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The Allen–Cahn action functional in higher dimensions
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The Allen–Cahn action functional is related to the probability of rare events in the stochastically
perturbed Allen–Cahn equation. Formal calculations suggest areduced action functionalin the sharp
interface limit. We prove the corresponding lower bound in two and three space dimensions. One
difficulty is that diffuse interfaces may collapse in the limit. We therefore consider the limit of diffuse
surface area measures and introduce a generalized velocity and generalized reduced action functional
in a class of evolving measures.
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1. Introduction

In this paper we study the (renormalized)Allen–Cahn action functional

Sε(u) :=
∫ T

0

∫
Ω

(
√
ε∂tu+

1
√
ε

(
−ε∆u+

1

ε
W ′(u)

))2

dx dt. (1.1)

This functional arises in the analysis of the stochastically perturbed Allen–Cahn equation [2,
20, 12, 30, 7, 9, 11] and is related to the probability of rare events such as switching between
deterministically stable states.

Compared to the purely deterministic setting, stochastic perturbations add new features to the
theory of phase separations, and the analysis of action functionals has drawn some attention [7,
12, 17, 18, 26]. Kohnet al. [17] considered thesharp-interface limitε → 0 of Sε and identified a
reduced action functionalthat is more easily accessible for a qualitative analysis. The sharp interface
limit reveals a connection between minimizers ofSε and mean curvature flow.

The reduced action functional in [17] is defined for phase indicator functionsu : (0, T )×Ω →

{−1,1} with the additional properties that the measure of the phase{u(t, ·) = 1} is continuous and
the common boundary of the two phases{u = 1} and{u = −1} is, apart from a countable set of
singular times, given as union of smoothly evolving hypersurfacesΣ :=

⋃
t∈(0,T ){t} × Σt . The
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reduced action functional is then defined as

S0(u) := c0

∫ T

0

∫
Σt

|v(t, x)−H(t, x)|2 dHn−1(x)dt + 4S0
nuc(u), (1.2)

S0
nuc(u) := 2c0

∑
i

Hn−1(Σi), (1.3)

whereΣi denotes theith component ofΣ at the time of creation,v denotes the normal velocity of
the evolution(Σt )t∈(0,T ), H(t, ·) denotes the mean curvature vector ofΣt , and the constantc0 is
determined byW ,

c0 :=
∫ 1

−1

√
2W(s)ds. (1.4)

(See Section 9 for a more rigourous definition ofS0.)
Several arguments suggest thatS0 describes the Gamma-limit ofSε:

• The upper boundnecessary for the Gamma-convergence was formally proved [17] by the
construction of good ‘recovery sequences’.

• The lower boundwas proved in [17] for sequences(uε)ε>0 such that the associated ‘energy
measures’ haveequipartitioned energyandsingle multiplicityasε → 0.

• In one space dimension Reznikoff and Tonegawa [26] proved thatSε Gamma-converges to an
appropriate relaxation of the one-dimensional version ofS0.

The approach used in [17] is based on the evolution of the phases and is sensible to cancellations
of phase boundaries in the sharp interface limit. Therefore in [17] a sharp lower bound is achieved
only under a single-multiplicity assumption for the limit of the diffuse interfaces. As a consequence,
it could not be excluded that creating multiple interfaces reduces the action.

In the present paper we prove a sharp lower bound of the functionalSε in space dimensions
n = 2,3 without any additional restrictions on the approximate sequences.

To circumvent problems with cancellations of interfaces we analyze the evolution of the (diffuse)
surface-area measures, which makes information available that is lost in the limit of phase fields.
With this aim we generalize the functionalS0 to a suitable class ofevolving energy measuresand
introduce a generalized formulation of velocity, similar to Brakke’s generalization of mean curvature
flow [5].

Let us informally describe our approach and main results. Comparing the two functionalsSε
andS0, the first and second term of the sum in the integrand (1.1) describe a ‘diffuse velocity’
and ‘diffuse mean curvature’ respectively. We will make this statement precise in (6.13) and (7.1).
The mean curvature is given by the first variation of the area functional, and a lower estimate for
the square integral of the diffuse mean curvature is available in a time-independent situation [28].
The velocity of the evolution of the phase boundaries is determined by the time derivative of the
surface-area measures, and the nucleation term in the functionalS0 in fact describes a singular part
of this time derivative.

Our first main result is a compactness result: the diffuse surface-area measures converge to
an evolution of measures with a square-integrable generalized mean curvature and a square-
integrable generalized velocity. In the class of such evolutions of measures we provide a generalized
formulation of the reduced action functional. We prove a lower estimate that counts the propagation
cost with the multiplicity of the interface. This shows that it is more expensive to move phase
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boundaries with higher multiplicity. Finally we prove two statements on the Gamma-convergence
(with respect toL1(ΩT )) of the action functional. The first result is for evolutions in the domain of
S0 that have nucleations only at the initial time. This is in particular desirable since minimizers of
S0 are supposed to be in this class. The second result proves the Gamma-convergence inL1(ΩT )

under an assumption on the structure of the set of measures arising as sharp interface limits of
sequences with uniformly bounded action.

We give a precise statement of our main results in Section 4. In the remainder of this introduction
we describe some background and motivation.

1.1 Deterministic phase field models and sharp interface limits

Most diffuse interface modelsare based on theVan der Waals–Cahn–Hilliardenergy

Eε(u) :=
∫
Ω

(
ε

2
|∇u|2 +

1

ε
W(u)

)
dx. (1.5)

The energyEε favors a decomposition ofΩ into two regions (phases) whereu ≈ −1 andu ≈ 1,
separated by a transition layer (diffuse interface) of thickness of orderε. Modica and Mortola [22,
21] proved thatEε Gamma-converges (with respect toL1-convergence) to a constant multiple of
the perimeter functionalP, restricted to phase indicator functions,

Eε → c0P, P(u) :=


1

2

∫
Ω

d|∇u| if u ∈ BV (Ω; {−1,1}),

∞ otherwise.

P measures the surface area of the phase boundary∂∗
{u = 1} ∩ Ω. In this senseEε describes a

diffuse approximation of the surface-area functional.
Various tighter connections between the functionalsEε andP have been proved. We mention

here just two that are important for our analysis. The (accelerated)L2-gradient flow ofEε is given
by theAllen–Cahn equation

ε∂tu = ε∆u−
1

ε
W ′(u) (1.6)

for phase fields in the time-space cylinder(0, T )×Ω. It is proved in different formulations [24, 8,
16] that (1.6) converges to themean curvature flow

H(t, ·) = v(t, ·) (1.7)

for the evolution of phase boundaries.
Another connection between the first variations ofEε and P is expressed in a (modified)

conjecture of De Giorgi [6]: Considering

Wε(u) :=
∫
Ω

1

ε

(
−ε∆u+

1

ε
W ′(u)

)2

dx (1.8)

the sumEε + Wε Gamma-converges up to the constant factorc0 to the sum of the perimeter
functional and theWillmore functionalW,

Eε +Wε → c0P + c0W, W(u) =

∫
Γ

H 2 dHn−1, (1.9)
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whereΓ denotes the phase boundary∂∗
{u = 1} ∩Ω. This statement was recently proved by Röger

and Scḧatzle [28] in space dimensionsn = 2,3 and is an essential ingredient to obtain the lower
bound for the action functional.

