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We give a first comprehensive description of the stable solutions of the periodic isoperimetric
problem in the case of lattice symmetry. This result is intended to elucidate the geometry of certain
sophisticated interfaces appearing in mesoscale phase separation phenomena. We prove that closed,
stable, constant mean curvature surfaces inR3/Γ , Γ ⊂ R3 being a discrete subgroup of translations
with rank k, have genus6 k. Finally, we extend the genus estimate to ambient spaces of the type
M × R, whereM is a nonnegatively curved surface.

1. Introduction

Let Σ be a compact two-sided surface with constant mean curvature in a flat 3-torusT 3
= R3/Γ

obtained as the quotient ofR3 by a latticeΓ . We say thatΣ isstableif it minimizes area up to second
order for volume preserving deformations. This kind of surfaces appear, in particular, as solutions
of the isoperimetric problem, which consists in describing area minimizing surfaces among those
enclosing a given volume; see [23] for a general introduction to this topic. In this paper we will
give a rather complete description of the geometry of closed, embedded, stable, constant mean
curvature surfaces in a flat 3-torus. These surfaces may be used to model mesoscale phase separation
phenomena in materials science (see [2, 3, 5, 9, 24] and references therein). As an example we
can consider diblock copolymer melts. They are made up of two distinct polymer chains which
are covalently bonded together. Under suitable conditions, the repulsive interaction between the
different blocks causes the system to phase separate. The connectivity of the copolymer chains
prevents macroscopic phase separation, and so block copolymer systems self-organize into periodic
mesophases. Figure 1 contains the most frequent configurations appearing in this context: lamellar,
body centered sphere packing, hexagonal cylindrical packing, perforated lamellar (with genus 2,
modulo translations) and SchwarzD surface and Schoen GyroidG (these last two surfaces have
genus 3). Assuming the dominant term of the energy of the system is the area of the interface,
the periodic isoperimetric problemis the simplest geometric model to explain the shape of these
interfaces: we prescribe the periodicity and the volume fraction and we minimize the interfacial
area. Note that the interfaces above match with the different items of the theorem below.

THEOREM 1 LetΣ be a compact, orientable surface embedded with constant mean curvature in a
flat 3-torusT 3, andΣ̃ ⊂ R3 its preimage inR3. If Σ is stable, then it is one of the following:

(1) A finite collection of parallel planar 2-tori.
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FIG. 1. Mesoscale phase separation in diblock copolymers [13].

(2) A round sphere.
(3) A (2-torus obtained as a quotient of a) circular cylinder.
(4) A connected surface of genus 2 such that the connected components ofΣ̃ are doubly periodic.
(5) A surface of genus 3 whose preimagẽΣ has triply periodic connected components.

Recall that a compact orientable surface is topologically equivalent to a 2-sphere with finitely
many handles and that the number of handles added is called thegenusof the surface. Thus, the
genus of the 2-sphere is zero and a 2-torus has genus one.

Theorem 1 will be proved as a consequence of Theorem 2 below. The structure of the space of
stable surfaces of genus 2 and 3 still remains unclear. So, it could be useful to keep in mind the
following tentative description.

CONJECTURE1 Given a 3-torusT 3, the moduli space of closed, stable, embedded, constant mean
curvature surfaces of genus 3 inT 3 with connected preimage inR3 can be naturally represented, if
nonempty, by a connected, smooth convex arc in the (volume, area)-plane, which is symmetric with
respect to the axis volume= volume(T 3)/2.

The hard part of the above statement is the connectedness of the moduli space. In the case of the
simple cubic torus, the conjectural shape of this moduli space is given in Figure 2. Conjecture 1
extends to stable surfaces of genus 2. In this case the moduli space should be described by a
connected convex curve in the (volume, area)-plane that projects injectively on both the volume
and the area axes.

