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A transport formulation for moving fronts
and application to dislocation dynamics
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We consider hypersurfaces moving with normal velocity depending on the time-space coordinates
and on the normal to the hypersurface. We naturally define a measure associated to this hypersurface.
This measure is defined on a suitable space/unit normal/curvature configuration space. We show that,
while the hypersurface stays smooth, the measure is a solution to a linear transport equation, which
we call a transport formulation. In the particular case of curves moving in the plane, we get a simple
transport formulation. With this transport formulation in hand, it is then easy to complete the models
of dislocation densities that were proposed in the 60’s. As a consequence, we propose a closed mean
field model for the dynamics of dislocation densities.
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1. Introduction
1.1 Motivation

We are interested in the motion of a smooth bounded connected and oriented hypetiSudde&
with the first order geometric motion given by the normal velocity

V =c(@,y,n(,y)) (1.2)

wherer € [0, T) andy € RV denote respectively the time and space coordinatesp @ng) <
SN-1 denotes the unit normal tb, at the pointy (for a given choice of orientation). We denote by
K(t,y) e RQ%N the curvature of; at the pointy. This curvature is a symmetri¥ x N matrix,
and will be defined precisely later. For a givEn> 0, we define

r= J xnclo.r xR
t€[0,T)
To avoid any problem of regularity in this article, we will assume that
I'eC® and ceC3([0,T) x RN x SN-1y, 1.2)
vt € [0, T), TI;isC®bounded, oriented and connected '

It is well-known that we cannot expect in general existence of smooth solufjdies all time and
that singularities may happen in finite time.
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Our goal is to show that it is possible to provide a transport formulation of the motion of such
fronts. Our motivation comes from the modelling of dislocation dynamics, i.e. in the dynamics of
curves moving in their slip planes in crystals. Physically, it is interesting to be able to sum the
evolution of several lines to deduce statistical and mean properties of this dynamics. The challenge
behind this question is the possibility to describe the dynamics of densities of such curves. We refer
to the work of Sedicek, Kratochdl and Werner[[2]7], which was a source of inspiration for the
present article.

In this paper, we show that our first goal can be achieved, at least while the sdlutiays
smooth. Indeed, we prove (see Theofenj 4.1) that the “density”

g(t,y,n, K) =38r,(y)do(n —n(t, y))do(K — K(t,y)),
which is a measure far, y,n, K) € [0, T) x RV x SN—1 x ]RS’X,,XT]N, satisfies the equation
g +div(ag) + aog =0,

which is a linear transport equation for some functipnand a suitable vector field (which is

related to characteristics of Hamilton—Jacobi equations). The precise meaning and the details of
these expressions will be given later (see Subsefctign 1.3 and Thieofem 4.1). Let us mention that the
vector fielda has a quadratic growth at infinity, as a function of the curvafireThis naturally
creates some mathematical difficulties (which will not be addressed in the present paper) in getting
long time existence of solutions. This is obviously related to the fact that geometrically, the curvature
of I'; can become infinite in finite time.

We were tempted to call the equation satisfied sy ‘kinetic formulation”, but this terminology
has already been used to denote a powerful approach to nonlinear hyperbolic equations (see
Perthame [26] and the references therein). This approach allows one to get existence and uniqueness
results, even after the appearance of singularities of the solution. On the contrary, our transport
formulation only deals with smooth evolutions (even if it would be interesting to extend it after
the appearance of singularities). Let us also cite a related famous example of transport equation
associated to nonlinear evolution: this is the hamiltonian formulation of the Euler equation by
Oseledetd [24].

After our work was completed, we have become aware of the results by Hochrainer and Zaiser
[13] (see also Hochrainer [12] and Zaiser and Hochralnér [31]) that seem similar in the special case
of dimensionN = 2 for velocitiesc(z, y) independent of the normal these results being based on
the notion of Lie derivative of differential forms.

Our work focuses on transport formulations for hypersurfaces. In the appendix, we only give
some indications on how to get other transport formulations associated to the wavefront of the
evolution of submanifolds of codimension higher than 1, in particular for the case of the transport
of curves inR".

In the particular case of curves moving in the plane, it is possible to use a simplified description.
We can describe the normal = (cosd, sinf) by its angled € R/(2rx7Z) and choose a scalar
curvaturex € R. In this framework a transport formulation (see Theofem 2.1) is proposed for the
“density”

8(t,y,0,k) =6r,(y)8o(0 — 6(t, y))do(k — k(z, y)).

Finally, let us mention that our analysis does not cover the case of velocities depending on the
curvature itself. This would be an interesting extension in connection with random processes (see
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for instance Buckdahn, Cardaliaguet and Quincampgix [3], Soner and Touizi [28—-30]). We plan to
study this problem in a future work.

1.2 Organization of the paper

In Sectior 2, we present our main result in dimensibe: 2, namely Theorein 2.1 for the simplified
description. As an application, we also propose a model for the dynamics of dislocation densities
(see Subsectidn 2.2). In Sect|dn 3, we give the proofs of Theforgm 2.1 and of Progosition 2.2.

For completeness, we state in Secfipn 4 our main result in any dimeNsio® (Theorenj 4]1).
The proof is basically similar to the one of Theorem 2.1, but technically more involved. This is the
reason why we have chosen to present the result in general dimexfigotihe result in dimension
N = 2. The proof of Theorerp 4.1 is given in Sect{gn 5. In the appendix, for completeness, we
give in Subsectiop 6]1 the proof of Lemina]5.1; in Subseg¢tion 6.2, we give some indications about a
transport formulation of the motion of curvestY in the case of pure transport; and in Subsection
[6.3, we propose an alternative transport equation for the wavefront of curves moving in the plane
which is well-posed for long time existence of solutions.

1.3 Notation

For a smooth oriented hypersurfatein RV, we denote by:(z, y) € SV~ the unit normal tal;
at the pointy e I3, and byK (, y) € RY:Y its curvature, wher®{xV is the set of symmetric
N x N matrices. This matrix (¢, y) is given by

N-1
Kit.y)=Y Kifi®fi
i=1

where thek; are the principal curvatures and tlieare the principal directions of curvature of the
surfacel; at the pointy. Recall that thef;,i = 1,..., N — 1, generate the tangent hyperplane to
I; at the pointy. We use here the convention that for a sphere, if the normal is pointing outwards
from the ball, then the curvaturé§ are negative.

In dimensionN = 2, we set

n = (cosH, sinf), 1 = (Sinh, —coshH), (1.3)

where (z, n) is a positively oriented orthonormal basis. Depending on the context (but without
ambiguity) we will consider either generaln depending on the general variatsles R/(277Z)

(and sometimes denoted by), n(0) to clearly specify the dependence®x or depending on the
particular valué (¢, y) € R/(2nZ) which is the angle associatedit@, y) for y € I;. We will also
define the scalar curvatuk€tz, y) by

K, y)=«t,y)TQrT.