1.2 Stochastic interpretation of the action functional

Phenomena such as the nucleation of a new phase or switching between two (local) energy minima
require an energy barrier crossing and are out of the scope of deterministic models that are energy
dissipative. If thermal fluctuations are taken into account such an energy barrier crossing becomes
possible. In [17] ‘thermally activated switching’ was considered for thestochastically perturbed
Allen–Cahn equation

ε∂tu = ε∆u−
1

ε
W ′(u)+

√
2γ ηλ. (1.10)

Hereγ > 0 is a parameter that represents the temperature of the system,η is a time-space white
noise, andηλ is a spatial regularization withηλ → η asλ → 0. This regularization is necessary
for n > 2 since the white noise is too singular to ensure well-posedness of (1.10) in higher space
dimensions.

Large deviation theory and (extensions of) results by Wentzell and Freidlin [14, 13] yield an
estimate on the probability distribution of solutions of stochastic ODEs and PDEs in the small-
noise limit. This estimate is expressed in terms of a (deterministic) action functional. For instance,
thermally activated switching within a timeT > 0 is described by the set of paths

B := {u(0, ·) = −1, ‖u(t, ·)− 1‖L∞(Ω) 6 δ for somet 6 T }, (1.11)

whereδ > 0 is a fixed constant. The probability of switching for solutions of (1.10) then satisfies

lim
γ→0

γ ln Prob(B) = − inf
u∈B

S(λ)ε (u). (1.12)

HereS(λ)ε is the action functional associated to (1.10) and it converges (formally) to the action
functionalSε asλ → 0 [17]. Large deviation theory not only estimates the probability of rare
events but also identifies the ‘most likely switching path’ as the minimizeru in (1.12).

We focus here on the sharp interface limitε → 0 of the action functionalSε. The small
parameterε > 0 corresponds to a specific diffusive scaling of the time and space domains. This
choice was identified [7, 17] as particularly interesting, exhibiting a competition betweennucleation
versus propagationto achieve the optimal switching. Depending on the value of|Ω|

1/d/
√
T a

cascade of more and more complex spatial patterns is observed [7, 17, 18]. The interest in the sharp
interface limit is motivated by an interest in applications where the switching time is small compared
to the deterministic time scale (see for instance [19]).

1.3 Organization

We fix some notation and assumptions in the next section. In Section 3 we introduce the concept
of L2-flows and generalized velocity. Our main results are stated in Section 4 and proved in
Sections 5–8. We discuss some implications for the Gamma-convergence of the action functional in
Section 9. Finally, in the Appendix we collect some definitions from geometric measure theory.
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2. Notation and assumptions

Throughout the paper we will adopt the following notation:Ω is an open bounded subset ofRn with
Lipschitz boundary;T > 0 is a real number andΩT := (0, T )×Ω; x ∈ Ω andt ∈ (0, T ) denote
the space and time variables respectively;∇ and∆ denote the spatial gradient and Laplacian, and
∇

′ the full gradient inR × Rn.
We chooseW to be the standard quartic double-well potential

W(r) =
1

4
(1 − r2)2.

For a family(µt )t∈(0,T ) of measures we denote byL1
⊗ µt the product measure defined by

(L1
⊗ µt )(η) :=

∫ T

0
µt (η(t, ·))dt

for anyη ∈ C0
c (ΩT ).

We next state our main assumptions.

ASSUMPTION2.1 Letn = 2,3 and let(uε)ε>0 be a sequence of smooth functions such that for
all ε > 0,

Sε(uε) 6 Λ1, (A1)∫
Ω

(
ε

2
|∇uε|

2
+

1

ε
W(uε)

)
(0, x)dx 6 Λ2, (A2)

where the constantsΛ1,Λ2 are independent ofε > 0. Moreover,

∇uε · νΩ = 0 on [0, T ] × ∂Ω. (A3)

REMARK 2.2 It follows from (A3) that for any 06 t0 6 T ,∫ t0

0

∫
Ω

(
√
ε∂tuε +

1
√
ε

(
−ε∆uε +

1

ε
W ′(uε)

))2

dx dt

=

∫ t0

0

∫
Ω

ε(∂tuε)
2
+

1

ε

(
−ε∆uε +

1

ε
W ′(uε)

)2

dx dt

+ 2
∫
Ω

(
ε

2
|∇uε|

2
+

1

ε
W(uε)

)
(t0, x)dx − 2

∫
Ω

(
ε

2
|∇uε|

2
+

1

ε
W(uε)

)
(0, x)dx.

By the uniform bounds (A1), (A2) this implies that∫
ΩT

ε(∂tuε)
2
+

1

ε

(
−ε∆uε +

1

ε
W ′(uε)

)2

dx dt 6 Λ3, (2.1)

max
06t6T

∫
Ω

(
ε

2
|∇uε|

2
+

1

ε
W(uε)

)
(t, x)dx 6 Λ4, (2.2)

where

Λ3 := Λ1 + 2Λ2, Λ4 :=
1

2
Λ1 +Λ2.
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REMARK 2.3 Our arguments would also work for any boundary conditions for which the scalar
product∂tu∇u · νΩ vanishes on∂Ω, in particular for time-independent Dirichlet conditions or
periodic boundary conditions.

We set

wε := −ε∆uε +
1

ε
W ′(uε) (2.3)

and define forε > 0, t ∈ (0, T ) a Radon measureµtε onΩ by

µtε :=

(
ε

2
|∇uε|

2(t, ·)+
1

ε
W(uε(t, ·))

)
Ln, (2.4)

and forε > 0 measuresµε, αε onΩT by

µε :=

(
ε

2
|∇uε|

2
+

1

ε
W(uε)

)
Ln+1, (2.5)

αε := (ε1/2∂tuε + ε−1/2wε)
2Ln+1. (2.6)

Restricting ourselves to a subsequenceε → 0 if necessary, we may assume that

µε → µ as Radon measures onΩT , (2.7)

αε → α as Radon measures onΩT , (2.8)

for two Radon measuresµ, α onΩT , and

α(ΩT ) = lim inf
ε→0

αε(ΩT ). (2.9)

3. L2-flows

We will show that the uniform bound on the action implies the existence of a square-integrable
weak mean curvature and the existence of a square-integrablegeneralized velocity. The formulation
of weak mean curvature is standard in geometric measure theory [1, 31]. Our definition ofL2-flow
and generalized velocity is similar to Brakke’s formulation of mean curvature flow [5].

DEFINITION 3.1 Let (µt )t∈(0,T ) be any family of integer rectifiable Radon measures such that
µ := L1

⊗ µt defines a Radon measure onΩT and such thatµt has a weak mean curvature
H(t, ·) ∈ L2(µt ) for almost allt ∈ (0, T ).

If there exists a positive constantC and a vector fieldv ∈ L2(µ,Rn) such that

v(t, x) ⊥ Txµ
t for µ-almost all(t, x) ∈ ΩT , (3.1)∣∣∣∣∫ T

0

∫
Ω

(∂tη + ∇η · v)dµt dt

∣∣∣∣6 C‖η‖C0(ΩT )
(3.2)

for all η ∈ C1
c ((0, T ) × Ω), then we call the evolution(µt )t∈(0,T ) anL2-flow. A function v ∈

L2(µ,Rn) satisfying (3.1), (3.2) is called ageneralized velocity vector.
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This definition is based on the observation that for a smooth evolution(Mt )t∈(0,T ) with mean
curvatureH(t, ·) and normal velocity vectorV (t, ·),

d

dt

∫
Mt

η(t, x)dHn−1(x)−

∫
Mt

∂tη(t, x)dHn−1(x)−

∫
Mt

∇η(t, x) · V (t, x)dHn−1(x)

=

∫
Mt

H(t, x) · V (t, x)η(t, x)dHn−1(x).

