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A two-dimensional metastable flame-front and
a degenerate spike-layer problem
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A formal asymptotic analysis is used to analyze the metastable behavior associated with a nonlocal
PDE model describing the upward propagation of a flame-front interface in a vertical channel with
a two-dimensional convex cross-section. In a certain asymptotic limit, the flame-front interface
assumes a roughly paraboloidal shape with the tip of the paraboloid drifting asymptotically
exponentially slowly towards the closest point on the wall of the channel. Asymptotic estimates
for the exponentially small eigenvalues responsible for this metastable behavior are derived together
with an explicit ODE for the slow motion of the tip of the paraboloid. The subsequent slow motion
of the tip along the channel wall is also characterized explicitly. The analysis is based on a nonlinear
transformation that has the effect of transforming the paraboloidal interface to a spike-layer solution
of a specific singularly perturbed quasilinear parabolic problem with a nondifferentiable quasilinear
term.

1. Introduction

We analyze the nonlinear evolution equation_of [10] and [15] that models a flame-front propagating
upwards in a vertical channel. In_[15] and Appendix B[df [3] a nonlocal PDE for the flame-front
interface was derived by taking into account the competing effects of buoyancy and gravity. In
nondimensional variables, and in a certain asymptotic limit, the flame-front inte§faeeS(x, r)

was found to satisfy

1
S,_§|vs|2=ngs+S—(S), xefR, >0, (1.1a)

3S=0, Xedf2; SxO0 =Sx; (S)= % S(X, t) dX. (1.1b)
2

Here2 c R?is the bounded channel cross-secti@| is the area of2, and3, is the outward
normal derivative. We assume th@tis convex with a smooth boundaby2. The small parameter
¢ > 0 is defined in terms of the channel width, the gravitational acceleration, and some physical
properties of the flame (see equation (1.4) of [3]).

In the one-dimensional case whee= {x | |x| < 1}, the numerical results of [10] suggested
that the flame-front interface assumes a roughly concave parabolic shape where the tip of the
parabola drifts slowly towards one of the endpoints of the interval at +1. Fore « 1, it
was proved in[[2] and 3] that the speed of this slow drift of the tip of the parabola is asymptotically

TE-mail: alexch@math.ubc.ca
IE-maiI: ward@math.ubc.ca

(© European Mathematical Society 2007



514 A. F. CHEVIAKOV AND M. J. WARD

exponentially small as — 0. Fore — 0, a formal asymptotic analysis was used_inl [16] to derive
the following nonlinear ODE for the tipo(r) of the flame-front interface fof (1].1):

2
5o~ | =5 (A= x0)% + 0™ VD —[(A 4 30 + O] HHOTED) - (1.2)

The analyses of [2])[3], and_[16] were based on introducing the transformatien—S, into
(1.7) to eliminate the nonlocal term. The resulting PDE problenyfer y(x, ) on|x| < 1 is the
Burgers—Sivashinsky equation

Vi vy —y =%y, y(ELH =0, y(x,0 =—5S(x,0). (1.3)

In a vertical channel with a two-dimensional cross-section, the upwardly propagating flame-
front assumes a roughly paraboloidal shape with the tip of the paraboloid located somewhere
in the channel cross-section. The numerical results_ bf [1] and [8] strongly indicate that the
paraboloidal flame-front interface maintains its shape for a very long time with the tip of the
paraboloid drifting asymptotically slowly ia towards the boundary of the channel cross-section.
Experimental evidence of such long-lived transients from physical experiments with premixed
flames are summarized in 82 bf [8]. For the special case of a unit square channel cross-section, it was
proved in [1] that the flame-front is metastable in the sense that the tip of the flame-front remains
inside £2 for an asymptotically exponentially long time whenk 1. The method of proof in [1]
was based on differentiating (I]1a) separately with respectaod y; then by using comparison
principles the resulting problems were related to the Burgers—Sivashinsky eqiiation (1.3) where
metastability was proved in|[3]. Although this approach proved the existence of a metastable flame-
front in a square domain, it left open the issue of providing an explicit analytical characterization
of the metastable flame-front dynamics and of providing asymptotic estimates for the exponentially
small eigenvalues associated with the linearization around the flame-front. The numerical results
in [1] did suggest that the flame-front tip eventually approaches the closest point on the boundary
of the square. In addition, Theorem 2 bf [1] proves that, under some assumptions on the initial
data, the flame-front tip will approach one of the corners of the square. For an elliptical domain, the
numerical results of 8] showed that the flame-front tip approaches the closest point on the boundary
of the ellipse. From the numerical study of [8], the tip then drifts along the boundary of the ellipse
towards the nearest local maximum of the boundary curvature.

The goal of this paper is to extend the results’in [1] and [8] by giving an explicit, but formal,
asymptotic characterization of metastability for {1.1) whns a convex domain. We also study
the motion of the flame-front tip on the boundary of the domain. Although we provide an explicit
asymptotic characterization of the flame-front dynamics for a well-developed paraboloidal flame-
front, we do not study the important problem of the formation of the flame-front from arbitrary
initial data. In contrast to the rigorous approaciiin [1] in which ([1.1a) is differentiated with respect
to x andy to eliminate the nonlocal term, our study pf (1.1) is based on a nonlinear change of
variables that reducels (1.1) to a quasilinear parabolic problem. In our formulation the paraboloidal
flame-front interface with tip axg inside 2 is transformed foe — 0 to a localized spike-layer
solution with the spike centered x$. The metastable behavior of this interior spike-layer solution
is then studied in detail using a formal asymptotic analysis. For the simpler one-dimensional case,
this approach has recently been used_in [14] as an alternative to the metastability analysis of [16]
based on the Burgers—Sivashinsky equafior] (1.3).
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Before outlining our specific results, we introduce the transformatidn df (1.1). We first défine
by
S(x, 1) = 262 log[U (X, 1)]. (1.4)

Upon substituting[(114) int¢ (1].1), we find tHdtsatisfies
Uy = AU +U(logU — (loglh)), xeR,:1>0; dU=0, Xxeof. (1.5)
Since there is no nontrivial equilibrium solution fo ({1.5), we introduce the further change of variables

UX, 1) = DT (x, 1). (1.6)

Here ¢(¢) is chosen so that the problem farhas a steady-state solution, afds an arbitrary
constant. Therefore,
(1) = —(logu(x, 1)), (1.7)

while u satisfies the quasilinear parabolic problem
u,:szAu—i—ulogu, xefN,t>0 0,u=0xec0s2. (1.8)
The equilibrium problem fof (1]8) if? is
2Au™ + u® logu®™ =0, xe RZ; U™ jxj—>o00 = 0. (1.9)

As a result of the nondifferentiability aflogu atu = 0, this problem is a special case of a class
of degenerate spike-layer problems studied In [5]. A remarkable featufe pf (1.9) is that it has the
simple exact spike-layer solution

_ynl2
WP xo) = exp( 1— X=X e g2 (1.10)
42
for any fixed spike locatiomo € R2. This is the unique solution with™ > 0 to (1.9) (cf. [5]).
Since the spike profil@> only fails to satisfy the boundary conditions of the finite-domain
problem [1.8) by asymptotically exponentially small termsas> 0 for anyxp € £2, u™ is an

approximate steady-state solution [of {1.8). Upon substituting x>, (1.7), and[(1}6), intd (1]4),
we obtain

1 [ 1
S(X, 1) = 5/0 (X — Xo|%) dr — Shx— Xol? + 262(1 — t + w). (1.11)

Therefore, the spike profile>, with spike location akg is transformed to a paraboloidal flame-
front interface, with tip aio, that propagates upwards in the channel at spggd= 2¢2¢’ =

3(Ix — xol?) + O(£2). In Fig.[] we show a plot of the interface = logu™ = $/(2¢2) and

the corresponding spike profile® from (1.10) for the domain2 = [—1,1] x [—1, 1] when

xo(0) = (0.1,0.3) ande = 0.1. However, since the form fof in (1.11) does not satisfg, S = 0

on 352, (I.11) must be modified near?2 by introducing certain boundary-layer terms. For the
time-dependent problem, we allow andw to depend slowly on time. By using formal asymptotic
methods to resolve the boundary layer n&gr, we will derive slow motion ODE'’s fokg(z) and for

w(t). By substituting these slow motion ODE’s info (1.11), we obtain an explicit characterization
of the metastability for the flame-front interface [of (1.1). The precise metastability result is given in
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FiG. 1. Plot of the interfacey = S/(2:2) = 1— [x —Xo|2/(4¢?) (top), and the spike profile™ from {1.10) (bottom), when
Xo = (0.1, 0.3) ande = 0.1. The domain is the squase = [—1, 1] x [—1, 1].

Principal Result 4.1 of 84 below. Fer— 0, it is shown that the flame-front tip drifts asymptotically
exponentially slowly towards the closest point on the wall of the channel. lllustrations of this
phenomena are given in 84. We also analyze the motion of the flame-front tip after it has become
attached to the wall of the channel. By deriving an ODE for the flame-front tip, it is shown that the
tip slides along the boundary until it reaches a local maximum of the curvature of the boundary. The
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FIG. 2. Top: Dynamics of the flame-front tip in an ellipse. (A) Under the dynanfics|(4.17) the tip moves from the initial
point (labeled bw) to an O (¢) neighborhood of the closest boundary point (labeled)oyB) The tip then drifts along the
boundary undef(5.13) to the nearest local maximum of the curvature (labelgd Bgttom: the upward speedr) of the
flame-front given in[(ER).

precise result for the boundary flame-front tip motion is given in Principal Result 5.1 of 85. These
asymptotic results give a formal confirmation of the numerical results and conjectdres in [1] and [8].
Similar to Fig. 4 of [8], in Fig[ 2(g) we illustrate the two distinct stages of the dynamics of a flame-
front tip that is initially located inside an elliptical domain. In Hig. 2(b) we plot the upward speed
v(t) of the flame-front in the channel during both stages of the dynamics. An explicit description of
the flame-front dynamics for these two stages together with the parameter values uged for (1.1) is
given in Example 6.1 of §6.

