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A geometrically exact Cosserat shell model for defective elastic crystals.
Justification via Γ -convergence
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We derive theΓ -limit to a three-dimensional Cosserat model as the aspect ratioh > 0 of a flat
domain tends to zero. The bulk model involves already exact rotations as a second independent field
intended to describe the rotations of the lattice in defective elastic crystals. TheΓ -limit based on the
natural scaling consists of a membrane-like energy and a transverse shear energy both scaling withh,
augmented by a curvature energy due to the Cosserat bulk, also scaling withh. A technical difficulty
is to establish equi-coercivity of the sequence of functionals as the aspect ratioh tends to zero.
Usually, equi-coercivity follows from a local coerciveness assumption. While the three-dimensional
problem is well-posed for the Cosserat couple modulusµc > 0, equi-coercivity needs a strictly
positiveµc. Then theΓ -limit model determines the midsurface deformationm ∈ H1,2(ω, R3). For
the true defective crystal case, however,µc = 0 is appropriate. Without equi-coercivity, we first
obtain an estimate of theΓ -lim inf and Γ -lim sup which can be strengthened to theΓ -convergence
result. The Reissner–Mindlin model is “almost” the linearization of theΓ -limit for µc = 0.
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1. Introduction

1.1 Aspects of shell theory

The dimensional reduction of a given continuum-mechanical model is already an old subject and
has seen many “solutions”. One possible way to proceed is the so calledderivation approach,
i.e., reducing a given three-dimensional model via physically reasonable constitutive assumptions
on the kinematics to a two-dimensional model. This is opposed to either theintrinsic approach
which views the shell from the onset as a two-dimensional surface and invokes concepts from
differential geometry, or theasymptotic methodswhich try to establish two-dimensional equations
by formal expansion of the three-dimensional solution in power series in terms of a small
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nondimensional thickness parameter, the aspect ratioh. The intrinsic approach is closely related
to the direct approachwhich takes the shell to be a two-dimensional medium with additional
extrinsic directorsin the sense of arestricted Cosserat surface[17].1 There, two-dimensional
equilibrium in appropriate new resultant stress and strain variables is postulated ab initio more or
less independently of three-dimensional considerations (cf. [3, 34, 23, 14–16, 55].

A comprehensive presentation of the different approaches in classical shell theories can be found
in the monograph [42]. A thorough mathematical analysis of linear, infinitesimal-displacement shell
theory, based on asymptotic methods, is found in [12] and the extensive references therein (see also
[11, 13, 3, 21, 22, 32, 4]). Excellent reviews of the modelling and finite element implementation
may be found in [59, 56, 58, 35, 36, 69, 5, 9] and in the series of papers [61–66]. Properly invariant,
geometrically exact, elastic plate theories are derived by formal asymptotic methods in [25]. This
formal derivation is extended to curvilinear shells in [41, 40]. Apart from the pure bending case [30,
28], which is justified as theΓ -limit of the three-dimensional model ash → 0 and which can be
shown to be intrinsically well-posed, the finite-strain models obtained have not yet been shown to
be well-posed. Indeed, the membrane energy contribution is notoriously not Legendre–Hadamard
elliptic. The different membrane model formally justified in [39] byΓ -convergence is geometrically
exact and automatically quasiconvex/elliptic but unfortunately does not coincide upon linearization
with the otherwise well-established infinitesimal-displacement membrane model. Moreover, this
model does not describe the detailed geometry of deformation in compression but reduces to a
tension-field theory [67]. The quasiconvexifying step in [39] appears since the membrane energy
takes then into account the energy reducing effect of possible fine scale oscillations (wrinkles).
The development of [39] has been generalized to Young measures in [27]. A hierarchy of limiting
theories based onΓ -convergence, distinguished by different scaling exponents of the energy as a
function of the aspect ratioh, is developed in [31]. There the different scaling exponents can be
controlled by scaling assumptions on the applied forces.

It is possible to includeinterfacial energy(here a second derivative termκ‖D2ϕ‖
2 in the bulk

energy) in the description of the material. TheΓ -limit for constantκ has been investigated in [6] in
an application to thin martensitic films. As a result, no quasiconvexification step is necessary (the
higher derivative excludes arbitrary fine scale wrinkles) and in the limit one independent “Cosserat
director” appears. If simultaneouslyκ → 0 faster thanh → 0, then theΓ -limit coincides [60,
Rem. 5] with that of [39]. In our context (see below), including such an interfacial energy is
tantamount to settingµc = ∞ in the Cosserat bulk model, i.e. the Cosserat bulk model would
degenerate into asecond gradient model.

There are numerous proposals in the engineering literature for a finite-strain, geometrically
exact plate formulation (see e.g. [26, 57–59, 69, 5, 9]. These models are based on the Reissner–
Mindlin kinematical assumption which is a variant of the direct approach; usually one independent
director vector appears in the model. In many cases the need has been felt to devote attention
to rotationsR ∈ SO(3), since rotations are the dominant deformation mode of a thin flexible
structure. This has led to thedrill-rotation formulation, which means that proper rotations either
appear in the formulation as independent fields (leading to a restricted Cosserat surface) or they are
an intermediary ingredient in the numerical treatment (constraint Cosserat surface, only continuum
rotations matter finally). While the computational merit of this approach is well documented, such
models lacked any asymptotic basis.

1 Restricted, since no material length scale enters the direct approach, only the nondimensionalaspect ratioh appears in
the model. In terminology it is useful to distinguish between a “true” Cosserat model operating on SO(3) and theories with
any number of directors.
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1.2 Outline of this contribution

In [45] the first author has proposed a Cosserat shell model for materials with rotational
microstructure. In the underlying Cosserat bulk model the Cosserat rotationR and the gradients
of R enter into the measure of deformation of the body. In fact, variation ofR leads to a balance
of substructural interaction [10]. These gradients account therefore for the presence of interfaces
between substructural units in a smeared sense. One may think of, e.g., liquid crystals, defective
single crystals or metallic foams [47, 52].

Assuming a strict principle of scale separation rules out the possibility of a direct comparison
between macroscopic quantities (the usual deformation) and the microscopic ones (for example
the lattice vectors in a defective crystal) and makes it reasonable to assume that they behave
independently of each other. For definiteness, we may view the Cosserat rotationsR as averaged
lattice rotations, independent of the macroscopic rotation.2 It can be shown that the Cosserat
rotation follows closely the macroscopic rotation in the bulk model provided that a constitutive
parameter, the Cosserat couple modulusµc, is strictly positive. Therefore, the interesting case with
independent microstructure is represented byµc = 0. In this case, the amount of incompatibility
of the lattice rotations, measured through CurlR, decisively influences the elastic response of the
material, and elastic coercivity can only be established for a reasonably smooth distribution of
incompatibilities and defects. Every real pure single crystal contains still a massive amount of
defects and incompatibilities. Thus, giving up the idealization of a defect free single crystal adds
to the physical realism of the model. Let us henceforth refer toµc = 0 as defective elastic crystal
case.

The above mentioned shell model is shown to be well-posed in [45] forµc > 0 and in [50] for
µc = 0. Apart for technical details, this Cosserat shell model includes the generalized drill-rotation
formulations alluded to above. Notably forµc = 0, the in-plane drill-energy is absent in conformity
with the classical Reissner–Mindlin model.

The formal derivation of the new shell model [45], based on an asymptotic ansatz for a Cosserat
bulk model with kinematical and physical assumptions appropriate for thin structures, however,
still gives rise to questions as far as the asymptotic correctness and convergence are concerned. In
this paper we address this point by showing that theΓ -limit of the Cosserat bulk model forh → 0
(under natural scaling assumptions) is, after descaling, given by the corresponding formal derivation,
provided the energy contributions scaling withh are retained and the coefficient of the transverse
shear energy is slightly modified. Given that the information provided by theΓ -limit hinges also on
scaling assumptions, we think that this result is a justification of the formal derivation in [45] and
the employed kinematical ansatz.

Central to our development is therefore the notion ofΓ -convergence, a powerful theory initiated
by De Giorgi [19, 20] and especially suited for a variational framework on which in turn the
numerical treatment with finite elements is based. This approach has thus far provided the only
known convergence theorems for justifying lower dimensional nonlinear, frame-indifferent theories
of elastic bodies.

Now, after presenting the notation, we recall in Section 2 the underlying “parent” three-
dimensional finite-strain frame-indifferent Cosserat model with rotational substructure embodied
by theCosserat rotationsR, i.e., atriad of rigid directors(R1|R2|R3) = R ∈ SO(3), and provide

2 Compare with [70], where it is observed that lattice rotations are, in fact, independent of the macroscopic rotations in
nano-indent single crystal copper experiments.
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the existence results for this bulk model. Then we perform in Section 3 the transformation of the
bulk model in physical space to a nondimensional thin domain and introduce the further scaling to a
fixed reference domainΩ1 with constant thickness on which theΓ -convergence procedure is finally
based.

In Section 4 we recapitulate some points fromΓ -convergence theory and introduce theΓ -limit
for the rescaled formulation with respect to the two independent fields(ϕ, R) of deformations and
microrotations in Section 5. Two limit cases,µc = 0 andµc = ∞, deserve additional attention.
Next, we provide the proof for theΓ -convergence results: first for the simple caseµc > 0 in
Section 6 similar to the development in [39], and then for the case of defective elastic crystals,
µc = 0, in Section 7. The caseµc = ∞ will be dealt with rigorously in a separate contribution.
Our geometrically exact results have been first announced in [51, 46, 49]. In the meantime, the
geometrically linear case forµc > 0 has been treated by others in [2, 1].

1.3 Notation

1.3.1 Notation for bulk material. Let Ω ⊂ R3 always be a bounded open domain with Lipschitz
boundary∂Ω and letΓ be a smooth subset of∂Ω with nonvanishing 2-dimensional Hausdorff
measure. Fora, b ∈ R3 we let 〈a, b〉R3 denote the scalar product onR3 with associated norm
‖a‖

2
R3 = 〈a, a〉R3. We denote byM3×3 the set of real 3×3 second order tensors, written with capital

letters. The standard Euclidean scalar product onM3×3 is given by〈X, Y 〉M3×3 = tr[XY T ], and the
Frobenius tensor norm is‖X‖

2
= 〈X, X〉M3×3. In the following we omit the indicesR3, M3×3. The

identity tensor onM3×3 will be denoted by1, so that tr[X] = 〈X,1〉 and tr[X]2 = 〈X,1〉
2. We let

Sym and PSym denote the symmetric and positive definite symmetric tensors respectively. We adopt
the usual abbreviations of Lie group theory, i.e., GL(3) := {X ∈ M3×3

| det[X] 6= 0} the general
linear group, O(3) := {X ∈ GL(3) | XT X = 1}, SO(3) := {X ∈ GL(3) | XT X = 1, det[X] = 1}

with corresponding Lie algebraso(3) := {X ∈ M3×3
| XT

= −X} of skew symmetric tensors.
We denote by AdjX the tensor of transposed cofactors Cof(X) so that AdjX = det[X]X−1

=

Cof(X)T if X ∈ GL(3). We set sym(X) =
1
2(XT

+ X) and skew(X) =
1
2(X − XT ) such

that X = sym(X) + skew(X). For ξ, η ∈ Rn we have the tensor product(ξ ⊗ η)ij = ξiηj .
We write the polar decomposition in the formF = RU = polar(F )U with R = polar(F ) the
orthogonal part ofF . For a second order tensorX we define the third order tensorh = DxX(x) =

(∇(X(x).e1), ∇(X(x).e2), ∇(X(x).e3)) = (h1, h2, h3) ∈ M3×3
× M3×3

× M3×3 ∼= T(3). For
third order tensorsh ∈ T(3) we set‖h‖

2
=

∑3
i=1 ‖hi

‖
2, sym(h) := (symh1, symh2, symh3)

and tr[h] := (tr[h1], tr[h2], tr[h3]) ∈ R3. Moreover, for any second order tensorX we define
X · h := (Xh1, Xh2, Xh3) andh · X, correspondingly. Quantities with a bar, e.g. the micropolar
rotationR, represent the micropolar replacement of the corresponding classical continuum rotation
R. For the deformationϕ ∈ C1(Ω, R3) we have the deformation gradientF = ∇ϕ ∈ C(Ω, M3×3).
S1(F ) = DF W(F) and S2(F ) = F−1DF W(F) denote the first and second Piola–Kirchhoff
stress tensors. The first and second differential of a scalar-valued functionW(F) are written
DF W(F).H and D2

F W(F).(H,H). We employ the standard notation for Sobolev spaces, i.e.
L2(Ω), H 1,2(Ω), H 1,2

◦ (Ω), W1,q(Ω), which we use indifferently for scalar-valued functions as
well as for vector-valued and tensor-valued functions. The setW1,q(Ω, SO(3)) denotes orthogonal
tensors whose components are inW1,q(Ω). Moreover, we set‖X‖∞ = supx∈Ω ‖X(x)‖. We denote
by C∞

0 (Ω) the infinitely differentiable functions with compact support inΩ. We use capital letters
to denote possibly large positive constants, e.g.C+, K, and lower case letters to denote possibly
small positive constants, e.g.c+, d+.
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1.3.2 Notation for plates and shells.Let ω ⊂ R2 always be a bounded open domain with
Lipschitz boundary∂ω and letγ0 be a smooth subset of∂ω with nonvanishing 1-dimensional
Hausdorff measure. The aspect ratio of the plate ish > 0. We denote byMm×n the set of matrices
mappingRn

→ Rm. ForH ∈ M3×2 andξ ∈ R3 we write(H |ξ) ∈ M3×3 for the matrix composed
of H and the columnξ . Likewise (v|ξ |η) is the matrix composed of the columnsv, ξ, η. This
allows us to write∇ϕ = (ϕx |ϕy |ϕz) = (∂xϕ|∂yϕ|∂zϕ) for ϕ ∈ C1(R3, R3). The identity tensor
on M2×2 is 12. The mappingm : ω ⊂ R2

→ R3 is the deformation of the midsurface,∇m is the
corresponding deformation gradient andEnm is the outer unit normal onm. A matrix X ∈ M3×3

can now be written asX = (X.e2|X.e2|X.e3) = (X1|X2|X3). We write v : R2
→ R3 for the

displacement of the midsurface such thatm(x, y) = (x, y, 0)T + v(x, y). The standard volume
element is dx dy dz = dV = dω dz.

