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We establish the existence and uniqueness of the solution to some inner obstacle problems for a
coupling of a multidimensional quasilinear first-order hyperbolic equation set in a regionΩh with
a quasilinear parabolic one set in the complementΩp = Ω \ Ωh. The mathematical problem is
motivated by physical models for infiltration processes with saturation thresholds.

1. Introduction

1.1 Mathematical setting

Let Ω be a bounded domain ofRn, n > 1, with a smoothboundaryΓ , andT a positive real
number. This paper is devoted to the mathematical analysis of the unilateral and bilateral inner
obstacle problems for the coupling of a quasilinear advection-reaction equation of the form

Th(u) = ∂tu−

n∑
i=1

∂xi (K(u)Bi)+ gh(t, x, u) = 0,

set in ahyperbolic zoneQh = ]0, T [ ×Ωh, with a quasilinear diffusion-advection-reaction equation
of the type

Tp(u) = ∂tu−

n∑
i=1

∂xi (∂xiφ(u)+K(u)Bi)+ gp(t, x, u) = 0,

set in aparabolic areaQp = ]0, T [ × (Ω \ Ωh), complementary to the former, and for suitable
conditions across the interface between the two regionsQp andQh. The geometrical configuration
is such that:Ω = Ωh∪Ωp;Ωh andΩp are two disjoint bounded domains with Lipschitz boundaries
denotedΓl , for l in {h, p}. In addition, the interfaceΓhp = Γh ∩ Γp is Lipschitz and such that
Hn−1(Γ hp ∩ Γl \ Γhp) = 0, where forq in [0, n + 1], Hq denotes theq-dimensional Hausdorff
measure.

For a given thresholdθ , the (bilateral) obstacle problem forTh andTp may be formally written
in the free boundary formulation: find a bounded measurable functionu onQ ≡ ]0, T [ ×Ω such
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that

0 6 u 6 θ onQ, (1)

for i in {h, p}, Ti(u) = 0 onQi ∩ [0 < u < θ ], (2)

Ti(u) 6 0 onQi ∩ [0 < u = θ ], Ti(u) > 0 onQi ∩ [0 = u < θ ], (3)

u = 0 on ]0, T [ × Γ, u(0, ·) = u0 onΩ, (4)

subject to the transmission conditions (see Remark 3) along the interfaceΣhp = ]0, T [ ×Γhp, with
Γhp = Γh ∩ Γp andΓi = ∂Ωi , i ∈ {h, p}:

u|Qh = u|Qp onΣhp ∩ [B.νh > 0], (5)

∇φ(u).νp = 0 onΣhp ∩ [0 < u < θ ], (6)

whereB = (B1, . . . , Bn) andνi denotes the unit normal outward vector definedHn-a.e. onΣl .

REMARK 1 The representation (1)–(3) is also valid for the upper unilateral obstacle problem (u 6
θ ) (resp. for the lower unilateral obstacle problem (u > θ )) by formally replacing the lower bound
with “−∞” (resp. the upper bound with “+∞”). Observe that in these situations, fori in {h, p},
Ti(u) are nonpositive (resp. nonnegative) distributions onQi .

This problem arises from several simplified physical models like infiltration processes in a
stratified subsoil viewed as two layers with different geological characteristics and such that in the
second layer we can neglect the effects of diffusivity. Indeed, when we are interested in the evolution
of any effluentc within the flow of substances moving in the subsoil, the first simplified modelling
consists in taking into account just one phase saturating the soil, made of two components without
any chemical interactions: water and componentc. We assume that the distribution of temperature
T and the pressure fieldP of the fluid phase are determined, sufficiently smooth functions. Then
we invoke P. Bia and M. Combarnous [2] to write the mass conservation law forc and we take
into account the existence of some saturation thresholdsθ1,c(T , P ) andθ2,c(T , P ); beyond them
the appearance of a new phase (liquid or solid) for the same number of components changes the
thermodynamical nature of the system, which cannot be described through a simplified balance
equation. This way, the relations governing the mass fractionωc are formally given by:

E(t, x, ωc) = 0 on [θ1 < ωc < θ2],

E(t, x, ωc) 6 0 on [θ1 < ωc = θ2], E(t, x, ωc) > 0 on [θ1 = ωc < θ2], where

E(t, x, ωc) = ρ(T , ωc)

{
∂tωc −

k(x)

µ(ωc)
∇ωc.(∇P − ρ(T , ωc)Eg)

}
− Div[A(x, ωc)ρ(T , ωc)∇ωc].

(7)

In (7), k denotes the absolute permeability at the pointx, µ the dynamic viscosity of the fluid phase
andρ(T , ωc) its density, defined byωc at temperatureT . Lastly, Eg is the gravity acceleration vector.
Furthermore, the molecular diffusion-dispersion effects have been taken into account through the
tensorA(x, ·). But depending on the geological nature of the subsoil—namely inΩh—these effects
may be neglected in favour of the effluent’s transport ones. In this situation the evolution ofωc is
governed by a first-order quasilinear operator. This way, the connection between (7) and (1)–(6)
can be achieved for isothermal flows, without gravity effects and for a constant permeability, by
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introducing the new unknownuc =
∫ ωc

0 ρ(τ)dτ ≡ f (ωc) and assuming that

K(uc) =
k

µ(f−1(uc))
, B = ∇P, gi(t, x, uc) = K(uc)∆P.

In addition, the “diffusive layer”Ωp is supposed to be homogeneous and isotropic, so that
A(x, f−1(uc)) is reduced to the diagonal matrixψ(uc)In, whereψ(uc) is a nonlinear function
of uc.

The paper is organized as follows: in Section 2 we first provide the definition of a weak solution
u to (1)–(6) through a global entropy inequality on the whole domainQ and by using the classical
Kruzhkov entropy pairs. The uniqueness property is obtained by considering the behaviour ofu in
the hyperbolic zone and then in the parabolic one whereu is characterized by a variational inequality
that takes into account entering data fromQh. So that onQp the notion of weak solution and entropy
solution to an obstacle problem areequivalentin the sense proposed by K. Kobayasi in [6] for
quasilinear degenerate parabolic equations withL1-data. In Section 3 the existence theorem uses
a viscous regularization and the obstacle condition is relaxed thanks to a penalization procedure.
On Qp we pass to the limit with respect to the viscous parameter using classical compactness
arguments. However, onQh we invoke the notion of anentropy process solution, in the spirit of
R. Eymard, T. Galloüet & R. Herbin [4]. It allows us to describe the composite limit(h(uk))k where
h is a continuous function onR and(uk)k is a bounded sequence inL∞(O), whereO is an open
bounded subset ofRq (q > 1). Indeed, in this situation, there exists a bounded measurable function
π on ]0,1[×O such that up to a subsequence,(h(uk))k tends to

∫ 1
0 h(π(α, ·))dα in L∞(O) weak-?

(see Claim 1 for the full statement).

1.2 Main assumptions on data

For technical reasons (proofs of Theorem 2 and Proposition 3), we assume in this work that the
obstacleθ is independent of the time variable. So it will be considered as a measurable function
onΩ such thatθ|Ωi belongs toW1,∞(Ωi), i in {h, p}. In additionθ|Ωp is an element ofH 2(Ωp).
Moreover,θ is compatible with the boundary condition in the sense thatθ(σ̄ ) > 0 for anyσ̄ in ∂Ω.
We set

∀x ∈ Ω, Cθ (x) = [0, θ(x)] and C∞
θ = [0,ess sup

Ω̄

θ ]

for the bilateral obstacle problem, while

Cθ (x) = ]−∞, θ(x)] and C∞
θ = ]−∞,ess sup

Ω̄

θ ]

for the (upper) unilateral obstacle problem, the reasoning for lower and upper unilateral obstacle
problems being similar.

The vector fieldB is inW2,∞(Q)n. In particular,Bi and∂xjBi are continuous on the wholeΩ
with respect to the space variable. Moreover,

Σhp ⊂ {σ ∈ Σh : B(σ ).νh 6 0}. (8)

The initial datau0 belongs toL∞(Ω) ∩ H 1
0 (Ω). In addition,u0 ∈ Cθ (x) for a.e.x in Ω.

Moreover, fori in {h, p}, the reaction termgi is inW1,∞(]0, T [ ×Ωi × C∞
θ ) and we set

Mgi = ess sup
(t,x,u)∈]0,T [×Ωi×C∞

θ

|∂ugi(t, x, u)|.
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The transport termK is Lipschitz continuous onC∞
θ with a constantKK . Furthermore,K is

nondecreasing. Thus we may define the nonnegative and nondecreasing function

M1 : t ∈ [0, T ] 7→ M1(t) = ess sup
Ω

θeN t +
N3

N
(eN t − 1), (9)

where

N =

∑
i∈{h,p}

Mgi +KK‖div B‖L∞(Q),

N3 =

∑
i∈{h,p}

ess sup
]0,T [×Ωi

gi(t, x,0)
−

+ ess sup
]0,T [×Ω

(K(0)div B)−.