Equilibrium spike-layer problems similar to (1.8), but withogu replaced by eitheru + u?
or a more general class of differentiable functionsuphave been studied extensively over the
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past ten years. Early studies of interior equilibrium spikes include [23], [21],[and [18]. For early
studies of boundary spikes séel[13] and [22]. Metastable spike behavior in two spatial dimensions
associated with the nonlocal quasilinear shadow Gierer—Meinhardt problem is analyzed in [6], [21],
and [4]. A formal asymptotic analysis of the dynamics of boundary spikes for this shadow Gierer—
Meinhardt model is given iri[7]. A recent survey of rigorous properties of equilibrium spike-layer
behavior is given in Section 1 of [12]. A survey of metastable behavior and boundary dynamics
of spike and bubble solutions for scalar quasilinear problems in two spatial dimensions is given
in [19]. A more general survey of formal asymptotic methods for equilibrium and time-dependent
spike-layer solutions is given in [20]. In contrast to these previous studies, the study of spike-layer
behavior for[(1.B) is technically somewhat more challenging owing to the nondifferentiability of the
quasilinear ternx logu atu = 0.

The outline of this paper is as follows. Fer — 0, in 82 we study the spectral problem
associated with linearizing (1.8) around the spike prafife. By using boundary-layer theory
to calculate the boundary behavior of certain near-translation eigenfunctions, precise asymptotic
estimates for the asymptotically exponentially small eigenvalues associated with the linearization
are derived. In addition, we derive an asymptotic estimate foottly positive principal eigenvalue
of the linearization. In 83 we construct an improved approximation to the equilibrium solution
of (1.§) whereby the spike profile™ is adjusted by a boundary-layer solution of exponentially
small amplitude in order to satist},u = 0 onad£2. We then study the spectral properties of the
linearization of [(1.B) around this improved quasi-equilibrium solution, and we derive asymptotic
estimates for the exponentially small eigenvalues associated with the near-translation invariance. In
84 we use the spectral estimates of §2 to derive explicit slow motion ODE'’s for the flame-front tip
Xo(t) and the growtlw (¢). In 85 we analyze the dynamics of the flame-front on the boundary of the
domain. Finally, in 86 we conclude with a brief discussion and we illustrate our asymptotic results
with a few examples.

2. The eigenvalue problem: leading order theory

In this section we analyze the spectral problem associated with linearzig (1.8) around the spike
profile u* of (1.10). We assume that the spike locatigne 2 satisfies digixg, 9£2) = O(1) as

¢ — 0. If we linearize[(1.B) around>, and neglect the no-flux boundary condition, we obtain the
infinite-domain eigenvalue problem

VY
e2Ap™ + (2 — |X4—);O|>¢°° =1%9®, xeR?% ¢*—>0 as|x — co. (2.2)
£
The first three eigenpairs ¢f (2.1), ranked according to the largest eigenvalues, are
X — Xol?
)\80 =1, ¢8° = u® = exp(l — T s (2.2a)
10=0, ¢ =0u>, i=12 (2.2b)

The result in[(2.2b) expresses the translation invariance of the infinite-domain problem, and is
readily seen by differentiating (3.9) with respectdofor i = 1, 2. Moreover, since (2}1) is the
explicitly solvable 2-D harmonic oscillator eigenvalue problem (cf| [11]), its entire spectrum is

_1vl2
¢ = cuyme M/ He, (v He,, (v2), A =1—n1—np, n1,n2=0,1,2,.... (2.3)
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Herey = ¢~1(x — xq), y; is thei" coordinate of/, and He (y;) is the usual Hermite polynomial of
degree:. The first three eigenpairs in (2.3) agree with thosg¢ in (2.2), and the remaining eigenvalues
are strictly negative.

If we insist that¢ satisfy the no-flux condition od$2, then we obtain the finite-domain
eigenvalue problem

Lop = e?Ap + (L+logu™)p = rdp, Xe€2; 0,0=0, Xeif. (2.4)

Sinceu™ decays exponentially away frorg, the spectrum of (2]1) should be exponentially close
to that of [2.4). In particular, we show formally that the two zero eigenvalugs in|(2.2b) associated
with translation invariance of the infinite-domain problem become asymptotically exponentially
small ase — 0. These eigenvalues are referred to as dhiical spectrum In addition, we
will show that the principal eigenvalue df (2.4) is asymptotically exponentially close to the value
Ag° = 1given in [2.2h). The eigenfunctions [n (R.2) for the infinite-domain probfenj (2.1) provide
outer approximations, valid away frof12, for corresponding eigenfunctions of the finite-domain
problem [2.4). The formulae derived in this section are needed below in §4 for the metastability
analysis.

We begin by writing [[2.4) in terms of normal-tangential coordinates), wheres > 0 is
the normal distance frori$2 to x € £2, ands is arclength alon@ 2. Let x(s) = (x1(s), x2(s))
smoothly parameteriz&s2 in the positive direction. Ther, = X'(s) = (x7(s), x5(s)) is a unit
vector tangent t@£2 in the positive direction, ane, = (—x5(s), x1(s)) is a unit vector normal to
052 pointing into£2. The curvature: (s) > 0 of 352 is

k(s) = x/l(s)x/z/(s) — xé(s)x/l/(s) =€, - e(Y = —e{, - gy, (2.5)
so thatd;e, = —«e; ando;e; = ke,. We then definel(s), D(s), andy (s) by

1
d=xo—x(s), D=]d? x= 5d06) &), (2.6)

This normal-tangential coordinate system is shown in[Hig. 3. In ternis, o we readily calculate
that

d-e

d (2.7)
IX — Xo|? = |d|?> + 62 — 20|d| cosp = |d|? + 0% —20(d - &,) = D + 02 — 4xo.

cosp =

Therefore, in terms of the coordinates s), the spike-profile outer solutiop (1]J10) becomes

1
u® =expl 1— - (D + 02 — 4x0) ). (2.8)
42
In addition, in terms ofo, s) the Laplacian in[(2]4) can be written as
K 1 9 1
A¢p = — — . 2.9
b= oo 1_m"’”+1_mas<1_m"’f) (2.9)

We now construct the two near-translation eigenfunction$ of (2.4)¢betlenote one of the
two translation eigenfunctions for the infinite-domain problem|(2.1) normalized as

¢> = e2u>®, i=1,2 (2.10)
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FiG. 3. Coordinate system for the boundary layer analysis.

Hered; denotes the partial derivative with respect toiffi€oordinater; of x. The factor2 in (2.10)
is chosen so that®™ = O (1) for |x — Xg| = O(¢). Sincep*>° does not satisfy the no-flux boundary
condition ond $2, we construct the two critical eigenfunctions in the additive boundary-layer form

¢ == + ¢dp. (2.11)

The correctiongg, which allows the no-flux condition 0As2 to be satisfied, is localized near

052 and is to decay away from the boundary layer. Such an additive boundary-layer construction
is typical in wave scattering problems (df! [9]). Substituting (R.11) ifto] (2.4), assuming. tisat
exponentially small, and using (2.8) fof°, we get

xo o2

D
g2 42

e?Agp + <2— e )¢B =0, X€R; d,0p=—0,0°, xei2. (2.12)
£
The problem [(2.12) suggests the boundary-layer thickr@es) near ds2. Therefore, we
introduce the local normal distangeby n = o/¢2. By differentiating |(1.10), and writing the result

in terms of the local boundary-layer coordinatgss), we obtain

1 X — Xo|®
(poo = 6‘28[”00 = E(XO,’ — Xl') eXp(l — T

= <d—e [eanerZDexp(l—EJrnx)- (2.13)

Heree, is the unit vector in the direction of th& coordinate, whilel, e;, D, andy, are as defined
in (2.6) and Fig[ B. By differentiating (2.1.3), and evaluating the resuld @nwhereoc = 0, we
obtain

d; € D
30 lr-0= & - ¥9¥loo =€ (70 - E) eXp<1 -22)

1 ) D
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Sinced,pp = —3,9> for x € 952, (2.14) gives the following boundary condition fpp:
1 D
80¢B|0:0 = _@(dix - Szei : eU) exp(l - E) (215)
Next, we seek a boundary-layer solution[to (2.12) with boundary condition] (2.15) in the form

D
¢p = exp(l — E)‘?B, Pp = Do+ 2P +---, n=o0/c2 (2.16)

whereD(s) = |X(s) — Xo|? andx(s) € 352. We then substitute (2.16) intp (2/12) and (2.15) after
first expressing the Laplacian in (2]12) in terms of normal-tangential coordinateq as in (2.9). Upon
collecting the lowest powers ef we find that® g satisfies

1
(@50)ny — 76[4D = (D)) Ppo =0,  0<n < o9; 2.17)

(¢BO)17|17=0 =—d;ix/2, DBoly—so0o —> 0.

The coefficient ofb zo in (2.17) can be simplified by noting that = (|d[2) =2d-d' = —2d - &,.
In addition, sinceey| = |e,| = 1, we obtainD = |d|? = (d - &)? + (d - &,)2. This yields

D (D)2 1
Therefore, the solution tp (2.]17) is
d
@DBO = Ee_”. (219)

For a convex domairy = d - e,/2 > 0, and sob g decays exponentially away from the boundary
layer asp — oo.

Finally, by substituting[(2.79)[ (2.16), anfl (2113) info (2.11), and evaluating the resulting
expression ord$2, we obtain the following boundary behavior for the critical eigenfunctions of

24):

D D
Glyp=0 ~ ¢ ;=0 + exp<1 - @)CDBOH:O ~ d; EXD<1 - @) (2.20)

Next, we use[(Z2.40) to give an estimate of the two exponentially small eigenvalugs for (2.4)
corresponding to the near-translation eigenfunctions. By using Green'’s identjty pn (2.4) we get

f [0:u%° Lod — dLo(Biu™)] dx = / L0 00h — i O] ds.  (2.21)
2 082

Then, sinceCo(3;u™) = 0, Lop = A¢, andd,¢ = 0 0nds2, (2.23) becomes

A / Pu>™ dx = —&? / $0,[0;u>°] ds. (2.22)
2 482

In (2.23), 9, denotes the outward normal derivative. The dominant contribution to the integral
multiplying A occurs from the region near the spike where- £29;u> from ). Therefore,

(2:22) becomes
AT ~ —T; jESZ/ (3;u>)? dx, 1552/ $3,[0;u>°] ds. (2.23)
2 082



522 A. F. CHEVIAKOV AND M. J. WARD

We will estimate7 andZ precisely ag — 0. To calculate7 in (2.23) we use (1.10) far™ to
obtain

2 2.2 o0 2.2
e 2 _Ix—xol2/(252) Tece / 3 —p?/2 Tece
~ X; — X0;)°e dx ~ e do = .
482 /;2( i 01) 4 0 1% 0 2

(2.24)

Next, we calculat€. To do so, we evaluatgu as in [2.1B) and calculate its outward normal
derivative as

_ xd; D
3,,[81'1400]|,,:0 = —& 28,,[85u°°]|,]:o ~ —zi eXp<l — E) (225)

Upon substituting[(2.25) and (2]20) intp (2.23) we obtdinThen, substituting the resulting
expression and (2.P4) into the expression fon (2.23), we obtain the following result for the
critical spectrum;

PRINCIPAL RESULT 2.1 Fore — 0, the two exponentially small eigenvalues of the finite-domain
eigenvalue problenj (3.4) corresponding to the near-translation eigenfunctions have the asymptotic
estimate

1
] d2ye~ D/ @) dg. (2.26)

Here 2 =d-e,, D = |X(s) — Xo|%, andd; = xo;i — x; (s).

