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We derive thel-limit to a three-dimensional Cosserat model as the aspect#atio 0 of a flat
domain tends to zero. The bulk model involves already exact rotations as a second independent field
intended to describe the rotations of the lattice in defective elastic crystald.-Tingt based on the
natural scaling consists of a membrane-like energy and a transverse shear energy both scadling with
augmented by a curvature energy due to the Cosserat bulk, also scalirig witechnical difficulty

is to establish equi-coercivity of the sequence of functionals as the aspech riai@s to zero.
Usually, equi-coercivity follows from a local coerciveness assumption. While the three-dimensional
problem is well-posed for the Cosserat couple moduylus> 0, equi-coercivity needs a strictly
positive .. Then thel-limit model determines the midsurface deformatiore Hlvz(w, ]R3). For

the true defective crystal case, however, = 0 is appropriate. Without equi-coercivity, we first
obtain an estimate of thE-liminf and I'-lim sup which can be strengthened to theconvergence
result. The Reissner—Mindlin model is “almost” the linearization of khémit for . = 0.
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1. Introduction
1.1 Aspects of shell theory

The dimensional reduction of a given continuum-mechanical model is already an old subject and
has seen many “solutions”. One possible way to proceed is the so ciladhtion approach

i.e., reducing a given three-dimensional model via physically reasonable constitutive assumptions
on the kinematics to a two-dimensional model. This is opposed to eithentifiresic approach

which views the shell from the onset as a two-dimensional surface and invokes concepts from
differential geometry, or thasymptotic methodshich try to establish two-dimensional equations

by formal expansion of the three-dimensional solution in power series in terms of a small
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nondimensional thickness parameter, the aspect katikhe intrinsic approach is closely related

to the direct approachwhich takes the shell to be a two-dimensional medium with additional
extrinsic directorsin the sense of aestricted Cosserat surfac[i?]E] There, two-dimensional
equilibrium in appropriate new resultant stress and strain variables is postulated ab initio more or
less independently of three-dimensional considerationd (cf. [8, 34, 23,114116, 55].

A comprehensive presentation of the different approaches in classical shell theories can be found
in the monograph [42]. A thorough mathematical analysis of linear, infinitesimal-displacement shell
theory, based on asymptotic methods, is found.in [12] and the extensive references therein (see also
[11,[13,[3,21] 22, 32,14]). Excellent reviews of the modelling and finite element implementation
may be found in[[59, 56, 58, 35,136,169/ 5, 9] and in the series of papeéis [61-66]. Properly invariant,
geometrically exact, elastic plate theories are derived by formal asymptotic methads in [25]. This
formal derivation is extended to curvilinear shells[inl[41, 40]. Apart from the pure bendind case [30,
28], which is justified as thé -limit of the three-dimensional model &s— 0 and which can be
shown to be intrinsically well-posed, the finite-strain models obtained have not yet been shown to
be well-posed. Indeed, the membrane energy contribution is notoriously not Legendre—Hadamard
elliptic. The different membrane model formally justified(in[[39] byconvergence is geometrically
exact and automatically quasiconvex/elliptic but unfortunately does not coincide upon linearization
with the otherwise well-established infinitesimal-displacement membrane model. Moreover, this
model does not describe the detailed geometry of deformation in compression but reduces to a
tension-field theory [67]. The quasiconvexifying steplinl[39] appears since the membrane energy
takes then into account the energy reducing effect of possible fine scale oscillations (wrinkles).
The development of [39] has been generalized to Young measuies in [27]. A hierarchy of limiting
theories based ofr-convergence, distinguished by different scaling exponents of the energy as a
function of the aspect ratib, is developed in[[31]. There the different scaling exponents can be
controlled by scaling assumptions on the applied forces.

It is possible to includénterfacial energy(here a second derivative temf| D2¢|2 in the bulk
energy) in the description of the material. TRelimit for constant« has been investigated in/ [6] in
an application to thin martensitic films. As a result, no quasiconvexification step is necessary (the
higher derivative excludes arbitrary fine scale wrinkles) and in the limit one independent “Cosserat
director” appears. If simultaneousky — 0 faster tham: — 0, then thel"-limit coincides [60,

Rem. 5] with that of [3B]. In our context (see below), including such an interfacial energy is
tantamount to setting,. = oo in the Cosserat bulk model, i.e. the Cosserat bulk model would
degenerate into second gradient model

There are numerous proposals in the engineering literature for a finite-strain, geometrically
exact plate formulation (see e.a. [26]57-59,(69,/5, 9]. These models are based on the Reissner—
Mindlin kinematical assumption which is a variant of the direct approach; usually one independent
director vector appears in the model. In many cases the need has been felt to devote attention
to rotationsR € SO(3), since rotations are the dominant deformation mode of a thin flexible
structure. This has led to thaill-rotation formulation, which means that proper rotations either
appear in the formulation as independent fields (leading to a restricted Cosserat surface) or they are
an intermediary ingredient in the numerical treatment (constraint Cosserat surface, only continuum
rotations matter finally). While the computational merit of this approach is well documented, such
models lacked any asymptotic basis.

1 Restricted, since no material length scale enters the direct approach, only the nondimessiecalatios appears in
the model. In terminology it is useful to distinguish between a “true” Cosserat model operating(8na®0 theories with
any number of directors.
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1.2 Ouitline of this contribution

In [45] the first author has proposed a Cosserat shell model for materials with rotational
microstructure. In the underlying Cosserat bulk model the Cosserat rotatamd the gradients

of R enter into the measure of deformation of the body. In fact, variatioR tfads to a balance

of substructural interaction [10]. These gradients account therefore for the presence of interfaces
between substructural units in a smeared sense. One may think of, e.g., liquid crystals, defective
single crystals or metallic foams [47.]52].

Assuming a strict principle of scale separation rules out the possibility of a direct comparison
between macroscopic quantities (the usual deformation) and the microscopic ones (for example
the lattice vectors in a defective crystal) and makes it reasonable to assume that they behave
independently of each other. For definiteness, we may view the Cosserat rofatamnaveraged
lattice rotations, independent of the macroscopic rot@idﬁncan be shown that the Cosserat
rotation follows closely the macroscopic rotation in the bulk model provided that a constitutive
parameter, the Cosserat couple modulysis strictly positive. Therefore, the interesting case with
independent microstructure is representequby= 0. In this case, the amount of incompatibility
of the lattice rotations, measured through Qirdecisively influences the elastic response of the
material, and elastic coercivity can only be established for a reasonably smooth distribution of
incompatibilities and defects. Every real pure single crystal contains still a massive amount of
defects and incompatibilities. Thus, giving up the idealization of a defect free single crystal adds
to the physical realism of the model. Let us henceforth referte= 0 as defective elastic crystal
case.

The above mentioned shell model is shown to be well-posed in [45]) for 0 and in [50] for
we = 0. Apart for technical details, this Cosserat shell model includes the generalized drill-rotation
formulations alluded to above. Notably fay = 0, the in-plane drill-energy is absent in conformity
with the classical Reissner—Mindlin model.

The formal derivation of the new shell model [45], based on an asymptotic ansatz for a Cosserat
bulk model with kinematical and physical assumptions appropriate for thin structures, however,
still gives rise to questions as far as the asymptotic correctness and convergence are concerned. In
this paper we address this point by showing thatffhimit of the Cosserat bulk model far — 0
(under natural scaling assumptions) is, after descaling, given by the corresponding formal derivation,
provided the energy contributions scaling wittare retained and the coefficient of the transverse
shear energy is slightly modified. Given that the information provided by tfienit hinges also on
scaling assumptions, we think that this result is a justification of the formal derivationlin [45] and
the employed kinematical ansatz.

Central to our development is therefore the notioireéonvergence, a powerful theory initiated
by De Giorgi [19,/20] and especially suited for a variational framework on which in turn the
numerical treatment with finite elements is based. This approach has thus far provided the only
known convergence theorems for justifying lower dimensional nonlinear, frame-indifferent theories
of elastic bodies.

Now, after presenting the notation, we recall in Sec{ipn 2 the underlying “parent” three-
dimensional finite-strain frame-indifferent Cosserat model with rotational substructure embodied
by theCosserat rotations, i.e., atriad of rigid directors(R1|R2|R3) = R € SO(3), and provide

2 Compare with[[7D], where it is observed that lattice rotations are, in fact, independent of the macroscopic rotations in
nano-indent single crystal copper experiments.
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the existence results for this bulk model. Then we perform in Seftion 3 the transformation of the
bulk model in physical space to a nondimensional thin domain and introduce the further scaling to a
fixed reference domaif?; with constant thickness on which tlieconvergence procedure is finally
based.

In Sectior] 4 we recapitulate some points frétrconvergence theory and introduce thidimit
for the rescaled formulation with respect to the two independent figldR) of deformations and
microrotations in Sectiop]5. Two limit casgs, = 0 andu. = oo, deserve additional attention.
Next, we provide the proof for thé -convergence results: first for the simple cage > 0 in
Section[ $ similar to the development in [39], and then for the case of defective elastic crystals,
ue = 0, in Sectior] V. The case. = oo will be dealt with rigorously in a separate contribution.
Our geometrically exact results have been first announceld I [51. 46, 49]. In the meantime, the
geometrically linear case far, > 0 has been treated by others[in[[2, 1].

1.3 Notation

1.3.1 Notation for bulk material. Let £2 ¢ R3 always be a bounded open domain with Lipschitz
boundaryds2 and letI” be a smooth subset 62 with nonvanishing 2-dimensional Hausdorff
measure. Fou, b € R3 we let (a, b)rs denote the scalar product @? with associated norm

lalZs = (a, a)ga. We denote byMi®*3 the set of real & 3 second order tensors, written with capital

letters. The standard Euclidean scalar produd¥iSii® is given by(X, Y )3 = tr[ XY 7], and the
Frobenius tensor norm |X |2 = (X, X)yexa. In the following we omit the indiceR3, M3*3, The
identity tensor oVI®*3 will be denoted byi, so that trX] = (X, 1) and tr[X]? = (X, 1)2. We let
Sym and PSym denote the symmetric and positive definite symmetric tensors respectively. We adopt
the usual abbreviations of Lie group theory, i.e.,@L:= {X € M>*3 | det[X] # O} the general
linear group, @3) := {X € GL3) | XTX =1},S03) :={X e GL?3) | XX =1, det[X] = 1}

with corresponding Lie algebran(3) := {X € M3 | X7 = —X} of skew symmetric tensors.
We denote by AdK the tensor of transposed cofactors Cof so that AdjX = det[X]X 1 =
Cof(X)” if X € GL(3). We set symx) = 3(X7 + X) and skewX) = 3(X — X7) such
that X = sym(X) + skew(X). For&,n € R" we have the tensor produ& ® n);; = &n;.