2. The underlying three-dimensional Cosserat model

2.1 Problem statement in variational form

In [48] a finite-strain, fully frame-indifferent, three-dimensional Cosserat micropolar model is
introduced. The two-field problem has been posed in a variational setting. The task is to find a
pair (ϕ, R) : Ω ⊂ E3

→ E3
× SO(3) of a deformationϕ and an independent Cosserat rotation

R ∈ SO(3), defined on the ambient physical spaceE3, minimizing the energy functionalI ,

I (ϕ, R) =

∫
Ω

[Wmp(R
T
∇ϕ) + Wcurv(R

T DxR) − Πf (ϕ) − ΠM(R)] dV

−

∫
ΓS

ΠN (ϕ) dS −

∫
ΓC

ΠMc (R) dS 7→ min w.r.t.(ϕ, R), (2.1)

together with the Dirichlet boundary condition for the deformationϕ on Γ : ϕ|Γ = gd and three
possiblealternativeboundary conditions for the microrotationsR onΓ ,

R|Γ =


Rd, the case ofrigid prescription,

polar(∇ϕ), the case ofstrong consistent coupling,

no condition forR onΓ , induced Neumann-typerelations forR onΓ .

The constitutive assumptions on the densities are

Wmp(U) = µ‖sym(U − 1)‖2
+ µc‖skew(U)‖2

+
λ

2
tr[sym(U − 1)]2, U = RT F, F = ∇ϕ,

Wcurv(K) = µ
L

1+p
c

12
(1 + α4L

q
c‖K‖

q)(α5‖symK‖
2
+ α6‖skewK‖

2
+ α7 tr[K]2)(1+p)/2,

K = RT DxR := (RT
∇(R.e1), R

T
∇(R.e2), R

T
∇(R.e3)), the third ordercurvature tensor,

under the minimal requirementp > 1, q > 0. The total elastically stored energyW = Wmp+Wcurv

is quadratic in the stretchU and possibly super-quadratic in the curvatureK. The strain energy
Wmp depends on the deformation gradientF = ∇ϕ and the microrotationsR ∈ SO(3), which
do not necessarily coincide with thecontinuum rotationsR = polar(F ). The curvature energy
Wcurv depends moreover on the space derivatives DxR which describe the self-interaction of the
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microstructure.3 In general, themicropolar stretch tensorU is not symmetricand does not coincide
with the symmetric continuum stretch tensorU = RT F =

√
F T F . By abuse of notation we set

‖symK‖
2 :=

∑3
i=1 ‖symKi

‖
2 for third order tensorsK (cf. 1.3.1).

Here Γ ⊂ ∂Ω is that part of the boundary where the Dirichlet conditionsgd, Rd for the
deformations and microrotations or the coupling conditions for the microrotations are prescribed.
ΓS ⊂ ∂Ω is the part of the boundary where the traction boundary conditions in the form of the
potential of applied surface forcesΠN are given withΓ ∩ΓS = ∅. In addition,ΓC ⊂ ∂Ω is the part
of the boundary where the potential of external surface couplesΠMc is applied withΓ ∩ ΓC = ∅.
On the free boundary∂Ω \{Γ ∪ΓS ∪ΓC} the corresponding natural boundary conditions for(ϕ, R)

apply. The potential of the external applied volume force isΠf andΠM takes on the role of the
potential of applied external volume couples. For simplicity we assume

Πf (ϕ) = 〈f, ϕ〉, ΠM(R) = 〈M, R〉, ΠN (ϕ) = 〈N, ϕ〉, ΠMc (R) = 〈Mc, R〉, (2.2)

for the potentials of applied loads with given functionsf ∈ L2(Ω, R3), M ∈ L2(Ω, M3×3), N ∈

L2(ΓS, R3), Mc ∈ L2(ΓC, M3×3).
The parametersµ, λ > 0 are the Laḿe constants of classical isotropic elasticity; the additional

parameterµc > 0 is called theCosserat couple modulus. For µc > 0 the elastic strain energy
densityWmp(U) is uniformly convexin U and satisfies thestandard growth assumption

∀F ∈ GL+(3, R) : Wmp(U) = Wmp(R
T F)

> min(µ, µc)‖R
T F − 1‖

2

= min(µ, µc)‖F − R‖
2

> min(µ, µc) inf
R∈O(3,R)

‖F − R‖
2

= min(µ, µc) dist2(F, O(3, R))

= min(µ, µc) dist2(F, SO(3))

= min(µ, µc)‖F − polar(F )‖2

= min(µ, µc)‖U − 1‖
2. (2.3)

In contrast, for the interesting limit case of defective elastic crystalsµc = 0, where the Cosserat
rotationsR are viewed as the lattice rotations, the strain energy density isonly convexwith respect
to F and does not satisfy (2.3).4

The parameterLc > 0 (with dimension of length) introduces aninternal lengthwhich is
characteristicfor the material, e.g., related to the interaction length of the lattices in a defective
single crystal. The internal lengthLc > 0 is responsible forsize effectsin the sense that smaller
samples are relatively stiffer than larger samples. We assume throughout thatα4, α5, α6 > 0,
α7 > 0. This implies thecoercivity of curvature

∃c+ > 0 ∀K ∈ T(3) : Wcurv(K) > c+
‖K‖

1+p+q ,

3 Observe thatRT
∇(R.ei ) 6= RT ∂xi

R ∈ so(3).
4 The conditionF ∈ GL+(3, R) is necessary, otherwise‖F − polar(F )‖2

= dist2(F, O(3, R)) < dist2(F, SO(3)), as
can be easily seen for the reflectionF = diag(1, −1, 1).
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which is a basic ingredient of the mathematical analysis. Note that every subsequent result can also
be obtained for a true lattice incompatibility measureWdefectreplacingWcurv with

Wdefect= µL
1+p+q
c ‖RT CurlR‖

1+p+q

(see [53]).Wdefectaccounts for interfacial energy between adjacent regions of lattice orientations.
The nonstandard boundary condition ofstrong consistent couplingensures that no unwanted

nonclassical, polar effects may occur at the Dirichlet boundaryΓ . It implies that the micropolar
stretch satisfiesU |Γ ∈ Sym and the second Piola–Kirchhoff stress tensor satisfiesS2 :=
F−1DF Wmp(U) ∈ Sym onΓ as in the classical, nonpolar case. We refer to the weaker boundary
conditionU |Γ ∈ Sym asweak consistent coupling.

It is of prime importance to realize that a linearization of this Cosserat bulk model in the case
of defective elastic crystalsµc = 0 for small displacement and small microrotations completely
decouples the two fields of deformationϕ and Cosserat lattice rotationsR and leads to the classical
linear elasticity problem for the deformation.5 For more details on the modelling of the three-
dimensional Cosserat model we refer the reader to [48].

2.2 Mathematical results for the Cosserat bulk problem

We recall the results obtained for the case without external loads [47, 44]:

THEOREM 2.1 (Existence for 3D-finite-strain elastic Cosserat model withµc > 0) Let Ω ⊂ R3

be a bounded Lipschitz domain and assume that the boundary data satisfygd ∈ H 1(Ω, R3)

and Rd ∈ W1,1+p(Ω, SO(3)). Then (2.1) withµc > 0, α4 > 0, p > 1, q > 0 and either
free or rigid prescription forR on Γ admits at least one minimizing solution pair(ϕ, R) ∈

H 1(Ω, R3) × W1,1+p(Ω, SO(3)). 2

In the case of defective elastic crystals a more stringent control of the lattice incompatibility (higher
curvature exponent) is necessary. Using the extended Korn inequality [43, 54], the following has
been shown in [47]:

THEOREM 2.2 (Existence for 3D-finite-strain elastic Cosserat model withµc = 0) Let Ω ⊂ R3

be a bounded Lipschitz domain and assume for the boundary datagd ∈ H 1(Ω, R3) andRd ∈

W1,1+p+q(Ω, SO(3)). Then (2.1) withµc = 0, α4 > 0, p > 1, q > 1 and either free or rigid
prescription forR on Γ admits at least one minimizing solution pair(ϕ, R) ∈ H 1(Ω, R3) ×

W1,1+p+q(Ω, SO(3)). 2

3. Dimensional reduction of the Cosserat bulk model

3.1 The three-dimensional Cosserat problem on a thin domain

The basic task of any shell theory is a consistent reduction of some presumably “exact” 3D-theory to
2D. The three-dimensional problem (2.1) defined on the physical spaceE3 will now be adapted to a

5 Thinking in the context of an infinitesimal-displacement Cosserat theory one might believe thatµc > 0 is necessary
also for a “true” finite-strain Cosserat theory.
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shell-like theory. Let us therefore assume that the problem is already transformed innondimensional
form. This means we are given a three-dimensional (nondimensional)thin domainΩh ⊂ R3

Ωh := ω × [−h/2, h/2], ω ⊂ R2,

with transverse boundary∂Ω trans
h = ω × {−h/2, h/2} and lateral boundary∂Ω lat

h = ∂ω ×

[−h/2, h/2], whereω is a bounded open domain6 in R2 with smooth boundary∂ω andh > 0
is thenondimensional relative characteristic thickness (aspect ratio), h � 1. Moreover, assume we
are given a deformationϕ and microrotationR,

ϕ : Ωh ⊂ R3
→ R3, R : Ωh ⊂ R3

→ SO(3),

solving the following two-field minimization problem on the thin domainΩh:

I (ϕ, R) =

∫
Ωh

[Wmp(U) + Wcurv(K) − 〈f, ϕ〉] dV

−

∫
∂Ω trans

h ∪{γs×[−h/2,h/2]}
〈N, ϕ〉 dS 7→ min w.r.t.(ϕ, R),

U = RT F, ϕ|
Γ h

0
= gd(x, y, z), Γ h

0 = γ0 × [−h/2, h/2], γ0 ⊂ ∂ω, γs ∩ γ0 = ∅,

U |
Γ h

0
= RT

∇ϕ|
Γ h

0
∈ Sym(3), weak consistent coupling boundary conditionor

R : free onΓ h
0 , alternative Neumann-type boundary condition,

Wmp(U) = µ‖sym(U − 1)‖2
+ µc‖skew(U)‖2

+
λ

2
tr[sym(U − 1)]2,

Wcurv(K) = µ
L̂

1+p
c

12
(1 + α4L̂

q
c‖K‖

q)(α5‖symK‖
2
+ α6‖skewK‖

2
+ α7 tr[K]2)(1+p)/2,

K = RT DxR = (RT
∇(R.e1), R

T
∇(R.e2), R

T
∇(R.e3)),

whereL̂c = Lc/L is a nondimensional ratio. Without loss of mathematical generality we assume
that M, Mc ≡ 0 in (2.2), i.e. that no external volume or surface couples are present in the bulk
problem. We want to find a reasonable approximation(ϕs, Rs) of (ϕ, R) involving only two-
dimensional quantities.

3.2 Transformation on a fixed domain

In order to apply standard techniques ofΓ -convergence, we transform the problem onto afixed
domainΩ1, independent of the aspect ratioh > 0. Define therefore

Ω1 = ω × [−1/2, 1/2] ⊂ R3, ω ⊂ R2.

The scaling transformation

ζ : η ∈ Ω1 ⊂ R3
→ R3, ζ(η1, η2, η3) := (η1, η2, h · η3),

ζ−1 : ξ ∈ Ωh ⊂ R3
→ R3, ζ−1(ξ1, ξ2, ξ3) := (ξ1, ξ2, ξ3/h),

6 For definiteness, one can think ofω = [0, 1]] × [0, 1]].
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mapsΩ1 into Ωh andζ(Ω1) = Ωh. We consider the correspondingly scaled function (subsequently,
scaled functions defined onΩ1 will be indicated with a superscript]) ϕ] : Ω1 → R3, defined by

ϕ(ξ1, ξ2, ξ3) = ϕ](ζ−1(ξ1, ξ2, ξ3)) ∀ξ ∈ Ωh; ϕ](η) = ϕ(ζ(η)) ∀η ∈ Ω1,

∇ϕ(ξ1, ξ2, ξ3) =

(
∂η1ϕ

](η1, η2, η3)

∣∣∣∣∂η2ϕ
](η1, η2, η3)

∣∣∣∣1

h
∂η3ϕ

](η1, η2, η3)

)
=: ∇

h
η ϕ]

= F
]
h .

Similarly, we define a scaled rotation tensorR] : Ω1 ⊂ R3
→ SO(3) by

R(ξ1, ξ2, ξ3) = R](ζ−1(ξ1, ξ2, ξ3)) ∀ξ ∈ Ωh; R](η) = R(ζ(η)) ∀η ∈ Ω1,

∇ξ [R(ξ1, ξ2, ξ3).ei ] =

(
∂η1[R](η).ei ]

∣∣∣∣∂η2[R](η).ei ]

∣∣∣∣1

h
∂η3[R](η).ei ]

)
=: ∇

h
η [R](η).ei ] ∈ M3×3,

Dh
ηR

3d,]
h (η) := (∇h

η [R](η).e1], ∇h
η [R](η).e2], ∇h

η [R](η).e3]) ∈ T(3).

