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Numerical implementation of the variational formulation for
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This paper presents the analysis and implementation of the variational formulation of quasi-static
brittle fracture mechanics proposed by G. A. Francfort and J.-J. Marigo in 1998. We briefly present
the model itself, and its variational approximation in the sense ofΓ -convergence. We propose a
numerical algorithm based on Alternate Minimizations and prove its convergence under restrictive
assumptions. We establish a new necessary condition for optimality for the entire time evolution from
which we derive the Backtracking algorithm. We give some elements of analysis of the Backtracking
algorithm on a simple problem. We present realistic numerical simulations of a traction experiment
on a fiber-reinforced matrix, and of the propagation of cracks in a perforated sample under mode-I
loading.

Introduction

Fracture mechanics is a very active area of research with vital applications. In recent years, the
unexpected collapse of terminal 2E at Charles de Gaulle airport in France, the disintegration of
the Columbia space shuttle upon re-entry, or the crash of American Airlines Flight 582 over
Queens, NY were all linked to unexpected fracture. In the area of brittle fracture (which encompass
materials as diverse as ceramics, glass, and concrete), many commonly accepted theories, based
on Griffith’s criterion [Gri21], focus on the propagation of an isolated, pre-existing crack along a
given path. In terms of numerical implementation, perhaps the most well-known classes of methods
are based on cohesive models and finite elements [XN94, CO96], or on the extended finite element
method [MDB99]. The efficiency and versatility of both types of methods have been demonstrated
in the literature, although they can also have their weaknesses, including mesh dependency when
the crack path is not known beforehand, or difficulty in accounting for initiation and branching.

The work presented here follows an original approach proposed by G. A. Francfort and
J.-J. Marigo in [FM98] for quasi-static problems under fixed displacement boundary conditions.
Its main virtue is to remain largely compatible with Griffith theory, departing as little as possible
to allow crack nucleation, branching, path identification, and interactions between multiple cracks.
However, these benefits have a cost in terms of complexity of the numerical implementation. The
Francfort–Marigo formulation involves theglobal minimization of a total energy with respect to
any admissible crack set and displacement field, and requires specialized numerical tools which
we present in this article. We restrict our numerical experiments to problems simple enough to be
rigorously analyzed instead of engaging in very large scale experiments, which is the focus of some
pending work.
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In Section 1, we briefly introduce the Francfort–Marigo model, and detail some of the properties
of special interest in view of its numerical implementation. Section 2 is entirely devoted to the
description and analysis of the algorithms we introduce: the Alternate Minimizations algorithm is
studied in Section 2.3, and the Backtracking algorithm presented in Section 2.4. In Section 3, we
conduct a deeper analysis of the Backtracking algorithm, applied to a simple uni-axial traction
problem, and present numerical experiments. Lastly, in Section 4, we revisit the fiber pull-out
experiment presented in [BFM00, DLM07], and present the numerical simulation of a mode-I
experiment on a perforated plate.

1. Francfort and Marigo’s model for quasi-static brittle fracture

We only briefly recall the essential points of the variational approach to brittle fracture, and refer the
reader to the reference above as well as to more recent developments presented in [FL03, DFT04,
Cha04, Cha05, BFMar] for a comprehensive presentation and analysis of the model.

In all that follows, we consider an open bounded connected domainΩ ⊂ RN (N = 1, 2, 3) with
Lipschitz boundary∂Ω representing the crack-free reference configuration of an elastic body. We
consider the time interval [0, T ] during which we apply atime-dependent displacementboundary
conditiong(t; x) on a part∂ΩD ⊂ ∂Ω with non-null measure, while the remaining part,∂ΩN :=
∂Ω \ ∂ΩD, remains traction free. For technical reasons better presented in [BFM00, FL03], we
consider an extended domaiñΩ such thatΩ̄ ⊂ Ω̃, and an extension (still denotedg) of the Dirichlet
boundary condition tõΩ.

Francfort and Marigo’s model relies on two main ingredients: identifying the cracks in a material
with the discontinuity set of its displacement field, and—extending Griffith’s ideas—deriving the
crack evolution from the global minimization of an energy involving competition between bulk and
surface terms. The following definition states the form of the kinematically admissible displacement
fields, elastic potential, and the total energy for three types of problems.

DEFINITION 1 Letg be such that

g ∈ L∞([0, T ];L∞(Ω̃)) ∩W1,1([0, T ];H 1(Ω̃)).

The setKA(t) of kinematically admissible functions and the elastic potentialW are defined as
follows:

1. In theelasticity problem, one considers

W(e(u)) := 1
2(λ tr e(u)I + 2µ e(u)) : e(u),

whereλ andµ are the Laḿe coefficients of the material considered,e(u) is the symmetrized
gradient ofu, and “:” represents the dot product of symmetric matrices. The set of kinematically
admissible displacements is defined as

KA(t) := {u ∈ SBD(Ω̃) : u = g(t) a.e. inΩ̃ \ Ω̄; ‖u‖∞ 6 M},

for some givenM. The role of the constantM is purely technical, and does not affect the practical
applications.

2. In the vector-valuedSBV -problem, W depends on the gradientDu:

W(Du) := µ|Du|2.
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The set of kinematically admissible displacements is defined as

KA(t) := {u ∈ SBV (Ω̃) : u = g(t) a.e. inΩ̃ \ Ω̄}.

3. In theantiplane problem, one considers a cylindrical domain with main axis parallel to thez-axis,
and deformation along thez-axis, independent of thez coordinates. For this class of problems,
the displacement field takes the formu = uze3, whereuz depends only onx andy. The elastic
potential becomes

W(e(u)) := µ|e(u)|2 =
µ

2
|∇uz|

2,

and the kinematically admissible displacements are given by

KA(t) := {uz ∈ SBV (Ω̃) : uz = gz(t) a.e. inΩ̃ \Ω}.

Note that depending on the problem, the potentialW depends one(u), Du or∇u. In what follows,
we chose to simplify the notations by systematically writingW(e(u)). We trust that this abuse of
notation will not cause confusion.

