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We prove a nonfattening condition for a geometric evolution described by the level set approach.
This condition is close to those of Soner|[21] and Barles, Soner and Sougahidis [5] but we apply it to
some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for
graphs with initial data convex at infinity, without any restriction on the growth at infinity, by seeing
the evolution of the graph of a solution as a geometric motion.

1. Introduction

We consider the evolutiofi; of a given initial hypersurfacéy of RV *1 moving according to the
normal velocity

V(x,t) = h(ny, Dny), (1)

wheren, andDn, stand respectively for an oriented unit normal and the second fundamental form
of I; atx € I3, andh is the given evolution law. The hypothesis bmwill be introduced later but

the key assumption in this paper is thiais elliptic with respect to the second variable. Namely, if
X, Y are symmetric matrices, then

The most typical example we are interested in is the celebrated mean curvature evolution where

Vix,r) = h(Dny) = =Tr(Dny). 3)
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To describe the evolution af; according to[([L), different ways have been proposed; see the
book of Giga[[18]. Here, we follow the level set approach introduced by Barles [1] and Osher and
Sethian[[20], developed first independently by Evans and Spruck [12] and Chen, Giga and Goto [8].

The level set approach has the advantage of being defined for al tin8, even past some
singularities. We refer the reader to Secfipn 2 for the definition and recall here that the evfjution
by the level set approach is given, at each tiinas the 0-level set of an auxiliary function, namely
I, = {z € RV*L : y(z, 1) = 0}, wherev : R¥+1 x [0, +00) — R is the solution of a suitable
parabolic partial differential equation of the form

ov

5, T FDv, D%) =0 inR¥* x (0, +00). (4)

In this approach, one of the main issues is the so-cddltdning phenomenomhich happens
when the fronU@0 I; x {t} has nonempty interior iRV *+1 x [0, +-00). Some examples are known
for which such a phenomenon arises (see llmaneh [16] or Soner [21]). This fattening phenomenon
is closely related to the nonuniqueness of the geometrical evol{iion (1). We refer to lirhahen [16],
Soner[[21], Barles, Soner and Souganidis [5] or Barles, Biton and LLey [3] for further details.

Nevertheless, in_[21] and[5] (see alsol[22] ahd] [19]), the authors give sufficient conditions
ensuring that the front never fattens. For instance, Soner proves that compact hypersurfaces which
are strictly starshaped never fatten for evolutions with normal velocity of curvature type given (see
Sectior 4.11).

Our aim in this article is to extend this method to unbounded sets which are entire graphs
of functions fromR" into R. Even if Soner’s condition could be applied for some unbounded
hypersurfaces (like convex graphs), it does not hold for the case we have in mind (graphs which are
convex at infinity, see below). I11][5], the authors give a more general conditigffoypersurfaces
but it is not clear how to extend it to unbounded cases.

To be more specific concerning our result, figtoe the boundary of an open subsktof RV +1
(notice thatl'p has empty interior). We prove that under suitable assumptions on the nonlinéarity
appearing in[(§), the front never fattens if there exists a faly). - of affine dilations going to
identity ase goes to 0 and such that

d(Ip, A:(Ip)) :=inf{la — b] : (a,b) € Iy x A.(Ip)} >0 foranye > 0. (5)

This condition is close to the one 6f [5] but is stated in a more readable way which does not require
the initial setl to beC2.

Our main contribution is to show that this condition can be used to prove the uniqueness of the
evolution by mean curvature of entire graphs which are convex at infinity. We say that a continuous
function f : RN — R is convex at infinityif there existsR > 0 such that, for any convex set
C c RNM\B(0, R), the restrictionf : C — R is convex. Our result is the following:

THEOREM 1.1 For any continuous initial datg : RY — R which is convex at infinity (without
any growth restriction), there exists a unigue solution of the mean curvature equation for graphs

du (D%uDu, Du) N
— —Au+——2""-0 inR 0, , 6
o T T D x (0. +00) ©

with u(-, 0) = uo.
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The existence of a smooth solutiore C(RY x [0, +00)) N C®(RY x (0, +00)) was proved
by Ecker and Huiskem [11]. It is very surprising that this result holds without any growth restriction
at infinity.