We denote byy andd, the derivatives respectively with respectt@and tox. With this notation,
we have in particular

0T =n, Ogn = —T.
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In any dimensionV, considering a positively oriented orthonormal bagis ..., ey), and for

N N .
tensc_:rsT = Zil ,,,,, iT =1T Sireip ® - @ eip, §= Zjl,.‘.,jrzl S/1>-~-»./Sejl ® - Qej, We define
the simple contraction of tensors

T"S: Z Z (Zzl ir-1.kSk ... )ell®"'®eir,1®ej2®"'®€js
wdr—1=1 j2,.js=1 k=

and the double contraction of tensors
N
T:5= ) Z (Z T, ir_z,l,kSkJ,jaw-,jS)eil ® - ®eir_, ®ej; @ ®ejy.

i1,....iT—2=1j3,...,js=1 k, /=1

Assuming that the tensaF depends ork € RYx", we define
N 3
kT = Z (1+5pq) Z (Wﬁl,...,q)ep@eq Qe Q- @ eir.
P.g= l i1,..ni7=1 rq

With this definition, we have for instancg : dx K = 7 if 7 is symmetric in its last two indices.
Similarly, for a tensofl” depending oy € RY, we define

N N

0

8),7':2 Z (3_7:1 ~~~~~ ir>ep®ell® “®eir.
p=1 igeniz=1 NP

Similarly, if the tensof7 (n) depends om e S¥—1 (among other pOSSIb|e variables), we consider
in a neighbourhood " ~1in RN and then defing;, i, (7) = Ti,....i, (i/lii]). We set

N N
0 ~
WTm=y > (W(Til ..... iT(n)))~ ep ®ei ® @ e

p=1i1,..,ir=1 p [n=n

We have in particular - 3, = 0 andd,n = I — n ® n with the identity matrixi = Z,N:l e D e;.
We also define

2T =0y(yT), 95,7 =0,(0,T). FT =0,0yT), 95,7 =0,(0,T) —n® 0,7,

where we can check thag, 7 is symmetric in its first two indices. We also &7 be the tensor
whose components are the time derivatives of the componefiis\6k set

D=8 +cn-dy, Dy=—I—-n®n)-dy+K-d.
Finally, in dimensionV = 2, we keep the same notation for defining

Dy =703y +«k0p
and write

2, - =0y(dy ). 0% =0y -). 8- =00(y ). 5 =d9(d ).

1. (9 af
5= (3y2>el+(3y1)62

For a functionf, we also set
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2. Resultin dimensionN = 2
2.1 Main result

In dimensionN = 2, let us consider a closed connected and oriented cirder r € [0, T) for
some fixedl' > 0, with the normal pointing outwards from the bounded set whose boundary is the
curve. At a pointy of the curve, we can write the unit normalz, y) = (cosé(z, y), siné(z, y))
with 6(z, y) € R/(2x7Z), and we denote by(z, y) € R the curvature (negative for a circle).
We set
c(t,y,0) =c(t, y,n));

by abuse of notation, we will continue to denote(it, y, ).
Then for any functionp € C([0, T) x R? x (R/(277Z)) x R), we define the distribution
gr(t, y,0,«) by

T
(gr,<p>=/0 dt/rw(t,yﬁ(t,y),/c(t,y)). (2.4)

Given any distributiory (with compact support in the variabtee R), we also define formally the
distributiong(z, y, 6) by

g::/dKD,g with D, =109, +«dg
R

wherer is defined in[(1.]), i.e. rigorously, for any € C2°([0, T) x R? x (R/(27Z))),

(8. V) = (D.g,¥) with ¥(t,v,0,k) =v¥(t,y,0). (2.5)
Then we have the following result:

THEOREM 2.1 (Equivalence geometric motion/linear transpdit= 2) Under the regularity as-
sumption [(1.R), if(I7); solves equation (1.1) on the time interval 0, then the distribution
gr(t, .0, k) defined by[(2.4) solves the equation

g +div(ag) + aog =0 inD'((0, T) x R? x (R/(2xZ)) x R) (2.6)
with
div(ag) = 9y - (ayg) + dp(apg) + 9 (arg) fora = (ay, ag, ac) (2.7)
and
ap = k(c + 8§9c) +7- 8}2,90, ay =cn —1tdpc, ag =T -dyc, 2.8)
a, =K2(c—|—8929c)+/<(n.8yc+21 -8}2,9c)—|—r®r : afyc. '

Moreover, ifg (with compact support in the variabtee R) satisfies equatiofi (3.6), théndefined
by (2.5) satisfies the equation

8 +divi@s) =0 iInD((0,T) x R? x (R/(2rZ))) (2.9)

with
div(a’g) = 3y - (ay8) + dg(asg) fora’ = (ay, ap). (2.10)

Finally, for g~ defined by[(2.4)¢  defined in[(2.p) satisfieg = 0.
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We note that a single planar curve is now represented as a measure on a space of dimension 4,
and this measure satisfies the linear transport equétidn (2.6). Note also that for a curve we necessarily
have gr = 0, which can be interpreted as a kind of compatibility condition. Moreover, this
compatibility condition is preserved by the equationgomecausg satisfies equatiofi (2.9).

Here, general distributiongcan be interpreted as the density of curves in the generalized space
of space/angle/curvature coordinates. We do not know if in some sense, any distripatitming
equation|(26) and satisfying = 0 can be written as a linear combination of measgresor a
possibly infinite number of evolutions.

We easily see by an integrationdrthatg = 0 implies (at least formally) that

dy - (/ T(0)g(t,y,0,k)do d/c) =0, (2.11)
R/(277Z) xR

which can be interpreted as a conservation equation, namely the conservation of the Burgers vector
along the dislocation lines, in the terminology of dislocation dynamics (see Laidrer [19]). From a
physical point of view (seé [2]), the Burgers vector of a dislocation line is an invariant associated to
the underlying lattice crystal. Mathematically this can be interpreted as the fact that the dislocation
line has to be a closed loop.

More precisely, we have the following result:

PrROPOSITION2.2 (Transport equation for the vectorial density)glfs a solution of [(2.6) on the
time interval (0, T'), then the vectorial distributiong satisfies, in(D’((0, T) x R? x (R/(2rxZ))
x R))?,

0=(tg) — Bj(cg) + (D:g)ay + 9 ((Drc)tg — ckng) + 9 (acTg). (2.12)

Equation |(2.1P) together with the assumptjpe= 0 shows in particular, by an integrationén
and«, that we have (at least formally) the following evolution equation for the reduced vectorial
density:

ad
—</ T©)8(1, v.6, ) dK) - a;(f (b, v, 0)8(t, .6, 1) 00 dx),
0t \JR/2nZ)xR R/(27Z)xR
(2.13)
which clearly preserves the divergence free propérty [2.11).

Let us mention the mathematical difficulty due to the fact that the vectordiblas a quadratic
growth in the curvature, which only allows one to expect short time existence of solutions to the
transport equation in general. See the appendix (Subsé¢ctipn 6.3) for a different possible transport
equation which overcomes this difficulty, and well describes the wavefront solution.

REMARK 2.3 After this work was completed, T. Hochrainer pointed out to me the following
important observation (see Hochrainer, Zaiser and Gumbsch [14]). For any distripstadisfying
(2.6) with compatibility conditiorg = 0, we can define

?(r,y,e)zf di g(t, v, 6, k), ?(t,y,@):/ de kg(t, v, 6, k).
R R
Then we get the compatibility condition

T-3yg + Kk =0
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and (using integration by parts) the system

g +dv@D) + (r- 8507 + (c + 35,0)c =0,

= . = 2 = . a2 = (214)

k: +divia'c) — (n-dyc+ 1 - Byec)fc —(T®T:0y5,08 = 0
with «’ defined in[(2.1D). A remarkable property of the linear sysfem [2.14) is that the coefficients
are bounded, which ensures the existence of a sol(gigon) for all time.

