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The Allen—Cahn action functional in higher dimensions
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The Allen—Cahn action functional is related to the probability of rare events in the stochastically
perturbed Allen—Cahn equation. Formal calculations suggeshieced action functionah the sharp
interface limit. We prove the corresponding lower bound in two and three space dimensions. One
difficulty is that diffuse interfaces may collapse in the limit. We therefore consider the limit of diffuse
surface area measures and introduce a generalized velocity and generalized reduced action functional
in a class of evolving measures.
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1. Introduction

In this paper we study the (renormalizeil}en—Cahn action functional

T 1 1 2
Se(u) = / / (ﬁa,u + —(—sAu + —W’(u))) dx dr. (1.2)
0 Jo \/E £

This functional arises in the analysis of the stochastically perturbed Allen—Cahn equation [2,
20,[12,[30, 7| 9, 11] and is related to the probability of rare events such as switching between
deterministically stable states.

Compared to the purely deterministic setting, stochastic perturbations add new features to the
theory of phase separations, and the analysis of action functionals has drawn some altention [7,
12,[17]18[ 2B]. Kohret al. [17] considered theharp-interface limit — 0 of S, and identified a
reduced action functiondhat is more easily accessible for a qualitative analysis. The sharp interface
limit reveals a connection between minimizersSefand mean curvature flow.

The reduced action functional in [17] is defined for phase indicator function®, T') x 2 —

{—1, 1} with the additional properties that the measure of the phage-) = 1} is continuous and
the common boundary of the two phages= 1} and{u = —1} is, apart from a countable set of
singular times, given as union of smoothly evolving hypersurfates= Uze(O,T){t} x Y. The
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reduced action functional is then defined as

T
SOu) = cofo f lu(t, x) — H(t, x)[2dH" "1 (x) dr + 480, (u), 1.2)
i

Shucw) = 2c0 Y H"H(Zy), (1.3)

where x; denotes thé!" component off at the time of creation; denotes the normal velocity of
the evolution(X;);c0,1), H(t, -) denotes the mean curvature vector>gf and the constanfy is
determined by,

1
co :=/ V2W (s) ds. (1.4)
-1

(See Sectioﬁ]g for a more rigourous definitionsf)
Several arguments suggest tisdtdescribes the Gamma-limit & :

e The upper boundnecessary for the Gamma-convergence was formally prdved [17] by the
construction of good ‘recovery sequences’.

e The lower boundwas proved in[[17] for sequencés;).-o such that the associated ‘energy
measures’ havequipartitioned energgndsingle multiplicityass — 0.

¢ In one space dimension Reznikoff and Tonegawa [26] provedSh&amma-converges to an
appropriate relaxation of the one-dimensional versio§bf

The approach used ih [17] is based on the evolution of the phases and is sensible to cancellations
of phase boundaries in the sharp interface limit. Therefore in [17] a sharp lower bound is achieved
only under a single-multiplicity assumption for the limit of the diffuse interfaces. As a consequence,

it could not be excluded that creating multiple interfaces reduces the action.

In the present paper we prove a sharp lower bound of the funct®nal space dimensions
n = 2, 3 without any additional restrictions on the approximate sequences.

To circumvent problems with cancellations of interfaces we analyze the evolution of the (diffuse)
surface-area measurewhich makes information available that is lost in the limit of phase fields.
With this aim we generalize the functionsf to a suitable class afvolving energy measuresid
introduce a generalized formulation of velocity, similar to Brakke’s generalization of mean curvature
flow [5].

Let us informally describe our approach and main results. Comparing the two functinals
and SP, the first and second term of the sum in the integréand (1.1) describe a ‘diffuse velocity’
and ‘diffuse mean curvature’ respectively. We will make this statement precise i (6.13) gnd (7.1).
The mean curvature is given by the first variation of the area functional, and a lower estimate for
the square integral of the diffuse mean curvature is available in a time-independent sifugtion [28].
The velocity of the evolution of the phase boundaries is determined by the time derivative of the
surface-area measures, and the nucleation term in the funcfiBmafact describes a singular part
of this time derivative.

Our first main result is a compactness result: the diffuse surface-area measures converge to
an evolution of measures with a square-integrable generalized mean curvature and a square-
integrable generalized velocity. In the class of such evolutions of measures we provide a generalized
formulation of the reduced action functional. We prove a lower estimate that counts the propagation
cost with the multiplicity of the interface. This shows that it is more expensive to move phase
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boundaries with higher multiplicity. Finally we prove two statements on the Gamma-convergence
(with respect ta.1(£27)) of the action functional. The first result is for evolutions in the domain of
SO that have nucleations only at the initial time. This is in particular desirable since minimizers of
SO are supposed to be in this class. The second result proves the Gamma-converderisz-in
under an assumption on the structure of the set of measures arising as sharp interface limits of
sequences with uniformly bounded action.

We give a precise statement of our main results in Sefction 4. In the remainder of this introduction
we describe some background and motivation.

1.1 Deterministic phase field models and sharp interface limits

Mostdiffuse interface modebre based on théan der Waals—Cahn—Hilliarénergy

E.(u) :=/ (£|Vu|2+}W(u)> dr. (1.5)
0 2 &

The energyE, favors a decomposition a2 into two regions (phases) whesie~ —1 andu ~ 1,
separated by a transition layer (diffuse interface) of thickness of erddpdica and Mortolal[222,
21] proved thatt, Gamma-converges (with respectd-convergence) to a constant multiple of
the perimeter functiondp, restricted to phase indicator functions,

1

Z dv if BV (£2;{-1,1)),
E. > coP. P) = 2[9 [Vul ue BV ($2;{ D

o0 otherwise.

P measures the surface area of the phase bouridény= 1} N £2. In this senseE, describes a
diffuse approximation of the surface-area functional.

Various tighter connections between the functionglsandP have been proved. We mention
here just two that are important for our analysis. The (accelerdtedyadient flow ofE, is given
by theAllen—Cahn equation

1
edu =¢ecAu— =W () (1.6)
g

for phase fields in the time-space cylindér 7) x £2. Itis proved in different formulations [24] 8,
16] that [1.6) converges to teean curvature flow

H(, ) =v(,") (1.7)

for the evolution of phase boundaries.
Another connection between the first variations fof and P is expressed in a (modified)
conjecture of De Giorg([6]: Considering

1 1., )2
We(u) :=/ —(—8Au +-W (u)) dx (1.8)
o€ &

the sumE, + W, Gamma-converges up to the constant faeipto the sum of the perimeter
functional and th&Villmore functionalV,

E. +W, — coP + coWV, W) = / H? d'H"il, (1.9)
r
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wherel” denotes the phase boundarff{u = 1} N 2. This statement was recently proved byger
and Schtzle [28] in space dimensioms= 2, 3 and is an essential ingredient to obtain the lower
bound for the action functional.

1.2 Stochastic interpretation of the action functional

Phenomena such as the nucleation of a new phase or switching between two (local) energy minima
require an energy barrier crossing and are out of the scope of deterministic models that are energy
dissipative. If thermal fluctuations are taken into account such an energy barrier crossing becomes
possible. In[[1F7] ‘thermally activated switching’ was considered for stoechastically perturbed
Allen—Cahn equation

1
edu =eAu— =W'@) + /2y n. (1.10)
e

Herey > 0is a parameter that represents the temperature of the sysiem,time-space white
noise, andy, is a spatial regularization with,, — n asA — 0. This regularization is necessary

for n > 2 since the white noise is too singular to ensure well-posedneps of (1.10) in higher space
dimensions.

Large deviation theory and (extensions of) results by Wentzell and Freidlin [14, 13] yield an
estimate on the probability distribution of solutions of stochastic ODEs and PDEs in the small-
noise limit. This estimate is expressed in terms of a (deterministic) action functional. For instance,
thermally activated switching within a tinie > 0 is described by the set of paths

B :={u(, ) = -1, |lu(, ) — 1lLx) < § for somer < T}, (2.11)
where$ > 0 is a fixed constant. The probability of switching for solutiond of (lL.10) then satisfies

lim y InProb(B) = — inf S® (u). (1.12)
y—0 ueBB

Here S is the action functional associated fo (1.10) and it converges (formally) to the action
functional S, asA — 0 [17]. Large deviation theory not only estimates the probability of rare
events but also identifies the ‘most likely switching path’ as the minimizer(X.13).

