¢) and Q,
(wherei. = 1). We obtain

- f I, (ue, k)0;¢ dx dr — / I, (uo, k)¢ (0, -) dx
0 Q
+ /Q he sgn, (@ (ue) — @ (k) V(P (ue) — (k). V¢ dx dt
+ / (K (ue) — K(K))B.Vw; dx dr + (e — 1)V¢(K).vhw; ax"
o

Ehp

— / Ae A (k) + div(K (k)B) — g(z, x, ue))w; dxdr <O. (46)
)
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We lety — O using the Lebesgue dominated convergence theorem and the Saks lemma to deal
with the first term in the third line (recall thdt (24) holds). It follows that

— / L(ue,k,)dxdr — / lug — k¢ (0, -) dx
) 2
+/ eV (ue) — ¢ (x)|.VE dx dt —/ Le Ad (k) sSQNMue — k)¢ dx dr
o 0
+ (€ =)V (k).vy sgN@ (ue) — (k) dH" < 0. (47)

Zhp

Now the arguments are similar to those developed in Proposdifion 1 to provej;thas in
L%(0,T;V’). In (@7) we assume that is a nonnegative element @(Q) and so, thanks to a
density argument, we may choosen D(O, T'; H&(Q)), ¢ > 0. Thus fork = 1 in the case of a
bilateral obstacle anél = 0 in the case of a unilateral one (so thak) = 6(x)), one has (with
T = Tealg, + THlg,)

/ueatg“dxdti/AEV¢(u€).VCdxdt+/ K(MG)B.VCdxdt—I—/ g(t,x,ue)s dx dr
9] o 0 0

—(e-1 V$(0).vp (1 + sgn(e (ue) — ¢(0)))¢ dH"

Shp

- f (14 sgrue —6))7c(0)¢ dx dr,
0

and fork (x) = 0 in the case of a bilateral constraint ang) = M>(T) — esssupg 0 + 0(x) for a
unilateral one (thus, — « > 0 a.e.) we have

/u&,{dxdt}/AEV¢(u€).V§dxdt+f K(x,ue)B.Vg‘dxdt—l—/ g(t,x,ue)e dx dr
0 (0] 0 0]

—(€-1 Ve (k).va(1 = sgn(¢ (ue) — ¢ (x)))¢ dH”

Zhp

- / (1 —sgn(ue — k))Ze (k)¢ dx dr.
Q

Foranyz inD(, T; Hol(.Q)), we write¢ = ¢ — ¢~ and use the previous two inequalities with
¢ and¢~. Thanks to the estimates of Proposi@n 4, and to the continuity of the trace operator from
V into L2(I,) (so fromHZ (£2) into L?(I,,)), we prove the existence of a constantindependent
of €) such that

Vi € D(O, T; H}(£2)), ‘/Quea,gdxdt < CIell 2 rs iy

Thusd,u. € L?(0, T; H~1(£2)) and for any; € D(0, T; H}(£2)),

T
_f Mgalgdxdt :/ (3tu5,§')dt
] 0

Thus estimatd (45) follows, which completes the proof of Propodiiion 5. O
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REMARK 5 By applying [9], we may assert that as soondas € L2(0, T; H=1(£2)) we can
perform a time-integration by parts ifi_(41) so that the weak solutiofi b (25)—(29) satisfies the
“strong” variational inequality for any measurable functior Cy a.e. on2 with ¢ (v) in H&(Q),

(rue, p(v) — P (ue)) + /Q(?»evfﬁ(ue) + Kue)B).V(p(v) — ¢ (ue)) dx

+/ gt x,ue)(p(w) —p(ue))dy >0 fora.erinlO, TI.
Q

REMARK 6 By reasoning as in Remdrk 3 and settihg= (u¢, —Ac Vép (1e) — K (ue)B) we show
thatV¢ o, € Hdy,,,(Q;) and a.e. org;,

—div( ) Vegr < gi(t, x, ue) — (14 5gnue — )T (6),

—div ) Vejg; = &i(t, x, ue) — (1 —sgnue — «))7; («).
Therefore if [0< u. < 0] is an open subset @), H"-measurable, we obtain

diV(t,X)(VGJQi) =0 ong; N [0 <Ue < 9],
which is [26), and for any nonnegatigewith supportinQ N [0 < u. < 6],
LVth.vh +V€|Qp.vp, Zl =0,

which corresponds t¢ (B0). Observe tHat|(31) holds sihge) € H(Q). Finally, Vg (0).v, >
7.(0) H"-a.e. onXy, N[0 < ue = 0].