We write the polar decomposition in the forfhn = RU = polanF)U with R = polarnF) the
orthogonal part ofr. For a second order tens&rwe define the third order tenshpr= D, X (x) =
(V(X (x).e1), V(X (x).e2), V(X (x).e3)) = (h1, 52, 53 e M3*3 x M3*3 x M3*3 = %(3). For
third order tensory € T(3) we set||h]|2 = Y2, Ib[|2, symh) = (symhL, symp2, symp3)

and trp] := (tr[hY], tr[p?], tr[6%]) € R3. Moreover, for any second order tenskrwe define

X - b = (Xbl, Xp2, Xp3) andh - X, correspondingly. Quantities with a bar, e.g. the micropolar
rotation R, represent the micropolar replacement of the corresponding classical continuum rotation
R. For the deformatiog € C1($2, R3) we have the deformation gradiefit= Vp € C (2, M3*3).
S1(F) = DpW(F) and S2(F) = F~1DpW(F) denote the first and second Piola—Kirchhoff
stress tensors. The first and second differential of a scalar-valued furigt{@n are written
DrW(F).H and D%W(F).(H, H). We employ the standard notation for Sobolev spaces, i.e.
L2(2), HY?(2), H}?(2), w4(£2), which we use indifferently for scalar-valued functions as
well as for vector-valued and tensor-valued functions. Thé¥skt (2, SO(3)) denotes orthogonal
tensors whose components aréiift? (£2). Moreover, we setX [ oo = Sup.co | X (x)|. We denote

by C§°(£2) the infinitely differentiable functions with compact supportn We use capital letters

to denote possibly large positive constants, €9, K, and lower case letters to denote possibly
small positive constants, eg’, d*.
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1.3.2 Notation for plates and shells.Let ® ¢ R? always be a bounded open domain with
Lipschitz boundarydw and letyp be a smooth subset @éfw with nonvanishing 1-dimensional
Hausdorff measure. The aspect ratio of the plate is 0. We denote bI"*" the set of matrices
mappingR” — R™. For H € M3*? and¢ € R3 we write (H|&) € M3 for the matrix composed
of H and the columrt. Likewise (v|&|n) is the matrix composed of the columnsé, 5. This
allows us to writeVe = (gxloyle.) = (dr9ldypld.p) for ¢ € CLR3, R3). The identity tensor
onM?*2 js 1,. The mappingn : @ C R? — R23 is the deformation of the midsurface€m is the
corresponding deformation gradient amyg is the outer unit normal om. A matrix X € M3*3
can now be written a¥ = (X.e2|X.e2|X.e3) = (X1|X2|X3). We writev : R2 — RS for the
displacement of the midsurface such thatc, y) = (x, v, 07 + v(x, y). The standard volume
elementis ddydz = dV = dwdz.

2. The underlying three-dimensional Cosserat model
2.1 Problem statement in variational form

In [48] a finite-strain, fully frame-indifferent, three-dimensional Cosserat micropolar model is
introduced. The two-field problem has been posed in a variational setting. The task is to find a
pair (p, R) : 2 c E3 — E2 x SO@3) of a deformationy and an independent Cosserat rotation

R € SO3), defined on the ambient physical sp&&% minimizing the energy functiondl,

I(¢,R) = / [Winp(R" Vip) + WeurdR" D2 R) — M5 (¢) — My (R)]dV
2
— | Oy(p)dsS —/ My (R)dS — min w.r.t. (¢, R), (2.2)
I's I'c
together with the Dirichlet boundary condition for the deformaigoon I": ¢, = g4 and three

possiblealternativeboundary conditions for the microrotatioRson I,

R4, the case ofigid prescription
R|. = { polan V), the case otrong consistent coupling
no condition forR on I,  induced Neumann-typelations forR on I".

The constitutive assumptions on the densities are

— — 2 =2, * = 2 7 _ BT
Wmp(U) = pllsymU — D)||* + ucllskewU)||“ + Etr[sym(U —1],U=R"F, F = Vp,

1+p

%
Weur(8) = =11+ aaLL | RI) (el symA|* + aellskews | + 7 [ 8]%) H/2,

£=RTD,R := (R"™V(R.e1), R'V(R.e2), RTV(R.e3)), the third ordercurvature tensar

under the minimal requiremept> 1, ¢ > 0. The total elastically stored ener$hy = Wmp+ Weury

is quadratic in the stretch/ and possibly super-quadratic in the curvat@eThe strain energy
Wmp depends on the deformation gradignt= Vi and the microrotation® e SO(3), which
do not necessarily coincide with theontinuum rotationsR = polarnF). The curvature energy
Weurv depends moreover on the space derivative® Dvhich describe the self-interaction of the
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microstructur@ In general, thenicropolar stretch tensot/ is not symmetri@nd does not coincide
with the symmetric continuum stretch tensor= R” F = v FT F. By abuse of notation we set
lsym&||2 := Y2, |lsym&/||2 for third order tensorst (cf.).

Here I' c %2 is that part of the boundary where the Dirichlet conditigras Rq for the
deformations and microrotations or the coupling conditions for the microrotations are prescribed.
I's C 882 is the part of the boundary where the traction boundary conditions in the form of the
potential of applied surface forcégy are given with” N I's = @. In addition,I'c C 942 is the part
of the boundary where the potential of external surface coupjgsis applied withl" N I'c = .

On the free boundar§s2 \ {I" U I's U I'c} the corresponding natural boundary conditions({arR)
apply. The potential of the external applied volume forcélisand /Ty, takes on the role of the
potential of applied external volume couples. For simplicity we assume

() = (f,¢), Mu(R)=(M,R), Iy(p)=(N,p), Iy (R)=(M,R), (2.2

for the potentials of applied loads with given functiofiss L2(£2, R3), M € L?(2, M®*3), N €
L%(I's,R3), M, € L%(I'c, M3%3).

The parameterg, . > 0 are the Laré constants of classical isotropic elasticity; the additional
parametenw, > O is called theCosserat couple modulu§or u. > 0 the elastic strain energy
densitmep(U) is uniformly convexn U and satisfies thetandard growth assumption

VF e GLT(3,R):  Wmp(U) = Wmp(R” F)
> min(u, ue) IRTF — 1|2
= min(w, n)llF — R|I?

> min(u, ne) inf F —R|?
> min(u uc)Reo(&R) Il l

= min(u, ) disf(F, O3, R))

= min(u, pe) dist(F, SO3))

= min(u, pe) || F — polar( F)||?

= min(u, u) |U — 112, (2.3)

In contrast, for the interesting limit case of defective elastic crystals= 0, where the Cosserat
rotationsR are viewed as the lattice rotations, the strain energy densitylysconvexvith respect
to F and does not satisfy (2.8).

The parameted.., > 0 (with dimension of length) introduces anternal lengthwhich is
characteristicfor the material, e.g., related to the interaction length of the lattices in a defective
single crystal. The internal length, > 0 is responsible fosize effectén the sense that smaller
samples are relatively stiffer than larger samples. We assume throughoutstlat o > O,
a7 > 0. This implies theoercivity of curvature

3¢t >0VAReZ@B):  Wan(R) = ct|8)1PH,

3 Observe thaR’V(R.¢;) # RT3y, R € 50(3).
4 The conditionF € GL*(3,R) is necessary, otherwiggF — polarF)||2 = dis?(F, O3, R)) < dis?(F, SO3)), as
can be easily seen for the reflectibh= diag(1, —1, 1).
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which is a basic ingredient of the mathematical analysis. Note that every subsequent result can also
be obtained for a true lattice incompatibility meastgsrectreplacingWeyry with

1+p+q T o1
Waetect= uL:" " | R" Curl R||* 7T

(seel[53]).Wyetectaccounts for interfacial energy between adjacent regions of lattice orientations.

The nonstandard boundary conditionstfong consistent couplingnsures that no unwanted
nonclassical, polar effects may occur at the Dirichlet boundaryt implies that the micropolar
stretch satisfied/ - € Sym and the second Piola—Kirchhoff stress tensor satisiies.=
F*lDFme(ﬁ) € Sym onI" as in the classical, nonpolar case. We refer to the weaker boundary
conditionU . € Sym asweak consistent coupling

It is of prime importance to realize that a linearization of this Cosserat bulk model in the case
of defective elastic crystalg, = 0 for small displacement and small microrotations completely
decouples the two fields of deformatiprand Cosserat lattice rotatio®sand leads to the classical
linear elasticity problem for the deformatiE}For more details on the modelling of the three-
dimensional Cosserat model we refer the reader to [48].

2.2 Mathematical results for the Cosserat bulk problem
We recall the results obtained for the case without external loads [47, 44]:

THEOREM 2.1 (Existence for 3D-finite-strain elastic Cosserat model wijth- 0) Let 2 c R3
be a bounded Lipschitz domain and assume that the boundary data gatisfy H1($2, R3)
andRq € WhP(2,S03)). Then [2.1) withu. > 0,04 > 0,p > 1,q > 0 and either
free or rigid prescription forR on I admits at least one minimizing solution paip, R) <
HL(2,R3 x wlltr(2, SO3)). O

In the case of defective elastic crystals a more stringent control of the lattice incompatibility (higher
curvature exponent) is necessary. Using the extended Korn inequality [43, 54], the following has
been shown in [47]:

THEOREM 2.2 (Existence for 3D-finite-strain elastic Cosserat model wijtk= 0) Let 2 c R3
be a bounded Lipschitz domain and assume for the boundarygdata H(£2, R®) andRq €
wi+rta(Q, SO3)). Then [2.1) withu, = 0,04 > 0,p > 1,4 > 1 and either free or rigid
prescription forR on I admits at least one minimizing solution paip, R) € H(£2,R%) x
wlltrta(2, SO3)). O

3. Dimensional reduction of the Cosserat bulk model
3.1 The three-dimensional Cosserat problem on a thin domain

The basic task of any shell theory is a consistent reduction of some presumably “exact” 3D-theory to
2D. The three-dimensional proble (2.1) defined on the physical $aedl now be adapted to a

5 Thinking in the context of an infinitesimal-displacement Cosserat theory one might belieye.that0 is necessary
also for a “true” finite-strain Cosserat theory.
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shell-like theory. Let us therefore assume that the problem is already transformautimensional
form. This means we are given a three-dimensional (nondimensibiatiomains2, ¢ R3

Q2n = x[—h/2,h/2], o CR?

with transverse boundarg2/@"S = o x {—h/2, h/2} and lateral boundaryaQ}f"t = Jdw X
[—h/2, h/2], wherew is a bounded open domrin R? with smooth boundargw andh > 0
is thenondimensional relative characteristic thickness (aspect ratie¥ 1. Moreover, assume we
are given a deformatiop and microrotatiorR,

o 2, cRES RS R:2, c RS- SO@M),

solving the following two-field minimization problem on the thin domaip:
I(¢,R) = /Q [Wmnp(U) + Weun(8) — (f, )] dV
h

_/ (N, ) dS — min w.r.t. (¢, R),
D2y, x[—h/2.h/2)

U=R"F, ¢, =g .2, Iy =nx[-h/21/2], yoCio, yNyo=0,
0
U|ré, = FTV@F(? € Sym(3), weak consistent coupling boundary conditimm
R: free onFO", alternative Neumann-type boundary condition

— — 2 2, A — 2
Wmp(U) = pllsymU — )| + pcllskewU)||“ + > trlsymU — 1)]°,

L ~
Weurn(8) = 1 12 (L + asLL | 819) (asllsymR|12 + agllskewR | + a7 tri[ 8] HHP)/2)

A=RI'D,R = (R™V(R.e1), RTV(R.€2), R"V(R.e3)),

whereL, = L./L is a nondimensional ratio. Without loss of mathematical generality we assume
that M, M. = 0 in (2.3), i.e. that no external volume or surface couples are present in the bulk
problem. We want to find a reasonable approximatign R;) of (¢, R) involving only two-
dimensional quantities.

