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We prove a nonfattening condition for a geometric evolution described by the level set approach.
This condition is close to those of Soner [21] and Barles, Soner and Souganidis [5] but we apply it to
some unbounded hypersurfaces. It allows us to prove uniqueness for the mean curvature equation for
graphs with initial data convex at infinity, without any restriction on the growth at infinity, by seeing
the evolution of the graph of a solution as a geometric motion.

1. Introduction

We consider the evolutionΓt of a given initial hypersurfaceΓ0 of RN+1 moving according to the
normal velocity

V(x,t) = h(nx, Dnx), (1)

wherenx andDnx stand respectively for an oriented unit normal and the second fundamental form
of Γt at x ∈ Γt , andh is the given evolution law. The hypothesis onh will be introduced later but
the key assumption in this paper is thath is elliptic with respect to the second variable. Namely, if
X, Y are symmetric matrices, then

X 6 Y ⇒ h(nx, X) > h(nx, Y ). (2)

The most typical example we are interested in is the celebrated mean curvature evolution where

V(x,t) = h(Dnx) = −Tr(Dnx). (3)
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To describe the evolution ofΓt according to (1), different ways have been proposed; see the
book of Giga [13]. Here, we follow the level set approach introduced by Barles [1] and Osher and
Sethian [20], developed first independently by Evans and Spruck [12] and Chen, Giga and Goto [8].

The level set approach has the advantage of being defined for all timet > 0, even past some
singularities. We refer the reader to Section 2 for the definition and recall here that the evolutionΓt

by the level set approach is given, at each timet, as the 0-level set of an auxiliary function, namely
Γt := {z ∈ RN+1 : v(z, t) = 0}, wherev : RN+1

× [0, +∞) → R is the solution of a suitable
parabolic partial differential equation of the form

∂v

∂t
+ F(Dv, D2v) = 0 in RN+1

× (0, +∞). (4)

In this approach, one of the main issues is the so-calledfattening phenomenonwhich happens
when the front

⋃
t>0 Γt ×{t} has nonempty interior inRN+1

× [0, +∞). Some examples are known
for which such a phenomenon arises (see Ilmanen [16] or Soner [21]). This fattening phenomenon
is closely related to the nonuniqueness of the geometrical evolution (1). We refer to Ilmanen [16],
Soner [21], Barles, Soner and Souganidis [5] or Barles, Biton and Ley [3] for further details.

Nevertheless, in [21] and [5] (see also [22] and [19]), the authors give sufficient conditions
ensuring that the front never fattens. For instance, Soner proves that compact hypersurfaces which
are strictly starshaped never fatten for evolutions with normal velocity of curvature type given (see
Section 4.1).

Our aim in this article is to extend this method to unbounded sets which are entire graphs
of functions fromRN into R. Even if Soner’s condition could be applied for some unbounded
hypersurfaces (like convex graphs), it does not hold for the case we have in mind (graphs which are
convex at infinity, see below). In [5], the authors give a more general condition forC2 hypersurfaces
but it is not clear how to extend it to unbounded cases.

To be more specific concerning our result, letΓ0 be the boundary of an open subsetΩ0 of RN+1

(notice thatΓ0 has empty interior). We prove that under suitable assumptions on the nonlinearityF

appearing in (4), the front never fattens if there exists a family(Aε)ε>0 of affine dilations going to
identity asε goes to 0 and such that

d(Γ0,Aε(Γ0)) := inf{|a − b| : (a, b) ∈ Γ0 ×Aε(Γ0)} > 0 for anyε > 0. (5)

This condition is close to the one of [5] but is stated in a more readable way which does not require
the initial setΓ0 to beC2.

Our main contribution is to show that this condition can be used to prove the uniqueness of the
evolution by mean curvature of entire graphs which are convex at infinity. We say that a continuous
function f : RN

→ R is convex at infinityif there existsR > 0 such that, for any convex set
C ⊂ RN

\B(0, R), the restrictionf : C → R is convex. Our result is the following:

THEOREM 1.1 For any continuous initial datau0 : RN
→ R which is convex at infinity (without

any growth restriction), there exists a unique solution of the mean curvature equation for graphs

∂u

∂t
− ∆u +

〈D2uDu, Du〉

1 + |Du|2
= 0 in RN

× (0, +∞), (6)

with u(·, 0) = u0.