To study the behaviour of the sequen@g).-o and characterize the corresponding limit we
need an additional assumption ¢n

¢t is Holder continuous op (Cy°) with an exponent in ]0, 1[. (48)

We then have

PrROPOSITIONG If holds, then there exists a measurable funatiom L°°(Q), with u(z, -) €
Cy a.e. ons2 for a.e.r in ]0, T[, ¢ (u) in L2(0, T; V) and such that up to a subsequence, when
goesto 0,

ue — u in L°(Q) weak«, and inL9(Q,), 1< g < +oo,
Vo) — Vo) weaklyinL2(Q,)", eVe(ue) — 0t strongly inL2(Qp)".

Proof. The strong convergence ih9(Q,) for (uc¢)e-o refers to the arguments put forward
in [5, Chapter 2]. From[(45) the sequen¢&u.).-o remains fixed in a bounded subset of
L%(0, T; H~(£2,)) and due t0| (43), the sequen@(icc))e=o is bounded irL2(0, T; V) uniformly
with respect te. Using the fact that

Vs €]0,1[, L%Q,T; V)< L?0,T; HX(£2,)) < L*(0, T; W*2(2,)),

we infer thatue = ¢~ (¢ (uc)) is bounded inL?7 (0, T; W**2/7(£2,)). The compact embedding

of W”’Z/I(QP) into LZ/T(QP) and the J.-L. Lions compactness theoremI([10, p. 57]) ensure that
W = {v e L7, T; W27 (22,)) = dv € L0, T; H-X(£2,))} is compactly embedded in
L0, T; LZ(£2,)). O
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The above convergence properties for).-o are sufficient to characterize the functionin
the hyperbolic zone we take advantagd o] (42) and of:

CLAIM 1 (seell4]) If O is an open bounded subset®f (¢ > 1) and(u,),-0 a sequence of
measurable functions afi such that

M > 0,Vn >0, |luyllpe@) <M,

then there exist a subsequer{eg,)),~o0 and a measurable in L°°(]0, 1[ x O) such that for all
bounded continuous functionson O x 1—M, M|,

ve e LY(©), lim /f(x,u(p(,,))édx:/ f(x, (e, w)) da & dx.
n—>+oo Jo 10.1[x©

Such a result has first been applied to the approximation through the artificial viscosity method
of the Cauchy problem ifiR? for conservation laws, as one can establish a unifaftcontrol
of approximate solutions. It has also been applied to the numerical analysis of transport equations
since “finite volume” schemes only give @i°-estimate uniformly with respect to the mesh length
of the numerical solution (seel[4]). Here the approximating sequence is a sequence of solutions to
viscous problemg (25)=(R9) and we state:

THEOREMS5 If
(K o ¢~ 1) is continuous om (C5°), (49)

then [1)-{(6) has a weak solution that is the limifif( Q), 1 < ¢ < +oo, of the whole sequence of
solutions to viscous problends (25)—31) whegoes to 0.

Proof. Let u be as in Propositior[]G. Sinc@re| o, )e~0 is uniformly bounded, there exist a
subsequence—still labellgd, |, )c~.o—and a bounded measurable functior-called aprocess—
on ]0, 1[ x Qy such that for any bounded continuous functipron Q;, x Cg° and for any¢ in

LYQw),

lim Y(t, x,ue)é de dr = / ¥, x, m(a, t, x))E do dx dr. (50)