While identifying the crack set and the discontinuity of the displacement field, one has to be
careful not to violate an irreversibility principle: displacementscanbe discontinuous across a given
crack, but they do not nothave to(consider for example cyclic loads after unloading). However,
should a crack exist in the domain at a timet , it should also exist at any later time, i.e. cracks are
not allowed to heal. The following definition formalizes the relation between both entities:

DEFINITION 2 Letu be such thatu(t) ∈ KA(t) for all 0 6 t 6 T , andJu(t) be the jump set ofu(t).
Thecrack setis

Γ (u(t)) :=
⋃

06s6t

Ju(s).

Notice thatΓ (u(t)) depends on the entire displacement history, i.e. the functiont 7→ u(t), not
just the on the displacement at timet . Again, we hope that this abuse of notation will not cause
confusion.

DEFINITION 3 Let u be such thatu(t) ∈ KA(t) for all 0 6 t 6 T , and Γ (u(t)) be as in
Definition 2. Thetotal energyassociated withu is

E(u(t), Γ (u(t))) =

∫
Ω

W(e(u(t))) dx +GcHN−1(Γ (u(t)) \ ∂ΩN ), (1)

whereGc denotes thefracture toughnessof the material considered. Bybulk andsurface energies
we mean respectively

Eb(u(t), Γ (u(t))) :=
∫

Ω

W(e(u(t))) dx (2)

and
Es(u(t), Γ (u(t))) := GcHN−1(Γ (u(t)) \ ∂ΩN ). (3)

Lastly, and following the viewpoint of [FL03, BFMar], we incorporate the crack growth
condition into a global minimization principle for the total energy (1):u is such that for any
0 6 t 6 T , the pair(u(t), Γ (u(t))), minimizes∫

Ω

W(e(v)) dx +GcHN−1(Jv \ ∂ΩN )

among all kinematically admissiblev ∈ KA(t) such thatJv ⊃ Γ (u(t)).
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As the energyE is non-convex, it can admit local minimizers, the definition of which depends
on the topology considered. In the following definition,A4 B denotes the symmetric difference of
the setsA andB.

DEFINITION 4 Letu be such thatu(t) ∈ KA(t) for all 0 6 t 6 T .

1. u is a local minimizer forE in the sense of theL1 norm if and only if there existsδ(t) > 0 such
that for anyv satisfyingv(t) ∈ KA(t) and‖u(t)− v(t)‖L1(Ω) 6 δ(t) for 0 6 t 6 T , one has

E(v(t), Γ (v(t))) > E(u(t), Γ (u(t))). (4)

2. u is a local minimizer forE in the sense of the energy normif and only if there existsδ(t) > 0
such that for anyv satisfyingv(t) ∈ KA(t) andE(u(t) − v(t), Γ (u(t)) 4 Γ (v(t))) 6 δ(t) for
0 6 t 6 T , one has

E(v(t), Γ (v(t))) > E(u(t), Γ (u(t))). (5)

3. u is aglobal minimizer forE if and only if for anyv such thatv(t) ∈ KA(t) for 0 6 t 6 T , one
has

E(v(t), Γ (v(t))) > E(u(t), Γ (u(t))). (6)

For more details on the analysis of this approach to brittle fracture, we refer the reader to [FL03,
DFT04], where existence of global minimizers is proved in the antiplane and vector-valuedSBV

case. The method used in these proofs involves studying a discrete-in-time version of the problem,
and letting the time discretization interval go to zero. In view of the numerical implementation, this
implies that we do not have to worry about proving the convergence of the time-discrete model
towards the original one.

1.1 Properties of the Francfort–Marigo energy

Seeing brittle fracture as the problem of finding global minimizers of (3) remains in large part
compatible with Griffith’s classical theory of brittle fracture (see [Gri21]). As the crack set at time
t is given through a global minimization process among all possible crack states, the Francfort–
Marigo model does not require thea priori knowledge of the crack path. It does not require the
existence of an initial crack. It does not even assume smooth propagation of cracks (i.e. that the
surface energy term is a continuous function oft). When the surface energy associated to the crack
set is not a continuous function of time, we will say that the crack propagatesbrutally. We recall
some properties ofE and its minimizers(u(t), Γ (u(t))), which are presented in much more detail
in [FM98, CGP05]:

1. In the two-dimensional case, ifHN−1(Γ (u(t))) is a continuous function oft , thenΓ (u(t))

satisfies Griffith’s crack propagation criterion.
2. If g is amonotonically increasing load(that is, if g(t) = tg0), then there exists a critical time

tc > 0 such thatHN−1(Γ (u(t))) > 0 for anyt > tc. In other words, the Francfort-Marigo model
will alwayslead to crack initiation underfinite load.

3. Under the same assumptions ong and if the elastic displacement field associated withg0 does
not have a singularity, then there exists a constantδ > 0 such thatHN−1(Γ (u(tc))) = 0 if t < tc
andHN−1(Γ (u(t))) > δ if t > tc. In other words, in the absence of singularity, only brutal crack
initiation is possible.
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4. Under the same assumptions ong, there exists atotal failure load tf such that
Eb(u(t), Γ (u(t))) = 0 andEs(u(t), Γ (u(t))) = Es(u(tf ), Γ (u(tf ))) if t > tf . For t > tf ,
the minimizers ofE correspond to configurations with no elastic energy, and the cracks do not
propagate anymore.

Note that points 2 and 3 may seem redundant, but they are not. Point two (from [FM98]) merely
states that in the variational model, crack initiation always take place under afinite load(and may
be smooth or brutal), whereas point three (adapted from [CGP05]) implies that without singularity,
initiation isalwaysbrutal.