3.2 Transformation on a fixed domain

In order to apply standard techniques Bfconvergence, we transform the problem ontfixad
domaing21, independent of the aspect ratio> 0. Define therefore

21 =0 x[-1/2,1/2] c R%, »C R
The scaling transformation

¢ine CR3 RS ¢, n2, m3) = (1, n2, h - n3),
7l e 2, CR3> R 7Y(E &2, E3) 1= (61, &2, &3/ D),

6 For definiteness, one can think@f= [0, 1]] x [0, 1]].
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mapss$2; into £2;, andz (£21) = £25,. We consider the correspondingly scaled function (subsequently,
scaled functions defined aB; will be indicated with a superscrig) ¢? : £21 — R3, defined by

9(€1, 62, 83) = 9" (CNEL £2,83)) VE € Qi3 ¢F() = @(C(m) Vn e 2,

1
Vip(E1, £, £3) = (amwﬁ(m, 112, 13) |03, (11, 12, 13) | - Ons 07 (11, 12, na)) =:Vly* = F}.

Similarly, we define a scaled rotation tengtr: 21 ¢ R® — SO(3) by
R(EL 62,59 = RPN M€ 62.59) V6 e 2 RF)=RE(m) Vne

— — 1 —
Ve[R(&1, &2, £3).¢1] = (8,71[Rﬁ<n>.e,-] Eans[Rﬁ(m.e,-])
= Vy[RF(p).ei] € M>S,
DIRYE () = (VA[RE (n).ea). VEIRF (n).c2). VE[R*(n).e3]) € T(3).

anz[ﬁﬁ(’?)-ei]

(3.1)

This allows us to define scaled nonsymmetric stretdigs= R F{ and the scaled third order
curvature tensoﬁfl 121 — 2(3),

I [R*().e1]

R = (W’T(m(am[ﬁﬁ(n).eﬂ

1, =
E%[Rﬁ(m.eﬂ),

R*T () (8n1[ﬁﬁ(n).ezl dno[R*(n).e2]

1 _
Zang[RWn).ez]),

_ _ 1 _
R*T () (am[Rﬁ(n).esl Eang[R%).es]))

= (R*T (VIR (n).ea), RZT (V)[R (n).e2], R*T () VIR (n).e3])
= R*TDIR*(n).
Moreover, we define similarly scaled functions by setting

fHm) = fEm), gé(n) =gd(C(m), N'(n) = NCMm).
In terms of the introduced scaled deformations and rotations
P21 cRE > R® R c R SO3),
the scaled problem solves the following two-field minimization problem on the fixed dafyain

anz [Et )] -63]

I*(¢*, V)o" R*, DIR") = f Q[me(U,Echurv(ﬁi)—<ft,<oﬁ>]det[vz(n)]dvn
nesa

- / (N%, 6| CofVZ ().e3] dS,.
921Uy, x[—1/2,1/2]}

—h f WD) + Weun($) — (1%, 9]V,
nesiy

—/ (N¥, %)1dS,
3_Qirans

—/ (N®, 9")h dS, > min w.rt. (¢, R¥).
ysx[—1/2,1/2]
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3.3 The rescaled variational Cosserat bulk problem

Since the energy—17% would not be finite for: — 0 if tractionsN* on the transverse boundary
were present, the investigations are in principle restricted to the ca¥é ef 0 on a:z}'a"ﬂ For
conciseness we investigate the following simplified and resca¥éd (¢ = 0, gq(£1, &2, £3) =
gd(&1, &2)) two-field minimization problem o1 with respect ta"-convergence (without the factor
h > 0 now), i.e. we are interested in the limiting behaviour of the energy per unit aspedi:ratio

— — —t i —
ﬁw?ﬁwJﬂDﬂﬁzf [Winp(T3) + Weurn(R5)] dV;, — min w.rt. (¢%, RY),

nesy
= SH T ot i _ B _ _ _ 0
Up=RTF, ¢ () =840 = ga(C(m) = ga(n, 112, h - n3) = ga(n1. n2. 0),

0
3.2

Iy =y x[-1/21/2], yC o,
R*: free onFol, Neumann-type boundary condition

f; = R*TDIR* ().

Here we assume that the boundary conditggns already independent of the transverse variable.
We restrict attention to the weakest response,Neamann boundary conditiorm the Cosserat
rotationsk* in line with the difficulty to experimentally influence the lattice rotations at the Dirichlet
boundar{f|Moreover, we assume

r=z1l gq>1

so that both casegs. > 0 andu. = 0 can be considered simultaneously. External loads of various
sorts can be treated by Remark|4.5.

Within the rescaled formulatiof (3.2) we want to investigate the possible limit behaviour for
h — 0 andfixed relative internal Iengtﬁ:c > 0. This amounts to considering sequences of
plates with constant physical thicknessincreasing in plane-length and accordingly increasing
curvature strength of the microstructure, similar to letting const in [6].

3.4 Onthe choice of the scaling

The I'-limit, if it exists, is unique. The only choice which influences the final form of fhémit

is given by the initial scaling assumptions made on the unknowns, in order to relate them to the
fixed domaing21, and the assumption on the scaling of the energies, here the membrane scaling
h—1I% < co. Our scaling ansatz is consistent with the one proposédn [38, 29], but not with the one
taken in [11], which scales transverse components of the displacement differently in order to extract
more information from thd -limit. Since we deal with a “two-field” model it is not possible to
scale the fields differently. The general inadequacy of the scaling of linear elasticity adopted in [11]
in a geometrically exact context has been pointed olitih [24]. The motivation for our choice is given
by the apparent consistency of the results with formal developments and its linearization stability.
Here we see that the energy scaling assumptions also introduce an ambiguity in the development.

7 The thin plate limith — 0 obviously cannot support nonvanishing transverse surface loads.

8 We could as well treat the rigid case, iE? L= Rg. The case of weak consistent coupling would need additional
I

0
provisions, the three-dimensional existence result already needs additional control in order to define the then necessary
boundary terms.
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For example, starting from classical nonlinear elasticity, considering the present scaling for the
unknowns and assumirg °7% < oo, a nonlinear von rman plate can be rigorously justified by
I'-convergence [29]. These results have been extended to a hierarchy of models in [31].

4. Some facts on"-convergence

Let us briefly recapitulate the notions involved by usifiggonvergence. For a detailed treatment we

refer to [18/ 8]. We start by defining the lower and uppelimits. In the following, X will always

denote a metric space such that sequential compactness and compactness coincide. Moreover, we
setR := R U {fo0}. We consider a sequence of energy functiodgls X — R, hj — 0.

DEFINITION 4.1 (Lower and uppef-limit) Let X be a metric space and It : X — R with
h; — 0 be a sequence of functionals. koe X we define

F—Iirrllljinf I, » X —> R, F—Iirrllljinf In;(x) = inf{Iin’;lljinf In; (xny) | xp; = x}h,
r-limsuply; : X — R, TI-lim suply; (x) = inf{lim supZy; (xp;) | xn; — x}.
hj hj hj

It is clear thatF—Iiminfhj Iy, and I'-lim sup,, Iy X - R always exist and are uniquely
determined.

DEFINITION 4.2 LetX be a metric space. We say that a sequence of functidpats X — R
I'-convergesn X to the limit functionallp : X — R if for all x € X we have

Vx € X Vxp, —> x0 Io(x) < liminf I,. (x5,)  (lim inf-inequality),
hj—0

Vx € X Ixp, — x 0 Io(x) > limsuply, (xp;) (recovery sequenge

hi—>0

COROLLARY 4.3 LetX be a metric space. The sequence of functionals X — R I'-converges
in XtoIp: X — Rifand only if

r-liminf I,, = I'-limsupl,. = Ip. ]
hj J hj J

REMARK 4.4 (Lower semicontinuity of thé'-limit) The lower and upper-limits are always
lower semicontinuous, hence thiélimit is a lower semicontinuous functional. Moreover, if the
I-limit exists, it is unique.

REMARK 4.5 (Stability under continuous perturbations) Assume that X — R I'-converges

inXtol: X — Randlet/T : X — R, independent ofi;, be continuous. Thedy,, + IT is
I'-convergent and

(P=m{zy, + D)) = (F-1m 1) () + 100 = To(x) + 1T(x)

(seel[18, Prop. 6.21]). Recall that when the functiddalndependent of;, is not continuous it can
influence whether or nat'-convergence hold5[18, Ex. 6.23].
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Let us also recapitulate the importayui-coercivenesgroperty. First we recaltoerciveness
of a functionafl

DEFINITION 4.6 The functional : X — R is coercivewith respect taX if for each fixedC > 0
the closure of the sk € X | I(x) < C}is compact inX, i.e. I has compact sublevels.

Following [18, p. 70] we introduce

DEFINITION 4.7 The sequence of functionalg, : X — R is equi-coercivef for eachC > 0
there exists a compact skt C X such thafx € X | I;;(x) < C} C K¢, independenof i; > 0.

Hence, if we know thavhj is equi-coercive oveX and thalhj (¢;) < C along a sequence
¢; € X, then we can extract a subsequeigeconverging in the topology ok to some limit
elementy € X.

THEOREM 4.8 (Characterization of equi-coerciveness] [18, Prop. 7.7]) The sequence of function-
alsly; : X — Ris equi-coercive if and only if there exists a lower semicontinuous coercive function

¥ : X — R such thatl,, > ¥ on X for everyh; > 0. O

The following theorem concerns the convergence of the minimum values of an equi-coercive
sequence of functions.

THEOREM 4.9 (Coerciveness of thE-limit, [18, Th. 7.8]) Suppose that the sequence of function-
als1y; : X — Ris equi-coercive. Then the upper and loweiimits are both coercive and

inf inf 1, (x).
i xeX

7

min(I-liminf 7;.)(x) = lim
xeX hj / h

If, in addition, the sequence of integral functiond)s : X — R I'-converges to a functional
Io: X — R, thenly itself is coercive and

minIo(x) = lim inf . (x).
xeX hj xeX J

Note that equi-coercivity is an additional feature in the development afonvergence
arguments, which simplifies proofs considerably through compactness arguments. Ad'far as
convergence is concerned, it may be useful to recall [8, p. 19]nfaimizers of thel -limit
variational problem may not be limits of minimizers, so tligitonvergence can be interpreted
as a choice criterionln addition, ther"-limit of a constant sequence of functionals which
is not lower semicontinuous, does not coincide with the constant functibnaistead one has
(I-lim J)(x) < J(x).Inthis case(I"-lim J)(x) = QJ(x), whereQJ is the lower semicontinuous
envelope of/. In the case of non-lower semicontinuous functionals JtHemit therefore introduces
a different physical setting. In this paper we deal with lower semicontinuous functionals.