2.2 Application to dislocation dynamics

As an application, let us give a natural model for the dynamics of dislocation densities, using our
transport formulation.

To simplify the presentation, let us consider only one slip system in a tridimensional crystal
with orthonormal basise1, e2, e3), with dislocation curves moving in planes perpendiculagto
and with Burgers vectdr € R3 (with b - e3 = 0 for mobile dislocations without climb). We assume
that the density of such dislocations is represented by the quantity

g(t,x,0,k) Wwith x = (x1,x2,x3) € R®, 6 e R/(27Z), k € R.

The straire(r, x) € R3:3 solves orR? (see for instance Alvarez et £l1 [2]) the system

div(A:e) =0,
. . (2.15)
ince = (CUrkow(® ® B))sym With B(t,x) = / dode tg(t, x,0, k),

R/(27Z)xR
whereA = (A;jx)i, j k=123 IS the fourth order tensor of elastic coefficients, and the operater inc
is obtained by taking first the curl of the column vectors of the matrand then the curl of the row
vectors of the new matrix. The cwyy, is the curl of the row vectors of the matrix, and the subscript
( )sym means that we consider the symmetric part of the matrix. The quangty is called the
Nye tensor of dislocation densities. Here we set

T = (SinB)e; — (CO0SH)ez, n = (COSH)e1 + (Sinb)es. (2.16)

The normal velocity of the dislocations is proportional to the resolved Peach—Koehler force up to a
drag coefficient. Even if it is easy (using equatipn2.6)) to write the model for an anisotropic drag
coefficient, for simplicity let us restrict ourselves to the case where this coefficient is equal to 1.
Then the velocity is simply given by

ct,x) = (b ®e3z):e(t,x) (2.17)

and forx = (y, x3g) with y = (x1, x2), for eachxz € R, g*3(¢, v, 0, k) := g(¢, v, x3, 0, k) solves
equation[(2.6) with a normal velocity independendafefined byc*3(z, y, 6) = c(z, y, x3), i.e.

0=g"°+xcSg®+n- By (c™g™?)
+ 0y 09(18™%) + D (g3 (™, + kn - 0y + T R T 1 95,¢™)) (2.18)

O0=yg;+xcg+n-0c(cg) + dyc-dp(rg) + 8,((g(c1<2 +Kkn-hec+TRT: E)fxc)). (2.19)
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The complete system of equations satisfiec;by then [2.15)(2.16)F(2.17)—(2]19), with a choice
of the initial data satisfying the compatibility conditign= 0 in the notation[(2]5), i.e.

/ de {t-0,g +kdpg} =0.
R

This system is a generalization of the model of Groma and Balogh [10, 11] that was restricted to the
motion of straight line dislocations with curvature= 0 and only two possible anglés= 0 or .

See for instance El Hajj and Forcadel [8] for a mathematical analysis of the Groma—Balogh model
in a particular geometry. In equatign (2 19), the tefep can be interpreted as a source term created

by the curvatures of the dislocations. Our model is also a natural generalization of the model of
SedE&cek, Kratochyl and Werner[[2[7] whose transport equation was writtergfar y, x3), namely

Br = 35 (c|B).

This equation has to be compared to our equafion [2.13) which has more degrees of freedom, or
even to[(2.1IPR) o (2.19). We also underline that equafion [2.19) is a natural transport equation that
was missing for instance in the theory ofdfrer [17[ 18] and was under investigation in the theories

of Mura [23] or Kosevich[[15].

In the case where there are several slip systems, the contributions of all slip systems must be
summed on the right hand side of the equation givingzjrand each density solves an evolution
equation similar tg(2]6) in its own slip plane direction with its corresponding velocity. The complete
system will be studied in a future work.

Let us remark that our modél (2]15)—(2.16)—(2.17)—(2.19) only describes pure transport of dislo-
cation lines in a quite rough mean field model. For instance we do not treat self-annihilation of dis-
location lines, in contrast to the eikonal equation. We in fact describe only a kind of wavefront prop-
agation (as in Osher et &l. [25], see also the appendix of the present article). Moreover our mean field
model is really a zero-order approximation. A more realistic model would also contain some short
distance corrections similar to the homogenization problem studied in Imbert and Mohneau [15].
In a more realistic model, other source or collision terms should be added to describe Frank—Read
sources, annihilations of dislocations, cross-slip, etc. See for instance the approach of El-Azab [7, 6].

3. Proofs in dimensionN = 2
We start with the following result:

LEMMA 3.1 Lety e CL((0,T) x R?) and (I3), be a smooth evolution with normal velocity
c(t,y). Then

d .

—(/ 1,0) = / Dy —cky with Dy i= +cn - 9y (3.20)
dr I, r ’

wherey, n, k andc are evaluated at the current pointy).

Proof. We fix the timet, and consider a parametrization of the connected curvé; by the
curvilinear abscissa; the pointy (s) is associated t8 € R/(LZ), with L the length ofl; and
dy/ds = 7. Then we can parametrize the cuNg , by y; 1 for h small (even if the parametrization
is not by curvilinear abscissa) where

Vieh(8) =y (s) +r(h, s)n(s)
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andn(s) is the normal tol; at the pointy (s). Moreover,r(0,s) = 0 andr,(0,s) = c(, y(s))
(wherer;, stands folr/dh andrg stands for/ds). We compute

d
w<r+h,~)=/ dswr+h,yt+h<s>>‘d—yt+h<s)
Tin R/(LZ) S
=/ ds (1 + . y(s) + r(h, ML = r(h, 3T + ro(h, $)nl.
R/(LZ)
Therefore
d

—( I/f(l-l-hw)) =/ ds {y; +7,(0, $)n - 3y + Y (=74 (0, )k)}
dh \Jr,,, h=0  JR/(LZ)

(s +cn - 9yy — ckfr).
n
This ends the proof of the lemma.
LEMMA 3.2 Forany € C®((0, T) x R? x (R/(27Z)) x R) andg = gr, we have
(g1, 9) = (g, —ck@ +cn - 3yp + (D10)dgg + (D) 0) (3.21)

for any C extensiord (resp.c) of 6 (resp.c).