2. Numerical implementation

In order to discretize the Francfort–Marigo functional, one needs to be able to approximateany
function in SBV or SBD. This is by nature more complicated than building a discrete space
allowing jumps across a known curve, and the extended finite element method is not easily
applicable. This model also requires the ability to accurately approximate the locations of the
cracks, as well as theirlengthsin two dimensions (and surface in three dimensions), which may
not be possible if the cracks are restricted to propagate along edges of faces between elements.
Lastly, in light of point 3 above, it is expected that in the absence of singularity in the deformation
field, crack initiation will always be brutal. In particular, this means that sensitivities with respect to
“small” cracks may never provide a descent direction for the Francfort–Marigo energy, in the case
of “brutal” evolution.

2.1 Approximation by means of elliptic functionals

Several methods have been proposed, based on discontinuous (see [GP03]) or adaptive (see [BC00,
Neg03]) finite elements. The class of methods on which we concentrate here relies on approximating
the Francfort–Marigo energy, in the sense ofΓ -convergence, by means of elliptic functionals. It
requires introducing a secondary variablev ∈ W1,2(Ω̃), representing the crack in some sense, and
extending the brittle fracture energy to

F(u, v) :=

{
E(u, Ju) if v ≡ 1,

+∞ otherwise.
(7)

For anyε > 0, andηε � ε, define

Eε(u, v) :=
∫

Ω

(v2
+ ηε)W(e(u)) dx +Gc

∫
Ω̃\∂ΩN

(
(1− v)2

4ε
+ ε|∇v|2

)
dx,

and

Fε(u, v) :=

{
Eε(u, v) if u ∈ W1,2(Ω̃ \ ∂ΩN ;Rq) andv ∈ W1,2(Ω̃ \ ∂ΩN ),

+∞ otherwise,
(8)

with q = 1 in the antiplane case, andq = N in the elasticity and vector-valued cases. As forE, we
will denote byEb

ε andEs
ε the bulk and surface terms inEε.

This approximation was proposed in [AT90, AT92] for the Mumford–Shah functional, inspired
by a now classical example in phase transition [MM77a, MM77b, Alb00] and extended in [Bou98,
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Cha04, Cha05, Gia05]. In the antiplane case, it is known thatFε Γ -converges inL2(Ω)×L2(Ω̃) to
F asε→ 0, and that the sequence of global minimizers forFε is compact. By a classical argument
(see for instance [Dal93, Bra02]), this proves that the global minimizers(uε, vε) of Fε converge to
that ofF (and therefore to that ofE).

2.2 Time discretization

A rigorous analysis of the quasi-static evolution problem for the regularized functional has been
recently published in [Gia05] in the antiplane case. Again, it is possible to consider a discrete-in-
time version of the quasi-static evolution where the crack growth hypothesis is enforced at any
time stepp by minimizing (8) with respect to all admissible(u(p)

ε , v
(p)
ε ) such thatv(p)

ε 6 v
(p−1)
ε .

It has been proved that the time-discrete problem converges to the continuous one when the
time discretization goes to 0, and that the total energyEε(u

(p)
ε , v

(p)
ε ) converges to an absolutely

continuous function oft .
Finally, the minimization ofFε at each discrete time step requires a discretization in space.

In the antiplane case, one can consider a discretized versionFε,h of Fε by means of linear finite
elements. Provided that the mesh sizeh is such thath � ε, it is known thatFε,h Γ -converges to
F (see [BC94, Bou99]). Extending this result to the full elasticity case does not seem to present
any difficulty. However, this is outside the scope of this study, and we will take for granted that
the restrictionFε,h of Fε to discrete functions on a linear finite element spaceΓ -converges toF as
ε→ 0 andh→ 0 with h� ε.

In order to simplify the implementation of the crack growth condition on a time-discrete scheme,
we slightly deviate from the analysis in [Gia05]. Consider a discretization of the time interval [0, T ]
into P +1 time steps 0= t (0) < t (1) < · · · < t (P )

= T andαε such thatαε → 0 asε→ 0. At each
time stept (p), p > 1, define

K(p−1) := {x ∈ Ω̄ : v(p−1) 6 αε}, (9)

K(p)
A := {(u, v) ∈ W1,2(Ω̃ \ ∂ΩN ;Rq)×W1,2(Ω̃ \ ∂ΩN ) :

u = g(t (p)) on Ω̃ \Ω, v = 0 onK(p−1)
}, (10)

and let(u(p)
ε , v

(p)
ε ) be a solution of

min
(u,v)∈K(p)

A

Fε(u, v). (11)

The main difference is that we replace the monotonicity constraint (which in this case would
becomev(p) 6 v(p−1) almost everywhere) by an equality constraint. Doing so allows us to
formulate the necessary condition for optimality as equalities instead of inequalities, and to use
an unconstrained optimization algorithm. The price we pay for this simplification is that we
cannot prove the convergence of the time evolution. Numerical experiments indicate however that
our implementation of the irreversibility condition leads to evolutions similar to those obtained
while enforcing the monotonicity ofv(p) with respect top (compare for instance the experiment
in [BFM00, Sec. 3.2], revisited in Section 4.1, to that presented in [DLM07, Sec. 7.1]).

In the actual numerical implementation, computingglobal minimizers ofFε is a major issue,
asFε is non-convex. Numerical methods in the literature rely on first order necessary conditions
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for optimality. Such methods only ensure convergence to a critical point ofFε, which raises two
questions:

1. When working withFε for a fixedε > 0, how can we be sure that the critical points we find are
local (or global) minima?

2. Can we be sure that these local minima converge asε→ 0 to local minima of theΓ -limit?

The first question is partially answered in Theorem 2. We do not attempt to address the second
problem. A similar issue has been settled in [Ton05] for the Modica–Mortola approximation of the
perimeter functional.

2.3 Minimization ofFε at a given time step

In the case of the Francfort–Marigo energy,Fε is quadratic and strictly convex inu andv separately.
For a fixedu or v, the minimizer ofFε(•, v) or Fε(u, •) exists, is unique and can be efficiently
computed using a direct method. This property leads naturally to implement the following Alternate
Minimizations algorithm,δ being a small fixed tolerance parameter:

ALGORITHM 1 (The Alternate Minimizations algorithm)

1: Let i = 0 andv0 := v
(p−1)
ε if p > 0 orv0 = 1 if p = 0.