Next, we use Laplace’s method (df. [24]) to asymptotically evaluate the integial ir| (2.26) for
¢ < 1. Fore — 0, the dominant contribution to this integral arises from the pginbn 952
closest to the spike locatioxy. Assume that there is only one such point whéxg) takes its
global minimum fors € 352. At s = so we getx2 = D/4 from (2.18) andD” (so) = 2(1 — |do|«).
Therefore, Laplace’s method applied[to (2.26) gives the following leading-order asymptotic estimate
for the two exponentially small eigenvalues [of (2.4):

-3 42d dol?
o~ L iol%ol exp(——| O|2 ) (2.27)
V2 /1= ko|do 2

Here|do| = X0 — X(s0)|, dio is thei™™ coordinate ofi ats = so, andkg = « (so) is the curvature of
d82 ats = so.

Finally, we derive an estimate for the principal eigenvalue [of](2.4). This eigenvalue is
exponentially close to one, and the outer approximation for its corresponding eigenfunction, valid
away froma$2, is ¢ ~ u°. To derive an estimate for — 1 we use Green’s identity op (2.4) to get

/ [u®°Lop — pLou>]dx = / 2 [u>0,¢ — $d,u>]ds. (2.28)
2 982
From [1.9) we note thafou™ = u°. In addition, since),¢ = 0 ond 2, (2.28) reduces to
(O — 1)/ u®pdx = —82/ $d,u ds. (2.29)
2 982

The dominant contribution to the integral multiplying— 1 occurs from the region near the spike
whereg ~ u. Therefore, from[(1.]0) we estimate

o0
/ u>g¢ dx ~ / @®)?dx ~ 27'[62/ ,Oe_pz/(zgz) dp = 27&%e°. (2.30)
9] I?) 0
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In addition, by differentiating (2]8) with respectaq we readily calculate that

X D
nuTlye = —0:u|s=0 = 2 eXp(:l- - P) (2.31)

To complete the evaluation of the right-hand sidd of (2.29) we must calcpilate) 2 by using
boundary-layer theory. We begin by writirjg (2.4) in the form

?Ap + (logu>®)p = (A — D¢, XeR; 9,06=0, xeif. (2.32)

We look for a boundary-layer solution in the foin= u* + ¢p, where¢p decays to zero away
from 82. Assuming thak — 1 is exponentially small, and by usirfg (.8) #0%°, we find thaty
satisfies

xo o2

b
2 4e?

42
Next, we look for a solution td (2.33) in the forin (2]16). We then substifute](2.16)[into| (2.33) and
introduce the local normal-tangential coordinatess), wheren = o/¢2. To leading order we find
that®pg in (2.18) satisfies

D
e?Agp + (1 )¢B =0, X€2; ¢plo=o= —é exp(l— E)' (2.33)

(@BO)yn — X°Ppo=0, 0<n <00 (Ppo)yly=0=—x. (2.34)

The solution to[(2.34) i®go = e *". Then, by usingp = u™ + ¢ and [2.8), we obtain the
boundary estimate

D
Plo=0 ~ 2eXp(1 — @) (2.35)

To obtain the estimate for — 1 we substitute[ (2.30)] (2.B1), arjd (4.35) irfffo (2.29). This leads
to the following result, which is required in the metastability analysis of 84:

PRINCIPAL RESULT 2.2 Fore — 0, the principal eigenvalue of the finite-domain eigenvalue
problem [[2.4), corresponding to the eigenfunction with outer approximation >, has the
asymptotic estimate
1
=1~ = | xe P/ s, (2.36)
e R

Here 2 = d - e, and D(s) = |X(s) — Xo|2. Assuming that there is a unique point= sg on 952
whereD(s) is minimized, and definindyg = |Xo — X(sg)| andkp = « (sp), Laplace’s method applied
to (2.38) yields the leading-order estimate

-1
dot —_ ~d3/ae) (2.37)

1
A1~
V21 /1 — Kkodo

3. The eigenvalue analysis: higher order theory

In this section we use the method of matched asymptotic expansions to construct a quasi-equilibrium
spike-type solutiom, to the finite-domain problem

?Au+ulogu=0, xe2; du=0 Xxeisf. (3.1)
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The finite-domain eigenvalue problem associated with linearizing (1.8) anguisd
Lep=e2Ap+ (L+10Qus)p = A, X€2; =0, Xxecif. (3.2

We will derive precise asymptotic estimates for the two critical eigenfunctions and eigenvalues of
(3:2) associated with the near-translation invariance.

We first construct:, using boundary-layer theory. The outer solution for|(3.1), valid away from
942, is the spike profile:* of (L.10), wherexp € £2 and distxg, 92) = 0(1) ase — 0. Since
u® fails to satisfy the boundary condition in (8.1) by exponentially small terms-as0, we must
insert a boundary-layer neér2 of exponentially small amplitude. In terms of the local normal-
tangential coordinate@), s), wheren = o/e2, we seek a boundary-layer solutioty, s) of (3-1),
valid neard£2, which behaves likg (2}8) away from the layer. With this boundary-layer scaling and

(229), [3:1) becomes

2| —a 2 K 1 0 1 _
8[8 Upy — € 1—K827]Mn+1—/(8217&(1—16827]'“ 4+ ulogu = 0.

Then, introducingu(n, s) by the WKB-type transformation(n, s) = exp(w(n, s)), we find thatw

satisfies
2 84K/77w5
(1 —«ke2n)3

K

-2 2 €
e “(wpy +wy) — s wy + (1 —re2y)

2 (wgs + wgz) +

+w=0. (3.3)

From the matching conditiof (3.8) we require that the soluticio (3.3) has the far-field behavior

D 82 2
w(n, $)|ps00 = a2 +1+nx - T’? (3.4)

This limiting behavior suggests that we seek a solutiofi id (3.3) in the form

D

—— + wo(n. 5) + e2w1(n. s) + - . (3.5)
4e

Notice that by combining (1}4) and = expw it follows thatwp is directy proportional to the

flame-front interfaces. Hence, the expansion (.5) is essentially an expansion of the intetfége

substituting[(3.p) intd (3]3), and collecting terms of ordee ~2), we find thatwo(n, s) satisfies

wp(n,s) =

Wony + wén = sz 0<n < oo; woy =0 = 0, wolp—oco ~ 1+nx. (3.6)

Similarly, from theO (1) terms, we obtain the following problem far;(n, s):

1 1 1
W1y, + 2wo,w1, = Kwo, — wo + ZD” + ED’wos — élcn(D’)z, 0< 5 < oo, (3.7a)
2

Wiylp=0 = 0, Wilp—o00 ~ _nz +o(D). (3.7b)

The resulting boundary-layer solutiarz of (3.7)) is then given by

D
up(y,s) = e"s) = eXp(—@ +wo(n, s) + &2w1(n, s) + - ) (3.8)
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The problem[(3]6) is equivalent to equation (2.9)[ofl [14] for the one-dimensional case. The
solution is
wo(n, 5) = log[2e* costinx)] = 1+ nx + wop. (3.93)

wherewg, (1, s) is defined by
wop = log[l 4 e 2 ~ =21 5 0 asy — oo. (3.9b)

For a convex domairy = d-e&;/2 > 0, and hencevg, = O(e~2x") decays exponentially as
n — 00.

Next we solve) fouw, in the formwi(n, s) = —712/4 + w1y (n, s). From ), we find
thatwy, satisfies

11 1 1
Lwny = w1y +2woywipy = (€ +Mwoy —wo+ 5 + 7D + 5 D'wos — gKn(D’)Z. (3.10)

We then substituté¢ (3.Pa) info (3]10) to get

1 1 1 1 " 1 ro ! 1 "2
Lwyp, = (/c—l—r])wopn—wop—i—éD w0ps+[_§+KX+ZD :|—|—n[§D X —EK(D) i| (3.11)
On the right-hand side of (3]L1) the primes indicate differentiation with respect to
Sincewy = —n?/4 + w1,, a sufficient condition for the far-field behavion ~ —n2/4+ o(1)
asn — oo is thatwy, decays exponentially ag — oo. Sincewg, ~ x asn — oo it follows
from (3.17) that this exponential decay condition holds provided that the right-hand s[de ¢f (3.11)
vanishes ag — oo. To show this, we first us¢ (3.pb) to conclude that the terms on the right-hand
side of [3.11) that involvevg, decay exponentially ag — oo. Next, we use[(Z2]6) to calculate
D' = —-2¢;,-dandD” =2 — 2«e, -d. With 2y =d - e,, we get

1 1 1 1
_Z Ip—_= (2 —4ky) =0. 3.12
2+Kx+4 2+/<)(+4( K X) (3.12)
By using the definition of the curvatukein (2.5), the last bracket on the right-hand side[of (B.11)
also vanishes:

1 1 1 1
U[ED’X’—gK(D’)Z] = Eﬂ[_(d‘es)(d'ea)/_’((d'es)z] = En(d-es)(d(—ei, —key)) =0. (3.13)

From [3.12),[(3.1B), and the decayw$, asn — oo, we conclude that the right-hand sifle (3.11)
decays ag§ — oo. Thereforewsy, has exponential decay as— oo.
For the eigenvalue estimate of §3.1, we require an explicit formula fbefined by

= w1(n, 5)ly=0. (3.14)

4 n=0

2
y = wlp(nv s)|7’]=0 = (wl(nv S) + n_)

By substituting[(3.12) and (3.1.3) into (3]11) we find that, satisfies

Lwy, = (K—i—n)wopn—wo,,—}—%D/wopS, 0<n < oo, (3.15)
Wipply=0 =0, wyp andwy,, - 0 asn — oco. '
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To determiney it is convenient to introduce the adjoint problem fd, s) defined by
LTh = hyp — Qwoph)y, =0, 0<n<oo; h—landh, -0 asy— oo. (3.16)

