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On a free boundary problem for viscous incompressible flows
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We shall discuss a free boundary problem for viscous incompressible fluids which is motivated
by the phase transition of materials in a flowing fluid. The problem is formulated as the coupled
Stokes/mean curvature equations. Our model is also regarded as the relaxation of a two-phase free
boundary problem with surface tension on the interface. We shall construct a unique time-local
solution of the problem by establishing the optimal regularity of the velocity field in the tangential
directions to the interface.

1. Introduction and formulation

We are interested in the following free boundary problem for viscous incompressible flows. We
consider the Stokes system:

B,M—Au—l—Vp:ole’Hf;ll, O<t<T, xeR",
V-u=0, 0<tr<T, xeR" (FBP1)
u(0,x) =uop(x), xeR",

whereu = (uy, ..., u,) andp are unknown velocity and pressure fields, respectively. The symbol
I, represents an unknown free interface evolving from the initial interfaaghich is the boundary

of a bounded domaifRg. The positive constarnt; represents the surface tension, &hdv are the
mean curvature and the exterior unit normal vectaFgfespectively. The symbd‘(’l}tl means the

(n — 1)-dimensional Hausdorff measure restricted 1oi.e.,

(fHIFH = fr FOYH"Ydy), Vf e Co®M, (1.1)

whereCp(R") is the class of continuous functions with compact support,(anyis a pairing when
we regar ’Z;{l as a linear functional oy (R").

We assume that the free interface is givenlby= {x(¢, xo) € R" ; xo € I} wherex(z, xo) is
the solution of the ODE

dx (1)
o - u(t,x()) +ooH(t, x@)v(t, x()), O0<t<T, (BC)
x(0) = xg € I,

whereos is a fixed positive constant.
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The right hand side of the first equation Pl) is the free boundary condition taken into
account in weak sense. That is, the ternHvH’i,:t is formally equivalent to the free boundary
condition

[(—=pdij + ju; + diuj)igi j<nlr,v = 01HV,
where [l is the jump across the interfaég.

Our problem is motivated by the phase transition of materials in a flowing fluid. That is, the
motion of the phase is not only governed by its mean curvature but also convected by the fluid
velocity. The motion of the fluid is also influenced by the interface, which is represented by the
free boundary condition. The phase transition with convection effects has been numerically well
investigated. In[[8], M. E. Gurtin, D. Polignore and J.i¥ls considered the coupled Navier—
Stokes/Cahn—Hilliard equations. In T. Blesgeh [2] and C. Liu and J. $Shén [12], the coupled Navier—
Stokes/Allen—Cahn equations are studied. In fact, the above pagers|([8].[2], [12]) deal with the case
of two-phase binary fluids. In this paper, however, we consider the case of one fluid for simplicity.

Our model is also related to the following two-phase Stokes flow problem (in weak form):

du—V-T(kDu,p)=o1HvH'', 0<t<T, xeR",

V-u=0, 0<t<T,xeR", (TP)
u(0,x) =upg(x), xeR"?
dx (1)
o - u(t,x@)), O<t<T,x@) el (BC)
x(0) = xp € I,

whereT (k Du, p) = 2c1xe,Du + 2k2(1 — xo,)Du — pl is the stress tensor/® = (9;u; +
diuj)1<i, j<n 1S the deformation tensok; > O are the viscosity coefficients of the fluids, afg
is a bounded domain with; = 3£2,. The characteristic functiopy, is defined byyg, (x) = 1 if
x € 2;andyo, (x) =0if x e R" \ £2;.

Our problem can be regarded as the relaxation of the proplem (TP), since the viscosities and the
densities of the two fluids are assumed to be the same and the4&min the kinematic boundary
condition has a regularizing effect for the interface. Such relaxation in the kinematic boundary
condition is used in the level set methods in humerical analysis; see Y. C. Chang, T. Y. Hou, B.
Merriman and S. Oshelr|[3]. The advantage of this method (or the phase-field method|inl[8], [12],
[2]) is that one can capture the interface even when it develops singularities such as merging and
reconnection.

Sinceu is divergence free in the whole space, frgm (FBP1) we have

du — Au = PoyHVH!' L, (1.2)

whereP = (R;Rj)1<i.j<n + I is the Helmholtz projection, an®t; = 3;(—A)~Y/2 is the Riesz
transformation. One can check that the tdPm H ”Hfﬁl is well-defined at least in the class of
tempered distributions if the hypersurfaEeis a smooth boundary of a bounded domain.

In this paper, we shall construct the velocity field as a mild solution of the equftign (1.2), that
is, the integral equation associated wjth [1.2). Thus we shall consider the system

'

A —9)A -1
u@t) =é' M0+‘/(; o= PaleHﬁrS ds, (FBP)
=)
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Here,e'4 is the heat semigroup; see Section 4 for details. We assumedheiongs to the class
C%(R") of a-Holder continuous functions ani is aC2t® hypersurface for some € (0, 1). Our
aim is to construct a pait, {I7}o<:<7) solving @’) with initial dataug, Ip).

We say that a family of hypersurfacés; o<, <r belongs toc12t* when the signed distance
function of I'; belongs taC12+* in a neighborhood of I Jo<i <7 - A precise definition will be given
in Section 3.

Now the main result of this paper is as follows.

THEOREM 1.1 (Existence and uniqueness) ket (0, 1). Assume thatge C*(R") with V-ug=0

and 2 is a bounded domain with2+* boundary. Letlp = 3£2o. Then there exists a positiie

such that there is a unique solution {I7}o<:<r) solving [FBR) with initial datauo, ) and such
thatu e C%/2%([0, T] x R") and{I}}o< <7 belongs toacH7<,

REMARK 1.1 Let us make a remark on the pressure term. The prepssreeconstructed by the
formula

plt.x) = (=) 'V o1 HVH! [} = o1V, - / E(x —y)Hv(t, ) H" H(dy),  (1.3)

I

whereE (x) is the Newton potentialE (x) = —(27)"Llog|x| whenn = 2, E(x) = C(n)|x|*™"
whenn > 3. The derivativeV, is interpreted in the sense of distributions. By similar calculations to
those in Proposition 4] 1, we can show thabelongs at least td>° (0, T'; L (R")) for r € (1, 00).

As far as the author knows, there are few mathematical results for the free boundary problems in
the presence of the term Hv in (BG). But under the kinematic boundary conditipn (BGhere is
much literature on free boundary problems for viscous incompressible (Navier—Stokes) flows with
or without surface tension. For example, I. Sh. MogileVskid V. A. Solonnikov([15] showed the
local well-posedness indlider spaces for one-phase flow problems; see also V. A. Soloniikov [23].

I. V. Denisova [4] and N. Tanaka [25] studied two-phase flow problems in Sobolev—Slobddetski
spaces. Itis known that the global solvability holds near the equilibrium states for one- or two-phase
flow problems; see M. Padula and V. A. Solonnikovi[19] and N. Tanaka [24].

In these papers([15], [23],][4].[25], [19], [24]), regular solutions are considered and Lagrangian
coordinates are used in order to reduce the problem to the case of a fixed domain. But in our problem,
such reduction is less useful because of the terfiiv in (BC). So we shall deal with the equation
directly as in the formulatiorj (FBP), and the free boundary condition appears in the layer potential
term. Although the terna> Hv could lead to more complicated interactions between the interface
and the fluid velocity, we have the mathematical advantage that we do not need the compatibility
conditions between the boundary data and initial data. We remark that such compatibility conditions
are required in the above papers.

Let us comment on weak solutions of two-phase flow problem. Y. Giga and S. Takdhashi [7]
studied two-phase Stokes flows, and A. Nouri, F. Poupaud and Y. Demlay [17] studied multi-phase
flows. Both papers deal with the case without surface tension. In P. |. Plotnikov [20], G. Nespoli
and R. Salvil[16], and H. Abels§[1], the case with surface tension is discussed. However, if surface
tension is present, the existence of weak solutions is still open even for the Stokes flow, and only
measure-valued varifold solutions or varifold solutions are obtained;_see([20], [1] for details.

Now let us state the main idea and the outline of the proof of the main theorem. As the first step,
for a givenu in an appropriate class of functions, we shall construct a family of hypersurfaces
evolving by the equation irf (BC). Since it is regarded as the mean curvature equation with a
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convection term, we will follow the argument of L. C. Evans and J. Spriuck [5] (see also A. Lunardi
[13] and VY. Giga and S. Got[6]), which reduces the equation to the one for the signed distance
function of interfaces; see Section 3.

Next, for a given family of hypersurfaces, we estimate the layer potential term in the integral
equation in [(FBP). The main difficulty is that we cannot expect high regularityzfém the
whole space (for example, we cannot expegh € C1T*(R") in general) because of the jump
relation of the layer potential. However, in order to obtain a unique regular solution for the
convected mean curvature equation[in [BC), we need the regularity of the convection sech
asu(r) € CY(R"). To overcome these difficulties, we make use of the regularity:for the
tangential directions to the interface. More precisely, if each interfacaCR&% regularity (and
suitable regularity with respect to time), we have the optimal regularity for the layer potential term,
namelyC1* in the tangential directions. In order to establish this optimal regularity, we use the
Holder—Zygmund spaces; see Section 4.1 for details. The desired result in the main theorem is
obtained by constructing a suitable contraction mapping for velocity fields; see Section 5.

This paper is organized as follows. In Section 2, we give the definitions of the function spaces
we use. In Section 3, we solve the mean curvature equation with a convection term. In Section 4.1,
we establish the estimates for the layer potential ternj in [FBP). In Section 4.2, we comment on
the mild solution of the Navier—Stokes equation with the layer potential term. In that section, we
shall also give the outline of the proof for the local well-posedness of the Navier—Stokes equation
when the layer potential term is given. The proof is the usual contraction argument by T. Kato [10].
We will see that the velocity also has the fine regularity in the tangential directionsewen in
the case of the Navier—Stokes flow. In Section 5, we shall construct a suitable contraction mapping
and obtain the desired results. In our strategy, the estimates for the layer potential by using local
coordinate transforms play an essential role: As their proof is somewhat lengthy, some parts of it
are given in Appendix; see Section 6.

REMARK 1.2 When the fluid is described by the Navier—Stokes equation, the associated integral
equation becomes

' '
ut) = e"“ug — / APY Ly @ uds + / e(’_S)APaleH'ZI_«l ds. 1.4)
0 0 )

Our result can be extended to this case, but its proof becomes complicated, especially when one
constructs a contraction mapping for the free boundary problem. So in this paper, we consider the
case of the Stokes flow for simplicity.

REMARK 1.3 In Section 3, we construct hypersurfaces by using the signed distance function. But
this is not the only method to obtain the required results. Indeed, the method using the Hanzawa
transformation would give a slightly simpler proof; see E. Hanzawa [9]. Especially, in the method of
the signed distance function, we have to check that the solutidithe associated equation satisfies

the condition|Vv| = 1, which is skipped in the use of the Hanzawa transformation. | would like to
thank the referee for suggesting this point.

2. Function spaces and embedding properties

First of all, we introduce several function spaces. Iktbe eitherR" or an open set irR"
with uniformly C? boundary. LetC (D) denote the Banach space of all continuous and bounded
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functions inD, endowed with the sup norm. L€Y" (D) denote the set of ath times continuously
differentiable functions inD, with derivatives up to order bounded and continuously extendable
up to the boundary. The norm 6 (D) is defined as

Iflleny = > 105 flem. 105 fllem = Y 187 fllcm)-

0k<m 16|=k

Here,0 = (61, ..., 6y) is a multi-index. We recall that ([a, b] x D) is the space of all continuous
and bounded functions im[b] x D, endowed with the norm

1 leqaoxm = 1f ) == SUp £t ).