EVOLUTION BY MEAN CURVATURE 3

The existence of a smooth solutionu ∈ C(RN
× [0, +∞)) ∩ C∞(RN

× (0, +∞)) was proved
by Ecker and Huisken [11]. It is very surprising that this result holds without any growth restriction
at infinity.

The question of uniqueness of these solutions without a growth restriction at infinity is still open
in the whole generality. Several partial results are known: In dimensionN = 1, the problem was
completely solved independently by Chou and Kwong [9] and in [4]; in any dimension, uniqueness
was proved in the following situations: with polynomial-type restrictions on the growth ofu0 in [2],
whenu0 is radially symmetric inRN in [7], and whenu0 is convex inRN in [3]. After this paper
was completed we learned that Ishii and Mikami had obtained in [18] a uniqueness result for the
motion of a graph byR-curvature under some convexity at infinity type condition.

One could think that Theorem 1.1 is an easy generalization of the latter case but we point out
that a very small perturbation ofu0 even on a compact set can modify the behaviour of the solution
everywhere.

The uniqueness result of Theorem 1.1 holds in fact for more general quasilinear equations, the
class of which is described in [3] (see Section 4.2). Moreover, we give an example (see Remark 4.1)
of application of (5) to initial data which are not convex at infinity. It follows first that the set of
functions convex at infinity is not the right class of uniqueness for equations like (6). Secondly, it
emphasizes that our condition is of geometrical nature in the sense that we do not have any idea of
how to prove such a result by pde methods.

The paper is organized as follows. In Section 2, we briefly recall the level-set approach. In
Section 3, we state and prove the sufficient condition (5). The last section is devoted to the proof of
Theorem 1.1 and to its extension to other motions.

2. Preliminaries about the level set approach

In this section, we recall what we need about the level set approach and give the definition of the
generalized evolutionΓt . For more details see the book [13].

We start by introducing some definitions and notations. Given an open subsetΩ+

0 of RN+1, we
say that(Γ0, Ω

+

0 , Ω−

0 ) is anadmissible partitionif Γ0 = ∂Ω+

0 (∂ denotes the topological boundary)
andΩ−

0 = RN+1
\ (Γ0 ∪ Ω+

0 ). Notice thatΓ0 has an empty interior.
If (Γ0, Ω

+

0 , Ω−

0 ) is an admissible partition, then thesigned distanceds(·, Γ0) to Γ0 is defined
by

ds(z, Γ0) :=

d(z, Γ0) if z ∈ Ω+

0 ,

0 if z ∈ Γ0,

−d(z, Γ0) if z ∈ Ω−

0 ,

where d is the usual nonnegative distance inRN+1. Clearlyds(·, Γ0) ∈ UC(RN+1), where “UC”
denotes the uniformly continuous functions.

We aim at defining an evolution(Γt , Ω
+
t , Ω−

t )t>0 starting from (Γ0, Ω
+

0 , Ω−

0 ) where Γt

evolves with normal velocity (1). Looking for an auxiliary functionv : RN+1
× [0, +∞) → R

satisfying, for everyt > 0, the conditions

{v(·, t) = 0} = Γt , {v(·, t) > 0} = Ω+
t and {v(·, t) < 0} = Ω−

t ,
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we find thatv has to be a solution, at least formally, of the so-calledlevel set equationfor (1),
∂v

∂t
+ F(Dv, D2v) = 0 in RN+1

× (0, +∞),

v(·, 0) = v0 in RN+1,
(7)

where, for instance,v0 = ds(·, Γ0), and

F(p, X) = −|p|h

(
−

p

|p|
,

(
−

1

|p|

(
Id −

p ⊗ p

|p|2

)
X

)
|p⊥

)
, (8)

for p ∈ D(F) ⊂ RN+1 andX ∈ SN+1. Here and below,SN+1 denotes the space of symmetric
matrices of sizeN + 1, andM|p⊥ is the restriction to the subspacep⊥ of the linear map induced by
M ∈ SN+1. Note that, in general,F has singularities in the gradient variable andD(F) 6= RN+1.