By using [3.9h) forwo, the solution to(3.16) is readily calculated/as= 1 + e~2x7.
Next, we use Lagrange’s identity between L aridd obtain

oo
fo hLwi, dn = (hwipy — hywip)lg” + 2woyhwip g (3.17)

Then, by usingwo,l,—0 = wipyly=0 = 0, hyl,=0 = —2x, together with the decay ab;, and
w1py asn — oo, (3.17) and[(3.15) determineas

1 oo
Yy =wq |=0=——[ hLwi, dn
pin ZX 0 P

1 [ 1
= _Z /0 1+ er”)|:(K + nwopy — wop + ED/wops:| dn. (3.18)
From [3:9b),[(3:18) becomes
1 [ 2 —2x(k+n) _o 2 x'D'n
__ = oy | AN T 2y xmy A —2xm
y = 2)(/0 1+e )|: T+ o 2 e log(1+e ) 1+e—2X’7€ dn

1 o0
T2 f [2(k + n)xe 7 + (14 e 2X ) log(1 + ¢ ~2XM) + nuc(d - €)%~ 2" dn.
X JO

In obtaining the last line above we used the relatidiy’ = «(d - &,)? found in [3.13). Finally, we
split the integral above into three separate terms as

oo

o
2X)/=/ (1+e72X”)|Og(1+672X")dn+/ n2x + k(- e)?]e 2" dy
0 0
o
+/ 2k x e~ XM dy. (3.19)
0

Each of the integrals above is readily evaluated. In this way, we obtain the explicit result

K(es : d)2
2x )

K 1 72
Y = Wily=0 = wiply=0 = (— +2log2+ (3.20)

20 T 2o2\12

This result is then used ifi (3.8) to calculatg on d52. By usingwo|,—o = 1+ log 2 and[(3.2D) we
conclude that

D
uglae =€wB|n=0’“29XI<—@+1>(1+52V+"')~ (3.21)
In summary, foix € §2, the quasi-equilibrium solution, denoted iy(x; Xo), has the form

X — Xo|?

U™ (X; Xg) = exp(l— | 12 ) dist(x, 3£2) > 0(&?),
£

e (X; Xo) = (3.22)

_ D 2 ; _ 2
ug = exp(—E +wo+¢ wl), dist(x, 982) = O(&%).
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By adding the outer and boundary-layer solutions, and then subtracting their common parts, one

can, in the usual way, obtain a uniformly valid representation for the quasi-equilibrium solution.
Consider the special case whepes the unit disk. Lekg = rg(c0stp, sinfp) denote the spike

location in 2 with 0 < rg < 1. In terms of polar coordinatess2 is parameterized as(6) =

(cosb, sind). We calculate

€ - d = (—sind, cosh) - (rocoshp — cOsH, rgSindg — sinB) = —rg SiN@ — o), (3.23a)
€, - d = —(cosh, sind) - (rocoshy — €COSsh, roSinfp — sinf) = 1 — rocoq6 — fp).  (3.23b)

Therefore, withe = 1 and [3.2B), the expression fpr= wi1|,—o in the boundary estimatg (3]21)
for ug becomes

1 1 2 2sinf — 6
y = + (7T__|_2|()92_+_u>7

— + —— 2x = 1—rpco96 — 6p). 3.24
2X (2X)2 12 2X X rp COY o) ( )

3.1 The critical eigenfunctions and eigenvalues

We now derive precise asymptotic estimates for the two critical eigenfunctions and eigenvalues of
(3.2). To derive the eigenvalue estimates we must first determine asymptotic formulae for the critical
eigenfunctions on the boundary of the domain. Ag in (2.10) of §2 we denapé°byne of the two
translation eigenfunctions for the infinite-domain problem. We look for an eigenfunctipn pf (3.2) in
the additive boundary-layer form ¢f (2]11). By substituting (2.11) iptq| (3.2), and assumingithat
exponentially small, we obtain

e2Agp + (L + loguy)pp = —[6246™ + (L4 logu™)p™] + ¢ (logu™ — logu,)
= ¢>*(logu®™ — logu,). (3.25)
In ) we noted that the first term in the middle expressiop of [3.25) vanishes identically. Within

an 0 (¢%) neighborhood 08 £2 we replace:. by the boundary-layer functiang of ) to find that
¢p satisfies

e?A¢pp + L+ logup)ps = ¢¥(logu™ —logup) = R, X € 2;

(3.26)
Ay = —£20,0°, X € 082.

The boundary data i (3.26) was calculated[in (R.14) @pdvas given in[(3.B). In this way, we
obtain

D
82A¢B + <1 ~ 252 + wo + 82w1)¢3 =R=—¢>(wop + szwlp + -9, (8.27a)
,®B =—§(dix — &g - e;) exp| 1—@ onn=0. (3.27b)

Herewo, andws, satisfy [3.9b) and (3.15), respectively.

To show thatpp — 0 asn — oo away from the boundary-layer region, it suffices to show that
R decays to zero ag — oo. In the far-field, [2.1B) shows that™ = O(e*"), while from {3:9b)
and [3.I5) we getwo, + £2w1,) = O(e4e~2XM), ThereforeR = O(e9¢~ ") — 0 asy — oo.
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Next, we seek a solution tp (3]27) in the fofm (2.16). We then substjtuig| (2.16} intd (3.27) after
first expressing the Laplacian in (3.27a) in terms of normal-tangential coordinate$ a$ in (2.9). Upon
collecting the lowest powers ef we find that® g satisfies

(@p0)yy — X°®Ppo=0, 0<n <00 (Ppo)yly=0=—dix/2, Ppoly—oco— 0. (3.28)

In terms ofwg andwo,, defined in @), we find at next order thag1, on 0< n < oo, satisfies

1
(®B1)yy — x°Pp1 = k(Ppo), + 5D (@50)s

1 1 1
+ (PBo(ZD” — éKn(D’)Z -1- w0> = 5die"wop, (3.29a)
1
((pBl)nM:O = Eei ‘€, ®Bl|n—>oo — 0. (3.29b)
The solution to[(3.28) is simply
d4
Ppo = E’e—xn. (3.30)

We then substituté (3.30) aneh = 1+ xn + wo, (see[(3.p)) into the right-hand side pf (3.29a),
and we use the following identities to simplify the resulting expressions:

2~ 18 %

D' =—2e-d D'=2—4y, X’:—%es~d. (3.31)

In this way, we find after some algebra tliag, satisfies

3 d!
Lo =C(n,s) = —4530[2/0( +5txn +in(d-e)2+(d- es)j + (1+62X")w0p}, (3.32)

1
with the boundary condition given ip (3.29b). [n (3.32), we have introduced the self-adjoint operator
L = 82 — x2. Sincewg, = O(e~2X") (see )) an@®po = O (e X") asn — oo, it follows that
C(n,s) = O(ne~ X"y asn — oo.
Below we require an estimate fdrz on the boundary. Therefore, from the solution[to (B.32)

we must calculatg = @p1|,—0. To do so, we use a similar procedure as in 82 that avoids having
to calculate the entire functiohz1(n, s) directly. Leth(n, s) satisfy the adjoint problem

Lh=hy —x*h=0, 0<n<o0; hly=o=1 hyly=0=—x. (3.33)

The solution ish = ¢=". Then, by using|(3.33)} (3.82), arld (3.29b), together with the Lagrange
identity

o0 o0
/O By iy — /0 Gp1Lidn = [h(Pp1)y — Paihy]IS, (3.34)

we can readily determing in terms of a quadrature as

1 o0
B=——¢6 -6 — —/ e X1C(n,s)dn. (3.35)
X Jo
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Next, we substitutg (3.32) far into (3.35) and we decompose the resulting expression into three
readily evaluated integrals as [n (3,19). In this way, we obtain

1 d; 1 (=2 1 d! K ’
= dpilp—g = ——6- — —( =+log2+=+(-&)=% | +-—(d- . 3.36
B Bl|17—0 2Xez eo+2X |:K+X <24+ 0og +2+( es)2di)+4X2( &) i| ( )

Finally, by combining[(2.23)[(Z2.11), (Z.1L6}), (3]30), ahd (3.36), we obtain the following estimate
for the critical eigenfunctions of the finite-domain eigenvalue probfenj (3.2) on the boundary of the

domain:

D
Plp=0 ~ exp(l - E)(dj + 2B 4. (3.37)

Hered; (s) = xoi — xi(s), D(s) = [X(s) — 0|2, andg is given in [3.36).

Consider the special case wheeeis the unit disk with a spike aty = ro(c0os8p, Sinfp) with
0 < ro < 1. Thenthe polar angtedenotes arclengti) (6) = |x(6)—Xol|? = 1—2ro coS0—6p)+r3,
and Zx = 1— rocog6 — 6p). Sincex = 1, it follows from (3.23) thap in (3.37) and[(3.36) can be
written as

1 d; 1 (72 1 . d! &
=——¢- 11+ =( = +log 2+ = — rgsin@ — ) — | + —% sirf (@ — 6o) |. (3.38
p 2, err+2X|: +X<24+ 92+ 5 —rosin( O)Zdi)+4)(2 (0 —6o) |- (3.38)

Next, we estimate the two exponentially small eigenvalueqfof (3.2) corresponding to the near-
translation eigenfunctions. By using Green’s identity[on|(3.2) we get

f [8jus Lot — DL (Djug)] dx = / e2[0iusdnp — PO, (djus)] ds. (3.39)
2

982
Then, sinceC.¢ = A¢ andd, ¢ = 0 onds2, (3.39) becomes

A/ ¢3,-u5dx=f ¢£s(3iu€)dX—82/ $d,[0;u.] ds. (3.40)
2 2 082

The dominant contribution to the integral multiplyirgoccurs from the region near the spike where
ue ~ u™ andg ~ £29;u> from (1.19) and[(2.10), respectively. In addition, singe= u on 32

from (3.8), [3.4D) becomes
AT ~-IT+K, (3.41a)

where7, Z, andK are defined by
J= 82/ Qu®)2dx, I= 82/ ¢, [0;uplds, K= / GLe(0iu) dX. (3.41b)
2 082 2

The integral7 was estimated irj (2.24). We will estimafeprecisely ag — 0. In Appendix A
we show thafC is asymptotically smaller thahh ase — 0, and therefore can be neglected. Hence,

(3:413) reduces tbJ ~ —Z.
To calculateZ we first evaluaté, ug as

diup =6 -Vup =€ - (€sup + € 0sup) = (& - €)dsup + & (& - € )dyup. (3.42)
Therefore, since; - ; ande; - e, depend only o, we further calculate 0As2 that