We also introduce the nonpositive and nonincreasing function

M2 : t ∈ [0, T ] 7→ M2(t) = min(0,ess inf
Ω

u0)e
N t

+
N4

N
(eN t − 1), (10)

with
N4 = −

∑
i∈{h,p}

ess sup
]0,T [×Ωi

gi(t, x,0)
+

− ess sup
]0,T [×Ω

(K(0)div B)+.

From now, to unify the presentation with the bilateral obstacle problem we set, for the unilateral
obstacle problem,

C∞
θ = [M2(T ),ess sup

Ω̄

θ ].

Lastly,φ is a nondecreasing function inW1,∞(C∞
θ ) with φ(0) = 0, φ′ is Lipschitz continuous

onC∞
θ and

φ−1 exists and is continuous onφ(C∞
θ ). (11)

We point out that (11) is in particular satisfied whenL({x ∈ C∞
θ : φ′(x) = 0}) = 0, whereL is the

Lebesgue measure onR.

REMARK 2 The monotonicity ofK and (8) show that the interfaceΣhp is included in the set of
outward characteristics for the first-order operator in the hyperbolic domain. So in the transmission
zone, (5) is useless since the data leave the hyperbolic domain. This essential property will guide us
for the statement of uniqueness; we will first consider the behaviour of a solution in the hyperbolic
area and then in the parabolic one.

1.3 Notations and function spaces

In the following,σ (resp.σ̄ ) is a variable inΣi (resp.Γi), i ∈ {h, hp, p}. Thus,σ = (t, σ̄ ) for any
t in [0, T ].

We need to consider the Hilbert space

V = {v ∈ H 1(Ωp) : v = 0 a.e. onΓp \ Γhp}

with the norm‖v‖V = ‖∇v‖L2(Ωp)n
, equivalent to the classicalH 1(Ω)-norm. We denote by〈〈·, ·〉〉

the pairing betweenV andV ′, and by〈·, ·〉 the pairing betweenH 1
0 (Ω) andH−1(Ω). Furthermore,

for X andY two Hilbert spaces, we will make use of the Hilbert space

W(0, T ;X;Y ) ≡ {v ∈ L2(0, T ;X) : ∂tv ∈ L2(0, T ;Y )},
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equipped with the norm‖v‖W(0,T ;X;Y ) = (‖∂tv‖
2
L2(0,T ;Y )

+ ‖v‖2
L2(0,T ;X)

)1/2. In what follows,X

will be mainly taken to beH 1
0 (Ω) or V , andY to beH−1(Ω) or V ′ respectively.

The function sgnµ denotes the Lipschitzian and bounded approximation of the function sgn
given for any positiveµ and any nonnegative realx by

sgnµ(x) = min(x/µ,1) and sgnµ(−x) = − sgnµ(x).

Lastly, to simplify the writing, we set fori in {h, p}:

Gi(u, v) = gi(t, x, u)− div(K(v)B),

Li(u, v,w) = −|u− v|∂tw − |K(u)−K(v)|B.∇w − sgn(u− v)Gi(u, v)w,

and withIΩi (x) = 1 if x ∈ Ωi , IΩi (x) = 0 otherwise,

L(u, v,w) = Lp(u, v,w)IΩp (x)+ Lh(u, v,w)IΩh(x),
g(t, x, u) = gp(t, x, u)IΩp (x)+ gh(t, x, u)IΩh(x),

F(u, v,w) =
1

2
{|K(u)−K(v)| − |K(w)−K(v)| + |K(u)−K(w)|}.

2. Statement of uniqueness

We give the definition of a weak solution to (1)–(6) by first keeping in mind that it has to involve
an entropy criterion onQh and secondly by taking into account the obstacle condition foru. That
is why, by noting that (1)–(6) can be viewed as an obstacle problem for a quasilinear parabolic
evolution equation thatstrongly degenerateson a fixed subdomain, we make use of related work
([1], [8]) to propose a weak formulation through a global entropy inequality on the wholeQ, the
latter giving rise to a variational inequality on the parabolic domain, and to an entropy inequality on
the hyperbolic one so as to ensure uniqueness.

2.1 Definition

So we now formulate

DEFINITION 1 A measurable functionu is aweak solutionto (1)–(6) if

for a.e.t in ]0, T [, u(t, ·) ∈ Cθ a.e. inΩ, φ(u) ∈ L2(0, T ;V ),

∀ζ ∈ D(Q), ζ > 0,∫
Q

L(u, κ, ζ )dx dt −
∫
Qp

∇|φ(u)− φ(κ)|.∇ζ dx dt +
∫
Qp

∆φ(κ) sgn(u− κ)ζ dx dt

(12)

+

∫
Σhp

∇φ(κ).νh sgn(φ(u)− φ(κ))ζ dHn > 0, (13)

whereκ = kθ , k ∈ [0,1] for the bilateral obstacle problem andκ = k + θ , k ∈ [M2(T ) −

ess sup̄Ω θ,0] for the unilateral problem, and
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∀ζ ∈ L1(Σh \Σhp), ζ > 0,

ess lim
τ→0−

∫
Σh\Σhp

F(u(σ + τνh),0, κ(σ̄ ))B(σ ).νhζ dHn 6 0, (14)

ess lim
t→0+

∫
Ω

|u(t, x)− u0(x)| dx = 0. (15)

REMARK 3 (i) Whenθ is nonnegative onQ, the formulation for the (upper) unilateral obstacle
problem is a special case of (13) for the bilateral obstacle problem by consideringk 6 1 only.

(ii) The link between (2), (3), (6) and (13) can be achieved through two inequalities resulting from
(13); that will be useful in what follows. In (13), we takeκ(x) = θ(x), which meansk = 1 in the
case of a bilateral obstacle condition andk = 0 in the case of a unilateral one. It follows that (with
T = ThIΩh + TpIΩp )∫

Q

u∂tζ dx dt 6
∫
Qp

(∇φ(u)+K(u)B) .∇ζ dx dt +
∫
Q

g(t, x, u)ζ dx dt

+

∫
Σhp

∇φ(θ).νh(1 + sgn(φ(u)− φ(θ)))ζ dHn

−

∫
Q

(1 + sgn(u− θ))T (θ)ζ dx dt. (16)

In (13), we takeκ(x) = 0 for the bilateral obstacle problem andκ(x) = M2(T )−ess sup̄Ω θ+θ(x)

for the unilateral one (so thatu− κ > 0 a.e.). One has∫
Q

u∂tζ dx dt >
∫
Qp

(∇φ(u)+K(u)B) .∇ζ dx dt +
∫
Q

g(t, x, u)ζ dx dt

+

∫
Σhp

∇φ(κ).νh(1 − sgn(φ(u)− φ(κ)))ζ dHn

−

∫
Q

(1 − sgn(u− κ))T (κ)ζ dx dt. (17)

Let V = (u,−IΩp∇φ(u) − K(u)B) in L2(Q)n+1. For anyζ in D(Qi), i in {h, p}, we takeζ+

andζ− as test functions in (16) and (17). By writingζ = ζ+
− ζ−, we deduce the existence of a

constantC such that ∣∣∣∣∫
Qi

V.(∂tζ,∇ζ )dx dt

∣∣∣∣ 6 C‖ζ‖L2(Qi )
.

That meansV|Qi ∈ Hdiv(t,x)(Qi) = {v ∈ L2(Qi)
n+1 : div(t,x) v ∈ L2(Qi)}. We deduce that

V|Qi .νi ∈ H
−1/2
00 (Σhp), the topological dual of

H
1/2
00 (Σhp) = {v ∈ L2(Σhp) : ∃w ∈ H 1

0 (Q), v = w|Σhp }.

In addition, we derive from (16) and (17) that a.e. onQi ,

− div(t,x) V|Qi 6 gi(t, x, u)− (1 + sgn(u− θ))Ti(θ),
− div(t,x) V|Qi > gi(t, x, u)− (1 − sgn(u− κ))Ti(κ).
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We multiply each inequality byζ in D(Q), ζ > 0, and add up with respect toi. By denotingb·, ·c
the pairing betweenH 1/2

00 (Σhp) andH−1/2
00 (Σhp) we obtain∫

Q

V.(∂tζ,∇ζ )dx dt − bV|Qh .νh + V|Qp .νp, ζc 6
∫
Q

(g(t, x, u)− (1 + sgn(u− θ))T (θ))ζ dx dt

and∫
Q

V.(∂tζ,∇ζ )dx dt − bV|Qh .νh + V|Qp .νp, ζc >
∫
Q

(g(t, x, u)− (1− sgn(u− κ))T (κ))ζ dx dt.