(3.1)

This allows us to define scaled nonsymmetric stretchesU
]

h = R],T F
]
h and the scaled third order

curvature tensorK]
h : Ω1 → T(3),

K
]
h(η) =

(
R],T (η)

(
∂η1[R](η).e1]

∣∣∣∣∂η2[R](η).e1]

∣∣∣∣1

h
∂η3[R](η).e1]

)
,

R],T (η)

(
∂η1[R](η).e2]

∣∣∣∣∂η2[R](η).e2]

∣∣∣∣1

h
∂η3[R](η).e2]

)
,

R],T (η)

(
∂η1[R](η).e3]

∣∣∣∣∂η2[R](η).e3]

∣∣∣∣1

h
∂η3[R](η).e3]

))
= (R],T (η)∇h

η [R](η).e1], R],T (η)∇h
η [R](η).e2], R],T (η)∇h

η [R](η).e3])

= R],T Dh
ηR

](η).

Moreover, we define similarly scaled functions by setting

f ](η) := f (ζ(η)), g
]
d(η) = gd(ζ(η)), N](η) := N(ζ(η)).

In terms of the introduced scaled deformations and rotations

ϕ] : Ω1 ⊂ R3
→ R3, R] : Ω1 ⊂ R3

→ SO(3),

the scaled problem solves the following two-field minimization problem on the fixed domainΩ1:

I ](ϕ], ∇h
η ϕ], R], Dh

ηR
]) =

∫
η∈Ω1

[Wmp(U
]

h) + Wcurv(K
]
h) − 〈f ], ϕ]

〉]det[∇ζ(η)] dVη

−

∫
∂Ω trans

1 ∪{γs×[−1/2,1/2]}
〈N], ϕ]

〉‖ Cof∇ζ(η).e3‖ dSη,

= h

∫
η∈Ω1

[Wmp(U
]

h) + Wcurv(K
]
h) − 〈f ], ϕ]

〉] dVη

−

∫
∂Ω trans

1

〈N], ϕ]
〉1 dSη

−

∫
γs×[−1/2,1/2]

〈N], ϕ]
〉h dSη 7→ min w.r.t.(ϕ], R]).
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3.3 The rescaled variational Cosserat bulk problem

Since the energyh−1I ] would not be finite forh → 0 if tractionsN] on the transverse boundary
were present, the investigations are in principle restricted to the case ofN]

= 0 on ∂Ω trans
1 .7 For

conciseness we investigate the following simplified and rescaled (N], f ]
= 0, gd(ξ1, ξ2, ξ3) :=

gd(ξ1, ξ2)) two-field minimization problem onΩ1 with respect toΓ -convergence (without the factor
h > 0 now), i.e. we are interested in the limiting behaviour of the energy per unit aspect ratioh:

I
]
h(ϕ], ∇h

η ϕ], R], Dh
ηR

]) =

∫
η∈Ω1

[Wmp(U
]

h) + Wcurv(K
]
h)] dVη 7→ min w.r.t.(ϕ], R]),

U
]

h = R],T F
]
h , ϕ

]
|
Γ 1

0

(η) = g
]
d(η) = gd(ζ(η)) = gd(η1, η2, h · η3) = gd(η1, η2, 0),

Γ 1
0 = γ0 × [−1/2, 1/2], γ0 ⊂ ∂ω,

R] : free onΓ 1
0 , Neumann-type boundary condition,

K
]
h = R],T Dh

ηR
](η).

(3.2)

Here we assume that the boundary conditiongd is already independent of the transverse variable.
We restrict attention to the weakest response, theNeumann boundary conditionson the Cosserat
rotationsR] in line with the difficulty to experimentally influence the lattice rotations at the Dirichlet
boundary.8 Moreover, we assume

p > 1, q > 1,

so that both casesµc > 0 andµc = 0 can be considered simultaneously. External loads of various
sorts can be treated by Remark 4.5.

Within the rescaled formulation (3.2) we want to investigate the possible limit behaviour for
h → 0 andfixed relative internal lengtĥLc > 0. This amounts to considering sequences of
plates with constant physical thicknessd, increasing in plane-lengthL and accordingly increasing
curvature strength of the microstructure, similar to lettingκ = const in [6].

3.4 On the choice of the scaling

TheΓ -limit, if it exists, is unique. The only choice which influences the final form of theΓ -limit
is given by the initial scaling assumptions made on the unknowns, in order to relate them to the
fixed domainΩ1, and the assumption on the scaling of the energies, here the membrane scaling
h−1I ] < ∞. Our scaling ansatz is consistent with the one proposed in [38, 29], but not with the one
taken in [11], which scales transverse components of the displacement differently in order to extract
more information from theΓ -limit. Since we deal with a “two-field” model it is not possible to
scale the fields differently. The general inadequacy of the scaling of linear elasticity adopted in [11]
in a geometrically exact context has been pointed out in [24]. The motivation for our choice is given
by the apparent consistency of the results with formal developments and its linearization stability.
Here we see that the energy scaling assumptions also introduce an ambiguity in the development.

7 The thin plate limith → 0 obviously cannot support nonvanishing transverse surface loads.
8 We could as well treat the rigid case, i.e.R

]
|
Γ 1

0

= Rd. The case of weak consistent coupling would need additional

provisions, the three-dimensional existence result already needs additional control in order to define the then necessary
boundary terms.
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For example, starting from classical nonlinear elasticity, considering the present scaling for the
unknowns and assumingh−5I ] < ∞, a nonlinear von Ḱarmán plate can be rigorously justified by
Γ -convergence [29]. These results have been extended to a hierarchy of models in [31].

4. Some facts onΓ -convergence

Let us briefly recapitulate the notions involved by usingΓ -convergence. For a detailed treatment we
refer to [18, 8]. We start by defining the lower and upperΓ -limits. In the following,X will always
denote a metric space such that sequential compactness and compactness coincide. Moreover, we
setR := R ∪ {±∞}. We consider a sequence of energy functionalsIhj

: X → R, hj → 0.

DEFINITION 4.1 (Lower and upperΓ -limit) Let X be a metric space and letIhj
: X → R with

hj → 0 be a sequence of functionals. Forx ∈ X we define

Γ - lim inf
hj

Ihj
: X → R, Γ - lim inf

hj

Ihj
(x) := inf{lim inf

hj

Ihj
(xhj

) | xhj
→ x},

Γ - lim sup
hj

Ihj
: X → R, Γ - lim sup

hj

Ihj
(x) := inf{lim sup

hj

Ihj
(xhj

) | xhj
→ x}.

It is clear thatΓ - lim infhj
Ihj

and Γ - lim suphj
Ihj

: X → R always exist and are uniquely
determined.

DEFINITION 4.2 LetX be a metric space. We say that a sequence of functionalsIhj
: X → R

Γ -convergesin X to the limit functionalI0 : X → R if for all x ∈ X we have

∀x ∈ X ∀xhj
→ x : I0(x) 6 lim inf

hj →0
Ihj

(xhj
) (lim inf-inequality),

∀x ∈ X ∃xhi
→ x : I0(x) > lim sup

hi→0
Ihi

(xhi
) (recovery sequence).

COROLLARY 4.3 LetX be a metric space. The sequence of functionalsIhj
: X → R Γ -converges

in X to I0 : X → R if and only if

Γ - lim inf
hj

Ihj
= Γ - lim sup

hj

Ihj
= I0. 2

REMARK 4.4 (Lower semicontinuity of theΓ -limit) The lower and upperΓ -limits are always
lower semicontinuous, hence theΓ -limit is a lower semicontinuous functional. Moreover, if the
Γ -limit exists, it is unique.

REMARK 4.5 (Stability under continuous perturbations) Assume thatIhj
: X → R Γ -converges

in X to I0 : X → R and letΠ : X → R, independent ofhj , be continuous. ThenIhj
+ Π is

Γ -convergent and

(Γ - lim
hj

[Ihj
+ Π ])(x) = (Γ - lim

hj

Ihj
)(x) + Π(x) = I0(x) + Π(x)

(see [18, Prop. 6.21]). Recall that when the functionalΠ , independent ofhj , is not continuous it can
influence whether or notΓ -convergence holds [18, Ex. 6.23].
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Let us also recapitulate the importantequi-coercivenessproperty. First we recallcoerciveness
of a functional.9

DEFINITION 4.6 The functionalI : X → R is coercivewith respect toX if for each fixedC > 0
the closure of the set{x ∈ X | I (x) 6 C} is compact inX, i.e.I has compact sublevels.

Following [18, p. 70] we introduce

DEFINITION 4.7 The sequence of functionalsIhj
: X → R is equi-coerciveif for eachC > 0

there exists a compact setKC ⊂ X such that{x ∈ X | Ihj
(x) 6 C} ⊂ KC , independentof hj > 0.

Hence, if we know thatIhj
is equi-coercive overX and thatIhj

(ϕj ) 6 C along a sequence
ϕj ∈ X, then we can extract a subsequenceϕjk

converging in the topology ofX to some limit
elementϕ ∈ X.

THEOREM 4.8 (Characterization of equi-coerciveness, [18, Prop. 7.7]) The sequence of function-
alsIhj

: X → R is equi-coercive if and only if there exists a lower semicontinuous coercive function

Ψ : X → R such thatIhj
> Ψ onX for everyhj > 0. 2

The following theorem concerns the convergence of the minimum values of an equi-coercive
sequence of functions.

THEOREM 4.9 (Coerciveness of theΓ -limit, [18, Th. 7.8]) Suppose that the sequence of function-
alsIhj

: X → R is equi-coercive. Then the upper and lowerΓ -limits are both coercive and

min
x∈X

(Γ - lim inf
hj

Ihj
)(x) = lim inf

hj

inf
x∈X

Ihj
(x).

If, in addition, the sequence of integral functionalsIhj
: X → R Γ -converges to a functional

I0 : X → R, thenI0 itself is coercive and

min
x∈X

I0(x) = lim
hj

inf
x∈X

Ihj
(x).

Note that equi-coercivity is an additional feature in the development ofΓ -convergence
arguments, which simplifies proofs considerably through compactness arguments. As far asΓ -
convergence is concerned, it may be useful to recall [8, p. 19] thatminimizers of theΓ -limit
variational problem may not be limits of minimizers, so thatΓ -convergence can be interpreted
as a choice criterion.In addition, theΓ -limit of a constant sequence of functionalsJ , which
is not lower semicontinuous, does not coincide with the constant functionalJ , instead one has
(Γ - lim J )(x) < J (x). In this case,(Γ - lim J )(x) = QJ(x), whereQJ is the lower semicontinuous
envelope ofJ . In the case of non-lower semicontinuous functionals, theΓ -limit therefore introduces
a different physical setting. In this paper we deal with lower semicontinuous functionals.

9 Typically, coerciveness is given forX = Lp(Ω, R3), 1 < p < ∞, with Ω a bounded domain, with smooth boundary
and

I (ϕ) =

{∫
Ω W(∇ϕ) dV if ϕ ∈ W1,p(Ω, R3), ϕ|∂Ω

= 0,

+∞ else,

with the local coercivity assumptionW(F) > c+

1 ‖F‖
p

− c+

2 . Coerciveness follows by Poincaré’s inequality and Rellich’s

compact embeddingW1,p(Ω, R3) ⊂ Lp(Ω, R3). Recall that linear elasticity does not satisfy a local coercivity condition.
This is the cause for some technical problems of the theory.
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5. The “two-field” Cosserat Γ -limit

5.1 The spaces and admissible sets

Now let us proceed to the investigation of theΓ -limit for the rescaled problem (3.2). We do not use
I

]
hj

directly in our investigation ofΓ -convergence, since this would imply working with the weak

topology ofH 1,2(Ω1, R3) × W1,1+p+q(Ω1, SO(3)), which does not give rise to a metric space.
Instead, we define suitable “bulk” spacesX, X′ and suitable “two-dimensional” spacesXω, X′

ω.
First, forp > 1, q > 1 we define the numberr > 1 by

1

1 + p + q
+

1

r
=

1

2
, i.e. r =

2(1 + p + q)

(1 + p + q) − 2
, (5.1)

such thatL1+p+q
·Lr

⊂ L2. Note that for 1+p+q > 3 we haver < 6, which implies the compact
embeddingH 1,2(Ω1, R3) ⊂ Lr(Ω1, R3). Now define the spaces

X := Lr(Ω1, R3) × L1+p+q(Ω1, SO(3)),

X′ := H 1,2(Ω1, R3) × W1,1+p+q(Ω1, SO(3)),

Xω := Lr(ω, R3) × L1+p+q(ω, SO(3)),

X′
ω := H 1,2(ω, R3) × W1,1+p+q(ω, SO(3)),

and the admissible sets

A′ := {(ϕ, R) ∈ H 1,2(Ω1, R3) × W1,1+p+q(Ω1, SO(3)) | ϕ|
Γ 1

0
(η) = g

]
d(η)},

A′
ω := {(ϕ, R) ∈ H 1,2(ω, R3) × W1,1+p+q(ω, SO(3)) | ϕ|γ0

(η1, η2) = g
]
d(η1, η2, 0)},

A′
Ω1,ω

:= {(ϕ, R) ∈ H 1,2(Ω1, R3) × W1,1+p+q(ω, SO(3)) | ϕ|
Γ 1

0
(η) = g

]
d(η)}.