—0,(Bjup) = 05 (Dup) = £ 72(& - &)dsyup + & (& - €)dyyup. (3.43)
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Next, sinceds,up = 0 onn = 0 andup = ¢# from @), ) becomes

On[diup]ln=0 = —&~*(& - &) pyuuply=0 = —& (& - & )updyywaly=0. (3.44)

In (3.21) we have an estimate feg onn = 0. Hence, we need only estimaitg wz|,—o0. By using

(3.5) Tor w;, together with|(3.9ajw1 = —n?/4 + w1,, and [3.1b), we obtain
2 2 2 21
W ly=0 = [wopy +“(w1p =0 /B yy+--llp=0 = x“—¢ §+|Og 24kx )+---. (3.45)

Therefore, substituting (3.21) arjd (3.45) irfto (3.44), we obtain

D 1
onlaunlly-o = ~2 e exp(1- 5 ) o +2(xy — 5 ~log2— ) -+ (@46)

wherey is defined in[(3.20). Then, by substitutirjg (3.46), gnd (3.37)fdnto (3.41b) forZ, we

conclude

1
T ~ —23_2e2/ e_D/(252)(e,- -e;)(d; + 82/3)[)(2 + 82()/)(2 —5~ log2— /cx>i| ds. (3.47)
082

Finally, we substitute] (3.36) anf (3]20) férandy, respectively, into[(3.47). This gives our final
estimate

I~ —287262/ efD/(zez)[}'o(s) + 2F1(s) + - - -] ds, (3.483a)
Y]
whereFy and F; are defined by

Fols) = dix2(& - &),

_(_x. di [7? K 2 a1, (3.48b)
Fils) = (—Ee, &+ Z[? —lto 6 AT+ d)d—iD(el - €).

Finally, by substituting[(3.48) anfl (Z]24) info (3.#1a), we obtain the following result:

PRINCIPAL RESULT 3.1 LetFy and F; be as defined in (3.48b). Then, fer— 0, the two
exponentially small eigenvalues ¢f (B.2) corresponding to the near-translation eigenfunctions have
the asymptotic estimate

A~ 4‘97 e LI (o) ds,  Fu(s) = Fols) + e2F1(s) +-- - . (3.49)
EYe;

Next, we use Laplace’s method (cf. [24]) to asymptotically evaluate the integral’in (3.49) for
¢ € 1. Fore — 0, the dominant contribution to this integral arises from the pginbn 952
closest to the spike locatio@. Assume that there is only one such point whexe) takes its global
minimum fors € 3£2. Then, sincg? = D/4 ats = so from (3.31), we find thafo = (e;-€,)d; D/4
ats = so. Therefore, Laplace’s method dn (3.49) gives the following leading-order estimate for the
two exponentially small eigenvalues:

2¢73

A~ — Do
(an)l/Z

dioDo(&; - &) exp(—?

), Dg = 2 — 2p|do|. (3.50)
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In (3.50), Do = |X(s0) — Xo|2, |do| = +/Do, dio = xoi — xi(s0), andxy is the curvature 02 at
s = 50.

The result[(3.50) foi (3]2), based on linearizipg [1.8) around a spike profile with boundary layer,
is of the same asymptotic order as the corresponding résuli (2.27) fpr (2.4) obtained by linearizing
(1.9) solely around the spike profil€°. However, the pre-exponential factors in these two estimates
are slightly different. In Appendix B we retain higher-order terms in the asymptotic evaluation of
(3.49) to obtain the following more precise result:

PRINCIPAL RESULT 3.2 Assume that there is a unique poifnbn 32 whereD(s) is minimized.
Then, fore — 0, the two exponentially small eigenvalues pf [3.2) corresponding to the near-
translation eigenfunctions satisfy

5~ 83 efDO/(Zgz) ]:00+82 Fro— FL D_g/ + 00 (3.51)
NETH g2 " o)) |

Here we have labeleBly) = Fg° |,—y, fork > 1, Fjo = Fjls=y, for j = 0,1,andDy’ = D®|;_,
for k > 1. The various terms if (3.51) are given explicitly by

dioD VD dio (72
Foo = 04 % &), Fio= <__Oei & + —0<n— - 1>>(ei “€5), (3.52a)

4 4\ 6
Do
Foo= T[di/o(ei - &) —dioko(€; - &)], Dy =2—2oldo|, Dy =—2cpldol. (3.52b)

(& -
4

We now illustrate the resulf (3.p1) for the exponentially small eigenvalueg df (3.2) for two
particular domains. Firstly, leR2 be the square [B] x [0, 3] with a spike atxg = (2.0, 0.8).
Then (2.0, 0.0) is the unique point 02 closest toxg and|dg| = dog = 0.8. We seti = 2 in
(3.52), corresponding to the near-translation eigenvalue initdirection, and use, - e, = 1,
ko = 0 andd,, = 0in (3.524),((3.52b), and (3.52c), to get

D
.7:6/0 = —To(ei . es)[Zd{OKo + d,-oK(/)] + &) [Dodl% + 2/ Dokodio — 3Dod,-ng]. (3.52¢)

d3 dyo  dpo (72
.7:00=%), 7:10=—T+T(€—1>’ Foo=0. Fg=0. (3.53)
Then from [(3.5]1) we obtain the following asymptotic estimate for the translation eigenvalue in the
x2 direction:
2 3,3 d2 252 82 7T2
A~ =g 3d3pe 20/ >[1+ —2<— - 2) + - ] (3.54)
T ds, 6

This result is equivalent to that in equation (3.28).0f [14] for the one-dimensional slab geometry.
Secondly, we consider the unit disk with a spike centereq at (., 0), with0 < 1 < 1. Then

(1, 0) is the unique point o2 closest toxg, with minimum distance-dig = 1 — © > 0. We

consider the near-translation eigenvalue inithdirection. From[(3.52a)] (3.5Pb), arid (3.52c), with

e = (1, 0) ande, = (—1, 0), we calculate

|d1o/3 \d1o| (72 , o [dZ%  3ldil®
Foo = . Fro= 80T _ o) E.o=0 Fl=|20_ ,
0= 0= (6 00 0= |7 4 (3.55)

Dg = 2 — 2|d1o, Dg/ =0.
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In calculatingFg, we usedd;, = 1 as found by parameteriziriy2 by polar coordinates. Upon
substituting[(3.55) intd (3.51), we obtain the following asymptotic estimate for the near-translation
eigenvalue in the direction:

A~ e 3dioPe i/ 1 (- — 24— ) .| (3.56
Vra@—ldwo) a2,\ 6 2(1— |d1ol) (3.59)

4. Metastable flame-front dynamics

In order to explicitly characterize the metastable behavior[fol (1.1), in this section we derive an
asymptotic ODE for the locatioxy () of the tip of the paraboloidal flame-front. We do not analyze
the initial formation of a flame-front interface from arbitrary initial data. Instead, we analyze the
slow motion of the flame-front after it has formed from initial data. Hence, we look for a solution to
(L.8) in the form

U=ee“u™+E), (4.1)
whereu®™ = u®J[x; xo(¢)] is the spike profile ofO). Here = c(r) with ¢/ = O(¢7%) > 1
determines the speed of the flame-front, where@$ andxp(r) are assumed to be slowly varying
functions ofz. The initial condition is taken to b& (x, 0) = u®[x; xo(0)] with xo(0) € £ and
dist(xg(0), 92) = O(1) ase — 0. Therefore, we take = w = 0 atr = 0, andE(x,0) = 0.
The error termE = E(X, t) is required to satishE <« u™ with " = O(E). The condition that
E remain small over exponentially long time intervals will determine explicit ordinary differential
equations governing the dynamics of the slow growth) and of the flame-front tipo(¢).

We begin by substituting (4.1) intp (1.5) to obtain

'+ YU™®+E)+ u® + Ep)
= &2(Au™® + AE) + ™ + E)[logu®™ + E) — (logu™ + E))].  (4.2)

In calculating the right-hand side ¢f (#.2) we retain the linear terms in the £raord we use the
equation[(1.p) fou>°. On the left-hand side of (4.2) we neglect the quadratically small t&n
In this way, we get

du® +E 4+ o'u® +ul® + E; = LoE — u™((logu®™) + (E/u*™)) — E(logu®). (4.3)
Here the operatafy is defined in). We then choosk with ¢(0) = 0, by
¢ = —(logu®) — (E/u®°). (4.4)
Upon substituting[ (414) intg (4.3), and neglecting the quadratic terA) iwe find thatE satisfies

E, = LoE —o'u™ —u®, xe£2,1>0

4.5
WE = —9,u®, Xxe€dfR; EX0=0. (4-5)

In 82 the largest three eigenvalues for j = 0, 1, 2, of Lo were calculated asymptotically for
e — 0. The remaining eigenvalueg for j > 3 of Lo, representing decaying modes, are strictly
negative fore — 0 and are asymptotically close to the negative eigenvalues of the 2-D harmonic
oscillator [2.8). The principal eigenvalue 6§ is 1o ~ 1, with ¢g ~ Mou®™ away fromas2. An
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estimate fong — 1 was given in Principal Result 2.2. The two exponentially small near-translation
eigenvalues,;, for j = 1,2, of Lo, with ¢; ~ M;e29;u> away fromas2, were calculated in
Principal Result 2.1. Her#/; is a normalization constant. We order the remaining eigenvalues as
Xjy1 < Aj for j > 3, and we expand in terms of the normalized eigenfunctiopsof Lo as

E(X0) =Y bjn$;x), (¢ =1 (4.6)

j=0

Here we have defined the inner prodigt v) = f_Q uv dx. By using Green’s identity or@.S),
together with the propertieSog; = 1;¢; andd,¢; = 0 onds2, we readily derive the following
initial-value problem fow; (¢):

by —rjbj =R; = —&? /arz @j0,u> ds — ' (U™, ¢j) — W°, ¢j),

bj(0)=0, j=01,....

4.7)

Sincelp > 0 andi; is exponentially small forj = 1,2, we must impose thaR; = 0 for
Jj =0,1,2inorder to ensure that the coefficiehst) for j > 0, and henceé (x, t), are small over
exponentially long time intervals. Therefore/,andx;, are to be found from

o W™, ¢) + W, ¢)) = —82f ¢j0,u>ds, j=0,12 (4.8)
082

We remark that the structure ip (#.7), in which an extra degree of freedom, representing the
o' term, is needed to eliminate growth on a fast time-scale due to a strictly positive eigenvalue,
also occurred in 84 of [17] in analyzing the metastable motion of a bubble solution for a nonlocal
mass-conserving Allen—Cahn equation.