Integrating this equality in time implies (3.2) for any evolution with square-integrable velocity and
mean curvature.

REMARK 3.2 Choosingη(t, x) = ζ(t)ψ(x) with ζ ∈ C1
c (0, T ), ψ ∈ C1(Ω), we deduce from

(3.2) thatt 7→ µt (ψ) belongs toBV (0, T ). Choosing a countable dense subset(ψi)i∈N ⊂ C0(Ω)

this implies that there exists a countable setS ⊂ (0, T ) of singular timessuch that any good
representative oft 7→ µt (ψ) is continuous in(0, T ) \ S for all ψ ∈ C1(Ω).

Any generalized velocity is (on a set of good points) uniquely determined by the evolution
(µt )t∈(0,T ).

PROPOSITION3.3 Let (µt )t∈(0,T ) be anL2-flow and setµ := L1
⊗ µt . Let v ∈ L2(µ) be a

generalized velocity field in the sense of Definition 3.1. Then(
1

v(t0, x0)

)
∈ T(t0,x0)µ (3.3)

atµ-almost all points(t0, x0) ∈ ΩT where the tangential plane ofµ exists. The evolution(µt )t∈(0,T )
uniquely determinesv at all points(t0, x0) ∈ ΩT where both tangential planesT(t0,x0)µ andTx0µ

t0

exist.

We postpone the proof to Section 8.
On the set of points where a tangential plane ofµ exists, the generalized velocity fieldv

coincides with the normal velocity introduced in [4].
We now turn to the statement of a lower bound for sequences(uε)ε>0 satisfying Assumption

2.1. Asε → 0 we will obtain a phase indicator functionu as the limit of the sequence(uε)ε>0
and anL2-flow (µt )t∈(0,T ) as the limit of the measures(µε)ε>0. We will show that atHn-almost
all points of the phase boundary∂∗

{u = 1} ∩ΩT the tangential plane ofµ exists. This implies the
existence of a unique normal velocity field of the phase boundary.

4. Lower bound for the action functional

We state a lower bound for the functionalsSε in several steps. We postpone all proofs to
Sections 5–8.

4.1 Lower estimate for the mean curvature

We start with an application of the well-known results of Modica and Mortola [22, 21].
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PROPOSITION4.1 There existsu ∈ BV (ΩT ; {−1,1}) ∩ L∞(0, T ;BV (Ω)) such that for a
subsequenceε → 0,

uε → u in L1(ΩT ), (4.1)

uε(t, ·) → u(t, ·) in L1(Ω) for almost allt ∈ (0, T ). (4.2)

Moreover,
c0

2

∫
ΩT

d|∇
′u| 6 Λ3 + TΛ4,

c0

2

∫
Ω

d|∇u(t, ·)| 6 Λ4 (4.3)

wherec0 was defined in (1.4).

The next proposition basically repeats the arguments in [18, Theorem 1.1].

PROPOSITION4.2 There exists a countable setS ⊂ (0, T ), a subsequenceε → 0 and Radon
measuresµt , t ∈ [0, T ] \ S, such that for allt ∈ [0, T ] \ S,

µtε → µt as Radon measures onΩ, (4.4)

µ = L1
⊗ µt , (4.5)

and for allψ ∈ C1(Ω) the function

t 7→ µt (ψ) is of bounded variation in(0, T ) (4.6)

and has no jumps in(0, T ) \ S.

Exploiting the lower bound [28] for the diffuse approximation of the Willmore functional (1.8)
we find that the measuresµt are integer-rectifiable up to a constant with a weak mean curvature
satisfying an appropriate lower estimate.

THEOREM 4.3 For almost allt ∈ (0, T ),

• (1/c0)µ
t is an integral(n− 1)-varifold,

• µt has weak mean curvatureH(t, ·) ∈ L2(µt ),

and ∫
ΩT

|H |
2 dµ 6 lim inf

ε→0

∫
ΩT

1

ε
w2
ε dx dt. (4.7)

4.2 Lower estimate for the generalized velocity

THEOREM 4.4 Let(µt )t∈(0,T ) be the limit measures obtained in Proposition 4.2. Then there exists
a generalized velocityv ∈ L2(µ,Rn) of (µt )t∈(0,T ). Moreover,∫

ΩT

|v|2 dµ 6 lim inf
ε→0

∫
ΩT

ε(∂tuε)
2 dx dt. (4.8)

In particular,( 1
c0
µt )t∈(0,T ) is anL2-flow.

We obtainv as a limit of suitably defined approximate velocities (see Lemma 6.2). On the phase
boundaryv coincides with the (standard) distributional velocity of the bulk phase{u(t, ·) = 1}.
However, our definition extends the velocity also to ‘hidden boundaries’, which seems necessary in
order to prove the Gamma-convergence of the action functional; see the discussion in Section 9.
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PROPOSITION4.5 Define thegeneralized normal velocityV in the direction of the inner normal
of {u = 1} by

V (t, x) := v(t, x) ·
∇u

|∇u|
(t, x) for (t, x) ∈ ∂∗

{u = 1}.

ThenV ∈ L1(|∇u|) andV |∂∗{u=1} is the unique vector field that satisfies, for allη ∈ C1
c (ΩT ),∫ T

0

∫
Ω

V (t, x)η(t, x)d|∇u(t, ·)|(x)dt = −

∫
ΩT

u∂tη dx dt. (4.9)

4.3 Lower estimate of the action functional

As our main result we obtain the following lower estimate forSε.
THEOREM 4.6 Let Assumption 2.1 hold, and letµ, (µt )t∈[0,T ] , andS be the measures and the
countable set of singular times that we obtained in Proposition 4.2. Define thenucleation cost
Snuc(µ) by

Snuc(µ) :=
∑
t0∈S

sup
ψ

(lim
t↓t0

µt (ψ)− lim
t↑t0

µt (ψ))

+ sup
ψ

(lim
t↓0
µt (ψ)− µ0(ψ))+ sup

ψ

(µT (ψ)− lim
t↑T

µt (ψ)),
(4.10)

where the sup is taken over allψ ∈ C1(Ω) with 0 6 ψ 6 1. Then

lim inf
ε→0

Sε(uε) >
∫
ΩT

|v −H |
2 dµ+ 4Snuc(µ). (4.11)

In the previous definition of nucleation cost we have tacitly chosen good representatives of
µt (ψ) (see [3]). With this choice the jump parts in (4.10) are well-defined.

Finally, let us remark that, in view of Theorem 4.3,Snuc does indeed measure only(n − 1)-
dimensional jumps.

Theorem 4.6 improves [17] in the higher-multiplicity case. We will discuss our main results in
Section 9.

4.4 Convergence of the Allen–Cahn equation to mean curvature flow

Let n = 2,3 and consider solutions(uε)ε>0 of the Allen–Cahn equation (1.6) satisfying (A2) and
(A3). ThenSε(uε) = 0 and the results of Sections 4.1–4.3 apply: There exists a subsequenceε → 0
such that the phase functionsuε converge to a phase indicator functionu, the energy measuresµtε
converge to anL2-flow (µt )t∈(0,T ), and

H = v (4.12)

µ-almost everywhere, whereH(t, ·) denotes the weak mean curvature ofµt , andv is the generalized
velocity of (µt )t∈(0,T ) in the sense of Definition 3.1. MoreoverSnuc(µ) = 0, which shows that for
any nonnegativeψ ∈ C1(Ω) the functiont 7→ µt (ψ) cannot jump upwards. From (1.6) and (5.3)
below one infers that for anyψ ∈ C1(Ω) and allζ ∈ C1

c (0, T ),

−

∫ T

0
∂tζµ

t
ε(ψ)dt = −

∫
ΩT

ζ(t)

(
1

ε
ψ(x)w2

ε (t, x)+ ∇ψ(x) · ∇uεwε(t, x)

)
dx dt. (4.13)
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We will show that suitably defined ‘diffuse mean curvatures’ converge asε → 0 (see (7.1)). Using
this result we can pass to the limit in (4.13) to obtain, for any nonnegative functionsψ ∈ C1(Ω)

andζ ∈ C1
c (0, T ),

−

∫ T

0
∂tζµ

t (ψ)dt 6 −

∫ T

0
ζ(t)

∫
Ω

(H(t, x)2 + ∇ψ(x) ·H(t, x))dµt (x)dt,

which is a time-integrated version of Brakke’s inequality.