=07 Jg, 10.1[x Oy

We first establish that o, the process is reduced tas|, and secondly we prove thatis a
weak solution to[({1)F(6) for initial data. To do so, we return t (46) in order to take thémit and
then theu-limit separately in the parabolic and in the hyperbolic zone. Thanks to the convergence
properties of(u.)c-0o there are no difficulties passing to these limits in the integrals gygrin
particular, for the convective term we refer to the Saks lemma. For the boundary integrals we use the
fact that(sgr, (¢ (ue) — ¢ (x))¢)e=0 is @ bounded sequence if(0, T; V) that weakly converges
to sgn, (¢ (u) — ¢(x))¢ in L2(0, T: V) up to a subsequence. Then we invoke the continuity and
linearity of the trace operator frorfi into L2(Fh,,). In the hyperbolic zone, we take thelimit
thanks to[(5P) since all the nonlinearities are continuous with respact tdowever, the flux term

le = /Q K (ue) sg, (¢ (ue) — ¢ (1)) V(@ (ue) — ¢ (x)).B¢ dx dr
h

has to be carefully studied since we only have weak convergenge Qf o and of (Ve (1)) e0-
That is why we introduce

Hy(v, w) = f (K o~ (1)sgr, (r — w) dr.
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After an integration by parts with respecttpwe obtain
= [ V@0, 6B drds
Oh

@ (ue)
_ /Q </¢( : (K o™V () SQVL(I — ¢ (K)) df)V¢(K).B§ dx dr.
h K

Thanks to the Green formula,

lew = —/Q Hy (¢ ue), ¢ (<)) (¢ divB + V¢.B)dx dr + Hyu(¢ue), ¢ ())B.vps dH"
h

Zn P

o (ue)
_ /Q </¢( : (K o¢*1)/(1’) Sg’L(‘C — ¢(k)) dT>V¢(K).B§ dx dr.
h Kk

Since¢ (ue) € L0, T; HY()), for a.e.r in 10, T[, (¢(ue)2)in, = (@Wwo)e,)n,- We now
take thee-limit using (50). For the boundary integral, we argue as previously by noting that
(Hy (¢ (ue), ¢ (k))¢)e>0 is a bounded sequencelrf(0, T; V). We get lim_, o+ I, = I, where

I, = _/ H, (¢ (1), (k))(¢ divB + V¢.B) do dx dr +/ Hy (¢ ), ¢ (x))B.vy & dH”
0rx]0,1[ Znp
¢ ()
— / (/ (K o~V (1) Sgrjl(r — (k) dt)VqS(K).B{ do dx dr.
01 x]0,1[ \J (k)

Tolety — 0T, we recall the definition of sigpand we use the fact that sin&eo ¢~ is continuous
on¢(Cg°), (Hy (v, w)),>o converges to sgn — w) K (w) a.e. onQ;, x]0, 1[ and’H"-a.e. onXy,.

In the same way( /" (K o ¢~1)'(1) sgr, (t — w) dr),~o converges to sgn — w)(K o oY (w)

a.e. onQ;, x]0, 1[, by (49). From the Lebesgue dominated convergence theorem, it follows that
lim,_ o+ I, = I where

I =— / sgn(wr — k) (K (k)B.V¢ + ¢ div(K (x)B)) do dx dt
05, x]0,1[
+ / sgn¢ (u) — ¢ (k) K (k)B.v, ¢ dH",
h,

Znp

sinceg is strictly increasing. Finally,
— f Lp(u,k,¢)dxdr — / Ly(m,k, &) dodx dr — / luo — ¢ (0, -) dx
9 01 x]0,1] Q
—i—/ V|¢(u)—¢(/<)|.Vg“dxdt—/ A (k) sgnu — «)¢ dx dt
QP Qp

_/2 Ve (ic).vn sSg(e (u) — ¢ (x))¢ dH" < 0. (51)

hp
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For¢z in D(]—o0, T] x £2;), we deduce that

—/ Ly(m, k, {)dadxdté/ lug — k¢ (0, -) dx.

0, x]0,1] 2

Therefore, following F. Otto’s ideas in [11], but here in the context of a process solution, we
established that

esslim/ |7 (e, t, x) — A(x)| da dx < / lug — A(x)| dx, (52)
t—0% J]0,1[x 2, 2

where A(x) = k(x)0(x), k(-) being a measurable function @y, 0 < k < 1 a.e. ing2;, for the
bilateral obstacle problem andl(x) = k(x) 4+ 6(x), M2(T) — esssug ¢ < k < 0 a.e. ins2; for
the unilateral one. The initial condition (15) &y, for = is obtained by choosing

0(x) for the bilateral constraint,
0 else,

uo(x) .
A(x):{— if 6(x) £ 0,

A(x) = ug(x) —0(x) forthe unilateral one.