(t,x)€[a,b]xD

For0< a < 1, we denote by %%([a, b] x D) (respectivelyC*/29([a, b] x D)) the space of
continuous functions that ateHolder continuous with respect to the space variables (respectively,
«/2-Holder continuous with respect to time), i.e.,

C%([a, b] x D) :={f € C([a, b] x D); f(t,-) € C*(D), t € [a, b]},
I/l cowqa,p1xm) (= 1f lcoe) i= 11 flloo + surz}[f(t, Neem)

tela,
where
lg(x) — gy
e« = sup =
x,yeD, x#y y
and
C*/?%([a, b] x D) := {f € C([a, b] x D); f(-,x) € C*/*([a,b]), x € D},
”f”ca/Z,O([a’b]Xﬁ)(: I fllcer20) == Il flloo + suﬂf(-, X)]ca/Z([a,b]),
xeD
where

|h(1) — h(s)]
h] e = sSu _—
[ ]C 2(la.bD t,s€la,b], t>s (t - s)a/Z

Moreover, the function spaces®/?*([a,b] x D), C*?([a,b] x D), C*#**([a,b] x D),
clte/22te (4, b] x D) are defined as follows:

C%%%([a, b] x D) = C*?%(a, b] x D) N C%*([a, b] x D),

1l carza oy = I llcarza) i= 1 £l carzoqa.px Dy + I1F o tay D)
CY2(la,b] x D) ;= {f € C([a,b] x D); & f,8;; f € C({a,b] x D), 1< i, j < n},
I flcr2a,p Dy & 1 lcr2) = 11f lloo + 105 flloo + 118: flloo + 182 £ lloo-

Cct2*([a, b] x D) := {f € C*%([a, b] x D); 8, f, 8;j f € C**([a,b] x D), 1< i, j < n},
I fllcr2+eqa,p) <Dy (= 1f llcr2ra) == 1 flloo + 10x flloo + 119; fll cow + 182 £ 1l coe-
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Let X be a Banach space endowed with the n@rriy. We denote by"“ ([a, b]; X) the Holder
space such that

C“(hhlﬂ;X)1=={f‘€(fﬂa,b];X);[f]caqmbe):== sup LU Wx,
t,s€la,b], t>s (t—s)
I fllce(fa,p);x) = Suph IfOlx + [fleeqa.px) < 00}.
ast<
Similarly,
memer={f€ahﬁhm;Ummmmw= sup LAURS A0S
t,s€la,b], t>s

I fllLipa.e1:x) := sup Il fOlx + [flipda.sl:x) < OO}~

a<t<bh

Now we state the embedding properties of théldér spaces defined above. The following
lemma will be used freely in this paper.

LEMMA 2.1 Let 0 < a < 1. Then there exists a positive constaqt such that for anyf <
ct2te([a, b] x D),
I fllcr2ga,py: crte @y T 1 Iipa,p):co @y T 195 fll cavarzo + 182 f Il ca20
< Kol flicrzra.  (2.1)
Here, the constark, is independent o — a and f.
Proof. See A. Lunardil[18, Lemma 5.1.1].

3. Motion of hypersurfaces by the mean curvature equations with convection

In this section, we consider the hypersurfaces evolving in time via mean curvature with a convection
term. Precisely, we shall construct a family of hypersurfaldg$o<;<r such that for 0< 7 <
t <T,I7 ={x(t, x0); xo € I},} satisfies the ODE

&0 __ [div((z, x(O)]v(E, x (@) + u(t, x (1)), to0<t<T,
dr n—1

x(tg) = xo.

(3.1)

Here v(z, x) is the exterior unit normal vector af;, o2 is a positive constant, ang(z, x) is a
continuous function on [0I'] x R". The mean curvaturé/ (¢, x) of the surfacel; is given by
H(,x) = —n—fldiv v(t, x). So ifu = 0, the above equation is the well-known mean curvature flow
equation. To construct evolving hypersurfaces starting from a given smooth initial hypersurfaces, we
will follow the arguments of L. C. Evans and J. Spruck [5]; see also A. Lunardi [13{ Lés<, <1

be the evolving hypersurfaces such that eBcis the boundary of a bounded domaiy. We reduce

the equation to an equation for tegned distance function

i) = dist(x, I7), x eR"\ 2, (3.2)
T ) =distx, I;), x € £2,. '
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If I; is smooth, ther (¢, -) is also smooth in each of the sets
Dt ={x eR"; 0<d(t,x) <8} and D™ :={x e R"; —8g < d(t,x) <0},

providedsy > 0 andT > 0 is small. Moreover, i is sufficiently small, for eaclk € D™ there
exists a unique € I; such that/(z, x) = |y — x|. The equatior{ (3]1) implies that

dy y—x
dr’ |y — x|

dy(t, %) =< >= <—n°—_21[diw<r,y>]v<r,y> Fut,y), 2= >

ly — x|
o2 .
=7 divv(t, y) —u(t,x — dVyd(t, x)) - V,d(t, x).
n—

It is well-known that the eigenvalues of the Hess¥fi(z, x) are given by

Ki(t,y)
1—k;(t, y)d(t, x)’
where the; are the principal curvatures of the surfalGe Since the mean curvatu#é is defined
asH = -1; Y"1 «;, we have

)"i=_ i=1,...,n_1, )\‘n=05 (33)

d = ilf(d, V2d) —u(t,x —dVd) - Vd, (3.4)
"

where

n
Ai
,q) = , R, R, A 1 3.5
fGs,q) ;1_)\” s € q € g is # ( )
Here the); are the eigenvalues of the symmetric matrixrhe same equation can be deduced for
x € D™. Since|d| is a distance function, the spatial gradi®hat should have modulus 1 at any point.
This provides a nonlinear first order boundary conditiondo6o the equatiorj (3.1) is reduced to
the following fully nonlinear parabolic problem:
Uzlf(v, V20) —u(t,x —vVv)-Vu, t>0 xeD,
n—
IVul?=1, t>0,xe€dD, (3.6)
v(0,x) =do(x), x€D,

8[7) =

whereD = DT U D™ = {x e R"; -8y < do(x) < 8o}, dp is the signed distance function frof,
andf is given as above. We choo&gso small thak, (V2do)so # 1 for each, so f is well-defined
near the range ofdo(x), V2do(x)). Since f(s,q) = Tr(g(I — sq)~ 1), f is analytic. Moreover,
since T(%(s, g@)A) = Tr((I — sq)~2A) for A € R"*", we have, fo€ € R",

Y of . 1 _
D fay (s Q&&= Tr<£(s, PE® s) =Y ———( &)

ij=1 — (1—as)?
where{ey, ..., e,} is an orthonormal basis iR" such that eacla; is an eigenvector of with
eigenvalue.;. Thus we have
n
Y fay (s QEE > s, @IE, 3.7
i,j=1

with «(s, ¢) = Mimgi <, (1 — Ais) 2.
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Setg(p) = p2—1. In order to solve the equati.6), we linearize the principal t&fm V2v)
near the initial datddo, V2dg) andg(Vdo) nearVdp. The existence and uniqueness result for this
equation is proved by the general results for linear parabolic equations and the usual contraction
arguments. LeB(do, V2do) be a bounded open neighborhood of the{géi(x), V2do(x)) € R x
R"*". x e D} such that for eacks, g) € B(do, V2dp), the functionf (s, ¢) is well-defined. Set

= 1inf{u(s, q); (s, q) € B(do, V?dg)} > O, (3.8)
b
Ky = sup{ ﬁ(s,q)’; (s, q) € B(do, V?dp), |8] =0, 1, 2}. (3.9)

Fix M > 0. We assume that the convection temt, x) belongs tol{y;, the closed subset of
c%([0, T] x R") defined as

Un = {u(t, x) € CO([0, T] x R"); u(t, -) € C***(R™), and . sup [lu(z, )l ce@ny
<t<T

+ sup (Y29, u(t, Hllcwny + sup Y d,ult, Vcagny < M} (3.10)
O<t<T O<t<T

The following proposition states the existence and uniqueness for the eq{iatjon (3.6).

PrROPOSITION3.1 FixM > 0. Leta € (0,1). Assume thai2g is a bounded domain with
uniformly C2+* boundary and letly be the signed distance function 6§ = 9£2o. Ihen there
is someT > 0 such that for any: € Uy, there exists a unique € C12t%([0, T] x D) solving

(EX:)2
Proof. By appropriate rescaling, we may assume thgin — 1) = 1. For simplicity of notation,
we write|| fllca.s. Il flloo fOX Il fllcas qo.71x 1y I/ e o. 77y TESPECHiVEly. Set

Av(t,x) ==Y fo; (do(x), V2do(x))d;jv(t, x) + fi(do(x), VZdo(x)v(t, x),
i,j=1

Bu(t,x) =Y gp,(Vdo(x))dv(t, x).
i=1

Let R be a positive number to be determined later. We will find the solution in the set
X :={v e C*?"([0, T] x D); v(0, ) =do, ||v — dol| 12+« < R} (3.11)

as a fixed point of the operatdr defined inX, where® (v) = w is the solution of the equation

dw(t, x) = Aw + f(v, V) — Av —u(t,x —vVv)-Vu, 0<r<T,xeD,
Bw(t,x) =—g(Vv)+Bv, 0<r<T,xe€dD, (3.12)
w(0, x) = do(x), x € D.

Let K, be the constant of Lemnja 2.1. Then forak X,

n
> 119ijv = 8. jdolleo + v — dolloe < (KaT“/?+ T)R. (3.13)
i,j=1
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So f(v, V%) is well-defined in X if we take T so small that everyy € X satisfies
(v(t, x), V3u(t, x)) € B(do, V2dp) for (¢, x) € [0, T] x D. The general results for linear parabolic
equations guarantee that the equation has a unique solut@h4tf ([0, T'] x D). We shall show
that for everyv, vo € X,

@ (v1) — @ ()|l cr2ra < C(R)TY?|v1 — v2lc1240. (3.14)

Thus if T is so small that (R)T%/2 < 1/2 then® is a contraction mapping. We also have, for all
velX,

[@(v) — dollcr2ta < [[@(v) — D(do)||cr2+e + D (do) — dollcr.2te < R/2+ [|P(d0) — dollcr2ta-
The functionz = @ (dp) — dp is the solution of

dz(t,x) = Az(t, x) + f(do, V?do) — u(t, x — doVdp) - Vdo, 0<t < T, xeD,
Bz(t,x) = —g(Vdg), 0<t<T, xedD, (3.15)
z2(0,x) =0, x e D.

Soz satisfies the estimate

lzllcrere < C(Lf (do. V2do) | a i) + (-, - — doVeo) - Veloll cougo.r1x ) + 18 (Vo) cave)

<
< C(lldoll g2+, M),

hence
19 (v) = dollc2ve < R/2+4 C(lldolic2ras M). (3.16)

Thus forR = 2C(||do|| c2+«, M), @ is a contraction mapping into itself, which implies thatp
has a unique fixed point i. The uniqueness of the solutiondH-2*% ([0, T] x D) follows easily,
S0 we omit it.

Now let us prove the key estimafe (3.14). @et @ (v1) — @ (v2). Thenw is the solution of

dw = Aw + f(v1, V?v1) — f(v2, VZv2) — A(v1 — v2)

—u(t,x —v1Vvy) - Vo1 +u(t, x —v2Vuy) - Vo, 0Kt <T,xe D,
Bw = B(vy —v2) — g(Vv1) +g(Vvp), 0<t<T,xedD,
w(,x)=0, xeD.

(3.17)

From the optimal regularity for linear parabolic equations|([13, Theorem 5.1:25jtisfies
[wllcrz+a < Cllh1llcoa + lIh2]lcow + (13l catarzi+a), (3.18)
where

ha(r, x) == f(ui(t, x), V2v1(t, x)) — f(va(t, x), V20(t, x)) — A(va(t, x) — va(t, x)),
ho(t,x) i=u(t, x —v1(t, x)Vvi(t, x)) - Vour(t, x) — u(t, x — va(t, x)Vuo(t, x)) - Vuo(t, x),
h3(t, x) == B(u(t, x) — va(t, x)) — g(Vvi(t, x)) + g(Vva(t, x)).
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First we shall estimatg1. By the definition ofA4, we have
1
ha(t, x) =/O (fs(me(t, x)) — fs(mo(x))) dr (v1(t, x) — va(t, x))

n 1
+> /0 (o, (e (8, 3)) = fq, (n0(x)) AT (8 jva(t, x) — 8, jv2(t, X)),
ij=1
where

ne(t, x) = t(v1(t, x), V201(t, x)) + (1 — 1) (v2(t, x), V22(t, x)) € R x R"™",
no(x) = (do(x), V2do(x)) € R x R"™".