5. Proofs of Propositions 4.1, 4.2 and Theorem 4.3

Proof of Proposition 4.1. By (2.1), (2.2) we obtain∫
ΩT

(
ε

2
|∇

′uε|
2
+

1

ε
W(uε)

)
dx dt 6 Λ3 + TΛ4.

This implies by [21] the existence of a subsequenceε → 0 and a functionu ∈ BV (ΩT ; {−1,1})

such that
uε → u in L1(ΩT )

and
c0

2

∫
ΩT

d|∇
′u| 6 lim inf

ε→0

∫
ΩT

(
ε

2
|∇

′uε|
2
+

1

ε
W(uε)

)
dx dt 6 Λ3 + TΛ4.

After possibly taking another subsequence, for almost allt ∈ (0, T ),

uε(t, ·) → u(t, ·) in L1(Ω). (5.1)

Using (2.2) and applying [21] for a fixedt ∈ (0, T ) with (5.1) we get

c0

2

∫
Ω

d|∇u|(t, ·) 6 lim inf
ε→0

µtε(Ω) 6 Λ4. 2

Before proving Proposition 4.2 we show that the time derivative of the energy densitiesµtε is
controlled.

LEMMA 5.1 There existsC = C(Λ1,Λ3,Λ4) such that for allψ ∈ C1(Ω),∫ T

0
|∂tµ

t
ε(ψ)| dt 6 C‖ψ‖C1(Ω). (5.2)

Proof. Using (A3) we compute that

2∂tµ
t
ε(ψ) =

∫
Ω

(
√
ε∂tuε +

1
√
ε
wε

)2

(t, x)ψ(x)dx −

∫
Ω

(
ε(∂tuε)

2
+

1

ε
w2
ε

)
(t, x)ψ(x)dx

− 2
∫
Ω

ε∇ψ(x) · ∂tuε(t, x)∇uε(t, x)dx. (5.3)
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By (2.1), (2.2) we estimate∣∣∣∣2∫
ΩT

ε∇ψ · ∂tuε∇uε dx dt

∣∣∣∣ 6
∫
ΩT

|∇ψ |
(
ε(∂tuε)

2
+ ε|∇uε|

2) dx dt

6 (Λ3 + TΛ4)‖∇ψ‖C0(Ω), (5.4)

and deduce from (A1), (2.1), (5.3) that∫ T

0
|∂tµ

t
ε(ψ)| dt 6 (Λ1 +Λ3)‖ψ‖C0(Ω) + C(Λ3, T Λ4)‖∇ψ‖C0(Ω),

which proves (5.2). 2

Proof of Proposition 4.2. By (2.7),µε → µ as Radon measures onΩT . Choose now a countable
family (ψi)i∈N ⊂ C1(Ω) which is dense inC0(Ω). By Lemma 5.1 and a diagonal-sequence
argument there exists a subsequenceε → 0 and functionsmi ∈ BV (0, T ), i ∈ N, such that
for all i ∈ N,

µtε(ψi) → mi(t) for almost allt ∈ (0, T ), (5.5)

∂tµ
t
ε(ψi) → m′

i as Radon measures on(0, T ). (5.6)

Let S denote the countable set of timest ∈ (0, T ) where for somei ∈ N the measurem′

i has an
atomic part int . We claim that (5.5) holds on(0, T )\S. To see this we choose a pointt ∈ (0, T )\S
and a sequence of points(tj )j∈N in (0, T ) \ S such thattj ↗ t and (5.5) holds for alltj . We then
obtain

lim
j→∞

m′

i([tj , t ]) = 0 for all i ∈ N, (5.7)

lim
ε→0

∂tµ
ε(ψi)([tj , t ]) = m′

i([tj , t ]) for all i, j ∈ N. (5.8)

Moreover,

|mi(t)− µtε(ψi)| 6 |mi(t)−mi(tj )| + |mi(tj )− µ
tj
ε (ψi)| + |µ

tj
ε (ψi)− µtε(ψi)|

6 |m′

i([tj , t ])| + |mi(tj )− µ
tj
ε (ψi)| + |∂tµ

t
ε(ψi)([tj , t ])|.

Taking firstε → 0 and thentj ↗ t we deduce from (5.7), (5.8) that (5.5) holds for alli ∈ N and all
t ∈ (0, T ) \ S.

Take now an arbitraryt ∈ (0, T ) such that (5.5) holds. By (2.2) there exists a subsequence
ε → 0 such that

µtε → µt as Radon measures onΩ. (5.9)

We deduce thatµt (ψi) = mi(t) and since(ψi)i∈N is dense inC0(Ω) we can identify any limits of
(µtε)ε>0 and obtain (5.9) for the whole sequence selected in (5.5), (5.6) and for allt ∈ (0, T ) for
which (5.5) holds. Moreover, for anyψ ∈ C0(Ω) the mapt 7→ µtε(ψ) has no jumps in(0, T ) \ S.
After possibly taking another subsequence we can also ensure that asε → 0,

µ0
ε → µ0, µTε → µT

as Radon measures onΩ. This proves (4.4).
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By the dominated convergence theorem we conclude that for anyη ∈ C0(ΩT ),∫
ΩT

η dµ = lim
ε→0

∫
ΩT

η dµε = lim
ε→0

∫ T

0

∫
Ω

η(t, x)dµtε(x)dt =

∫ T

0

∫
Ω

η(t, x)dµt (x)dt,

which implies (4.5).
By (5.2), theL1(0, T )-compactness of sequences that are uniformly bounded inBV (0, T ),

the lower semicontinuity of theBV -norm underL1-convergence, and (4.4) we conclude that (4.6)
holds. 2

Proof of Theorem 4.3. Fatou’s lemma and (2.1), (2.2) imply that for almost allt ∈ (0, T ),

lim inf
ε→0

(
µtε(Ω)+

∫
Ω

1

ε
wε(t, x)

2 dx

)
< ∞. (5.10)

Let S ⊂ (0, T ) be as in Proposition 4.2 and fix at ∈ (0, T ) \ S such that (5.10) holds. Then we
deduce from [28, Theorems 4.1 and 5.1] and (4.4) that

1

c0
µt is an integral(n− 1)-varifold, µt >

c0

2
|∇u(t, ·)|,

andµt has weak mean curvatureH(t, ·) satisfying∫
Ω

|H(t, x)|2 dµt (x) 6 lim inf
ε→0

1

ε

∫
Ω

wε(t, x)
2 dx. (5.11)

By (5.11) and Fatou’s lemma we obtain∫ T

0

∫
Ω

|H(t, x)|2 dµt (x)dt 6
∫ T

0

(
lim inf
ε→0

1

ε

∫
Ω

wε(t, x)
2 dx

)
dt 6 lim inf

ε→0

1

ε

∫
ΩT

w2
ε dx dt,

which proves (4.7).
For later use we also associate general varifolds toµtε and consider their convergence asε → 0.