From the very definition ofF , it follows that

F(λp, µp ⊗ p + λM) = λF(p, M) for all p ∈ D(F), M ∈ SN+1, λ > 0, µ ∈ R, (9)

and from (2), we have

M > N ⇒ F(p, M) 6 F(p, N) for all p ∈ D(F), M, N ∈ SN+1. (10)

It is worth noticing that (9) implies that the equation in (7) is invariant under changes of function
v 7→ ϕ ◦ v with ϕ′ > 0 whence we can work with bounded solutions of (7).

Moreover (2)–(10) imply that (7) is degenerate elliptic and a maximum principle is expected.
To avoid technicalities, we state the comparison principle as an assumption:

(H) If v (respectivelyw) is a bounded uniformly continuous viscosity subsolution (respectively
supersolution) of (7)–(8) satisfyingv(·, 0) 6 w(·, 0), thenv 6 w in RN+1

× [0, +∞).

Assumptions onF (or equivalently onh) which lead to this comparison principle are discussed in
Section 4. We refer to [10] for a general discussion of the theory of viscosity solutions.

Now, we can state the following theorem and define the generalized evolution ofΓ0 with normal
velocity given by (1):

THEOREM 2.1 Suppose that (2) and (H) hold. Then, for anyv0 ∈ UC(RN+1), there exists a
uniqueUC viscosity solution of (7). Moreover, set

(Γ0, Ω
+

0 , Ω−

0 ) := ({v0 = 0}, {v0 > 0}, {v0 < 0}) (11)

and consider
(Γt , Ω

+
t , Ω−

t ) := ({v(·, t) = 0}, {v(·, t) > 0}, {v(·, t) < 0}).

Then the family(Γt , Ω
+
t , Ω−

t )t>0 is independent of the choice ofv0 ∈ UC(RN+1) satisfying (11).
Hence, it allows one to define(Γt )t>0 as the generalized evolution ofΓ0 with normal velocity (1)
starting from the initial admissible partition(Γ0, Ω

+

0 , Ω−

0 ).

We do not prove the theorem here. Various assumptions onF (or h) can be required in order
that (H) and the theorem holds true. In their celebrated papers, Evans and Spruck [12] and Chen,
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Giga and Goto [8] proved in particular Theorem 2.1 for the mean curvature evolution (3). In that
case, the level set equation (7) is the well-known mean curvature equation

∂v

∂t
− ∆v +

〈D2vDv, Dv〉

|Dv|2
= 0 in RN+1

× (0, +∞).

Other cases are treated in Giga, Goto, Ishii and Sato [14], Barles, Souganidis and Soner [5], Soner
[21], Ishii and Souganidis [19], Ishii [17], Souganidis [23], Giga and Sato [15], and Barles, Biton
and Ley [3]. See the book of Giga [13] and Section 4 for explicit examples.

3. A sufficient condition for nonfattening

In this section we give a condition on an initial hypersurfaceΓ0 under which its generalized
evolution never fattens. To this end we need the following assumption: there exists a positive
continuous real-valued functionm such thatm(1) = 1 and

F(p, λM) = m(λ)F (p, M) for all p ∈ D(F), M ∈ SN+1, λ > 0, (12)

whereF is defined by (8). LetT be the group of affine dilations ofRN+1,

T = {A : RN+1
→ RN+1 : A(z) = λz + z0, λ ∈ R\{0}, z0 ∈ RN+1

}.

LEMMA 3.1 Assume that (H) and (12) hold. Suppose thatD(F) is invariant under dilations,
(Γ0, Ω

+

0 , Ω−

0 ) is an admissible initial partition, andA ∈ T with coefficient λ 6= 0. Let v

(respectivelyvA) be the solution of (7) associated tods(·, Γ0) (respectivelyds(·,A(Γ0))). Then

vA(z, t) = λ v

(
A−1z,

t

λm(λ)

)
.

Proof. Suppose thatAz = λz + z0. Let v0 = ds(·, Γ0) (respectivelyw0 = ds(·,A(Γ0))) andv

(respectivelyw) be the unique uniformly continuous solution of (7) with initial datav0 (respectively
w0). Observing thatw0 = λv0 ◦A−1 we set

w(z, t) = λv

(
z − z0

λ
,

t

λm(λ)

)
.

Using (9) and (12), one checks thatw is a solution of (7) with initial dataw0. Therefore we get the
lemma by the uniqueness result for (7). 2

Let A, B be two subsets ofRN+1. We define theminimum distanced(A, B) betweenA andB by

d(A, B) := inf
a∈A, b∈B

|a − b|.