We focus here on the sharp interface limit— 0 of the action functionalS,. The small
parameter > 0 corresponds to a specific diffusive scaling of the time and space domains. This
choice was identified [7, 1.7] as particularly interesting, exhibiting a competition betwexdeation
versus propagatiorio achieve the optimal switching. Depending on the valugsaf/?//T a
cascade of more and more complex spatial patterns is obseived|[7] 17, 18]. The interest in the sharp
interface limit is motivated by an interest in applications where the switching time is small compared
to the deterministic time scale (see for instance [19]).

1.3 Organization

We fix some notation and assumptions in the next section. In Sgdtion 3 we introduce the concept
of L2-flows and generalized velocity. Our main results are stated in Se@tion 4 and proved in
Section§ BI8. We discuss some implications for the Gamma-convergence of the action functional in
Sectior] 9. Finally, in the Appendix we collect some definitions from geometric measure theory.
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2. Notation and assumptions

Throughout the paper we will adopt the following notatighis an open bounded subsefRf with
Lipschitz boundary? > 0 is a real number an@y := (0, T) x £2; x € £2 andt € (0, T) denote
the space and time variables respectivdlyand A denote the spatial gradient and Laplacian, and
V’ the full gradient inR x R”".

We choosé¥ to be the standard quartic double-well potential

W(r) = %(1 —r?)2,

For a family (u/),(0,7) Of measures we denote B} ® u' the product measure defined by

T
Lt @ u')() ::/o n'(n(t, ) dr

for anyn e Co(27).
We next state our main assumptions.

ASSUMPTION2.1 Letn = 2,3 and let(u.).~0 be a sequence of smooth functions such that for
alle >0,

Ss(ua) < Ag, (Al)
/ (fwm2 + EW(ua)(o, x)dx < Ag, (A2)
Q 2 &

where the constants;, A, are independent af > 0. Moreover,
Vu.-vep=0 on[0T] xas. (A3)

REMARK 2.2 It follows from [A3) that for any 6 70 < 7,

fo 1 1 2
f / <ﬁ8,u5 + —<—£Aus + —W’(u8)>> dx dr
0 J ﬁ &

o) 2
:/ / e(dug)® + }<—mu£ + }W/(ue)) dx dr
o Jo ) )
& 2 1 € 2 1
+2 =|Vug|®+ =W(ug) ) (t0, x) dx — 2 =|Vue|+ —=W(ug) ) (0, x) dx.
Q 2 & 2 2 &

By the uniform boundg (A1)[ (A2) this implies that

1 1 2
/ e(Qug)? + —(—sAua + —W’(u8)> dx dr < As, (2.1)
2r £ £
£ 2 1
— — < .
Og%ﬂ?(ZIWsl +- W(us)>(t,x)dx < Ag, (2.2)

where

1
A3z = A1+ 2A3, Agi= §A1 + Ao.
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REMARK 2.3 Our arguments would also work for any boundary conditions for which the scalar
productd,uVu - vo vanishes orbs2, in particular for time-independent Dirichlet conditions or
periodic boundary conditions.

We set 1
we 1= —eAu, + EW/(MS) (2.3)

and define foe > 0,¢ € (0, T) a Radon measune, on 2 by
t . € 2 1 n
He = §|VM5| (, -)+EW(us(t, ) )L, (2.4)
and fore > 0 measureg.,, . 0N 27 by

1
Mg == <g|vus|2 + _W(us))ﬁlﬂ_lv (2.5)
&
o 1= (eY?0u, + e Y w2 (2.6)
Restricting ourselves to a subsequence 0 if necessary, we may assume that

e — 1 as Radon measures ény, 2.7)
a, — a as Radon measures @y, (2.8)

for two Radon measurgs, « on 27, and

o(S2r) = liminf o (2r). (2.9)

3. L2-flows

We will show that the uniform bound on the action implies the existence of a square-integrable
weak mean curvature and the existence of a square-integyaégalized velocityThe formulation

of weak mean curvature is standard in geometric measure théory [1, 31]. Our definifidfloiv

and generalized velocity is similar to Brakke’s formulation of mean curvature [flow [5].

DEFINITION 3.1 Let(u')re0,7) be any family of integer rectifiable Radon measures such that
w = £ ® u' defines a Radon measure @y and such thap’ has a weak mean curvature
H(t,-) e L?(u") foralmost allr € (0, T).

If there exists a positive constagitand a vector field € L?(u, R") such that

v(t,x) L T,u'  for p-almost all(z, x) € 27, (3.1)

T
/O L(aﬂl + V- v)du' dr|< Clinllcoe, (3.2)

for all n € CX((0,T) x 2), then we call the evolutiofii'),c 0.7y an L?-flow. A function v
L%(u, R") satisfying [[3:1),[(3R) is calledgeneralized velocity vector
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This definition is based on the observation that for a smooth evolytitn,c ) with mean
curvatureH (¢, -) and normal velocity vectov (z, -),

" / n(t, %) dH" ) - / By (¢, x) dH" " (x) — / Vit x) - Ve, x) dH" 7 (x)
M; M,

dr M,

= | H@ x) Vt,on@, x)dH" ().
M,

Integrating this equality in time implieg (3.2) for any evolution with square-integrable velocity and
mean curvature.

REMARK 3.2 Choosing;(t, x) = ¢()¥(x) with ¢ € CL(0, T), ¥ € C1(£2), we deduce from
(3:2) thatr — u'(yr) belongs toBV (0, T). Choosing a countable dense subgg; ey C ()
this implies that there exists a countable Setc (0, T') of singular timessuch that any good
representative af — u/ (y) is continuous in0, T) \ S for all ¢ € C1(2).

Any generalized velocity is (on a set of good points) uniquely determined by the evolution
(Me)re@,1)-

PROPOSITION3.3 Let(u');c0,r) be anL?-flow and setu = £ ® u'. Letv € L?(u) be a
generalized velocity field in the sense of Definitjon] 3.1. Then

1
(v(lo, XO)> € Ttoxo) (3.3)

atu-almost all pointsio, xo) € 27 where the tangential plane afexists. The evolutioiu’);c(0.7)
uniquely determines at all points(, xo) € £27 where both tangential plan@g o) and Ty, u
exist.

We postpone the proof to Sectioh 8.

On the set of points where a tangential planeuotxists, the generalized velocity field
coincides with the normal velocity introduced n [4].

We now turn to the statement of a lower bound for sequenegs-o satisfying Assumption
[2.]. Ase — 0 we will obtain a phase indicator functianas the limit of the sequende.).-o
and anL2-flow (1u")re0,1) as the limit of the measurdg..).~o. We will show that at+"-almost
all points of the phase boundady{u = 1} N 27 the tangential plane ¢f exists. This implies the
existence of a unigue normal velocity field of the phase boundary.

4. Lower bound for the action functional

We state a lower bound for the functionafs in several steps. We postpone all proofs to
Section$ B38.

4.1 Lower estimate for the mean curvature

We start with an application of the well-known results of Modica and Mortolal[22, 21].
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PrROPOSITION4.1 There existst € BV (27;{—1,1}) N L0, T; BV (£2)) such that for a
subsequence — 0,

Ue — U in LY(27), (4.1)
ug(t,) — u(t,-) in L1(£2) for aimost allr € (0, T). (4.2)
Moreover,
O [ dViul < A3+ T A, 59/'mvwno|<A4 43)
2 Qr 2 2

wherecg was defined in(1]4).
The next proposition basically repeats the argumenis_in [18, Theorem 1.1].

PROPOSITION4.2 There exists a countable setc (0, T), a subsequence — 0 and Radon
measures’, t € [0, T] \ S, such that for alt € [0, T] \ S,

nl — u'  as Radon measures @h (4.4)
p=Lteu (4.5)

and for ally: € C1(£2) the function
t— u'(¥) is of bounded variation in0, T) (4.6)

and has no jumps i, T) \ S.

Exploiting the lower bound[28] for the diffuse approximation of the Willmore functidnal (1.8)
we find that the measureg are integer-rectifiable up to a constant with a weak mean curvature
satisfying an appropriate lower estimate.