Now what follows is formal. We are interested in the bilateral obstacle problem (the reasoning for the
unilateral one being similar) and assume that [0< u < θ ] is an openHn-measurable subset ofQ.
We assume thatζ in (16) and (17) has compact support inQi∩[0 < u < θ ]. As (1+sgn(u−θ))ζ =

(1− sgn(u− κ))ζ = 0 a.e. and(1+ sgn(φ(u)−φ(θ)))ζ = (1− sgn(φ(u)−φ(κ)))ζ = 0Hn-a.e.,
we deduce that fori in {h, p},

div(t,x)(V|Qi ) = 0 onQi ∩ [0 < u < θ ],

that is, (2). Then, forζ with compact support inQ∩ [0 < u < θ ], by comparing (16) and (17) with
the above inequality, we get

bV|Qh .νh + V|Qp .νp, ζc = 0,

which is (6) in a certain sense. Furthermore, if we takeζ with support inQi ∩ [0 < u = θ ] and in
Qi ∩ [0 = u < θ ]—if it is meaningful—we find (3). Moreover, for any nonnegativeζ with compact
support inQ ∩ [0 < u = θ ],

bV|Qh .νh + V|Qp .νp, ζc =

∫
Σhp

∇φ(θ).νhζ dHn

and

bV|Qh .νh + V|Qp .νp, ζc >
∫
Q

T (θ)ζ dx dt.

Thus,
∇φ(θ).νh > T (θ) Hn-a.e. onΣhp ∩ [0 < u = θ ].

OnΣhp ∩ [0 = u < θ ], sinceK(0) = φ(0) = 0, for any nonnegativeζ with compact support in
Q ∩ [0 = u < θ ],

bV|Qh .νh + V|Qp .νp, ζc = 0 6
∫
Q

g(t, x,0)ζ dx dt.

2.2 Study in the hyperbolic zone

We derive from (13) and (14) an entropy inequality on the hyperbolic domain that will be the starting
point to establish a Lipschitzian time-dependence inL1(Ωh) of a weak solution to (1)–(6) with
respect to the corresponding initial data. To do so we need a lemma proved as in [1]:



338 L . LÉVI

LEMMA 1 Letu be a bounded measurable function onQ satisfying (13) and (14). Then for anyκ
as in Definition 1 and anyϕ in D(]0, T [ × Rn), ϕ > 0,

−

∫
Qh

Lh(u, κ, ζ )dx dt 6 − ess lim
τ→0−

∫
Σh\Σhp

|K(u(σ + τνh))|B(σ ).νhϕ(σ)dHn

+

∫
Σh\Σhp

|K(κ)(σ )|B(σ ).νhϕ(σ)dHn. (18)

In order to use the method of doubling variables, we now need a technical result already pointed
out in [11, proof of Proposition 1]. From (18) we find that for any open subsetΣloc of Σh andκ as
in Definition 1,

ess lim
τ→0−

∫
Σloc

|K(u(σ + τνh))−K(κ(σ))|B(σ ).νhβ(σ)dHn exists (19)

and there existsγ ∈ L∞(Σloc) such that

ess lim
τ→0−

∫
Σloc

K(u(σ + τνh))B(σ ).νhβ(σ)dHn
=

∫
Σloc

γκ(σ )β(σ )dHn (20)

for anyβ in L1(Σloc). In the following, (19) and (20) will be used withΣloc = Σhp or Σloc =

Σh \Σhp. We define the sequence(Wδ)δ>0 of functions onRn+1,

∀δ > 0, ∀p = (t, x) ∈ Rn+1, Wδ(p) = ρδ(t)

n∏
i=1

ρδ(xi),

where(ρδ)δ>0 is a standard sequence of mollifiers onR. We apply onΣh \Σhp the proof developed
in [12, Lemma 3.3] based on properties of mollifiers on the whole boundary to state:

LEMMA 2 Let u be a bounded measurable function onQh such that (19) holds. Then for any
continuous functionϕ onQh ∪Σh,

lim
δ→0+

∫
Qh

∫
Σh\Σhp

|K(u(p))|B(σ̃ ).νhϕ
(
σ̃ + p

2

)
Wδ(σ̃ − p)dHn

σ̃ dp

=
1

2
ess lim
τ→0−

∫
Σh\Σhp

|K(u(σ + τνh))|B(σ )νhϕ(σ)dHn

and

lim
δ→0+

∫
Qh

ess lim
τ→0−

∫
Σh\Σhp

|K(u(σ + τνh))|B(σ ).νhϕ
(
σ + p̃

2

)
Wδ(σ − p̃)dHn

σ dp̃

=
1

2
ess lim
τ→0−

∫
Σh\Σhp

|K(u(σ + τνh))|B(σ ).νhϕ(σ)dHn.

From Lemmas 1 and 2 we derive:

THEOREM 1 Letu1 andu2 be two bounded measurable functions onQh, with u1(t, ·) andu2(t, ·)

in Cθ a.e. onQh for a.e.t in ]0, T [, satisfying (18) and (15) respectively for initial datau0,1 and
u0,2. Then

for a.e.t in ]0, T [,
∫
Ωh

|u1(t, ·)− u2(t, ·)| dx 6 eMgh
t

∫
Ωh

|u0,1 − u0,2| dx.
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Proof. We choose in (18), foru1 written in variablesp = (t, x),

κ(x) = u2(t̃ , x̃)− θ(x̃)+ θ(x)

in the case of an (upper) unilateral constraint, while

κ(x) =


u2(t̃ , x̃)

θ(x̃)
θ(x) if θ(x̃) 6= 0,

0 else,

for a bilateral obstacle condition, and similarly in (18) foru2 written in variablesp̃ = (t̃ , x̃).
Furthermore in (18) foru1,

ϕ(p) = ζ

(
p + p̃

2

)
Wδ(p − p̃),

whereδ is positive and large enough, andζ ∈ D(]0, T [ × Rn), ζ > 0; and similarly in (18) foru2.
We integrate overQh in the p̃ variables foru1 and in thep variables foru2. We add up. Through
techniques developed in [8] we letδ → 0 on the left-hand side. Then the right-hand side goes to 0,
thanks to Lemma 2 foru1 andu2. It follows that

−

∫
Qh

{|u1 − u2|∂tζ − |K(u1)−K(u2)|B.∇ζ } dx dt

6 −

∫
Qh

sgn(u1 − u2)(gh(t, x, u1)− gh(t, x, u2))ζ dx dt.

For ζ ≡ αψ whereα ∈ D(]0, T [), α > 0 andψ ∈ D(Rn), ψ > 0, ψ ≡ 1 onQh, the Lipschitz
condition forgh provides

−

∫
Qh

|u1 − u2|α
′(t)dx dt 6 M ′

gh

∫
Qh

|u1 − u2|α(t)dx dt.

Whenα is an element of a sequence approximatingI[0,t ] , for t outside a set of measure zero, the
desired inequality is obtained thanks to the initial condition (15) foru1 andu2 and to Gronwall’s
lemma. 2

2.3 Study in the parabolic zone

We now consider the behaviour of a weak solutionu to (1)–(6) on the parabolic domain. With this
in view, we characterizeu onQp through astrongvariational inequality (in the sense of J.-L. Lions
[10]) including the contribution of entering data from the hyperbolic zone. Indeed:

PROPOSITION1 Letu be a bounded measurable function onQ such that∇φ(u) ∈ L2(Qp)
n and

(13) holds. Then∂tu ∈ L2(0, T ;V ′). Furthermore, for anyv in L2(0, T ;V ) such that for a.e.t in
]0, T [, φ−1(v(t, ·)) ∈ Cθ a.e. onΩp,∫ T

0
〈〈∂tu, v−φ(u)〉〉 dt+

∫
Qp

(∇φ(u)+K(u)B) .∇(v−φ(u))dx dt+
∫
Qp

gp(t, x, u)(v−φ(u))dx dt

+ ess lim
τ→0−

∫
Σhp

K(u(σ + τνh))B(σ ).νh(v − φ(u))dHn > 0. (21)
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Proof. Thanks to a density argument, (16) and (17) still hold for any nonnegativeζ in
D(0, T ;H 1

0 (Ω)). Now let ϕ ∈ D(0, T ;V ). Let ϕ̂ be an extension ofϕ to D(0, T ;H 1
0 (Ω)) and

takeζ = ϕ̂ξ% in (16) and (17), whereξ% ∈ W1,∞(Ω), 0 6 ξ% 6 1, and for any positive%,

ξ%(x) =

{
1 if x ∈ Ω̄p,

0 if x ∈ Ωh,dist(x, Γhp) > %, ‖∇ξ%‖∞ 6 C/%.