The system| (4]8) foxo(r) andw(r) asymptotically decouples fer < 1. We setj = 0 in (4.8)
and usepo ~ u™ in the inner products. Sinaa®, ¢o) is the dot product ok; and an exponentially
small inner product, we obtain

o' (W™, u®™) ~ —82/ $00,u> ds. (4.9)
082

The boundary integral on the right-hand side[of|(4.9) can be expressed in teims-df. To see
this, we use Green’s identity on (P.4), together wih > = u*, to get

™, Logo) — (do, Lou™) = (ho — )™, ¢o) = —&> o $00,u™ ds. (4.10)

Upon substituting (4.10) intd (4.9), and usitg™, ¢o) ~ >, u*), we obtain the explicit ODE
' (t) ~ Ao — 1 with w(0) = 0. In Principal Result 2.2 it was shown thiaf — 1 is exponentially
small fore — 0 for anyxg € £2. Therefore, if we write,g = Ao[Xo(r)], we conclude thab' is
exponentially small and that

t
w(t) ~ /0 (holXo(T)] — 1) dr. (4.11)
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To determine the ODE foxo(r), we setj = 1,2 in (4.8) and use); ~ ¢23;u™ to estimate the
inner products i8). For = 1, 2 the termw’ (1™, ¢,) is the product of two exponentially small
terms and can be neglected. Therefqre | (4.8) reduces to

@, ¢;) ~ —&? /BQ ¢jdu>ds, j=12 (4.12)

To evaluate the left-hand side 12) we gge~ e29;u™ = (xo; —x)u™ from (2.13), and we
differentiate [(1.1ID) with respect to Evaluating the resulting integral we obtain

2

Xy Tecx). [
U, ¢j) ~ —%/ (xj — x0/)?(U™®)? dx ~ — 2 20] / pPe P12 dp
Q € 0
b/
= —Eezezxéj. (4.13)

To evaluate the boundary integral on the right-hand sidg of|(4.12) we use the formulge (2.20) and
(2.31) forg; andd,u™ on a2, respectively. This gives

&2

_82/ ¢Januoo ds = / De—D/(Zgz) (a . eﬂ)d/\] ds. (414)
982 2 FYe)

Hered is the unit vector in the direction af andﬁj is its j component. By substitutin3)
and [4.1%) into[(4.72), we obtain an ODE fay(r). The flame-front interfacé(x, ) is obtained by

substituting [(4.]1) into[ (1]4), and usirg (110), {4.4), gnd (4.11)xf6r ¢, andw, respectively. In

this way, we obtain the following explicit characterization of the metastable flame-front dynamics
for (T.3):

PRINCIPAL RESULT 4.1 Fore — 0, the outer approximation for the flame-front interfae, ¢)
of (L.7), valid away fronds2, is

_ 2 t t
S(X, 1) ~ _% + % / (X —Xo(7)|?) dr +252[1—t+/ (Mol[xo(0)] —1) dri|. (4.15)
0 0

The flame-front tipko() and the flame-front speed spes@) = 2:2¢/ (1) satisfy
1 A - 1
X~ 1(x0) = —— / De PV (@ e)dds,  v(r) = (X~ X)) — 2% (4.16)
TE R 2

HereD(s) = |xg — X(s)|, d= (Xo — X(s))/|X0 — X(s)|, ande, is the inward pointing unit normal
to 0£2. Suppose that at= 0 there is a unique point(sg) on a2 that is closest tag(0). Then, the
motion of xg(¢) is towards the same closest boundary pai@t) for all subsequent time, and the
distancedy(r) = |Xo(t) — X(sg)| to 052 satisfies

2 a3 20052
dh ~ _\/j—oedo/(Ze ), 4.17
0 T es/1 — kodo ( )

with initial valuedg(0) = |x0(0) — X(so)|. Herekg is the curvature 062 ats = sq.
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The result in[(4.1]7) follows by using Laplace’s method[on (4.16) to derive

2 Do 2\ A
KXo~ — |2 70 ,=Do/(%)(,. 4.18
0 ﬂE«/l—Kodoe 0 ( )

where Dy = D(s0), do = /Do, anddp is a unit vector in the direction ofy — X(so). The result
) then follows readily fro8) by taking the dot product vaigh

We now make a few remarks. Firstly, the conditibtxg) = 0 determines the unstable
equilibrium pointxg, for xo(¢). A similar condition involving the vanishing of a vector boundary
integral was obtained iri [18] for spike-layer solutionsséfAiu — u + u?> = 0in 2 € R2 For a
strictly convex domain, the analysis in 83 /0f[18] can be adapted to showghiatO (¢) close to the
centerx;, of the unique largest inscribed circle f@. Since the calculation of th@(¢) correction
term is similar to that in 83 of [18] we do not pursue the details here.

Secondly, we remark that the ODE (4.17) for the two-dimensional case is remarkably similar to
the ODE [1.2) for the one-dimensional slab geometry. Specifically, upon retaining only one of the
two exponential terms ifi (1].2), the only difference between these two ODE'’s is the curvature term in
(4.17). The primary reason for this similarity is that the analytical form of the spike profile satisfying
(1.9) does not exhibit geometric spreading in two dimensions. In factyfer 1, 2 dimensions,
we haveu® = ¢N/2exp(—|x — Xo|2/(4¢2)). In contrast, for the shadow Gierer—Meinhardt model
analyzed in[[6], the spike profile(p) is the radial symmetric solution iR? of Aw — w + w? = 0.

This solution exhibits geometric spreading in dimenshowing to the far-field behaviow (o) ~
anpIN/2¢=r asp — oo for some constaniy. The resulting ODE for the slow motion of the
spike as found in Corollary 2 of [6] wad, ~ —cg,Ndél_N)/Z(l — doko) Y2 exp(—2dy/¢) for
some constant,, . In contrast to the result§ (4]17) arjd (1.2) for the tip of the flame-front, the
pre-exponential factor in this ODE dfl[6] does depend significantly on the dimension

Thirdly, we remark that the pre-exponential factordﬁ in the ODE ) precludes the
vanishing ofdp in finite time. Although the ODE[(4.18) is not valid whefy = O(e), its
extrapolation into this regime suggests that, ultimatély,- —cdg, which decays algebraically in
time. It is an open problem to analyze exactly how the flame-front interface attaches to the boundary
of the domain. Finally, by separating variableqin (4.17), the tihfier the flame-front tip to become
within an O (¢) distance fromd 2 is given asymptotically by

7 31— kod
T ~ \/; d—3°°° expldd,/(263)],  doo = do(0). (4.19)
00

We now give a few examples to illustrate Principal Result 4.1.

ExAMPLE 4.1 Our first example is for a square domain= [0, 3] x [0, 3] with the flame-front
tip initially at xo(0) = (2.0, 0.5). Then(2.0, 0.0) is the unique point 0ds2 closest taxg(0). From
(4.17) withxo = 0, the vertical distancéy(r) to the boundary satisfies

/ 2 dg —d?/(2¢%)

dy~ — | =L/ 4o(0) = 0.5. (4.20)
T e

In Fig.[4 we compare the solution of the OOE (4.20) dgtr) with corresponding results obtained

from the numerical solution of the full PDE initial-boundary value problgm|(1.8) with the initial

condition in the form of a spikg (1.]1.0) located>at(0) = (2.0, 0.5). The numerical method is
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400 ¢
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do

FIG. 4. The distancéy(r) of the flame-front tip to the boundary, from the numerical solution of the full HDE (1.8) (dashed
line) and the solution of the asymptotic OOE (4.20) (solid line). The domain is the squarg0, 3] x [0, 3] ands = 0.113.
The heavy-solid line is the improved OD[E (4 21) suggested by the one-dimensional theory.

described in Appendix C. Although the ODE (4).20) is obtained only from a leading-order analysis,
reasonable agreement is present already for the relatively large vatu®.113 that was used in

the computations. In Fifj] 4 we also pléj(r) from the following ODE of equation (3.46) of [14]
pertaining to a strictly one-dimensional geometry:

2 d2 2.2
d)~ _\/j_oedé/@fz) 1+22), 40 =05. (4.21)
T E 6d§

For this ODE do = 0 at a finite time. Although we have not attempted to derivekie?) coefficient

in the pre-exponential factor fak) in (4.1 ?) for an arbitrary geometry, we observe in Eig. 4 that for
this special geometry the improved O .21) provides a slightly closer agreement with the full
numerical results than dogs (4] 20).

ExamMPLE 4.2 Secondly, we lef2 be the unit disk with the flame-front tip initially located at
xo(0) = (0.5, 0). Then(1, 0) is the unique point 0352 closest taxo. By settingko = 1 in (4.17),

400 T T 08 T
N—
350 | e
07 B
300 |- | f
250 b 0.6 - N
200 4w
150 - . 051 7
100 F e
04 ‘/__J g
50 J
0 1 L L 1 03 1 L L L L L L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 300 350
do t
(a)t versudp (b) v versus

FiG. 5. Numerical solution 0f(4.32) with = 0.11 for the flame-front tip in the unit disk. Left: the distanég(r) of the
flame-front tip to the boundary. Right: the spegd) of the flame-front.
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and withdp(0) = 0.5, we obtain the ODE for the distandg(z) from the flame-front tip to the
closest point1, 0) on 3£2. In terms ofdp, the speed of the flame-front interfacés calculated by
evaluating(|x — Xo|2) explicitly in ). In this way, we get

2 d? 2,002
do~ ‘ﬁ e 0/, do(0) = 05;
’ meyl=do (4.22)
1 1
(1) = 262 (1) = 51~ do)? + i 262,

In Fig.[§ we plot the numerical solution fa(r) and the speed(r) whene = 0.11. From these
figures we observe that the speed of the flame is roughly constant until the tip becomes close to the
wall. Also note thati) decreases on a new time-scale whigris very small, and thafp does not

vanish in finite time.