THEOREM4.3 Foralmostall € (0, T),
e (1/co)u’ is an integraln — 1)-varifold,
e 1! has weak mean curvatuté(z, -) € L%(u’),
and
2 . 15
|H|“du < liminf —wg dx dr. 4.7)
Qr

e=>0 Jo, €

4.2 Lower estimate for the generalized velocity

THEOREM4.4  Let(u');e0,1) be the limit measures obtained in Proposi 4.2. Then there exists
a generalized velocity € L?(u, R") of (1")re0.1)- Moreover,

/ lv2du < liminf | &(d;u.)? dx dr. (4.8)
Qr e—0 Qr

In particular,(%,uf),e(o,r) is anL2-flow.

We obtainv as a limit of suitably defined approximate velocities (see Leinmja 6.2). On the phase
boundaryv coincides with the (standard) distributional velocity of the bulk phage, -) = 1}.
However, our definition extends the velocity also to ‘hidden boundaries’, which seems necessary in
order to prove the Gamma-convergence of the action functional; see the discussion in[$ection 9.
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ProrPosITION4.5 Define thegeneralized normal velocity in the direction of the inner normal
of {u = 1} by

Vu
V(t,x) =v(t,x) — (&, x) for(r,x) € 0" {u =1}.
[Vul

ThenV e LY(|Vu|) andV|+(,=1j is the unique vector field that satisfies, for ke C}(QT),

T
/ [ Vi, x)n(t, x)dVu(t, )|(x)dt = —/ ud;n dx dr. 4.9
0 J@ r

4.3 Lower estimate of the action functional
As our main result we obtain the following lower estimate $r

THEOREM4.6 Let Assumptiol hold, and lgt, (1/)/c[0,77, and S be the measures and the
countable set of singular times that we obtained in Proposition 4.2. Defineuitieation cost
Snuc(i) by

. ; t i t
Snuc() =) sup(im ' (v) — im ' )

foe$ (4.10)
+ suplim w! () — 1P)) + sup(” (W) —lim 1 (),
¥ 10 ¥ T

where the sup is taken over gl € C1(£2) with 0 < ¢ < 1. Then

liminf S, (u,) > / lv — H|? du + 4Snuc(i0). (4.11)
e—0 Qr

In the previous definition of nucleation cost we have tacitly chosen good representatives of
w' (¢) (seel[B]). With this choice the jump parts [n (4.10) are well-defined.

Finally, let us remark that, in view of Theordm A &,,c does indeed measure only — 1)-
dimensional jumps.

Theorenf 4.6 improve$ [17] in the higher-multiplicity case. We will discuss our main results in
Sectior 9.

4.4 Convergence of the Allen—Cahn equation to mean curvature flow

Letn = 2, 3 and consider solution@;).~o of the Allen—Cahn equatiof (1.6) satisfyiig (A2) and
(A3). ThenS; (u.) = 0 and the results of Sections §.144.3 apply: There exists a subseguen€e
such that the phase functions converge to a phase indicator functienthe energy measures
converge to a.2-flow (i'),c(0.7), and

H=v (4.12)

wn-almost everywhere, wheté(z, -) denotes the weak mean curvatureibfandv is the generalized
velocity of (u');e(0,7) in th_e sense of Definitio@.l. Moreov8kuc(un) = 0, which shows that for
any nonnegativey € C1(£2) the functions — u’(y) cannot jump upwards. From (1.6) afd {5.3)
below one infers that for any € C1(2) and allz € C1(0, T),
r 1
_/o depp(y)dr = —/ K(O(gl/f(X)wgz(I,X) + Vy(x) - Vuswg(t,X)> dx dr. (4.13)
r
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We will show that suitably defined ‘diffuse mean curvatures’ converge-asO0 (see[(7.]1)). Using
this result we can pass to the limit in (4113) to obtain, for any nonnegative funatioasC($2)
and¢ € CX0, T),

T T
—/ dep' (Y dr < —/ {(t)/ (H(t, %) + Vi (x) - H(t, x)) du' (x) i,
0 0 2

which is a time-integrated version of Brakke’s inequality.

5. Proofs of Propositiong 4.]I, 4]2 and Theorein 4.3
Proof of Propositiof 4]1. By (2.1), [2.2) we obtain

1
/ <£|v/ue|2 + _W(us)) dx dr < A3+ T Ag.
Q2r 2 &

This implies by [21] the existence of a subsequenice 0 and a functiont € BV (27; {—1, 1})
such that

ug — u in LYQ27)

and
1
€« d|V'ul < lim inf/ <£|V’u8|2 + —W(u8)> drvdr < A3+ T Ag.
2 Qr e=>0 Jo, 2 &
After possibly taking another subsequence, for almostall0, T),
ug(t,) — u(t,-) in LY(£). (5.1)

Using [2.2) and applying [21] for a fixede (0, T') with (5.1)) we get
l / dIVul(r, ) < liminf 1 (2) < As. O
2 Jo e—0

Before proving Propositioh 4.2 we show that the time derivative of the energy densities
controlled.

LEMMA 5.1 There exist€ = C(A1, A3, Ag) such that for aly € C1(£2),

T
/0 |9z ()1 At < CllYllca gz (5.2)

Proof. Using [A3) we compute that

2
20,1 (¥) =/ («/Eiws + iwE) (1, )¢ (x) dx —/ (5(8t“s)2+ }wgz)(t,x)w(x)dx
2 «/E 0 &

— 2/ eV (x) - 0iug(t, x)Vug(t, x) dx. (5.3)
2



ALLEN—CAHN ACTION FUNCTIONAL IN HIGHER DIMENSIONS 55

By (2.1)), [2.2) we estimate

‘2/ eV - 0;ue Vg dx dr
2r

</ V1 @riee)? + | Viag 1) die

7

< (Az+ TA4)||VW||C0(§), (5-4)
and deduce fronf (A1) (2.1], (8.3) that

T
fo |0l ()1 df < (A1 + A3) 1Yl cogg, + C(As, T AR VY Il o)

which proves[(5R). O

Proof of Propositio By @7). ;. — 1 as Radon measures @y . Choose now a countable
family (¥;);eny C CL(£2) which is dense inC°(2). By Lemma and a diagonal-sequence
argument there exists a subsequence> 0 and functionsn; € BV(0,T), i € N, such that
foralli e N,

wh (i) — m;(t) foralmostallr € (O, T), (5.5)

Ot (i) — m; as Radon measures @y 7). (5.6)

Let S denote the countable set of times (0, T') where for somé € N the measure:; has an
atomic part ire. We claim that[(5.5) holds ofD, 7) \ S. To see this we choose a point (0, T) \ S

and a sequence of pointg);en in (0, T) \ S such that; 7 r and [5.5) holds for all;. We then
obtain

_imoo m;([t;,1]) =0 foralli e N, (5.7)
lii)noaiug(%ﬁi)([tj, t]) =m;([t;,¢]) foralli, jeN. (5.8)
Moreover,
i (6) — Pl < Jmi(t) — mi ()] + Imi(t) — pd )l + 1 (W) — k()
< ([t D1+ mi ) — wd i)l + (8l (i) ([t 1D

Taking firste — 0 and then;  t we deduce fron{ (5]7),_(5.8) that (5.5) holds foria#t N and all
1€(0,T)\S.
Take now an arbitrary € (0, T) such that[(5]5) holds. By (3.2) there exists a subsequence
¢ — 0 such that
ut — u'  as Radon measures éh (5.9)

We deduce that! (¥;) = m;(t) and sincgy;);cy is dense iC9(2) we can identify any limits of
(1L)e=0 and obtain[(5]9) for the whole sequence selectefl’in (5.5), (5.6) and foealD, T') for
which (5.5) holds. Moreover, for any € C%(2) the mapr — uh(y) has no jumps in0, T) \ S.
After possibly taking another subsequence we can also ensure that a3

nd—pul  ul -’

as Radon measures @h This proves[(4}4).
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By the dominated convergence theorem we conclude that fon &g °(27),

T T
f ndu = |im/ ndue = lim/ / n(t,X)dué(x)dt=/ / n(r, x) du' (x) dr,
Qr e=>0J/0, e—~>0Jo Jo 0 Jg

which implies [(4.5).