Let νε(t, ·) : Ω → Sn−1
1 (0) be an extension of∇uε(t, ·)/|∇uε(t, ·)| to the set{∇uε(t, ·) = 0}.

Define the projectionsPε(t, x) := Id−νε(t, x)⊗νε(t, x) and consider the general varifoldsV tε and
the integer rectifiable varifoldc−1

0 V t defined by

V tε (f ) :=
∫
Ω

f (x, Pε(t, x))dµtε(x), (5.12)

V t (f ) :=
∫
Ω

f (x, P (t, x))dµt (x) (5.13)

for f ∈ C0
c (Ω × Rn×n), whereP(t, x) ∈ Rn×n denotes the projection onto the tangential plane

Txµ
t . Then we deduce from the proof of [28, Theorem 4.1] that

V tε → V t asε → 0 (5.14)

in the sense of varifolds. 2
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6. Proof of Theorem 4.4

6.1 Equipartition of energy

We start with a preliminary result, showing the importantequipartition of energy: thediscrepancy
measure

ξε :=

(
ε

2
|∇uε|

2
−

1

ε
W(uε)

)
Ln+1 (6.1)

vanishes in the limitε → 0.
To prove this we combine results from [28] with a refined version of Lebesgue’s dominated

convergence theorem [25] (see also [27, Lemma 4.2]).

PROPOSITION6.1 For a subsequenceε → 0,

|ξε| → 0 as Radon measures onΩT . (6.2)

Proof. Let us define the measures

ξ tε :=

(
ε

2
|∇uε|

2
−

1

ε
W(uε)

)
(t, ·)Ln

onΩ. Forε > 0, k ∈ N, we define the sets

Bε,k :=

{
t ∈ (0, T ) :

∫
Ω

1

ε
wε(t, x)

2 dx > k

}
. (6.3)

We then deduce from (2.1) that

Λ3 >
∫ T

0

∫
Ω

1

ε
wε(t, x)

2 dx dt > |Bε,k|k. (6.4)

Next we define the (signed) Radon measuresξ tε,k by

ξ tε,k :=

{
ξ tε for t ∈ (0, T ) \ Bε,k,
0 for t ∈ Bε,k.

(6.5)

By [28, Proposition 4.9], we have

|ξ tεj | → 0 (j → ∞) as Radon measures onΩ (6.6)

for any subsequenceεj → 0 (j → ∞) such that

lim sup
j→∞

∫
Ω

1

εj
wεj (t, x)

2 dx < ∞.

By (2.2), (6.5) we deduce that for anyη ∈ C0(ΩT ,R+

0 ), k ∈ N, and almost allt ∈ (0, T ),

|ξ tε,k|(η(t, ·)) → 0 asε → 0 (6.7)

and
|ξ tε,k|(η(t, ·)) = (1 − XBε,k (t))|ξ

t
ε |(η(t, ·)) 6 Λ4‖η‖C0(ΩT )

. (6.8)
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By the dominated convergence theorem, (6.7) and (6.8) imply that∫ T

0
|ξ tε,k|(η(t, ·))dt → 0 asε → 0. (6.9)

Further, we obtain∫ T

0
|ξ tε |(η(t, ·))dt 6

∫ T

0
|ξ tε,k|(η(t, ·))dt +

∫
Bε,k

|ξ tε |(η(t, ·))dt

6
∫ T

0
|ξ tε,k|(η(t, ·))dt +

∫
Bε,k

µtε(η(t, ·))dt. (6.10)

Fork ∈ N fixed we deduce from (2.2), (6.4), (6.10) that

lim sup
ε→0

∫ T

0

∫
Ω

|ξ tε |(η(t, ·))dt 6 lim
ε→0

∫ T

0
|ξ tε,k|(η(t, ·))dt + ‖η‖C0(ΩT )

Λ4
Λ3

k
. (6.11)

By (6.9) and sincek ∈ N was arbitrary this proves the proposition. 2

6.2 Convergence of approximate velocities

In the next step in the proof of Theorem 4.4 we define approximate velocity vectors and show their
convergence asε → 0.

LEMMA 6.2 Definevε : ΩT → Rn by

vε :=

−
∂tuε

|∇uε|

∇uε

|∇uε|
if |∇uε| 6= 0,

0 otherwise.
(6.12)

Then there exists a functionv ∈ L2(µ,Rn) such that

(ε|∇uε|
2Ln+1, vε) → (µ, v) asε → 0 (6.13)

in the sense of measure-function pair convergence (see Appendix B) and such that (4.8) is satisfied.

Proof. We define Radon measures

µ̃ε := ε|∇uε|
2Ln+1

= µε + ξε. (6.14)

From (2.7), (6.2) we deduce that

µ̃ε → µ as Radon measures onΩT . (6.15)

Next we observe that(µ̃ε, vε) is a measure-function pair in the sense of [15] (see also Definition
B.1 in Appendix B) and that by (2.1),∫

ΩT

|vε|
2 dµ̃ε 6

∫
ΩT

ε(∂tuε)
2 dx dt 6 Λ3. (6.16)

By Theorem B.3 we therefore deduce that there exists a subsequenceε → 0 and a functionv ∈

L2(µ,Rn) such that (6.13) and (4.8) hold. 2
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LEMMA 6.3 Forµ-almost all(t, x) ∈ ΩT ,

v(t, x) ⊥ Txµ
t . (6.17)

Proof. We follow [23, Proposition 3.2]. Letνε : ΩT → Sn−1
1 (0) be an extension of∇uε/|∇uε| to

the set{∇uε = 0} and define projection-valued mapsPε : ΩT → Rn×n by

Pε := Id − νε ⊗ νε.

Consider next the general varifoldsṼε, V defined by

Ṽε(f ) :=
∫
ΩT

f (t, x, Pε(t, x))dµ̃ε(t, x), (6.18)

V (f ) :=
∫
ΩT

f (t, x, P (t, x))dµt (x) (6.19)

for f ∈C0
c (ΩT×Rn×n), whereP(t, x)∈Rn×n denotes the projection onto the tangential planeTxµ

t .
From (5.14), Proposition 6.1, and Lebesgue’s dominated convergence theorem we deduce that

lim
ε→0

Ṽε = V (6.20)

as Radon measures onΩT × Rn×n.
Next we define functionŝvε onΩT × Rn×n by

v̂ε(t, x, Y ) = vε(t, x) for all (t, x) ∈ ΩT , Y ∈ Rn×n.

We then observe that ∫
ΩT×Rn×n

v̂2
ε dVε =

∫
ΩT

v2
ε dµ̃ε 6 Λ3

and deduce from (6.20) and Theorem B.3 the existence ofv̂ ∈ L2(V ,Rn) such that(Vε, v̂ε)
converges to(V , v̂) as measure-function pairs onΩT × Rn×n with values inRn.