ExampLE 4.3 For our third example, le® = [0, 1] x [0, 1] contain a spike initially located at
Xo0(0) = (y0, y0) With 0 < yp < 1/2. Then there are exactly two points 68 closest toxg(0).
Laplace’s method o (4.16) then yields

2D 2D
XE)N _\/;?06—00/(282)91_\/;TOE—DO/(ZSZ)eZ’ (4.23)

whereeg; is the unit vector in the™ direction. HereDg = y2/2, wherey is the distance fromg(t)

to the vertex(0, 0) of the square. The vector addition of the two boundary forcef in|(4.23) shows
that the flame-front tip slowly drifts towards the vert@ 0). A similar behavior was shown inl[1]
from full numerical solutions of (I]1). From (4]23) we readily obtain the following ODE for the
distancey (t) from the flame-front tip to the vertet0, 0):

e V) 0 (4.24)
~ — e s = . .
Y e/ 4 o

5. The slow motion of a boundary spike

The metastability analysis in 84 f¢r (1.1) showed that the the flame-front tip inside a convex domain
£2 drifts asymptotically exponentially slowly towards the closest point on the boursdaryn this
section we derive an explicit asymptotic ODE for the dynamics of the flame-front tip after it has
become attached to the boundary of the domain. The motion of the flame-front tip is found to be
proportional to the derivative of the curvatureaa®, with stable rest points at local maxima of the
curvature.

As in 84 we look for a solution t4 (1].5) in the form

U=ty (6.1)

wherew is a slowly varying function of. Upon writing the Laplacian i (I15) in terms of the
normal-tangential coordinatés, s), we obtain

1 d 1
(c’+w’)v+a,V=82[vw— L v+ < vsﬂwlogv—wlogw (5.2)

1—«o 1— ko ds\1— ko
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We then choose’ = —{log V) with ¢(0) = 0 to eliminate the nonlocal term. Next we introduce the
local normal-tangential coordinatés, £) by

n= ¢ 1o, &= e_l[s —so(r)], 1= 3. (5.3)
We then expan® andw’ in powers ofs as
V=008 +evin, & 1) +2v2(n, &, )+ 5 o =ewp+fwrt--.  (5.4)

In (5.3),s = so(r) denotes the unknown time-dependent location of the boundary spike. The choice
of slow time-scaler = 3 is a result of a solvability condition on the solution fgr.

We substitute] (5]4) with local coordinatgs (5.3) infto [5.2) and collect power8 ef, ande?.
In terms of the local coordinate.3) the curvature= « (s) becomesc = ko + e&kj+ - - -,
whereko = «(so) andkg = «'(s)[s=y. From theO (1) terms we find that, on the domakit =
{(E,n)] — 00 < & < 00, n > 0}, vg satisfies

voge + Vo + Qo) =0, —oc0o <& <00, 0<np<oo; vy =0 1n=0, (5.5)
where Q(vg) = vologuvg. We let(n, £) = (0, 0) denote the boundary spike location. Frgm (1.10)

we obtain ,

vo(§, ) = exp<1 — %), p% =24 n°. (5.6)

Notice thatvg is even in&, whereasyg is odd in&. From collecting theD (¢) and O (£2) terms, we
find that, onR™, v, andv, satisfy

vy = Lv1 +R1,  R1= —wovo — kovon + 2k0onvose (5.7a)
vy = L2+ Ry, Ro= —wov1 — wivg + Sévog + Fe + Fo, (5.7b)

whereF, andFq are defined by

2

Fo = —kénvoy — Kov1, + g0 voes + 21onvies + U—21Q”(vo), (5.7¢)
Fo = kgnvos + 2kcqné voss — kg voy. (5.7d)

with Q" (vg) = val. In ) andb) the operatdris defined by
L = pez + dpy + Q' (v0)9, (5.8)

whereQ'(vo) = 1+ logvo. The boundary conditions fdr (5]7a) afd (5.7b) are thgt= vz, = 0
onn =0.

The spectral probleni¢ = A¢ onR* with ¢, = 0 onn = 0 has two nonnegative eigenvalues.
These eigenpairs algo, Ao) = (vo, 1) and(¢1, 11) = (vee, 0). In terms of the inner productf, g)
defined by

(f,g)E/_ /0 f(n. &g, &) dndt, (5.9)

a necessary condition theg in (5.74) tends to the steady-state solutignsatisfyingCvy, = —R1
ast — oo is that(Rq, vg) = 0 and(Ry, voe) = 0. Sincevge is an odd function of, while Ry is
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even ing, it follows that(R1, vos) vanishes identically. The conditiqfiR1, vg) = 0 determinesvg
as

wo(vo, vo) = —ko(vo, von) + 2«0(vo, NVozs). (5.10)

With this choice forwg, v1 tends to its steady-state limii, on an asymptotically (1) time-scale.
This limiting solution provides ai® (¢) correction to the leading-order gaussian spatial profjle

We now derive an ODE fafo(7) from (5.7B). A necessary condition that in (5.78) tends to
its steady-state limit, satisfyingLvp, = —R, ast — oo is that(R2, vg) = 0 and(R2, voe) = 0.
The first inner product determinag, while the second inner product determines an ODEd6r)
in the form

50(vog, vog) = wo(v1, voe) + w1(vo, voe) — (Fe, vog) — (Fo, vog). (5.11)
We substitute the steady-state limit, for v1, and note that1, andF, are even irg, while 7, is

odd in&. Therefore, only the last inner product on the right-hand sidé of|(5.11) is not identically
zero. Hence,

so(voe, vog) = —(Fo, voe) = k(Evoy, voe) — ko(vog, nvog) — 2kq(vog , N Voge)- (5.12)

We then usG) to calculate the inner product@S.lZ) explicitly in ternog(p = ele=P?/4
as

(vog, vog) = E/o PG, dp = R 2(vog, nvoge) = —§/0 pvg, dp = — 7

2 (% 55
(§voy, vog) = (Muog, vog) = éfo p=vg, dp.

Upon substituting these inner products into (5.11), and recalling ¢hat ¢%, we obtain the
following result:

PRINCIPAL RESULT 5.1 Fore — 0, the slow motion ODE for the flame-front tijp(z) on the

boundary off2 is
2
so(1) ~ 3\ =K' (s0). (5.13)
T

Herexp = k(so) = 0 is the curvature of the boundady2 of the convex domai2 at arclength
coordinates = sg.

With initial value so(0), the ODE [(5.IB) predicts that the spike location will tend to the closest
local maximum of the curvature(s). Such a local maximum is a stable rest point for (5.13). We
remark that the analysis of boundary spike motion for the case where the initialsp@hts on
a flat portion of the boundary of nonzero length is considerably more delicate than the analysis
presented in this section. For example, such a situation arises when a flame-front becomes attached
to a straight boundary of a rectangle. For such an asymptotically degenerate situation, we expect
that the speed of the flame-front tip is exponentially slow and depends on the local contact behavior
of the point on the boundary closestst@0) wherex # 0. For the shadow Gierer—Meinhardt model
such an analysis was given in 85 of [7].



540 A. F. CHEVIAKOV AND M. J. WARD

6. Discussion

We have given an explicit asymptotic characterization of the slow motion dynamics of the flame-
front tip for (1.3). When the flame-front tip is initially inside a convex domain, we have shown
that the speed of the tip is asymptotically exponentially slow as 0 and the motion is directed
towards the closest point on the boundary of the domain. The distance to the closest point is given
asymptotically by[(4.7]7). For a flame-front attached to the boundary of the domain, the speed of
the tip is algebraically slow as— 0 and the dynamics is given asymptotically py ($.13). An open
problem is to study the detailed mechanism describing the attachment of the flame-front tip to the
boundary of the domain. We now illustrate the two stages of the dynamics obtained in 84 and 85 for
two specific convex domaing@.

ExamMpPLE 6.1 We first consider an elliptical domain with boundat given byx; = 2 cos9,
x2 = sing, as studied in_[8]. We choosg = (1.0, 0.05) as the initial location of the flame-front
tip. The domain was shown in Fig. 2(a), together with an illustration of the two distinct stages of the
flame-front dynamics: the metastable stage when the tip is inside the domain, and the second stage
where the tip drifts slowly along the boundary.

To characterize the metastability, we compute that the closest poixg tm 92 is X =~
(0.776,0.425, which corresponds t6 ~ 0.888. At this closest point, the curvature &f2 is
ko = 0.425. From[(4.1]7), the flame-front tip drifts in a straight line towards this closest point on
952, and the distancéy to the closest point satisfies the ODE

2 dj
7 g+/1 — kodo

A plot of the numerical solution t¢ (§.1) far = 0.1643 is shown in Fid. 6(h). The ODE ceases to
be valid whendy = O(¢), which occurs when ~ 740.

dfy ~ — /2% 40(0) ~ 0772 ko ~ 0.425 (6.1)
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FIG. 6.

For the second stage, the motion of the flame-front tip along the boundary is giv@y (5.13).
The mapping = s(6) between the arclengthand the polar anglé is chosen to be = /;[1 +
3sirf(¢)]Y/2 dé. In this way, [5.1B) is transformed to

2 sin(20p)
6 ~ —9e3 | = , 6.2
0 “V 7 [+ 3sir60)] 72 (6-2)
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with initial value69(0) ~ 0.888. The flame-front tip is located &§(z) = 2 cosPo(¢)] and yo(z) =
sin[fo(1)]. Under [6.2) 6o — 0 ast — oo, which corresponds to the nearest local maximum of the
boundary curvature.

Finally, the upward speed(r) of the flame-front in the channel, defined [n (4.16), can be
determined in terms of the location(z) of the flame-front tip. By calculating an area integral,
we obtain

1 5 1
v(n) = S{x— Xol?) — 26% = gt E[xém + y4(0)] — 262 (6.3)

The speed(r), computed from the asymptotic results fz) andyo(t), is plotted in Fig[ 2(B).

This example witte = 0.1643 is equivalent to the example (wikh= 0.027 as defined iri [8])
studied numerically in [8]. Even with the relatively large value- 0.1643, our asymptotic results,
valid for ¢ « 1, compare reasonably well with the numerical results reported in [8].

ExAMPLE 6.2 For our second example, we lgt9) be a positive 2-periodic function, and
assume that(9) + ¢”(0) > 0for 0< 6 < 27. Then a convex domain is generated if we defitiz
in parametric form as

x1(0) = ¢(0)cosd — ¢'(B)sing,  x2(0) = £(H)sing + ¢'(0) cosd, (6.4)

with 0 < 6 < 27 (cf. [7]). Lets = h(9) denote the mapping betweérand the arclengtk. Then
77 (6) and the curvature () of the boundary are given by

F®) =¢@)+:"©), «©) =6+ O (6.5)

We taket (9) = 2 + sin®(6), and we assume that the initial flame-front tip location witkin
is atxo(0) = (0.5, 0.0). A simple numerical computation shows that the closest poirtseris at
X ~ (0.663 —0.944) corresponding t@ = 4.883. At this closest point the curvaturedg = 0.267.