9 Typically, coerciveness is given fof = LP (22, R3), 1 < p < oo, with £2 a bounded domain, with smooth boundary
and
Jo WV dvV if g e WhP(2,R3), ¢, , =0,

1(p) =
) +00 else
with thelocal coercivity assumptioW (F) > cir||F\|P - c;. Coerciveness follows by Poin&is inequality and Rellich’'s

compact embeddinwlvf’(.(?, R3) c LP(22,R3). Recall that linear elasticity does not satisfy a local coercivity condition.
This is the cause for some technical problems of the theory.
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5. The “two-field” Cosserat I"-limit

5.1 The spaces and admissible sets

Now let us proceed to the investigation of thelimit for the rescaled problenj (3.2). We do not use
I}fj directly in our investigation of"-convergence, since this would imply working with the weak

topology of H12(£21, R3) x wlitr+a(2,, SO3)), which does not give rise to a metric space.
Instead, we define suitable “bulk” spac¥s X’ and suitable “two-dimensional” spacés,, X/,.
First, forp > 1, ¢ > 1 we define the number> 1 by

1 1 1 _ 20+p+9

—_— 4 - ==, e r=————"- 51
1+p+qg r 2 A+p+q)—2 -1

such that.**P+9. L" ¢ L2. Note that for 1+ p +¢ > 3 we haver < 6, which implies the compact
embeddingd-2(£21, R3) ¢ L’ (£21, R3). Now define the spaces
X := L' (21, R®) x LYPT9(24, SO3)),
X' = HY2(021, R3) x wlirti(o,, sO3)),
X, 1= L (w, R®) x L+ (0w, SO3)),
X! = HY?(w, R3) x WhHr+d(y, SO@3)),

and the admissible sets
A= {(¢. B) € H(21, R3) x WHHPH (21, SO3)) | ¢la () = 2a(m),

A, == {(¢. R) € H*?(0, R®) x W14 (00, SOB)) | g}, (1. n2) = g5(11. 12, )},
10 =10 B € HY2 (21, RS x WHHPH (0, SO)) | ¢, () = g5}

We note the compact embeddig C X and the natural inclusion,, C X andX, C X’'. Now
we extend the rescaled energies to the spaterough redefining

Ij (¢, Vg R¥ DIR®) if (¢°. %) € A,

. (5.2
400 else inX,

I} (¢%, VIo* R DI'R%) = :
by abuse of notation. This is a classical trick used in applications-abnvergence. It has the

virtue of incorporating the boundary conditions already in the energy functional. In the following,
I’-convergence results will be shown with respect to the encompassing metric&@ce

DEFINITION 5.1 (The transverse averaging operator) poe L2(£21, R%) define the averaging
operator over the transverse (thickness) variabley

1/2

AV L2(21,R3) — L%, R%), Av.o(n, n2) i= f zfp(nl,nz,%)dna.

10 Of course,X, X’ as such are not vector spaces, since one cannot add two rotations. Neveriiglegs SO(3)) C
L” (£21, M3%3) and the latter is a Banach space.
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It is clear that averaging with respect to the transverse varightoommutes with differentiation
with respect to the planar variables, 2, i.e.
[AV V11001, 12, 13)] (11, 12) = Vg0 [AV .0 (11m101D)] (11, m2),

for suitable regular functions. Note in passing that for a convex functign M3*? — R Jensen’s
inequality implies

/ f(v(nlﬂlz)[AVKP] (nla 772)) d(!) = / f([AV'V(nl’WZ)w](nl, nz)) dw
1/2
S / /1/2 J (Vanp @M1, n2, n3)) di3 de

= /Q F Ve, n2, 13)) dV,. (5.3)
1

5.2 Ther-limit variational “membrane” problem
Our first result is

THEOREMS.2 (I"-limit for u. > 0) For strictly positive Cosserat couple modulus > 0 the
I-limit for problem [3:2) in the setting of (5.2) is given by the limit energy functiolgal X — R,
I [Who(VAV.¢, R) + W8] dw — IT(AV.¢, R3)  if (9. R) € A, .
Iy(p, R) == 2
400 else inX,

with Who™ and Wiow defined below.

The proof of this statement will be given in Sectjdn 6.

If we identify the thickness averaged deformation@with the deformation of the midsurface
m : w C R? — R3, this problem determines in fact a purely two-dimensional minimization problem
for the deformation of the midsurfaee : ¢ R? — R3 and the microrotation of the plate (shell)
R:wcR? - SOM3)onw:

zg<m,§> = / [W,ﬂ%m(Vm,E) + WM & )] dw — [T (m, R3) — min W.rt.(m, R), (5.4)

and the boundary conditions for the midsurface deformatioon the Dirichlet part of the lateral
boundaryyp C dw,

m, = gd(x, y,0) = Av.gd(x, y, 0), simply supported (fixed, welded)

The boundary conditions for the microrotatioRsare automatically determined in the variational
process. The dimensionally homogenized local dengiff#%

11 skew(R1|R2)Tvm) |12 = (R, my) — (R2, my))2. Note that|skew((R1|R2)T Vm)|| = 0 does not imply that
R3 =iip.

12 Inthe following, “intrinsic” refers to classical surface geometry, where intrinsic quantities are those which depend only
on the first fundamental form,, = VT Vin € M2%2 of the surface. Then “intrinsic” in our terminology are terms which
reduce to such a dependence in the continuum IRnit polarVm|ii). For exampleR1|R2)T Vi = v'VmT Vi, in this
case.
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W (Vim, R) = p | sym((R1|R2)" Vm — 12)[|? + 1z, |Iskew(R1|R2)" Vm)|?

“intrinsic” shear-stretch energy “intrinsic” first order drill energy
He = — 72 - =
+2u———((R3, m)? + (Ra. my)?) + trsym((R1|R2)" Vm — 12)]° .

- homogenized elongational stretch energy
homogenized transverse shear energy

The dimensionally homogenized curvature density is given by

whomg ) inf_ W2, (RT8,,R, RT9,,R, A),

Aeso(3)
Ry = (RT(V(R.e1)|0), RT(V(R.€2)|0), R(V(R.€3)|0)) = R” (x, y)DsR(x, y),
A = (&L, 82, 8%) € T(3),  the reduced third ordeurvature tensar

whereW¢,,, is an equivalent representation of the bulk curvature energy in terms of skew-symmetric
arguments

Weurd(R) = Wékun/(ET anlﬁ’ ETanzis ET&]BE),
Wi :50(3) x 50(3) x 50(3) — RT,

with R”9,, R € s0(3) sinced,,[R" R] = 9,,1 = 0. We note thaW,,, remains a convex function
in its argument as i%9M(&,). Moreover, WIOM(&,) = Weun(8s) for Weun(R) = W (|| R]).

In (5.4), IT denotes a general external loading functional, continuous in the topology(cit
Rema). It is clear that the limit function% is weakly lower semicontinuous in the topology
of X' = H12(2, R3) x whltr+a(2, SO(3)) by simple convexity arguments. We note the twofold
appearance of thearmonic mearH

1 A A Me
“Hlu, = )==——, HWu,uc)=2 .
> (M 2> 20T (1, pe) MM+MC

An advantage of this formulation is that the dimensionally homogenized formulation refrzaires
indifferent Note that the limit functionalg is consistent with the followinglane stressequirement

(cf. 6.2)):
Vnz e [-1/2,1/2] . S1(n1, n2, n3).e3 =0,

i.e. a vanishing normal stress over the entire thickness of the plate, while for any given thickness
h > 0 from 3D-equilibrium one can only inferero normal stress at the upper and lower faces

(R" (11, n2, £1/2)S1(n1, 12, £1/2).e3, e3) = 0.

In this sensethe Cosserat “membraneT"-limit underestimates the real stresses, notably the
transverse shear stresses noted in[31, 9.3] with respect to the membrane scaling.

13 Fora, b > 0 the harmonic, arithmetic and geometric means are defingd(asb) := 2/(1/a + 1/b), A(a,b) =
(a +b)/2,G(a, b) = «/ab, respectively and one has the chain of inequaliti&s, b) < G(a, b) < A(a, b).
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5.3 The defective elastic crystal limit cagge = 0

Since it is not possible to establish equi-coercivity for the defective crystalkcase0, one cannot
infer a I'-limit result for u. = 0 as a consequence of the result for > 0. However, since the
energy functiona!}fj for u. > Ois strictly bigger than the same functional for = 0, independent
of h; > 0, itis easy to se¢ [18, Prop. 6.7] that rwe have the inequalities

r-liminf 17, <F—Iimsup1}fl_ < IimO(F—IimI}f” ) = 12°, (5.5)

|I-l(':0 ‘ ‘p.g:O Me—> H1e>0

where

9. / [WhemO(VAV.@. R) + Wiem(8)] dw — IT(AV.@. R3)  if (¢. R) € AT,
o .=

400 else inX,
(5.6)
with A7°™ defined as
AFe™ = {(¢, R) € X | syM(R1|R2)" Vi yp) AV € L2($21, M?*?), R € WHEPH (o, SO@3)),
o, () = g0 = ga(n1. n2. 0)).
0
and the understanding &7, ,,)Av.¢ as distributional derivativefor ¢ e L"(£21, R®). The

corresponding local energy density in termsmof Av.p is

WhemO(Vm, R) := ju ||sym(R1|R2)" Vin — 152

“intrinsic” shear-stretch energy
WA

St tr[sym(R1|R2)T Vi — 12)]? . (5.7)

homogenized elongational stretch energy

+

Observe that the upper bourié’o for the I'-limsup energy functional isiot coercivewith
respect taH -2(w, R3) due to the now missing transverse shear contribution, while it retains lower
semicontinuity. This degeneration remains true for whatever form/tHiit for u. = 0 has,
should it exist. Our main result is

THEOREM 5.3 (I"-limit for defective elastic crystalg, = 0) The I"-limit of (B:2) for u. = 0in
the setting of[(5]2) exists and is given by (5.6). a

The proof of this statement is deferred to Secfipn 7.

The loss of coercivity foy, = 0 is primarily a loss of control for the “transverse” components
(my, R3), (my, R3), while with respect to the remaining “in-plane” components compactness for
minimizing sequences, whose midsurface deformations are supposed to be already bounded in
L"(w), can be established (by appropriate use of an extended Korn second inequality] cf. (7.5)).
That homogenization may lead to a loss of (strict) rank-one convexity has been observed in [33] for
nonlinearly elastic composites, whose constituents are strictly rank-one convex.