Clearly,
1 (2, x) — no(x)| < 2(T + Ko TY?)R, (3.19)
e (t, x) — 0 (t, V)| < Clldollcare + R)|x — |, (3.20)
In0(x) — no(| < Clidollc2ralx — yI%, (3.21)

where C depends only om, and K, is the constant of Lemmia 2.1. From these estimates and
regularity assumptions ofj, it is not difficult to deduce the estimates

|h1(2, x)
|ha(t, x) — ha(z, y)

C(T + Ko T*?)RK ;T2 |Jvg — v2| cr.24a,
C(ldollc2+a + R + Ko) K T%?|lu1 — v2llc1.21a|x — yI%,

NN

|
|
hence

||]’lj_||c0.a < C(||d()||c2+a + R + Ka)KfTa/ZHU]_ — U2||C1,2+a7 (322)

whereC depends only om, andK,, K are the constants of Lemria .1 apd(3.9), respectively.
The estimate ofi3 is similar:

73]l cararzire < Clldollczras Ry Koy Kp)TY?||v1 — va|l c1.24a; (3.23)

the details are omitted.
Next we shall estimatg,. By the mean value theorem,

1
ho(t, x) = / (=v1Vo1 + 2V, (Veu)(t, ¢ (t, x))) dr - Vo + u(t, x — v2Vup) - (Vvg — V)
0

where
N, x) :=x —tv1Voi(t, x) — (1 — t)v2Vua(t, x).

From the regularity assumption erand Lemma 211,

(t + Kot T 92) (R + ||dol| c2+0)?l|v1 — v2l| przsa Mt~ E70/2

lh21(t, x)| <
< M(R + ||doll c2+0)*T*'?|lv1 — vl c1.24,
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and
|h2.2(t, )| < MKo T2 v1 — val| cr240-
Sincelijz (t, x) — i (t, )| < (14 4(R + ||do||c2+2)?)|x — y|, we easily have
h2,1(t, x) — haa(t, Y)| < C(M, Kq. R, |dollc24e) T ?|v1 — vall 1200 |x — y1%,

and
lh2.2(t, ) — ha2(t, )| < C(M, Kg, R, ||dol| c2ra) T¥?||v1 — 2| c1.2¢a |x — y|%.

Thus the estimat¢ (3.114) follows, and the proof of Proposjtioh 3.1 is complete.

REMARK 3.1 From[(3.Ip) in the proof above, the solutiosatisfies
vllc12tejo,71x D) < ldollcz+a + 2C (1ol c2va, M). (3.25)

We also see that the existence time of the solution does not depend ofj; .

We setl; := {x € D;v(t,x) = 0} whenuv is the solution of the equatio@ satisfying
v(0, x) = dp(x). By arguing as in[[13, Proposition 8.5.9], we see that the solutimsuch that
v e CY2H([11, 1] x D), i = 1,...,n,forany openseD’ cc DandO0< 1 < 1o < T.
Under this regularity condition, we can show thiat}o; <7 is an evolving hypersurface satisfying
the convected mean curvature equatjon|(3.1). Precisely, we have the following proposition.

ProPOsITION3.2 Assume that the conditions in Propositjon] 3.1 are satisfied. Then the first
derivatives of the solution satisfy the estimate

(rp —1)*? —1/2), (3.26)

||axv||cl.2+a([t1’t2]xﬁ) < ( —[l + tl
whereC depends only om, ¢, o2, «, K, ldoll c2+a 55y, M, K, and distD’, D). Moreover, for
eachr > 0, I is aC3t hypersurface andll; o, <r is a unique family ofc2t® hypersurfaces
evolving by the perturbed mean curvature equafion (3.1) starting fipm

Proof. Again we may assume thap/(n — 1) = 1. The assertion on the regularity &fv follows

by arguing as in[13, Proposition 8.5.6]. We omit the details. We shall only show the last assertion
of the proposition. First we prove thit,v| = 1. Setw = |3, v|?>— 1. By the regularity results stated
abovew € CL2te([¢, T] x D) for every open seD’ cc D and O< e < T. Differentiatingw

with respect to time, fofz, x) € (0, T) x D we have

n
dw =2 vd;dv
i=1
n
=2 9;v0; (f(v, V2) — u(t, x — vVv) - Vv)
i=1

i=
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I
::M

n
0ivfy; (v, V20)3ijkv + 2 divfs (v, V20) o
1

i,j.k= i=1
n n n

— ZZ ojv Z 0i (xj —vojv)djui(t,x —vVv)dev — 2 Z 0; v vur(t, x — vVv)
i=1  jk=1 ik=1

n

n
7 fay V00w =2 Y o (0, VE0)dikwdijv + 2 (v, V20)[0,v]?
i,j=1 i,j,k=1

n

n
=2 ) vdkv(Sij — w9 — vV (t, x —vVV) = Y ui(t, x — vVv)dw.

i,j,k=1 i=1
Now,
n n 2 2
(A (V20)) 2
Fari (0, V20 3jpvdgjv = Y ——— 2 = f, (v, V),
D e T
and
n n
Z 3 vk Vd; v Vdjux (t, x — VVV) = | |2 Z 3 v vdjug (1, x — vVv)
i,j,k=1 Jj.k=1
n
=(w+1 Z djvogvdjur(t, x —vVv),
J.k=1
n 1 n n
v Z 0; VO V0;jvijui(t, x —vVv) = EU Z djw Z Okvdjur(t,x —vVu).
i k=1 =1 k=1
Thus

n
Bw =Y fo; v V20w + Y (it x = vV0) + 111, 0)w + 2{ f (v, V20) +L2(, 0w,
i,j=1 i=1

n

where

n n
li(t,x) =0 Y fvdiug(t, x —vVv), Lot x) 1= Y djvdevdjup(t, x — vVv).
k=1 Jj.k=1

Sincew vanishes on the parabolic boundary of [ x D, we havew = 0 and|d,v| = 1. This
implies that eachi}, > 0, is a hypersurface of clagst® andv(z, x) = Vu(z, x) is a unit normal
vector of I';. In order to see that the familyf; }o<, <7 is an evolving hypersurface satisfying the

convected mean curvature equatipn}(3.1), we consider the ODE

dx
o = 00, V2o, )V, x) + ult, x — vV, x),
x(fo) = xo0, X0 € Iy,

(3.27)

for 0 < 1o < T. From the regularity conditions anandu, the Lipschitz norm with respect toof

the right hand side of the above equation has a singularity near time zero. Nevertheless, we can check
that the problem is uniquely solvable and the solutién is at least inC1([0, 7]). Moreover, since
%v(r,x(t)) = 0 andv(tg, x(t9)) = 0, we havev(z, x(t)) = 0. Hencex(¢) € I;. This completes

the proof.
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Letu(z, x) andii(z, x) be two functions ifdfy,. Letv, o € €12t ([0, T] x D) be the solutions
of the equation[(3]6) with initial data(0, x) = (0, x) = do(x) and with convection terms,
i, respectively. We remark that for fixed > 0 anddp, the abovel can be taken uniformly in
u€ly.

PROPOSITION3.3 FixM > 0. Leta € (0,1). Assume thai2g is a bounded domain with
uniformly C2t¢ boundary and letlp be the signed distance function frofy = 952. Let u, i,
v, 0 be the functions defined above. Then

||U — ﬁ||C1’2+a([O,T]XE) < C”M — ﬁHCOﬂ([O,T]xR”)’ (328)
whereC depends only on, o, 1, M, 02, Ky, Ky, and|ldo|l c2+e .
Proof. Let.4 andB be the operators defined in the proof of Propositiof 3.1. thea v — v is a
solution of the equation

dw = Aw + f(v, V) — (¥, V30) — Aw

—u(t,x —vVv)-Vo+u@t,x —ovVo)-Vo, 0<t<T,xeD,

- (3.29)
Bw = —g(Vv)+g(Vo)+Bw, 0<t<T,xedD,
w(,x)=0, xeD.
So the functionw satisfies
lwllcrze < C(llh1llcoa + A2l coa + A3l carmrzita), (3.30)

where
hi(t, x) = f(v, V%) — f (3, V?D) — Aw,
ho(t, x) = u(t,x —vVv) - Vv — i(t,x — VD) - V7,
ha(t, x) := —g(Vv) + g(VD) + Buw.

The estimates fow_zlnco.a and||ﬁ3||co,a are the same as the ones fiér || -o. and||23|| o« in
the proof of Proposition 3] 1, respectively. So we have

1l coa + I3l cox < CT?|v — Bl c12va (3.31)
We decomposé; as
ho(t, x) = u(t,x —vVv) - Vv —u(t,x — 0V9) - Vi + (u(t, x — 9Vd) — ii(t,x — VD)) - VD
= hp1(t, x) + ho2(t, x).
The estimate foﬁz,l is the same as the one fbs in the proof of Propositiol, S0
lh2.1llcoe < CT?lv — B 124
The estimate foﬁz,z is also easy:
||}_l2,2||c0<u < Cllu— 1;||Cova([0,T]><]Rn)-

Thus for sufficiently small”’ < T, we obtain

v = 0l cr2ta o, 77xp) < Cllu — iill cowqo,77xRn)- (3.32)

Repeating this argument, we have the desired estimate. The dependence of the constant is obvious.
Now the proof is complete.
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4. Mild solutions of the Stokes equations

In this section, we construct mild solutions of the Stokes equations with the layer potential. Now
we define a mild solution as a solution of the integral equation associated with the Stokes equations.
Let S’(R") be the class of tempered distributions.

DEFINITION 4.1 Leth be a bounded continuous function (@, 7] x R”". Let {I7}og/<r be a
family of hypersurfaces with suitable regularity. The functionis called amild solutionof the
Stokes equation with the layer potential tehrﬁﬁ;rl if there existsug € S'(R") with V- ug = 0
such that

t
u(t) = e“uo + /0 eI4PhH  ds. (4.1)

Here,¢'4 is the heat semigroup, amtlis the Helmholtz projection.

Since both’2 andP are convolution operators, we can regelrtiP as one convolution operator.
More precisely, fou € (Co(R™))", thei-th component of the convolutiari“ Pa is expressed as

) n 1 .
(e"“Pa)) = Z(W“’f ($> + Gt(-)ai,) % aj. (4.2)

j=1

Here,G;(x) is the Gauss kernel

G = —1 ex xI?
(0= 2 p(_4_t>

and
Ljx:=—F 1(% exp<—|s|2)),

whereF~1 is the inverse Fourier transform,
Fle(x) == 2m)™"/? / g(E)e™* de.
Rn

The pointwise estimates of the kernel function

1 .
K; j(t, x) = WL,',]' (ﬁ) + G,()d;;
are given as follows.

LEMMA 4.1 LetkK; ;(t, x) be as defined above. Let= (I, ..., 1,) be a multi-index. Then

. C x| =+
[0, Ki j(t, x)| < m(l—f- E) ) (4.3)

whereC depends only on and!.

Proof. These pointwise estimates were originally obtained by C. W. Oseéen [18]. See also P. G.
Lemaré-Rieusset [11], and Y. Shibata and S. Shimizu [22]. A simple proof was also obtained by
the author and Y. Terasawa [14].