Proof. We have

We now compute usmg.O) withy (¢, y) = go(t,y,é(t,y),:?(t,y)), and the velocity
c(t, y,0(t, y)):

d ~ -
d_</ (P(I»Y»Q(taY)aK(t,Y))):f (¢t+9139(p+K[8K(p_CK(p)
t I, I

+/ en - {dyp + (8,0) 899 + (3y%) B ).
I
Then
T ~ ~
(&, 0) = / dr | (—ckp+cn-dyp+1{6; +cn-08,0}390 + {k; + cn - 0yk}0c¢),
0 I

which gives the result.
LEMMA 3.3 With the notation of Lemmnia 3.2, dn we have

D,0 = D,c,
D = a, + (35¢) (T - ,8),

whereq, is given in [2.8).
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Proof. We remark that the vector fielB, is tangent to the hypersurfa¢e This means thab,6
and D,k are intrinsic quantities only depending respectively on the valuésaofix on I". For this
reason, it is possible to compute these quantities, considering a particular parametrization of

We considel(tg, yo) € I'. Up to translation and rotation of the coordinates, we can assume that
to = 0 = yp and consider a local representation/ofs

z=u(t,x) fory=(x,z) with u,(0,00=0

where u, denotesdu/dx and the normal at0, 0) is (0,1) in the (x, y) coordinates. We set
Uy = 0%u/0x2, uy; = 0%u/0x0t, anduyy, = 3%u/9x291. In these coordinates, we have

Uy 1 2
0(t, x,u) = arctanu,, t,x,u) = ———, t,x,u) = ———(—uy, 1) € R
( X I/l) X K( X l/l) (1+M)2C)3/2 n( X M) m( “x )

We recall that locally in a neighbourhood @, 0), the functionu satisfies

up = c(t, x, u, arctanu, ),/ 1+ u2. (3.22)
For ¢ in a neighbourhood of zero, let us define the curveontained in™ by
y(@®) = (,0,u(t,0)
for which we have q
5(© = (1.0.1,(0.0)) = (1.0,¢(0,0.0))
which is exactly the vector field, evaluated at the origin, because we assumeuthagnishes at
the origin. Therefore

~ d - d
D;6(0,0,0) = E(Q oy)(0) = E(arctamx (t,0):1=0 = ux: (0, 0).

Similarly

uyx(t,0)

~ d 2 d
Dik(0,0,0) = (% o y)(0) = (Hiﬁ%ﬁﬁﬁ

— = U,y (0, 0).
dt )t:O o

Differentiating [3.2) with respect to, we get

uye = (1, uy) - dycy/ 14 u2 + dgc U +c Uaxlix , (3.23)
: Vi+uz  J1+4+u?

which implies that at the origin we have
D/6(0,0,0) = uy(0,0) = 7 - dyc + kdgc = D-c.
Differentiating now|[(3.2B) with respect tq we get at the origin
xxt(0,0) = (0, ) - dyc + (1,0) ® (1,0) 1 82, + 2(1, 0) - 3% c ur + D3gcu’,

2
+ 09C Uyxx + cuy,

=kn-0yc+TQ®T! 82 ¢ + 2t - 3§QC+K28926€+CK2+8QCMXXX

yy

+9 Gl Uxx
= da C — —_—
T 9x A F u2)32
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with a, given in [2.8). Hence
D(%(0,0,0) = 1y, (0,0) = a, + (dgc)( - dyi).

This ends the proof of the lemma.
LEMMA 3.4 With the notation of Lemnfa 3.2, we have
— | @) (T - 0yK)0cp = / D (pdpc) wWith Dy =1-03,+kdg
I; I
where the quantities in the integrands are evaluatéd ai, 6(z, y), (¢, y).

Proof. We consider a parametrizatignof the connected curvé&; by the curvilinear abscissg
the pointy (s) is associated t® € R/(LZ) with L the length ofl; and d//ds = t. Then we have
T - dyk = (dk/ds)(s). With an obvious abuse of notation, we denotediy), 6 (s) respectively the
curvature and angle associatedstd.e. k(s) = «(z, y(s)), 8(s) = 0(z, y(s)). For a generaC?!
functionG(y, 9, k), we have

dE(G(y(s), 0(s), k(s))) = {‘L’ <0y + kg + d—KBK}G (3.24)
s ds

where in particular we have used the fact thatdk = « (i.e. dr/ds = «n). We deduce that

dk die
(09C) =0 = / ds (09c)) - 0c@ + kdpp + T - dyp — Drg
I ds R/(LZ) ds

d
_ / ds (0c) % — / ds (d90) D
R/(LZ) ds R/(LZ)

= —/ ds {(E(agc)>§0 + (396)Dr¢}
R/(LZ) ds

= —/ ds {(D:(99c))¢ + (dpc) Do} = —/ D+ (pdyc)
R/(LZ) I

where we have usefl (3]24) with = ¢ in the second line, we have made an integration by parts in
the third line, and used (3.24) with = 8¢ in the fourth line. This ends the proof of the lemma.

LEMMA 3.5 For a general solutiopnof (2.6), we have
(D:g): + ay : (ayDrg) + d9(ag D g) + 9 (D (arg)) = 0. (3-25)

Proof. For two vector fields/1, V» and a given distributiorg, we recall the definition of brackets
[V, V2l
[V1, Valg = Vi(Vag) — Va(Vig).

We first compute the following brackets of vector fields for gengral

[D-, dy - (ay - g = (D:(3y - ay))g + (D-ay) - 3yg +ay - [D:, ay]g’
[D:, d0(ag - )1g = (D1 (d9ag))g + (Drag)dpg + ag[ Dz, dp]g,
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and
[Dr’ ay] =0,
[D:, 0] = —n- dy,
[Dz, 3] = — 0.

Applying the vector fieldD, to the equation
—& =aog + 9y - (ayg) + dp(asg) + dc(acg)
we get

—(D:g): = D:(aog) + 3y - (ayD:g) + dp(ag D g) + 9, (Dr(axg))
+[D-, dy - (ay g + [Dz, d9(ag -)]g + [D-, dcl(acg),

— (D7g); — 3y - (ayDrg) — dp(ag D g) — 0k (Dr(ax g))
= D-(aog) + [Dr, dy - (ay -)]g + [Dz, d(ap - )1g + [Dr, dc](arg)
= (Drao)g + aoD:g + (D (dy - ay))g + (Dray) - dyg
+ (D (09ag))g + (Dcag)dgg — an - 9yg — dg(arg)
= (Drag+ D:(9y - ay) + D (dpag) — dpa)g
+ (aot + D-ay —ay) - 9yg + (aok + Drap — a,)dpg
=0

because, on the other hand, we compute

D.ayg = a, — apk,
D:ay = a, — apr,
Dzao + Dr(ay 'ay) + D (3pag) — dpa, =0

where the last line is a consequence of the following computations:

dy - ay + dpag = 2n - dyc,
D:(9y - ay + dpag) = —2(kT - dyc —Kkn - 8}2,90 — ayzyc -(t,n)),

Drag — dpae = T - dyao — dg(Drag) = 2(kT - dyc — kn - ¢ — 7. - (T, n)).
This ends the proof of the lemma.

Proof of Theorerpi 2|1 Putting together the results of Lemmita 8.2] 3.3[and 3.4, we get,#og -,

(81, 0) = (g, —ckp +cn - dyp + (Drc)dgp + a0 + (9c) (T - 3yK) Dy )
= (g, —ckp +cn-0y¢ + (Drc)dgp + a0 — (9gc) D — 9 D (9p¢))
= (g, —aop + aydyp + apdpp + ax ok ),
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which leads to equatiofi (3.6). Integrating equaton (3.25) with respectdads to[(2.9). Finally,
for g defined in|[(2.4) and/ (, y, 6, k) = ¥ (¢, y, ) we compute

&r.v)

_ _ _ e
(D:g, V) =—(8r, D:¥) = —<gr, T-0yY + k¥ + d_I:a“//>

T
—/ dt/ TPt y)=0
0 I;

where in the third equality we have used the fact tiais independent ok, and in the fourth
equality we have used (3.24) with = . Finally, we have se/ (¢, y) = ¥ (t, v, 0(t, y), k(t, ).
This proves thag» = 0. This ends the proof of the theorem.