For linearization consistency, it is easy to show that the linearizatiop fee 0 of the frame-
indifferent I"-limit 73°° with respect to small midsurface displacement » ¢ R2 — R3 and
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small curvature decouples the fields of infinitesimal midsurface displacement and infinitesimal
microrotations; after de-scaling we are left with the classical infinitesimal “membrane” plate
problem forv : ¢ RZ — R3,

A
21+ A
—{f, (v, e1) - e1+ (v, e2) - e2) > Min wW.r.t.v,

/ h(ullsymV(vl, v2) 1%+ trfsymV (v, v2)]2> d

(5.8)
(v, e,-)‘yo = ud(x, v,0),¢), i =1,2, simply supported (horizontal components only)

which leaves the vertical midsurface displacemgntindetermined due to the nonresistance of a
linear “membrane” plate to vertical deflections. This problem coincides with a Iineartibthe
nonlinear membrane plate problem proposed_in [25, par. 4.3], based on purely formal asymptotic
methods applied to the St. Venant—Kirchhoff energy. The variational proplein (5.8) is as wel the
limit of the classical linear elasticity bulk problem (if corresponding scaling assumptions are made,
cf. [4, Th. 4.2], [{] or [11, Th. 1.11.2]). The classical linear bulk model in turn can be obtained as
linearization foru. = 0 of the Cosserat bulk problem. Henoaly in the defective elastic crystal
caseu. = 0, do linearization and taking thé& -limit commute with th@™-limit of classical linear
elasticity™

5.4 The formal limitu,. = oo

This case is interesting, because the formdimit for u, — oo exists and still gives rise to an
independent field of microrotation®, while the Cosserat bulk problem fpr, = co degenerates
into a constraint theory (a so called indeterminate couple-stress model or second gradient model),
where the microrotation® coincide necessarily with the continuum rotations paiarfrom the
polar decomposition.
The formalI"-limit problem is: find the deformation of the midsurfame: » ¢ R? — R3 and
the microrotation of the plate (shel : ® ¢ RZ2 — SO(3) on w such that forlg’oo : X > Rin
terms of the averaged deformatian= Av.¢p,

Ig’oo(m,ﬁ) — min w.r.t.(m, R), (5.9)
with
150 B = / [Wha™™(Vm, R) + Whv(&s)]dw — IT(m, R3) if (m, R) € A,
0 ) w
+o00 else inX,
and the admissible set

A = {(m, R) € H*(0. R®) x WHPH4 (0, SO@)) | my, (11 n2) = g4(n1. n2. 0).
(El, my) = <E27 mX)}

14 Expansion of the first fundamental for#), of the midsurfacen with respect to planar initial configuration yields
Im — 1 = VmTVm — 15 ~ SymVy y)(v1, v2) + 0(||Vv|?). Hence control on vertical deflectionsg is lost during
linearization.

15 As is well known [13, p. 464] this is not the case with the membrAA@mit found in [38], based on the nonelliptic
St. Venant—Kirchhoff energy.
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The formal local energy density reads

W™ (Vm, R) := p (R1|R2)" Vim — 12||* + 2u((R3, my)? + (R3, m,)?)

“intrinsic” shear-stretch energy homogenized transverse shear energy
LA

= BT o 112
i trlsym((R1|R2)" Vm — 12)]° .

+

homogenized elongational stretch energy

Note thatu, = oo rules out in-plane drill rotation§37,[26], the transverse shear energy is doubled,

but transverse shear is still possible siieneed not coincide with the normal en In this sense,

the resulting homogenized transverse shear modulus excludes what could be called “transverse
shear locking” in accordance with the “Poisson thickness locking” which occurs if the correct
homogenized volumetric modulus is not talHn a future contribution we will discuss whether

the formal limit [5.9) is the rigourou$'-limit of the constraint Cosserat bulk problem. Note that in

[6] it has been shown that thié-limit of a second gradient bulk model gives rise to one independent
“Cosserat” director, which here would correspondRto

6. Proof for positive Cosserat couple modulug.. > 0

We continue by proving Theorem 5.2, i.e. the claim on the form offtHemit for strictly positive
Cosserat couple modulys.. The proof is split into several steps.

6.1 Equi-coercivity ofltj, compactness and dimensional reduction

THEOREM 6.1 (Equi-coercivity ofl}f/) For positive Cosserat couple modulys. > 0 the
sequence of rescaled energy functior!#jlsdefined in[(3.R) is equi-coercive on the spate

Proof. It is clear that for give: > 0 the problem[(3]2) admits a minimizing pe('tpfl,ﬁfl) €
HY2(2,,R3) x wiltr+a(Q,, SO3)) by the obvious scaling transformation of the minimizing
solution of the bulk problem for values ¢f > 1, ¢ > 1 and for bothi. > 0 andu,. = OB This
is especially true for Neumann boundary conditions on the microrotations, since for exact rotations,
IRl = +/3. This leads to a control of microrotations W17+ (2, SO3)) already without
specification of Dirichlet boundary data on the microrotations.

Consider now a sequenég — O for j — oo. By inspection of the existence proof for the

Cosserat bulk problem, it will become clear that for the corresponding sequ(apf?eﬂj) €
HY2(02q, R x Wiltrta (@, SO3)) = X’ with I}f}_ (<pflj,§f,j) < oo bounded independently bf
(not necessarily minimizers) we obtain a bound on the sequetﬁjqeﬁij) in X', independent of;.
To see this, note that fqr. > 0, it is immediate tha¥/¢* = F}f is boundedin L2(£21, M3%3),

16 4im; o0 3H (1, 2/2) = 1 < 00 butlim; o0 5 A(, 2/2) = co.
17 In contrast tol"-convergence arguments based on the finite-strain St. Venant—Kirchhoff energy [38], which might not
admit minimizers for any giveh > 0.
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independentlyf ﬁi}_ on account of théocal coercivitycondition
o T f 1. T . o T
Winp(R}, Fi) = min(ue, IR, Fy = 1017 = min(ue, W (1 Fy, 17 = 2R, Fr 1) +3)
> min(ue, WIF; 1> = 23] F || +3),

and after integration
- 77 -1
o0 > I}?j ((Pflj, Ri}) > /;2 [me(U/tiJ) + Wcurv(ﬁ;:lj)] an 2 /;2 me(Uhj) an
1 1
> [ mingue 0 (1F; 12 - 2V315 1 + 3 dv,
21
. 1
> min(ue, 1) / <[||amgoﬂn2 + 1195,9% 1% + —2||an3<pﬁ||2}
21 h]
1
- 2f3[||amgoﬁ|| + l13n, 0%l + ;nanaq)ﬁn} + 3) dv,,. (6.1)
J

This implies a bound, independent bf, for the gradientwflj in L2(£21, R%). The Dirichlet
boundary conditions fowflj together with Poinc&'s inequality yield the boundednessqi in

HY2(£21, R%) [ with a similar argument, based on the local coercivity of curvature, the bound on
Eflj can be obtained: we only need to observe that for a constant 0, depending on the positivity
of a4, as, o, a7, but independent df;,

0= 1} h, B = [ WD)+ Weund )10V, > [ Weund 5 ) d,
1 1

—4. T hj—t hj—
> / IR, M dv, = ¢t / IR;, Dy Ry 1774 AV, = c* f 1Dy R, 17774 d,
2, 21 21

which establishes a bound on the gradient of rotatﬁ(fn’s[ﬁij m).eil,i = 1,2, 3, independent

of i;. Moreover,||ﬁ§j | = +/3, establishing th&v1-1+7+4 (2, SO(3)) bound onﬁfif. Thus we may
obtain a subsequence, not relabelled, such that '

gaﬁj — 5 in HY2(21, RS), Eﬁj —~ Ry in whltrta(Q,, sO3)).

Both weak Iimits(gog,ﬁg) must be independent of the transverse coordimgteotherwise the

energyl}fj could not remain finite for; — 0 (see[(6.]l) and compare with the definition o}ffD

in (3.7))). Hence the solution must be found in terms of functions defined on the two-dimensional
domainw. In this sense the domain of the limit problem is two-dimensional and the corresponding
space isX,,. Since the embeddiny’ C X is compact, it is shown that the sequence of energy
functionalslffj is equi-coercive with respect to. |

18 This argument fails for the limit cage. = 0 since local coercivity does not hold, which is realistic for defective elastic
crystals.
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6.2 Lower bound—the lim inf-condition

If Ig is the I"-limit of the sequence of energy functiona[% then we must have (lim inf-inequality)
that - _
I5(¢o. Ro) < liminf I; (¢}, . Kj, )
j

whenever . .
(p}jj — @5 in L7 (21, R, Rﬁj — Ry in LYP+(2, SOM)),
for arbitrary ((pg, Eé) € X. Observe that we can restrict attention to sequel(w%s ﬁij) e X
such that],fi (‘/’2,’?;,) < oo since otherwise the statement is true anyway. Sequences with

Iﬁj (<p2j,§flj) < oo are uniformly bounded in the spadg, as seen previously. This implies weak
convergence of a subsequenceXih But we already know that the original sequences converge
strongly in X to the limit (cpg,ﬁé) € X. Hence we must have as well weak convergence to
95 € H?(w, R3) andﬁé e wlltrta(y, SO3)), independent of the transverse variahje

In a first step we consider now ttecal energy contributionalong sequence(sogl_,ﬁfl/_) eX

with finite energyl}f/, the third column of the deformation gradie‘ﬁfjwf” remains bounded but
otherwise undetermined. Therefore, a trivial lower bound is obtained by minimizing the effect of
the derivative in this direction in the local enerimp. To continue our development, we need some
calculations: For smooth : ® ¢ R2 — R3, R : w ¢ R2 — SO(3) define the “director” vector

b* e R3 formally through

W (¥, ) = Wnp(R” (Vm[b") = inf, Wan(R" (Vm|P)).
€

The vectory*, which realizes this infimum, can be explicitly determined. Bet= (Vm|b*). The
corresponding local optimality condition reads

V8b* € R3: (DWmp(RT (Vm|b*)), RT (0|0/8b*)) = 0 =
(RDWmp(RT (Vm|b¥)), (0/0|8b%)) = 0 =
RDWmp(R" (Vm|b*)).e3 = 0= Dz Wmp(R" (Vm|b*)).e3 = 0 =
S1((Vm|b*), R).e3 = 0. (6.2)
Since
S1(F,R) = R(W(FTR+RTF — 21) + 2uu. skewRT F) + A tr[RT F — 1]1)
and

~ ({Rimy) (Rimy) (Ry,b¥)
R'F = [(R2,m) (Ra,m,) (Ra,b%) |,
(R3,my) (Ra,my) (Rs,b*)
. ) 2[(R1,my) =1 (Ri,my) + (R2,my)  (Ra,b%) + (R3, my)
F'R4+R"F—21=(Rz,my)+ (Ri,my)  2[(Rz,my) —1]  (R2,b*) + (R3,m,) |,
(R3,my) + (R1,b*) (R, m)) + (Ra,b*)  2[(Ra,b*) — 1]
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e 0 3((Ri,my) = (Ra,my))  5((Ry,b*) — (Rg, m.))
skew®RT F) = | 4 0 3((R2,b*) — (Ra,my)) | -
« 0

R
R
the (plane-stress) requiremefitez = 0 (6.3) implies

(R1,b%) + (R3, my) (R1,b%) — (R3, my)
22 <R2’ b_*> + (R3’ my) + W <R29 b*> - (R3’ my)

0 0
+ A((R1, my) + (R2, my) + (R3, b*) — 3) (o) = (0) .
1 0

The solution of the last system can conveniently be expressed in the orthonorméRtrjath, R3)
as

He — 1 -

b* = (Ra.m )Ry + =<2 (Ra, m,)Ry + o, Rs,
1+ e ! u+uc ’ o
A
=1 Vm|0), R) — 2].