For the heat semigroug®, we have the following estimates.
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LEMMA 4.2 LetO< « < 1. Leth(s, x) ;= e'4a. Then

I1Bllcqo,r1xrry < Cllallcmny, (4.4)

[b]C”‘/Zv"([O,T]xR") < C[a]CQ(Rn), (45)
C

(D] corze s, 7] xRry < m”a”C(R”)- (4.6)

Proof. These estimates are well known, so we omit the proof.[See [13, Chapter 5.1.1], for example.
4.1 Estimates for the layer potential

In this section, we shall estimate the term
t
Ft,x) = /0 =Py L dy, @7
which reflects the boundary condition dh whenk = Hv. First, we define the class of evolving

hypersurfaces we shall deal with. LEj be the boundary of a smooth bounded dom@in Let dg
be the signed distance function b,

do(x) = :dlst_(x, I), x € R"\ Qo, @.8)
—dist(x, Iy), x € 0.
We set
D :={x e R"; -89 < do(x) < 8o} (4.9)

for sufficiently smalby; see Section 3. We assume tliais unif_ormly C%t thatisdg € C2t*(D).
Sincedg is a distance function, we haye,dp(x)| = 1 onx € D, which implies that
min max |9;do(x)| > 1/n. (4.10)
xeD 1<i<n
We set
r:=min{1/n, 5o} > 0. (4.11)

Note thatr depends only on and Ip.

DEFINITION 4.2 LetR > 1 be a given number and € (0, 1). We defineS(«, R, T, do) as the
set of families{I;}og:<r Of hypersurfaces such that eathis the boundary of a bounded domain
£2; Cc R" and is represented as

I;={xeD; vt x)=0} (4.12)

by the signed distance functiane C***([0, T] x D) satisfying|vl¢1.2+e(p0 775, < R and
v(0, x) = dp(x).

By the implicit function theorem, we can derive the properties of the local coordinate transforms
of {IT}o<i<r In S(@, R, T, do); see Sectiop 6]2.

Let R > 1, and letTp be a positive number given by Propositjon|6.1 depending onli @md
do. It T < Tp and{I7}og <7 iS an evolving hypersurface belonging &, R, T, dp), then the
following statements hold from Propositipn 6.1.
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(@) There exists a family of open sty }; ;, Ux C D, and a family of functionge (z, N
with @i (7, x) € CL2*([0, T] x Uy) satisfying the following conditions.
(b) Foreach € [0, T], there exists an open s&}(t) C U; such that:

(b-1) The functionsp (¢, ) : Ux(r) — B, whereB := {y € R"; |y| < 1}, are C2-diffeo-
morphisms.
(b-2) Foreach € [0, T1,

okt AU N 2:}) = {y € B; yu > 0}

and
ot {Ut)NI;)) =B, B :={yeB;y, =0}

(b-3) For somep > 0, there exist families of open ball®)y};" ; and{OAk};":1 such that

O CC O, (4.13)
Orcc () ¢ tt.B), 1<k<m, (4.14)
ot<T
m ~
U an, cc o (4.15)
0<<T k=1

where(A), = {x € R"; dist(x, A) < p}.

We can choose, {Ur};" 1, {Or}i_q, and{OAk}k’”:l not depending on the evolving hypersurface
belonging toU0<T<T0 S(a, R, T, dp). In particular, we can tak®; = {|x — xx| < 4p} and O =

{lx — xx| < 3p} for somex; € Ip. Moreover if maxg; <, |9;do(Xk)| = |9;,do(xXx)|, the local
coordinate transformg;, = ((p(l) RN )) Y = (w(l) w,ﬁ”)) can be taken as

@i (t, x) = M i(t, x), (4.16)

Yi(t,y) = Yt T~ 1y), (4.17)

where IT is an orthogonal matrix such tha?(x@®, ... x( . x®y = @ xO,

Sx@)forallx = (x@, ..., x™) and

A (D) 64R® ) i)y .

(pk (ts x) = r_z(x - xk )7 l 75 10, (418)
; 64R% . i

()5]510)(1‘1 x) = 2 (x(ZO) _gk(nx(l)v'\:'vx(n)))» (419)

(i) (i) (i) . . 4.20

v (1 y) = 64R2y +x,, i#io, (4.20)

2 (io) 2 2w - o )
1//k0(fa)’)— 64R2y(10)+gk<[ 64R2y()+_k s T 64R2y(n)+x ) (421)

Here, g is the function constructed in Proposition|6.1. For these local coordinate transforms, we
have the following lemma. Let = (y', y™).



VISCOUS INCOMPRESSIBLE FLOWS 565

LEMMA 4.3 Let {I}}ogr<r be an evolving hypersurface belonging &(«, R, T, dp). Let
{en i1 (¥}, be the local coordinate transformsi{df, Jo<; <7 above. Then

”‘Pk”cl 2+e([0,T]x Ug)’ ”wkncl 2+e([0,T]xB) X <CA+ ”U”Cl 2+ ([0, T]><D)) (4.22)
[Yk (2, y1) — Yi(s, y2)| = Clyp — yol  for0<s <t <T, (4.23)

whereC depends only on, r, andR.
Moreover, let{I;}og:<r be another evolving hypersurface belonging&‘(& R, T,dp) and let

{or}iq {tﬁk}’" be the local coordinate transforms{d?;}o<,<r given by (4 )-1) Assume
thatly, I € N, ()22 C [0, T1, {3} c B, and{z;}? c R with Y12 7; = 0. Then

lox — @x ”C1~2+‘1([0,T]><Uk) + vk — lpk ||C1~2+‘1([0,T]><§) < Clv — ﬁ”Cl’er“([O,T]xB))’ (4.24)
I I1+1> l1+l2
>t + Y wlk | = | Y Ty, (4.25)
i1 i=l+1 i—1

whereC depends only on, r, andR.

Proof. The estimates (4.22) an{d (4]24) are obvious by Propo$itign 6.1. The esfimaje (4.23) follows
from (4 ) So we shall only provE (4]25) From the definitionypfandy, we have

I li+lp i ) litlp 0 271/2
7 Mo
Zfil/fk(ti,yz')-l- Z Ty, yi)| = {Z(Zfil/fk] (ti, yi) + Z Ty (tia)’i)> }
i=1 i=h+1 Jj#io i=1 i=l1+1
li+lo 2 N\ 12y1/2
([ )]
J#io-i=1 64R
l1+1o 2 2,1/2
— A S BN G))
={2[% gm0}
JFoi=1
=1 L+ 2 Lt

64R2[Z[Z ”m] }1/2 = 6:1R2 ,; il

This completes the proof.

Let K, j(r,x) = f"/zL,-,,-(x/\/?) + G (x)8;; be the(i, j)-component of the kernel of the
matrix convolution operatar 2 P. Combining the above estima@.ZS) with the pointwise estimate

“3), we have

I I1+12
@i (, S wn + Y k(i )|
i=1 i=l1+1

h+lz —n—|0]
< C,—(n+|9|>/2<1+ ol Ziz1 Wil Liz1 Wi') (4.26)

NG

for any multi-indexd = (61, ..., 6,).
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Let {a}]_, be a partition of unity for J;i_, Oy subordinate tof Ok}, i.e.: for everyk,
ar(x) is smooth and 0< ax < 1; for everyk, suppax C Og; for everyx € i, O, We
have) ", ax(x) = 1. Note that we can takiy };._; not depending on the evolving hypersurface
belonging td_Jo. <7, S(a, R, T, do). We set

§1:= _min dist(Oy;, suppay) > 0. (4.27)
1<k<m

We may assume thég > %,0. The next proposition plays an essential role in this paper.

PROPOSITION4.1 Letp € (1,00l anda, B € (0,1). Assume thaR > 1 is a given number and
I is a givenC?t® hypersurface. Lefp be the signed distance functidfy be a positive number in
Propositiorj 6.[, and be the number defined by (4]11). LigT }o<, <7 be an evolving hypersurface
belonging taS(«, R, T, do) for someT < Tp. Then the functiorF (¢, x) given by [4.7) satisfies the
following estimates:

1F llcprzs qo, 11y < CLT P20 0.1 D) (4.28)
sup IF )@y < C2TY21hllco.11xD): (4.29)
oi<T
Sup ||F(t)||c1+a([‘[ CSHhHCOO((OT]XD)’ (430)
o<t<T

whereCy = C1(n, 8,r, R), Co = Ca(n, p,r, R), andC3 = C3(n, a, r, R).

Proof. For simplicity of notation, we write ||Z] ¢, ||h||Coa instead of ||h||c<[o T1xD)’
121l cow (o, 71x D) FESPECiVely. First, we shall prove the estimate (4.28). Note that

t
IF(t, )llcmm gf e S)APhH"p llcny ds,
[F(t, )es@n < / (t — )P PAPRH | o oy s,
and
t
\F(t,x) — F, 0] < / e APRH Y ¢ gy ds
T
T
+ /0 (VD4 — [)el™ SMPhH"F llcqgny ds
t
</ lle“~ S)APth[‘ llcgny ds
T

T
+C(f _ _’:)/3/2\/‘0 (T _ s)*ﬂ/zne(l’ S)/ZAPthF ”C(R") ds.

Thus it suffices to estimate
e 2PRH, I o -
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Thei-th component og!—)4 PhHﬁ;Sl is given as

3 /F Kij(t = 5.5 — v (s, ») H'~L(dy)
jf K

n m

=Y K= sx = s M
j=1k=1Y1sN0k

= > Tijalt.s. x). (4.31)

j=1k=1
So we shall estimatg; ; « (¢, s, x). By the area formula, we have
Il',j,k(t’ s, .X) == / Ki,j(t -5, X — Ilfk(sv E/a 0))T1(S7 E’) dé’a

Rn—l
where

Ya(s, &) = ax(Yi(s, ', ODA; (s, (s, &', 0) Jy, (s, ). (4.32)

r= [ A ]
g ; AED, . gD

Note that the integrand in the above integration is naturally extended by zBfo tathanks to the
inclusion B’ N suppa; (Vi (s, -)) C B’ N @r(s, Ok).

Itis easy to obtain the estimalft®; (s, £')| < C whereC depends only on, r, andR. If x € O,
then there exists a poifis, x) € B such thatr = (s, £) for eachs € [0, T]. Thus from ),

Here

t=s, s(”):o

VR“ Kij(t — s, Yi(s. &) — Yu(s. &', 0)Y1(s, §) dg’

<C(r— s)_"/zf

Rr—-1

|§, _§/| - /
(“Cm> e’ lhllc
=@~ s)*l/Z/R L@+l e = € =) R

In the second last integration, we changed the variabf¢ ass’ = (¢ — 5)1/27’.
If x ¢ O, then|x —y| > 81 > Oforall y € suppai. Hence

[ Kt = 5.5 = s £ O, )

_ , /’0 —n
<co-o2 (14 50500 e inic
B'Nsuppag (i (s.-)) (t—s)

51 -n
gCl‘—,_n/zl _ /d’h < Clh|c.
(t—s) ( +(t_s)1/2> . £ ke Iallc

Collecting these estimates, we obtain

IZi,jx(ts s, lewn < C@ —s)"Y2|In)c, (4.33)
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whereC depends only om, » and R (note that we can tak& depending only om andR). The
estimate[(4.28) immediately follows from the above.
Next we shall show the estimafe (4,29). Note again that in [(4[13)4(4.15), we ca®take
{lx —Xk| < 4p} for somex; € I from Propositiof 6]1. Seb; := {|x —xx| < 8p}. By the estimate
(433), we have
1T,k (2,5, lrpy < IDEYPIZija(t s, YLy < Ct =) il
Forx ¢ Dy, we see that for aly € Oy,

Ix — y| > Zlx — Xkl + 2p.