Proof of Propositof 2]2 We first multiply by the equation| (2]6) satisfied fgyto get

0= (rg); +aotg + 9y - (ay ® tg) + dp(aptg) — agng + dc(a,tg).

We compute

aoptg + 9y - (ay ® 18) — agng + dg(ckng)
=0y -(ay ®Tg) — agng +ndy(ckg) + K(Bgzgc)rg + (- 8}2,9c)rg
= (n-9y)(ctg) — (v - dy)((dpc)Tg) — (T - dyc)ng
+ nekdyg + nk (99c)g + {06 (k (Bpc)Tg) — Kk (dgc)ng — Kk (9pc)Tdog) + (1 - 92p0)T8
=ncD;g —nct - 9yg — (1 - dyc)ng + (n - dy)(ctg) — (T - dy)((Fpc)Tg)
+ 99 (k (3gc)Tg) — (Fgc)T D g + (Fgc)T(T - Dyg) + (T - 3y260)fg
= g (k(dpc)Tg) + (Drg)(cn — tdgc) — n(t - dy)(cg) + T(n - dy)(cg)
= g (k(dpc)Tg) + (Drg)(cn — Tdyc) — ayl(cg)
where we have used the explicit expressiom®in the second line, the explicit expressions:gf

andayg in the third line, and we have introduced the expressiobpf = 7 - 3,¢ + kdyg in the
fourth line. Therefore we get

0= (18); — 3y (cg) + (Drg)ay + 35 ((ap + kdgc)T8 — ckeng) + dc(acTg).

This ends the proof of the proposition.

4. Result in dimensionN > 2

We now return to our main result in dimensidh> 2. We use the notation of Subsectfon|1.3. We
consider a closed connected and oriented hypersufiafoe ¢ € [0, T') for some fixedl" > 0, with

the normal pointing outwards from the bounded set whose boundary is the hypersurface. At a point
y of I3, n(t, y) is the unit normal an& (¢, y) € R’s"y,an the curvature matrix (negative for a ball).

For(s,y,n, K) € [0, T) x RN x SN-1 x RS]X,,XHN, we define the measugg-(z, y, n, K) by

T
(gr. o) =/O dtfrw(t,y,n(t,y),K(t,y)) (4.26)
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for any test functioy € C°([0, T) xRN x SV ~1 xREXN). Given any distributior (with compact
support in the variabl& € RYx"), we also define formally the distributigi(z, y, n) by

g::/NNdK{Drg+n(I:K)g} with Dy =—-(I —n®n) -0y + K - 0y,
Rsym

i.e. rigorously, for anyy € C°([0, T) x RN x SN~1),

(8. %) = (Deg+n(:K)g,¥) with ¥(t,y,n,K)=1v(, y n). (4.27)
Then we have

THEOREM4.1 (Equivalence geometric motion/linear transpditz 2) Under the regularity as-
sumption [(I.R), if(I7), solves equation (111) on the time interval J0, then the distribution
gr(t, y, n, K) defined by[(4.26) solves the equation

g +diviag) +aog =0 in D'((0,T) x RY x SN 1 x RYxN) (4.28)
with
div(ag) = 9y - (ayg) + 3, - (ang) + 9k : (agg) fora = (ay,an, ag) (4.29)
and
ag=c(l :K)+ K : a,fnc—l : Bﬁyc, ay =cn+dyc, ay=—U—-n®n)-dyc,
ag :cKZ—i-K-afnc-K—}—(I —n®n)~8)2,yc-(1 —n®n) (4.30)

+(n-0y0)K —K-02c-I—n®n)—(I —n®n)-9%¢c-K
+K-0yc®n+n®K -0yc.

Moreover, fora := K - ng we have

o +div@®a) + Ag-a =0 in(D'((0, T) x RY x ST x RExV)N (4.31)
with

—Aog=cK+ K -0pyc—U—-—n®n)- ayznc +n® dyc+ (2n-dyc) —aog)l. (4.32)

Finally, for g, defined by|(4.26) we havE - ngr = 0 andg defined in ) satisfiegy- = 0.
Let us now make a few comments on this theorem.

The invariant manifold.We first remark that in the expressign (4.30)@f, the last two terms are

new in comparison tq (28). Moreover, these terms are the only terms not perpendieul@htar
existence is due to our choice of writing the equation&3nx S¥~1 x R <V, in order to preserve

K - n = 0 on the support of for all time, if it is true at the initial time (see the justification of
equation[(4.31)). This really means that we are interested in measures with support on the natural
manifold

M={(y.n K)eRY x SN xRExNV K -n =0},

whose dimension is the same as thaRdf x S¥ 1 x Ré’y\’nil)xw’l). This is obviously related to
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the fact (easy to check) that for any [0, T'), the vector field
a(X)=a(t,X) with X = (y,n K)

is tangent to the manifoldA. This means that it should be possible to represent (but probably less

simple to write) the transport equation as some transport equation on the mawifaimilar to

equation ). This also means that, while we keep our description on theRBagesV—1 x

RYXN  there are several equivalent transport formulations, because for what we have in mind, in
),K can be replaced bi - (I —n®n),or(I —n®n)-K,oreven(I —n®n)-K -(I —n®n).

Explicit solution based on characteristic#t is known (see for instance Lions [22] or LeVeqluel[21])
that the solutiorg of (4.28) is given (at least formally with the measyi@®, -) at the initial time)
for X = (y,n, K) by

g(t.Y) = g(0, X(0; 1, Y))e JoPoWt:Nd with  po(si1,¥) = (ap+ diva)(s, X(s:1, Y))

and d
d—X(s; t,Y)=a(s,X(s;¢,Y)), X(;t,Y)=Y.
S
In particular, defining for > 0,
7 (y.n(t,y), K(t,y) € RV x N1 x RN
"7 for y € I; with normaln(z, y) and curvature (z, y)

we have .
suppgr(t,-) = I;.

Therefore, ifY e I, thenX(t;0,Y) € I}, which shows (at least formally) that the solutions

X (t;0,Y) are the characteristics of the evolution. In particular, we get, as a result, the value
of the evolution of the curvaturewhich has to be related to curvature estimates in Cannarsa
and Frankowskd [5], Cannarsa and Cardaliaguet [4] or Alvarez, Cardaliaguet and Mdnneau [1].
Moreover, at least the first two componeritg + d,c, —(I — n @ n) - 9,¢) of this vector field

are similar to the characteristics of classical Hamilton—Jacobi equations with Hamiltgniann)

(see Evang ]9]).

The mathematical difficulty for long time existendéne principal mathematical difficulty in solving
equation[(4.2B) is the quadratic growth of the vector fielak a function of the curvatur€. This
means that, even for initial data with compact support, the support of the solution can go to infinity in
K in finite time (which corresponds to the appearance of geometric singularities of fronts, revealed
by infinite curvature). On the contrary, in the particular case where the hypersurface is transported
by a vector fieldV (¢, y), which means that the normal velocity is givenddy, y,n) = n - V (¢, y),
we can check that the vector fieddis at most linear in the curvatut€, anda, = V is exactly
the original vector field. This is natural, because it is well-known that linear transport equations do
not create singularities in finite time. See also the appendix (Subsgctjon 6.3 and Rerpark 6.5) for
indications how to overcome these difficulties using a different transport formulation.