We note the compact embeddingX′
⊂ X and the natural inclusionsXω ⊂ X andX′

ω ⊂ X′. Now
we extend the rescaled energies to the spaceX through redefining

I
]
h(ϕ], ∇h

η ϕ], R], Dh
ηR

]) =

{
I

]
h(ϕ], ∇h

η ϕ], R], Dh
ηR

]) if (ϕ], R]) ∈ A′,

+∞ else inX,
(5.2)

by abuse of notation. This is a classical trick used in applications ofΓ -convergence. It has the
virtue of incorporating the boundary conditions already in the energy functional. In the following,
Γ -convergence results will be shown with respect to the encompassing metric spaceX.10

DEFINITION 5.1 (The transverse averaging operator) Forϕ ∈ L2(Ω1, R3) define the averaging
operator over the transverse (thickness) variableη3 by

Av : L2(Ω1, R3) → L2(ω, R3), Av.ϕ(η1, η2) :=
∫ 1/2

−1/2
ϕ(η1, η2, η3) dη3.

10 Of course,X, X′ as such are not vector spaces, since one cannot add two rotations. Nevertheless,Lr (Ω1, SO(3)) ⊂

Lr (Ω1, M3×3) and the latter is a Banach space.
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It is clear that averaging with respect to the transverse variableη3 commutes with differentiation
with respect to the planar variablesη1, η2, i.e.

[Av .∇(η1,η2)ϕ(η1, η2, η3)](η1, η2) = ∇(η1,η2)[Av .ϕ(η1η1η1)](η1, η2),

for suitable regular functionsϕ. Note in passing that for a convex functionf : M3×2
→ R Jensen’s

inequality implies∫
ω

f (∇(η1,η2)[Av .ϕ](η1, η2)) dω =

∫
ω

f ([Av .∇(η1,η2)ϕ](η1, η2)) dω

6
∫

ω

∫ 1/2

−1/2
f (∇(η1,η2)ϕ(η1, η2, η3)) dη3 dω

=

∫
Ω1

f (∇(η1,η2)ϕ(η1, η2, η3)) dVη. (5.3)

5.2 TheΓ -limit variational “membrane” problem

Our first result is

THEOREM 5.2 (Γ -limit for µc > 0) For strictly positive Cosserat couple modulusµc > 0 the
Γ -limit for problem (3.2) in the setting of (5.2) is given by the limit energy functionalI

]
0 : X → R,

I
]
0(ϕ, R) :=


∫

Ω1

[Whom
mp (∇Av.ϕ, R) + Whom

curv(Ks)] dω − Π(Av.ϕ, R3) if (ϕ, R) ∈ A′
Ω1,ω

,

+∞ else inX,

with Whom
mp andWhom

curv defined below.

The proof of this statement will be given in Section 6.
If we identify the thickness averaged deformation Av.ϕ with the deformation of the midsurface

m : ω ⊂ R2
→ R3, this problem determines in fact a purely two-dimensional minimization problem

for the deformation of the midsurfacem : ω ⊂ R2
→ R3 and the microrotation of the plate (shell)

R : ω ⊂ R2
→ SO(3) onω:

I
]
0(m, R) =

∫
ω

[Whom
mp (∇m, R) + Whom

curv(Ks)] dω − Π(m, R3) 7→ min w.r.t.(m, R), (5.4)

and the boundary conditions for the midsurface deformationm on the Dirichlet part of the lateral
boundaryγ0 ⊂ ∂ω,

m|γ0
= gd(x, y, 0) = Av.gd(x, y, 0), simply supported (fixed, welded).

The boundary conditions for the microrotationsR are automatically determined in the variational
process. The dimensionally homogenized local density is11 12

11
‖skew((R1|R2)T ∇m)‖2

= (〈R1, my 〉 − 〈R2, mx 〉)2. Note that‖skew((R1|R2)T ∇m)‖ = 0 does not imply that
R3 = Enm.

12 In the following, “intrinsic” refers to classical surface geometry, where intrinsic quantities are those which depend only
on the first fundamental formIm = ∇mT

∇m ∈ M2×2 of the surface. Then “intrinsic” in our terminology are terms which
reduce to such a dependence in the continuum limitR = polar(∇m|En). For example(R1|R2)T ∇m =

√

∇mT ∇m, in this
case.
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Whom
mp (∇m, R) := µ ‖sym((R1|R2)

T
∇m − 12)‖

2︸ ︷︷ ︸
“intrinsic” shear-stretch energy

+µc ‖skew((R1|R2)
T
∇m)‖2︸ ︷︷ ︸

“intrinsic” first order drill energy

+ 2µ
µc

µ + µc

(〈R3, mx〉
2
+ 〈R3, my〉

2)︸ ︷︷ ︸
homogenized transverse shear energy

+
µλ

2µ + λ
tr[sym((R1|R2)

T
∇m − 12)]

2︸ ︷︷ ︸
homogenized elongational stretch energy

.

The dimensionally homogenized curvature density is given by

Whom
curv(Ks) := inf

A∈so(3)
W ∗

curv(R
T ∂η1R, RT ∂η2R, A),

Ks = (RT(∇(R.e1)|0), RT(∇(R.e2)|0), RT(∇(R.e3)|0)) = RT (x, y)DxR(x, y),

Ks = (K1
s , K

2
s , K

3
s ) ∈ T(3), the reduced third ordercurvature tensor,

whereW ∗
curv is an equivalent representation of the bulk curvature energy in terms of skew-symmetric

arguments

Wcurv(K) = W ∗
curv(R

T ∂η1R, RT ∂η2R, RT ∂η3R),

W ∗
curv : so(3) × so(3) × so(3) → R+,

with RT ∂ηi
R ∈ so(3) since∂ηi

[RT R] = ∂ηi
1 = 0. We note thatW ∗

curv remains a convex function
in its argument as isWhom

curv(Ks). Moreover,Whom
curv(Ks) = Wcurv(Ks) for Wcurv(K) = Ŵ (‖K‖).

In (5.4),Π denotes a general external loading functional, continuous in the topology ofX (cf.
Remark 4.5). It is clear that the limit functionalI

]
0 is weakly lower semicontinuous in the topology

of X′
= H 1,2(Ω, R3)×W1,1+p+q(Ω, SO(3)) by simple convexity arguments. We note the twofold

appearance of theharmonic meanH,13

1

2
H

(
µ,

λ

2

)
=

µλ

2µ + λ
, H(µ, µc) = 2µ

µc

µ + µc

.

An advantage of this formulation is that the dimensionally homogenized formulation remainsframe-
indifferent. Note that the limit functionalI ]

0 is consistent with the followingplane stressrequirement
(cf. (6.2)):

∀η3 ∈ [−1/2, 1/2] : S1(η1, η2, η3).e3 = 0,

i.e. a vanishing normal stress over the entire thickness of the plate, while for any given thickness
h > 0 from 3D-equilibrium one can only inferzero normal stress at the upper and lower faces

〈RT (η1, η2, ±1/2)S1(η1, η2, ±1/2).e3, e3〉 = 0.

In this sense,the Cosserat “membrane”Γ -limit underestimates the real stresses, notably the
transverse shear stresses, as noted in [31, 9.3] with respect to the membrane scaling.

13 For a, b > 0 the harmonic, arithmetic and geometric means are defined asH(a, b) := 2/(1/a + 1/b), A(a, b) =

(a + b)/2,G(a, b) =
√

ab, respectively and one has the chain of inequalitiesH(a, b) 6 G(a, b) 6 A(a, b).
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5.3 The defective elastic crystal limit caseµc = 0

Since it is not possible to establish equi-coercivity for the defective crystal caseµc = 0, one cannot
infer a Γ -limit result for µc = 0 as a consequence of the result forµc > 0. However, since the
energy functionalI ]

hj
for µc > 0 is strictly bigger than the same functional forµc = 0, independent

of hj > 0, it is easy to see [18, Prop. 6.7] that onX we have the inequalities

Γ - lim inf I
]
hj |µc=0

6 Γ - lim supI
]
hj |µc=0

6 lim
µc→0

(Γ - lim I
]
hj |µc>0

) =: I
],0
0 , (5.5)

where

I
],0
0 (ϕ, R) =


∫

ω

[Whom,0
mp (∇Av.ϕ, R) + Whom

curv(Ks)] dω − Π(Av.ϕ, R3) if (ϕ, R) ∈ Amem
0 ,

+∞ else inX,

(5.6)
with Amem

0 defined as

Amem
0 := {(ϕ, R) ∈ X | sym(R1|R2)

T
∇(η1,η2)Av.ϕ ∈ L2(Ω1, M2×2), R ∈ W1,1+p+q(ω, SO(3)),

ϕ
]
|
Γ 1

0

(η) = g
]
d(η) = gd(η1, η2, 0)},

and the understanding of∇(η1,η2)Av.ϕ as distributional derivativefor ϕ ∈ Lr(Ω1, R3). The
corresponding local energy density in terms ofm = Av.ϕ is

Whom,0
mp (∇m, R) := µ ‖sym(R1|R2)

T
∇m − 12‖

2︸ ︷︷ ︸
“intrinsic” shear-stretch energy

+
µλ

2µ + λ
tr[sym((R1|R2)

T
∇m − 12)]

2︸ ︷︷ ︸
homogenized elongational stretch energy

. (5.7)

Observe that the upper boundI ],0
0 for the Γ - lim sup energy functional isnot coercivewith

respect toH 1,2(ω, R3) due to the now missing transverse shear contribution, while it retains lower
semicontinuity. This degeneration remains true for whatever form theΓ -limit for µc = 0 has,
should it exist. Our main result is

THEOREM 5.3 (Γ -limit for defective elastic crystalsµc = 0) TheΓ -limit of (3.2) for µc = 0 in
the setting of (5.2) exists and is given by (5.6). 2

The proof of this statement is deferred to Section 7.
The loss of coercivity forµc = 0 is primarily a loss of control for the “transverse” components

〈mx, R3〉, 〈my, R3〉, while with respect to the remaining “in-plane” components compactness for
minimizing sequences, whose midsurface deformations are supposed to be already bounded in
Lr(ω), can be established (by appropriate use of an extended Korn second inequality, cf. (7.5)).
That homogenization may lead to a loss of (strict) rank-one convexity has been observed in [33] for
nonlinearly elastic composites, whose constituents are strictly rank-one convex.

For linearization consistency, it is easy to show that the linearization forµc = 0 of the frame-
indifferent Γ -limit I

],0
0 with respect to small midsurface displacementv : ω ⊂ R2

→ R3 and
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small curvature decouples the fields of infinitesimal midsurface displacement and infinitesimal
microrotations: after de-scaling we are left with the classical infinitesimal “membrane” plate
problem forv : ω ⊂ R2

→ R3,∫
ω

h

(
µ‖sym∇(v1, v2)‖

2
+

µλ

2µ + λ
tr[sym∇(v1, v2)]

2
)

dω

− 〈f, 〈v, e1〉 · e1 + 〈v, e2〉 · e2〉 7→ min w.r.t.v,

〈v, ei〉|γ0
= 〈ud(x, y, 0), ei〉, i = 1, 2, simply supported (horizontal components only),

(5.8)

which leaves the vertical midsurface displacementv3 undetermined due to the nonresistance of a
linear “membrane” plate to vertical deflections. This problem coincides with a linearization14 of the
nonlinear membrane plate problem proposed in [25, par. 4.3], based on purely formal asymptotic
methods applied to the St. Venant–Kirchhoff energy. The variational problem (5.8) is as well theΓ -
limit of the classical linear elasticity bulk problem (if corresponding scaling assumptions are made,
cf. [4, Th. 4.2], [7] or [11, Th. 1.11.2]). The classical linear bulk model in turn can be obtained as
linearization forµc = 0 of the Cosserat bulk problem. Hence,only in the defective elastic crystal
caseµc = 0, do linearization and taking theΓ -limit commute with theΓ -limit of classical linear
elasticity.15

5.4 The formal limitµc = ∞

This case is interesting, because the formalΓ -limit for µc → ∞ exists and still gives rise to an
independent field of microrotationsR, while the Cosserat bulk problem forµc = ∞ degenerates
into a constraint theory (a so called indeterminate couple-stress model or second gradient model),
where the microrotationsR coincide necessarily with the continuum rotations polar(F ) from the
polar decomposition.

The formalΓ -limit problem is: find the deformation of the midsurfacem : ω ⊂ R2
→ R3 and

the microrotation of the plate (shell)R : ω ⊂ R2
→ SO(3) on ω such that forI ],∞

0 : X → R in
terms of the averaged deformationm = Av.ϕ,

I
],∞
0 (m, R) 7→ min w.r.t.(m, R), (5.9)

with

I
],∞
0 (m, R) =


∫

ω

[Whom,∞
mp (∇m, R) + Whom

curv(Ks)] dω − Π(m, R3) if (m, R) ∈ A′,∞
ω ,

+∞ else inX,

and the admissible set

A′,∞
ω := {(m, R) ∈ H 1,2(ω, R3) × W1,1+p+q(ω, SO(3)) | m|γ0

(η1, η2) = g
]
d(η1, η2, 0),

〈R1, my〉 = 〈R2, mx〉}.

14 Expansion of the first fundamental formIm of the midsurfacem with respect to planar initial configuration yields
Im − 12 = ∇mT

∇m − 12 ≈ sym∇(x,y)(v1, v2) + O(‖∇v‖
2). Hence control on vertical deflectionsv3 is lost during

linearization.
15 As is well known [13, p. 464] this is not the case with the membraneΓ -limit found in [38], based on the nonelliptic

St. Venant–Kirchhoff energy.
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The formal local energy density reads

Whom,∞
mp (∇m, R) := µ ‖(R1|R2)

T
∇m − 12‖

2︸ ︷︷ ︸
“intrinsic” shear-stretch energy

+ 2µ(〈R3, mx〉
2
+ 〈R3, my〉

2)︸ ︷︷ ︸
homogenized transverse shear energy

+
µλ

2µ + λ
tr[sym((R1|R2)

T
∇m − 12)]

2︸ ︷︷ ︸
homogenized elongational stretch energy

.