2: repeat
3: i ← i + 1
4: Computeui := argminu Fε(u, vi−1) under the constraintui = g(t (p)) on Ω̃ \Ω.
5: Computevi := argminv Fε(ui, v) under the constraintvi = 0 onK(p−1).
6: until ‖vi − vi−1‖∞ 6 δ

7: Setu(p)
ε := ui andv

(p)
ε := vi

Some elements of convergence of the Alternate Minimizations algorithm follow, under
increasingly restrictive hypotheses.

THEOREM 1 Let (ui, vi) be as in Algorithm 1. Then there existsF ∗ε > 0 such that

Fε(ui, vi)→ F ∗ε (12)

as i → ∞. Moreover, there exists a critical point(u∗ε , v
∗
ε ) ∈ K(p)

A for Fε such that, up to a
subsequence,

(ui, vi)
L2(Ω)×L2(Ω)
−−−−−−−−→ (u∗ε , v

∗
ε ). (13)

Before proving Theorem 1 we state the following lemma, whose proof is purely algebraic and
is not stated here:

LEMMA 1 Fε is Gâteaux differentiable at any(u, v) ∈ W1,2(Ω̃;Rq)×W1,2(Ω̃). Considering any
(ũ, ṽ) such that(u+ t ũ, v+ t ṽ) ∈ K(p)

A for any small enought , the Ĝateaux derivatives ofFε in the
directions(ũ, 0) and(0, ṽ) are given by∫

Ω

∇uFε(u, v)ũ dx := lim
t→0

Fε(u+ t ũ, v)− Fε(u, v)

t

=

∫
Ω

(v2
+ ηε)DW(e(u)) : e(ũ) dx, (14)

and
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∇vFε(u, v)ṽ dx := lim
t→0

Fε(u, v + t ṽ)− Fε(u, v)

t

= 2
∫

Ω̃

{
vW(e(u))−Gc

(
1− v

4ε
+ ε∆v

)}
ṽ dx. (15)

The proof of this lemma is purely algebraic and does not present any difficulty. For that reason, it is
not detailed here. 2

The expression of the Ĝateaux derivatives ofFε is all we need to prove Theorem 1. Note first
that (12) is trivial, on remarking that the sequenceFε(ui, vi) is decreasing and bounded from below.

The existence of a pair(u∗ε , v
∗
ε ) such that(ui, vi)

L2(Ω)×L2(Ω)
−−−−−−−−→ (u∗ε , v

∗
ε ) is also easily derived from

equi-boundedness inW1,2 of the functionsui andvi . All that remains to prove is therefore that
(u∗ε , v

∗
ε ) is a critical point ofFε. Sinceui → u∗ε strongly inL2, up to a taking subsequence we

haveui → u∗ε weakly in W1,p. Note also that ifvi minimizesFε(ui, •), then using a truncation
argument, one finds that 06 vi 6 1 almost everywhere inΩ, from which it follows that

0=
∫

Ω

(v2
i + ηε)DW(e(ui)) : e(ũ) dx →

∫
Ω

((v∗ε )2
+ ηε)DW(e(u∗ε)) : e(ũ) dx

asi →∞, which is equivalent to
∇uF(u∗ε , v

∗
ε ) = 0.

Similarly, one obtains
∇vF(u∗ε , v

∗
ε ) = 0,

which concludes the proof of Theorem 1. 2

Theorem 1 does not rule out cases where several subsequences converge towards different critical
points. In the practical implementation of the Alternate Minimizations algorithm, we always observe
that the sequence(ui, vi) converges to asinglecritical point. We have not been able to prove this,
though.

In some cases, we can also prove that the Alternate Minimizations algorithm does indeed
converge to the proper critical point. In order to do that, we need to define isolated local minimizers
and isolated critical points.

DEFINITION 5 Consider a time stept (p). For any(u, v) ∈ K(p)
A and anyα > 0, we denote by

Bα(u, v) the ball of radiusα centered at(u, v):

Bα(u, v) := {(ũ, ṽ) ∈ K(p)
A : ‖(ũ− u, ṽ − v)‖(L1)2 6 α}. (16)

1. We say that(uε, vε) ∈ K(p)
A is a local minimizer ofFε if there existsδ > 0 such that for any

(u, v) ∈ Bδ(uε, vε), one has
Fε(uε, vε) 6 Fε(u, v).

2. We say that(uε, vε) ∈ K(p)
A is anisolated local minimizerof Fε if there existsδ > 0 such that

for any(u, v) ∈ Bδ(uε, vε) \ {(uε, vε)}, one has

Fε(uε, vε) < Fε(u, v).
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3. We say that(uε, vε) ∈ K(p)
A is an isolated critical pointof Fε if there existsδ′ > 0 such that

(uε, vε) is the only critical point inBδ′(uε, vε).

THEOREM 2 Let (ui, vi) be as in Algorithm 1, and(u∗ε , v
∗
ε ) ∈ K(p)

A be an isolated local minimizer
and an isolated critical point forFε. Then there existsη > 0 such that if‖v0− v∗ε‖L1 6 η then

(ui, vi)
L2(Ω)×L2(Ω)
−−−−−−−−→ (u∗ε , v

∗
ε ). (17)

The proof of this theorem relies on two facts: thatFε is convex with respect tou andv, and that
the Alternate Minimizations algorithm yields a sequence with monotonically decreasing energy. Let
δ be admissible for points 2 and 3 in Definition 5, and consider

Fδ := inf
(u,v)∈∂Bδ(u∗ε ,v

∗
ε )

Fε(u, v)

and

Kδ :=

{
(u, v) ∈ Bδ(u

∗
ε , v
∗
ε ) ; Fε(u, v) 6

Fε(u
∗
ε , v
∗
ε )+ Fδ

2

}
.