LEMMA 3.2 For any admissible partitions(Γ0, Ω
+

0 , Ω−

0 ) and(Γ̃0, Ω̃
+

0 , Ω̃−

0 ), if Ω̃+

0 ∪ Γ̃0 ⊂ Ω+

0
then

d(Γ0, Γ̃0) > η > 0 ⇒ ds(·, Γ0) > ds(·, Γ̃0) + η.
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FIG. 1. The different cases under consideration in the proof of Lemma 3.2.

REMARK 3.1 A consequence of the comparison assumption (H) and Lemma 3.2 is an inclusion
principle which roughly states that, ifΩ+

0 andΩ̃+

0 are such thatΩ+

0 ⊂ Ω̃+

0 , then this inclusion
remains true for all time:Ω+

t ⊂ Ω̃+
t . We point out that this inclusion principle is an important

underlying property of geometrical evolutions satisfying (2). For a general study of geometrical
evolutions which satisfy this principle, see Barles and Souganidis [6].

Proof of Lemma 3.2. We distinguish several cases according to the position ofz (see Figure 1).

CASE 1: z1 ∈ Ω−

0 ∪Γ0. Let a = d(z1, Γ0) andb = d(z1, Γ̃0) = |z1 − z̃1|, with z̃1 ∈ Γ̃0. Consider
a pointz′

1 ∈ [z1, z̃1] ∩ Γ0. We have

ds(z1, Γ0) − ds(z1, Γ̃0) = −a + b = −a + |z1 − z′

1| + |z′

1 − z̃1|.

But |z1−z′

1| > d(z1, Γ0) = a and|z′

1−z̃1| > de(Γ0, Γ̃0) > η; thereforeds(z1, Γ0)−ds(z1, Γ̃0) > η.

CASE 2: z2 ∈ Ω+

0 ∩Ω̃−

0 . Leta = d(z2, Γ0) = |z2−z′

2| with z′

2 ∈ Γ0, andb = d(z2, Γ̃0) = |z2−z̃2|

with z̃2 ∈ Γ̃0. We have

ds(z2, Γ0) − ds(z2, Γ̃0) = a + b > |z′

2 − z̃2| > η.

CASE 3: z3 ∈ Ω̃−

0 ∪ Γ̃0. Let a = d(z3, Γ0) = |z3 − z′

3| with z′

3 ∈ Γ0, andb = d(z3, Γ̃0). Consider
a pointz̃3 ∈ [z3, z

′

3] ∩ Γ̃0. We have

ds(z3, Γ0) − ds(z3, Γ̃0) = a − b = |z3 − z̃3| + |z̃3 − z′

3| − b.

But |z̃3 − z′

3| > de(Γ0, Γ̃0) > η and|z3 − z̃3| > d(z3, Γ̃0) = b; thusds(z3, Γ0) − ds(z3, Γ̃0) > η,

which completes the proof of Lemma 3.2. 2

Now, we can state the main result of this section.

THEOREM 3.1 Let(Γ0, Ω
+

0 , Ω−

0 ) be an admissible initial partition and assume that Theorem 2.1
and (12) hold. If there exists a family(Aε)ε>0 ⊂ T and a sequence(ηε)ε>0 of positive numbers
such that

Aε −→
ε→0

Id and d(Γ0,Aε(Γ0)) > ηε > 0 for ε > 0, (13)

then the front
⋃

t>0 Γt × {t} has empty interior inRN+1
× [0, +∞).
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Proof. Let v andvAε
be the uniformly continuous viscosity solutions of (7) associated to the initial

datads(·, Γ0) andds(·,Aε(Γ0)). From Lemma 3.1, for every(z, t) ∈ RN+1
× [0, +∞), we have

vAε
(z, t) = λεv

(
A−1

ε z,
t

λεm(λε)

)
,

whereλε is the coefficient ofAε. Next, from (13), Lemma 3.2 and the comparison principle (H),
we get, for anyε > 0,

v(z, t) > vAε
(z, t) + ηε.

Therefore

v(z, t) > λεv

(
A−1

ε z,
t

λεm(λε)

)
+ ηε. (14)

Assume now that the front
⋃

t>0 Γt × {t} has nonempty interior inRN+1
× [0, +∞). It follows

that there is some(z0, t0) ∈ RN+1
× (0, +∞) and somer > 0 such that

v ≡ 0 in B(z0, r) × [t0 − r, t0 + r].