We do not know if there are conservative quantities (other tkiamg, like maybeg) that can
be derived from this transport formulation of moving fronts. We do not know either what is the best
regularity that we can assume gnin order to satisfy the natural constraints like the conserved
quantities.
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5. Proofs in dimensionN > 2
We start with the following result which, for completeness, is proved in the appendix (Sgction 6).

LEMMA 5.1 Lety e C}((O, T) x RY) and (I;); be a smooth evolution with normal velocity
c(t, y). Then

d

—(/ w):/ Dy —c(I 1K)y with Dy =y, +cn - 9,y (5.33)
dr \Jr, L

wherev, n, K andc are evaluated at the current poinf y), and! : K denotes the trace of the
matrix K .

Then we have the following result:
LEMMA 5.2 Foranyp € C((0, T) x RV x S¥=1 x RQ%N) andg = gr, we have
(81 9) = (g, —c(I 1 K)¢ +cn - dyp + (Difd) - dngp + (D, K) 1 I ) (5.34)

for any C1 extensioni (resp.K) of n (resp.K).

Proof. The proof is similar to the proof of Lemnja 3.2, wifh (3.20) replaced by {5.33).
LEMMA 5.3 Consider a local parametrization of the hypersurfaees

z=u(t, x) fory=(x,z)eUCRN_1xR

whereU is an open set. Then with, = du/dx € RV~ andu,, = 8%u/3x2 € REmP*V =D we
y
have

1
n(t,x,u) = ——=(-u;. ) e RV"1 xR and K(t,x,u) = Flug, uy) € RYAY

V1+u?

where for anyM € R§m ™ NP andp € RV -1,

1 p-M-p
=— 17 S S (—p)®(—p, 1
F(M, p) \/sz{ (M)+(1+p2)2( P, DR (=p, D
M-p M-p
“({Fpo)ecrvrrve (o)
with
Myt jefl,...n—1),
(I(M))if_{o ifi=norj=n.

Proof. The only thing to prove is the expression of the curvature. In the case wher¢0, 1)
RY-1 x R, i.e.u, = 0, itis clear thatF (M, 0) = Z(M). In the general case where (0, 1), i.e.
u, # 0, we need to make a rotation of the coordinates in the plane generatedral0, 1), such
that in the new coordinates the surfaCes represented by = v(¢, X) with vy = 0. Then a full
computation (based on the inverse function theorem) is possible.
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We now give the details of the computation. We drop the time coordinate which does not play
any role in this computation. Up to a translation we can assume that we work close to the origin

whereu, (0) # 0. We choose an orthonormal baéis, . .., ey—1) such that
e1 = e (0).
1729
We set
xX'=0o, ..., xn_1) =X

FIG. 1. New coordinates by rotation.

We will consider the unit vectoE1 such that the orthonormal bagig1, n(0)) of the plane is
obtained by a rotation of the basis, ey) (see Fig[ [L), and define the new coordinates X y such
that

X1E1+ Xnn(0) = x1e1 +xyey  and X = (X1, X', Xn),

X1 =x1C08x + xy Sina, Xy = —x1Sina + xy COSx
for
. 1 ) uq
a = anglgey, n(0)) € (0,7/2), i.e. coxwx=-———, Sina=

/ 2’ 2
1+ug 1+ug

xy =u(xy,x’) & Xy =v(X1, X)

with u1 = du/dx1. We see that

for some new function which satisfies
v(x1 coSe + u(x1, x') sina, x’) = —xq Sina + u(x1, x’) cosa.

We compute by differentiation

v1(COSw + uj Sina) = — Sina + u1 CoSa,
viu; Sine +v; =u;cose, (i=2,...,N—1.

In particular we havex (0) = 0. Differentiating once again, we get at the origin

b= AL
(1+u3)3/2’
wn
V= s, i=2...,N-1
1+uf
Ujj

Vijj = 505,
YT @ ud)ie
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Then (withE1 = (cosa)ey + (Sina)ey, E] = (Cosa)E1)

N-1 N-1
KA+ ud)? = viuE1 @ E1+ Z vii(E1®ei + e ® E1) + Z vijei ® ej
i=2 i,j=2

N-1 N-1
= Y wijei®ej+ y_ un((Ey—e1) ®@e; +e ® (E — e1))
i,j=1 i=1

+u11(Eq — e1) ® (Eq — eq).
Using the fact that

ui
——(—uie1 +en)
1+uf

we see that we get exactlf = F (uy,, uie1), which ends the proof of the lemma.
LEMMA 5.4 With the notation of Lemn{a§.2, din we have

E:/L—elz

Din =~ —n®n)-dyc+ K -3¢ = D,

DK = ag — dc - 3,K,
with ax given in [4.30), and o,
(I -—n®n)-dyn=—-K. (5.35)

Proof. We proceed exactly as in the proof of Lemina]3.3. We considgry) € I". Up to
translation and rotation of coordinates, we can assumerghat 0 = yg and consider a local
representation of” as

z=u(t,x) fory=(x,z) with u,(0,00=0
where u, denotesdu/dx and the normal at0, 0) is (0,1) in the (x, y) coordinates. We set
Uer = 0%u/0x%, uy = 3%u/0x0t, andu,,; = 3%u/d%xdr. In these coordinates, the angleand

the curvatureX are given by Lemm@ 5| 3.
We recall that locally in a neighbourhood @, 0), the functionu satisfies

ur =c(t,x,u,n) 1+u)2c. (5.36)
Fort in a neighbourhood of zero, let us define the cyrveontained inl” by
y (@) = (t,0,u(,0).
Then

d d
Dlﬁ(o» Oa O) = a(ﬁ o V)(O) = E(n(t’ 03 M(L 0)))\1‘:0

d 1
= —| —(—u,(#,0),1 = (—u, (0, 0), 0).
dt( ﬁjw%(t’o)( u(t,0) )>|t=0 (—ux(0,0),0)
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Similarly

- d - d
DK (0,0,0) = E(K oy)(0) = E(F(uxx(l, 0), ux(,0)ji=0
= F[/W ('7 Ux (0, O))uxxt (07 0) + F[/] (MXX (07 O)v Ux (Ov 0))“)61‘ (Os 0)
=Z(uxxr) + (Uyx -y, 0) @ (0, 1) + (0, 1) @ (ryx - tixs, 0)

where all the quantities are evaluated at the or{@irD).
Differentiating [3.2P) with respect to, we get

Uyt = (0xC + Uxdyy € + 3yC - 1y) 1+u§+cM (5.37)
1+ u?

where
1

—_— (—u,, 1 . -
a+ u§)3/2( Uy, 1) @uyy - uy + ,;1 T I,t)zc
which implies that at the origin we have

(—uxx, 0),

Ny =

D;71(0,0,0) = (—ux(0,0),0) =~ —n®n) - dyc+ K - 9y¢ = Drc

and
(I —-nQ®n) dyn =—K.