From the isolation hypothesis,Fδ > Fε(u
∗
ε , v
∗
ε ). Observing for example thatt 7→ Fε((1− t)u∗ε+ tu,

(1− t)v∗ε + tv) is continuous with respect tot for any(u, v) ∈ K(p)
A , one sees thatKδ is not reduced

to (u∗ε , v
∗
ε ), and that there exists 0< η < δ such thatKδ ⊃ Bη(u

∗
ε , v
∗
ε ). Also, sinceFε is convex

with respect tou, the functiont 7→ Fε((1 − t)ui + tui+1, vi) is decreasing for 06 t 6 1 so
that if (ui, vi) ∈ Kδ, then(ui+1, vi) ∈ Kδ. Similarly, one finds thatFε(ui+1, vi+1) ∈ Kδ, so that
the sequence(ui, vi) converges to some(u∗, v∗) ∈ Kδ. Using Theorem 1, we deduce that(u∗, v∗)

is a critical point, and so(u∗, v∗) = (u∗ε , v
∗
ε ), since(u∗ε , v

∗
ε ) is the unique critical point ofFε in

Bδ(u
∗
ε , v
∗
ε ), which concludes the proof of Theorem 2. 2

Theorem 2 requires not only that the local minimizer be isolated, but also that it be an isolated
critical point. Indeed, one can imagine a scenario where an isolated local minimizer(u∗ε , v

∗
ε ) can

be approximated by a sequence of critical points(ui, vi). In this case, for anyη > 0, there exists
N > 0 such that(ui, vi) ∈ Bη(u

∗
ε , v
∗
ε ) for any i > N . Consider now the Alternate Minimizations

algorithm initialized withvN . Using the convexity ofFε with respect tou, it is easy to see that our
algorithm will converge to(uN , vN ) in exactly one iteration. . .

Fortunately, one can modify the minimization algorithm to avoid such a situation. Upon
convergence of the Alternate Minimizations, one can compute the Hessian ofFε (or its
discretization), and check if it admits a negative eigenvalue. If this is the case, one can minimize
Fε along the direction of the associated eigenvector, then resume the Alternate Minimizations
algorithm. This modified version of the Alternate Minimizations algorithm still yields a decreasing
sequence but can only converge to a local minimizer. For this variant of the Alternate Minimizations
algorithm, it is easy to see that Theorem 2 holds even if(uε, vε) is not an isolated critical point.

The numerical experiments presented in Sections 3 and 4 rely on the Alternate Minimizations
algorithm as described in Algorithm 1, and do not include this refinement.

2.4 Necessary optimality condition for the time evolution

A new necessary condition for optimality of global and local minimizers can be derived from the
crack growth condition. This condition can be stated for the regularized or unregularized problems,
and the proofs are identical. For brevity, we consider the unregularized problem.
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THEOREM 3 Let g be amonotonically increasing load(i.e. such thatg(t) = tg(0)). Let u be a
global minimizer forE. Then for anyt andτ such that 06 t 6 τ 6 T , one has

E(u(t), Γ (u(t))) 6
t2

τ2
Eb(u(τ ), Γ (u(τ)))+ Es(u(τ ), Γ (u(τ))). (18)

Proof. Consider any 06 τ 6 T and suppose that there exists 06 s < τ such that

E(u(s), Γ (u(s))) >
s2

τ2
Eb(u(τ ), Γ (u(τ)))+ Es(u(τ ), Γ (u(τ))).

We then constructv given by

v(t) :=

{
u(t) if 0 6 t < s,

t/τu(τ) if s 6 t 6 τ.

It is easy to see thatv(t) ∈ KA(t) for any 06 t 6 T , that

Γ (v(t)) =

{
Γ (u(t)) if 0 6 t < s,

[Γ (u(s)) \ Ju(s)] ∪ Ju(τ) if s 6 t 6 τ,

and that, sinceΓ (u(s)) ⊂ Γ (u(τ)) andJu(τ) ⊂ Γ (u(τ)),

E(v(s), Γ (v(s))) =
s2

τ2
Eb(u(τ ), Γ (u(τ)))+GcHN−1(Γ (v(s)) \ ∂ΩN )

6
s2

τ2
Eb(u(τ ), Γ (u(τ)))+GcHN−1(Γ (u(τ)) \ ∂ΩN )

< E(u(s), Γ (u(s))),

which is in contradiction with (6). 2

REMARK 4 Theorem 3 has interesting consequences in terms of the numerical implementation.
Consider a kinematically admissible displacement fieldu, and any 0< τ < T . If there exists
0 6 t 6 τ such that (18) does not hold, thenu(t) is not a global minimizer forE at timet , and the
functionv built in the proof of Theorem 3 has lower total energy.

This remark is the foundation of our Backtracking algorithm as it permits to detect some cases
when a displacement field satisfies the optimality conditions with respect tou or (u, v) at each time
step, but is not a global minimizer. In the numerical implementation, we use a small parameter
δε > 0, and at each time stept (p) we check if (18) is verified within a toleranceδε for all t (r)

with 0 < r < p. If it is not, we return to stepr, initializing the Alternate Minimizations algorithm
with v(p).

ALGORITHM 2 (The Backtracking algorithm)

1: v0← 1
2: repeat
3: Compute(u(p), v(p)) using the Alternate Minimizations algorithm initialized withv0.
4: Compute the bulk energyEb

ε (u(p), v(p)) and the surface energyEs
ε(u

(p), v(p)).
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5: for r = 1 top − 1 do
6: if Eε(u

(r), v(r))− ( t (r)

t (p) )
2Eb

ε (u(p), v(p))− Es
ε(u

(p), v(p)) > δε then

7: v0← v(p)

8: p← r

9: return to 2:
10: end if
11: end for
12: v0← v(p)

13: p← p + 1
14: until p = P

Algorithm 2 raises two questions: does the Backtracking activate, and if so, does it terminate,
i.e. what prevents it from entering an infinite loop? These questions require a better understanding
of the stability of the critical points ofFε and we can only provide partial answers. What is clear
is that if Algorithm 2 terminates, then it generates a family(u(p), v(p)) such that(u(p), v(p)) is a
critical point ofFε for any 06 p 6 P , which also satisfies the necessary optimality condition with
respect to time given in Theorem 3.