The question of uniqueness of these solutions without a growth restriction at infinity is still open
in the whole generality. Several partial results are known: In dimensioa 1, the problem was
completely solved independently by Chou and Kwang [9] andlin [4]; in any dimension, uniqueness
was proved in the following situations: with polynomial-type restrictions on the growdl of [2],
whenug is radially symmetric ifRY in [7], and whenug is convex inRY in [3]. After this paper
was completed we learned that Ishii and Mikami had obtained_ in [18] a uniqueness result for the
motion of a graph byR-curvature under some convexity at infinity type condition.

One could think that Theorem 1.1 is an easy generalization of the latter case but we point out
that a very small perturbation af) even on a compact set can modify the behaviour of the solution
everywhere.

The uniqueness result of Theorem|1.1 holds in fact for more general quasilinear equations, the
class of which is described inl[3] (see Secfiorj 4.2). Moreover, we give an example (see Reinark 4.1)
of application of [(b) to initial data which are not convex at infinity. It follows first that the set of
functions convex at infinity is not the right class of uniqueness for equationg |ike (6). Secondly, it
emphasizes that our condition is of geometrical nature in the sense that we do not have any idea of
how to prove such a result by pde methods.

The paper is organized as follows. In Sectign 2, we briefly recall the level-set approach. In
Sectior] B, we state and prove the sufficient condifign (5). The last section is devoted to the proof of
Theoreni 11l and to its extension to other motions.

2. Preliminaries about the level set approach

In this section, we recall what we need about the level set approach and give the definition of the
generalized evolutio;. For more details see the bodk [13].

We start by introducing some definitions and notations. Given an open sﬁﬁsetRN“, we
say that(Ip, 24, £25) is anadmissible partitionif Iy = 924 (9 denotes the topological boundary)
and2; = RV+1\ (Ip U 24). Notice that/p has an empty interior.

If (Io, .QJ, £4) is an admissible partition, then tiseggned distancé; (-, I'o) to I is defined
by

dz, Iy ifz € 2,
dsy(z,Ip) =10 if z € Iy,
—d(z, I'y) ifz e £,

where d is the usual nonnegative distanc®&W+1. Clearlyd, (-, Ip) € UC[RN*L), where ‘UC”
denotes the uniformly continuous functions.

We aim at defining an evolutionl;, 2,", £2,7),>0 starting from (I, 27, 2,) where I;
evolves with normal veIocityBl). Looking for an auxiliary function: RV*1 x [0, +00) — R
satisfying, for every > 0, the conditions

{fv(,.) =0} =13, {v(,1) >0} = .Q[" and {v(-,1) <0} =82,
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we find thatv has to be a solution, at least formally, of the so-cakee| set equatiofor (I,

9 .
8—’; 4+ F(Dv, D%) =0 inRN+1 x (0, +00), -
v(-,0) = vg in RN+1,

where, for instanceyy = d, (-, Ip), and

F(p, X>=—|p|h<—£,<—i<ld— p®2p>X> ) ®)
|p] |p| |pl Ipt

for p € D(F) ¢ RVt andX e Sy.1. Here and belowSy,1 denotes the space of symmetric

matrices of sizeV + 1, andM, . is the restriction to the subspage of the linear map induced by

M e Sy.1. Note that, in generalF has singularities in the gradient variable andr) = RV *1,
From the very definition of, it follows that

Fp,up@ p+iM)=rF(p,M) forallpe D(F), M eSy+1, 220, neR, (9
and from [(2), we have
M>N = F(p,M)< F(p,N) forallpe D(F), M,N € Sy41. (10)

Itis worth noticing that[(P) implies that the equation[if (7) is invariant under changes of function
v > ¢ o v with ¢’ > 0 whence we can work with bounded solutions ¢f (7).

Moreover [2)-{(IP) imply tha{(7) is degenerate elliptic and a maximum principle is expected.
To avoid technicalities, we state the comparison principle as an assumption:

(H) If v (respectivelyw) is a bounded uniformly continuous viscosity subsolution (respectively
supersolution) of (7)H{8) satisfying-, 0) < w(-, 0), thenv < w in RV +1 x [0, +-00).

Assumptions orF (or equivalently orkz) which lead to this comparison principle are discussed in
Sectior] 4. We refer to [10] for a general discussion of the theory of viscosity solutions.