Note that forR € SO3) andVm e L?(£21, R3) it follows thatb* € L2(£21, R%). Reinserting the
solutionb* we have

(Ry,my) (Ry my) WC £ (Rs, my)
R'F = (Rz,my) (Rz,my) B=E(Rgm,) |,
(R3,my)  (R3,my) on
2[(Ry.my) =11 (Ri,my) + (R,my) (14 55E) (Ra, my)
F'R+R'F —21 = (R2,ms) + (Ri,my)  2[(Ra,my) —1] (L4 45E)(Ra,my) |,
(1+ Z:_Hl) R3vmx> (1+ Zl'i'u )<R3’ my> 2[Qm - 1]
0 3((Ri,my) — (Ramy))  5((t — 1)(Ra, my))
skewR" F) = | « 0 3((Ast — 1) (Rs,my)) | -
* * 0
14 B H 2/kc o Memm g —2/L_
L L L M+ e

Finally for ngm(Vm, R) := Wmp(RT (Vm|b*)) with U = RT(Vm|b*) = RTF, after a lengthy
but otherwise straightforward computation we obtain

_ =~ - - A =~
WHOM(Tm, R) := Winp(U) = pllsymU — D)||? + pu. | skewD) | + 5 trlsym(U — 1))2

= ullsym(R1|R2)" Vi — 1) 11% + i |skew((R1|R2)T Vi) ||?



476 P. NEFF AND K. CHELMINSKI

e — —

+ 2u——"—((R3, my)? + (R3, my)?)
M+ e

trlsym((R1|R2) T Vim — 12)]%.

+2M+?»[y(( 1|R2)" Vm — 12)]

Along the sequenceogl, , E;/) we have, by construction,

ST ohi & St e 1. 3 h ¢ =t
me(R/’lJ V’]]whj) = me(Rh] (V(Ul,nz)(phj Eaﬂsgohj)) 2 Wm%m(v(n]_,i’]z)(phjﬂ th)

Hence, integrating and taking the lim inf we also have

.. — h;i L. —

liminf [ Wmp(R:T v, ¢f )dV;, > lim mf/ W,ﬂ%m(v(m,,,zypf” R} ) dv,. (6.3)
hj 21 / J hj 21 J j

Now we use weak convergence@ﬁ‘j and strong convergence Efjj, together with the convexity

with respect toVm and continuity with respect t® of fo WH%m(Vm,E)an to get lower
semicontinuity of the right hand side jn (p.3) and to obtain e{]together

. . -4, T h; —
liminf [ Wmp(R: Vv, 0} )dV, > / WOV (11,0005 Ry) AViy. (6.4)
hi J2y ! g 2
Next we are concerned with tloairvature contributionit is always possible to uniquely rewrite the
curvature energy expression in terms of skew-symmetric quantities
Wi 50(3) x 50(3) x s0(3) = RT, W2, (RT9,,R, RT9,,R, RT3,,R) := Weuru(R),

whereR”9,, R € s0(3) sinced,,[R” R] = 0. We note thaW,,, remains a convex function in its

argument sinc& € T(3) can be obtained by a linear mapping froRY 9,, R, R ,,R, RT9,,R) €

50(3) x 50(3) x s0(3). We define the “homogenized” (relaxed) curvature energy through
WEroM(RT 8, R, RT8,,R) := Wi, (RT3, R, R 9,,R, A*)

= inf_ W2, (RT9,,R, RT3,,R, A), (6.5)
Aeso(3)

and set accordingly
WE(Ry) = WGR™(R” 9,, R, R" 8,,R),
& = (RT(V(R.€1)|0), RT(V(R.€2)|0), R"(V(R.€3)|0)),

in terms of the reduced curvature tensgre T(3).

Similarly to (6.2) the infinitesimal rotation* € so(3), which realizes the infimum ifi (§.5), can
be explicitly determined. We refrain from giving the explicit result. Suffice it to notem@'\}‘ is
uniquely defined, remains convex in its argument and has the same groWtly,asThen

—4.T hj= 6T B BT, Hi LBiT. o
Wcurv(th Dnj th) = Wékurv<th aanh/-’ Rh/- 3,72th, h_/Rhf ansth>

— T — —4.T —
2 Wékl.’lll"]\?m(R}ﬁlj aanflj’ Rfl] 8772R§lj)’
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Integrating the last inequality, taking the liminf on both sides and using facwﬁ;#’m is convex
in its argument, together with weak convergence of the two in-plane components of the curvature
tensor, i.e.

0T Bt il B S0To Bt BtTa & :
(R}, 95, Ry RS, 9,,R; , 0) —~ (G 0, Rg, R 05,R5, 00 in L7749 (21, 5(3)),
we obtain

- RET phipt hom BT o ot HhTo Bt
Iln}ljmf ; Weur(R, " Dy’ R}, ) dVy 2/9 Weir (Rj" 9y, R}y L Ry 9y, R} ) dVy
1 1

T
= / Whom(RET DRE) dV,. (6.6)
21
Then, becaus&cyry, Wmp > 0,
o — ;i — hi—
Iln}lmf [me(RI,:l’/TVy,J 902/,) + Wcurv(Ri’iT Dy’ Rij )]dv,
J 21 ’ : :

> lim mf/ me(Rfl’_TVn’(pfl,) dv, + liminf Wcurv(Ri’,TD,/ Rfl_) dv,
hj 21 J J hj 21 J J

h ) hom 1.7 £
> [ (WSS B + WENES DRI,
1

where we have usefl (§.4) arid (6.6). Now we use the fact@iﬂ independent of the transverse
variablens, which allows us to insert the averaging operator without any change to see that

[ RS 8 Ty = [ WRETT .8, R OV, = [ W05, ) o
1 1 w

sinceﬁg is also independent of the transverse variable. Hence we obtain altogether the desired
liminf-inequality

I5(0%, Re) < liminf I7 (¢} | R: )

0'%o o) S h P> K,
for

I5(¢0. Ro) = /Q [Wio™(V (n.0AV.00, Ro) + WaW(RE DRo)]dV,,
1

= / [ngm(v(m,nz)Av.goo, Ro) + WHOMRY DRo)] dw. ]
w

6.3 Upper bound—the recovery sequence

Now we show that the lower bound will actually be reached. A sufficient requirement for the
recovery sequence is that

V(go, Ro) € X = L" (21, R®) x LYP+1 (21, SO3))
El(pgj — ¢p in L7 (£21, R3), Eflj — Ro in LYPH9(2,S03)) :

limsupl; (¢}, R,) < 1 (@0, Ro).
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Observe that this is now only a condition Iﬁ(gao,ﬁo) < o0. In this case the uniform
coercivity ofl,fj (<p2j,§2j) overX’ = HL2(21, R®) x wlltrta (2, SO(3)) implies that we can
restrict attention to sequenceﬁﬁj,ﬁij) converging weakly to somépo, Ro) € HY?(w, R3) x

wlltrta(y, SO3)) = X,, defined over the two-dimensional domaironly. Note, however, that
finally it is strong convergence il that matters.

The natural candidate for the recovery sequence for the bulk deformation is given by the
“reconstruction”

</)£j (11, n2, 13) ‘= m(n1, n2) + hjn3b* (1. n2) = @o(n1, n2) + hjnzb* (N1, n2),

where, with the abbreviation = ¢g = Av.¢g at places,

e — I — —  He— M= - —
b*(n1, m2) 1= — (Roz, my)Ro1+ — (Ro,3, my)Ro 2+ o), Ro,3,
M+ e M+ e
A _
1= Vm|0), Ro) — 2].
Om 2M+?»[(( m|0), Ro) — 2]

Observe thab* € L2(w, R%). Convergence op; in L'(£21, R%) to the limit go ash; — 0 is
obvious. ’

The reconstruction for the rotatiaRg is, however, not obvious since on the one hand we have
to maintain the rotation constraint along the sequence and on the other hand we must approach the

lower bound, which excludes the simple reconstrucﬁ:ﬁp(nl, n2,m3) = Ro(n1, n2). In order to
meet both requirements we consider therefore '

Ei}. (11, 12, 13) := Ro(n1. 12) - eXp(hjn3A* (1. n2)).

where A* ¢ s0(3) is the term obtained i (6.5), depending on the giv&n and we note that
A* e LYP+i(w,50(3)) by the coercivity of W, It is clear thatﬁflj e SO3), since exp :

50(3) — SO(3) and we have the convergenEé/ — Roin L¥P+4(2q, SO(3)) for h; — 0.
Since neitheb* nor A* need be differentiable, we have to consider slightly modified recovery
sequences, however. With fixed> 0 chooseb, € W12(w, R3) such that
||bg — b*||L2(a),R3) < &
and similarly forA* chooseA, € Wl1tP+4(w, s0(3)) such that
[Ae — Al L14p+a (,503)) < &-
This allows us to present finally owecovery sequence
fﬂf,j,s(nl, 12, 13) ‘= @o(n1, n2) + hjnsbe (N1, n2),

Eﬁj,g(m, N2, 13) := Ro(n1, 12) - €Xp(hjn3Ae (11, 12)).
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This definition implies

Vwﬁj,g(nl, n2, n13) = (Veo(n1, n2)1hjbe (N1, n2)) + hjn3(Vbe(n1, n2)10),

et = e
R,{j,ea,,lR,Ej,S = exp(hjn3A:)T RE[9,, RoexpthjnzAe)

+ RoD exp(hjnaAg).[hjnzdy, Acll,

et = =

Ry 05, R), . = explhjnaAs)" RG [0y, RoexpijnaAe) 6.7)
+ RoD exp(hjnzAz).[hjnadn, Acll,

et = =

Ry 05K, . = exphnaAs)" RG (9,5 Ro expijnaAe)

+ RoD exp(hjnzAg).[hjAcl]
= hj exp(hjn3A.)" D expthjnzAe).[Ac].
with 9,, A, € s0(3). In view of the prominent appearance of the exponential in these expressions it
is useful to briefly recapitulate the basic features of the matrix exponential exp actigdnWe
note
exp :s0(3) — SO3) s infinitely differentiable
VA eso(3): |expA)| =+/3, hence

exp : LYPH(2q, 50(3)) — L¥PH9(02¢, SO3)) is continuous 6.5
Dexp :s0(3) — Lin(so(3), M®*®) is locally continuous

VH €s0(3): Dexp0).H =H,

VA, H €s0(3): exp(A)T - Dexp(A).H € s0(3).