Of course, the Backtracking algorithm cannot activate unless the minimization algorithm detects
new critical points. Numerical experiments suggest that as the load increases, some local minimizers
evolve into saddle points, a factor leading to a bifurcation of the Alternate Minimizations algorithm
and the discovery of new critical points. A rigorous analysis of this phenomenon can be conducted
in a simple unidimensional case.

3. Some elements of analysis of the Backtracking algorithm

Consider a two- or three-dimensional beam occupying the domainΩ = (−l, l) × ω, where|ω| =
1� l, and with elastic coefficientsE = 1 andν = 0. At any timet > 0, both ends of the beam are
subject to a uniform displacementu = −t on {−l} × ω andu = t on {l} × ω. Assuming that the
deformation and crack fields depend only on the first variable, problem (1) reduces to finding, for
any t > 0, u(t) ∈ SBV (−l, l) such thatu(t) = −t at x = −l, u(t) = t at x = l, Ju(t) ⊃ Ju(s) for
anys < t , minimizing

1

2

∫ l

−l

(u(t)′)2 dx +Gc#(Ju(t)), (19)

where # represents the counting measure.
For this problem, it is known (see [FM98]) that there exists a critical loadt = tc =

√
Gcl such

that if t < tc, the global minimizer of (19) corresponds to the uncracked state withue(x) = tx/ l.
For loadst > tc the global minimum is reached byany function uf (x) = −t for x < xc and
uf (x) = t for x > xc, xc beinganypoint in (−l, l).

Under the assumptions above, the regularized energyEε can be written as

Eε(u, v) =
1

2

∫ l

−l

(v2
+ ηε)(u

′)2 dx +Gc

∫ l+δ

−l−δ

(
(1− v)2

4ε
+ ε(v′)2

)
dx, (20)

whereΩ̃ = (−l − δ, l + δ) for someδ > 0. Indeed, a careful analysis of theΓ -convergence ofEε

reveals that as long as one does not consider interface cracks atx = −l or x = l, one can identify
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Ω̃ andΩ, and consider

Eε(u, v) =
1

2

∫ l

−l

(v2
+ ηε)(u

′)2 dx +Gc

∫ l

−l

(
(1− v)2

4ε
+ ε(v′)2

)
dx.

3.1 Stability analysis

The first order optimality conditions for the minimizersu andv of Fε are that for any(ũ, ṽ) ∈

W
1,2
0 (−l, l)×W1,2(−l, l) such that̃v′(−l) = ṽ′(l) = 0, one has∫ l

−l

(v2
+ ηε)u

′ũ′ dx = 0, (21)∫ l

−l

(u′)2vṽ dx + 2Gc

∫ l

−l

(
(v − 1)ṽ

4ε
+ εṽ′v′

)
dx = 0. (22)

The sequence for the upperΓ -limit in [AT92, Bou98] provides a construction of a pair(u
f
ε , v

f
ε )

such thatuf
ε → uf and that (21) are satisfied asymptotically asε→ 0. It is also easy to see that the

pair

ue
ε(x) =

t

l
x, (23)

ve
ε(x) =

Gcl
2

Gcl2+ 2εt2
(24)

also satisfies both conditions above and that(ue
ε, v

e
ε)→ (ue, 1) asε→ 0.

A study of the second variation ofFε around(ue
ε, v

e
ε) will allow us to state the following stability

theorem:

THEOREM 5 Givenε > 0, there exists a critical loadt sε such that(ue
ε, v

e
ε) is a saddle point ofFε if

t > t sε .

Proof. Consider(ũ, ṽ) ∈ W
1,2
0 (−l, l)×W1,2(−l, l) and(α, β) ∈ R2. Then we have

Fε(u
e
ε + αũ, ve

ε + βṽ) = Fε(u
e
ε, v

e
ε)+

α2

2

∫ l

−l

(ηε + (ve
ε)

2)(ũ′)2 dx

+ 2αβ

∫ l

−l

ue
ε
′
ũ′ve

ε ṽ dx + β2
∫ l

−l

(
(ue

ε
′)2ṽ2

2
+Gc

(
ṽ2

4ε
+ ε(ṽ′)2

))
dx + o(α2, αβ, β2).

Using the fact thatue
ε = tx/ l and thatve

ε is constant, we obtain

Fε(u
e
ε + αũ, ve

ε + βṽ) = Fε(u
e
ε, v

e
ε)+ α2ηε + (ve

ε)
2

2

∫ l

−l

(ũ′)2 dx + 2αβ
t

l
ve
ε

∫ l

−l

ũ′ṽ dx (25)

+ β2 t2

2l2

∫ l

−l

(
ṽ2
+Gc

(
ṽ2

4ε
+ ε(ṽ′)2

))
dx + o(α2, αβ, β2). (26)
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Consider now̃u ∈ C∞0 (−l, l) such that
∫ l

−l
(ũ′)2 dx = 1, andṽ = −ũ′. Then (25) reduces to

Fε(u
e
ε + αũ, ve

ε + βṽ) = Fε(u
e
ε, v

e
ε)+ α2ηε + (ve

ε)
2

2
− 2αβ

t

l
ve
ε

+ β2
[

t2

2l2
+

Gcl

4ε
+ εGc

∫ l

−l

(ṽ′)2 dx

]
+ o(α2, αβ, β2).

The right hand side is minimized when

α =
2tve

ε

l(ηε + (ve
ε)

2)
β

and we obtain

Fε

(
ue

ε +
2tve

ε

l(ηε + (ve
ε)

2)
βũ, ve

ε + βṽ

)
= Fε(u

e
ε, v

e
ε)

+ β2
[

t2

2l2

(
1−

4(ve
ε)

2

ηε + (ve
ε)

2

)
+

Gc

4ε
+ εGc

∫ l

−l

(ṽ′)2 dx

]
+ o(β2).