Among self-assembled materials, mesoscopic wetting phenomena are particularly related to
doubly periodic, stable, constant mean curvature surfaces (see [12]): under suitable conditions, a thin
layer of liquid wetting a hydrophobic planar surface produces a pattern as in Figure 3b, exhibiting
a periodic array of dry spots. As doubly periodic constant mean curvature surfaces always have a
horizontal mirror symmetry (assuming the prescribed translations are horizontal), it follows that the
corresponding periodic isoperimetric problems inR3 and in the halfspace{x3 > 0} are equivalent.
As another consequence of Theorem 2 below, we conclude that the assumptions
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FIG. 2. Conjectural isoperimetric profile (at the bottom) of the simple cubic 3-torusR3/Z3: spheres for small and large
volumes, planes for middle values and cylinders for some range between them. According to Surface Evolver experiments
[22], the isoperimetric problem in other 3-tori, like the face centered cubic torus, should admit solutions of genus 2. The
curve at the top represents the moduli space of the most symmetric constant mean curvature SchwarzP surfaces inR3/Z3, as
computed numerically in [2]. The dashed arcs correspond to unstable surfaces. Stable surfaces should consist of a symmetric
subarc of the continuous red arc. Ross [27] has proved that the minimalP surface, enclosing a volume equal to 1/2, is stable.

(i) the pattern is doubly periodic,
(ii) the volume fraction of liquid is given,

(iii) the energy of the system is just the area (per unit cell) of the liquid surface,

predict the right experimental wetting phases: after reflection in the horizontal plane we obtain either
round spheres, horizontal right cylinders, or constant mean curvature doubly periodic surfaces with
genus 2 (modulo translations), like those in Figure 3.

FIG. 3. (a) Doubly periodic surface with constant mean curvature and genus 2 (modulo translations). These surfaces were
first constructed by Lawson [11] as conjugate surfaces of minimal surfaces in the 3-sphere. (b) Periodic pattern formed by
a thin layer of liquid on a planar surface, [12]: this self-assembled wetting phenomenon may be modeled by stable doubly
periodic constant mean curvature surfaces.

LetΓ ⊂ R3 be a discrete subgroup of translations with rank(Γ ) = k andΣ a compact orientable
surface with constant mean curvature in the flat 3-manifoldR3/Γ . If k = 0, then Barbosa and do
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Carmo [4] proved that the only stable surfaces are round spheres. For 16 k 6 3 it is known that, if
Σ is stable, then it must be either a union of planar surfaces or a connected surface of genus smaller
than or equal to 3 (Ros [25]). This result is sharp fork = 3 as Ross [27] has proved that the classical
SchwarzP minimal surface (of genus 3) in the simple cubic torusR3/Z3 is stable.

The next theorem improves the estimate of the genus of stable surfaces whenk = 1 and 2. We
will obtain the sharp result genus(Σ) 6 k.

THEOREM 2 LetΣ be a compact two-sided surface with constant mean curvature immersed in the
flat 3-manifoldR3/Γ , Γ being a rankk discrete subgroup of translations ofR3, 0 6 k 6 3. If Σ

is stable, then it consists of either a finite family of planar surfaces, or a connected surface of genus
less than or equal tok.

Moreover, in the latter case, if genus(Σ) = 0 or 1, thenΣ is either a round sphere or (the
quotient of) a right circular cylinder, respectively.

Then it follows from Ritoŕe and Ros [21] that only a compact family in the moduli space of
rankk groups of translationsΓ admit embedded, closed, stable, constant mean curvature surfaces
of genusk = 2, 3. For k = 2, Hauswirth, Ṕerez, Romon and Ros [9] describe an explicit small
region in this moduli space, such that outside this region, the solutions of the isoperimetric problem
in R3/Γ consist just of spheres, cylinders and planar slabs.

FIG. 4. The SchwarzP surface (left) is the simplest triply periodic minimal surface. If we identify the opposite faces of
the cube, we obtain a closed surface of genus three in the simple cubic 3-torus. The SchwarzD surface (right) is a periodic
minimal surface which induces a genus three surface in the face centered cubic 3-torus obtained by identifying the opposite
faces of the rhombic dodecahedron. Both surfaces are stable, [27].

Theorem 2 is sharp in the casesk = 0, 1 and 3: The first two can be checked directly, and when
k = 3 Ross [27] proved that the minimal, genus 3 surfacesP andD of Schwarz andG of Schoen
are stable in the cubic 3-tori sc, fcc and bcc, respectively. It seems likely that the theorem is also
sharp fork = 2, that is, there should be stable surfaces of genus 2: In fact, by using Brakke’s Surface
Evolver, Romon [22] concludes that, if we takeΓ to be the hexagonal planar lattice, there should
exist an isoperimetric surface of genus 2 inR3/Γ , as in Figure 3a. This surface encloses the same
volume as a circular cylinder of area equal to 2 area(R2/Γ ), but its area beats the area of the cylinder
by a factor= 0.9998. In caseΓ is a square planar lattice, the same kind of genus 2 stable constant
mean curvature surface can be obtained by Evolver, but now its area is∼ 2 area(R2/Γ ) × 1.0003.
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Finally, we will prove a general genus estimate for stable surfaces when the ambient space is the
product of a nonnegatively curved surface and the real line. It is worth noting that the proof of the
general case does not work in the flat situation considered above.