We now considerh ∈ C0
c (Rn×n) such thath(Y ) = 1 for all projectionsY . We deduce that for

anyη ∈ C0
c (ΩT ,Rn),∫

ΩT

η · v dµ = lim
ε→0

∫
ΩT×Rn×n

η(t, x) · h(Y )v̂ε(t, x, Y )dVε(t, x, Y )

=

∫
ΩT

η(t, x) · v̂(t, x, P (t, x))dµ(t, x),

which shows that forµ-almost all(t, x) ∈ ΩT ,

v̂(t, x, P (t, x)) = v(t, x). (6.21)

Finally, we observe that forh, η as above,∫
ΩT

η(t, x) · P(t, x)v(t, x)dµ(t, x) =

∫
ΩT×Rn×n

η(t, x)h(Y ) · Y v̂(t, x, Y ) dV (t, x, Y )

= lim
ε→0

∫
ΩT×Rn×n

η(t, x)h(Y ) · Y v̂ε(t, x, Y ) dVε(t, x, Y )

= lim
ε→0

∫
ΩT

η(t, x) · Pε(t, x)vε(t, x)dµ̃ε(t, x) = 0

sincePεvε = 0. This shows thatP(t, x)v(t, x) = 0 forµ-almost all(t, x) ∈ ΩT . 2
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Proof of Theorem 4.4. By (2.1) there exists a subsequenceε → 0 and a Radon measureβ onΩT

such that (
ε(∂tuε)

2
+

1

ε
w2
ε

)
Ln+1

→ β, β(ΩT ) 6 Λ3. (6.22)

Using (A3) we compute that for anyη ∈ C1
c ((0, T )×Ω),∫

ΩT

η dαε =

∫
ΩT

η

(
ε(∂tuε)

2
+

1

ε
w2
ε

)
dx dt − 2

∫
ΩT

∂tη dµε

+ 2
∫
ΩT

ε∇η · ∂tuε∇uε dx dt.
(6.23)

As ε tends to zero the term on the left-hand side and the first two terms on the right-hand side
converge by (2.7), (2.8) and (6.22). For the third term on the right-hand side of (6.23) we find from
(6.13) that

lim
ε→0

∫
ΩT

∇η · ε∂tuε∇uε dx dt = − lim
ε→0

∫
ΩT

∇η · vεε|∇uε|
2 dx dt = −

∫
ΩT

∇η · v dµ.

Therefore, takingε → 0 in (6.23) we deduce that∫
ΩT

η dα =

∫
ΩT

η dβ − 2
∫
ΩT

∂tη dµ− 2
∫
ΩT

∇η · v dµ

for all η ∈ C1
c ((0, T )×Ω). This yields∣∣∣∣∫

ΩT

(∂tη + ∇η · v)dµ

∣∣∣∣ 6 ‖η‖C0(ΩT )

1

2
(α(ΩT )+ β(ΩT )),

which together with (6.17) shows thatv is a generalized velocity vector for(µt )t∈(0,T ) in the sense
of Definition 3.1. The estimate (4.8) was already proved in Lemma 6.2. 2

7. Proof of Theorem 4.6

We start with the convergence of a ‘diffuse mean curvature term’.

LEMMA 7.1 Define

Hε :=
1

ε
wε

∇uε

|∇uε|2
,

let µ̃ε = ε|∇uε|
2Ln+1, and letvε, v be as in (6.12), (6.13). Then

(µ̃ε, Hε) → (µ,H), (7.1)

(µ̃ε, vε −Hε) → (µ, v −H) (7.2)

asε → 0 in the sense of measure-function pair convergence. In particular∫
ΩT

η|v −H |
2 dµ 6 α(η) (7.3)

for all η ∈ C0(ΩT ,R+

0 ).
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Proof. We use arguments similar to the proof of Proposition 6.1. Forε > 0, k ∈ N, we define

Bε,k :=

{
t ∈ (0, T ) :

∫
Ω

1

ε
wε(t, x)

2 dx > k

}
. (7.4)

We then deduce from (2.1) that

Λ3 >
∫
ΩT

1

ε
w2
ε dx dt > |Bε,k|k. (7.5)

Next we define functionalsT tε,k ∈ C0
c (Ω,Rn)∗ by

T tε,k(ψ) :=


∫
Ω

ψ(x) · wε(t, x)∇uε(t, x)dx for t ∈ (0, T ) \ Bε,k,∫
Ω

ψ(x) ·H(t, x)dµt (x) for t ∈ Bε,k.
(7.6)

Considering the general(n − 1)-varifolds V tε , V
t defined in (5.12), (5.13) we infer from [28,

Proposition 4.10] and (5.14) that

lim
j→∞

∫
Ω

ψ ·wεj (t, x)∇uεj (t, x)dx = − lim
j→∞

δV tεj (ψ) = −δµt (ψ) =

∫
Ω

ψ ·H(t, x)dµt (x) (7.7)

for any subsequenceεj → 0 (j → ∞) such that

lim sup
j→∞

∫
Ω

1

εj
w2
εj

dx dt < ∞.

Therefore we deduce from (7.6), (7.7) that for allη ∈ C0
c (ΩT ,Rn), k ∈ N, and almost allt ∈ (0, T ),

T tε,k(η(t, ·)) →

∫
Ω

η(t, x) ·H(t, x)dµt (x) asε → 0 (7.8)

and

|T tε,k(η(t, ·))| 6 (1 − XBε,k (t))
∣∣∣∣∫
Ω

η(t, x) · wε(t, x)∇uε(t, x)dx

∣∣∣∣
+ XBε,k (t)

∣∣∣∣∫
Ω

η(t, x) ·H(t, x)dµt (x)

∣∣∣∣
6 ‖η‖C0(ΩT )

(1 − XBε,k (t))
(∫

Ω

1

2ε
wε(t, x)

2 dx

)1/2(∫
Ω

ε

2
|∇uε(t, x)|

2 dx

)1/2

+

∫
Ω

|η(t, x)| |H(t, x)| dµt (x)

6 ‖η‖C0(ΩT )

√
k

2

√
Λ4 +

∫
Ω

|η(t, x)| |H(t, x)| dµt (x), (7.9)

where the right-hand side is bounded inL1(0, T ), uniformly with respect toε > 0.
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By the dominated convergence theorem, (7.8) and (7.9) imply that∫ T

0
T tε,k(η(t, ·))dt →

∫
ΩT

η ·H dµ asε → 0. (7.10)

Further, we obtain∣∣∣∣∫
ΩT

η · wε∇uε dx dt −
∫
ΩT

η ·H dµ

∣∣∣∣
6

∣∣∣∣∫ T

0
T tε,k(η(t, ·))dt −

∫
ΩT

η ·H dµ

∣∣∣∣
+

∣∣∣∣∫
Bε,k

∫
Ω

η(t, x) ·H(t, x)dµt (x)dt

∣∣∣∣ +

∣∣∣∣∫
Bε,k

∫
Ω

η · wε∇uε dx dt

∣∣∣∣. (7.11)

The last term on the right-hand side is estimated by∣∣∣∣∫
Bε,k

∫
Ω

η(t, x) · wε(t, x)∇uε(t, x)dx dt

∣∣∣∣ 6 ‖η‖C0(ΩT )

(∫
ΩT

1

2ε
w2
ε dx dt

)1/2

|Bε,k|1/2
√
Λ4

6 ‖η‖C0(ΩT )
Λ3

1
√
k

√
Λ4, (7.12)

where we have used (2.2) and (7.5). For the second term on the right-hand side of (7.11) we obtain∣∣∣∣∫
Bε,k

∫
Ω

η(t, x) ·H(t, x)dµt (x)dt

∣∣∣∣ 6 |Bε,k|1/2‖η‖1/2
C0(ΩT )

(∫
supp(η)

H 2 dµ

)1/2

6

√
Λ3

√
k

‖η‖
1/2
C0(ΩT )