Recalling thatηε → 0 andve
ε → 1 asε → 0, and that 1� l, we now see that the coefficient oft2

becomes negative whenε is small enough, which in turn means that whent is large enough,

Fε

(
ue

ε +
2tve

ε

l(ηε + (ve
ε)

2)
βũ, ve

ε + βṽ

)
− Fε(u

e
ε, v

e
ε) < 0

for small enoughβ. This implies that(ue
ε, v

e
ε) is not a local minimum but a saddle point forFε. 2

Practically, we see that for large enough loads, the critical point(ue
ε, v

e
ε) loses its stability. For

any v0, there exists a critical loadδc such that ift > δc, then (u1, v0) is a descent direction
for Fε(u

e
ε, v

e
ε). In particular, this implies that for all subsequent iterations of the Alternate

Minimizations algorithm, we haveFε(ui, vi) < Fε(u
e
ε, v

e
ε). When this happens, the Alternate

Minimizations scheme cannot converge towards(ue
ε, v

e
ε), and will converge toward another critical

point (uc
ε, v

c
ε). Short of being able to prove that(ue

ε, v
e
ε) and(u

f
ε , v

f
ε ) are the only critical points

of Fε, we cannot ensure that(uc
ε, v

c
ε) = (u

f
ε , v

f
ε ).

REMARK 6 The construction of the descent direction above does not give a sharp estimate for
the critical loadt

f
ε above which(ue

ε, v
e
ε) becomes a saddle point. This is not an issue in the

practical implementation, as it suffices to increase the load until bifurcation toward the “cracked”
solution happens, and then use the Backtracking algorithm. Note, however, that sincet

f
ε → ∞ as

ε → 0, one may have to consider very large loads before bifurcation happens. There are several
ways to address this issue numerically, including implementing a continuation algorithm on the
regularization parameterε or adding perturbations to the fieldv. These numerical techniques are
being investigated.

3.2 Numerical results

In order to illustrate the result of the previous section, we ran several numerical experiments on a
two-dimensional beam withl = 5. In the one we discuss later, the mesh consists of approximately
149,000 linear finite elements and 75,000 nodes (a coarser mesh would lead to similar results). Total



424 B. BOURDIN

(a) t 6 t
f
ε (b) t > t

f
ε

FIG. 1. (u, v) profiles.

computation time is less than 1/2 hour, using 32 Intel Xeon 1.8GHz processors. The computational
cost is 1.155 · 1012 Flops, the mesh sizeh = 1.5 · 10−2, the regularization parameterε = 8.0 ·
10−2, andηε is 1.0 · 10−7. We discretized the time interval(0, 10) into 201 equi-distributed time
steps. The material properties areGc = 1, E = 1, andν = 0. For this choice of parameters,
the critical load upon which total failure of the domain should happen istc =

√
5 ' 2.2361.

Figure 1 represents the profilesuz andvz corresponding to the uncracked (left) and cracked (right)
solutions. Figure 2(a) represents the bulk, surface and total energies as a function of the load, without
Backtracking. As expected, the critical failure load is overestimated, with a bifurcation taking place
at t ' 7.8, and the total energy is not monotonic. Figure 2(b) represents the total energy of the
system as a function of the iteration number (dashed line) and its theoretical value (solid line). The
outcome of the Backtracking algorithm is the following: at first, time steps 0 to 7.8 are computed,
and the Alternate Minimizations algorithm fails to bifurcate towards the cracked solution. Att '

7.85, the cracked solution becomes feasible for the Alternate Minimizations algorithm, and the total
energy of the system decreases. At this point, condition (18) is not satisfied for all time steps with
t > tc, and the Backtracking algorithm returns tot ' 2.4, initializing the Alternate Minimizations
algorithm with the cracked solution. The final total energy corresponds to the lower envelope of the
dashed curve. The error on the total energy is less than 10%.

(a) Without Backtracking (b) With Backtracking

FIG. 2. Energy as a function of the load for the long beam.

Figure 3 formally illustrates Theorem 5, and shows how the Backtracking algorithm allows
switching from one critical point to the other. It represents a sketch of the shape of the total energy
as a function of(u, v) for various loads. The letters (a), (b), (c), (d) correspond to the locations
highlighted in Figure 2(b). Figure 3(a) is a sketch of the total energy as a function of(u, v) for a
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(a) 0< t < tc (b) t = tc (c) tc < t < t
f
ε (d) t > t

f
ε

FIG. 3. Energy profile as a function of the load.

load t < tc. The leftmost well corresponds to the uncracked solution (in this case also the global
minimizer) and the right one to the cracked solution. Started from within the left well, the Alternate
Minimizations will converge to the uncracked solution. Figure 3(b) corresponds to the critical load
t = tc. In Figure 3(c), the load is such thattc < t < t

f
ε . The global minimum corresponds to

the cracked solution, but the outcome of the Alternate Minimizations algorithm will depend on the
well in which it is initialized. Finally, Figure 3(d) corresponds tot > t

f
ε . In this case, the Alternate

Minimizations will converge to the cracked solution, providing a better initial guess for the time
stepstc 6 t 6 t

f
ε .

The fact that the numerical scheme eventually converges towards a “cracked” solution may seem
counter-intuitive. Indeed, whenu′ andv are constant, the gradient ofFε with respect tov is constant
(up to the discretization error). In a gradient-based algorithm, it would be very difficult to escape
from the “uncracked” solution. Alternatingfull minimization with respect tou and v certainly
makes it easier.

It is also worth noticing that in the previous section, we have considered perturbations with
norm 1. In the numerical experiments, the discretization, rounding and iterative solver errors play
that role. Because of their much smaller magnitude, we do not expect the critical loadt

f
ε to coincide

with the load at which bifurcation happens in the numerical experiments.