Thus from the estimaté (4.26),
- lx — Yu(s, £, 0\ ™"
1T (8 5. )| Lr @ pgy < €t =)™ / <1+ ) & Inlic
’ ) LER™\Dy)
ccu—o9 2 [ (10 b =) Ta|
b B (t—s)V2 4@ —s5)1/? LY (Rr) ‘
< Clihlic.
Combining these, we obtain the estimate (#.29).
Finally, we shall prove the estimafe (4/30). Since
IFOllcrar;) = Squ I1F @ Yn(t, - Ol crve gy
we shall estimate (¢, ¥, (¢, ¢, 0)), or, by [4.3}),
t
7.6 = [ Tjntes s, (4.39)
0

whereZ; j k. n(t, s, ¢') = T; jk(t, s, ¥a(t, &', 0)).
Letn € (0,1). In order to obtain the optimal regularity, we divig&, ¢) into J1(¢, ¢') and
Ja(t, ¢y where

t
D, = f T santss, ¢ ds, (4.35)
(1=t
, (A=)t ,
Talt,¢) = fo Tt s, ¢ ds. (4.36)
We shall show that
1T, ey < CtY2 )R] coa, (4.37)
171, Yl cazry < CODY2 || coa, (4.38)
1728, ) c2razry < CD 2[R coa (4.39)
First, we set
Bi ‘= B Nept, Oy NUL®)), (4.40)

By := B’ Ney(t, {x € Up(1); dist(x, suppay) > 61/2}) # 0. (4.41)
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Then bothB) andB;, are relatively open itR"~1, so from now on we regars’, B}, andB, as open
sets inR*~1, For all y/ € B’ there exists a unique € Uy, (¢) such thaty = (y/, 0) = ¢ (z, x). If
x ¢ Oy, then distx, suppai) > 81. Hencey’ € B, which implies thatB’ = B; U By,

Moreover, if f is a continuous function oB’ and satisfieg € C'**(B}) N C'**(B) for some

I € NU {0}, thenf e C'*(B’). To see this, we may assume ttet # ¢. Clearly, f is I-times
differentiable inB” = B; U B; and

sup (87, OO < If leaggy + 1 leugayy  TorO< 161 < 1.
)‘/EB,

Next we consider th€“ norm ofai,f. It suffices to consider the casé e B;\ B, y, € B,\ B}
if they exist. In this case, there exists a positive consfamepending only on, r andR, such that

1 — ¥5l = Céa.

Indeed,y; € B; \ B5 implies that there exists a point € Oy N Up(r) such thaty; :=
(1, 0) = ¢n(t, x1) and distxy, suppa;) < 81/2. On the other handy, € B, \ B; implies that
there exists a point € Uj (1) \ Ox such thaty, = (y5, 0) = ¢ (7, x2). Sincexz ¢ O, we have
dist(xz2, suppax) > 81. Thus

ly1 = ¥ol = |y1 — y2l = lgn(t, x1) — @ (t, x2)| = Clx1 — x2| = C(lx2 — z| — |x1 — zl)

for all z € suppai. In particular, we can takesatisfying|x; — z| = dist(x1, suppax). Hence

lvi —vo| > C|( 8 _a —E(S
Y1 Yol 2 1 2 = 2 1-
This implies thatf € C'*t%(B’) and
”f”clﬂx(ﬁ) g C(”f”clJroz(Bii) + ||f||Cl+a(Fé))7 (442)

whereC depends only on, r, andR.
Now we return to the estimates fof, J1, Jo.

(i) Estimates orB;. We first estimatel; ; x (¢, s, ') on B,. By the definition ofB), we see that
[ (t, &', 0) — Y (s, &,0)| > 81/2 for all ¢’ € B, if ¥ (s,&’,0) € suppag. So for any multi-
indexd with || = 0, 1, 2, from the estimatg (4.26), we have
100/ Zi jkn(t, 5, ¢
< / |a?’Kl,j(t -, I//‘h(tv g/s 0) - K[fk(S, g/v 0)| |T1(S7 ‘5;:/)| d%-/
B/

<Y CAHYRE )l zragg)(t — )TN/

0<10"I<16]
|Wh(ta §/70) _'(:[/k(sag/voﬂ —n—|6’
. 1 =19l 4’ | h
A =12 ) £ llhllc
/ 5 —n=le’l
—(n+16'1)/2 1
<CA+llerza) Y (1t =) / (1+m> dg" IRl c

NN
< Clirlic
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whereC depends only on, r, andR. Similarly, we easily have
[09.Zi.jin(t. 5. N ca gy < Cliklc.

In particular,

1T eaggy < Ct720RC. (4.43)
172, Yl ea gy < CONY2 RN (4.44)
1721, )l 2o gy < COND ™2 R (4.45)

(ii) Estimates orB;. In order to obtain the desired estimates, it suffices to show that
1Zi.jukn (25 M ea gy < €= )72l cou, (4.46)
1 jan (& 5. ) | zra gy < €= )7kl o (4.47)

If ¢/ € Bi, then there exists a unique’ € B’ such thatyy(z,¢’,0) = ¥, w',0), orw =
(w', 0) = @r(t, ¥ (t, ¢’, 0)). Note thatw’ is a function ofr and¢’, but for simplicity of notation,
we just writew’, or w’(¢’). From the estimat¢ (4.p2), we have

1w llcr2se o, 7755 < CAA+ MV1Z1200)- (4.48)
As in (i), for any multi-indexd with |#] = 0, 1, 2, from [4.26), we have
100/ Ti.jan(t, s, 2

S / 107K (= s, yn (. £, 0) = (s, €', O) (s, &) o’

161

< CA+ 1Y, )l cora ) Z/ OV K@ = sy, w', 0) = Y(s, & 0)] 68 [kl
lo]=07R""
161 )2 ' — &\ "
<ci 24 t—s5)~@ 1+C——= dg’ ||
L+ vl cras )|9/2|::o( 5) /%1< + (t—s)l/2> £ Ikl

< CA+ vl crzra)t — )" D2 pi .
So we obtain
Tiixnt s, ) < C(t —s) Y2k
15, )l oy < ) Y2llllc,
1Zi.jukn (5. ) agry < C =)~ |hc.

Thus it suffices to estimat&{ ; v » (7, s, ')]ca

first, as the other is similar.
We make use of the-Holder continuity of ¥7. For this purpose, by changing variable as
w' — & =7/, we rewriteZ; ; x n(t,s,¢’) as

2 .
) and [ag,Ii,j,k,h(t, s, ~)]CQ(B—D, we only handle the

Tijen(t, s, ¢ =/ Kij(t —s, it w', 0 — yu(s,w — 2, 0)Ti(s, w' — 2)dz’.  (4.49)
Rnfl
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For¢y, &5 € By, we setw] = wi(¢), w), = wh(¢,). We also set
To(t, s, w', 7)) = Yu(r, w', 0) — Y (s, w' — 2. (4.50)

Then

1
1Y2(t, s, wy, 2') — To(t, s, wy, )| = V (wy — wh, (V Y2)(t, s, Tw] + (L — 1)wy, ) dr
0

< Clg = Gl — s)ET2 17,

So from the estimat¢ (4.p6), we have

IZi jin(t, 8, 80) — Lijn(t, s, &)l

g / 1 |Kl,j(t -9, Tz(t7s5 w;]_a Z/)) - Kl‘j(t -, TZ(t, s, w/27 Z/))| |T]_(S, wa__z/)|dz/

+ / K =5, 12015, wh, 2| T1(s, wy — 2) — Ta(s, wy — 2| dZ’
R

1
< Cllhllc/ 1/ KY2(t, s, wy, ) — Va(t, s, wh, 2),
Ri-1Jo

(VeKij)(t — s, T0(t, s, w). 2) + (1= ) Ta(t, s, wh, 2)))| dr o’
/ —n
, , )2 |Z | /
+ Cllhllcoalwy — wh|*(t — )™ /Rn—l <1 e (t— s)1/2> %

/ —n—1
((t—s)(1+")/2+|z'|)<1+C—|Z| ) dz’

< Cllhlicley = gl — )07 / ()12

Rn—l
+ Cllhlicoal] — &4l (t — )72
< Clgy = o1%(t — )" Y2k coa,

which is the desired estimate. We have just established the estifnatgs (4.37)—(4.39).
We are now in a position to show the optimal regulafiity(z, M crva gy - We use the relation

clte(B’) = ¢t (B’) (equivalent norms), wher€ (B’), 0 < [ < 3, are the HWlder-Zygmund
spaces defined as follows:

C'(B) :={f € CBY; I flag, = I1flca +flag, < ook

where
£ () = 3F(B52) + 37 (22) - F ()
lx — y|! )

[f]cl(ﬁ) = sup
x,yeﬁ,xyéy
The advantage of thedtder—Zygmund spaces is that derivatives do not appear in the definition of
its norms. We have the relatiaff (B’) = C!(B’) with equivalent norms it is not an integer; see
A. Lunardi [13] or T. Runst and W. Sickel [21].
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It suffices to estimate] (t, -)]c1+o. Let ¢y, g5 € B' with ¢; # 5. We first consider the case
wherelz] — ¢5| < 3142, SinceJ = 71 + 2, from (4.38) and|(4.39) we have

2 ! / ! 2 /
’J(t, &) —SJ(t, 41;52) +3j(t, g“; 42) _ T

<[ Dealt] — 51° + [Ta(t, D eerelt] — G517

< CLA, Vcaleq — l* + CLT2(t, )] caralt] — £517H

< Clinllcoa D M21E] — S1% + Clihll cow (nt) "Y21g] — g512H
forn € (0, 1). So if we sety = |¢] — ¢5|2/t, then

2 /+ / /+2 /
‘J(I»Ci)—3J<t, 513 C2)+3J<t, S s 4“2) _ T,

forany¢], ¢ € B/ with [¢] — &5l < 2eY2.1f ] — ¢5) > 3¢Y/2, then from ),

2 /+ / /+2 /
‘J(t, &) —3j<t, §13 CZ) +3j<t, “ s §2) _ T
< LT et — 8 < Cllhllont™2IE] — 1% < Cllallcoslt] — oI H+.

HenceJ e CY(B’), equivalently,7 € C1+*(B’). This completes the proof.

1
< Clhlicoxlty — g31*

4.2 Remark on the mild solution of the Navier—Stokes equation

In this section, we shall construct a mild solution of the Navier—Stokes equation with initial velocity
up € C*(R") and with layer potential terme;tl. Thanks to the estimates for the layer potential
term established in the previous section, we can obtain appropriate regularity for solutions in the
tangential directions té;. We recall that the mild solution of the Navier—Stokes equation which we
consider here is a solution of the integral equation

! t
u(t) = e'“ug — / APV @ uds + / t=)APy1r L d,
0 O s

Now leta € (0, 1). Assume thatg € C*(R") satisfiesV -ug = 0 anddp is the distance function
of a €%+ hypersurfacdp. Let R > 1 be a given number arifh (< 1) be the number given by
Propositior] 6./ in the Appendix, depending onlymanlp, andR. Let 71 € (0, To] and {I7}o<i<ry
be an evolving hypersurface belongingXax, R, T, do). Then we have the following proposition.
PROPOSITION4.2 There exists & < Tp such that there exists a unique mild solutione

CcY/2([0, T] x R"). The existence timé& can be taken uniformly i&(«, R, T1, do). Moreover,
this solution satisfies the following estimates:

lutll carza o, 7 x ey < Clluollceny + C1T Y2l ¢ 0,715 D) (4.51)

1/2

sup (Pt sy + sup 13t ey

O<t<T <t<T
< Clluollcxmny + C2T Y | hll cowqo. 115y (4-52)
whereC = C(n, o), C1(n, a, dg, R), andCa(n, a, do, R).
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Proof. We will follow the contraction argument by T. Ka{o [10]. Since this argument is well-known,
we only outline it. Set

Fo = etAuo,

t
B(f.g) = / VAPV fogds,  fg e CON(0, T] x R,
0
t
F = fo e IAPRH! L ds.