Now, we can state the following theorem and define the generalized evolutignwth normal
velocity given by|[(1):

THEOREM2.1 Suppose tha[](Z) andi) hold. Then, for anywg € UC(RN*1), there exists a
uniqueU C viscosity solution of[(J). Moreover, set
(o, 2. 24) = ({vo = 0}, {vo > 0}, {vo < O}) (11)
and consider
(I, 2}, 27) == ({v(-.1) =0}, {v(-, 1) > O}, {w(-,1) < O}).

Then the family(I7, £2;7, 22, )i>0 is independent of the choice of € UC (RN +1) satisfying[(11).
Hence, it allows one to defin@?);>o as the generalized evolution 6f with normal velocity [(1)
starting from the initial admissible partitiaip, .Qar, 24).

We do not prove the theorem here. Various assumptiong ¢or /) can be required in order
that (H) and the theorem holds true. In their celebrated papers, Evans and Spruck [12] and Chen,
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Giga and Goto[[8] proved in particular Theorgm|2.1 for the mean curvature evolution (3). In that
case, the level set equatign (7) is the well-known mean curvature equation

v (D%vDv, Dv) N1
— —Av+——77 =0 inRV*x (0, )
o VT T Do x (0, +00)

Other cases are treated in Giga, Goto, Ishii and $ato [14], Barles, Souganidis and Soner [5], Soner
[21], Ishii and Souganidis [19], Ishil[17], Souganidis [23], Giga and Sato [15], and Barles, Biton
and Ley [3]. See the book of Giga [13] and Secfidn 4 for explicit examples.

3. A sufficient condition for nonfattening

In this section we give a condition on an initial hypersurfdgeunder which its generalized
evolution never fattens. To this end we need the following assumption: there exists a positive
continuous real-valued function such thain(1) = 1 and

F(p, M) =m(A)F(p,M) forallpe D(F),M € Syy1,A >0, (12)
whereF is defined bymS). Lef be the group of affine dilations &V 1,
T ={A: RV o RV Az) = Az + 20, A € R\{0}, z0 € RV *1}.
LEMMA 3.1 Assume thatH) and [12) hold. Suppose th@(F) is invariant under dilations,

(I, .(25“, 24y) is an admissible initial partition, andl < 7 with coefficientA # 0. Let v
(respectively 4) be the solution of (7) associatedd@(-, Ip) (respectivelyd; (-, A(1p))). Then

t
) =av[ A7z, .
vA(z, 1) U<A Z Am(k))
Proof. Suppose thatdz = Az + zo. Let vg = d,(-, I'p) (respectivelywg = d; (-, A(Ip))) andv
(respectivelyw) be the unique uniformly continuous solution of (7) with initial daggrespectively
wo). Observing thatvg = Avg o A1 we set

N Z—20 t
w(z, t) = Av( P )»m()\))‘

Using [9) and[(T2), one checks thatis a solution of[(¥) with initial datavg. Therefore we get the
lemma by the uniqueness result fof (7). O

Let A, B be two subsets d&&"V+1. We define theninimum distance(A, B) betweenA andB by

d(A, B) .= inf —b|.
( ’ ) aeiﬁbeB'a |

LEMMA 3.2 For any admissible partitioi$b, 24, £25) and (1o, 25, 24), if 24 U I C 24
then

d(lo, Io) > n >0 = dy(-, Io) > dy(-, [o) + 1.
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21

FiG. 1. The different cases under consideration in the proof of Lefnnja 3.2.

REMARK 3.1 A consequence of the comparison assumptionapd Lemm@Z is an inclusion
principle which roughly states that, f2; and 27 are such tharzj ¢ 2, then this inclusion

remains true for all time2,;" ¢ 2,". We point out that this |ncIuS|on pr|nC|pIe is an important
underlying property of geometrical evolutions satisfyip (2). For a general study of geometrical
evolutions which satisfy this principle, see Barles and Souganidis [6].