4. Numerical experiments

4.1 Revisiting the fiber pullout experiment

The main contribution of our Backtracking algorithm is to identify crack evolutions which do not
satisfy the global necessary condition for optimality (18). Indeed, a quick literature survey reveals
that this is a common issue in numerical experiments. In [Neg03, Figure 11], the total energy for a
mode-I experiment in planar elasticity is shown to be decreasing for.26 6 t 6 .27, which is not
compatible with (18). Similarly, [BFM00, Section 3.2] presents a traction experiment on a square
plate, reinforced at its center by an unbreakable fiber. In Figure 3, the total energy is also decreasing
around the critical loads corresponding to brutal evolution, which is consistent with the analysis
in the previous section. The same experiment is presented in [DLM07, Figure 7] with a similar
outcome.

We re-ran this experiment on a thinner mesh with and without Backtracking algorithm. The
domain Ω corresponds to the black area in Figure 5. The circle in the center of the domain



426 B. BOURDIN

(a) Energies, without Backtracking (b) Energies, with Backtracking

FIG. 4. Traction experiment on a fiber-reinforced matrix, energy evolution.

represents a fiber on which homogeneous Dirichlet boundary conditions are applied, while on the
upper rectangle, a displacementu = (0, t) is prescribed. The radius of the inclusion is .5, the length
of the square edges 3, the material properties are set toE = 4,000,ν = .2, andGc = 100. The
mesh consists of approximately 36,000 nodes and 72,000 elements, and we performed 125 load
increments for 06 t 6 .625. The parametersε andηε are respectively 10−1 and 10−6, and the
irreversibility threshold isαε = 10−2.

Figure 4(a) represents the evolution of the bulk, surface and total energies as a function of the
load when the Backtracking algorithm is not used. It is similar to Figure 3 in [BFM00]. In particular,
it is easy to see that condition (18) is violated aroundt = .45 andt = .5, which are the critical loads
upon which brutal crack propagation takes place. Figure 4(b) correspond to the outcome of the same
simulation, using the Backtracking algorithm. The total energy from the previous case is also plotted
for comparison. When using the Backtracking algorithm, condition (18) is satisfied for allt . The
qualitative crack evolution is similar in both cases, and consistent with the description in [BFM00],
however, the Backtracking algorithm leads to a better estimate of the critical loads upon which the
ligaments fail.

Figure 5 depicts the crack evolution for selected loads. The points wherev > αε are black, while
those withv 6 αε are white. This post-processing makes the location of the cracks obvious. The
original fieldv, which is not plotted here, is still a smooth function.

(a) t ' .283 (b) t ' .382 (c) t ' .387 (d) t ' .431 (e) t ' .436

FIG. 5. Traction experiment on a fiber-reinforced matrix, crack evolution.
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4.2 Perforated plate under mode-I load

The last numerical result we present is the simulation of a mode-I traction experiment on a pre-
cracked perforated plate. We consider a rectangular domainΩ = (−.5, .5) × (−1, 1) with a pre-
existing crack along the segment−1 6 y 6 0, x = 0, and equi-distributed perforations of diameter
.03 (see Figure 6). On the lower edge ofΩ, one applies a constant displacement,u(x, y) = (−t, 0)

if x < 0 andu(x, y) = (t, 0) if x > 0, corresponding to the mode-I opening of the pre-existing
crack. The material properties of the samples areE ' 25.2, ν ' .2857 (corresponding toλ = 12
andµ = 9), andGc = 1.0. Figure 6 represents the deformation of the sample, along with the
evolution of the crack, using the Backtracking algorithm. Again, the points wherev > 2 · 10−2 are
black, while those withv 6 2 · 10−2 white. We ran this computation on a variety of meshes ranging
from h ' 10−1 (30,084 nodes and 15,655 elements) toh ' 3.3 · 10−3 (134,784 nodes and 265,855
elements), using up to 600 time steps. The unstructured meshes were generated using a Delaunay–
Voronoy algorithm, and are therefore almost isotropic. The full computation on the largest mesh
took 8 hours on 64 processors of NCSA’s Teragrid cluster, with a cost of 1.154· 1014 Flops.

(a) t ' .781 (b) t ' .786 (c) t ' .841 (d) t ' .931

(e) t ' 1.00 (f) t ' 1.03 (g) t ' 1.04

FIG. 6. Perforated plate subject to mode-I traction.

Figure 7 represents the evolution of the bulk, surface and total energies as a function of the load
(with Backtracking on the left and without on the right), and a comparison of the total energies at
the center.
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(a) Components of the energy (with Backtracking) (b) Components of the energy (without Backtracking)

(c) Comparison of the total energies

FIG. 7. Energy as a function of the load for the perforated plate problem.

For loads 06 t < .785, the pre-existing crack does not propagate, and the total energy is equal
to the bulk energy (see Figure 6(a)). At a critical loadt ' .786, the crack propagatesbrutally until
it reaches one of the perforations (Figure 6(b)), then remains unchanged again untilt ' .841. At
t ' .841, again it propagates brutally until a second perforation (Figure 6(c)). After that, the crack
continues to propagate brutally from one perforation to the next for loadst ' .931 (Figure 6(d)),
t ' 1.00 (Figure 6(e)), andt ' 1.03 (Figure 6(f)). Finally, at timet ' 1.04, the last two links
break at the same time, and the sample reaches final failure (Figure 6(e)). The brutal behavior of the
crack set can be seen from the form of the surface energy in Figure 7(a), which is almost piecewise
constant.

In this case again, the Backtracking method leads to a solution with a lower total energy
(Figure 7(c)), and to a consistent time evolution, satisfying the growth condition at each time step.
More importantly, the qualitative crack behavior is different: using Alternate Minimizations without
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Backtracking, one obtains a smooth crack growth in between the last two holes—compare the slowly
increasing surface energy for 2.0 6 t 6 2.5 in Figure 7(b) to the piecewise constant surface energy
in Figure 7(a). Also, the Backtracking leads to an accurate prediction of critical loads inducing
crack propagation, while straightforward minimization overestimates them (compare the location
of discontinuities in the surface energy in Figures 7(a) and 7(b)).
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