From the pointwise estimate of the kerréf'PV. in Lemma 4.1, it is not difficult to deduce the
estimate

IBCf. @)l carzaqo.71xRry < CTY?| £ll coaqo. 77 xrm) 18l cox 0,77 xR (4.53)
whereC depends only on anda. Combining the estimates in Lemina}4.2 and Proposjtion 4.1, we

easily see that
G(w) = Fp — B(w,w) + F (4.54)

is a contraction mapping from the closed ball @%/2%(0,T] x R") with radius

2(|[ Foll co o, 71 xRy + 1 |l co (o, 77xRn)) iNtO itself for sufficiently smalll” < 7i. This implies the
time-local existence of the unique solutienNote that the existence time can be taken uniformly in
S(a, R, T1, do) since the constants in Proposit[on]4.1 do not depend on the family of hypersurfaces
in S(a, R, T1, dp). The estimatd (4.51) is obvious. We shall show the estirhate](4.52). Note that

18x Fo(t, lc®n < Ct™ 92| uglica,  [8x Fo(t, )] camm < Ct™Y2|lugllca.
As for the nonlinear ternB( f, g), we recall the estimates
IVe' PV - fllc@n < Ct I fllc@n, 1V “PY - fllc@n < Ct2IV fllen),

forany f e (C1(R"))"*"; for example, seé [14, Corollary 3.1]. By interpolating, we have

V' 2PV - fllcmn < Ct™2| £l ca. (4.55)
Hence
! 1 2
IVB(f )t Ylen < C /0 (1 — )" 52| £ © g(5) | cogam ds
< Ct2|| £l coa qo. 71 xm 181l coa (0. 77 xRr)-
thus

IVB(f. ®llcqo.rixrn < CT?|| f |l cowqo.77xRm 181l coa o, 77 xR -
Next since the Helmholtz projectiddis bounded in the homogeneous counterpald®fR"), we
see that .
[VB(f, o), )]ce®n < C[V/ AV . F @ gdS}
0 Ce(R")
Then, from the maximal regularity estimates for the heat equation((see [13]), we easily obtain

IVB(f, 8)||c0,a([o,r]XRn) < C||f||c0,a([o,r]an)||g||c0«ot([o,T]><Rn)~ (4.56)

Combining the above estimates with the estimateFfan the tangential directions tb; established
in Propositiof 4.1, we obtain the desired estimates. This completes the proof.



574 Y. MAEKAWA

5. Construction of the solution for the free boundary problem

Now we return to the problenj (FBP). In this section, we shall prove the main theoreng leet
CY(R") satisfyV - ug = 0. Let Iy be ac?™ hypersurface which is the boundary of a bounded
domains2g and letdy be the signed distance function B§. We setFy(z, -) = e'“ug and

M = 2(]| Foll coa 0,00y xRy + SUPEE 2105 Fo(t, )| crny + suptt/?[0x Fo(t, )l cerry). (5.1)
t>0 t>0

Recall that{y, is the closed subset %% ([0, T] x R") defined as

Uy = {u(t, x) € C®([0, T] x R™); u(t,-) € CY*R"), L, = sup [lu(t, )llcemn)
O<t<T

+ sup (29, u(t, Hllewny + sup Y [d,ult, Vcagn < M), (5.2)

O<t<T O<r<T

From Propositiorf 3]1, there exists a positilie such that for any: € Uy, there exists a
unique family{I’”}o<; <, Of hypersurfaces evolving via the convected mean curvature equation
(3.7) starting fromio. Moreover, thi I}/ }o<, <1, belongs taS(«, R, T1, do) with R = ||dol| c2+« +
2C(Idoll c2+a 55 K. M); see [(3.]] ') Leb be the signed distance function @f}* }o<:<7,. From
Propositio , we have

sup 21030 (t, )l ca gy < 0
O<t<T1

for any open seD’ cc D. Let T» := min(Ty, Tp), whereTy is the number given by Proposition
[6.7. We set

Cq:= sup tY21030(t, Mgag v 5,1 (5.3)

O<t<T» Uiz 00

where {O};"_; is the family of open sets given by Propositi6.1. Note tatis bounded
uniformly with respect to functions belonging#f,. Set

t
F“t,) = / e APo  H" V"', ru ds, (5.4)
0
where H*, v* are the mean curvature and the exterior unit normal vectdr“ofrespectively. We

remark that for the signed distance functigrihe exterior unit normal vector! (¢, x) and the mean
curvatureH" (¢, x) of the surfacd’; are given by

Vi(t, x) = Vyu(t, x), (5.5)

HY(t,x) = —ﬁ divv(t,x) = — i 1Av(t, x). (5.6)

Sincew is a function on [07] x D, v and H* can also be regarded as functions onZ[p x D.
In particular, if{I}}og <7 iS an evolving hypersurface belonging&de, R, T, , do), then the mean
curvature vectoH"v* belongs toCO“([O T] x D) as a function on [0T] x D. Moreover, if the
abovev satisfies sug.,_y t1/2[|8,v3(z, )l ca(pr, < 0o for an open seD’ cC D, then

sup (Y210 H (1, Y oy < € SUP 1Y21030(1, )l ca - (5.7)
O<t<T O<t<T
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From Proposition 4]1, the functiaft* satisfies

1l carza o, 1,y Dy < O1CT 972, (5.8)
sup [|F* ()|l crve () < 01C, (5.9)
o<t

whereC depends only on, «, R, andlp. SinceF*(t, -) belongs t(f““(l“,“) for eachr € (0, T3],
we can construct a function il (R”) as an extension ofr« F"(z, -), whereyr« is the restriction
operator ta’}. We fix the extension as follows. L@ };";, {¥«};_, be local coordinate transforms
of {I*}lo<i<ms and{OAk}?:1 be the family of open sets given by Proposi 6.1. il , be a
partition of unity for(_J;"_; O subordinate tqOx}} . Set

EY ((FY(ty) o= F (e, Y, 0),  y=0".y") eR", |yl <1,

ak(X)E7  (F*)(t, (2, x)), x € O,

ES (F")(t, %) i= {O’ o

Moreover, we set
m
EY(F")(t,x) = Z E3  (F")(t,x). (5.10)
k=1
Then obviouslyEY (F*)(t, x) = F“(t, x) forall x € I'; and

|EY(F") | carzan o, 15y < C5o1CTE/2, (5.11)
sup [[EV(F")()ll c1terey < C501C, (5.12)
o<t

where Cs depends only om, R, and I'p. Note that the partition of unity{a,};’, can be
taken uniformly in (Uo_7<7, S(e, R, T, do). Moreover, although the extensioB” depends
on {I''}ogs<7,» the constantCs is independent of the evolving hypersurface belonging to
U0<T<T2 S(a, R, T, dp). Let ¥p(u) be the unique mild solution with initial velocityg and with
layer potentiaby H"v"H.' -, i.e.,
Yo(u) = Fo+ F“. (5.13)
Finally, we set

U (u)(t, x) = Fo+ EV(F“). (5.14)
Clearly,¥ is a mapping oi{,,. We shall show tha¥ is a contraction mapping,, into itself. From
the estimateg (5.11], (5]12) and the definitionhfwe have

Ly < M/2+ Cs01CT /2, (5.15)

Since each constant above is independerit,ofie see that for sufficiently smdll < 7>, ¥ maps
Uy into itself. Next we shall show thak is a contraction mapping. Let, i« € Uy, andv, v be

the signed distance functions df” }o; <7+ {Ftﬁ}ogth, respectively. From the construction of the
map¥, we see that

W (u)(t, x) — (i), x) = EV(F")(t, x) — E°(F")(t, x)

=D a()F(t, Yt i (1, %), 0)) — F*(t, Y (2, G (¢, %), O))}.
k=1
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Thus it suffices to estimate

||Fu(7 Wk(, ‘P/L(s )’ 0)) - F’J(’ '(/}k(v &]/((7 )9 O))”COH([O’T]ka) (516)

By using the local coordinate transformgJ;_;, we see thaf (5.16) is equivalent to

Osup ”Fu([v Wk(t» y/v 0)) - Fﬂ(ts &k(tv w]/c(tv y)ﬂ 0))||C;X(§)v (517)
<t<T

wherew (z, y) is defined as

wi(t, y) = @, y), . w P, ), (5.18)

w6, 3) = ¢, Yt ). (5.19)
In fact, we have the following proposition.

PROPOSITION5.1 LetTp be the positive number obtained in Proposifion] 6.1. Then fof" a#
(0, To],

sup max ||[Fu(t, vi(t,y',0) — FEt, Yi(t, wi(t, y), )l e (s
SUpmax | P, yite, . 0) = P ute, wg e, ). Ol

1/2 1/2\193= ~
<crY (1+Oftu<th / 1853 (¢, ')||C"<U2”:15k>)||v — v||C1‘2+”‘([0yT]><Ukm:15k)’ (5.20)

whereC depends only on, «, r, andR.

The proof of the above proposition will be given in the Appendix; see Section 6.1. Here we
only give a simple explanation why the term gup t1/2||8§f)(t, ')”C“(U}Ll@) appears in the

above estimate. In prde! to establish the above estimate, we havg to ca!culé’t%“ﬂnmrm of
H(t, yx(t,y',0) — H(t, Yx(t, y', 0) whereH := H" = —L AvandH = H" = - -1, A3. By
decomposing this term as

H(t, yi(t, y',0) — H(t, ye(t, ', 00) + H(t, Y (2, ¥, 00) — H(t, Y (2, Y, 0)),

we see that the term sgin _ 7 t1/2||8§’f)(t, -)||CQ(UZL15k) appears when we estimate this term by the
mean value theorem.
From the above proposition, we have

||'1/(M) — lp(ﬁ)||co.a([o’T]erz) < Ulch/z(l + C4)||U - ﬁ”cl’zﬂi([O,T]xB)’
whereC depends only on, «, I'y, andM. On the other hand, from Proposition 3.3,
lv— ﬁ||cl,2+oz([())]*]><5) < Cllu — ﬂ”COv"‘([O,T]X]R”)’ (5.21)

whereC depends only on, «, o2, Iy, andM. Collecting the above two estimates, we see théd
a contraction ofy, for sufficiently smallT .

Thereforew has a unique fixed point* € Uy,. Sinceu™ = ¥ (u™*), from the definition oy,
we have

Wo(u™)(t, x) = Fo(t, x) + F* (¢, x) = Fo(t,x) + EV (F*)(t, x) = W W*)(t, x) = u*(t, x)
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forany (1, x) € Upg,<r{t} x I} . Hence{I}* Joi<r evolves by the equation

% = oo H*(t, x)v*(t, x) + u™(t, x) = o2 H*(t, x)v*(t, x) + Yo(u™) (¢, x),

x(0) = xg € I,

that is, the paif¥p(u™), {Ftu*}ogth) is a solution of our free boundary problem.

Although the above mapping depends on the particular extension, we can show that the
solution, in fact, does not, and is unique in the class stated in the main theorem. To see this, let
(u, {T;}ogi<r) be another solution fo@P). Letbe the signed distance function af; }o< <7-
Thenv € CL2t%([0, T] x D) whereD = {x € R"; —§ < do(x) < 8} for sufficiently small
8 > 0. Since{I7}o</<r evolves by the equation iff (BC),satisfies|(3]6). An important fact is that
for anyx € D, the pointx — v(z, x)V,v(z, x) must belong tal; by the definition of the signed
distance function. This implies that for adlysatisfyingis = u on Uogtgr{f} x I, the function
v is also a solution of (3]6) with instead ofu. This proves that the solutiof, {I7}o</<7) does
not depend on the particular extension, and the alpgyé:*), {F[u*}ogth) is the unique solution
solving [FBR) in the class stated in the theorem. Now the proof of the main theorem is complete.