THEOREM 3 LetM be a complete, orientable surface with nonnegative Gaussian curvature andΣ

a compact, orientable surface embedded inM × R with constant mean curvature. IfΣ is stable,
then eitherM is compact andΣ is a finite union of horizontal slices, orΣ is a connected surface
with genus(Σ) 6 2.

It was proved in [25] that the genus of a closed stable surface in a 3-manifold with nonnegative
Ricci curvature is at most 3. Pedrosa [17] solved the isoperimetric problem in the productS2

× R
of a round sphere and a line.

When we study stability problems, we need to construct test functions with controlled energy.
In this paper we will first use test functions obtained from harmonic 1-forms on the surface (see
Palmer [16] and Ros [25] for other applications of harmonic forms to stability problems). We will
also construct test functions by using conformal maps between suitable pieces ofΣ and the 2-
sphere. Conformal maps have been used in eigenvalue estimates by Szegö [28], Hersch [10], Yang
and Yau [29] and other authors.

FIG. 5. TheG surface of A. Schoen is a triply periodic minimal surface which induces a closed stable surface of genus three
in the body centered cubic 3-torus. It has screw axes of order four parallel to the edges of the cube, [24].

2. Preliminaries

Let Σ be a compact surface immersed with constant mean curvatureH in an orientable Riemannian
3-manifoldM̃. We will assume along this paper thatΣ is two-sided, i.e. the unit normal vectorN
of the immersion is globally well-defined; in our context this is equivalent to the orientability ofΣ

itself. The surfaceΣ is said to bestableif the second variation formula of the area is nonnegative
for any volume preserving infinitesimal deformation. We consider onΣ the quadratic Jacobi form

Q(u, v) =

∫
Σ

〈∇u, ∇v〉 − (|σ |
2
+ Ric(N))uv = −

∫
Σ

uLv, u, v ∈ C∞(Σ),

σ being the second fundamental form of the embedding, Ric(N) the Ricci curvature of̃M in the
normal directionN , andL = ∆ + |σ |

2
+ Ric(N) the Jacobi operator of the surface. The stability
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condition is equivalent to

Q(u, u) > 0 for anyu with
∫

Σ

u = 0 (1)

(see [4]). Solutions of the isoperimetric problems, i.e. those closed surfaces inM̃ which have least
area among the ones enclosing a given volume, are stable constant mean curvature surfaces. In case
M̃ is compact or even compact modulo symmetries, these surfaces are known to exist and to be
smooth everywhere (see Morgan [15] and Gonzalez, Massari and Tamanini [7]). It is worth stating
that the regularity for the isoperimetric problem pertains to local (in space) minimizers as well and
not just to the global ones.

Along this paper we will assume that̃M has nonnegative Ricci curvature Ric> 0. If Σ is stable
and disconnected, then it admits a nonvanishing locally constant functionu with mean value zero.
Thus, it follows from (1) thatΣ is totally geodesic. IfΣ is connected, then Ros [25] proves that the
genus ofΣ is 6 3 (for earlier partial results see [6, 20, 19, 30]).

If M̃ = M ×R, M being an orientable surface, then the only closed minimal surfaces are unions
of horizontal slices. For any realc, we have the reflection symmetry(p, t) 7→ (p, 2c − t) with
respect to the slicet = c. If Σ is a compact embedded constant mean curvature surface inM × R
with H 6= 0, then from the Aleksandrov reflection technique [1] we conclude that (up to a vertical
translation if necessary)Σ is symmetric with respect to the slicet = 0. Let us denote this mirror
symmetry byτ : Σ → Σ . MoreoverΣ ∩ {t = 0} 6= ∅ andΣ+ = Σ ∩ {t > 0} is a graph over a
compact smooth region inM with nonempty boundary.