Note that by appropriately choosirtg, ¢ > 0 we can arrange that strong convergence of all terms
in (6.7) to the correct limit still obtains by usir.8)s. Now abbreviate

ik

= R (Veo(n, n2)b*) € M3,

Vi, =Ry [(Volre, n2)lbe (11, n2) + hjna(Vbe (n1, 12)0)] € M>,

£ = R (Voo(n, n2)1be (1, n2)) € M3,

gi . phT 4 .
Ehj.,s = th,gamth,g €s03), =123,

C e (6.9)
t:=Rl8,Roes0(3), i=12,

Apj.e 1= expthjnaAc (1. 12)" D exp(hjn3Ac (11, 12)).[Ae] € 50(3),
ﬁ,ﬁj,g — R;fgo,; Rij’g(nl, 12, 13) € T(3),

Ro(n1, n2) = REDRo(n1, m2) € T(3).
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We note that by the smoothnessaf € Wl1tP+4 (w1, s0(3)),

AR e — Aell a3y — O @shj =0,

||€2}l,s — 8l Lo (2503 > O ash; — 0,
S (6.10)
”th - VO”LZ(Q]_,M?’X?’) —0 aSh, g O,

IV, = Ull L2y m3+3) — 0 ashj, & — 0.

The abbreviations irf (6].9) imply
ot B 7 11 g2 loer. o
Iy @y o Ry, ) :/Q <me(v,ij) + W:urv(éhj,g,{%hjﬁs, h_thj,aaVBth,s)) av,
1

fad ﬁ,l th ~
= [me(V/é:l]) + VV(ZKUW(E E Ahj,é‘)] dV 5

2 hj,s’ hj,S’
where we have used the fact that b, in the definition of the recovery deformation gradig¢nt(6.7)
is cancelled by the factor/L; in the definition ofl,fj. Hence, adding and subtractimignp(ﬁ),
P B )= [Wnp@) + Winp(VE ) — Winp(U) + W, (€ 602 A, )]dV,
hj gohj,t?’ hj.e’ ™ o mp mp hj mp CUVi“hj.e> “hj,e’ hj.e n

_ /Q [Winp(D) + Winp(U + V5, = T) = Winp(0) + Weur($1)1dV,
sincevlvmp and Wy are both positive, we get from the triangle inequality
< /Q l[me(ﬁ) + Winp(@ + Vi, = U) = Wnp@)| + Wi, 8%, A, 1AV,
expanding the quadratic enerf§mp we obtain
= /g [Winp(@) + [Wnp(D) + (DWmp(0). Vi, — )
1

+ D2 Wanp(D).(V5, = U, Vi, = D)l + W€, 672, Ay 01dV,
< /Q 1[me(ﬁ) + IDWap@)IIV5, = Ull+ CIIVj, = UIP + W8, 6%, A, 1AV,
for ||§§lj — ﬁ” < 1 we have
< fg l[me@ T (C+ 1D W@V, = Ul + Wen, 62, Ay 1AV,
sincel| DWinp(D)|l < C2I|U]| we obtain
< /ﬂ 1[me(ﬁ) + (€ +ITDIVS, = Ul + WaanE . 872 Ay 1AV,

and by Hilder’s inequality we get

= ’1 ’2 ~ ey el ey
< \/Q [me(U) + W:UI’V(EIEJ*,S’ Eij,s, Ahj,&)] an + (C + “U”LZ(.Ql))”VZ/ - U”LZ(QJ_)‘
1
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Continuing the estimate with regard tbg“urv(‘e’,:l’:g, Ei’fg, Ahj,g) and adding and subtractiri_% we
obtain ' '

. ~ 1 2
i (h o Ry ) < /Q [Winp() + Weund(8, 8, A™) + Weury (€7 67 Any o)
1
- Wékurv(%’ Ez’ A*)] dV’7
+(C + Ul 2@V, = Vo + Vo= Ullzgg,
< [ b+ Wit 6 47310,
21
1 2 7
+ ||W:UI’V(E§U’8’ Elju,a’ Anje) = Wéﬁurv(eé’ {%’ Al 12y
+ | Weun(E5, 8, Ae) — Weun (85, 85, A% 10y
+(C + Ul 220UV, = Vol Loy + 1Vo = UllLagay)-

Now takeh; — O to obtain, by the continuity o, in its first two arguments anfl (6.]10)

limsupl? (¢ B )< / [Wino(D) + Wi (8, €2, A5V,
hji—o0 ” 2

+ | Wean (65, 5. Ae) — W (65, €5, ANl 1y
+(C + 1Tl 2@V = Ull2ggy-
Since
IV — U112 = RS (Voo(ni, n2)lbe) — Ry (Yo, 12)1b*)]12
= I RS (Voo(n1, n2)1be) — (Voo(n, n2) b2
= |(Voo(n1, n2)Ibe) — (Voo(ns, n) b1 = llbe — b*|1%,

we get, by lettinge — 0 and using now the continuity ¥/, in its last argument together with
[|[As — A*||L1+”+q(w,50(3)) <g, the bound

hj—0

im suplf. (o, .. R, ) < fﬂ WD)+ Wi (8, 6, A7V,
- /9 1[me(ﬁ) + wehomd 12)1qy,
= /Q 1[Wr2‘;m<wo, Ro) + Wa(Ro)] dV.
Sincego, Ro are two-dimensional (independent of the transverse variable), we may write as well

Iimsgplﬁ,wﬁj,gﬁiﬁs) < / [Who™(V (1.0 AV.00, Ro) + Whaw(f0)] AV,
hj% ; -Ql

= / [WhO™(V 1.5y AV .00, Ro) + WEST(R0)] dw = I§(¢0. Ro).
w
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which shows the desired upper bound. Note that the appearance of the averaging operator Av is
not strictly necessary since the limit problem for > 0 is independent of the transverse variable
anyhow. This finishes the proof of Theorgm|5.2. O

7. Proof for zero Cosserat couple modulug., = 0

Now we supply the proof for Theorefn 5.3, i.e. we show that the formal limjtas> 0 of the
r-limit for u. > 0 is in fact thel-limit for ©. = 0. This result cannot be inferred from the case
with i, > 0 since equi-coercivity is lost.

REMARK 7.1 (Loss of equi-coercivity) If we considdr-convergence in the weak topology of
W12(2, R®) for the deformations instead of working with the strong topology &f (2, R3),
i.e. assuming for minimizing sequences a priori th&j, [l ,.2(s) is bounded, then the problem
related to a loss of equi-coercivity does not appear and thienit result for u. = 0 is an easy
consequence of the case for > 0.

Foru. > 0 equi-coercivity is enough to provide the uniform bound on the deformation gradients
in the minimization process. The crucial question is whether we obtain a uniform bound on the
deformation gradients in the minimization process alsogdpr= 0. For thickness: — 0 the
deformations of the thin structure might develop high oscillations (wrinkles) which exclude such a
bound on the gradients but the sequence of deformations could still converge strabgIRinR3).
Therefore, the strong topology df’ (£2,R%) is the convenient framework foF-convergence
results.

In order to circumvent the loss of equi-coercivity we investigate first a lower bound of the
rescaled three-dimensional formulation for the limit case= 0.

7.1 The “membrane” lower bound fof. = 0
We introduce a new family of functional’%“mem : X’ — R, where all transverse shear terms have
been omitted, more precisely

, 7t DR 7t - -
1;™Mg?, Vit R, DIRY) = / [Winp(@5, ™) + Weur(85)]dV, > min w.rt. (o, RY),
nes2y

_j J—
U, =R"TF], wfpl () = g5(n) = ga(c () = ga(n1, 12, b - 13) = gd(1, N2, 0),
0

—4 -4
Uy Up12 O

Ufz’mem= Uﬁ,zl Ui,zz 0
0 0 Uja
RE% 007 (RYF, 0y,0%) 0
= <Egd’t’8n1‘pﬁ> <E§d’j’3nz¢ﬁ) 0 ,
0 0 LR3E, 0,50")

I =y x[-1/2,1/2], w C do,
RF: free onfol, Neumann-type boundary condition
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—t.me —f.mem A —t, mem i —
Wanp(@,) = pellsym(@,™" = )2 + 5 trlsym(@; ™" — 1)) =2 Wis"(Vp., B,
f Zl+p T ft it ft it
C
Weurd( &) = 1 (L+ aaL? K5 1) (aslSym&; 12 + sl skews] |2 + a7 tr[£;]%)1TP)/2,
12

& =RTDIR (.

Note that for (¢, R*) e X the productﬁz does not have a classical meaningVii* ¢

L?(21, M**3). However, the producﬁi does already have a distributional meaning because
R? e wlltrta(2,, SOB)) andVet € W17 (21, M3*3). Accordingly, we define the admissible
set

—if,mem

AMeM:— (¢, R) € X | symU, " e L(£21, M¥3), R e WPt (0., SO@3)),
91,3 01 = g4(n) = gaC1. n2, O}

where the distributior; ™" is regular and belongs t?(s21, M3*3). As in (5.2) we extend the
rescaled energies to the larger spacthrough redefining

Lmem ¢ oh 4 Bt ~iBh _ Ig’mem((ﬂﬁ, V,};(/’ﬁ,ﬁ:s Dzin) if (¢%, R) € APe™,
Iy ", Vye®, R°, Dy RY) = .
+00 else inX.

Observe that

Vh>0: I

Mlpe=

which implies [18, Prop. 6.7] that

(", Viig! RY, DR > 17, Viip®, R, DIRY),

T # i #,mem
r Ilmhmf Ihl,u.:o >Tr Ilmhmf I, . (7.2)
Hencer - liminf 1™ provides a lower bound faF - lim inf I}fl ,+ Putting inequalitie{ (5]5) and
He=
(7-3) together, we obtain the natural chain of inequalitieXon

r-liminf 12" < r-liminf 17,
He=

D=1 (7.2)

‘M(r>

< r-limsuplf, < lim (- lim 1
He=! He—>

7.2 A lower bound for the “membrane” lower bound

Let us consider the following energy functiongl™™: X — R:

PR / [Wao ™ (Vs AV.0(11, 12, 13), B) + W (R)]de  if (g, R) € ATS™
0 . = [}

400 else inX,

wherew;/o™C is defined in[(5.7) and the admissible set is now
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AT®™:= (¢, R) € X | sYyM(R1|R2)T V(yy.n)AV.0 € L3(£21, M?*?),
R e whrti(p, sO@3)), wfrl (m) = g4 = gd(n1, 12, O},
0

with a distributional meaning fatR1|R2)” V(yy 5 AV.¢. Note thatrZ ™™ = 75-°. We next show

LEMMA 7.2 (Membrane lower bound) For arbitrag O,Eé) €X,
15" g0, R < liminf 17}, K )
J ’

whenever _ _
(pgj — ¢p in L7(21, R, R,ﬁj — Ry in LYPH(2q, SO3)).