To pass to the limit as% → 0+, we claim that due to (19) (see [1]),

lim
%→0+

∫
Qh

K(u)ϕ̂B.∇ξ% dx dt = ess lim
τ→0−

∫
Σhp

K(u(σ + τνh))ϕ(σ )B.νh dHn.

This way, for anyϕ in D(0, T ;V ), ϕ > 0,∫
Qp

u∂tϕ dx dt 6
∫
Qp

(∇φ(u)+K(u)B) .∇ϕ dx dt +
∫
Qp

gp(t, x, u)ϕ dx dt

+

∫
Σhp

∇φ(θ).νh(1 + sgn(u− θ))ϕ dHn

−

∫
Qp

(1 + sgn(u− θ))Tp(θ)ϕ dx dt

+ ess lim
τ→0−

∫
Σhp

K(u(σ + τνh))ϕ(σ )B.νh dHn (22)

and ∫
Qp

u∂tϕ dx dt >
∫
Qp

(∇φ(u)+K(u)B) .∇ϕ dx dt +
∫
Qp

gp(t, x, u)ϕ dx dt

+

∫
Σhp

∇φ(κ).νh(1 − sgn(uε − κ))ϕ dHn

−

∫
Qp

(1 − sgn(u− κ))Tp(κ)ϕ dx dt

+ ess lim
τ→0−

∫
Σhp

K(u(σ + τνh))ϕ(σ )B.νh dHn. (23)

We write ϕ = ϕ+
− ϕ− and use (22)–(23) withϕ+ andϕ−. Sinceu is bounded andφ(u) ∈

L2(0, T ;V ) we find that there exists a constantC such as

∀ϕ ∈ D(0, T ;V ),

∣∣∣∣∫ T

0

∫
Ωp

u∂tϕ dx dt

∣∣∣∣ 6 C‖ϕ‖L2(0,T ;V ),

which ensures that∂tu ∈ L2(0, T ;V ′) (see Appendix of [3]). Thus,

∀ϕ ∈ D(0, T ;V ), −

∫ T

0

∫
Ωp

u∂tϕ dx dt =

∫ T

0
〈〈∂tu, ϕ〉〉 dt.

Thus by density, we may rewrite (22) and (23) withϕ in L2(0, T ;V ). Then we considerϕ =

(v − φ(u))+ and ϕ = (v − φ(u))− respectively, withv as in the statement of Proposition 1
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so that, due to the obstacle condition foru, (1 + sgn(u − θ))(v − φ(u))+ = 0 and respectively
(1 − sgn(u − κ))(v − φ(u))− = 0 a.e. onQp andHn-a.e. onΣhp. By adding up, inequality (21)
follows, which completes the proof of Proposition 1. 2

2.4 The uniqueness theorem

Theorem 1 ensures a uniqueness property in the hyperbolic zone. In the parabolic one, the lack
of regularity of the partial time derivative of a weak solution to (1)–(6) requires doubling the
time variable and uses a suitable time-integration by parts formula. Furthermore, to deal with the
convective terms, we assume that

ζ 7→ K ◦ φ−1 is Lipschitz continuous onφ(C∞
θ ). (24)

Then we have:

THEOREM 2 Under (24) problem (1)–(6) admits at most one weak solution.

Proof. Let u1 andu2 be two weak solutions to (1)–(6). Thanks to Lemma 1 and Theorem 1, we
know thatu1 = u2 a.e. onQh. In addition,θ being independent of the time variable onQp we may
choose in (21), foru1 written in variables(t, x),

v1(t, x) = φ(u1)(t, x)−
µαδ

‖αδ‖∞

sgnµ(φ(u1)(t, x)− φ(u2)(t̃ , x)),

and in (21) foru2 written in variables(t̃ , x),

v2(t̃ , x) = φ(u2)(t̃ , x)+
µαδ

‖αδ‖∞

sgnµ(φ(u1)(t, x)− φ(u2)(t̃ , x)).

For any positiveδ, set

αδ(t, t̃) = γ

(
t + t̃

2

)
ρδ

(
t − t̃

2

)
,

whereγ ∈ D(]0, T [), γ > 0, andδ is small enough forαδ to belong toD(]0, T [×]0, T [). To
simplify the writing we add a tilde to any function in thẽt variable;q stands for(t, x) while q̃
stands for(t̃ , x). By adding up (and settingwµ,δ(u1, ũ2) = sgnµ(φ(u1)− φ(ũ2))αδ), we obtain∫

]0,T [×Qp
〈〈∂tu1 − ∂t̃u2, wµ,δ(u1, ũ2)〉〉 dt dt̃ +

∫
]0,T [×Qp

∇{φ(u1)− φ(ũ2)}.∇wµ,δ(u1, ũ2)dq dt̃

6 −

∫
]0,T [×Qp

{K(u1)−K(ũ2)}B.∇wµ,δ(u1, ũ2)dq dt̃

+

∫
]0,T [×Qp

K(ũ2)(B − B̃).∇wµ,δ(u1, ũ2)dq dt̃

−

∫
]0,T [×Qp

{gp(q, u1)− gp(q̃, ũ2)}wµ,δ(u1, ũ2)dq dt̃

−

∫ T

0
ess lim
τ→0−

∫
Σhp

K(u1(σ + τνh))B.νhwµ,δ(u1, ũ2)dHn
σdt̃

+

∫ T

0
ess lim
τ→0−

∫
Σhp

K(u2(σ̃ + τνh))B̃.νhwµ,δ(u1, ũ2)dHn
σ̃ dt.
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To deal with the first term on the left-hand side, we use a time-integration by parts formula in
the same spirit as in [5, the Mignot–Bamberger lemma]. For the second integral on the right-
hand side, a Green formula is used since (24) ensures thatK(ũ2) = (K ◦ φ−1)(φ(ũ2)) belongs
toL2(0, T ;H 1(Ωp)). For the boundary integrals we argue that due to uniqueness in the hyperbolic
zone,u2(σ̃ + τνh) = u1(σ̃ + τνh) for a.e.(σ̃ , τ ). This way, as a consequence of (20),∫ T

0
ess lim
τ→0−

∫
Σhp

K(u2(σ̃ + τνh))B̃.νhwµ,δ(u1, ũ2)dHn
σ̃ dt

=

∫ T

0
ess lim
τ→0−

∫
Σhp

K(u1(σ̃ + τνh))B̃.νhwµ,δ(u1, ũ2)dHn
σ̃ dt

=

∫ T

0

∫
Σhp

γ (σ̃ )wµ,δ(u1, ũ2)dHn
σ̃ dt,

whereγ ∈ L∞(Σhp). It follows that

−

∫
]0,T [×Qp

(∫ u1

ũ2

sgnµ(φ(r)− φ(ũ2))dr

)
∂tαδ dq dt̃

−

∫
]0,T [×Qp

(∫ u1

ũ2

sgnµ(φ(u1)− φ(r))dr

)
∂t̃αδ dq dt̃

6 ‖B‖L∞(Qp)

∫
]0,T [×Qp

|K(u1)−K(ũ2)| |∇wµ,δ(u1, ũ2)|n dq dt̃

+

∫
]0,T [×Qp

div(K(ũ2)(B − B̃))wµ,δ(u1, ũ2)dq dt̃

−

∫
]0,T [×Σhp

K(ũ2)(B − B̃).νhwµ,δ(u1, ũ2)dq dt̃

−

∫
]0,T [×Qp

{g(q, u1)− g(q̃, ũ2)}wµ,δ(u1, ũ2)dq dt̃

−

∫ T

0

∫
Σhp

γ (σ )wµ,δ(u1, ũ2)dHn
σ dt̃ +

∫ T

0

∫
Σhp

γ (σ̃ )wµ,δ(u1, ũ2)dHn
σ̃ dt.

We letµ → 0. For the first integral on the right-hand side we refer to (24) and use the Saks lemma
to deduce that it goes to 0. Thus one has

−

∫
]0,1[×Qp

|u1 − ũ2|(∂tαδ + ∂t̃αδ)dq dt̃

6
∫

]0,T [×Qp
|div(K(ũ2)(B − B̃))|αδ dq dt̃ +

∫
]0,T [×Σhp

|K(ũ2)(B − B̃).νh|αδ dq dt̃

+Mgp

∫
]0,T [×Qp

|u1 − ũ2|αδ dq dt̃ +
∫ T

0

∫ T

0

∫
Γhp

|γ (t, s)− γ (t̃, s)|αδ ds dt dt̃ .