Now we specialize to the case of periodic surfaces. IfΓ ⊂ R3 is a discrete group of translations
of rank k, i.e. Γ is generated byk linearly independent vectors, then the flat 3-manifoldR3/Γ is
isometric toT k

× R3−k, whereT n is ann-dimensional flat torus. A connected nonplanar properly
embedded constant mean curvature surfaceΣ ⊂ R3 is said to bek-periodicif it admits a translation
symmetry groupΓ of rank k such thatΣ/Γ is compact. If the surface is compact (k = 0),
then Aleksandrov [1] proved that it must be a round sphere. IfΣ is singly periodic (k = 1),
Aleksandrov’s technique gives that it must be a Delaunay surface of revolution. If moreover the
quotient surfaceΣ/Γ ⊂ R3/Γ is stable, then Ritoré and Ros [20] prove thatΣ is a right circular
cylinder. Doubly periodic constant mean curvature surfaces (k = 2) were first constructed by
Lawson [11]. If the surface is nonplanar, thenH 6= 0, the genus of the quotient surfaceΣ/Γ is
at least 2, and Aleksandrov’s technique provides a mirror plane parallel toΓ dividing the surface
into two graphical pieces. In Figure 3a we can see a surface of this type, withΓ the hexagonal planar
lattice. For further examples see [18, 8], and for global properties of these surfaces and related ones
see [26]. Finally, we notice that Aleksandrov’s technique does not apply to the triply periodic case.

3. The flat case

Proof of Theorem 2.Assume thatΣ is not a collection of planar surfaces. In particular, it must be
connected. Lete1, e2 be a positively oriented orthonormal basis of tangent vectors,A the shape
operator ofΣ , and K and H its Gauss and mean curvatures, respectively. Thus〈Aei, ej 〉 =

σ(ei, ej ), A2
= 2HA − KI , whereI is the identity matrix, and|σ |

2
= 4H 2

− 2K.
Let H 1(Σ) be the space of harmonic 1-forms. Recall that a 1-formω on Σ is harmonic

if and only if it is closed, i.e. ∇ω(x, y) = ∇ω(y, x) for all tangent vectorsx, y (∇ω being
the covariant derivative ofω), andcoclosed, that is, div(ω) = 0 (the divergence operator being
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defined as div(ω) = ∇ω(e1, e1) + ∇ω(e2, e2)). Let us also recall that harmonic 1-formsω satisfy
the differential equation∆ω − Kω = 0, where∆ denotes the rough Laplacian(∆ω)(v) =

∇
2ω(e1, e1, v) + ∇

2ω(e2, e2, v). The Hodge star operator transforms a 1-formω into anotherω∗

defined byω∗(e1) = ω(e2) andω∗(e2) = −ω(e1). If g denotes the genus of the surface, then
the space of harmonic 1-formsH 1(Σ) has dimension 2g and the Hodge star operator defines a
natural anti-involution onH 1(Σ), ω 7→ ω∗. Although the linear coordinatesxn, n = 1, 2, 3, are
multivalued onΣ , their differentialsαn = dxn are well-defined onΣ and satisfy

(∆αn)(v) = −αn(A
2v).

If ω ∈ H 1(Σ), then we can consider the dual tangent vector field onΣ , viewed as anR3-valued
function,X = Xω : Σ → R3,

X = (〈ω, α1〉, 〈ω, α2〉, 〈ω, α3〉).

Palmer [16] used the vector fieldX to study the index of harmonic Gauss maps. By direct
computation we obtain

∆X = (〈∆ω, α1〉, 〈∆ω, α2〉, 〈∆ω, α3〉)

+ (〈ω, ∆α1〉, 〈ω, ∆α2〉, 〈ω, ∆α3〉) + 2(〈∇ω, ∇α1〉, 〈∇ω, ∇α2〉, 〈∇ω, ∇α3〉)

= KX − A2X + 2〈∇ω, σ 〉N = 2KX − 2HAX + 2〈∇ω, σ 〉N,

and therefore
∆X + |σ |

2X = 4H 2X − 2HAX + 2〈∇ω, σ 〉N. (2)

By applying the stability quadratic formQ to (the linear coordinates of)X = Xω we have

Q(X, X) = −

∫
Σ

〈∆X + |σ |
2X, X〉 = −

∫
Σ

(4H 2
|X|

2
− 2Hσ(X, X)).