SinceAε → Id, one hasλε → 1 and then, forε sufficiently small,(
A−1

ε z0,
t0

λεm(λε)

)
∈ B((z0, t0), r) × [t0 − r, t0 + r].

Writing (14) at the point(z0, t0), we obtain a contradiction which ends the proof. 2

4. Application to uniqueness results

In this section we give some applications of Theorem 3.1. The first application is known and
concerns the evolution of compact sets. The second, which is the main result and the motivation
of this work, gives new uniqueness results for quasilinear parabolic pdes.

We recall some explicit assumptions on the evolution lawh which appears in (1) or, equivalently,
onF defined by (8) which imply the comparison assumption (H).

4.1 Uniqueness of generalized evolutions of compact sets

We show that Theorem 3.1 applies to recover some results of [21] and [19]. We suppose first

(H1) The evolution lawh is linear with respect to the second fundamental form, i.e.h =

−Tr(G(nx)Dnx), andG : SN
→ S+

N+1 is continuous, whereSN
= {ξ ∈ RN+1 : |ξ | = 1} is

the unit sphere andS+

N+1 is the set of nonnegative symmetric matrices of sizeN + 1.

LEMMA 4.1 ([21]) Under assumption (H1), (H) holds.

Noticing that (12) holds withm(r) = r, we have

THEOREM 4.1 ([21]) Let(Γ0, Ω
+

0 , Ω−

0 ) be an admissible partition such thatΓ0 has empty interior

and evolves with velocity (1) satisfying (H1). Suppose thatΩ+

0 is a compact subset which is strictly

starshaped, i.e. there existsz0 ∈ Ω+

0 such that, for allz ∈ Ω+

0 , [z0, z[ ⊂ Ω+

0 . Then
⋃

t>0 Γt × {t}

has empty interior.
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This theorem was proved by Soner [21, Theorem 9.3]. Our proof is basically the same so we
only sketch it. Up to a translation, we can suppose thatz0 = 0 and we check that the family
Aε(z) = (1 − ε)z for ε ∈ (0, 1) satisfies (13). We conclude by Theorem 3.1. It is worth pointing
out again that the previous result includes the mean curvature motion (3).

We present another example of motion, namely the motion by Gaussian curvature:

(H2) The evolution lawh is given byh(Dnx) = κ+

1 · · · κ+

N whereκ1, . . . , κN are the principal
curvatures ofΓt (the eigenvalues ofDnx) andr+ := max{r, 0}.

In this case, the level set equation (7)–(8) reads

∂v

∂t
− |Dv| det+

[
1

|Dv|

(
Id −

Dv ⊗ Dv

|Dv|2

)
D2v

(
Id −

Dv ⊗ Dv

|Dv|2

)
+

Dv ⊗ Dv

|Dv|2

]
= 0

in RN+1
× (0, +∞), where, for any symmetric matrixX ∈ SN+1 with eigenvaluesλ1, . . . , λN+1,

det+(X) = λ+

1 · · · λ+

N+1. Under assumption (H2), (H) holds and therefore Theorem 2.1 applies (see
[19]). Moreover (12) holds withm(r) = rN . Thus Theorem 4.1 holds true with the same proof. In
this way, we recover [19, Proposition 3.4] without assumingC2 regularity forΓ0.

4.2 Uniqueness of solutions of quasilinear parabolic pdes

We turn to our main application. Consider the following pde:
∂u

∂t
− Tr[b(Du)D2u] = 0 in RN

× (0, +∞),

u(·, 0) = u0 ∈ C(RN ),
(15)

whereb : RN
→ S+

N andS+

N is the set of nonnegative symmetric matrices of sizeN. Note that
equation (15) is quasilinear parabolic (possibly degenerate). Existence of solutions to (15) is not
the point here; we refer to [11], [9], [3] for quite general results for any continuous initial datau0
without any growth restriction at infinity. The question we address here is the uniqueness of these
solutions.