By (5.9), the L1(0, T)-compactness of sequences that are uniformly boundegiVico, 7)),
the lower semicontinuity of th& v -norm underZ*-convergence, anf (4.4) we conclude that|(4.6)
holds. O

Proof of Theorerp 4]3. Fatou’s lemma and (2.1], (2.2) imply that for almostral (0, 7',

Iiminf(u’g(ﬂ)Jr/ }wg(t,x)zdx) < 0. (5.10)
e—0 o€

Let S C (0, T) be as in Proposition 4.2 and fixrac (0, T) \ S such that[(5.10) holds. Then we
deduce from([28, Theorems 4.1 and 5.1] gnd](4.4) that

1 . . .
—u'is anintegraln — 1)-varifold, u' > C—20|Vu(t, I,
o
andu’ has weak mean curvaturé(z, -) satisfying
24,1t Lol 2
|H(t, x)|“du’ (x) < liminf = | w.(z, x)* dx. (5.11)
o e=>0 ¢ Jo

By (5.13) and Fatou’s lemma we obtain

T T 1
/ / |H (¢, x)|>du’ (x) dtgf (Iiminf}/ wg(t,x)zdx> dtgnminf-/ w2 dx dr,
0 7 0 e—>0 ¢ Jo e—>0 & Qr

which proves[(4]7).
For later use we also associate general varifolds.tand consider their convergencesas> 0.

Letv.(z,) : 2 — S'l’*l(O) be an extension oVu. (¢, -)/|Vu,(t, )| to the set{Vu.(¢,-) = 0}.
Define the projection®; (¢, x) := Id — v, (¢, x) ® v (t, x) and consider the general varifol&$ and
the integer rectifiable varifold, Lyt defined by

Vi) :=/Qf(x,Ps(t,x))du2(x), (5.12)
VIS :=/Qf(x,P(t,x))du’(x) (5.13)

for f € C?(Q x R"™*") whereP(t, x) € R"*" denotes the projection onto the tangential plane
T.u'. Then we deduce from the proof 6f |28, Theorem 4.1] that

vi—> V' ase—>0 (5.14)

in the sense of varifolds. O
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6. Proof of Theorem[4.4
6.1 Equipartition of energy

We start with a preliminary result, showing the importaguipartition of energythe discrepancy
measure

£ = (g|w8|2 - %wwg))ﬁ"“ (6.1)

vanishes in the limi¢ — O.
To prove this we combine results from [28] with a refined version of Lebesgue’s dominated
convergence theorern [25] (see alsd [27, Lemma 4.2]).

PrROPOSITION6.1 For a subsequenee— 0,
|&;| = 0 as Radon measures . (6.2)

Proof. Let us define the measures
£ 1
£ = (§|Vug|2 — —W(us)><t, )L
I
on$2. Fore > 0,k € N, we define the sets
1
Bey = {r € (0,7) :/ Zwe(t, x)%dx > k}. (6.3)
o ¢€
We then deduce fron (3.1) that
T 1
Az > / / “we(t, x)2dx dr > |Belk. (6.4)
0 Je €

Next we define the (signed) Radon measv}@g;(sby

ol e

By [28, Proposition 4.9], we have
|.§§j| —- 0 (j — oo) as Radon measures 6h (6.6)

for any subsequenceg — 0 (j — oo) such that

lim sup ing (¢, x)%dx < oo.

j—ooo J2 &)
By (2-2), [6-5) we deduce that for anye C°(27, R}), k € N, and almost alt € (0, 7),

& l(n(t,)) > 0 ase —> 0 (6.7)

and
Iégt,kl(n(l, N =1~ ng,k(t))léél(n(t, ) < Aallnllicoiz,y- (6.8)
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By the dominated convergence theordm,|(6.7) (6.8) imply that

T
f |6 |, ))dt — 0 ase — 0. (6.9)
0

Further, we obtain

T T
/0 & (e, ) dr < fo & On(e. ) dr + f £ 1(n (e, ) dr

Bs,k
T
<f &2 41 (n(z, ) dr +/ e (n(z, ) dr. (6.10)
0 Bs,k
Fork € N fixed we deduce fronj (2. 2), (§.4), (6]10) that
. r . r A3
lim SUP/ / &£ (n(z, ) d < lim / &L (e, ) dr + InllcocoyAa—- (6.11)
e—0 Jo J@ ¢—>0Jo k
By (6.9) and sinc& € N was arbitrary this proves the proposition. O

6.2 Convergence of approximate velocities

In the next step in the proof of Theor¢m 4.4 we define approximate velocity vectors and show their
convergence as— 0.

LEMMA 6.2 Definev, : 27 — R" by

0 v .
_ Orlte VlUe if |Vug| # 0,
[Vuge| [Vug] (6.12)

0 otherwise.

Ve =

Then there exists a functiane L2(u, R") such that
(| Vue 2L, v) — (n,v) ase — 0 (6.13)
in the sense of measure-function pair convergence (see Apgendix B) and sugh that (4.8) is satisfied.
Proof. We define Radon measures
fle 1= &|Vu 2L =, + &, (6.14)
From [2.7),[(6.R) we deduce that
iie — u as Radon measures @ny. (6.15)
Next we observe thaii., ve) is a measure-function pair in the senselofi [15] (see also Definition

[B.1in Appendix B) and that by (2.1),

/ w2 diie < / e (@u)?dr dr < As. (6.16)
or 2r

By Theoreni B.B we therefore deduce that there exists a subsequenc® and a functiorn e
L?(u, R™) such that[(6.13) an@ (4.8) hold. O
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LEMMA 6.3 Foru-almost all(z, x) € 27,
v(t,x) L Teul. (6.17)

Proof. We follow [23, Proposition 3.2]. Letb, : 27 — Sf*l(O) be an extension o¥u./|Vu,| to
the set{Vu, = 0} and define projection-valued maps : 2 — R™*" by

P.oi=1d— v, ® vg.

Consider next the general varifoldfs, V defined by

Vs(f) ZL f(t,x,Pg(t,x)) dﬁﬁ(tax)’ (618)

V(f) 5=/9 f(t,x, P, x)) du' (x) (6.19)

for f e C?(QT xRy, whereP (¢, x) e R"*" denotes the projection onto the tangential plape’.
From [5.14), Proposition 6.1, and Lebesgue’s dominated convergence theorem we deduce that

lim V, =V (6.20)

e—0

as Radon measures &y x R"*",
Next we define functiong, on 27 x R™*" by

Ve(t,x,Y)=v.(t,x) forall(¢r,x) € 27,Y € R™*",
We then observe that

02dv, =/ v2 diie < Az
QTXR”X” .QT

and deduce from[(6.20) and TheorB.3 the existenceé ef L2(V,R") such that(V., 0,)
converges t@V, v) as measure-function pairs ¢&y x R"*" with values inR”.

We now consideh € C?(]R"X”) such thati(Y) = 1 for all projectionsY. We deduce that for
anyn e Co(2r, R"),

f n-vdu = lim f n(t,x) -h(Y)0.(t,x,Y)dV (¢, x,Y)
QT QTXRHXM

e—0

= / n(t, x) - v(t, x, P(t, x)) du(z, x),
2r

which shows that fop-almost all(z, x) € 27,
o(t, x, P(t,x)) = v(t, x). (6.21)

Finally, we observe that far, n as above,

T xRnxn

/ n(t,x) - P, x)v(, x)du(z, x) =/ n(t,x)h(Y) - Yo(t,x,Y)dV (¢, x,Y)
7 22

e—0

= lim / n(t, x)h(Y) - Y. (t, x, Y)dV.(t, x, Y)
_QTXRnxn

= lim / n(t,x) - Pe(t, x)ve(t, x)ditc (2, x) =0
2r

e—0

sinceP.v, = 0. This shows thaP (¢, x)v(z, x) = O for u-almost all(z, x) € 2r. (]
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Proof of Theore4. By (2-1) there exists a subsequerce> 0 and a Radon measufeon 27
such that

(s(a,ug)2 + %wf)ﬁ”*l — B, B(R27) < Aa. (6.22)