We return to the definition ofαδ to express its partial derivatives with respect tot andt̃ . This way we
may pass to the limit withδ through the classical argument of the Lebesgue points for an integrable
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function on ]0, T [: all the terms on the right-hand side tend to 0 (B being smooth) except the first
integral in the third line. The end is classical: it uses a piecewise linear approximation ofI]0,t [ for
t outside a set of measure zero. Thanks to (15) and to Gronwall’s lemma we complete the proof of
Theorem 2. 2

3. The existence property

3.1 The obstacle problem to the second order

We intend to approximate the weak solution to (1)–(6) by a sequence of solutions to viscous
problems deduced from (1)–(6) by adding a diffusion term only in the hyperbolic area. This is
in accordance with the proposed physical modelling of two layers in the subsoil with different
geological characteristics. So for any positiveε, we introduce

Tε,h(u) = ∂tu−

n∑
i=1

∂xi (ε∂xiφ(u)+K(u)Bi)+ gh(t, x, u),

and we consider the free boundary problem: find a measurable and bounded functionuε onQ such
that formally (for the bilateral obstacle problem)

0 6 uε 6 θ onQ, (25)

Tp(uε) = 0 onQp ∩ [0 < uε < θ ], Tε,h(uε) = 0 onQh ∩ [0 < uε < θ ], (26)

Tε,h(uε) 6 0 onQh ∩ [0 < uε = θ ], Tε,h(uε) > 0 onQh ∩ [0 = uε < θ ], (27)

Tp(uε) 6 0 onQp ∩ [0 < uε = θ ], Tp(uε) > 0 onQp ∩ [0 = uε < θ ], (28)

uε = 0 onΣ, uε(0, ·) = u0 onΩ, (29)

and to have a well-posed problem, we express the transmission conditions across the interface
(which will be discussed in Remark 6)

−ε∇φ(uε).νh = ∇φ(uε).νp onΣhp ∩ [0 < uε < θ ], (30)

uε|Qh = uε|Qp onΣhp. (31)

Our aim is to prove first that (25)–(31) has a unique weak solution and secondly to establish some
estimates suitable for the study of the behaviour of the sequence(uε)ε>0 whenε goes to 0+. We
obtain an existence result for (25)–(31) by using the artificial viscosity method—to regularizeφ—
and by relaxing the obstacle condition. That is why we start by introducing a Lipschitz bounded
extensionK? andg?i , for i in {h, p}, ofK andgi outsideC∞

θ through (for a generic functionf )

f ?(z) =


f (z) if z ∈ C∞

θ ,

f (lC∞
θ
) if z 6 lC∞

θ
,

f (ess sup̄Ω θ) if z > ess sup̄Ω θ,

wherelC∞
θ

= minC∞
θ depending on the unilateral or bilateral case. Forφ we choose an increasing

Lipschitz extensionφ? outsideC∞
θ , so that due to (11),(φ?)−1 exists and is a continuous function

onφ?(C∞
θ ).
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Then, for any positive parameterη, we setφ?η = φ?+ηIR andβ(x, u) = −u−
+(u−θ(x))+ for a

bilateral constraint (while for a unilateral obstacle conditionβ is reduced toβ(x, u) = (u−θ(x))+)
and letλε,η be aC1(Ω̄) approximation ofλε = IΩp (x)+ εIΩh such that

∃N > 0,∀ε > 0,∀η > 0, 0< λε,η 6 N a.e. inΩ,

‖∇λε,η‖∞ 6 C(ε)/η λε,η → λε a.e. onΩ asη → 0+.

This way we obtain (see e.g. [7])

THEOREM 3 There exists a unique solution

uε,η ∈ W(0, T ;H 1
0 (Ω) ∩H 2(Ω);L2(Ω)) ∩ L∞(Q)

to the nondegenerate-penalized problem:

∂tuε,η − div(λε,η(x)∇φ
?
η(uε,η)+K?(uε,η)B)+ g?(t, x, uε,η) = −

1

η
β(x, uε,η) a.e. onQ, (32)

uε,η(0, ·) = u0 a.e. inΩ. (33)

Now we state somea priori estimates for(uε,η)η>0 that are sufficient to study its limit whenη
goes to 0+. SetQs = ]0, s[ ×Ω, s in ]0, T ].

PROPOSITION2 There exists a constantC independent ofε andη such that:

∀t ∈ [0, T ], M2(t) 6 uε,η(t, ·) 6 M1(t) a.e. inΩ, (34)

‖β(x, uε,η)‖L1(Q) 6 Cη, (35)

‖λ
1/2
ε,η∇φ̂?η(uε,η)‖L2(Q)n 6 C, (36)

∀s ∈ ]0, T ], ε‖∂t φ̂?η(uε,η)‖
2
L2(Qs )

+
ε

2
‖λ

1/2
ε,η∇φ?η(uε,η)(s, ·)‖

2
L2(Ω)n

6 C, (37)

whereM1 andM2 are defined in (9) and (10) and̂φ?η(x) =
∫ x

0

√
(φ?)′η(τ )dτ .

Proof. For (34) we use a cut-off method inL1 by considering theL2(Qs)-scalar product of (32)
and sgn+µ (uε,η−M1(t)) for the majorization byM1, and− sgn−µ (uε,η−M2(t)) for the minorization
by M2. A cut-off method inL1 also provides (35). From the energy equality satisfied byuε,η we
derive (36). To conclude we take theL2(Qs)-scalar product of (32) andε∂tφ?η(uε,η). Concerning
the penalized term, we have

ε

η

∫
]0,s[×Ω

(uε,η − θ)+∂tφ
?
η(uε,η)

=
ε

η

∫
]0,s[×Ω

(uε,η − θ)+(φ?η)
′((uε,η − θ)+ + θ)∂t (uε,η − θ)+ dx dt

=
ε

η

∫
]0,s[×Ω

∂t

(∫ (uε,η−θ)
+

0
τ(φ?η)

′(τ + θ)dτ

)
dx dt

=
ε

η

∫
Ω

(∫ (uε,η(s,·)−θ)
+

0
τ(φ?η)

′(τ + θ)dτ

)
dx > 0.
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The same reasoning and the same sign condition hold for−(uε,η)
−. We bound the convective and

reactive terms by using (34), (36) and the Young inequality (see [9]). Thanks to the density of
D(0, T ;H 1

0 (Ω) ∩ H 2(Ω)) in W(0, T ;H 1
0 (Ω) ∩ H 2(Ω);L2(Ω)), the diffusive term is integrated

by parts and then with respect tot . Note that the constantC in (36) depends on‖φ(u0)‖H1
0 (Ω)

and
‖u0‖H1

0 (Ω)
. 2

If the parameterε is fixed,(φ?η(uε,η))η>0 remains at least in a bounded subset ofH 1(Q). As a

result, the compact embedding of the latter space intoL2(Q) and the continuity of(φ?)−1 provide
the existence of a measurable functionuε and a subsequence—still denoted(uε,η)η>0—such that
whenη goes to 0+, (uε,η)η>0 goes touε in Lq(Q), 1 6 q < +∞, and(φ?η(uε,η))η>0 goes toφ(uε)

weakly inH 1(Q) and strongly inC0([0, T ];L2(Ω)). This leads to

THEOREM 4 Problem (25)–(31) has at least a weak solutionuε such that

∀t ∈ ]0, T [, uε(t, ·) ∈ Cθ a.e. inΩ, (38)

φ(uε) ∈ W(0, T ;H 1
0 (Ω);L

2(Ω)), (39)

uε(0, ·) = u0 a.e. inΩ, (40)

and for anyv inW(0, T ;H 1
0 (Ω);L

2(Ω)), v(T , ·) = uε(T , ·) a.e. inΩ, such that for anyt in [0, T ],
φ−1(v(t, ·)) ∈ Cθ a.e. onΩ,∫

Q

∂tv(v − φ(uε))dx dt +
∫
Q

λε(x)∇φ(uε).∇(v − φ(uε))dx dt

+

∫
Q

K(uε)B.∇(v − φ(uε))dx dt +
∫
Q

g(t, x, uε)(v − φ(uε))dx dt

−

∫
Q

(uε − v)∂t (v − φ(uε))dx dt

+

∫
Ω

(u0 − v(0, ·))(φ(u0)− v(0, ·))dx > 0. (41)

REMARK 4 In (38), (40), (41) the trace ofuε with respect to the time variable has to be understood,
for anyt in [0, T ], asuε(t, ·) = φ−1(φ(uε)(t, ·)).