If we denote byX∗
= Xω∗ the dual tangent vector field ofω∗, using the identities|X∗

| = |X| and
〈X, X∗

〉 = 0, we conclude as in [16] that

Q(X, X) + Q(X∗, X∗) = −

∫
Σ

(8H 2
|X|

2
− 4H 2

|X|
2) = −4H 2

∫
Σ

|X|
2. (3)

We consider the mapf : H 1(Σ) → R3
× R3 given by

f (ω) =

(∫
Σ

Xω,

∫
Σ

Xω∗

)
.

If rank(Γ ) = k, then there are 3− k linear coordinate functionsxn globally well-defined onΣ . As
harmonic 1-forms are closed and coclosed, the divergence of the 1-formxnω is

div(xnω) = 〈ω, dxn〉 + xn div ω = 〈ω, dxn〉,

and the divergence theorem will imply that 2(3−k) of the linear coordinates off (ω) vanish. Hence,
the dimension of the kernel of the linear mapf is at least 2g−6+2(3−k) = 2(g−k). If g > k, then
dim Ker(f ) > 0 and there exists a nonzero harmonic formω such thatf (ω) = 0, that is, bothXω
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andXω∗ have mean value zero. From the stability hypothesis and (3) we obtain 06 −H 2
∫

|X|
2,

and soΣ must be a minimal surface andQ(X, X) = Q(X∗, X∗) = 0. Hence, combining (1) with
linear elliptic theory, we get vectorsa, a∗

∈ R3 such that

∆X + |σ |
2X = a, ∆X∗

+ |σ |
2X∗

= a∗.

On the other hand, if we putH = 0 in (2) we have

∆X + |σ |
2X = 2〈∇ω, σ 〉N, ∆X∗

+ |σ |
2X∗

= 2〈∇ω∗, σ 〉N.

As the normal direction along a nonplanar minimal surface cannot be constant, even locally, we
deduce thata = a∗

= 0 and〈∇ω, σ 〉 = 〈∇ω∗, σ 〉 = 0, which is the same as saying that〈∇ω, σ 〉 =

〈∇ω, σ ∗
〉 = 0, whereσ ∗ is the second fundamental form of the conjugate minimal surface. Finally,

we observe that, by harmonicity,∇ω is a symmetric traceless 2-tensor. As this kind of matrices form
a vector plane,σ andσ ∗ generate this plane at the nonflat points ofΣ . This would imply thatω
should be a parallel 1-form,∇ω = 0, which exists only on flat surfaces. This contradiction proves
thatg 6 k, as claimed. 2

The result proved above is sharp for anyk = 0, 1, 2 and 3. IfΓ = 0 (i.e.k = 0) the theorem says
thatg = 0 and thusΣ must be a round sphere by a classic result of Hopf. This gives a new proof
of the Barbosa and do Carmo characterization of the sphere as the only closed stable constant mean
curvature surface inR3 (see [4]).

If rank(Γ ) = 1 (i.e. M̃ = S1
× R2), the theorem allows us to conclude thatg = 0 or 1 and

thereforeΣ is either a round sphere or a right cylinder, as follows from Ritoré and Ros [20]. We
remark that this was previously known only in the embedded case.

The main novelty in Theorem 2 is the estimate genus(Σ) 6 2 in the case rank(Γ ) = 2.
A stable surface of genus 2 inR3/Γ , whereΓ is the hexagonal 2-lattice, will look like the surface
in Figure 3a.

If Γ is a 3-lattice (i.e.k = 3) the above gives a new proof of the fact that closed stable
constant mean curvature surfaces in a flat 3-torus have genus6 3 (Ros [25]). However, this result
can be qualitatively improved in the embedded case, by combining all the power of Theorem 2
with topological properties of constant mean curvature embeddings. This improvement is given in
Theorem 1 and describes exhaustively all the different geometries of stable solutions of the periodic
isoperimetric problem, when the prescribed symmetry group is a lattice.

Proof of Theorem 1.Assume thatΣ is a nonplanar constant mean curvature stable surface in a flat
3-torusT 3. Then Theorem 2 implies thatΣ is a connected surface of genusg 6 3.

Moreover the constant mean curvature assumption implies thatΣ encloses a mean convex region
(see [21]) which has the topology of a solid doughnut of genusg (see Meeks [14]). In particular, the
surfaces lift to ak-periodic surface inR3, with k 6 g.

If g = 0, the surface lifts to an embedded closed surface inR3 with constant mean curvature
and Aleksandrov’s theorem [1] implies thatΣ is a round sphere.

In the caseg = 1, Ritoŕe and Ros [20] proved that stable surfaces are quotients of right circular
cylinders.