Using [A3) we compute that for anye C1((0, T) x ),

/ ndo, = / n(s(B,uS)z—F}wg)dxdt—Z/ 0rn due
2T 27 € fr

(6.23)
+ 2/ eVn - 0;u,Vu, dx dr.
2r

As ¢ tends to zero the term on the left-hand side and the first two terms on the right-hand side
converge by[(Z2]7)[(2]8) and (6]22). For the third term on the right-hand siffe of (6.23) we find from

(6.13) that

Iim/ Vn-satMEVugdxdtz—lim/ Vn-v,SsWuslzdxdt:—/ V- vdu.
Q2r r

e—0 e—0 Qr

Therefore, taking — 0 in (6.23) we deduce that

/nda:/ nd,3—2/ B,ndu—Z/ Vn-vdu
Qr Q2r 27 r

foralln € CL((0, T) x £2). This yields

@Om+Vn-v)du

1 _
< Inlcoy) 5 @@p) + @),
2r

which together with[(6.77) shows thais a generalized velocity vector for’),c( 0.1 in the sense
of Definition[3.]. The estimaté (4.8) was already proved in Lefnma 6.2. O

7. Proof of Theorem[4.6
We start with the convergence of a ‘diffuse mean curvature term’.

LEMMA 7.1 Define

i - 1 Vug
=—w, —,
T e |V ?
let fie = &|Vue|?£"+1, and letv,, v be as in[(6.12)[(6.13). Then
(IELSa HS) - (Mv H)v (71)
(fig, ve — He) — (n, v — H) (7.2)

ase — 0 in the sense of measure-function pair convergence. In particular
f nlv — HI>du < () (7.3)
Qr

foralln € CO(27, RY).
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Proof. We use arguments similar to the proof of Proposition 6.1.eFsr0, k € N, we define

1
By = {t e (0, T): / Zwe(t, x)%dx > k}. (7.4)
€
We then deduce fron (3.1) that
1
A3 >f “w2dxdr > |Beglk. (7.5)
Qr €

Next we define functionalg! , € C2(2, R")* by

Y(x) - we(t, x)Vue(t,x)dx fort e (0,T)\ Be,
T () =177 (7.6)
/ Yx) - H(t, x)du' (x) fort e Bek.
o)

Considering the genergh — 1)-varifolds V!, V! defined in [(5.1R),[(5.13) we infer from_[P8,
Proposition 4.10] and (5.14) that

lim / Y we; (1, X) Vg (1, x) dx = — lim 8V} () = —su' (%) :/ v-H(, x)du! (x) (7.7)
Q j—oo Q

j—o00

for any subsequeneg — 0 (j — oo) such that

. 1
limsup | —w? dxdr < 0.
jooo JR2Ej /

Therefore we deduce fror (7.6), (7.7) that forae C(27, R"), k € N, and almost alt € (0, T),

T (n(, ) — /Qn(t,x) ~H(,x)du'(x) ase — 0 (7.8)

and
ITg’,k(n(t, NI <A- ?Czsg,k(t))‘/ﬂ n(, x) - wa(t,X)Vue(t,X)dX'

+ B, (1)

/ n(t, x) - H(t, x)du' (x)
2

1 ) 1/2 e ) 1/2
g - A Pell, =V e\t d—x
171l cocy, (1 ng,k(r»( /Q o e (1, ) dx) ( /Q 5| Vite (1, )| )

+LIU(I,X)||H(I,X)IdM’(x)

k
< ||U||CO(QT)\/;\//T4+/Q In(t, )| |H (¢, x)| du' (x), (7.9)

where the right-hand side is boundedif(O, T), uniformly with respect te > 0.
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By the dominated convergence theorem,|(7.8) (7.9) imply that
T
/ T!  (n(t, ) dt — n-Hdu ase— 0. (7.10)
0 ’ Qr

Further, we obtain

/ N - weVuydx dr — f 77~Hd,u‘
fr

U L (e, ) dr — /U'HdM’
f2r

+V / n(t, x) - H(t, x)du' (x) dt
BE.k 2

(7.11)

—i—‘/ /n-wSVugdxdt.
Bg’k 2

The last term on the right-hand side is estimated by

1 1/2
< ||77||CO(QT)(/ Z—U)gdxdt) |B€,k|l/2 /A4
Qr €
1
< ||77||CO(QT)A3ﬁ\/A ; (7.12)

n(t, x) - we(t, x)Vug(r, x) dx d

Bg‘k 22

where we have usef (2.2) apd (7.5). For the second term on the right-hand §ide]of (7.11) we obtain

1/2
1/2
n(t, x) - H(t, x) di’ (x) de | < |Bg,k|1/2||n||c/o<gr)< / " szu)
Suppn

Ber J 2
v Y2 A
where we have usef (4.7) afd {2.1). Finally,faz N fixed, by [7.10) we deduce that
IIm‘/ k(n(t ) dr — / 17~Hd,u‘ =0. (7.14)
Q2r

Takinge — 0in (7.11) we find by[(7.12)F(7.14) that

Iim/ Vu, dx dr / Hd ‘<A3|| oo/ Aa+ — A (7.15)

- We VU — . < —= 0 — .
el Jg, TV o, T H A s plnllcogn v Aat A

for anyk e N, which proves[(7]1). Together with (6]13) this implis [7.2). Finally, we fix an arbitrary
nonnegative) € C%(£27) and deduce that the measure-function pair, J/n(ve — Hg)) converges
to (u, /n(v — H)). The estimate (7]3) then follows from Theorgm|B.3. O

LetIT : [0, T]1x 2 — [0, T] denote the projection onto the first component althe pushforward
of measures byT. Fory € C%(£2) we consider the measures

oy = Mx(Ya),
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on [0, T, that is,
oy (§) 1= /9 t()y(x)da(r,x) forz e CO(0, T)),
T

and set

oo = Iy
We can then estimate the atomic partf in terms of the nucleation cost.
LEMMA 7.2 LetShuc(i) be the nucleation cost defined jn (4.10). Then

(OlQ)atomic{O: T] 2 4Snuc(i). (7-16)

Proof. Letn € C1(227, R}) be nonnegative. We compute that
2, 15
ndo, = nl e@ue)” + —wfi + 20,u, we | dx dr
2T r &
> 4/ nosusw, dx dr
r

= —4/ 3ﬂ7d/Lg +4/ Vn . SBIMEVMgdxdt
Qr Qr

+ 4] (1(T, ) = 420, ). (7.17)
Passing to the limi¢ — 0 we infer from [2.7),[(4}4)[(6.13) that
/ nda > — 4/ dndu — 4/ V- vdu +4u” (n(T. ) — 4u’(0(0, ). (7.18)
2r 2r 2r

We now choosey(t, x) = ¢(t)y(x) wherez € C([0, T].RY), v € C1(2,RY) in (7.18) and
deduce that

T T T
/ ¢ Doy > — 4/ o e () dt —|—4/ g“/ Vi - v(t, x) du! (x) dt
0 0 0 2
+ 40 (T)p" () — 42O (). (7.19)
This shows that
ay =40 (u' (V) + 4([ Vi (x) - v(t, x) du’(X)>E1
2
+ 4" () — iITfT; W (¥))ér + 4('}1‘8 1 () — 1O))do. (7.20)
Evaluating the atomic parts we see that forany & < T,

ay ({to}) > 43, (' (¥)) ({to}),

which implies that
aq({ro}) = 4slsz8t(ﬂt(w))({t0})a (7.21)

where the supremum is taken overlle Cl@)witho< ¢ < 1.