Differentiating now ) with respect g we get at the origin (with contraction inin expressions
like ny - 32.c OF ny - 85, - ny)

Uy (0,0) = foc + 8§nc My F Uy OyyC + 0y afxc +ny - Bfnc “Hy + 0yC - Mgy + Cllyxy - Uyy

and then
L(uxy) = A+Z(0pc - nyx)

with
A= —-n®n) {03c—d%c K+ Kn-dye)—K-03c+K-32c K +cK - K}
-(I —n®n).

Hence .
D;K(0,0,00=B+C

with
B:A+K~D,c®n+n®K-Drc+K2~8nc®n—|—n®K2~3,1c=a1<

whereag given in [4.30) and
C =I(8nc-nm)—K2~8nc®n—n®K2-8nc.
On the one hand, at the origin

yy = —{(0,1) @ ttry - thyy + (Uyxx, 0)}
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and then (becaus ¢ is orthogonal tar)

0,C * Nyy = —Uyxyx * OpC.
On the other hand, at the origin

(F(uyx,ux))y = F[/W(v Uy)Uyxyx + F[/y(uxxa Uy )Uxy
=Z(uyxx) + (Uxy uxx, 0) @ (0, 1) + (0,1) @ (tyy - txx, 0)

and then

OnC - (F(uxx, ux))x = T(Uxxx - OpC) + Kzanc n+n® K?. dyC
= T(=dpc - nyx) + K20c@n+n® K2 - d,c = —C.

This shows that
D,K(0,0,0) = ax — d,c - 8,K,

and ends the proof of the lemma.

LEMMA 5.5 Lety € CL®RY)andV e (CLRY))V. Then
—f V-(I—n®n)-3y1ﬂ=/ w{(l—n®n)-3y}-V+/ v - VYU K).
rn r n

Proof. Fore > 0 we introduce
2. ={xeR":3yel;, x=y+rn,y) forsomer € (—¢, ¢)}.

For e > 0 small enough and € 2., there exists a unique = y(x) such thaty € I; and
x =y +rn(t, y). Then we can extend the fietdon £2, by

n(x) = n(t, y(x)).
Then 1
/nV~(I—n®n)'8y1//=£|i_r)nog/;ng~(l—ﬁ®ﬁ)-8yt//

and

—/ V-(I—ﬁ®ﬁ)-8yw=/ w{(l—ﬁ@)ﬁ)-ay}-V—/ YV @y - m)n + (1 - 9y)n}.
2 2 $2¢

Hence

[ vea—nem o= [ -nem-a)-v- [ WV (G Dit o,
n n i

For our choice of the extensiagn we have(7: - 9,)7n = 0, and in the coordinatesg, 7i1) we see from
(5.38) thatd, - 7 = —I : K, which implies the result.
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LEMMA 5.6 With the notation of Lemmnia§.2, we have
/ anc.ayk ) a =/ D; - (pdyc) With D =—(J —n®n)-9,+K -9,
I I

where the quantities in the integrands are evaluatéd aj, n(z, y), K (¢, y).

Proof. For a general smooth functian, we defineG (z, y) =G, y,n(t,y), K(t, y)). Thenonl”
we have

I—-n@n)-9,Gt,y)={I—-n®n)-d —K -9+ —n®n)-9,K : 9x}G  (5.38)
where in particular we have uséd (5.35). We deduce that
/ e - K 3K¢=/ e {I—n®@n)-3,K : 9k — K -390+ (I —n®n) - dyp + Drg)
n L
=/ Bnc-(l—n®n)-8y¢~)+/ opc - Dy
n rn
= | (—~o((I —n®n)-dy) - dpc+ dyc - Drg)

I

= {¢D: - 9y¢ + Opc - Dy} = / Dy - (¢9,¢)
I; I

where we have usefl (5]38) with = ¢ in the second line, Lemnja 5.5 in the third line, and (b.38)
with G = 9,,c in the fourth line. This ends the proof of the lemma.

LEMMA 5.7 For a general solutionof (4.28) andx := K - ng, we have
o +09y-(ay @)+ 9, (@, ®a) + 9k : (ag ® )+ Ag-a =0 (5.39)

with Ag given in [4.32).
Proof. We compute

—(K -ng)y = —K -ng;

K -n{aog + 9y - (ayg) + 9, - (ang) + 9k : (axg)}

aoK -ng+9y-(ay @ K -ng) + 9, - (a, ® K -ng) + g : (ax @ K - ng)
—(ang - 0)(K -n) — (akg : 9k )(K - n),

i.e.a ;= K - ng satisfies
ar +apa + 09y - (ay @ a) + 0, - (@, ® @) + 0k : (ag ® )
= (ang - 9)(K -n)+ (axg : 9x)(K -n) = K - apg +ax -ng = —(Ao —aol) -«

with
—(Ao—aol) = cK + K - 9%,c — (I —n®n) - 3,c +n ® dyc + 2(n - dyc)I.

This ends the proof of the lemma.
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Proof of Theorerfi 4]1The proof is completely similar to the one of Theorenj 2.1. Putting together
the results of Lemmafa §2, $.4 gnd|5.6, §o= g we get

(gr@) =(g,—c( : K)p+cn-0y¢+ Dic- 09 +ag : dge — 0yc - Byk D0k Q)
=(g,—c :K)p+cn-9y¢p+ Dc-0,¢ +ag : 9g@ — ¢ - Do — @Dy - 3y0)
= (g, —aop + aydyp + andpp + akxdx ¢),
which leads to equatiof (4.28). Equatign (5.39) is exatly {4.31). Finally, stiltfodefined in
(@.28) andy (¢, y. n, K) = ¥ (2, y, n),
(¢r.v) = (Deg+n(l: K)g, V)
= (g,n(I : K)Y¥ — D)
=(gn( Ky +U —n®n) -y =K -8,¥ +( —n®n)-3,K : dg )
T
= /O dr | (n(:K)Y(@t,y)+UT —n®n) -3,y y)}=0

I

where in the third line we have used the fact thiais independent of the curvatufg, and in the
fourth line we have used equati.38) with= v andv (¢, y) = ¥ (t, y, n(t, y), K(t, y)). For
the last line, we have used Leminal5.5 with=¢;, i = 1,..., N, succesively. This proves that
gr = 0, and ends the proof of the theorem.

REMARK 5.8 We remark that ik - ng = 0,then(/ —n®n) - K - 9,8 = K - 9,8+ (I : K)ng.
This last relation explains why the contribution of the ter(d : K) to the definition ofg - does not
vanish in general, even -~ = 0.