Proof. The obstacle condition (38) follows from (35), while (40) comes from (33) and from the
strong convergence of(φ?η(uε,η))η>0 to φ(uε) in C0([0, T ];L2(Ω)). To obtain (41) we take the

L2(Q)-scalar product of (32) andv − φ?η(uε,η). To study the penalized term, we write

−
1

η

∫
Q

(uε,η − θ)+(v − φ?η(uε,η))dx dt = −
1

η

∫
Q

(uε,η − θ)+(v − φ?(uε,η))dx dt

+

∫
Q

(uε,η − θ)+uε,η dx dt,

where on the right-hand side the first term is nonnegative and the second one goes to 0 (due to
(35)). The same reasoning is still true for the negative part ofβ(x, ·). For the evolution term, we
artificially introduce the quantity∂tφ(v)(φ(v) − φ?(uε,η)). Then we integrate by parts in time and
use the definition ofv. This allows us to take theη-limit. Just note that in the diffusive term we take
in fact the “lim inf” and apply the weak convergence of gradients inL2(Q). 2
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Now, we observe that

PROPOSITION3 If u1 andu2 are two weak solutions to (38)–(41) for initial datau0,1 andu0,2
respectively, then (withMg = Mgh +Mgp ),

for a.e.t in ]0, T [,
∫
Ω

|u1(t, x)− u2(t, x)| dx 6
∫
Ω

|u0,1 − u0,2| dx eMg t .

Proof. We develop the same reasoning (on the wholeQ) as in Theorem 2 (onQp) by doubling the
time variable and using the same test functions (recall thatθ is independent of the time variable
on the wholeQ). Observe that there are no boundary integrals here. Moreover, to deal with the
evolution terms, we perform first an integration by parts with respect to the time variable assuming
thatαδ has a compact support in ]0, T [×]0, T [. Then we apply the integration formula proved in
[9] through some convexity inequalities:

LEMMA 3 Let u be a bounded (by a constantM) measurable function onQ, andf a function
defined onΩ × [−M,M] such that for anyx in Ω, λ 7→ f (x, λ) is nondecreasing and continuous
and for allλ in [−M,M], x 7→ f (x, λ) is measurable and bounded onΩ and∂tf (·, u) ∈ L1(Q).
Then, for anyα ∈ C1([0, T ]), α > 0, such thatα(T ) = α(0) = 0,∫

Q

u∂t (f (x, u)α) dx dt =

∫
Q

(∫ u

v

f (x, r)dr

)
∂tα dx dt

for any measurable functionv bounded byM onΩ.

This way,∫
]0,T [×Q

u1∂t (sgnµ(φ(u1)− φ(ũ2))αδ)dq dt̃ −
∫

]0,T [×Q
ũ2∂t̃ (sgnµ(φ(u1)− φ(ũ2))αδ)dq dt̃

=

∫
]0,T [×Q

(∫ u1

ũ2

sgnµ(φ(r)− φ(ũ2))dr

)
∂tαδ dq dt̃

−

∫
]0,T [×Q

(∫ ũ2

u1

sgnµ(φ(u1)− φ(r))dr

)
∂t̃αδ dq dt̃ .

The conclusion follows. 2

3.2 The viscous limit

The uniqueness property stated in Proposition 3 ensures that the whole sequence(uε,η)η>0
converges touε whenη goes to 0+. Thus, by considering thea priori estimates of Proposition 2 for
(uε,η)η>0, we may derive some estimates for(uε)ε>0. Indeed, we have

PROPOSITION4
(uε)ε>0 is a bounded sequence inL∞(Q), (42)

and there exists a constantC independent ofε such that

ε1/2
‖∇φ̂(uε)‖L2(Qh)

n + ‖∇φ̂(uε)‖L2(Qp)n
6 C. (43)
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Relations (42) and (43) are not sufficient to study the behaviour of the sequence(uε)ε>0 when
ε goes to 0+: we also need an estimate of∂tuε in a suitable space. For this purpose, we prove that
uε satisfies an entropy inequality onQ that will also be used as a starting point to establish (13) for
the correspondingε-limit.

PROPOSITION5 Assume that
θ|Ωh belongs toH 2(Ωh). (44)

Then there exists a constantC independent ofε such that

‖∂tuε‖L2(0,T ;H−1(Ω)) 6 C. (45)

Proof. We setκ(x) = kθ(x), k ∈ [0,1] for a bilateral constraint, andκ(x) = k + θ(x), M2(T ) −

ess sup̄Ω θ 6 k 6 0 for a unilateral obstacle condition. We consider theL2(Q)-scalar product of
(32) andwε,ηµ ≡ sgnµ(φ

?
η(uε,η)−φη(κ))ζ , whereζ ∈ D(]−∞, T [×Ω), ζ > 0. We observe first that

the penalized term is nonnegative. The other integrals are subjected to the following transformations:
For the evolution term, withIµ(uε,η, κ) =

∫ uε,η
κ

sgnµ(φ
?
η(τ )− φη(κ))dτ ,∫

Q

∂tuε,ηw
ε,η
µ dx dt =

∫
Q

∂tIµ(uε,η, κ)ζ dx dt

= −

∫
Q

Iµ(uε,η, κ)∂tζ dx dt −
∫
Ω

Iµ(u0, κ)ζ(0, ·)dx.

For the diffusion term,∫
Q

λε,η∇φ
?
η(uε,η).∇w

ε,η
µ dx dt =

∫
Q

λε,η∇(φ
?
η(uε,η)− φη(κ)).∇w

ε,η
µ dx dt

+

∫
Q

λε,η∇φη(κ).∇w
ε,η
µ dx dt.

We develop the partial derivatives in the first term on the right-hand side and we use the fact that
sgnµ(.) is nondecreasing. To take the limit inη, we recall that due to (34) and (37),(wµ(uε,η, κ))η>0

is a bounded sequence inH 1(Q) ∩ L∞(Q), uniformly with respect toη and so, thanks to the
convergence properties of(uε,η)η>0 to uε , converges towεµ ≡ sgnµ(φ(uε) − φ(κ))ζ strongly in
Lq(Q), 1 6 q < +∞, and weakly inH 1(Q). Having taken theη-limit, we use the Green formula
in the second diffusion term by dividing the integration range intoQh (whereλε = ε) andQp
(whereλε = 1). We obtain

−

∫
Q

Iµ(uε, κ)∂tζ dx dt −
∫
Ω

Iµ(u0, κ)ζ(0, ·)dx

+

∫
Q

λε sgnµ(φ(uε)− φ(κ))∇(φ(uε)− φ(κ)).∇ζ dx dt

+

∫
Q

(K(uε)−K(κ))B.∇wεµ dx dt +
∫
Σhp

(ε − 1)∇φ(κ).νhw
ε
µ dHn

−

∫
Q

(λε∆φ(κ)+ div(K(κ)B)− g(t, x, uε))w
ε
µ dx dt 6 0. (46)
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We letµ → 0+ using the Lebesgue dominated convergence theorem and the Saks lemma to deal
with the first term in the third line (recall that (24) holds). It follows that

−

∫
Q

L(uε, κ, ζ ) dx dt −
∫
Ω

|u0 − κ|ζ(0, ·)dx

+

∫
Q

λε∇|φ(uε)− φ(κ)|.∇ζ dx dt −
∫
Q

λε∆φ(κ) sgn(uε − κ)ζ dx dt

+

∫
Σhp

(ε − 1)∇φ(κ).νh sgn(φ(uε)− φ(κ))ζ dHn 6 0. (47)

Now the arguments are similar to those developed in Proposition 1 to prove that∂tu is in
L2(0, T ;V ′). In (47) we assume thatζ is a nonnegative element ofD(Q) and so, thanks to a
density argument, we may chooseζ in D(0, T ;H 1

0 (Ω)), ζ > 0. Thus fork = 1 in the case of a
bilateral obstacle andk = 0 in the case of a unilateral one (so thatκ(x) = θ(x)), one has (with
Tε = Tε,hIΩh + TpIΩp )∫

Q

uε∂tζ dx dt 6
∫
Q

λε∇φ(uε).∇ζ dx dt +
∫
Q

K(uε)B.∇ζ dx dt +
∫
Q

g(t, x, uε)ζ dx dt

− (ε − 1)
∫
Σhp

∇φ(θ).νh(1 + sgn(φ(uε)− φ(θ)))ζ dHn

−

∫
Q

(1 + sgn(uε − θ))Tε(θ)ζ dx dt,

and forκ(x) = 0 in the case of a bilateral constraint andκ(x) = M2(T )− ess sup̄Ω θ + θ(x) for a
unilateral one (thusuε − κ > 0 a.e.) we have∫

Q

uε∂tζ dx dt >
∫
Q

λε∇φ(uε).∇ζ dx dt +
∫
Q

K(x, uε)B.∇ζ dx dt +
∫
Q

g(t, x, uε)ζ dx dt

− (ε − 1)
∫
Σhp

∇φ(κ).νh(1 − sgn(φ(uε)− φ(κ)))ζ dHn

−

∫
Q

(1 − sgn(uε − κ))Tε(κ)ζ dx dt.