Proof of Lemma 3]2. We distinguish several cases according to the positian(sée Figur¢]L).
CasEliz; € 25 UTp. Leta = d(z1, I'b) andb = d(z1, [o) = |z1—Z1/, with Z1 € Ip. Consider
apointzy € [z1, Z1] N I'o. We have
ds(z1, To) — ds (21, 10) = —a + b = —a + |21 — 24| + 12} — Z1l.
But|z1—2z)| > d(z1, T'o) = a and|z} —Z1] > d.(I, Io) > n; therefored, (z1, Io)—d,(z1, o) >
CASE2:70 € ‘QO ﬂ.QO . Leta = d(z2, I'o) = lz2—z5| with 2}, € Iy, andb = d(z2, Io) = |Z2—22|
with Z5 € Ip. We have
ds(z2.T0) —dy(z2. To) =a+b > |25 — 22l =1
CASEB:izz € 25 UTp. Leta = d(z3, I'o) = |23 — 24| with 2§ € I, andb = d(z3, o). Consider
a pointzz € [z3, z3] N Io. We have
dy(z3, T0) — ds(z3, [o)) =a — b =|z3 — Z3| + |23 — 23 = b
But |23 — zj| > d.(I'v, Tb) > n and|z3 — Z3| > d(z3, I0) = b; thusd, (z3, To) — ds(z3, o) > 1,
which completes the proof of LemrpaB.2. |
Now, we can state the main result of this section.

THEOREM3.1 Let(ID. 23 . £2) be an admissible initial partition and assume that Thegrefn 2.1
and [I2) hold. If there exists a family4,).~o C 7 and a sequencey;).-o of positive numbers
such that

Ag Id and drlp, A:(Ip) > n. >0 fore >0, (13)

then the fronU,>0 I; x {t} has empty interior ilRV+1 x [0, +00).
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Proof. Letv andv 4, be the uniformly continuous viscosity solutions|of (7) associated to the initial
datad, (-, ') andd, (-, A (I'p)). From Lemma 31, for ever, 1) € RN L x [0, 4+00), we have

_ -1 !
VA 1) = A‘“’(A@ ¢ Aemas))’

where}, is the coefficient of4,. Next, from [I3), Lemm& 3|2 and the comparison princig, (
we get, for any > 0,
v(z,1) 2 v4,(z, 1) + 7.

Therefore
t
7t 2 )\' -1 s N . < . 14
v(z, 1) ev<«45 4 Agm(kg)>+n€ (14)

Assume now that the froft), >, I x {t} has nonempty interior RN+ % [0, +00). It follows
that there is somé, 19) € R¥N*1 x (0, +00) and some > 0 such that

v=0 inB(zo,r) X [tg—r,to+7].

SinceA, — Id, one has., — 1 and then, foe sufficiently small,

f
(As_lzo, kdﬂi&)) € B((zo,10), 1) x [to—r, 10+ 1]

Writing (14) at the pointzo, 7o), we obtain a contradiction which ends the proof. O

4. Application to uniqueness results

In this section we give some applications of Theofenj 3.1. The first application is known and
concerns the evolution of compact sets. The second, which is the main result and the motivation
of this work, gives new uniqueness results for quasilinear parabolic pdes.

We recall some explicit assumptions on the evolutionfamhich appears irf (1) or, equivalently,
on F defined by|[(8) which imply the comparison assumptiei). (

4.1 Uniqueness of generalized evolutions of compact sets
We show that Theorefn 3.1 applies to recover some results of [21] ahd [19]. We suppose first

(H1) The evolution lawh is linear with respect to the second fundamental form, h.e=
—Tr(G(nx)Dny), andG : S¥ — S}, is continuous, wher§" = {& e RV*1: |&] = 1} is
the unit sphere an.ﬂj\;+1 is the set of nonnegative symmetric matrices of ¥ze 1.

LEMMA 4.1 ([21]) Under assumptiorH(), (H) holds.
Noticing that [I2) holds with (r) = r, we have
THEOREM4.1 ([21]) Let(1v, [252 £,) be an admissible partition such thigg has empty interior

and evolves with velocitﬂl) satisfying). Suppose thastz_;{ is a compact subset which is strictly

starshaped, i.e. there existse 27 such that, for alk € 27, [z0. z[ C 2. ThenU, > I7 x {7}
has empty interior.
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This theorem was proved by Soner|[21, Theorem 9.3]. Our proof is basically the same so we
only sketch it. Up to a translation, we can suppose that= 0 and we check that the family
Aq(z) = (1 —e)z for e € (0,1) satisfies[(IB). We conclude by Theorem|3.1. It is worth pointing
out again that the previous result includes the mean curvature mjgfion (3).