T
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FiG. 7. Dynamics of the flame-front tip. (A) Under the dynam[cs](6.1) the tip moves from the initial point (labelgddy
an O (¢) neighborhood of the closest boundary point (labeled)oyB) Then, under the dynamids (p.6), the tip drifts along
the boundary to the nearest local maximum of the curvature (labelell by
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From [4.17), the distance of the flame-front tip to the closest poiritf@rsatisfies the ODH (6] 1)

with ko ~ 0.267 and with initial distancéy(0) ~ 0.958. Along the boundary, we uge (6.5) and

(5.13) to show that the location of the flame-front tip on the boundary is givea(by= f[60(?)],

wherefp(r) satisfies

3 /2 ¢'(B0) +¢" (o)
7 [£(Bo) + ¢"(60)]*

Herez(0) = 2 + sin(9) andfp(0) = 4.883. The domain is shown in FiE] 7, together with an
illustration of the two distinct stages of the dynamics. As shown in[Fig. 7, the flame-front tip on the
boundary tends to the closest local maximum of the curvature.

Op ~ —¢ (6.6)

Appendix A. Asymptotic estimate for XC

In this appendix we estimate the integka| defined in[(3.41]b), for — 0. We show formally that
K « I, whereZ is defined in[(3.41lb). Hence, we may neglicin (3.414) and obtain s ~ —7.

In order to negleckC in comparison with the two-term approximation fbgiven in [3.48h), we
must show that

K= / OLe (1) AX & O(se™P0/2%), (A1)
2

whereDyq is the minimum value oD = |x(s) — Xo|? for x(s) € 352. The pre-exponential factor of
e in (A.J) is obtained by evaluating in (3.484) asymptotically using Laplace’s method.

To obtain this estimate we first define an overlap region = {x € £ | dist(x, 32) =
0(eP), 0 < p < 2} between the boundary-layer region, corresponding to distafi¢e® from
952, and the outer region, corresponding to distan@¢$) from the boundary 2. In £2, we use
¢ ~ ¢p andu, ~ up, wherepp andup are defined i 6) anfl (3.8), respectivelysan, £2,,, we
usep ~ £29;u™ andu, ~ u, obtained fromO%O), respectively. We then decompose
K into two terms as

K=K+ Ko, K1= ¢pLe(0;up)dx, Co = Bzf ;U L (0;u) dx. (A.2)
2, 2\2,

We first estimateCy. The two-term boundary-layer solutiorny = e~2/4) (ugo + e2up1 +

0(%) is such that, formallys2Aup + ug logug = O (e*e~P/4). Therefore, withu, ~ up in
£2,, we obtain

Lo[diup] = e2A@iup) + (L+ logue)diup = O(2e~P/4D). (A.3)

Then, usingpp ~ exp(l — D/(4€2))® o from (2.16), we estimatk; = f‘QP e=D/2%) 0 (£2) dx.
SinceD > Do and Ared2,) = O(e”), we estimateC; = ¢~ Do/2% ) (2+P), This shows thak

satisfies the estimaté; « 0(se*D°/282) required in ) forany in 0 < p < 2. Hence, we can
neglectkCy.
Next we estimatdC,. We first write L, as

Lo = ?Adp + (L+ logu™)¢ + Iog(%)¢. (A.4)
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This shows that[9;u>] = (3;u) log(u. /u>), and consequently, upon usitig (1.10) £6¢, we

obtain
Ko = szf (0;u™)? Iog(“—8> dx
2\2, u>
2 2 ,—[x—xo[?/(2¢?) Ue
=cs (x; — x0)e 0 log| — ) dx, (A.5)
2\2, u>

for somec independent of. From [3.22) we obtaim, ~ u* in 2\ £,. Since 2 is convex,
the boundary-layer solutiomg is defined globally in2, and we can estimate the ratig/u*> as
follows:
us up  exp(—D/(4e?) + wo + 2wi + - )
u® oy exp(l — |x — Xo|2/(4¢2))

Recalling thatwo = 1+nx +wo, andws = —n?/4+w1,, wherewp andw; were defined ir] (3.9a)
and [3.11), and that = o/¢2, whereo is the distance from to 952, we see thaf (Al6) becomes

(A.6)

2 2

u u X —X D o o
_EN_BNeXp%__ﬁX_Z_ :
4e 4e £ 4e

o —) exp(wop + 2wy + - ). (A7)

Then we use the cosine law— xo|? = D + o2 — 4xo from (2.7), together withwg,, ~ e =X for
n > 1 as obtained fronj (3.9b). In this waly, (A\.7) reduces to

Ue \ UB \ —2x0/e?
IOg(uT.O) IOg(F) e Xo/E . (AS)
Combining [A.8) and (AJ5), and using the relatipn- xo|? +4xo = D + o2 from (2.7), we obtain

Ko = CS_Z/ (x; — in)26—|x—x0|2/(282)e—2;(a/52 dx
2\82,
= cs_Z/ (x; — in)Ze—D/(Zgz)e—o—z/(Zgz) dx. (A.9)
2\2,
SinceD > Dg andx; — xg; is bounded in2 \ £2,,, we estimate
Kol < c1e~2¢~ D0/ / e/ gy (A.10)
2\2,

for somec; > 0 independent of. If we choose O< p < 1 for the overlap regiom2,, theno =
dist(x, 9§2) >> O(e). Consequently, for this range pf the integral in[(A.ID) decays exponentially
ase — 0. Therefore, for O< p < 1, K; satisfies the required estimate[in (A.1) and can be neglected.

Appendix B. Asymptotic evaluation of an integral

In this appendix we derive the expression foin Principal Result 3.2. To do so, we defingz 0
by

' Y
t=535[D(s) = Dol = 7 5(5 = 50" + 7555 —s0)" 4. (B.1)
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Here we have defineB’ = D®(so) for k > 1. We then revert the series .1) to obtain

2 2 DY
TR W= Er 2T TRy

Here a positive (negative) sign for the leading order term is taken whenyg (s < sp). We then
expandZ (s) in (3.49) in a Taylor series &&; (s) = Foo+ Fo(s —50) + Fo(s — $0)%/2+e2F1o+
-. We then substitut@.Z) into this series and retain terms up(t3). This yields

s — 5o = Fazet (B.2)

2
a
Fe ~ Foo+ earFogtt? + 52[.7-"10 + t(azféo + ?1.7:6’0)] 4o (B.3)

Here we have Iabeleﬂgg = ]-‘(k)|Y 5o fork > landFjo = Fjls=s for j =0, 1. Substltutlng)
into (3.49), and by computmgsdn (3.49) from [B.2), we flnd after some algebra and cancellations
that

467t _p /(262) 3 ©e! 3 ;& s, *
A~ ——e 0 (ea1Foo+e°a1F10) — dr+( 3s”aza1 Fpo+ —=aiFopo Vie ' dt|.
T 0 «/; 2 0

(B.4)
By evaluating the integrals ifi (.4), and by usipg (B.2) deranda,, we obtain the estimate for
in @53).
Finally, we derive the terms |-2) At= so, whereD(s) is minimized, we havg? = Do/4
ande, - d = 0. Hence, from[(3.48b), we readily obtajn (3.p2a). Next, we differentiate (3.48b) for
Fo to obtain

Fo=d/x?(& - &) +2xx'di(e - &) +dix2(& - 05&5). (B.5)

Then, by using ' = —«e, -d = 0 andx? = Do/4 ats = so, together withd;e, = —ke;, we
can evaluatS) at= so to get (3.52p). To calculatéy, we differentiate|(B.5) with respect to
After a straightforward, but lengthy calculation, we obtain the resuftin (8.52c).

Appendix C. Numerical solution of the metastable problem

Here we outline the numerical method used to sdlve] (1.8) with initial détad) = > (x; Xo),
whereu™ is the spike profile of (1.0). The domain is taken to be the rectafagie {(x, y) | 0 <
x <Ly, 0<y <Ly}

The slow mot|on of the spike is due to the exponentially small interaction betw@eanda s2.
Since this interaction is difficult to resolve in thevariable, we consider the following problem for
w(X, 1)) = loglu(x, 1)]:

w,:sz(Aw+wf+w§)+w, Xe N, t>0;

(C.1)
g,w=0, xecd2; wkx,0 =log[u™(x;xo(0))].
For (C.1) the initial data is not exponentially small near the boundary.
One of the best low-cost numerical methods for linear parabolic equatjoasAu + f(x, y)
is the implicitmethod of alternating direction®enote the numerical grid biyt;, y;) = (ihy, jhy),
i=0,...,N; j=0,..., Ny. The solution on the numerical gridiig;, and the time step is. The
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FIG. C1l. The numerical pattern withy = x andxp = y.

second central difference operators inttendy directions, respectively, awdu;; = h;z(ui+1j —
2uij + u;i—1j) and Aqu;; = hy_z(uij+1 — 2uij 4+ uij_1).

The stages for the numerical method are shown in[Fiy. C1. It contains the half-step- 7 /2.
Givenu on the grid at time, one first computes, on the whole grid, the intermediate vala¢
time 7, using an implicit difference in the direction and an explicit difference in thedirection.
The solution at the next integer time step= ¢ + , denoted byi;;, is implicit in the y direction
and explicit in thex direction. In this way, we have

2 _ _ - 2 . _ _ ,\ A
Z(ij —uij) = Aaitij + Aquij + fij. - —(ij — tij) = Aaitij + Azilij + fij- (C.2)

On each of the semi-steps in (C.2) a linear tridiagonal matrix system arises, which is efficiently
solved with a tridiagonal solver. This fully implicit method is unconditionally stable with truncation
error O (2 + h2 + h?).

To treat the nonlinear problerp (¢.1) numerically, we use an explicit-implicit modification of
this method. On each semi-step, the nonlinear terms are computed explicitly, while the other terms
are kept fixed:

2 ) Wit —wi—1; 1% Wi — wii—11?
;(wij_wij)zsz(Alwij+A2wij+|:M:| ) oy,

2, 2h,
200 N 2 A - Wiy1j — Wi-1; 2 Wij+1 — Wij—1 2 -
;(w,-j — w,-j) =& Arw;; + Azw;; + —th . +|—— Zhy + wij.

The conditiond,w = 0 on the rectangle boundary is approximated by introducing auxiliary
additional sets of grid points with= -1, j = —1,i = N, + 1 andj = N, + 1 respectively,
and by setting the solution values at these auxiliary grid points to be equal to the solution values at
points symmetric with respect to the boundary.
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