For anyζ inD(0, T ;H 1
0 (Ω)), we writeζ = ζ+

−ζ− and use the previous two inequalities with
ζ+ andζ−. Thanks to the estimates of Proposition 4, and to the continuity of the trace operator from
V intoL2(Γhp) (so fromH 1

0 (Ω) intoL2(Γhp)), we prove the existence of a constantC (independent
of ε) such that

∀ζ ∈ D(0, T ;H 1
0 (Ω)),

∣∣∣∣∫
Q

uε∂tζ dx dt

∣∣∣∣ 6 C‖ζ‖L2(0,T ;H1
0 (Ω))

.

Thus∂tuε ∈ L2(0, T ;H−1(Ω)) and for anyζ ∈ D(0, T ;H 1
0 (Ω)),

−

∫
Q

uε∂tζ dx dt =

∫ T

0
〈∂tuε, ζ 〉 dt.

Thus estimate (45) follows, which completes the proof of Proposition 5. 2
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REMARK 5 By applying [9], we may assert that as soon as∂tuε ∈ L2(0, T ;H−1(Ω)) we can
perform a time-integration by parts in (41) so that the weak solution to (25)–(29) satisfies the
“strong” variational inequality for any measurable functionv ∈ Cθ a.e. onΩ with φ(v) in H 1

0 (Ω),

〈∂tuε, φ(v)− φ(uε)〉 +

∫
Ω

(λε∇φ(uε)+K(uε)B).∇(φ(v)− φ(uε))dx

+

∫
Ω

g(t, x, uε)(φ(v)− φ(uε))dx > 0 for a.e.t in ]0, T [.

REMARK 6 By reasoning as in Remark 3 and settingVε = (uε,−λε∇φ(uε)−K(uε)B) we show
thatVε|Qi ∈ Hdiv(t,x)(Qi) and a.e. onQi ,

− div(t,x) Vε|Qi 6 gi(t, x, uε)− (1 + sgn(uε − θ))Ti(θ),
− div(t,x) Vε|Qi > gi(t, x, uε)− (1 − sgn(uε − κ))Ti(κ).

Therefore if [0< uε < θ ] is an open subset ofQ,Hn-measurable, we obtain

div(t,x)(Vε,|Qi ) = 0 onQi ∩ [0 < uε < θ ],

which is (26), and for any nonnegativeζ with support inQ ∩ [0 < uε < θ ],

bVε|Qh .νh + Vε|Qp .νp, ζc = 0,

which corresponds to (30). Observe that (31) holds sinceφ(uε) ∈ H 1(Q). Finally, ∇φ(θ).νh >
Tε(θ)Hn-a.e. onΣhp ∩ [0 < uε = θ ].

To study the behaviour of the sequence(uε)ε>0 and characterize the corresponding limit we
need an additional assumption onφ:

φ−1 is Hölder continuous onφ(C∞
θ ) with an exponentτ in ]0,1[. (48)

We then have

PROPOSITION6 If (48) holds, then there exists a measurable functionu in L∞(Q), with u(t, ·) ∈

Cθ a.e. onΩ for a.e.t in ]0, T [, φ(u) in L2(0, T ;V ) and such that up to a subsequence, whenε

goes to 0+,

uε → u in L∞(Q) weak-?, and inLq(Qp), 1 6 q < +∞,

∇φ(uε) ⇀ ∇φ(u) weakly inL2(Qp)
n, ε∇φ(uε) → 0+ strongly inL2(Qh)

n.

Proof. The strong convergence inLq(Qp) for (uε)ε>0 refers to the arguments put forward
in [5, Chapter 2]. From (45) the sequence(∂tuε)ε>0 remains fixed in a bounded subset of
L2(0, T ;H−1(Ωp)) and due to (43), the sequence(φ(uε))ε>0 is bounded inL2(0, T ;V ) uniformly
with respect toε. Using the fact that

∀s ∈ ]0,1[, L2(0, T ;V ) ↪→ L2(0, T ;H 1(Ωp)) ↪→ L2(0, T ;W s,2(Ωp)),

we infer thatuε ≡ φ−1(φ(uε)) is bounded inL2/τ (0, T ;W τ s,2/τ (Ωp)). The compact embedding
of W τ s,2/τ (Ωp) into L2/τ (Ωp) and the J.-L. Lions compactness theorem ([10, p. 57]) ensure that
W ≡ {v ∈ L2/τ (0, T ;W τ s,2/τ (Ωp)) : ∂tv ∈ L2(0, T ;H−1(Ωp))} is compactly embedded in
L2/τ (0, T ;L2/τ (Ωp)). 2
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The above convergence properties for(uε)ε>0 are sufficient to characterize the functionu. In
the hyperbolic zone we take advantage of (42) and of:

CLAIM 1 (see [4]) IfO is an open bounded subset ofRq (q > 1) and (un)n>0 a sequence of
measurable functions onO such that

∃M > 0, ∀n > 0, ‖un‖L∞(O) 6 M,

then there exist a subsequence(uϕ(n))n>0 and a measurableπ in L∞(]0,1[ × O) such that for all
bounded continuous functionsf onO × ]−M,M[,

∀ξ ∈ L1(O), lim
n→+∞

∫
O
f (x, uϕ(n))ξ dx =

∫
]0,1[×O

f (x, π(α,w))dα ξ dx.

Such a result has first been applied to the approximation through the artificial viscosity method
of the Cauchy problem inRp for conservation laws, as one can establish a uniformL∞-control
of approximate solutions. It has also been applied to the numerical analysis of transport equations
since “finite volume” schemes only give anL∞-estimate uniformly with respect to the mesh length
of the numerical solution (see [4]). Here the approximating sequence is a sequence of solutions to
viscous problems (25)–(29) and we state:

THEOREM 5 If
(K ◦ φ−1)′ is continuous onφ(C∞

θ ), (49)

then (1)–(6) has a weak solution that is the limit inLq(Q), 1 6 q < +∞, of the whole sequence of
solutions to viscous problems (25)–(31) whenε goes to 0+.

Proof. Let u be as in Proposition 6. Since(uε|Ωh)ε>0 is uniformly bounded, there exist a
subsequence—still labelled(uε|Ωh)ε>0—and a bounded measurable functionπ—called aprocess—
on ]0,1[ × Qh such that for any bounded continuous functionψ onQh × C∞

θ and for anyξ in
L1(Qh),

lim
ε→0+

∫
Qh

ψ(t, x, uε)ξ dx dt =

∫
]0,1[×Qh

ψ(t, x, π(α, t, x))ξ dα dx dt. (50)

We first establish that onQh, the processπ is reduced tou|Ωh and secondly we prove thatu is a
weak solution to (1)–(6) for initial datau0. To do so, we return to (46) in order to take theε-limit and
then theµ-limit separately in the parabolic and in the hyperbolic zone. Thanks to the convergence
properties of(uε)ε>0 there are no difficulties passing to these limits in the integrals overQp. In
particular, for the convective term we refer to the Saks lemma. For the boundary integrals we use the
fact that(sgnµ(φ(uε) − φ(κ))ζ )ε>0 is a bounded sequence inL2(0, T ;V ) that weakly converges
to sgnµ(φ(u) − φ(κ))ζ in L2(0, T ;V ) up to a subsequence. Then we invoke the continuity and
linearity of the trace operator fromV into L2(Γhp). In the hyperbolic zone, we take theε-limit
thanks to (50) since all the nonlinearities are continuous with respect touε . However, the flux term

Iε,µ =

∫
Qh

K(uε) sgn′µ(φ(uε)− φ(κ))∇(φ(uε)− φ(κ)).Bζ dx dt

has to be carefully studied since we only have weak convergence of(uε)ε>0 and of(∇φ(uε))ε>0.
That is why we introduce

Hµ(v,w) =

∫ v

w

(K ◦ φ−1)(τ ) sgn′µ(τ − w)dτ.
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After an integration by parts with respect toτ , we obtain

Iε,µ =

∫
Qh

∇(Hµ(φ(uε), φ(κ))).Bζ dx dt

−

∫
Qh

(∫ φ(uε)

φ(κ)

(K ◦ φ−1)′(τ ) sgn′µ(τ − φ(κ))dτ

)
∇φ(κ).Bζ dx dt.

Thanks to the Green formula,

Iε,µ = −

∫
Qh

Hµ(φ(uε), φ(κ))(ζ div B + ∇ζ.B)dx dt +
∫
Σhp

Hµ(φ(uε), φ(κ))B.νhζ dHn

−

∫
Qh

(∫ φ(uε)

φ(κ)

(K ◦ φ−1)′(τ ) sgn′µ(τ − φ(κ))dτ

)
∇φ(κ).Bζ dx dt.