In [3] we show that under suitable assumptions on the diffusion matrixb (see below), the
graphs of the solutions of (15) are hypersurfaces ofRN+1 moving according to a geometrical law
of type (1). This makes it possible to define the generalized evolutionΓt of

Γ0 = Graph(u0) = {(x, u0(x)) : x ∈ RN
} ⊂ RN+1,

and we prove that the graphs of all the continuous viscosity solutions of (15) are contained in the
front

⋃
t>0 Γt × {t}. It follows that the uniqueness of continuous viscosity solutions is equivalent

to the nonfattening of the front (see [3, Theorem 6.2]).
In this case, the level set equation is (7) with

F(Dv, D2v) = −Tr

[
b

(
−

Dxv

Dyv

)(
D2

xxv − 2D2
xy ⊗

Dxv

Dyv
+ Dyyv

Dxv

Dyv
⊗

Dxv

Dyv

)]
, (16)

andD(F) = {p = (p1, . . . , pN+1) ∈ RN+1 : pN+1 = 0}. The precise assumptions we need are
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(H3) The mapb : RN
→ S+

N is continuous, there exists a constantC > 0 such that|b(q)| +

|b(q)q|+|〈b(q)q, q〉| 6 C for all q ∈ RN , and there exists a continuous mapb∞ : {ξ ∈ RN :
|ξ | = 1} → S+

N such thatb∞(q) = limλ→±∞ b(λq).

LEMMA 4.2 ([3]) Under assumption (H3), (H) holds.

Roughly speaking, these assumptions allow us to control the singularities ofF in order to prove
the comparison result and apply Theorem 2.1. Our main result is the following:

THEOREM 4.2 Assume thatF defined by (16) satisfies (H3). If u0 ∈ C(RN ) is convex at infinity,
then (15) has at most one continuous viscosity solution.

Before giving the proof of the theorem, we make some comments. The typical example we have
in mind is

b(p) = Id −
p ⊗ p

1 + |p|2
.

In this case, (15) reduces to the mean curvature equation for graphs (6) and therefore the above
theorem includes as a particular case Theorem 1.1 which is the motivation of this work. For other
examples, see [3]. A similar result for motion of a graph byR-curvature with initial data convex at
infinity was obtained by Ishii and Mikami [18].

REMARK 4.1 (A functionu0 which satisfies the assumptions of Theorem 3.1 but is not convex at
infinity) Let f, g ∈ C(RN ) be such thatf is convex inRN andg(x) → 0 as|x| → +∞. Set
u0 = max{f (x), g(x)}. Thenu0 ∈ C(RN ) is not necessarily convex at infinity (forN = 1, take for
instancef (x) = ex3

andg(x) = (sinx)/x). But u0 satisfies (13). We do not give the proof since it
is close to the proof of Theorem 4.2. This example shows that Theorem 3.1 applies to a larger class
of graphs than those convex at infinity.

Proof of Theorem 4.2. From [3, Theorem 6.2], it is sufficient to prove that the generalized
evolutionΓt of Γ0 := Graph(u0) does not develop an interior. We proceed in two steps.

STEP 1. To emphasize the main ideas without technicalities, we first suppose thatu0 is convex in
RN . Up to translatingΓ0, we can assume that there existsρ > 0 such thatB(0, ρ) ⊂ Epi(u0) =

{(x, r) ∈ RN+1 : r > u0(x)}. Consider the family(Aε)ε>0 ⊂ T defined by

Aε = (1 + ε)Id, 0 < ε < 1,

and setΓ ε
0 = Aε(Γ0).

We aim at applying Theorem 3.1. We claim there exists a sequence(ηε)ε>0 of positive numbers
such that

d(Γ0,Aε(Γ0)) > ηε. (17)

Indeed, letz0 = (x0, y0) ∈ Γ0 andzε = Aε(z0) = (1 + ε)z0. For ξ in the convex subdifferential
∂u0(x0) of u0 atx0, consider the support hyperplane

H0 = {z = (x, y) ∈ RN+1 : y = 〈ξ, x − x0〉 + y0}

to Epi(u0) passing throughz0 (see Figure 2). Sinceu0 is convex, Epi(u0) lies in the half-space
{y > 〈ξ, x − x0〉 + y0}; it follows that

d(zε, Γ0) > d(zε, H0) = d(Hε, H0),
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H" H0
�"0

�0
z0z" = (1 + ")z0

O �b

b

b

FIG. 2. Γ0 = Graph(u0) with u0 convex.

whereHε = {z = (x, y) : y = 〈ξ, x − (1+ ε)x0〉 + (1+ ε)y0} is the hyperplane parallel toH0 and
passing throughzε. Noticing thatHε = Aε(H0), we obtain

d(Hε, H0) > ε d(0, H0) > ρε.