Note thatµc = ∞ rules out in-plane drill rotations[37, 26], the transverse shear energy is doubled,
but transverse shear is still possible sinceR3 need not coincide with the normal onm. In this sense,
the resulting homogenized transverse shear modulus excludes what could be called “transverse
shear locking” in accordance with the “Poisson thickness locking” which occurs if the correct
homogenized volumetric modulus is not taken.16 In a future contribution we will discuss whether
the formal limit (5.9) is the rigourousΓ -limit of the constraint Cosserat bulk problem. Note that in
[6] it has been shown that theΓ -limit of a second gradient bulk model gives rise to one independent
“Cosserat” director, which here would correspond toR3.

6. Proof for positive Cosserat couple modulusµc > 0

We continue by proving Theorem 5.2, i.e. the claim on the form of theΓ -limit for strictly positive
Cosserat couple modulusµc. The proof is split into several steps.

6.1 Equi-coercivity ofI ]
hj

, compactness and dimensional reduction

THEOREM 6.1 (Equi-coercivity ofI ]
hj

) For positive Cosserat couple modulusµc > 0 the

sequence of rescaled energy functionalsI
]
hj

defined in (3.2) is equi-coercive on the spaceX.

Proof. It is clear that for givenh > 0 the problem (3.2) admits a minimizing pair(ϕ
]
h, R

]
h) ∈

H 1,2(Ω1, R3) × W1,1+p+q(Ω1, SO(3)) by the obvious scaling transformation of the minimizing
solution of the bulk problem for values ofp > 1, q > 1 and for bothµc > 0 andµc = 0.17 This
is especially true for Neumann boundary conditions on the microrotations, since for exact rotations,
‖R‖ =

√
3. This leads to a control of microrotations inW1,1+p+q(Ω1, SO(3)) already without

specification of Dirichlet boundary data on the microrotations.
Consider now a sequencehj → 0 for j → ∞. By inspection of the existence proof for the

Cosserat bulk problem, it will become clear that for the corresponding sequences(ϕ
]
hj

, R
]
hj

) ∈

H 1,2(Ω1, R3)×W1,1+p+q(Ω1, SO(3)) = X′ with I
]
hj

(ϕ
]
hj

, R
]
hj

) < ∞ bounded independently ofhj

(not necessarily minimizers) we obtain a bound on the sequence(ϕ
]
hj

, R
]
hj

) in X′, independent ofhj .

To see this, note that forµc > 0, it is immediate that∇h
η ϕ]

= F
]
h is boundedin L2(Ω1, M3×3),

16 limλ→∞
1
2H(µ, λ/2) = µ < ∞ but limλ→∞

1
2A(µ, λ/2) = ∞.

17 In contrast toΓ -convergence arguments based on the finite-strain St. Venant–Kirchhoff energy [38], which might not
admit minimizers for any givenh > 0.
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independentlyof R
]
hj

on account of thelocal coercivitycondition

Wmp(R
],T
hj

F
]
hj

) > min(µc, µ)‖R
],T
hj

F
]
hj

− 1‖
2

= min(µc, µ)(‖F
]
hj

‖
2
− 2〈R

],T
hj

F
]
hj

,1〉 + 3)

> min(µc, µ)(‖F
]
hj

‖
2
− 2

√
3‖F

]
hj

‖ + 3),

and after integration

∞ > I
]
hj

(ϕ
]
hj

, R
]
hj

) >

∫
Ω1

[Wmp(U
]

hj
) + Wcurv(K

]
hj

)] dVη >
∫

Ω1

Wmp(U
]

hj
) dVη

>
∫

Ω1

min(µc, µ)(‖F
]
hj

‖
2
− 2

√
3‖F

]
hj

‖ + 3) dVη

> min(µc, µ)

∫
Ω1

([
‖∂η1ϕ

]
‖

2
+ ‖∂η2ϕ

]
‖

2
+

1

hj
2
‖∂η3ϕ

]
‖

2
]

− 2
√

3

[
‖∂η1ϕ

]
‖ + ‖∂η2ϕ

]
‖ +

1

hj

‖∂η3ϕ
]
‖

]
+ 3

)
dVη. (6.1)

This implies a bound, independent ofhj , for the gradient∇ϕ
]
hj

in L2(Ω1, R3). The Dirichlet

boundary conditions forϕ]
hj

together with Poincaré’s inequality yield the boundedness ofϕ
]
hj

in

H 1,2(Ω1, R3).18 With a similar argument, based on the local coercivity of curvature, the bound on
R

]
hj

can be obtained: we only need to observe that for a constantc+ > 0, depending on the positivity
of α4, α5, α6, α7, but independent ofhj ,

∞ > I
]
hj

(ϕ
]
hj

, R
]
hj

) >

∫
Ω1

[Wmp(U
]

hj
) + Wcurv(K

]
hj

)] dVη >
∫

Ω1

Wcurv(K
]
hj

) dVη

>
∫

Ω1

c+
‖K

]
hj

‖
1+p+q dVη = c+

∫
Ω1

‖R
],T
hj

D
hj
η R

]
hj

‖
1+p+q dVη = c+

∫
Ω1

‖D
hj
η R

]
hj

‖
1+p+q dVη,

which establishes a bound on the gradient of rotations∇
hj
η [R]

hj
(η).ei ], i = 1, 2, 3, independent

of hj . Moreover,‖R]
hj

‖ =
√

3, establishing theW1,1+p+q(Ω1, SO(3)) bound onR]
hj

. Thus we may
obtain a subsequence, not relabelled, such that

ϕ
]
hj

⇀ ϕ
]
0 in H 1,2(Ω1, R3), R

]
hj

⇀ R
]
0 in W1,1+p+q(Ω1, SO(3)).

Both weak limits(ϕ
]
0, R

]
0) must be independent of the transverse coordinateη3, otherwise the

energyI
]
hj

could not remain finite forhj → 0 (see (6.1) and compare with the definition of D
hj
η

in (3.1)). Hence the solution must be found in terms of functions defined on the two-dimensional
domainω. In this sense the domain of the limit problem is two-dimensional and the corresponding
space isXω. Since the embeddingX′

⊂ X is compact, it is shown that the sequence of energy
functionalsI ]

hj
is equi-coercive with respect toX. 2

18 This argument fails for the limit caseµc = 0 since local coercivity does not hold, which is realistic for defective elastic
crystals.
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6.2 Lower bound—the lim inf-condition

If I
]
0 is theΓ -limit of the sequence of energy functionalsI

]
hj

then we must have (lim inf-inequality)
that

I
]
0(ϕ0, R0) 6 lim inf

hj

I
]
hj

(ϕ
]
hj

, R
]
hj

)

whenever
ϕ

]
hj

→ ϕ
]
0 in Lr(Ω1, R3), R

]
hj

→ R
]
0 in L1+p+q(Ω1, SO(3)),

for arbitrary (ϕ
]
0, R

]
0) ∈ X. Observe that we can restrict attention to sequences(ϕ

]
hj

, R
]
hj

) ∈ X

such thatI ]
hj

(ϕ
]
hj

, R
]
hj

) < ∞ since otherwise the statement is true anyway. Sequences with

I
]
hj

(ϕ
]
hj

, R
]
hj

) < ∞ are uniformly bounded in the spaceX′, as seen previously. This implies weak

convergence of a subsequence inX′. But we already know that the original sequences converge
strongly in X to the limit (ϕ

]
0, R

]
0) ∈ X. Hence we must have as well weak convergence to

ϕ
]
0 ∈ H 1,2(ω, R3) andR

]
0 ∈ W1,1+p+q(ω, SO(3)), independent of the transverse variableη3.

In a first step we consider now thelocal energy contribution: along sequences(ϕ]
hj

, R
]
hj

) ∈ X

with finite energyI ]
hj

, the third column of the deformation gradient∇
hj
η ϕ

]
hj

remains bounded but
otherwise undetermined. Therefore, a trivial lower bound is obtained by minimizing the effect of
the derivative in this direction in the local energyWmp. To continue our development, we need some
calculations: For smoothm : ω ⊂ R2

→ R3, R : ω ⊂ R2
→ SO(3) define the “director” vector

b∗
∈ R3 formally through

Whom
mp (∇m, R) = Wmp(R

T (∇m|b∗)) := inf
b∈R3

Wmp(R
T (∇m|b)).

The vectorb∗, which realizes this infimum, can be explicitly determined. SetF̃ := (∇m|b∗). The
corresponding local optimality condition reads

∀δb∗
∈ R3 : 〈DWmp(R

T (∇m|b∗)), RT (0|0|δb∗)〉 = 0 ⇒

〈RDWmp(R
T (∇m|b∗)), (0|0|δb∗)〉 = 0 ⇒

RDWmp(R
T (∇m|b∗)).e3 = 0 ⇒ D

F̃
Wmp(R

T (∇m|b∗)).e3 = 0 ⇒

S1((∇m|b∗), R).e3 = 0. (6.2)

Since

S1(F, R) = R(µ(F T R + RT F − 21) + 2µc skew(RT F) + λ tr[RT F − 1]1)

and

RT F̃ =

〈R1, mx〉 〈R1, my〉 〈R1, b
∗
〉

〈R2, mx〉 〈R2, my〉 〈R2, b
∗
〉

〈R3, mx〉 〈R3, my〉 〈R3, b
∗
〉

 ,

F̃ T R + RT F̃ − 21 =

 2[〈R1, mx〉 − 1] 〈R1, my〉 + 〈R2, mx〉 〈R1, b
∗
〉 + 〈R3, mx〉

〈R2, mx〉 + 〈R1, my〉 2[〈R2, my〉 − 1] 〈R2, b
∗
〉 + 〈R3, my〉

〈R3, mx〉 + 〈R1, b
∗
〉 〈R3, my〉 + 〈R2, b

∗
〉 2[〈R3, b

∗
〉 − 1]

 ,
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skew(RT F̃ ) =

0 1
2(〈R1, my〉 − 〈R2, mx〉)

1
2(〈R1, b

∗
〉 − 〈R3, mx〉)

∗ 0 1
2(〈R2, b

∗
〉 − 〈R3, my〉)

∗ ∗ 0

 ,

the (plane-stress) requirementS1.e3 = 0 (6.2) implies

µ

〈R1, b
∗
〉 + 〈R3, mx〉

〈R2, b
∗
〉 + 〈R3, my〉

2[〈R3, b
∗
〉 − 1]

 + µc

〈R1, b
∗
〉 − 〈R3, mx〉

〈R2, b
∗
〉 − 〈R3, my〉

0


+ λ(〈R1, mx〉 + 〈R2, my〉 + 〈R3, b

∗
〉 − 3)

0
0
1

 =

0
0
0

 .

The solution of the last system can conveniently be expressed in the orthonormal triad(R1, R2, R3)

as

b∗
=

µc − µ

µ + µc

〈R3, mx〉R1 +
µc − µ

µ + µc

〈R3, my〉R2 + %∗
mR3,

%∗
m = 1 −

λ

2µ + λ
[〈(∇m|0), R〉 − 2].

Note that forR ∈ SO(3) and∇m ∈ L2(Ω1, R3) it follows thatb∗
∈ L2(Ω1, R3). Reinserting the

solutionb∗ we have

RT F̃ =


〈R1, mx〉 〈R1, my〉

µc−µ
µ+µc

〈R3, mx〉

〈R2, mx〉 〈R2, my〉
µc−µ
µ+µc

〈R3, my〉

〈R3, mx〉 〈R3, my〉 %∗
m

 ,

F̃ T R + RT F̃ − 21 =


2[〈R1, mx〉 − 1] 〈R1, my〉 + 〈R2, mx〉

(
1 +

µc−µ
µ+µc

)
〈R3, mx〉

〈R2, mx〉 + 〈R1, my〉 2[〈R2, my〉 − 1]
(
1 +

µc−µ
µ+µc

)
〈R3, my〉(

1 +
µc−µ
µ+µc

)
〈R3, mx〉

(
1 +

µc−µ
µ+µc

)
〈R3, my〉 2[%∗

m − 1]

 ,

skew(RT F̃ ) =

0 1
2(〈R1, my〉 − 〈R2, mx〉)

1
2

((
µc−µ
µ+µc

− 1
)
〈R3, mx〉

)
∗ 0 1

2

((
µc−µ
µ+µc

− 1
)
〈R3, my〉

)
∗ ∗ 0

 ,

1 +
µc − µ

µ + µc

=
2µc

µ + µc

,
µc − µ

µ + µc

− 1 =
−2µ

µ + µc

.

Finally for Whom
mp (∇m, R) := Wmp(R

T (∇m|b∗)) with ˜U = RT (∇m|b∗) = RT F̃ , after a lengthy
but otherwise straightforward computation we obtain

Whom
mp (∇m, R) := Wmp(

˜U) = µ‖sym( ˜U − 1)‖2
+ µc‖skew( ˜U)‖2

+
λ

2
tr[sym( ˜U − 1)]2

= µ‖sym((R1|R2)
T
∇m − 12)‖

2
+ µc‖skew((R1|R2)

T
∇m)‖2
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+ 2µ
µc

µ + µc

(〈R3, mx〉
2
+ 〈R3, my〉

2)

+
µλ

2µ + λ
tr[sym((R1|R2)

T
∇m − 12)]

2.