Proof. Observe that we can restrict attention to sequen(z@%,ﬁfﬁ) € X such that

Iﬁjﬁmem(wflj,ﬁflj) < oo since otherwise the statement is true anyway}f}?’em(wzj,ﬁflj) < 00,
then equi-coercivity with respect to rotations remains untouched by a changéiggrto Ws™

in the local energy. Hence, as usual by now, we can restrict attention to sequences of rﬁ%}tions

converging weakly to somgg € Wltr+4(», SO3)), defined over the two-dimensional domain
o only. However, we cannot conclude thatis independent of the transverse variable, in contrast
to the case withu, > 0.

Along sequence&pﬁj,?ij) € X with finite energy the produqﬂ/hj)@hj,g, 3,73<p£/_) remains
bounded but otherwise indeterminate. Therefore, a trivial lower bound is obtained by minimizing
the effect in the 33-component in the local enevgy™. To do this, we need some calculations: for
smoothy : 21 — R3, R : o c RZ — SO(3) define the “director” vectob* = (0, 0, 0*) € R3
with b(0) = (0,0, 0)” e RS2 formally through

W (V¢ B) = W "(RY (Ve 16")) 1= inf Werg ™R (V10,10210(@)))-

The real numbep* which realizes this infimum can be explicitly determined. Without giving the
calculation, which follows as i (6.2), we obtain

A — .
o"=1 {(Vnel0), R) —2] =1 — tr[sym((R1|R2)" V@ — 12)].

A
C2u+A 2u + A

Note that ifR € SO(3) and syni(R1|R2)” V(y,.ny® —12) € L2(21, R3) one hap* € L2(£21, R3).

For Whom(Viy m@: B) 1= Wmp(RT (Vi elb*) after a lengthy but straightforward
computation we obtain

Wr?\?)mo(v('ll,nz)‘/” R) = H||SYM(E1|E2)TV(U1,U2)¢ ~ 1)

- trisym((R1IR2)” Viyynp @ — 12)1%.

A
21+ A

Along the sequencepgj , E,ij) we have therefore, by construction,

1 n homo t ot

ST ohi 4 -, T f
WnTgm(Rhi Vn’ﬁt?h/) = wnTgm<th (V(nl,nzﬂ!’h, 0
. . . i\ hj
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Hence, integrating and taking the liminf we also have

liminf | Wnp(R;," ,?fgo,f )dv, > I|m|nf/ W™ (Virg, 01 » Ry ) AV (7.3)
hj 21 £21

As in (6.4) (and subsequently) the proof of statenjent 7.2 would be finished if we could show

weak convergence 617(,,1,,,2)<p£/, in L2(£21, M3%3) whenevergozf — @ strongly in " (21, R3)

and I,fj’_mem«p,fl_,ﬁzj) < oco. Boundedness and weak convergence of the seqﬁ@g@z)w,ﬁj in

L2($21, M3X3j is, however, not clear at all, since we now basically control only the “symmetric
intrinsic” term||sym((R1|RZ)TV(nl,,]Z)(p — 1,)||? in the integrand. Instead, we will prove a weaker
statement, namely that

=t B i -t B 2 2x2
(Rji,hj|Rﬁ2,hj)TV(n1,nz)¢’hj - (RI::II.,0|RE,O)TV("1J72)¢(§ € L(£21, M9, (7.4)

after showing that the above expressions have a well-defined distributional meaning along the
sequence, since,, ,,2)<ph has no classical meaning if we only know tk:ét € L"(£21, R3).
In order to give a preC|se distributional meaning to the expre55| (7.4) along the sequence

we first define, for smootly € C®(21,R% andR € Wlltrti(2, SO(3)), an intermediate
functionw,

@1, ¢)>
(R2,9)) "

iR R% W, n2me) = (

This implies thar € Wl1tr+d (21, R?). We have

RiR)TV _ (R 9,0) (R1, an2¢>), DR B dp ((a,,@l,q» (3, R1. ¢))’
(R1|R2) (1.2 ® ((Rz, 3,0)  (Ra, 3, ) (R1|R2).¢ (3;71R2,¢) (aanz’ )
_ (9 (R1,9) 95,(R1LB)\ _ % 5T - —
VY= ( (B2 $) O (Ro. ¢>) = (R1[R2)" Viy,n¢ + D(R1|R2).¢.
The last equality shows
(R1IR2) Vg ¢ = Vigymp¥ — D(R1|R2).9. (7.5)

We note the local estimate

ISYMVyy i ¥ 112 = ISYyM(R1|R2) T V.00 @) + SyMD(R1|R2).9) |12
< 2lsym(R1IR2)T Vg i #) 1% + 2Isym(D(R1|R2).¢) ||
< 2sym(R1IR2) T Vi i ®) 1% + 2 D(R1|R2).¢||2
< 2sym(R1|R2) T Vi iy ®) 1% 4+ 21 D(R1R2) I - 16112
The last inequality implies after integration andlder’'s inequality (reminder: = &S};}FTP{;@Z,

cf. G.1))

[ IsymVi v 2av,
21

<2 /Q ISYM((R1IR2)" Vi, )12 AVy + 21 RG24 10 ) 1917 2, 23
1
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Moreover,

; (ISYMViy ¥ 12 + ¥ 12 dV, < 2 /Q Isym(R1|R2) Viyy.mm®) 12 AV,
1 1

o2 2 2
+ 2“R ” Wl,l+p+q(91) ||¢”L’(.Q]_,R3) + 2”¢”L2(91,R3)’

since|¥]12 = (R1, ¢)? + (R2, ¢)? < |IR1l12II81% + IIR212¢11? = 2]|¢|I%. Furthermore, adding
and subtracting  yields

f (ISYMV W 1I% + 1% 1) AV,
21
<2 /9 1 ISYM((R1IR2)" Vs, iy ®IZ AVy + 21 R 114p10 ) 1917 0, m3) + 208122 Rs)
= 2/ ISYM(R1IR2)" Vi npd — L2 + 12)|12dV,
21
+2|R|3 lopll? +2)¢l12
Whltr+a (2q) L7 (£21,R3) L2(21,R3)
< / AlIsym(R1R2) " Vi — 12)[12 + 4111212 dV,,
21
+2|R|3 lpll? +2)¢l12
Whltr+a(2q) L7 (£21,R3) L2(£21,R3)"
Hence, consideringflj instead ofp, along the sequenQ@ﬁj,ﬁZ}_) € X with
1;™"g} R}, < oo,
and with the distributional meaning of the gradient@ﬁp, we obtain the additional uniform bound
4 —
/ (ISymV i ¥ 112 4 1912 AV, < -1 R ) + f 4121 v
21 ’ 21

2 g2 g2
+ 2”th ||Wl,l+p+q(gl) ”(phj ”Lr(QLRS) + 2||(ph] ”LZ(QLRS)

< Q.
The classical Korn second inequality without boundary conditions on a Lipschitz domain [68,
Prop. 1.1] implies therefore that

00 >/ (IsymV iy, n2) Wi, 12+ 1P, 1) dv,,
21

1/2
= / . 2[ / (ISYMV .50 ¥, (1. 12, 1) 112 + 1, (01, n2. 13) 1) dw} dns
-1/ )

WV

1/2
/ l/z[c; [ IV ngn2) ¥h; (1. 2. 1) 12 + 1@, (11, 02, n3)11%) dw} dns.
- w

which yields the boundednessf;;, ;;,) ¥, in L?(£21, R?) and weak convergence of this sequence
of gradients to a limit. By construction we already know ttla} — Yy € L%(£21,R?) (by the
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assumed strong convergenceRy, and<p,5i). HenceV(y, ,,) W, converges weakly t&y, ;,) %o
Since we know as well tha, B, — 3, Rg in L¥*7+(21, M>®),i = 1,2, andg; — ¢; in
L"(£21, R3) we obtain

D(R,IR; )¢5, — D(R] o[RS )0 € L2(21, MP?),
Looking now back af(7]5) shows that

(R, 1R 1) Vo i, € L3821, MP?) (7.6)

is a well defined expression with distributional meanin(yg)‘l,nz)cpgj for which (7.4) holds. Due to

the convexity oﬂvr?]%mo in the argument syR1|R2)” V(,,.n,) ., We may pass to the limit ifi (7.3)

to obtain
I —t,T < hj —
liminf Wnp(Ry,! V' ¢} ) AV; > / WHOMO (V1. ¢ Rey) AVry. (7.7)
j 21 21

The convexity ofWha™ and Jensen’s inequality (5.3) show then

1/2

/ Wi (V1.0 AV.9 (11, 12). R) doo < / , W™ O(V (1.2 @ (11, 02, 13), R) dyz dow
w

wJ—

Z\/.;) Wr?]%mo(v(nl,nz)(/)(nl, n25 773)7 E) an (78)
1
Combining [7.8) with[(7]7) gives
iminf [ Winp(ReT Vgl ydv, > [ whomoy,, A R)d
m),.m o mp( hj ﬂ‘phj) n = mp - (VanAV.9(11, 12), R) do.
J 1 X w

The proof of Lemm& 7]2 is finished along the lines[of(6.4). Note [hat (7.6) definitely does not yield
control of Vi, )¢, in L2(21, M*2). 0

Proof of Theorem 5]3. To finish the proof ofl"-convergence for zero Cosserat couple modulus
(Theorenj 5.8) we observe first that Lemjmg 7.2 implies that

1™ < r-liminf 17,
hj !

which is “almost” a liminf result forl,f’mem since could be strictly smaller. We combine

this result with the chain of inequalitie$ (V.2) to conclude that Jon = L7 (21, R3) x
LYTPTa (21, SOB)),

f,mem
IO

15" < r-liminf 772" < -liminf 17,
He=!

< I-lim suplffmc:o < MIiTOF-Iim 1,§M>0 =15° (7.9
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Since, howeverf; ™" = 13’0, the last inequality is in fact an equality, which shows that

r-imrt,.  =1:°
hj |IM:=0 0
This gives us complete information on the behaviour of sequences of minimizing problems for
e = 0, should such sequences exist and converge to a limit in the encompassing space [

8. Conclusion

We have justified the dimensional reduction of a geometrically exact Cosserat bulk model to its two-
dimensional counterpart by use Bfconvergence arguments. The underlying Cosserat bulk model
features already independent rotations which may be identified with the averaged lattice rotations
in defective elastic crystals ji. = 0. Thus the appearance of an independent director Relib

natural and not primarily due to the dimensional reduction/relaxation step. The argument is given
for plates (flat reference configuration) only, but it is straightforward to extend the result to genuine
shells with curvilinear reference configuration, and it should be noted that the extension to shells
is independent of geometrical features of this curvilinear reference configuration: the inclusion of
transverse shear effects makes the distinction between elliptic, parabolic and hyperbolic surfaces in
a certain sense irrelevant. A welcome feature of the resulfidignit for the defective crystal case

ue = 0is its linearization consistency.

Apart for bending terms, the resulting-limit is similar to the previously given formal
development in[[45] and constitutes therefore a rigorous mathematical justification of Reissner—
Mindlin type models. Future work will discuss the engineering implications of our results as far
as the numerical value of the Cosserat couple modujuand its relation to the transverse shear
modulus in classical Reissner—Mindlin type theories is concerned.
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