We present another example of motion, namely the motion by Gaussian curvature:

(H2) The evolution lawh is given byh(Dny) = /cf . --/c;; whereks, ..., ky are the principal
curvatures off; (the eigenvalues abn,) andr™ := maxr, 0}.

In this case, the level set equatipf (7}—(8) reads

v 1 Dv® Dv\ Dv ® Dv Dv ® Dv
— — |Dv|det,| —(ld— ———— | D Id — =0
ar Pl tF[|Dv|< Duf2 ) ”( \Dul2 )+ DuP2 }

in RN+ % (0, +00), where, for any symmetric matriX € Sy.1 with eigenvalues., ..., Ay41,
det, (X) = A7 -+ A% ,,. Under assumptiorH2), (H) holds and therefore Theor¢m .1 applies (see

[19]). Moreover [(1P) holds witl: (r) = V. Thus Theore%l holds true with the same proof. In
this way, we recovef [19, Proposition 3.4] without assu egularity forIp.

4.2 Uniqueness of solutions of quasilinear parabolic pdes

We turn to our main application. Consider the following pde:

8 .
a_b: — Tr[b(Du)D*] =0 InRN x (0, +00),
u(-,0) = ug € C(RV),

(15)

whereb : RV — S;; andé‘; is the set of nonnegative symmetric matrices of sizeNote that
equation[(Ip) is quasilinear parabolic (possibly degenerate). Existence of solutipn§ to (15) is not
the point here; we refer to_[11].1[9],][3] for quite general results for any continuous initiak@ata
without any growth restriction at infinity. The question we address here is the uniqueness of these
solutions.

In [3] we show that under suitable assumptions on the diffusion matrigee below), the
graphs of the solutions 5) are hypersurface®¥f1 moving according to a geometrical law
of type [1). This makes it possible to define the generalized evolutiar

I'o = Graphug) = {(x, ug(x)) : x € RN} ¢ RN*1,

and we prove that the graphs of all the continuous viscosity solutiorns Jof (15) are contained in the
front U,>OF, x {t}. It follows that the uniqueness of continuous viscosity solutions is equivalent
to the nonfattening of the front (se€ [3, Theorem 6.2]).

In this case, the level set equation[is (7) with

Dyv Dyv Dyv Dyv
F(Dv, D%v) = —Tr|b[ = ) D?.v — 2D? ® —— + Dy, v—— ). 16
(Do v) |:( Dﬂ))( xxV ”®Dyv+ yvayv®Dyv (16)

andD(F) = {p = (p1, ..., py+1) € R¥N*1: py.1 = 0}. The precise assumptions we need are
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(H3) The mapb : RV — S;,“ is continuous, there exists a const&ht> 0 such thatb(q)| +

|b(q)q|+1(b(q)q, q)] < C forallg € RY, and there exists a continuous niap : {¢ € RV :
€] = 1} —> S, such thabeo(q) = liM; 100 b(Aq).

LEMMA 4.2 ([3]) Under assumptiorH3), (H) holds.

Roughly speaking, these assumptions allow us to control the singularitiegafrder to prove
the comparison result and apply Theofenj 2.1. Our main result is the following:

THEOREM4.2 Assume thaF defined by[(1p) satisfie$1B). If uo € C(RV) is convex at infinity,
then [I%) has at most one continuous viscosity solution.

Before giving the proof of the theorem, we make some comments. The typical example we have
in mind is
AN
1+1pl*
In this case,[(1]5) reduces to the mean curvature equation for gfgphs (6) and therefore the above
theorem includes as a particular case Thegrefn 1.1 which is the motivation of this work. For other
examples, se€[3]. A similar result for motion of a graphRygurvature with initial data convex at
infinity was obtained by Ishii and Mikami[18].

REMARK 4.1 (A functionuo which satisfies the assumptions of Theofenj 3.1 but is not convex at
infinity) Let £, g € C(RY) be such thatf is convex inR" andg(x) — 0 as|x| — +oo. Set

uo = max{ f (x), g(x)}. Thenug € C(RY) is not necessarily convex at infinity (fof = 1, take for
instancef (x) = e’ andg(x) = (sinx)/x). Butug satisfies). We do not give the proof since it

is close to the proof of Theorem 4.2. This example shows that Thegorém 3.1 applies to a larger class
of graphs than those convex at infinity.