√
Λ3, (7.13)

where we have used (4.7) and (2.1). Finally, fork ∈ N fixed, by (7.10) we deduce that

lim
ε→0

∣∣∣∣∫ T

0
T tε,k(η(t, ·))dt −

∫
ΩT

η ·H dµ

∣∣∣∣ = 0. (7.14)

Takingε → 0 in (7.11) we find by (7.12)–(7.14) that

lim
ε→0

∣∣∣∣∫
ΩT

η · wε∇uε dx dt −
∫
ΩT

η ·H dµ

∣∣∣∣ 6
Λ3
√
k
‖η‖C0(ΩT )

√
Λ4 +

1
√
k
Λ3 (7.15)

for anyk ∈ N, which proves (7.1). Together with (6.13) this implies (7.2). Finally, we fix an arbitrary
nonnegativeη ∈ C0(ΩT ) and deduce that the measure-function pair(µ̃ε,

√
η(vε −Hε)) converges

to (µ,
√
η(v −H)). The estimate (7.3) then follows from Theorem B.3. 2

LetΠ : [0, T ]×Ω → [0, T ] denote the projection onto the first component andΠ# the pushforward
of measures byΠ . Forψ ∈ C0(Ω) we consider the measures

αψ := Π#(ψα),
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on [0, T ], that is,

αψ (ζ ) :=
∫
ΩT

ζ(t)ψ(x)dα(t, x) for ζ ∈ C0([0, T ]),

and set

αΩ := Π#α.

We can then estimate the atomic part ofαΩ in terms of the nucleation cost.

LEMMA 7.2 LetSnuc(µ) be the nucleation cost defined in (4.10). Then

(αΩ)atomic[0, T ] > 4Snuc(µ). (7.16)

Proof. Let η ∈ C1(ΩT ,R+

0 ) be nonnegative. We compute that∫
ΩT

η dαε =

∫
ΩT

η

(
ε(∂tuε)

2
+

1

ε
w2
ε + 2∂tuεwε

)
dx dt

> 4
∫
ΩT

η∂tuεwε dx dt

= − 4
∫
ΩT

∂tη dµε + 4
∫
ΩT

∇η · ε∂tuε∇uε dx dt

+ 4µTε (η(T , ·))− 4µ0
ε(η(0, ·)). (7.17)

Passing to the limitε → 0 we infer from (2.7), (4.4), (6.13) that∫
ΩT

η dα > − 4
∫
ΩT

∂tη dµ− 4
∫
ΩT

∇η · v dµ+ 4µT (η(T , ·))− 4µ0(η(0, ·)). (7.18)

We now chooseη(t, x) = ζ(t)ψ(x) whereζ ∈ C1([0, T ],R+

0 ), ψ ∈ C1(Ω,R+

0 ) in (7.18) and
deduce that ∫ T

0
ζ dαψ > − 4

∫ T

0
∂tζµ

t (ψ)dt + 4
∫ T

0
ζ

∫
Ω

∇ψ · v(t, x)dµt (x)dt

+ 4ζ(T )µT (ψ)− 4ζ(0)µ0(ψ). (7.19)

This shows that

αψ > 4∂t (µ
t (ψ))+ 4

(∫
Ω

∇ψ(x) · v(t, x)dµt (x)

)
L1

+ 4(µT (ψ)− lim
t↑T

µt (ψ))δT + 4(lim
t↓0
µt (ψ)− µ0(ψ))δ0. (7.20)

Evaluating the atomic parts we see that for any 0< t0 < T ,

αψ ({t0}) > 4∂t (µ
t (ψ))({t0}),

which implies that
αΩ({t0}) > 4 sup

ψ

∂t (µ
t (ψ))({t0}), (7.21)

where the supremum is taken over allψ ∈ C1(Ω) with 0 6 ψ 6 1.
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Moreover we deduce from (7.20) that

αΩ({0}) > 4 sup
ψ

(lim
t↓0
µt (ψ)− µ0(ψ)), (7.22)

αΩ({T }) > 4 sup
ψ

(µT (ψ)− lim
t↑T

µt (ψ)), (7.23)

where the supremum is taken overψ ∈ C(Ω) with 0 6 ψ 6 1. By (7.21)–(7.23) we conclude that
(7.16) holds. 2

Proof of Theorem 4.6. By (7.3) we know thatα > |v−H |
2µ. Sinceµ = L1

⊗µt we deduce from
the Radon–Nikodym theorem that

(αΩ)ac[0, T ] >
∫
ΩT

|v −H |
2 dµ, (7.24)

and from (7.16) that

(αΩ)atomic[0, T ] > 4Snuc(µ), (7.25)

where(αΩ)ac and(αΩ)atomic denote the absolutely continuous and atomic parts of the measureαΩ
with respect toL1. Adding the two estimates and recalling (2.9) we obtain (4.11). 2

8. Proofs of Propositions 3.3 and 4.5

For r > 0, (t0, x0) ∈ ΩT define the cylinders

Qr(t0, x0) := (t0 − r, t0 + r)× Bnr (x0).

Proof of Proposition 3.3. Define

Σn(µ) := {(t, x) ∈ ΩT : the tangential plane ofµ at (t, x) exists} (8.1)

and choose(t0, x0) ∈ Σn(µ) such that

v is approximately continuous with respect toµ at (t0, x0). (8.2)

Sincev ∈ L2(µ) we deduce from [10, Theorem 2.9.13] that (8.2) holdsµ-almost everywhere. Let

P0 := T(t0,x0)µ, θ0 > 0, (8.3)

denote the tangential plane and multiplicity at(t0, x0) respectively, and define for anyϕ ∈

C0
c (Q1(0)) the scaled functionsϕ% ∈ C0

c (Q%(t0, x0)) by

ϕ%(t, x) := %−nϕ(%−1(t − t0), %
−1(x − x0)).

Then (8.3) shows that ∫
ΩT

ϕ% dµ → θ0

∫
P0

ϕ dHn as% ↘ 0. (8.4)
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From (3.2), the Hahn–Banach theorem, and the Riesz theorem we deduce that the functional

ϑ ∈ C1
c (ΩT )

∗, ϑ(η) :=
∫
ΩT

∇
′η ·

(
1
v

)
dµ, (8.5)

can be extended to a (signed) Radon measure onΩT . Since by the Radon–Nikodym theorem,Dµ|ϑ |

exists and is finiteµ-almost everywhere, we may assume without loss of generality that

Dµ|ϑ |(t0, x0) < ∞. (8.6)

We next fixη ∈ C1
c (Q1(0)) and compute

ϑ(%η%) =

∫
ΩT

(
∇

′η
)
%

·

(
1
v

)
dµ. (8.7)

From (8.2), (8.4) we deduce that the right-hand side converges as% → 0,

lim
%→0

∫
ΩT

(∇ ′η)% ·

(
1
v

)
dµ = θ0

(
1

v(t0, x0)

)
·

∫
P0

∇
′η dµ. (8.8)

For the left-hand side of (8.7) we deduce that

lim inf
%↘0

|ϑ(%η%)| 6 ‖η‖C0
c (Q1(0)) lim inf

%↘0
%−n+1

|ϑ |(Q%(t0, x0)) (8.9)

and observe that (8.6) implies

∞ > lim
%↘0

|ϑ |(Q%(t0, x0))

µ(Q%(t0, x0))
> lim inf

%↘0
%−n

|ϑ |(Q%(t0, x0)) · (lim sup
%↘0

%−nµ(Q%(t0, x0)))
−1

> c lim inf
%↘0

%−n
|ϑ |(Q%(t0, x0)), (8.10)

since by (8.4) for anyϕ ∈ C0
c (Q2(0),R+

0 ) with ϕ > 1 onQ1(0),

lim sup
%↘0

%−nµ(Q%(t0, x0)) 6 lim sup
%↘0

∫
ΩT

ϕ% dµ 6 C(ϕ).