6. Appendix
6.1 Proof of Lemm@5]1

We consider a pointtg, yo) € I', and a local parametrizatiop : B,, — RY of I, in a
neighbourhood ofo, with B,; = B,,(0) C R¥-1andrg > 0. Then, in a neighbourhodd,, ,,, we
can parametrizé, ., for h small, byy’o*" defined by

yOth(x) = y(x) + r(h, x)n(x)

wheren(x) is the normakh to y at the pointy (x).
We will prove that formula[(5.33) holds, assuming moreover that

suppy C Uy, yo- (6.40)

Finally, using a partition of unity, we obtain the full formu[a(5.33) as in the lemma.
We now prove[(5.33) assumirig (6]40). We hav®, x) = 0 andr; (0, x) = c¢(t, y(x)) (Where
ry, stands fodr/dh, r; stands fodr/dx;, andr;;, stands fod?r/dx; dh). We compute the jacobian

. h h
Jn = lap| with (@, ) =dety"™, ... 27,9
where we have set h
ay'o on
it0+h = Vi +rin+r— (6.41)
3xi ax,-
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and similarlyy; = dy/ox; fori =1,..., N — 1. We have

Fro+h

Therefore

d
—< Kﬁ(t+h,-)) 2/ dx (Y + ra (0, x)n - dy¥) Jo + ¥ Jo)
1‘[0+h |h=0 Bro

dh
: (dfh) ao - dg
JO = | — =
dh |h=0 |a0|

with ap = (day /dh) 0. On the other hand, we have

with

2 to+h to+h
|ah| zdei(yl 1~-~ayN,]_7ah)

which by differentiation gives

N-1
2ag - a6 =dety1, ..., YN-1, a(')) + Z det(yy, ..., yl_t()/’ ..., YN—1, o)
i=1

with (from (6.40))

9 .to-‘rh 9
y = ( . > Zrih(o,x)n—i-rh(o,x)—n-
|h=0 0xi

Xi

Therefore
N-1 an

ap - ap = Z det(yl,...,rihn +rh§, e YN-1, a0>.
i=1 i

Using in particular the fact thak is parallel ton, we deduce that

N-1

_ ., 0n/dx;
ao - ay = (0, )laol% with k= i, On/dx) |:|/2 i),
i=1 !

A direct computation in local coordinates shows that —1I : K, which gives
Jo=—c : K)Jo.

Finally, (6.42) implies

d

—</ w(l‘-i-h,-)) z/ dxJo{y: +cn -y —c( : K)y}
di \J g h=0 By,

= | {Yir+en-0y—cl:K)y}

T

This ends the proof of the lemma.

405

Y(to + h, -)=/ dx ¥ (to + h, Y (x)) =/ dx Y (t + h, y (x) +r(h, x)n)Jy.
By, By,

(6.42)
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6.2 Case of a curve transported in dimensitn

In this subsection, we consider a curig transported irR" along a vector field(z, y) € RY, in
dimensionN > 2. Here we use the notatiavi rather thanV for the dimension, becausé can be
different from N, as in the application given in Subsectfon|6.3. We also emphasize that we do not
consider the case of “normal velocity”, possibly depending on the unit tangent vector to the curve

T';, which we denote by € V1.
Letx € R" be the curvature vector of the curde= dz/ds, and set

&=, y, T, k) = 8, (¥)00(T — T(1, y))do(k — Kk (2,7)). (6.43)

Then we have:

PROPOSITION 6.1 (Linear transport equation in the phase space for geometric transport of a
curve inR’D Assume that a smooth curvg; is transported irR" along a smooth vector field
¢(1,7) € RV. Then the distributiory = ¢__ defined in((6.4B) satisfies

g +div(@g) +aog =0 (6.44)
with
ao=c¢-%, ay=(I—-7T®7)-¢, ar=I—-T®T)-(T-d0),
Gr=(-T®T) - {K- (e +TRT: 950} — KRT+T ®K) - (T - &0).
The proof of Propositiop 6]1 uses the following result (analogous to Lgmra 5.1):

LEMMA 6.2 For a smooth curvg, transported RN along a smooth vector fieldlr, y, 7) € RN
(which is not assumed to be perpendicular}ofor any smooth functiorny we have

d(/ 1ﬂ>=/ DIW_E'Elﬂ with Dtl/’=‘ﬁt+5(l—?®?)iﬁx//
r;

dr T,

Sketch of proof of Proposition 6.1To get equation[(6.44), we simply follow the lines of our
approach for hypersurfaces. For a general vector fiéddy, T) (which here depends on), we
get

(8.9) =(g,—C-kp+c-(I—-TQ®T) - dy¢ + DiT - 0z¢ + Dik - Ixg)

with
DT =D,c with D,=(I-T®7)-(T-d5+F%-d),

Dk=azr+(I-T®7)- (@%)

ds (6.45)

ag = (1—?®?)-{E-%E+?®?:8%E+2?-8§7E~E+E®
~KR®TH+TRK) (T ¢ +K - 3C).

c 02 =
1 0Z.c}

=|

Indeed, we see that in the expressiongf ¢), there is a term

ro0- (5 o7)
(I—-7TQ®7T) | 40 kg
ds
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where dz¢ is a matrix. Because of this new term, we cannot use the trick applied in the case
of hypersurfaces, where we rewrote this term, essentiall§-agimes (di/ds) - dg¢, and then
concluded by an integration by parts.

Nevertheless, in the case where the vector fieddindependent of, we easily find thap solves

equation[(6.44).

6.3 Application to another transport formulation for a curve moving in the plane

Let us remark that the formalism of Subsecfior] 6.2 can be applied to the particular case of a curve
I'; moving in the plane with a normal velocityz, y, ), to which we associate the corresponding
curve in the space/angle coordinates

= _|7=0.00 e R? x (R/(27Z)) (6.46)
| for y e I, with unit tangent vectot (¢, y) = (sind(z, y), —cos(z, y)) | '
The curvel”; moves with velocity
¢, y) =d'(t,y,0) with 3= (y,0) € R?> x (R/(2xZ)) (6.47)

wherea’ = (ay, ag) is defined in Theore@.]]\/( = 2). Here this velocity does not dependBn
the unit tangent vector t6';, which is given by

o 1
T(,y) = ——=(1,k)

V14k?

wherex (¢, y) is the (scalar) curvature of the original curie
Applying now Propositiof 6]1 witiv = 3, we get the following result:

COROLLARY 6.3 (A transport equation associated to a curve, with at most linear growth in its
coefficients) For the curvé’; defined in ), the distributiog. satisfies equatimﬁ (6.%14) with

coefficientsz, @o given in [6.45) wher€ is defined in[(6.47) witfiv = 3. Moreover, the vector field
a has at most linear growth in the curvature vea@atefined in Subsectign §.2.

The advantage here to considér in place ofI; is that the curvd, stays regular for all time
(this is the wavefront; see for instance Osher et al. [25] for the wavefront associated to curves and
Leung, Qian and Oshéer [20] for the wavefront associated to surfaces), Whida become singular
in finite time. At the level of the transport equati.44) satisfieg.byn Corollar , the nice
property is that the vector field has at most linear growth . A consequence is the existence of
solutions of [(6.414) for all time in that case.

REMARK 6.4 From the previous point of view, it is natural to ask if there are some relations
between first order evolution of curvesit and second order evolution of curves in the plane.

REMARK 6.5 Similarly, it could be interesting for hypersurfadéso consider

+ _ |¥=0.n ) e RY x sV
"7 )or y € I} with unit normal vecton (¢, y)
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and to try to write a transport equation for the measure
g+ (t, .7, K) = 8, (3)do(@ — 7(t, 7))50(K — K(1, 7))

wherern(t, y) defines the tangent space (of dimensin- 1) to T'; aty, andK (¢, y) defines its
curvature. It would also be interesting to see how to extend this method for the evolution of general
submanifolds of arbitrary codimension.
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