64 L. MUGNAI ANDM.RéGER
Moreover we deduce from (7.R0) that
ao({0}) = 4suglim w' (v) — uOwW)), (7.22)
¥ t0
ao((T}) = 4supp” (¥) —lim ' (¥)), (7.23)
¥ T

where the supremum is taken ovlere C(£2) with 0 < ¢ < 1. By (7-21)-{(7-2B) we conclude that
(7-18) holds. O

Proof of Theorerh 4]6. By (7-3) we know thatr > v — H|?u. Since = £'® 1’ we deduce from
the Radon—Nikodym theorem that

@@)ad0. 71> [ 10— HEda. (7.24)
Qr
and from [[7.Ip) that
((X.Q)atomic{o’ T] = 4Snuc(), (7-25)

where(a)ac and(a g )atomic denote the absolutely continuous and atomic parts of the meagure
with respect toct. Adding the two estimates and recallifig {2.9) we obtain (4.11). O

8. Proofs of Propositiong 3.3 anfl 4]5
Forr > 0, (10, x0) € 27 define the cylinders

0, (to, x0) := (to — r, to +r) X B (x0).
Proof of Propositiof 3]3. Define
X, (n) = {(, x) € 27 : the tangential plane of at (¢, x) existg (8.1)
and choosérg, xg) € X, () such that
v is approximately continuous with respectitat (fg, xo). (8.2
Sincev e L?(1) we deduce from[10, Theorem 2.9.13] tHat [8.2) hqldalmost everywhere. Let
Po = Tio.xo)it» 00 >0, (8.3)

denote the tangential plane and multiplicity @4, xo) respectively, and define for any e
C2(Q1(0)) the scaled functiong, € C2(Q, (1o, x0)) by

@o(t, %) i=0"p(0 1t —10), 0~ (x — x0)).
Then [8:3) shows that
/ @o du — Gof pdH" ase \ 0. (8.4)
Q27 Py
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From [3:2), the Hahn—Banach theorem, and the Riesz theorem we deduce that the functional
1
vecian’ vw=[ v () . (8.5)
7

can be extended to a (signed) Radon measurearSince by the Radon—Nikodym theorem, ||
exists and is finite.-almost everywhere, we may assume without loss of generality that

D, |¥|(to, x0) < oo. (8.6)

We next fixn € C1(Q1(0)) and compute

/ 1
9 (0n,) =f (V'n), - (U> du. (8.7)
7
From [8.2),[(8.4) we deduce that the right-hand side converges-a9,
. 1 1
I V'n)e - du =6, - V'nduw. 8.8

For the left-hand side of (8.7) we deduce that
liminf |9 < liminf o~ 19 to, 8.9
0\0 [0 (ono)l ||77||C?(Q1(0)) 0\0 o [21(Qo (0, X0)) (8.9)

and observe thaf (§.6) implies

o = lim [21(Qe(t0, X0))

- —n : —n -1
(0, (0. 70)) >Ilgn\lgfg [91(Qy (0, x0)) - (limsupo ™" u(Q,(to, x0)))

o\O0
> climinf o™ ((Q, (fo. x0)). (8.10)
o\O
since by[(8}) for any € C2(02(0), RY) with ¢ > 1 0onQ1(0),

limsupo™ u(Qy(to, x0)) < limsup | ¢, du < C(p).
o\O o\O J@r

Therefore[(8.]7)F(8.10) yield

1 , _
6o (v(to, x0)> . /PO V'ndu = 0. (8.11)

Now we observe that the integral over the projectioiV6f onto Py vanishes. This shows that
/ V'ndH" € Py (8.12)
Py

Sincen can be chosen such that the integra[in (B.12) takes an arbitrary direction norfav®
see from[(8.1]1) thai(zo, xo) satisfies[(3.3). I, exists then

1
Tio.xo)t = ({0} X Tyot) @ Spaﬂ(t}(xo))

and we conclude thatis uniquely determined. O
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To prepare the proof of Propositipn 4.5 we first show that absolutely continuous with respect
to H".

PROPOSITION8.1 For anyD ccC §2 there exist€ (D) > 0 such that for alkg € D and almost
allrge (0, 7),

lim supr " 1(Q, (to, x0)) < C(D)A4+I|m|nf ws(to,x)zdx. (8.13)
r\O
In particular,
B, (1
lim supw < oo for u-almost every(rg, xo) (8.14)
p—0 pn

andu is absolutely continuous with respectiy,
u << H". (8.15)

Proof. Let
. 1.
ro ;= min {1, > dist(D, 082), |to|, |T — to|}.

Then for allr < rg, xo € D, from (6.2) and([2B, Proposition 4.5] we obtain

fo+r
1 / rI W (B (xo)) ot
1

r Jig—r

1 to+r 1 1 1 to+r ) ) 1
<= "u!(B" ot + —— =~ liminf | Zw(t, x)%dx ) dr. (8.16
et ot [ (i [ Suiaota) e @6

0 o—r

By Fatou’s lemma and (3.1),

t — liminf Ewg(z, x)2dx isin L0, T), (8.17)

e=0 Jp ¢

and by [[2.2) we deduce that for almostzalk (0, T),

to+r

1 1
limsup= Pt (B! dr <27 A —I|m|nf/— t0, x)2 dx.
s P> o (B (x0)) ro A4+ 2 —p2 mint | ews(O x)

Sincerg depends only o ands2, the inequality[(8.13) follows.

By (B:17) the right-hand side if (8]13) is finite f6t-almost allzg € (0, T), andd*” (, (¢, x))
is bounded for almost all€ (0, 7) and allx € £2. By (2.3) we deduce that for aryc (0, T') with
|11 =0,

pn( x 2) < Aa|ll] =0,

which implies [(8.14).
To prove the final statement I8t C 27 be given with

H"(B) = 0. (8.18)
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Consider the family of seteD;),cn, given by
Dy ={zeR7:6"(u,z2) <k}
By (8.14), [31, Theorem 3.2], and (8]18) we find that forka#t N,

w(BN D) <2"kH"(BN Dy) =0. (8.19)
Moreover,
M(B U Dk) —0 (8.20)
keN
by (8:14). By [8.1P),[(8-90) we conclude thatB) = 0, which proves[(8.15). O

To prove Propositiop 4]5 we need tf#dt-almost everywhere obi*{u = 1} the generalized tangent
plane ofu exists. We first obtain the following relation between the measurasd|V'u]|.

PROPOSITIONS.2 There exists a nonnegative functigr L2(j, Rf{) such that

gn > 1V'ul. (8.21)
In particular,|V'u| is absolutely continuous with respect;io
IVu| < . (8.22)
Proof. Let
G(r) =/ V2W (s) ds. (8.23)
0
On the se{|Vu,.| # 0} we have
VG VG
VG (ue)| =—| ; (o)l IV'G(ue)| = VG )] IV'G (ue)|
VG (ue)| V0:G () + |VG(up)|?
1
=——|V'G(u)|. (8.24)

v1+ |ve |2

Letting /i, be as in[(6.14) we get frorfi (2.2), (6]16), and Theofen) B.3 the existence of a function
g € L?(w) such that (up to a subsequence)

m (e, /14 [0:12) = (1, &) (8.25)

li
£—>
as measure-function pairs &2y with values inR.
Letn € CO(2r). Then

‘/ n 1+|vs|2|VG(us)Idxdt—/n 1+ |ve|?dite
r
2W (u
= ‘/ ﬂ\/1+|vs|2(,/%—ﬁIVu8|>ﬁ|Vu8|dxdt
Qr
1/2 2W
< (f n2(1+|vs|2>e|we|2dxdr) ,/ﬂ—mwa
@r ¢ L2@p)

< 0l (2T Ag + A3)Y?(2l€|(827) Y2, (8.26)
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Thanks to[(8.25)[ (8.26) and (§.2) we conclude that
im (IVGue) L™ /14 [v:12) = (1, 8.27
ETO(I Gue) L7 1+ [vel?) = (1, 8) (8.27)

as measure-function pairs ey with values inR.
Again by [2.]) we have

/ IV'G(u,)| dx dr = / |81tz |/ 2W () dhx ot
(0= Ve | < W (1))

{0=IVue|<W(ue)}

1/2 W (i) 1/2
< fz( / £(Byue)? dx dr) ( / — dx dr) < V2A3(1E1(27)Y?,
27 {0=|Vue|<W(ue)}

&

which vanishes as — 0 by (6.2). This implies together with (8]24) and (§.27) that

. . C
/ngdu 2!@0/77\/1+ |vel2 VG (ug)| dx df Zlm)/fzrnIV/G(ua)ldxdt > EO[_Q ndV'ul,

T

where in the last inequality we have used the fact that

il ndVul =/ ndV'Gu)| < Iiminf/ n|V'G(u.)| dx dr.
2 Qr Qr e—0 Qr

Considering now a se® C 9*{u = 1} with u(B) = 0 we conclude that
, 2
[V'ul(B) < — | gdu =0,
co JB

sinceg € L2(w). O
PROPOSITION8.3 AtH"-almost all points irb*{u = 1} the tangential plane qf exists.