Along the sequence(ϕ]
hj

, R
]
hj

) we have, by construction,

Wmp(R
],T
hj

∇
hj
η ϕ

]
hj

) = Wmp

(
R

],T
hj

(
∇(η1,η2)ϕ

]
hj

∣∣∣∣ 1

hj

∂η3ϕ
]
hj

))
> Whom

mp (∇(η1,η2)ϕ
]
hj

, R
]
hj

).

Hence, integrating and taking the lim inf we also have

lim inf
hj

∫
Ω1

Wmp(R
],T
hj

∇
hj
η ϕ

]
hj

) dVη > lim inf
hj

∫
Ω1

Whom
mp (∇(η1,η2)ϕ

]
hj

, R
]
hj

) dVη. (6.3)

Now we use weak convergence ofϕ
]
hj

and strong convergence ofR
]
hj

, together with the convexity

with respect to∇m and continuity with respect toR of
∫
Ω1

Whom
mp (∇m, R) dVη to get lower

semicontinuity of the right hand side in (6.3) and to obtain altogether

lim inf
hj

∫
Ω1

Wmp(R
],T
hj

∇
hj
η ϕ

]
hj

) dVη >
∫

Ω1

Whom
mp (∇(η1,η2)ϕ

]
0, R

]
0) dVη. (6.4)

Next we are concerned with thecurvature contribution: it is always possible to uniquely rewrite the
curvature energy expression in terms of skew-symmetric quantities

W ∗
curv : so(3) × so(3) × so(3) → R+, W ∗

curv(R
T ∂η1R, RT ∂η2R, RT ∂η3R) := Wcurv(K),

whereRT ∂ηi
R ∈ so(3) since∂ηi

[RT R] = 0. We note thatW ∗
curv remains a convex function in its

argument sinceK ∈ T(3) can be obtained by a linear mapping from(RT ∂η1R, RT ∂η2R, RT ∂η3R) ∈

so(3) × so(3) × so(3). We define the “homogenized” (relaxed) curvature energy through

W ∗,hom
curv (RT ∂η1R, RT ∂η2R) := W ∗

curv(R
T ∂η1R, RT ∂η2R, A∗)

= inf
A∈so(3)

W ∗
curv(R

T ∂η1R, RT ∂η2R, A), (6.5)

and set accordingly

Whom
curv(Ks) := W ∗,hom

curv (RT ∂η1R, RT ∂η2R),

Ks = (RT(∇(R.e1)|0), RT(∇(R.e2)|0), RT(∇(R.e3)|0)),

in terms of the reduced curvature tensorKs ∈ T(3).
Similarly to (6.2) the infinitesimal rotationA∗

∈ so(3), which realizes the infimum in (6.5), can
be explicitly determined. We refrain from giving the explicit result. Suffice it to note thatWhom

curv is
uniquely defined, remains convex in its argument and has the same growth asWcurv. Then

Wcurv(R
],T
hj

D
hj
η R

]
hj

) = W ∗
curv

(
R

],T
hj

∂η1R
]
hj

, R
],T
hj

∂η2R
]
hj

,
1

hj

R
],T
hj

∂η3R
]
hj

)
> W ∗,hom

curv (R
],T
hj

∂η1R
]
hj

, R
],T
hj

∂η2R
]
hj

).
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Integrating the last inequality, taking the lim inf on both sides and using fact thatW
∗,hom
curv is convex

in its argument, together with weak convergence of the two in-plane components of the curvature
tensor, i.e.

(R
],T
hj

∂η1R
]
hj

, R
],T
hj

∂η2R
]
hj

, 0) ⇀ (R
],T
0 ∂η1R

]
0, R

],T
0 ∂η2R

]
0, 0) in L1+p+q(Ω1, T(3)),

we obtain

lim inf
hj

∫
Ω1

Wcurv(R
],T
hj

D
hj
η R

]
hj

) dVη >
∫

Ω1

W ∗,hom
curv (R

],T
hj

∂η1R
]
hj

, R
],T
hj

∂η2R
]
hj

) dVη

=

∫
Ω1

Whom
curv(R

],T
0 DR

]
0) dVη. (6.6)

Then, becauseWcurv, Wmp > 0,

lim inf
hj

∫
Ω1

[Wmp(R
],T
hj

∇
hj
η ϕ

]
hj

) + Wcurv(R
],T
hj

D
hj
η R

]
hj

)] dVη

> lim inf
hj

∫
Ω1

Wmp(R
],T
hj

∇
hj
η ϕ

]
hj

) dVη + lim inf
hj

∫
Ω1

Wcurv(R
],T
hj

D
hj
η R

]
hj

) dVη

>
∫

Ω1

[Whom
mp (∇(η1,η2)ϕ

]
0, R

]
0) + Whom

curv(R
],T
0 DR

]
0)] dVη,

where we have used (6.4) and (6.6). Now we use the fact thatϕ
]
0 is independent of the transverse

variableη3, which allows us to insert the averaging operator without any change to see that∫
Ω1

Whom
mp (∇(η1,η2)ϕ

]
0, R

]
0) =

∫
Ω1

Whom
mp (∇(η1,η2)Av.ϕ

]
0, R

]
0) dVη =

∫
ω

Whom
mp (∇(η1,η2)Av.ϕ

]
0, R

]
0) dω,

sinceR
]
0 is also independent of the transverse variable. Hence we obtain altogether the desired

lim inf-inequality
I

]
0(ϕ

]
0, R

]
0) 6 lim inf

hj

I
]
hj

(ϕ
]
hj

, R
]
hj

)

for

I
]
0(ϕ0, R0) :=

∫
Ω1

[Whom
mp (∇(η1,η2)Av.ϕ0, R0) + Whom

curv(RT
0 DR0)] dVη

=

∫
ω

[Whom
mp (∇(η1,η2)Av.ϕ0, R0) + Whom

curv(RT
0 DR0)] dω. 2

6.3 Upper bound—the recovery sequence

Now we show that the lower bound will actually be reached. A sufficient requirement for the
recovery sequence is that

∀(ϕ0, R0) ∈ X = Lr(Ω1, R3) × L1+p+q(Ω1, SO(3))

∃ϕ
]
hj

→ ϕ0 in Lr(Ω1, R3), R
]
hj

→ R0 in L1+p+q(Ω1, SO(3)) :

lim supI
]
hj

(ϕ
]
hj

, R
]
hj

) 6 I
]
0(ϕ0, R0).
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Observe that this is now only a condition ifI ]
0(ϕ0, R0) < ∞. In this case the uniform

coercivity ofI ]
hj

(ϕ
]
hj

, R
]
hj

) overX′
= H 1,2(Ω1, R3) × W1,1+p+q(Ω1, SO(3)) implies that we can

restrict attention to sequences(ϕ
]
hj

, R
]
hj

) converging weakly to some(ϕ0, R0) ∈ H 1,2(ω, R3) ×

W1,1+p+q(ω, SO(3)) = X′
ω, defined over the two-dimensional domainω only. Note, however, that

finally it is strong convergence inX that matters.
The natural candidate for the recovery sequence for the bulk deformation is given by the

“reconstruction”

ϕ
]
hj

(η1, η2, η3) := m(η1, η2) + hjη3b
∗(η1, η2) = ϕ0(η1, η2) + hjη3b

∗(η1, η2),

where, with the abbreviationm = ϕ0 = Av.ϕ0 at places,

b∗(η1, η2) :=
µc − µ

µ + µc

〈R0,3, mx〉R0,1 +
µc − µ

µ + µc

〈R0,3, my〉R0,2 + %∗
mR0,3,

%∗
m = 1 −

λ

2µ + λ
[〈(∇m|0), R0〉 − 2].

Observe thatb∗
∈ L2(ω, R3). Convergence ofϕ]

hj
in Lr(Ω1, R3) to the limit ϕ0 ashj → 0 is

obvious.
The reconstruction for the rotationR0 is, however, not obvious since on the one hand we have

to maintain the rotation constraint along the sequence and on the other hand we must approach the
lower bound, which excludes the simple reconstructionR

]
hj

(η1, η2, η3) = R0(η1, η2). In order to
meet both requirements we consider therefore

R
]
hj

(η1, η2, η3) := R0(η1, η2) · exp(hjη3A
∗(η1, η2)),

whereA∗
∈ so(3) is the term obtained in (6.5), depending on the givenR0, and we note that

A∗
∈ L1+p+q(ω, so(3)) by the coercivity ofW ∗

curv. It is clear thatR]
hj

∈ SO(3), since exp :

so(3) → SO(3) and we have the convergenceR
]
hj

→ R0 in L1+p+q(Ω1, SO(3)) for hj → 0.
Since neitherb∗ nor A∗ need be differentiable, we have to consider slightly modified recovery

sequences, however. With fixedε > 0 choosebε ∈ W1,2(ω, R3) such that

‖bε − b∗
‖L2(ω,R3) < ε

and similarly forA∗ chooseAε ∈ W1,1+p+q(ω, so(3)) such that

‖Aε − A∗
‖L1+p+q (ω,so(3)) < ε.

This allows us to present finally ourrecovery sequence

ϕ
]
hj ,ε(η1, η2, η3) := ϕ0(η1, η2) + hjη3bε(η1, η2),

R
]
hj ,ε(η1, η2, η3) := R0(η1, η2) · exp(hjη3Aε(η1, η2)).



COSSERAT SHELL MODEL 479

This definition implies

∇ϕ
]
hj ,ε(η1, η2, η3) = (∇ϕ0(η1, η2)|hjbε(η1, η2)) + hjη3(∇bε(η1, η2)|0),

R
],T
hj ,ε∂η1R

]
hj ,ε = exp(hjη3Aε)

T RT
0 [∂η1R0 exp(hjη3Aε)

+ R0D exp(hjη3Aε).[hjη3∂η1Aε]] ,

R
],T
hj ,ε∂η2R

]
hj ,ε = exp(hjη3Aε)

T RT
0 [∂η2R0 exp(hjη3Aε)

+ R0D exp(hjη3Aε).[hjη3∂η2Aε]] ,

R
],T
hj ,ε∂η3R

]
hj ,ε = exp(hjη3Aε)

T RT
0 [∂η3R0 exp(hjη3Aε)

+ R0D exp(hjη3Aε).[hjAε]]

= hj exp(hjη3Aε)
T D exp(hjη3Aε).[Aε],

(6.7)

with ∂ηi
Aε ∈ so(3). In view of the prominent appearance of the exponential in these expressions it

is useful to briefly recapitulate the basic features of the matrix exponential exp acting onso(3). We
note

exp :so(3) → SO(3) is infinitely differentiable,

∀A ∈ so(3) : ‖exp(A)‖ =
√

3, hence

exp :L1+p+q(Ω1, so(3)) → L1+p+q(Ω1, SO(3)) is continuous,

D exp :so(3) → Lin(so(3), M3×3) is locally continuous,

∀H ∈ so(3) : D exp(0).H = H,

∀A, H ∈ so(3) : exp(A)T · D exp(A).H ∈ so(3).

(6.8)

Note that by appropriately choosinghj , ε > 0 we can arrange that strong convergence of all terms
in (6.7) to the correct limit still obtains by using(6.8)3. Now abbreviate

˜U := RT
0 (∇ϕ0(η1, η2)|b

∗) ∈ M3×3,

˜V ε
hj

:= R
],T
hj ,ε[(∇ϕ0(η1, η2)|bε(η1, η2)) + hjη3(∇bε(η1, η2)|0)] ∈ M3×3,

˜V ε
0 := RT

0 (∇ϕ0(η1, η2)|bε(η1, η2)) ∈ M3×3,

k
],i
hj ,ε := R

],T
hj ,ε∂ηi

R
]
hj ,ε ∈ so(3), i = 1, 2, 3,

ki0 := RT
0 ∂ηi

R0 ∈ so(3), i = 1, 2,

Ãhj ,ε := exp(hjη3Aε(η1, η2))
T D exp(hjη3Aε(η1, η2)).[Aε] ∈ so(3),

K
]
hj ,ε := R

],T
hj ,εD

hj
η R

]
hj ,ε(η1, η2, η3) ∈ T(3),

K0(η1, η2) = RT
0 DR0(η1, η2) ∈ T(3).

(6.9)



480 P. NEFF AND K. CHEŁMIŃSKI

We note that by the smoothness ofAε ∈ W1,1+p+q(ω1, so(3)),

‖Ãhj ,ε − Aε‖L1+p+q (Ω1,so(3)) → 0 ashj → 0,

‖k
],i
hj ,ε − ki0‖L1+p+q (Ω1,so(3)) → 0 ashj → 0,

‖
˜V ε

hj
−

˜V ε
0‖L2(Ω1,M3×3) → 0 ashj → 0,

‖
˜V ε

hj
−

˜U‖L2(Ω1,M3×3) → 0 ashj , ε → 0.