6. Appendix
6.1 Proof of Propositiof 5]1

The proof is by direct calculation, essentially the same as in the proof of Propdsitipn 4.1.
For simplicity, we write|[v — 0| c12+e, [10x0(¢, ) || o2+« instead of|lv — ﬁ||cl’2+a([0»T]><UZl=15k)’

|9, v(t, -)||C2+Q(UZ,_1@), respectively. We also writey; (y) instead ofw,, (¢, y). First note that by
(4373), it suffices to estimate

Ti ity s, Yn(t, ', 00) — Zi i x(t, s, Yu (2, wjy (), 0)

= /Rnil Ki j(t — s, ¥n(t, ¥, 0) — Yu(s, &, 0)Yi(s, §') dg’

- /Rn_l Kij(t — s, Yn(t, w(y),0) — ¥i(s, &, 0)Tu(s, §) ', (6.1)

where
Y15, &) = ar (Y (s, &', 0) (Hv))(s, Y (s, &', 0) Ty, (s, &), (6.2)
T1(s, §") = ax(P(s, &', 0N (HD)) (s, Yus, &', 0) Iy, (s, 8. (6.3)
Set
Bii={y=('y") e B; (y/,0) € By}, (6.4)
By:={y=(y.y") € B; (y.0) € By}. (6.5)

Here, B and B, are the subsets @' = {(y', 0); [y’| < 1} defined by[(4.40) and (4.41). We have
B = B1 U By and, as in the proof of Propositipn 4.1, fere C(B),

I fllced < CULfllca gy + 1 ces,) (6.6)
whereC depends only on, §1, r, andR.
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Hence we shall estimate
VZi ot 5. 92,y 0) = Lot 5. Fn(t, wj, (). )l 5,
and
1Zi et s 9 (2, Y, 00) = Ti it 5. n, wi, (). O)ll g (7,

If y € By, then there exists a poiit’, 0) = (¢/(y"), 0) € B such thaty, (¢, y', 0) = ¥ (z, ¢’, 0).
In this case, sincer,(t, ', 0) € O, we see thaty, (t, w),(y), 0) € Yx(t, B) forall ¢ e [0, T] if
lv — ¥|| c1.2+0 is sufficiently small. Indeed, note that singg(0, y) = Un (0, y), by Propositiol
in Sectior{ 6.2 below, we have

< Y, y',0) = Yn(t, ¥, O + 19 (1, Y, 0) — Y (2, wj, (), O)
< N8¥n = 3l cqo.r1xm T + 19y ¥nllcqo.rym 1y — wh)]
< CT v = Tl crzre + Cly' — wj (), (6.7)

[Yn(t, ¥, 0) — Y (t, w,(y), 0)]

whereC depends only on, r, andR. We also have

1Y = wi, D] = 19, (1, Y (2, ¥)) — @, (¢, Y6, YD < Nlgn (2, -) — @n(t, e,
< TN3pn — 8l cqo.ryxpy) < CT v — bllcazee. (6.8)

Combining these wittDr CC Mo, <7 Yk (1. B), We obtainy (1, wy,(y),0) € Y (1, B) for t €
[0, TTif |lv — Dllc12+e < €1, €1 is sufficiently small. Note that; can be taken depending only on
n, r, andR. We omit the details.

Since ¥, (1, w, (), 0) € VY (t, B), there exists a pointy’,0) = (7'(y),0) € B such that
Un(t, w,(y), 0) = Y (t, ', 0). Thus, ify € By, then we can decompose

Ti ot s, Yn(t, ¥, 00) = L j i (t, s, Yn(t, wh (), 0) = O1(t, 5, y) + Oalt, s, y), (6.9)

where

O1(t, 5, y) =T ji(t, s, Y (t, ¥, 0) — Li ja(t, s, Ya (1, £' (), 0))

=T ity s, Ui (t, £ (), 00) — i j it s, Y2, £/ (), 0)), (6.10)
OZ(Z? s, )’) = -,z-i,j,k(ts s, Iﬁk(t’ é‘/(y/)s 0)) - i-i,j,k(l9 s, '&h(tv w;,()’)» O))
=Tkt s, g, 2N, 0) — i j ity s, it 1 (), 0)). (6.11)

We first estimate);. By the definition ofZ; ; x, the functionO; is expressed as

Out, 5, y) = T1(t,5, ) + Ta(t. 5, ¥),
ot 5, y) = /R  Kig = s (. (60, 0) = Yls €. 0) (T = Ta) (6,8 0,

Tg(r,s.y) I=/ ng(Ls,y,é/)ﬁ(S’E/) ag’,
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where

Yo(t,s,y, &)
=K j(t — 5, Y (t, (), 0) — (s, E,0) — Ki j(t — 5, Y (1, £ (3) — Ya(s, &', 0), 0)
= /01(7”10(11&%5/),Tll(l,s,y,é/, 11)) dr1,

with

Tio(t, s,y &) == Yr(t. ' (¥, 0) — Y (s, &, 0) — Ye(t, £'(¥'). 0) + (s, €, 0),
T, s, v, &, 11) i= (Vi Ki j)(t — s, 110, s, y, &) + ¥ (2, £'(v), 0) — Y (s, &', 0)).
First we shall estimat&g. Using the mean value theorem, we see that
1T10(t, 5, v, EN| < W (2, ¢'(Y). 0) — Y (s, &' (3, 0) — (W2, £/ (¥, 0) — Y (s, £ (), 0))
+ 1Yk (s, £ (), 0) — Y (s, &, 0) — (W (s, £/ (), 0) — Y (s, &', 0))]
< ||8t‘ﬁk - 3t1pk||c([0’]"]><§)(t - S) + ||8y1//k - aylpk||c([0j]><§)|§/(y/) - §/|
< Cllv = Dllgrzsa (t — s + TED21'(y)) — &),
and fory1, yp € By,
IT10(t, 5, 1. &) — T10(t, 5, 2. )| < CTH 2|y — | cazvalyr — yal.

From Lemm4 41 and (4.25), we have

|711(t, 5, y, &', 11|

|10, s, v, §) + Pt £ (), 0) — (s, &, 0)I>_(n+l)
(t —s)V2

rEGh - g T

64R2(t — 5)1/2 :

<C@t— s)_(”+1)/2<1+

<C(t — s)<”+1)/2<1+
For y1, y2 € By, it follows that
l 1
s,y & 1) = 1@, s, ya, € 1)

1
/ (T12(t, s, y1, y2, &', 71), T13(t, 5, y1, ¥2, &, 71, 72)) d2 |,
0

where

Tia(t, s, y1. y2, &', 11) == 1 Tao(t, s, y1. &) + Y (t, £’ (¥1), 0) — Y (s, &', 0)
— (T1Y10(t, 5, 2. €") + Y (t, &' (39), 0) — Ve (s, &', 0))
(W (t, £ (7). 0) — Y (t, £’ (¥5), 0))
+ (L= )W (t, &' (3D, 0) — Y (t, &' (), 0)),
T13(t, 5, y1, 2, §', 11, 12) '= (Vi 0y, K j)(t — 5, Y142, 5, y1, 2, §', 11, 12)),
T14(t, s, y1. 2, §', 11, 12) = 12012(8, 5, y1, 2. &', 1) + 11 V10(t, 8, y2, &)

+ Pk(t, ' (¥5), 0) — Y (s, &', 0).
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We have
|Y12(t, 5, y1, 2, &', 11)| < Cly1 — y2l,

and from [4.2p),

2
.
[Y1a(t, s, y1, y2, &' 11, T2)| > Wlfzé/(yi) + 1 — )¢y — &'l

Thus, from Lemm§&4]1, we have

[ )
s, 1, & 1) = Tty s, 2, €, 1)
1 ’ —(n+2)
o [Y14(t, s, y1, ¥2, &', 11, T2)|
< Clyr = yal(t —)™/2 1/ (1+ = )12 o
A —

1 r2ltag' (v)) + (L — )¢ (vh) — €1\ 2
< Clyy — yal(t — —"/2—1/ 1 L 2 dro,
lyr — y2l(t —5) A + 64R2(1 — )12 2

whereC depends only on, r, andR.
Collecting the above, we obtain

Yo, 5, v, &)
1
< f T10(t, 5, v, &) |T11(t, 5, v, & 12)] dhet
0

r2g' () ~ €] )‘<"+1>

o~ _ AHa)/2) ! (1N £/ o —(n+D)/2 TV s T
< Cllv = Bllcrasalt — s+ TEOR () — € — )7 (1+64R2(l_s)1/2

SO
1782, 5, e, < CA+THD2@ —5)"V2) v = 5 cr21a, (6.12)

whereC depends only on, r, andR. Moreover, fory1, y» € By with |y1 — ya| < (r — 5)%/2,
|Yo(t, 5, y1,&") — To(t, 5, y2, )|

1
< / (Y10, s, y1, &) — Yio(t, s, y2, &), T1a(t, s, y1, &', 70))| dr1
0

1
4 [ 1071005 2.8, Tt 5031, 7) = T, 12, )
0
¢/ (yp — &'\
64R2(t — 5)1/2
+ Cllv = Bllcrara(t — s + TITD21/(yh) — €' |y1 — yal(t — 5) /271

! ”2|T2§/(y/1) +@1- rz)g‘/(y/z) — & —(n+2)
X/o <1+ 64R2(1 — 5)1/2 ) dro,

< CTH IR0 — Bl cazalyr — yal(r — s)<"+1>/2<1 +

and using the inequality

12'(vh) — &) < 172l () — &' )| + 1728’ () + (L — w27 () — &)
< Cly1 — y2l + 20" (y) + (1 — 128 (yp) — &
<C—)YV? 4+ 100 () + A — )¢ (vh) — €],
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we have
|T9(t’ s, Y1, E/) - Tg(t’ s, y2, g/)|

LI ’ —(n+1)
] . P10 — €
< Cllv = Tl crzsalys — yzl{T(”“)/ 2 =) (HM(H BIR%1 )72
+ (- s)—n/zfl 1+ Pt o) + (A= ) ) — &1 T de
0 64R2(t — 5)V/2 2

1
+ 12 gyn/271 /0 (C(t —$)YV? + 128" () + (XL — )¢ (y) — €'])

r2 ol (v) + A — )¢ (vh) — €1\ "2
‘ <1+ 164R2(t — 12 : ) dfz}.

Hence using Fubini’'s theorem, we have far y» € By with |y1 — yo| < (r — 5)Y/2,

ITa(t, 5. y1) — Ta(t. 5, y2)| < /

Rn

» |To(t, s, y1, &) — Yo(t, s, y2, £ | Ta(s, &')| dg’
g C”U - ﬁllcl,2+a|y1 — y2|{T(1+a)/2([ — s)_l + (t _ s)—l/Z}’

whereC depends only on, r, andR. On the other hand, for;, y2 € By with |y1 — y| > (¢ —5)V/2,
from (6.12) we have

Ya(t. 5. y1) — Ta(t. 5. y2)| < 2178t 5. )l ez,
< Cllv = Bllerara (L4 T2 — )72
< Cllv = bl crare ((t — ) Y2+ TED2( —5)7Y) yy — yo.
Thus for ally1, y2 € B, we obtain

T8(t, 5. y1) — Ya(t, 5, y2)| < Cllv = Dllcrzea ((t — ) Y2+ T2 — 5y |y — yy,
which implies that
T8(t, 5. y1) — Ya(t, 5, y2)| < Cllv — Dllcrzea ((t — $)" 2 4 TEO2( —5)~AF0/2y |y, gy
or

[Y8(t. 5. ) caggy < Clv = Dllcrasa((t — )72 4 T2 — )= 1H0/2), (6.13)

whereC depends only on, r, andR. y
Next we shall estimat&y. By the definition ofYy, 71, from Lemm,

(71— T)(s, £ < CT*?(L+ sup tY2)835(t, )l ca)llv — Dl cr2+a,
O<t<T

whereC depends only on, r, andR. Thus together with the pointwise estimate in Lenjma 4.1 and
#23), we have

177, 5. Ml gy < CT2( — )21+ Sup M5, e llv = Tl crzva,
<t<T

whereC depends only on, r, andR.
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The estimate fo©- is also obtained by direct calculations as above:

102(2, 5, -) ”C“(El)

< CTIO2( — o) Y2(1 4 57Y2 sup 1Y2)1035(1, )l ca)llv — Dllcr2ra.  (6.14)
O<t<T

Next we shall estimate
1Zi et 5. 9 (e, Y, 0) = Ti it 5. n e, wy, (). O)ll g (75,
Letes € (0, e1] be a small positive number to be determined later. Ffonj (6.1) we decompose
Tijuct, s, Yn(t, ¥, 0) = Zi ji(t, s, Yt wj, (), 0)) = Oa(t, 5, y) + Oalt, s, y),
where

030» S, y) = /R . Ki,j(t -, Wh(tv y/s O) - wk(sv ‘i:/v O))(Tl - ’f\l)(s, ‘5/) d‘;§/7

04(t7 s, J’) = v[é . (Kl,](t -, Ilfh(tv y/a 0) - Wk(sa S/v 0))
—Kij(t — s, Ynt, wp(y),0) — Vi (s, &', 0))) Ya(s, &) &’
Let v — Ul cr2+« < €2. SinceT < Tp < 1, if Vi (s, &', 0) € suppay then for ally € B,