Proof. The Radon—Nikodym theorem shows that the derivative

(B (2))

f(@) == Dy iu(z) = l@om (8.28)
exists for|V'u|-almost allz € 27, andf € L*(|V'u|). By (8.15) we deduce that
wlo*{u =1} = f|V'ul. (8.29)
Similarly
% = D, |V'ul(z)
is finite for u-almost allz € *{u = 1}. By (8.22) this implies that
f >0 |V'ul-almost everywhere i7. (8.30)

Since|V'u| is rectifiable andf measurable with respect t&'«| we find from [8.29),[(8.30) and
[31, Remark 11.5] that
w|0*{u = 1} is rectifiable. (8.31)
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Moreover,H"-almost allz € 3*{u = 1} satisfy
(B (2) \ 0*{u = 1))

lim =0, (8.32)
O (B (2))
Bn+1
imsup B @) _ (8.33)
r\0 W, "

In fact, [8.32) follows from([10, Theorem 2.9.11] ajd (§.22), gnd (8.33) from Propo-n 8.1 and
(8:22). Let nowzp € 3*{u = 1} satisfy [8.3R),[(8.33). For an arbltrar;ye CO(B’“r (0)) we then
deduce that

lim sup / 1z — z0)r " du(z)
r—0 Qr\o*{u=1}
pBI e \ 9 u =1 u(B}(z0))
< 170l qo prt1 Ilm sup . limsup—————=0
KRR (B (z0)) —o

by (8:32), [8.3B). Therefore
lim / 1z — z0)r " du(z) = |Im / n(r~Yz — z0)r " du(z)
r—0 Qr 3

Hu=1}

if the latter limit exists. By[(8.31) we therefore conclude thattalmost all points ob*{u = 1}
the tangential plane qf exists and coincides with the tangential planewd*{u = 1}. |

Proof of Propositiorj 45. Sinceu € BV (27) andu(z,-) € BV($2) for almost allz € (0, T),
we know thatd,u, Vu are Radon measures &2y and thatVu(z, -) is a Radon measure ¢ for
almost allr € (0, T'). Moreover we observe thate L1(|Vu|) since

f ||d|V|</ IIdIV'|<2f lvld <2|I l vl
v u v ul < — glvldu < —llgllpzipliviizzq, < oo
o = or = co Jo, = o Le(w) L(w)

by Theorenj 44 and Propositipn B.2. Frdm [3.3) and Propogitign 8.3 we deduce that fipreany
CH(&2r),

—/ ndatuzf nvqu:/ nv - —d| |—/ /anWu(I 9| dt,
r 2r Qr [Vul

which proves[(4.9). O

9. Conclusions
Theorenj 4.6 suggests defining a generalized action funciirethe class of.-flows by
Sy i=inf [ o= HP d + 4o ©.1)
v Jor

where the infimum is taken over all generalized velociti®r the evolution(u’),c(0,7). In the
class ofa-rectifiable L2-flows we have

S(u) = /;z v — H|2dM + 4Snuc(i), (9.2)
T

wherev is the unique normal velocity afu’);c(0,7) (See Propositio.3).
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In the present section we compare the functiaghatith the functionalS® defined in[17] (see
(I.2)) and discuss the implications of Theorpm| 4.6 on a full Gamma-convergence result for the
action functional. For ease of exposition we focus in this section on the switching scenario.

ASSUMPTION9.1 Let(u,).~0 be a sequence of smooth functians: 27 — R with uniformly
bounded actior{ (A1), zero Neumann boundary (A3), and assume thatsfor 8ll

us(0,)=-1, u(T,)=1 Iing. (9.3)

Following [17] we define the reduced action functional on the/setc BV (27; {—1,1}) N
L0, T; BV (£2)) such that

e foreveryy € C?(.Q) the function

t— f u(t, )y dx
2

is absolutely continuous on [07];
e (0*{u(t,-) = 1});e0,1) iS up to countably many times given as a smooth evolution of hyper-
surfaces.

By Assumptio the functiond? . can be rewritten as
T
S%®u) = cof lu(t, x) — H(t, x)[2dH" 1 (x) dr + 4S2,(w), (9.4)
0 Jx

0 () = im 0 . —lim < .
Snuc(t) = Zsup@& o [Vult. )W) !lTrg 5 [Vul, )|(1//)>

toeS v

. co
+ sxpltlgg - [Vult. )W), (9.5)

where the sup is taken over il € C1(£2) with 0 < v < 1.

In [17, Proposition 2.2] a (formal) proof of the limsup estimate was given for a subclass of
‘nice’ functions in M. Following the ideas of that proof, using the one-dimensional construction
[17, Proposition 3.1], and a density argument we expect that the limsup estimate can be extended
to the whole setM. We do not give a rigorous proof here but assume the limsup estimate in the
following.

AssSuMPTION9.2 For allu € M there exists a sequence;).-o that satisfies Assumptign 9.1
such that

u= lim u, SOu) = lim supS; (us). (9.6)
e—

e—0

The natural candidate for the Gamma-limit&f with respect taL1(27) is the L1(£27)-lower
semicontinuous envelope &F,

Su) = inf{likminf S%up) : (ukeny C M, ux — uin L1(27)). 9.7)
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9.1 Comparison ofS andS°

If we associate with a function € M the measuréVu| on 27 we can compare&s®(u) and
S(Z|Vul).

PROPOSITIOND.3 Letu € M and lety = £1 ® u' be anL?-flow of measures. Assume that for
almost all € (0, T),

W' > ZIvu. ), 9.8)
and the nucleation cog,?uc(u) is not larger than the nucleation c@%f,c(x). Then
S%w) < S, (9.9)
For u = % |Vu| we obtain
SOu) = S(C—zo|vu|>. (9.10)

Proof. The locality of the mean curvature [29] shows that the weak mean curvatyreasfd the
(classical) mean curvature coincide®m (z, -) = 1}. By Propositiofi 4.5 any generalized velocity

and the (classical) normal veloci¥y are equal on the phase boundary. This shows that the integral
part of S°(x) is not larger than the integral part 8%u), with equality if 4! = C—2°|Vu(t, )| for
almost allr € (0, T). This proves[(919). For the measu$¢Vu| we observe that the nucleation cost
Snuc(F 1) equals the nucleation coSf,(u) and we obtain (9.10). O

FIG. 1. The phaseg: = 1}. FIG. 2. The measurg.

If higher multiplicities occur for the measuye the nucleation costs @f andu may differ and
the value ofS°(u) might be larger tha (i), as the following example shows. L&t = (0, L), let
{u = 1} be the shaded regions in Figiife 1, anddéte the measure supported on the phase boundary
and with double density on a hidden boundary connecting the upper and lower parts of the phase
{u = 1} (see Figurg¢]2). At time, a new phase is nucleated, but this time is not singular with
respect to the evolutiofu');<(o, 7). On the other hand, no propagation cost occurs for the evolution
(u(t, -))ren,15) Whereas there is a propagation cost(ef),c(, ,). The difference in action is given
by
2
S%u) — S(p) = 8co — ZCOM,
Ip—n
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FIG. 3. Phase$u; = 1}. FiG. 4. The limit.

wherex is the annihilation point at time andx; the nucleation point at time (see Figurg]1).
This shows that as soon as— x1 < 4./t — t1 we have

S(p) < S%u).

The same example wittp = x1 shows thatS? is not lower semicontinuous and that a relaxation
is necessary in order to obtain the Gamma-limitSef In fact, consider a sequen¢ey )<y With
phasesiu; = 1} given by the shaded region in Figyre 3. Assume that the neck connecting the
upper and lower parts of the shaded region disappeaks-as co and thatu; converges to the
phase indicator function with phase{u = 1} indicated by the shaded regions in Figufe 4. Then a
nucleation cost at time appears for:. For the approximations; however there is no nucleation
cost forr > 0 and the approximation can be made such that the propagation c@st ) is
arbitrarily small, which shows that

S%u) > liminf S(uy).
k—o00

The situation in higher space dimensions is even more involved than in the one-dimensional
examples discussed above. For instance one could create a circle with double density (no new phase
is created) at a timg and let this double-density circle grow until a time> #; where the circle
splits and two circles evolve in different directions, one of them shrinking and the other growing.
In this way a new phase is created at tirpeln this exampleS counts the creation of a double-
density circle at time; and the cost of propagating that circle between the times. In contrast,
SO counts the nucleation cost of the new phase at timhich is larger than the nucleation cost
Snhuc @t timetq, but no propagation cost between the times,.