(6.10)

The abbreviations in (6.9) imply

I
]
hj

(ϕ
]
hj ,ε, R

]
hj ,ε) =

∫
Ω1

(
Wmp(

˜V ε
hj

) + W ∗
curv

(
k
],1
hj ,ε, k

],2
hj ,ε,

1

hj

R
],T
hj ,ε∂η3R

]
hj ,ε

))
dVη

=

∫
Ω1

[Wmp(
˜V ε

hj
) + W ∗

curv(k
],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε)] dVη,

where we have used the fact thathj · bε in the definition of the recovery deformation gradient (6.7)1

is cancelled by the factor 1/hj in the definition ofI ]
hj

. Hence, adding and subtractingWmp(
˜U),

I
]
hj

(ϕ
]
hj ,ε, R

]
hj ,ε) =

∫
Ω1

[Wmp(
˜U) + Wmp(

˜V ε
hj

) − Wmp(
˜U) + W ∗

curv(k
],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε)] dVη

=

∫
Ω1

[Wmp(
˜U) + Wmp(

˜U +
˜V ε

hj
−

˜U) − Wmp(
˜U) + Wcurv(Khj

)] dVη

sinceWmp andWcurv are both positive, we get from the triangle inequality

6
∫

Ω1

[Wmp(
˜U) + |Wmp(

˜U +
˜V ε

hj
−

˜U) − Wmp(
˜U)| + W ∗

curv(k
],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε)] dVη

expanding the quadratic energyWmp we obtain

=

∫
Ω1

[Wmp(
˜U) + |Wmp(

˜U) + 〈DWmp(
˜U), ˜V ε

hj
−

˜U〉

+ D2Wmp(
˜U).( ˜V ε

hj
−

˜U, ˜V ε
hj

−
˜U)| + W ∗

curv(k
],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε)] dVη

6
∫

Ω1

[Wmp(
˜U) + ‖DWmp(

˜U)‖‖ ˜V ε
hj

−
˜U‖ + C‖

˜V ε
hj

−
˜U‖

2
+ W ∗

curv(k
],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε)] dVη

for ‖
˜V ε

hj
−

˜U‖ 6 1 we have

6
∫

Ω1

[Wmp(
˜U) + (C + ‖DWmp(

˜U)‖)‖ ˜V ε
hj

−
˜U‖ + W ∗

curv(k
],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε)] dVη

since‖DWmp(
˜U)‖ 6 C2‖

˜U‖ we obtain

6
∫

Ω1

[Wmp(
˜U) + (C + ‖

˜U‖)‖ ˜V ε
hj

−
˜U‖ + W ∗

curv(k
],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε)] dVη

and by Ḧolder’s inequality we get

6
∫

Ω1

[Wmp(
˜U) + W ∗

curv(k
],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε)] dVη + (C + ‖

˜U‖L2(Ω1)
)‖ ˜V ε

hj
−

˜U‖L2(Ω1)
.
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Continuing the estimate with regard toW ∗
curv(k

],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε) and adding and subtracting˜V ε

0 we
obtain

I
]
hj

(ϕ
]
hj ,ε, R

]
hj ,ε) 6

∫
Ω1

[Wmp(
˜U) + W ∗

curv(k
1
0, k

2
0, A

∗) + W ∗
curv(k

],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε)

− W ∗
curv(k

1
0, k

2
0, A

∗)] dVη

+ (C + ‖
˜U‖L2(Ω1)

)‖ ˜V ε
hj

−
˜V ε

0 +
˜V ε

0 −
˜U‖L2(Ω1)

6
∫

Ω1

[Wmp(
˜U) + W ∗

curv(k
1
0, k

2
0, A

∗)] dVη

+ ‖W ∗
curv(k

],1
hj ,ε, k

],2
hj ,ε, Ãhj ,ε) − W ∗

curv(k
1
0, k

2
0, Aε)‖L1(Ω1)

+ ‖W ∗
curv(k

1
0, k

2
0, Aε) − W ∗

curv(k
1
0, k

2
0, A

∗)‖L1(Ω1)

+ (C + ‖
˜U‖L2(Ω1)

)(‖ ˜V ε
hj

−
˜V ε

0‖L2(Ω1)
+ ‖

˜V ε
0 −

˜U‖L2(Ω1)
).

Now takehj → 0 to obtain, by the continuity ofW ∗
curv in its first two arguments and (6.10)3,

lim sup
hj →0

I
]
hj

(ϕ
]
hj ,ε, R

]
hj ,ε) 6

∫
Ω1

[Wmp(
˜U) + W ∗

curv(k
1
0, k

2
0, A

∗)] dVη

+ ‖W ∗
curv(k

1
0, k

2
0, Aε) − W ∗

curv(k
1
0, k

2
0, A

∗)‖L1(Ω1)

+ (C + ‖
˜U‖L2(Ω1)

)‖ ˜V ε
0 −

˜U‖L2(Ω1)
.

Since

‖
˜V ε

0 −
˜U‖

2
= ‖RT

0 (∇ϕ0(η1, η2)|bε) − RT
0 (∇ϕ0(η1, η2)|b

∗)‖2

= ‖RT
0 ((∇ϕ0(η1, η2)|bε) − (∇ϕ0(η1, η2)|b

∗))‖2

= ‖(∇ϕ0(η1, η2)|bε) − (∇ϕ0(η1, η2)|b
∗)‖2

= ‖bε − b∗
‖

2,

we get, by lettingε → 0 and using now the continuity ofW ∗
curv in its last argument together with

‖Aε − A∗
‖L1+p+q (ω,so(3)) < ε, the bound

lim sup
hj →0

I
]
hj

(ϕ
]
hj ,ε, R

]
hj ,ε) 6

∫
Ω1

[Wmp(
˜U) + W ∗

curv(k
1
0, k

2
0, A

∗)] dVη

=

∫
Ω1

[Wmp(
˜U) + W ∗,hom

curv (k1
0, k

2
0)] dVη

=

∫
Ω1

[Whom
mp (∇ϕ0, R0) + Whom

curv(K0)] dVη.

Sinceϕ0, R0 are two-dimensional (independent of the transverse variable), we may write as well

lim sup
hj →0

I
]
hj

(ϕ
]
hj ,ε, R

]
hj ,ε) 6

∫
Ω1

[Whom
mp (∇(η1,η2)Av.ϕ0, R0) + Whom

curv(K0)] dVη

=

∫
ω

[Whom
mp (∇(η1,η2)Av.ϕ0, R0) + Whom

curv(K0)] dω = I
]
0(ϕ0, R0),
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which shows the desired upper bound. Note that the appearance of the averaging operator Av is
not strictly necessary since the limit problem forµc > 0 is independent of the transverse variable
anyhow. This finishes the proof of Theorem 5.2. 2

7. Proof for zero Cosserat couple modulusµc = 0

Now we supply the proof for Theorem 5.3, i.e. we show that the formal limit asµc → 0 of the
Γ -limit for µc > 0 is in fact theΓ -limit for µc = 0. This result cannot be inferred from the case
with µc > 0 since equi-coercivity is lost.

REMARK 7.1 (Loss of equi-coercivity) If we considerΓ -convergence in the weak topology of
W1,2(Ω, R3) for the deformationsϕ instead of working with the strong topology ofLr(Ω, R3),
i.e. assuming for minimizing sequences a priori that‖∇ϕhj

‖L2(Ω) is bounded, then the problem
related to a loss of equi-coercivity does not appear and theΓ -limit result for µc = 0 is an easy
consequence of the case forµc > 0.

Forµc > 0 equi-coercivity is enough to provide the uniform bound on the deformation gradients
in the minimization process. The crucial question is whether we obtain a uniform bound on the
deformation gradients in the minimization process also forµc = 0. For thicknessh → 0 the
deformations of the thin structure might develop high oscillations (wrinkles) which exclude such a
bound on the gradients but the sequence of deformations could still converge strongly inLr(Ω, R3).
Therefore, the strong topology ofLr(Ω, R3) is the convenient framework forΓ -convergence
results.

In order to circumvent the loss of equi-coercivity we investigate first a lower bound of the
rescaled three-dimensional formulation for the limit caseµc = 0.

7.1 The “membrane” lower bound forµc = 0

We introduce a new family of functionalsI ],mem
h : X′

→ R, where all transverse shear terms have
been omitted, more precisely

I
],mem
h (ϕ], ∇h

η ϕ], R], Dh
ηR

]) =

∫
η∈Ω1

[Wmp(U
],mem
h ) + Wcurv(K

]
h)] dVη 7→ min w.r.t.(ϕ], R]),

U
]

h = R],T F
]
h , ϕ

]
|
Γ 1

0

(η) = g
]
d(η) = gd(ζ(η)) = gd(η1, η2, h · η3) = gd(η1, η2, 0),

U
],mem
h =


U

]

h,11 U
]

h,12 0

U
]

h,21 U
]

h,22 0

0 0 U
]

h,33



=


〈R

3d,]
1 , ∂η1ϕ

]
〉 〈R

3d,]
1 , ∂η2ϕ

]
〉 0

〈R
3d,]
2 , ∂η1ϕ

]
〉 〈R

3d,]
2 , ∂η2ϕ

]
〉 0

0 0 1
h
〈R

3d,]
3 , ∂η3ϕ

]
〉

 ,

Γ 1
0 = γ0 × [−1/2, 1/2], γ0 ⊂ ∂ω,

R] : free onΓ 1
0 , Neumann-type boundary condition,
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Wmp(U
],mem
h ) = µ‖sym(U

],mem
h − 1)‖2

+
λ

2
tr[sym(U

],mem
h − 1)]2 =: Wmem

mp (∇ϕ
]
h, R

]),

Wcurv(K
]
h) = µ

L̂
1+p
c

12
(1 + α4L̂

q
c‖K

]
h‖

q)(α5‖symK
]
h‖

2
+ α6‖skewK

]
h‖

2
+ α7 tr[K]

h]2)(1+p)/2,

K
]
h = R],T Dh

ηR
](η).

Note that for (ϕ], R]) ∈ X the productU
]

h does not have a classical meaning if∇ϕ]
6∈

L2(Ω1, M3×3). However, the productU
]

h does already have a distributional meaning because
R]

∈ W1,1+p+q(Ω1, SO(3)) and∇ϕ]
∈ W−1,r(Ω1, M3×3). Accordingly, we define the admissible

set

Amem
h := {(ϕ, R) ∈ X | symU

],mem
h ∈ L2(Ω1, M3×3), R ∈ W1,1+p+q(Ω1, SO(3)),

ϕ|
Γ 1

0
(η) = g

]
d(η) = gd(η1, η2, 0)},

where the distributionU
],mem
h is regular and belongs toL2(Ω1, M3×3). As in (5.2) we extend the

rescaled energies to the larger spaceX through redefining

I
],mem
h (ϕ], ∇h

η ϕ], R], Dh
ηR

]) =

{
I

],mem
h (ϕ], ∇h

η ϕ], R], Dh
ηR

]) if (ϕ], R]) ∈ Amem
h ,

+∞ else inX.

Observe that

∀h > 0 : I
]
h |µc=0

(ϕ], ∇h
η ϕ], R], Dh

ηR
]) > I

],mem
h (ϕ], ∇h

η ϕ], R], Dh
ηR

]),

which implies [18, Prop. 6.7] that

Γ - lim inf
h

I
]
h |µc=0

> Γ - lim inf
h

I
],mem
h . (7.1)

HenceΓ - lim inf I
],mem
h provides a lower bound forΓ - lim inf I

]
h |µc=0

. Putting inequalities (5.5) and

(7.1) together, we obtain the natural chain of inequalities onX,

Γ - lim inf I
],mem
h 6 Γ - lim inf I

]
h |µc=0

6 Γ - lim supI
]
h |µc=0

6 lim
µc→0

(Γ - lim I
]
h |µc>0

) =: I
],0
0 . (7.2)

7.2 A lower bound for the “membrane” lower bound

Let us consider the following energy functionalI
],mem
0 : X → R:

I
],mem
0 (ϕ, R) :=


∫

ω

[Whom,0
mp (∇(η1,η2)Av.ϕ(η1, η2, η3), R) + Whom

curv(Ks)] dω if (ϕ, R) ∈ Amem
0 ,

+∞ else inX,

whereW
hom,0
mp is defined in (5.7) and the admissible set is now
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Amem
0 := {(ϕ, R) ∈ X | sym(R1|R2)

T
∇(η1,η2)Av.ϕ ∈ L2(Ω1, M2×2),

R ∈ W1,1+p+q(ω, SO(3)), ϕ
]
|
Γ 1

0

(η) = g
]
d(η) = gd(η1, η2, 0)},

with a distributional meaning for(R1|R2)
T
∇(η1,η2)Av.ϕ. Note thatI ],mem

0 = I
],0
0 . We next show

LEMMA 7.2 (Membrane lower bound) For arbitrary(ϕ
]
0, R

]
0) ∈ X,

I
],mem
0 (ϕ0, R0) 6 lim inf

hj

I
],mem
hj

(ϕ
]
hj

, R
]
hj

)

whenever
ϕ

]
hj

→ ϕ
]
0 in Lr(Ω1, R3), R

]
hj

→ R
]
0 in L1+p+q(Ω1, SO(3)).

Proof. Observe that we can restrict attention to sequences(ϕ
]
hj

, R
]
hj

) ∈ X such that

I
],mem
hj

(ϕ
]
hj

, R
]
hj

) < ∞ since otherwise the statement is true anyway. IfI
],mem
hj

(ϕ
]
hj

, R
]
hj

) < ∞,
then equi-coercivity with respect to rotations remains untouched by a change fromWmp to Wmem

mp

in the local energy. Hence, as usual by now, we can restrict attention to sequences of rotationsR
]
hj

converging weakly to someR0 ∈ W1,1+p+q(ω, SO(3)), defined over the two-dimensional domain
ω only. However, we cannot conclude thatϕ0 is independent of the transverse variable, in contrast
to the case withµc > 0.

Along sequences(ϕ]
hj

, R
]
hj

) ∈ X with finite energy the product(1/hj )〈Rhj ,3, ∂η3ϕ
]
hj

〉 remains
bounded but otherwise indeterminate. Therefore, a trivial lower bound is obtained by minimizing
the effect in the 33-component in the local energyWmem

mp . To do this, we need some calculations: for

smoothϕ : Ω1 → R3, R : ω ⊂ R2
→ SO(3) define the “director” vectorb∗

= (0, 0, %∗)T ∈ R3

with b(%) = (0, 0, %)T ∈ R3 formally through

Whom,0
mp (∇(η1,η2)ϕ, R) = Wmem

mp (RT (∇(η1,η2)ϕ|b∗)) := inf
%∈R

Wmem
mp (RT (∇(η1,η2)ϕ|b(%))).