Proof of Theorenj 4]2. From [3, Theorem 6.2], it is sufficient to prove that the generalized
evolutionI; of I := Graphug) does not develop an interior. We proceed in two steps.

Stepl. To emphasize the main ideas without technicalities, we first supposeptisatonvex in
R . Up to translatinglp, we can assume that there exigts- 0 such thatB(0, p) C Epi(ug) =
{(x,r) € RV*L: r > yp(x)}. Consider the family.A,)s~0 C 7 defined by

A =A4+¢e)ld, O0<e<l1,

and setl; = A.(1p).
We aim at applying Theorem 3.1. We claim there exists a sequenie o of positive numbers
such that

d(Io, A:(I0)) = Ne- (17)

Indeed, letzg = (xo, yo) € I andz, = A.(z0) = (1 + ¢)zo. For & in the convex subdifferential
dug(xp) of ug atxg, consider the support hyperplane

Ho={z=(x,y) e RV iy = (&, x — x0) + yo}

to Epi(uo) passing througho (see Figur¢]2). Sinceg is convex, Epiug) lies in the half-space
{y > (§,x — x0) + yo}; it follows that

d(ZS’ FO) 2 d(Zg, HO) = d(H€7 HO)’
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FIG. 2. Iy = Graphug) with ug convex.

whereH, = {z = (x,y) : y = (§,x — (1 + &)x0) + (1 + &) yo} is the hyperplane parallel ty and
passing through,. Noticing thatH, = A.(Hp), we obtain

d(He, Ho) > ¢ d(0, Hp) > pe.

Finally, for everyz, e I, d(ze, o) > pe; therefore [(If7) holds withy, = pe. It follows that
assumption(113) of Theorem 3.1 holds and we obtain the desired conclusion.
Note that Step 1 provides a new prooflof [3, Theorem 10.1].

STEP 2: The general case. From now on, we assume that theug&pconvex at infinity. Let
Ro > 0 be some constant such thatis convex on any convex subset®t \ B(0, Ro). Forx € RV
with |x| > Rg, we define the subdifferentialig(x) as the subdifferential at of the restriction of
up to any convex neighbourhood efcontained irfRY \ B(0, Ro). Since the notion of subdifferential
is local, duo(x) is well defined. Let us point out thaio(x) enjoys the following property: ip €
dug(x), then

vy € R¥ with [x, y] N B(0, Ro) =¥,  uo(y) > uo(x) + (p, y — x).

Moreoverdug(x) is nonempty as soon &s| > Ro.
With this in mind, let us state a preliminary (and technical) lemma (for the proof and a comment,
see below).

LEMMA 4.3 Assume thatg is convex at infinity. Then there is some radiRs> 0 and some
constant € R such that

(i) uois convex on any convex subset®¥\ B(0, R),
(ii) foranyx ¢ B(O, R + 1) and anyp € dug(x),

uo(x) = {p, x) < —[pl +c. (18)
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For anye > 0 and any € (0, 1), set

e r () = (1— A)[uo(lik) + s}.

The graph of:, , is the image of the graph ab under the similitudeA, ; defined by

Ae(@) = 1= Mz +(0,¢)).

Note thatA, ; — Id ase, A — O.
To conclude applying Theorem 8.1, it is sufficient to prove the following clémanye > 0,
there is some., € (0, 1) such that, for any. € (0, A,),

d(Graphuo), Graphu,,;)) > 0.

Let R andc be as in Lemmp 4]3. Without loss of generality, up to some translation, we can assume
thatc = —1. Thus we have

Vx ¢ B(O, R+ 1), Vp € dup(x), uo(x) —(p,x) <—1+|p). (19)
Sinceug is continuous, we have
vz eRY,  d((z.u0(z)). Graphuo) + (0, £)) > 0.

Thereforey, = min;<r+1d((z, uo(2)), Graphuo) + (0, ¢)) is positive.

Letx,y € RY. We want to estimate from beloyx, uo(x)) — (v, ue.;.(y))| by some constant
independent of andy. For this, let us first assume thak B(0, R + 1). We can also suppose that
|x —y| <1.Then

[Ge, uo(X) = (¥, ue s YN 2 1(x, uo(x))—(y, uo(y)+&)|—|(mo(y)+&)—(1—1) <uo<L>+s)

1—A
Since(y, ug(y) + €) belongs to Grapug) + (0, €), we have

ofi25) (25}

We can choosg, > 0 small enough such that, for everye (0, A;),
y
uo<1 — A)' +

|(x, w0 (X)) — (v, ue (V)] 2 ve/2.