Finally, for everyzε ∈ Γ ε
0 , d(zε, Γ0) > ρε; therefore (17) holds withηε = ρε. It follows that

assumption (13) of Theorem 3.1 holds and we obtain the desired conclusion.
Note that Step 1 provides a new proof of [3, Theorem 10.1].

STEP 2: The general case. From now on, we assume that the mapu0 is convex at infinity. Let
R0 > 0 be some constant such thatu0 is convex on any convex subset ofRN

\B(0, R0). Forx ∈ RN

with |x| > R0, we define the subdifferential∂u0(x) as the subdifferential atx of the restriction of
u0 to any convex neighbourhood ofx contained inRN

\B(0, R0). Since the notion of subdifferential
is local,∂u0(x) is well defined. Let us point out that∂u0(x) enjoys the following property: ifp ∈

∂u0(x), then

∀y ∈ RN with [x, y] ∩ B(0, R0) = ∅, u0(y) > u0(x) + 〈p, y − x〉.

Moreover∂u0(x) is nonempty as soon as|x| > R0.
With this in mind, let us state a preliminary (and technical) lemma (for the proof and a comment,

see below).

LEMMA 4.3 Assume thatu0 is convex at infinity. Then there is some radiusR > 0 and some
constantc ∈ R such that

(i) u0 is convex on any convex subset ofRN
\B(0, R),

(ii) for any x /∈ B(0, R + 1) and anyp ∈ ∂u0(x),

u0(x) − 〈p, x〉 6 −|p| + c. (18)
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For anyε > 0 and anyλ ∈ (0, 1), set

uε,λ(x) = (1 − λ)

[
u0

(
x

1 − λ

)
+ ε

]
.

The graph ofuε,λ is the image of the graph ofu0 under the similitudeAε,λ defined by

Aε,λ(z) = (1 − λ)(z + (0, ε)).

Note thatAε,λ → Id asε, λ → 0.

To conclude applying Theorem 3.1, it is sufficient to prove the following claim:for anyε > 0,
there is someλε ∈ (0, 1) such that, for anyλ ∈ (0, λε),

d(Graph(u0), Graph(uε,λ)) > 0.

Let R andc be as in Lemma 4.3. Without loss of generality, up to some translation, we can assume
thatc = −1. Thus we have

∀x /∈ B(0, R + 1), ∀p ∈ ∂u0(x), u0(x) − 〈p, x〉 6 −(1 + |p|). (19)

Sinceu0 is continuous, we have

∀z ∈ RN , d((z, u0(z)), Graph(u0) + (0, ε)) > 0.

Therefore,γε = min|z|6R+1 d((z, u0(z)), Graph(u0) + (0, ε)) is positive.
Let x, y ∈ RN . We want to estimate from below|(x, u0(x)) − (y, uε,λ(y))| by some constant

independent ofx andy. For this, let us first assume thatx ∈ B(0, R + 1). We can also suppose that
|x − y| 6 1. Then

|(x, u0(x))−(y, uε,λ(y))| > |(x, u0(x))−(y, u0(y)+ε)|−

∣∣∣∣(u0(y)+ε)−(1−λ)

(
u0

(
y

1 − λ

)
+ε

)∣∣∣∣.
Since(y, u0(y) + ε) belongs to Graph(u0) + (0, ε), we have

|(x, u0(x)) − (y, uε,λ(y))| > γε −

[
λε + λ

∣∣∣∣u0

(
y

1 − λ

)∣∣∣∣ +

∣∣∣∣u0(y) − u0

(
y

1 − λ

)∣∣∣∣].

We can chooseλε > 0 small enough such that, for everyλ ∈ (0, λε),

∀y ∈ B(0, R + 2), λε + λ

∣∣∣∣u0

(
y

1 − λ

)∣∣∣∣ +

∣∣∣∣u0(y) − u0

(
y

1 − λ

)∣∣∣∣ 6 γε/2.

This leads to
|(x, u0(x)) − (y, uε,λ(y))| > γε/2.