The analysis in[[17] suggests that minimizers of the action functional exhibit nucleation
and annihilation of phases only at the initial and final times. This class is therefore particularly
interesting.

THEOREM9.4 Let (u,).~0 satisfy Assumptioff 9]1 and suppose that Assumpfioh 9.2 holds.
Suppose thai, — u in L1(27), u € M, andu exhibits nucleation and annihilation of phases
only at the final and initial times. Then

Su) = 8%u) < lim inf S (ue). (9.11)
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In particular,S, Gamma-converges t8° for those evolutions inV that have nucleations only at
the initial time.

Proof. From the definition of the functiond we deduce that
Su) < 8%®u) (9.12)
and there exists a sequen@g),cn C M such that
u= lemoo up, S = lemoo SOuy).
Assumptiorf 9.2 implies that for atl € N there exists a sequenge. i).-o such that

= lim ue k. SOug) = limsupS; (ug.x). (9.13)

e—0

Therefore we can choose a diagonal sequéngg) x)ren such that

g(u) > lim SupS(g(k)(Mg(k)’k). (9.14)
k— 00
By Proposition§ 4]1 ar{d 4.2 there exists a subsequenreesc such that

co
Ugkyk = Uy Mek)k = Ly = EIVMI, (9.15)

where the last inequality follows from

9/ ndIVu(, )| <Iiminf/ 1IVG(up)| dr gliminf/ ndul =/ ndu,
2 Jo e—0 Jo e—>0 Jo 2
with G as in [8.28). By Theorefn 4.6 we further deduce that

liminf Sey (e k) = S(w).
k—o00

This implies by [(9.1]4) that B
S) = S(w). (9.16)

Sinceu® = 0andu’ > %’Wu(t, )] the nucleation cost gf atr = 0 is not lower than the nucleation
cost foru. Since by assumption there are no more nucleation times we can apply Progosjtion 9.3 to
obtainS%(u) < S(w). By (0.12), [9.1p) we conclude th&f(u) = S(u) = S(w).
Applying Propositiofi 4]1 and Theordm §.6 to the sequéngk ..o we deduce that there exists
a subsequence— 0 such that

. . _co
pe = R = S |Vul (9.17)

and
lim igf Se(ug) = S(in).
E—>

Repeating the arguments above we deduce from Propdsitibn 9.8%t< S(j1) and

S%u) < lim i(r)n‘ Se ().
£—>

Combining the upper bounfl (9.6) wifh (9]11) proves the Gamma-convergeeri:. O
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9.2 Gamma-convergence under an additional assumption

Using Theorerp 4]6 we can prove the Gamma-convergenSgwfder an additional assumption on
the structure of the set of those measures that arise as limits of sequences with uniformly bounded
action.

ASSUMPTION9.5 Consider any sequend@.).-o with u, — u in L1(227) that satisfies
Assumption 9.1L.. Define the energy measyresiccording to[(2)5) and lgt be any Radon measure
such that for a subsequence> 0,

w=lim p,. (9.18)
e—0
Then we assume that there exists a sequénoecn C M such that

w= lim ug, S) = lim SO%uy). (9.19)
k—00 k—00

For anyu € M that exhibits nucleation and annihilation only at initial and final times
Assumption 9.5 is always satisfied: The proof of Thedrerh 9.4 and our results in $éction 4 show that
for any limit u as in [9.1I8) we can apply Proposit9.3. Theref?&:) < S(w) and the constant
sequence satisfies[(9.19). However, a characterization of thoge M such that Assumptidn 9.5
holds is open.

THEOREM9.6 Suppose that Assumptidns]9.1]9.2,[anfl 9.5 hold. Then
S —>S ase—0 (9.20)

in the sense of Gamma-convergence with respettte2r).

Proof_. We first prove the limsup estimate 6k, S. In fact, fix an arbitrary: e LY(Qr; {-1.1))
with S(u) < co. We deduce that there exists a sequemg@.cn as in [9.7) such that

Sw) = Jim SOup). (9.21)

By (9.8) for allk € N there exists a sequeng@e. )0 such that

|im0ue,k =ur,  S%up) = limsupS; (ue.r).
E—>

e—0

Choosing a suitable diagonal sequengg)  we deduce that
Su) > k[mm Se (k) (Ue (k) k) (9.22)

which proves the limsup estimate.

We next prove the liminf estimate. Consider an arbitrary sequéngg.o that satisfies
Assumptior[ 9.J1. By Theorefn 4.6 there existse BV (27; {—1,1}) and a measurg on £2r
such that

ug > u  INLYR27), e — u (9.23)

for a subsequence— 0, and
lim igf Se(ue) =2 S(u). (9.24)
e—
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By Assumptiorj 9.5 there exists a sequenggicny C M such that[(9.79) holds. By (9.4) and the
definition of S this yields

liminf S, (ue) > S(w) = lim S%uy) > Sw) (9.25)
e—0 k— 00
and proves the liminf estimate. |

Appendix A. Rectifiable measures and weak mean curvature

We briefly summarize some definitions from geometric measure theory. We always restrict ourselves
to the hypersurface case, that is, ‘tangential plane’ and ‘rectifiability’ of a measikté means
‘(d — 1)-dimensional tangential plane’ an@‘— 1)-rectifiable’.

DEFINITION A.1 Letu be a Radon measureRf, d € N.

1. We say that: has a ¢eneralizedltangential planeatz € R if there exist a numbe® > 0 and
a(d — 1)-dimensional linear subspa@ec R¢ such that

Ikrr})r*d+1/n <u> du(y) = @/ ndH?1  foreveryn € CORY). (A1)
r r T

We then sefl,u ;= T and call® themultiplicity of . in z.

2. If for u-almost all; € R a tangential plane exists then we galtectifiable If in addition the
multiplicity is integer-valueds-almost everywhere we say thats integer-rectifiable

3. Thefirst variationsu : CL(RY, R?) of a rectifiable Radon-measureon R? is defined by

suatn) = [ divrndu.

If there exists a functiol/ € L&,C(M) such that

8u(n)=—/H~ndu

we call H theweak mean-curvature vectof .

Appendix B. Measure-function pairs

We recall some basic facts about the notiommasure-function pairgitroduced by Hutchinson
in [15].

DEFINITION B.1 Let E ¢ R? be an open subset. Let be a positive Radon measure @h
Supposef : E — R™ is well definedu-almost everywhere, andl € L(u, R™). Then we say
(n, f) is ameasure-function paiover E (with values inR™).

Next we define two notions of convergence for a sequence of measure-function pAimsitin
values inR™.
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DEFINITION B.2 Suppos€(uk, fr)}x and(u, f) are measure-function pairs ovErwith values
in R™. Suppose

lim e =p

k—o00
as Radon measures @ Then we say(uk, fr) converges tdu, f) in the weak sensgn E) and
write

(ks fr) = (u, ),

if uxlfx — wLf inthe sense of vector-valued measures, that is,

im /fk~77duk=/f-ﬂdu
k—o00
forall n e CO(E, R™).

The following result is a slightly less general version[ofl [15, Theorem 4.4.2], sufficient for our
aims.

THEOREMB.3 LetF : R™ — [0, c0) be a continuous, convex function with superlinear growth
at infinity, that is,
F
lim ﬂ =00
lyl=oo ||
Let {(u, fi)}x be measure-function pairs over c R? with values inR”. Suppose is a Radon
measure ofE andu; — u ask — oo. Then the following are true:

Q) If
sup / / F(fi) Ak < o0, (B1)
then some subsequence{ofi;, fx)} converges in the weak sense to some measure-function

pair (u, f) for somef.
(2) If BI) holds and(usk, fx) = (u, f) then

imint / F(fo) dhug > f F(f)du. (B2)
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