Let us now assume that¢ B(0, R + 1). Let us choose some € dug(x). Sincely — x| < 1
and|x| > R + 1, the segmentq, y/(1 — 1)] is a subset oR"\ B(0, R). Thus, by convexity

y y
2 ’__ 9
MO(l—A) uo(x)+<P - x>

|(x, uo(x)) = (v, ue s (Y| 2 ve — [ks + 2

v B(O, R+ 2), A A
y € B( +2) &+ 1

uo(y) — MO<L>‘ < Ye/2.

This leads to
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which implies that
ue,5.(y) = (L= M)[uo(x) — (p, x) + €] + (p, y).

Let us define
vzeRY, 7)) =1-Muokx) — (p,x)+el+ (p,2).

Let us notice that, on the one hamdx) > ug(x) because 0@9), and on the other hang, (y) >
7 (y). Therefore

|Cx, uo(x)) — (3, e ()| = d((x, uo(x)), Graphir)) = y[1 + |p|?] Y2,
wherey = A((p, x) — uo(x)) + (1 — A)e. Therefore, usind (19), we get

1+ |pl A

[(x, up(x)) — (¥, uea(Y)| = AW > E

In conclusion, we have proved that, for any 0 and anyx € (0, A,),
d(GrapHhuo), Graphue»)) > min{y:/2,1/2} > 0,
which completes the proof of Theor¢m4.2. a

REMARK 4.2 Lemmd 4.3 has the following geometric interpretation: C.éte any open convex
subset ofRM\B(0, R + 1). Letug be the smallest convex function which coincides withon C,
namely

vx e RY,  uS(x) = supuo(z) + (p.x —z) 1z € Candp € duo(z)}.

Then inequality) states thmg is bounded from above by the constarin the ballB(0, 1).

Proof of Lemm@ 4]3. Let Ry > 0 be some constant such thatis convex on any convex subset of
RN\ B(0, Ro). Let us fixz € RN with |z] < 1 and set,(-) = ug(- + z). Thenu, is convex on any
convex subset dRV\ B(0, Rg + 1).

We claim that, for ank € RY with |x| > Rg + 2, and anyp € du.(x) andq € du.(y) where
y = (Ro + 2)x/|x|, we have

uz(x) — (p,x) <uy(y) —(q.y). (20)

Indeed, since the segment [y] has an empty intersection with(0, Ro+ 1), and since, is convex
on any convex subset &Y\ B(0, Ro + 1), we have

u(y) = u (x) + (p,y — x). (21)

Moreover, from the convexity af, on some convex neighbourhood of the segmeny], we have
(p —q,x —y) = 0.Sincex —y = (|x|/(Ro + 2) — 1)y with |[x|] > Rgo + 2, this implies that
(p,y) = (g, y). From this inequality and fronji (21) we deduce that

u(y) 2 uz(x) —(p,x) +4{q,y),

which proves our claim.

Sinceug is convex on any convex subset® \ B(0, Ro), it is locally Lipschitz continuous on
this set. LetL. be some Lipschitz constant af on B(0, Rg + 3)\B(0, Ro + 1). In particular, for
anyy € B(0, Ro+ 3)\B(0, Ro + 1) and anyg € dup(y), we havelg| < L.
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Let us fixz € B(0, 1) andx € RV with |x| > Ro + 3. We apply[(2D) ta andx — z to obtain

Vp € duo(x), uo(x) —(p,x —z) <uo(y +2) —{(q,y)

wherey = (Ro + 2)(x — z)/|x — z] andg € dup(y + z). Let us notice thatg| < L since
v+ z € B(O, Rg + 3)\B(0, Rg + 1). Therefore

Vp € duo(x), uo(x) —(p,x —2) < |luollLeB©,Re+3) + L(Ro + 2).

Since this inequality holds true for agywith |z| < 1, we finally deduce that

Vp € dug(x), uox)—(p,x) <c—|pl,

with ¢ = [uoll L (B(0,Ry+3)) + L(Ro + 2). This is the desired result if we sBt= Ro + 3. O

10.

11.
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14.
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