[Yn(t, y',0) — Yi(s, &, 0) = [¥n(t,y', 0) — Y(s, &, O) — Y (s, &, 0) — Y (s, £, 0)]
2 681/2—CT|lv —V|cr2+4a = 61/2— Cep = 61/4

for sufficiently smalleo. Thus, from Lemm@ 4]1 and the estimgte(6.1), foyad B,

|O03(t, s, y)|

hhh(t’ y/v O) - l[/k(sv g/s 0)'
(t —S)1/2

<C (t—s)_"/2<l+ ) (71— T1)(s, &) dg’
B/

- 81 - -1/2 1/2) 93~ ~
<c | (t—-yv "/2(1+ —) de’(L+ s7Y2 sup Y2035z, ) |lco)llv — D] ¢r21e
B A1 — 5)1/? 0<t<T * ¢

< C@+s7Y2 sup (721935, Hllca) v — Bl crzra,
O<t<T

whereC depends only on, r andR.
Foryi, y2 € Bawith |y1 — y2| < €2, we see that for alf’ € B’ satisfyingy (s, &', 0) € suppay
or (s, &', 0) € suppay,

lt1(Yn (7, ¥1, 0) — Y (s, £, 0) + (L — ) (W (1, ¥2, 0) — Y (s, &', 0))]
> Y, ¥, 0) = Yr(s, &, O) — [¥n (2, y1, 0) — Y, ¥5, 0)| > 81/4 — Cly1 — yal,

whereC depends om, r, and R. Hence ife; is sufficiently small, then, foyi, y2 € Bz with
[y1 — y2| < €2,
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|O3(t, s, y1) — O3(t, s, y2)|

1
//<wh<r,y1,0>—wh<r,y§,0),
B’ JO

(VxKi,j)(t -9, Tll/fh([, yi? O) + (1 - tl)wh(tv yév O) - ‘[/k(s? é/v 0))) dtl (Tl - ?1)(5‘, ‘i:/) dg/

< Cly1 — yal(r — 5)~HD/2

81 —(n+1)
140 %
) ( T8 —S)1/2>

< Clyr — y2l(@ 4572 sup tY21835(t, ) lice)llv — Dll cr2+a,
O<t<T

whereC depends om, r, andR. If |y1 — y2| > €2, then

103(t, 5, y1) — O3(t, 5, y2)| < 2|03, 5, )l o5y

< CA+s57Y2 sup Y2835(t, )l ca)llv — D]l cr2+a
O<t<T

< C@A+s7Y2 sup tY2)835(1, )l ca)llv — Dll crralyr — y2l /€2,
O<t<T

(L+sY2 sup 21830, Hllce) v — Dl cr2ea
O<t<T

whereC depends om, r, andR. Similarly, if v — V|| 12+« < €2, itis not difficult to see that
||O4(ta s, ')”CO((EZ) g C”U - 77||c1,2+a,

whereC depends om, r, andR.
Collecting these, iflv — 3]l c12+0 < €2, We have

1Zi gkt s ¥ (e, 5, 00) = Ti . 5. 9n (e, w), (9), Ol ey

<CA+ s‘l/zosup t211835(t, )llce)llv — Dllcrz+a  (6.15)
<t<T

whereC depends om, r, andR. Note thate> depends only on, r, andR. By Propositiorj 4.]1, we
easily see that
||Il,],k(t9 s, I//h(tv y/1 O))||C€((E2) + Ilj-l,j,k(tv s, &/’l(ts w;l(y)’ 0))||C$¥(§2) < Cs

whereC depends om, r, andR. Hence, the estimatg (6]15) holds for allv with a constanC
depending only om, r, andR. This completes the proof.

6.2 Implicit function theorem

Let I'p be the boundary of a smooth bounded dom2inLet dg be the signed distance function and
we set
D = {x e R"; =80 < do(x) < 8¢}.

In order to estimate the term )
/ e =IAPHVH" L ds,
0 s
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we need some information on the local coordinate transfofgns associated with{I7 o< <
belonging toS(«, R, T, do). Let r be the number given by (4]11). Far c R" andp > 0O, we
set

(A), = {x € R"; dist(x, A) < p}.

PROPOSITIONG6.1 LetR > 1 anda € (0, 1). Then there exists a positive depending only on
r and R such that for alll” € (0, To] and{]l}ogtg € S(a, R, T, dp), the following holds. There
exist a family of open setf; ;”:1, U; C D, and a family of functionsgoj(t,x)};?’:l, @j(t, x) €

cl2te([o, T] x U)), satisfying the following conditions:
(i) Foreachr € [0, T], there exists an open s&}(r) C U; such that:

(i1) The functionsp;(z, -) : U;(t) — B (B :={y € R"; |y| < 1}) areC2-diffeomorphisms.
(i2) Foreachr € [0, T1,

@it {Uj(H) N 2:}) = {y € B; y, > 0}
it {U;)NI}) =B (B :={ye€B; y, =0}

(i3) For somep > 0, there exist families of open ball®; };?“:1 and{éj };":1 such that

0; cc 0;, (6.16)
ojcc () ¢t B, 1<j<m, (6.17)
ot<T
m A~
U av, ccl o). (6.18)
0<I<T j=1

The abovep, {Uj};.":l, {Oj}J’.”zl, and{éj};ﬂzl are taken independently with respect to each

evolving hypersurface belonging @0<T<TO S(a, R, T, do). In particular, we can takp =

2 A _ — -
W]-JFR/”)’ 0/ ={lx —)Cj| < 3p}, andOj ={lx —)Cj| < 4p} for somex; € 1o.
(i) Sety;(t,y) = ¢;1(t, y) : B — U;(1). Then there exists a positive constéhtiepending only

onn, r, andR such that

Ipillcrzeaqo, 7157 1Villcrzra o, 11x8) S €A+ Vil c12ta o, 71xD))-

Proof. The assertions essentially follow from the implicit function theorem. However, we shall give
the proof for the convenience to the reader.
For anyx € I, there existgg € {1, ..., n} such that

. Dl = 19: Dl >
max [0;v(0, X)| = [9;v(0, X)| = r.

AU

Without loss of generality we may assume that= n andd,v(0, X) > r > 0. We set := r?/32R
and Vi = {|x’ — X'| < n}, Wyw := {|x®™ — x| < 45/r}. Then it is easy to see that; :=
Vi x Wi C D and

duv(t,x) >r/2, (t,x) €[0,T] x Usz,
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if T is sufficiently small. Now consider the function.of? defined a9 @) (x™) := v(0, ¥, x™).
Thenv© ) is strictly increasing and© %) (™) = 0. Thus, fory € W+,

y>i™ & (0,7, y) =00 () > 0.
y<i®™ & (0,7, y) =02 () <0.
In particular,
a1 :=v(0, %, 3™ +4n/r) > 0> v(0, %, ™ — 4n/r) = ay.
Eachl; | is estimated from below de;| > 4. Indeed,
v(0, %, +4n/r) = v(0, ¥, ¥™ + 4n/r) — v(0, ¥, ¥™)

an/r
=/ 8,00, %", x™ +5)ds > 4
0

The estimate fows is similarly obtained. From this, we can see that,(iovc/) €0, T] x Vy,
v(t, x',Z™ +4n/r) =20 > 0> =2 > v(t, x', ¥ — 4n/r),

for sufficiently smallT . .
Since the function"-*)(x) := v(r,x’, x™) is also strictly increasing o ;) for any
(t,x") € [0, T] x V there exists a unique™ e W.u such that

vit, x', x™) =0
We write this correspodence a$) = gx(z, x). Note that

y>x" & v, x',y) >0, (6.19)
y<x"™ & v, x',y) <O. (6.20)

By definition, ™ = ¢:(0, x) andv(z, x’, gz (z, x/)) = 0 for (t,x") € [0, T] x V. Conversely,
if (t,x',x™) € [0,T] x Vi x Wiw andu(t, x’, x™) = 0, then S|nca;<”)(x(")) is strictly
increasing oan(n>, we must havec™ = g:(r, x’). It is not difficult to check thafg; (r, x') €
clt2te([0, T] x Ux). In fact, the first derivatives of; are given by
ov(t, x', gz (t,x))
gzt x) = — , 6.21
gz (t, x) vt 1, gz (1, X)) ( )
div(t, x', gz (t, x))

igx(t,x) = — , 1<i<n-1, 6.22
i85 (1 X)) = = ) i<n (6.22)

and these are estimated as
|“%g”C(07]xV )v”axgncqoijv DS <2R/r.

Let N > 1 be a sufficiently large number to be determined later. Sifices compact, there
exists a sequendg; };"zl C Iy such that

m m
o c | Jtix = 51 <n/2ny ¢ | Us;.-
j=1 j=1
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Moreover, there exists a positive number 0 such that

(o), < | Jtlx = 51 < 3n/2N), (6.23)
j=1
where(Ip), = {x € D; dist(x, I'p) < p}.
In fact, we can take = n/N. To see this, we take anye (Ip),, for this p. Then there exists

a pointz € I'p such that
|x — z|] = dist(x, Ip).

Sincelp C U;”=1{|x — Xj| < n/2N}, we havez € {|x — X;| < n/2N} for somej. Hence

3n
2N

)

lx =X < |x —zl+ |z = Xj| <

and the claim follows.
We also have, for sufficiently smdll,

U ncuw,. (6.24)
o<i<T

To see this, note that sin@@ \ (I'p), is compact, we have
r’:==min{|v(0,x)|; x € D\ (In),} > 0.

So it follows that -
{x € D; |v(0,x)| <r'} C (ID),.

Since eachx € I; satisfiesu(r, x) = 0, we have
[v(0, x)| = [v(0, x) — v(r, x)] < RT </’

if T is sufficiently small. This proves th&lo, <7 17 C (10),-
Next we shall show that for atl e (O, T7],

(I, cc | 0. (6.25)
j=1

Whereéj = {lx — ¥;| < 3n/N}. Indeed, forx € (I}),, there existg € I such thaix — z| =
dist(x, I'7) < p. Sincel; C (Ig), C U}":l{pc — Xj| < 3n/2N}, for somej we have

on

x—xi|<|lx—zl+ |z —xi| < —
I il < [+ | il 5N

which shows the above claim. _
Now lety; (¢, y) = (wj(l)(t, V)it wj(”)(t, y)) be a function on [0T] x B defined as follows:
n

@) N R )
v,y = gy + 50,

(n) " W _ n ./, -

1<i<n—1, (6.26)



VISCOUS INCOMPRESSIBLE FLOWS 587

Note that sinc%y’ + ;‘c]/ € Vi; for |y'| < 1,y is well-defined. From now on, we wrilg instead
of gz, Since we have

(n) oy )
[, (2, y) = X; |<2R|y | +

n - -
gj <t, ﬁy/ —i—x]/») - 80, %))

T

n
< 2R + ||axgj||c([oyr]x7;j)§ + T||3t3j||c<[o,r]xV;j>

if we takeT < /2R, thenl//j(”)(t, y) € W forall y € B. Thusy; (7, B) C Uy, and we have the
inverse function of; given by '

. 2R . .
ot x) = =" —5"), 1<i<n-1, (6.28)
7 .
2R )
o (1. x) = 7<x‘”> — g (t,x")). (6.29)
Note thaty; can be defined on [@'] x U;j. Obviouslyg; : U;(t) := ¥;(t, B) — Bisa

C?-diffeomorphism. Now we claim that i is sufficiently large and’ is sufficiently small, then

O; = {x; |x = Xj| <4n/N} CC {x; |lpj(t,x)] < 1} (= wj(t,E)) for all + € [0, T]. Indeed, if
x € Oj, then

2R / =/ 2R (n) /
Igoj(t,x)|<7|x _xj|+7|x —gj(t, x)|

2R 4y 2R _ _ _ .
< Ty (KO Y - g B 10 5) — gD
1or BRI8ilcqo vy 2RT 018 llc10.11xV )
< —+ =+ J
N N n
16R R\ 4R?T
<——(1+=)+ :
N r rn

which proves the claim witiv = 32R(1 + R/r) and smallT. Combining the above, we see that

Propositiorj 6.[L(i) holds. The estimates {grandy; follow from (6.21), [6.22), and (6.26)]-(6.29).
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