Let us now assume thatx /∈ B(0, R + 1). Let us choose somep ∈ ∂u0(x). Since|y − x| 6 1
and|x| > R + 1, the segment [x, y/(1 − λ)] is a subset ofRN

\B(0, R). Thus, by convexity

u0

(
y

1 − λ

)
> u0(x) +

〈
p,

y

1 − λ
− x

〉
,
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which implies that
uε,λ(y) > (1 − λ)[u0(x) − 〈p, x〉 + ε] + 〈p, y〉.

Let us define
∀z ∈ RN , π(z) = (1 − λ)[u0(x) − 〈p, x〉 + ε] + 〈p, z〉.

Let us notice that, on the one hand,π(x) > u0(x) because of (19), and on the other hand,uε,λ(y) >
π(y). Therefore

|(x, u0(x)) − (y, uε,λ(y))| > d((x, u0(x)), Graph(π)) = γ [1 + |p|
2]−1/2,

whereγ = λ(〈p, x〉 − u0(x)) + (1 − λ)ε. Therefore, using (19), we get

|(x, u0(x)) − (y, uε,λ(y))| > λ
1 + |p|

(1 + |p|2)1/2
>

λ

2
.

In conclusion, we have proved that, for anyε > 0 and anyλ ∈ (0, λε),

d(Graph(u0), Graph(uε,λ)) > min{γε/2, λ/2} > 0,

which completes the proof of Theorem 4.2. 2

REMARK 4.2 Lemma 4.3 has the following geometric interpretation: LetC be any open convex
subset ofRN

\B(0, R + 1). Let uC0 be the smallest convex function which coincides withu0 on C,
namely

∀x ∈ RN , uC0 (x) = sup{u0(z) + 〈p, x − z〉 : z ∈ C andp ∈ ∂u0(z)}.

Then inequality (18) states thatuC0 is bounded from above by the constantc on the ballB(0, 1).

Proof of Lemma 4.3. Let R0 > 0 be some constant such thatu0 is convex on any convex subset of
RN

\B(0, R0). Let us fixz ∈ RN with |z| 6 1 and setuz(·) = u0(· + z). Thenuz is convex on any
convex subset ofRN

\B(0, R0 + 1).
We claim that, for anyx ∈ RN with |x| > R0 + 2, and anyp ∈ ∂uz(x) andq ∈ ∂uz(y) where

y = (R0 + 2)x/|x|, we have

uz(x) − 〈p, x〉 6 uz(y) − 〈q, y〉. (20)

Indeed, since the segment [x, y] has an empty intersection withB(0, R0+1), and sinceuz is convex
on any convex subset ofRN

\B(0, R0 + 1), we have

uz(y) > uz(x) + 〈p, y − x〉. (21)

Moreover, from the convexity ofuz on some convex neighbourhood of the segment [x, y], we have
〈p − q, x − y〉 > 0. Sincex − y = (|x|/(R0 + 2) − 1)y with |x| > R0 + 2, this implies that
〈p, y〉 > 〈q, y〉. From this inequality and from (21) we deduce that

uz(y) > uz(x) − 〈p, x〉 + 〈q, y〉,

which proves our claim.
Sinceu0 is convex on any convex subset ofRN

\B(0, R0), it is locally Lipschitz continuous on
this set. LetL be some Lipschitz constant ofu0 on B(0, R0 + 3)\B(0, R0 + 1). In particular, for
anyy ∈ B(0, R0 + 3)\B(0, R0 + 1) and anyq ∈ ∂u0(y), we have|q| 6 L.
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Let us fixz ∈ B(0, 1) andx ∈ RN with |x| > R0 + 3. We apply (20) toz andx − z to obtain

∀p ∈ ∂u0(x), u0(x) − 〈p, x − z〉 6 u0(y + z) − 〈q, y〉

wherey = (R0 + 2)(x − z)/|x − z| and q ∈ ∂u0(y + z). Let us notice that|q| 6 L since
y + z ∈ B(0, R0 + 3)\B(0, R0 + 1). Therefore

∀p ∈ ∂u0(x), u0(x) − 〈p, x − z〉 6 ‖u0‖L∞(B(0,R0+3)) + L(R0 + 2).

Since this inequality holds true for anyz with |z| 6 1, we finally deduce that

∀p ∈ ∂u0(x), u0(x) − 〈p, x〉 6 c − |p|,

with c = ‖u0‖L∞(B(0,R0+3)) + L(R0 + 2). This is the desired result if we setR = R0 + 3. 2
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