Sinceφ(uε) ∈ L2(0, T ;H 1(Ω)), for a.e.t in ]0, T [, (φ(uε)|Ωh)|Γhp = (φ(uε)|Ωp )|Γhp . We now
take theε-limit using (50). For the boundary integral, we argue as previously by noting that
(Hµ(φ(uε), φ(κ))ζ )ε>0 is a bounded sequence inL2(0, T ;V ). We get limε→0+ Iε,µ = Iµ where

Iµ = −

∫
Qh×]0,1[

Hµ(φ(π), φ(κ))(ζ div B + ∇ζ.B)dα dx dt +
∫
Σhp

Hµ(φ(u), φ(κ))B.νhζ dHn

−

∫
Qh×]0,1[

(∫ φ(π)

φ(κ)

(K ◦ φ−1)′(τ ) sgn′µ(τ − φ(κ))dτ

)
∇φ(κ).Bζ dα dx dt.

To letµ → 0+, we recall the definition of sign′µ and we use the fact that sinceK ◦φ−1 is continuous
on φ(C∞

θ ), (Hµ(v,w))µ>0 converges to sgn(v − w)K(w) a.e. onQh×]0,1[ andHn-a.e. onΣhp.
In the same way,(

∫ v
w
(K ◦ φ−1)′(τ ) sgn′µ(τ − w)dτ)µ>0 converges to sgn(v − w)(K ◦ φ−1)′(w)

a.e. onQh×]0,1[, by (49). From the Lebesgue dominated convergence theorem, it follows that
limµ→0+ Iµ = I where

I = −

∫
Qh×]0,1[

sgn(π − κ)(K(κ)B.∇ζ + ζ div(K(κ)B))dα dx dt

+

∫
Σhp

sgn(φ(u)− φ(κ))K(κ)B.νhζ dHn,

sinceφ is strictly increasing. Finally,

−

∫
Qp

Lp(u, κ, ζ ) dx dt −
∫
Qh×]0,1[

Lh(π, κ, ζ ) dα dx dt −
∫
Ω

|u0 − κ|ζ(0, ·)dx

+

∫
Qp

∇|φ(u)− φ(κ)|.∇ζ dx dt −
∫
Qp

∆φ(κ) sgn(u− κ)ζ dx dt

−

∫
Σhp

∇φ(κ).νh sgn(φ(u)− φ(κ))ζ dHn 6 0. (51)
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For ζ in D(]−∞, T ] ×Ωh), we deduce that

−

∫
Qh×]0,1[

Lh(π, κ, ζ )dα dx dt 6
∫
Ωh

|u0 − κ|ζ(0, ·)dx.

Therefore, following F. Otto’s ideas in [11], but here in the context of a process solution, we
established that

ess lim
t→0+

∫
]0,1[×Ωh

|π(α, t, x)−Λ(x)| dα dx 6
∫
Ωh

|u0 −Λ(x)| dx, (52)

whereΛ(x) = k(x)θ(x), k(·) being a measurable function onΩh, 0 6 k 6 1 a.e. inΩh for the
bilateral obstacle problem andΛ(x) = k(x) + θ(x), M2(T ) − ess sup̄Ω θ 6 k 6 0 a.e. inΩh for
the unilateral one. The initial condition (15) onΩh for π is obtained by choosing

Λ(x) =


u0(x)

θ(x)
if θ(x) 6= 0,

0 else,
for the bilateral constraint,

Λ(x) = u0(x)− θ(x) for the unilateral one.

Now to establish (14) forπ , we take advantage of the approximation properties ofu through
(uε)ε>0 and ofuε through(uε,η)η>0 to return to (32)–(33) and consider theL2(Q)-scalar product
(32) and∂1Hl(uε,η, κ)ζ , whereζ ∈ D(]0, T [ ×Ωh), ζ > 0, ζ(t, ·) = 0 onΓhp for any t in [0, T ],
and

∀l ∈ N?, Hl(z, w) =

(
(dist(z, [0, w]))2 +

(
1

l

)2)1/2

−
1

l
,

Ql(z, w) =

∫ z

w

∂1Hl(τ, w)(K
?)′(τ )dτ,

is the family of boundary entropy-entropy flux pairs introduced by F. Otto [11]. We emphasize that
∂1Hl(uε,η, κ)ζ ∈ W(0, T ;H 1

0 (Ωh);L
2(Ωh)) so that calculations may be performed as if we were

in a single domain. In particular, the Green formula does not give rise to integrals along the interface.
Since 06 ∂1Hl(uε,η, κ)β(x, uε,η) a.e. onQh,

−

∫
Qh

(
Hl(uε,η, κ)∂tζ −Ql(uε,η, κ)B.∇ζ −Gh,l(uε,η, κ)ζ

)
dx dt

6 −

∫
Qh

λε,η(∂1Hl(uε,η, κ)∇ζ + ζ∂2
21Hl(uε,η, κ)∇κ).∇φ

?
η(uε,η)dx dt,

taking into account the convexity of the functionξ 7→ Hl(ξ, ·) and

Gh,l(uε,η, κ) =

∫ uε,η

κ

(
(K?)′(τ )B.∇κ +K?(τ )div B

)
∂2

11Hl(τ, κ)dτ

+ g?h(t, x, uε,η)∂1Hl(uε,η, κ).

On account of the convergence properties of(uε,η)η>0, we take theη-limit. Then, as previously, we
take theε-limit thanks to (50). It follows that

−

∫
]0,1[×Qh

(
Hl(π, κ)∂tζ −Ql(π, κ)B.∇ζ −Gh,l(π, κ)ζ

)
dα dx dt 6 0.
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At this point, we adapt F. Otto’s work, which yields

ess lim
τ→0−

∫
]0,1[×Σh\Σhp

Ql(π(α, σ + τν), κ)B(σ ).νhζ dα dHn 6 0

for any ζ in L1(Σh \ Σhp), ζ > 0. The boundary condition (14) forπ follows by observing that
(Ql)l∈N∗ converges uniformly toF(z,0, κ) asl → +∞.

Soπ satisfies (14), (15) and (18) with similar integration ranges. This way, by reasoning as in
Theorem 1, ifπ1(α, ·, ·) andπ2(β, ·, ·) are two process solutions for initial datau0,1 andu0,2, then
for a.e.t in ]0, T [,∫

]0,1[×Ωh
|π1(α, t, x)− π2(β, t, x)| dα dβ dx dt 6

∫
Ωh

|u0,1 − u0,2| dx eMgh
t .

When u0,1 = u0,2 on Ωh, there exists a measurable functionuh on Qh such that a.e. onQh,
uh = π1(α, ·) = π2(β, ·) for a.e.α andβ in ]0,1[. Moreover, the uniqueness property warrants that
the whole sequence(uε)ε>0 strongly converges touh in Lq(Qh), 1 6 q < +∞. Thusuh = u|Ωh

a.e. onQh andu satisfies (12)–(14). To complete the proof of Theorem 5 we only need to check that
u satisfies (15). Owing to (52) we just have to concentrate onΩp. We consider (51) forζ(t, x) =

ψ(t)ζ(x) with ψ in D(]−∞, T [), ψ > 0, andζ in D(Ωp), ζ > 0:

−

∫ T

0

(∫
Ωp

|u− k|ζ dx + f (t)

)
ψ ′(t)dt 6

∫
Ωp

|u0 − k|ζψ(0)dx,

with

f (t) =

∫
Ωp

(∫ t

0
[−|K(u(τ, x))−K(κ)|B.∇ζ

+ gp(τ, x, u(τ, x)) sgn(u(τ, x)− k)ζ − |φ(u(τ, x))− φ(κ)|∆ζ ] dτ

)
dx.

Hence the functiont 7→
∫
Ωp

|u − κ|ζ dx + f (t) is identified a.e. with a bounded nonincreasing

function, so it has an essential limit ast goes to 0+, t in ]0, T [\O, whereL(O) = 0. Asf goes to 0
with t , it follows that

ess lim
t→0+

∫
Ωp

|u− κ|ζ dx 6
∫
Ωp

|u0 − κ|ζ dx

for anyζ ∈ D(Ωp), ζ > 0. As a consequence, thanks to F. Otto’s reasoning in [11] we obtain (with
Λ as in (52))

ess lim
t→0+

∫
Ωp

|u(t, x)−Λ(x)| dx 6
∫
Ωp

|u0 −Λ(x)| dx

and we argue as for (52), which concludes the proof of Theorem 5. 2

REFERENCES
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