Now to establish[(14) forr, we take advantage of the approximation properties tfrough
(1e)e>0 and ofu, through(uc ;)y~o to return to [(3R)(33) and consider thé(Q)-scalar product
B2) andd, Hj (uc,y, k)¢, where¢ € D0, T[ x £25), ¢ > 0,¢(t, ) = 0on[y, foranyrin [0, T],
and

1

1\2\ 1/2
Vie N, Hz,w)= ((dist(z, [0, w]))? + <7> ) -7

0z, w) = / 91H) (. w) (K (1) dr,

w

is the family of boundary entropy-entropy flux pairs introduced by F. Otto [11]. We emphasize that
01H(ue n, k) € W(O, T; H(}(.Qh); L2(2,)) so that calculations may be performed as if we were

in a single domain. In particular, the Green formula does not give rise to integrals along the interface.
Since 0< 01H;(ue p, K)B(x, ue y) a.€. 0NQy,

- fQ (Hy e, €001 — Qi1 KIB.VE — Giy(itey €)¢) r
h

<- / hen O Hi (g, K)VE + £02 Hi e . 1) VK) V] 1)y i,
Q/l

taking into account the convexity of the functien— H; (¢, -) and

Gt (e, k) = /uw ((K*) (1)B.Vk + K* (1) divB) 82, H (. k) dr

K

+ g5 (t, X, ue ) d1Hy (e yy, K).

On account of the convergence propertiegqf,),-o0, we take the-limit. Then, as previously, we
take thee-limit thanks to [5D). It follows that

—/ (H[(T[, k)0 ¢ — Qi(m, k)B.V¢ — G (m, K){) do dx dr <O.
10.1[x Qs
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At this point, we adapt F. Otto’s work, which yields

esslim

/ Qi((a, 0 + tv), K)B(0).vp¢ da dH" < 0
=07 J10,1[x Zy\ Znp

for any¢ in L1(Z), \ Znp), ¢ = 0. The boundary condition (14) for follows by observing that
(9n)ien+ converges uniformly t6F(z, 0, k) asl — +oo.

Sor satisfies[(T4)[(15) an@ (IL8) with similar integration ranges. This way, by reasoning as in
Theoren[]l, ifr1(e, -, -) andma(B, -, -) are two process solutions for initial data1 andug 2, then
fora.e.rin]0, T,

f |m1(, 1, x) — 72(B, 1, x)| dar dB dx df < / luo.1 — ug,2| dx eMen,
10,1[x £2;, 25

Whenug1 = ug2 on £2,, there exists a measurable functiep on Q; such that a.e. 0@y,

up = mi(a, -) = m2(B, -) for a.e.x andp in ]0, 1[. Moreover, the uniqueness property warrants that
the whole sequenc@:.).-o strongly converges tay, in LY(Qp), 1 < g < +o00. Thusu, = ug,

a.e. onQ;, andu satisfies[(IR)£(14). To complete the proof of Theofgém 5 we only need to check that
u satisfies[(IB). Owing tq ($2) we just have to concentrate&2gnWe consider[(51) fot (z, x) =

Y ()¢ (x) with ¢ in D(]—o0, T[), ¥ = 0, and¢ in D(£2,,), ¢ > O:

T
—/O (/Q |u—k|zdx+f(r>)w’<z>dt</ o — kIZ (0) dx,
P

P

with
t
f(t)=/ ([ [—IK (u(t,x)) — K(x)|B.V¢
2, \Jo

+ gp(t, x, u(t, x)) SgMu(r, x) — k)¢ — |Pp(u(r, x)) — ¢(K)|A§]df> dx.

Hence the function +— fgp lu — x|z dx + f(¢) is identified a.e. with a bounded nonincreasing
function, so it has an essential limitagoes to @, ¢ in ]0, T[\O, where£(O) = 0. As f goes to 0
with ¢, it follows that

esslim/ |u—/c|§dx</ lug — Kk |¢ dx
2,

v
t—0 p

forany¢ € D(£2,), ¢ > 0. As a consequence, thanks to F. Otto’s reasonirigin [11] we obtain (with

Aasin[52)
essolim/|u(t,x)—/l(x)|dx S/ lug — A(x)|dx
t—0t

P

‘QP
and we argue as fofr (52), which concludes the proof of Thepfem 5. O
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