The real number%∗ which realizes this infimum can be explicitly determined. Without giving the
calculation, which follows as in (6.2), we obtain

%∗
= 1 −

λ

2µ + λ
[〈(∇(η1,η2)ϕ|0), R〉 − 2] = 1 −

λ

2µ + λ
tr[sym((R1|R2)

T
∇(η1,η2)ϕ − 12)].

Note that ifR ∈ SO(3) and sym((R1|R2)
T
∇(η1,η2)ϕ−12) ∈ L2(Ω1, R3) one has%∗

∈ L2(Ω1, R3).

For W
hom,0
mp (∇(η1,η2)ϕ, R) := Wmp(R

T (∇(η1,η2)ϕ|b∗)) after a lengthy but straightforward
computation we obtain

Whom,0
mp (∇(η1,η2)ϕ, R) := µ‖sym((R1|R2)

T
∇(η1,η2)ϕ − 12)‖

2

+
µλ

2µ + λ
tr[sym((R1|R2)

T
∇(η1,η2)ϕ − 12)]

2.

Along the sequence(ϕ]
hj

, R
]
hj

) we have therefore, by construction,

Wmem
mp (R

],T
hj

∇
hj
η ϕ

]
hj

) = Wmem
mp

(
R

],T
hj

(
∇(η1,η2)ϕ

]
hj

∣∣∣∣ 1

hj

∂η3ϕ
]
hj

))
> Whom,0

mp (∇(η1,η2)ϕ
]
hj

, R
]
hj

).
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Hence, integrating and taking the lim inf we also have

lim inf
hj

∫
Ω1

Wmp(R
],T
hj

∇
hj
η ϕ

]
hj

) dVη > lim inf
hj

∫
Ω1

Whom,0
mp (∇(η1,η2)ϕ

]
hj

, R
]
hj

) dVη. (7.3)

As in (6.4) (and subsequently) the proof of statement 7.2 would be finished if we could show
weak convergence of∇(η1,η2)ϕ

]
hj

in L2(Ω1, M3×3) wheneverϕ]
hj

→ ϕ
]
0 strongly inLr(Ω1, R3)

and I
],mem
hj

(ϕ
]
hj

, R
]
hj

) < ∞. Boundedness and weak convergence of the sequence∇(η1,η2)ϕ
]
hj

in

L2(Ω1, M3×3) is, however, not clear at all, since we now basically control only the “symmetric
intrinsic” term‖sym((R1|R2)

T
∇(η1,η2)ϕ − 12)‖

2 in the integrand. Instead, we will prove a weaker
statement, namely that

(R
]
1,hj

|R
]
2,hj

)T ∇(η1,η2)ϕ
]
hj

⇀ (R
]
1,0|R

]
2,0)

T
∇(η1,η2)ϕ

]
0 ∈ L2(Ω1, M2×2), (7.4)

after showing that the above expressions have a well-defined distributional meaning along the
sequence, since∇(η1,η2)ϕ

]
hj

has no classical meaning if we only know thatϕ
]
hj

∈ Lr(Ω1, R3).
In order to give a precise distributional meaning to the expression in (7.4) along the sequence

we first define, for smoothφ ∈ C∞(Ω1, R3) andR ∈ W1,1+p+q(Ω1, SO(3)), an intermediate
functionΨ ,

Ψ : Ω1 → R2, Ψ (η1, η2, η3) :=

(
〈R1, φ〉

〈R2, φ〉

)
.

This implies thatΨ ∈ W1,1+p+q(Ω1, R2). We have

(R1|R2)
T
∇(η1,η2)φ =

(
〈R1, ∂η1φ〉 〈R1, ∂η2φ〉

〈R2, ∂η1φ〉 〈R2, ∂η2φ〉

)
, D(R1|R2).φ :=

(
〈∂η1R1, φ〉 〈∂η2R1, φ〉

〈∂η1R2, φ〉 〈∂η2R2, φ〉

)
,

∇Ψ =

(
∂η1〈R1, φ〉 ∂η2〈R1, φ〉

∂η1〈R2, φ〉 ∂η2〈R2, φ〉

)
= (R1|R2)

T
∇(η1,η2)φ + D(R1|R2).φ.

The last equality shows

(R1|R2)
T
∇(η1,η2)φ := ∇(η1,η2)Ψ − D(R1|R2).φ. (7.5)

We note the local estimate

‖sym∇(η1,η2)Ψ ‖
2

= ‖sym((R1|R2)
T
∇(η1,η2)φ) + sym(D(R1|R2).φ)‖2

6 2‖sym((R1|R2)
T
∇(η1,η2)φ)‖2

+ 2‖sym(D(R1|R2).φ)‖2

6 2‖sym((R1|R2)
T
∇(η1,η2)φ)‖2

+ 2‖D(R1|R2).φ‖
2

6 2‖sym((R1|R2)
T
∇(η1,η2)φ)‖2

+ 2‖D(R1|R2)‖
2
· ‖φ‖

2.

The last inequality implies after integration and Hölder’s inequality (reminder:r =
2(1+p+q)

(1+p+q)−2,
cf. (5.1))∫

Ω1

‖sym∇(η1,η2)Ψ ‖
2 dVη

6 2
∫

Ω1

‖sym((R1|R2)
T
∇(η1,η2)φ)‖2 dVη + 2‖R‖

2
W1,1+p+q (Ω1)

‖φ‖
2
Lr (Ω1,R3)

.
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Moreover,∫
Ω1

(‖sym∇(η1,η2)Ψ ‖
2
+ ‖Ψ ‖

2) dVη 6 2
∫

Ω1

‖sym((R1|R2)
T
∇(η1,η2)φ)‖2 dVη

+ 2‖R‖
2
W1,1+p+q (Ω1)

‖φ‖
2
Lr (Ω1,R3)

+ 2‖φ‖
2
L2(Ω1,R3)

,

since‖Ψ ‖
2

= 〈R1, φ〉
2

+ 〈R2, φ〉
2 6 ‖R1‖

2
‖φ‖

2
+ ‖R2‖

2
‖φ‖

2
= 2‖φ‖

2. Furthermore, adding
and subtracting12 yields∫

Ω1

(‖sym∇(η1,η2)Ψ ‖
2
+ ‖Ψ ‖

2) dVη

6 2
∫

Ω1

‖sym((R1|R2)
T
∇(η1,η2)φ)‖2 dVη + 2‖R‖

2
W1,1+p+q (Ω1)

‖φ‖
2
Lr (Ω1,R3)

+ 2‖φ‖
2
L2(Ω1,R3)

= 2
∫

Ω1

‖sym((R1|R2)
T
∇(η1,η2)φ − 12 + 12)‖

2 dVη

+ 2‖R‖
2
W1,1+p+q (Ω1)

‖φ‖
2
Lr (Ω1,R3)

+ 2‖φ‖
2
L2(Ω1,R3)

6
∫

Ω1

(4‖sym((R1|R2)
T
∇(η1,η2)φ − 12)‖

2
+ 4‖12‖

2) dVη

+ 2‖R‖
2
W1,1+p+q (Ω1)

‖φ‖
2
Lr (Ω1,R3)

+ 2‖φ‖
2
L2(Ω1,R3)

.

Hence, consideringϕ]
hj

instead ofφ, along the sequence(ϕ]
hj

, R
]
hj

) ∈ X with

I
],mem
hj

(ϕ
]
hj

, R
]
hj

) < ∞,

and with the distributional meaning of the gradient onϕ
]
hj

, we obtain the additional uniform bound∫
Ω1

(‖sym∇(η1,η2)Ψ ‖
2
+ ‖Ψ ‖

2) dVη 6
4

µ
I

],mem
hj

(ϕ
]
hj

, R
]
hj

) +

∫
Ω1

4‖12‖
2 dVη

+ 2‖R
]
hj

‖
2
W1,1+p+q (Ω1)

‖ϕ
]
hj

‖
2
Lr (Ω1,R3)

+ 2‖ϕ
]
hj

‖
2
L2(Ω1,R3)

< ∞.

The classical Korn second inequality without boundary conditions on a Lipschitz domain [68,
Prop. 1.1] implies therefore that

∞ >

∫
Ω1

(‖sym∇(η1,η2)Ψhj
‖

2
+ ‖Ψhj

‖
2) dVη

=

∫ 1/2

−1/2

[∫
ω

(‖sym∇(η1,η2)Ψhj
(η1, η2, η3)‖

2
+ ‖Ψhj

(η1, η2, η3)‖
2) dω

]
dη3

>
∫ 1/2

−1/2

[
c+

K

∫
ω

(‖∇(η1,η2)Ψhj
(η1, η2, η3)‖

2
+ ‖Ψhj

(η1, η2, η3)‖
2) dω

]
dη3,

which yields the boundedness of∇(η1,η2)Ψhj
in L2(Ω1, R2) and weak convergence of this sequence

of gradients to a limit. By construction we already know thatΨhj
→ Ψ0 ∈ L2(Ω1, R2) (by the
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assumed strong convergence ofRhj
andϕ

]
hj

). Hence∇(η1,η2)Ψhj
converges weakly to∇(η1,η2)Ψ0.

Since we know as well that∂ηi
R

]
hj

⇀ ∂ηi
R

]
0 in L1+p+q(Ω1, M3×3), i = 1, 2, andϕ

]
hj

→ ϕ
]
0 in

Lr(Ω1, R3) we obtain

D(R
]
1,hj

|R
]
2,hj

).φ
]
hj

⇀ D(R
]
1,0|R

]
2,0).φ

]
0 ∈ L2(Ω1, M2×2).

Looking now back at (7.5) shows that

(R
]
1,hj

|R
]
2,hj

)T ∇(η1,η2)ϕ
]
hj

∈ L2(Ω1, M2×2) (7.6)

is a well defined expression with distributional meaning of∇(η1,η2)ϕ
]
hj

for which (7.4) holds. Due to

the convexity ofWhom,0
mp in the argument sym(R1|R2)

T
∇(η1,η2)ϕ, we may pass to the limit in (7.3)

to obtain

lim inf
hj

∫
Ω1

Wmp(R
],T
hj

∇
hj
η ϕ

]
hj

) dVη >
∫

Ω1

Whom,0
mp (∇(η1,η2)ϕ

]
0, R

]
0) dVη. (7.7)

The convexity ofWhom,0
mp and Jensen’s inequality (5.3) show then∫

ω

Whom,0
mp (∇(η1,η2)Av.ϕ(η1, η2), R) dω 6

∫
ω

∫ 1/2

−1/2
Whom,0

mp (∇(η1,η2)ϕ(η1, η2, η3), R) dη3 dω

=

∫
Ω1

Whom,0
mp (∇(η1,η2)ϕ(η1, η2, η3), R) dVη. (7.8)

Combining (7.8) with (7.7) gives

lim inf
hj

∫
Ω1

Wmp(R
],T
hj

∇
hj
η ϕ

]
hj

) dVη >
∫

ω

Whom,0
mp (∇(η1,η2)Av.ϕ(η1, η2), R) dω.

The proof of Lemma 7.2 is finished along the lines of (6.4). Note that (7.6) definitely does not yield
control of∇(η1,η2)ϕ

]
hj

in L2(Ω1, M3×2). 2

Proof of Theorem 5.3. To finish the proof ofΓ -convergence for zero Cosserat couple modulus
(Theorem 5.3) we observe first that Lemma 7.2 implies that

I
],mem
0 6 Γ - lim inf

hj

I
],mem
hj

,

which is “almost” a lim inf result forI ],mem
h sinceI

],mem
0 could be strictly smaller. We combine

this result with the chain of inequalities (7.2) to conclude that onX = Lr(Ω1, R3) ×

L1+p+q(Ω1, SO(3)),

I
],mem
0 6 Γ - lim inf I

],mem
h 6 Γ - lim inf I

]
h |µc=0

6 Γ - lim supI
]
h |µc=0

6 lim
µc→0

Γ - lim I
]
h |µc>0

=: I
],0
0 . (7.9)
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Since, however,I ],mem
0 = I

],0
0 , the last inequality is in fact an equality, which shows that

Γ - lim I
]
hj |µc=0

= I
],0
0 .

This gives us complete information on the behaviour of sequences of minimizing problems for
µc = 0, should such sequences exist and converge to a limit in the encompassing spaceX. 2

8. Conclusion

We have justified the dimensional reduction of a geometrically exact Cosserat bulk model to its two-
dimensional counterpart by use ofΓ -convergence arguments. The underlying Cosserat bulk model
features already independent rotations which may be identified with the averaged lattice rotations
in defective elastic crystals ifµc = 0. Thus the appearance of an independent director fieldR3 is
natural and not primarily due to the dimensional reduction/relaxation step. The argument is given
for plates (flat reference configuration) only, but it is straightforward to extend the result to genuine
shells with curvilinear reference configuration, and it should be noted that the extension to shells
is independent of geometrical features of this curvilinear reference configuration: the inclusion of
transverse shear effects makes the distinction between elliptic, parabolic and hyperbolic surfaces in
a certain sense irrelevant. A welcome feature of the resultingΓ -limit for the defective crystal case
µc = 0 is its linearization consistency.

Apart for bending terms, the resultingΓ -limit is similar to the previously given formal
development in [45] and constitutes therefore a rigorous mathematical justification of Reissner–
Mindlin type models. Future work will discuss the engineering implications of our results as far
as the numerical value of the Cosserat couple modulusµc and its relation to the transverse shear
modulus in classical Reissner–Mindlin type theories is concerned.
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