If g = 2, then the connected components of the preimageΣ̃ ⊂ R3 of Σ are at most doubly
periodic. The nonperiodic and the singly periodic possibilities are discarded by using Aleksandrov’s
technique [1]. So we obtain assertion (2) of the theorem.
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Finally, if we suppose thatg = 3, then as before we deduce that the components ofΣ̃ are notk-
periodic, fork = 0, 1. If these components were doubly periodic, then there would exist an infinite
coveringR3/Γ → T 3, for a certain group of translationsΓ of rank 2, such that the embedding
of Σ in T 3 lifts to a stable constant mean curvature embedding ofΣ in R3/Γ . As this contradicts
Theorem 2, we conclude that the connected components ofΣ̃ are triply periodic, as claimed. 2

4. The case of nonnegative curvature

Let Σ be a stable constant mean curvature surface inM × R, whereM is a nonnegatively curved
surface. IfΣ is either disconnected or a minimal surface, then we know that it consists of a union
of horizontal slices. So, henceforth we will assume thatΣ is connected andH 6= 0. Recall that
this implies thatΣ admits the mirror symmetryτ : (p, t) 7→ (p, −t) and thatΣ+ = Σ ∩ {t > 0}

projects injectively ont = 0 and has nonempty boundary.
The following statement can be proved by using an argument of Yang and Yau [29].

LEMMA 4 Letφ : Σ → S2 be a continuous map from a compact surface into the unit sphere. If the
preimageφ−1(x) of any pointx ∈ S2 is of measure zero, then there is a conformal transformation
of the sphereg : S2

→ S2 such that the vector-valued mapg ◦ φ : Σ → S2
⊂ R3 has mean value

zero, ∫
Σ

g ◦ φ dA = 0.

Proof of Theorem 3.First observe that, asM has nonnegative curvature, it must be homeomorphic
either to the sphereS2, the planeR2, the cylinderS1

× R, or the torusT 2. Moreover in the last
two casesM must be flat. Let us denote byg the genus ofΣ . We discuss the following possibilities
separately.

CASE 1: M is a spherical domain.As Σ+ is homeomorphic to a region inM, we see thatΣ+

admits a conformal injective map into the unit 2-sphere,

φ+ : Σ+ → S2
⊂ R3.

We extendφ+ to a symmetric piecewise smooth mapφ : Σ → S2 so thatφ = φ+ on Σ+ and
φ ◦ τ = φ. Moreover, from Lemma 4, we can assume thatφ has mean value zero inR3,∫

Σ

φ dA = 0.

Hence the linear coordinates ofφ = (φ1, φ2, φ3) are admissible test functions for the stability
condition (1) and in this way we obtain

0 6
∑
n

Q(φn, φn) =

∫
Σ

(|∇φ|
2
− (Ric(e1) + Ric(e2) + 4H 2

− 2K)|φ|
2),

where we have used the fact that Ric(N) + |σ |
2

= Ric(e1) + Ric(e2) + 4H 2
− 2K, which follows

from the Gauss equation. As the Ricci curvature ofM ×R is nonnegative, applying the fact thatφ is
symmetric,|φ| = 1 and that,φ+ being conformal, its energy is twice the area of its spherical image
φ(Σ+), the above inequality transforms into

0 6 4 area(φ(Σ+)) −

∫
Σ

(4H 2
− 2K) < 4 area(S2) − 4H 2 area(Σ) + 4π(2 − 2g).
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In the last inequality we have used the Gauss–Bonnet theorem
∫
Σ

K = 2π(2−2g) and the fact that
the area ofφ(Σ+) is smaller than area(S2) = 4π . So, finally we obtain

H 2 area(Σ) < 2π(3 − g),

which impliesg 6 2.

CASE 2: M is a2-torus. We simply note that in this caseM should be a flat torus and so the result
follows from Theorem 2. 2

It is not clear if the hypothesis on the embeddedness ofΣ in Theorem 3 may be removed or even
relaxed to Aleksandrov embeddedness. Although Aleksandrov embedded surfaces admit a reflection
symmetry, a priori, the genus ofΣ+ need not be bounded under this weaker assumption.
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19. RITORÉ, M. Index one minimal surfaces in flat three-space forms.Indiana Univ. Math. J.46 (1997),
1137–1153. Zbl 0922.53022 MR 1631568
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