Therefore (8.7)–(8.10) yield

θ0

(
1

v(t0, x0)

)
·

∫
P0

∇
′η dµ = 0. (8.11)

Now we observe that the integral over the projection of∇
′η ontoP0 vanishes. This shows that∫

P0

∇
′η dHn ∈ P⊥

0 . (8.12)

Sinceη can be chosen such that the integral in (8.12) takes an arbitrary direction normal toP0 we
see from (8.11) thatv(t0, x0) satisfies (3.3). IfTx0µ

t0 exists then

T(t0,x0)µ = ({0} × Tx0µ
t0)⊕ span

(
1

v(x0)

)
and we conclude thatv is uniquely determined. 2
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To prepare the proof of Proposition 4.5 we first show thatµ is absolutely continuous with respect
toHn.

PROPOSITION8.1 For anyD ⊂⊂ Ω there existsC(D) > 0 such that for allx0 ∈ D and almost
all t0 ∈ (0, T ),

lim sup
r↘0

r−nµ(Qr(t0, x0)) 6 C(D)Λ4 + lim inf
ε→0

∫
D

1

ε
wε(t0, x)

2 dx. (8.13)

In particular,

lim sup
ρ→0

µ(Bρ(t0, x0))

ρn
< ∞ for µ-almost every(t0, x0) (8.14)

andµ is absolutely continuous with respect toHn,

µ � Hn. (8.15)

Proof. Let

r0 := min

{
1,

1

2
dist(D, ∂Ω), |t0|, |T − t0|

}
.

Then for allr < r0, x0 ∈ D, from (6.2) and [28, Proposition 4.5] we obtain

1

r

∫ t0+r

t0−r

r1−nµt (Bnr (x0))dt

6
1

r

∫ t0+r

t0−r

r1−n
0 µt (Bnr0(x0))dt +

1

4(n− 1)2
1

r

∫ t0+r

t0−r

(
lim inf
ε→0

∫
D

1

ε
wε(t, x)

2 dx

)
dt. (8.16)

By Fatou’s lemma and (2.1),

t 7→ lim inf
ε→0

∫
D

1

ε
wε(t, x)

2 dx is inL1(0, T ), (8.17)

and by (2.2) we deduce that for almost allt0 ∈ (0, T ),

lim sup
r↘0

1

r

∫ t0+r

t0−r

r1−nµt (Bnr (x0))dt 6 2r1−n
0 Λ4 +

1

2(n− 1)2
lim inf
ε→0

∫
D

1

ε
wε(t0, x)

2 dx.

Sincer0 depends only onD andΩ, the inequality (8.13) follows.
By (8.17) the right-hand side in (8.13) is finite forL1-almost allt0 ∈ (0, T ), andθ∗n(µ, (t, x))

is bounded for almost allt ∈ (0, T ) and allx ∈ Ω. By (2.2) we deduce that for anyI ⊂ (0, T ) with
|I | = 0,

µ(I ×Ω) 6 Λ4|I | = 0,

which implies (8.14).
To prove the final statement letB ⊂ ΩT be given with

Hn(B) = 0. (8.18)
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Consider the family of sets(Dk)k∈N, given by

Dk := {z ∈ ΩT : θ∗n(µ, z) 6 k}.

By (8.14), [31, Theorem 3.2], and (8.18) we find that for allk ∈ N,

µ(B ∩Dk) 6 2nkHn(B ∩Dk) = 0. (8.19)

Moreover,
µ

(
B \

⋃
k∈N

Dk

)
= 0 (8.20)

by (8.14). By (8.19), (8.20) we conclude thatµ(B) = 0, which proves (8.15). 2

To prove Proposition 4.5 we need thatHn-almost everywhere on∂∗
{u = 1} the generalized tangent

plane ofµ exists. We first obtain the following relation between the measuresµ and|∇
′u|.

PROPOSITION8.2 There exists a nonnegative functiong ∈ L2(µ,R+

0 ) such that

gµ >
c0

2
|∇

′u|. (8.21)

In particular,|∇ ′u| is absolutely continuous with respect toµ,

|∇
′u| � µ. (8.22)

Proof. Let

G(r) =

∫ r

0

√
2W(s)ds. (8.23)

On the set{|∇uε| 6= 0} we have

|∇G(uε)| =
|∇G(uε)|

|∇ ′G(uε)|
|∇

′G(uε)| =
|∇G(uε)|√

∂tG(uε)2 + |∇G(uε)|2
|∇

′G(uε)|

=
1√

1 + |vε|2
|∇

′G(uε)|. (8.24)

Letting µ̃ε be as in (6.14) we get from (2.2), (6.16), and Theorem B.3 the existence of a function
g ∈ L2(µ) such that (up to a subsequence)

lim
ε→0

(
µ̃ε,

√
1 + |vε|2

)
= (µ, g) (8.25)

as measure-function pairs onΩT with values inR.
Let η ∈ C0

c (ΩT ). Then∣∣∣∣ ∫
ΩT

η

√
1 + |vε|2 |∇G(uε)| dx dt −

∫
η

√
1 + |vε|2 dµ̃ε

∣∣∣∣
=

∣∣∣∣ ∫
ΩT

η

√
1 + |vε|2

(√
2W(uε)

ε
−

√
ε |∇uε|

)
√
ε |∇uε| dx dt

∣∣∣∣
6

(∫
ΩT

η2(1 + |vε|
2)ε|∇uε|

2 dx dt

)1/2∥∥∥∥
√

2W(uε)

ε
−

√
ε |∇uε|

∥∥∥∥
L2(ΩT )

6 ‖η‖L∞(2TΛ4 +Λ3)
1/2(2|ξε|(ΩT ))

1/2. (8.26)



68 L . MUGNAI AND M . RÖGER

Thanks to (8.25), (8.26) and (6.2) we conclude that

lim
ε→0

(
|∇G(uε)|Ln+1,

√
1 + |vε|2

)
= (µ, g) (8.27)

as measure-function pairs onΩT with values inR.
Again by (2.1) we have∫

{0=|∇uε |<W(uε)}

|∇
′G(uε)| dx dt =

∫
{0=|∇uε |<W(uε)}

|∂tuε|
√

2W(uε)dx dt

6
√

2

(∫
ΩT

ε(∂tuε)
2 dx dt

)1/2(∫
{0=|∇uε |<W(uε)}

W(uε)

ε
dx dt

)1/2

6
√

2Λ3(|ξε|(ΩT ))
1/2,

which vanishes asε → 0 by (6.2). This implies together with (8.24) and (8.27) that∫
ηg dµ = lim

ε→0

∫
η

√
1 + |vε|2 |∇G(uε)| dx dt = lim

ε→0

∫
ΩT

η|∇ ′G(uε)| dx dt >
c0

2

∫
ΩT

η d|∇
′u|,

where in the last inequality we have used the fact that

c0

2

∫
ΩT

η d|∇
′u| =

∫
ΩT

η d|∇
′G(u)| 6 lim inf

ε→0

∫
ΩT

η|∇ ′G(uε)| dx dt.

Considering now a setB ⊂ ∂∗
{u = 1} with µ(B) = 0 we conclude that

|∇
′u|(B) 6

2

c0

∫
B

g dµ = 0,

sinceg ∈ L2(µ). 2

PROPOSITION8.3 AtHn-almost all points in∂∗
{u = 1} the tangential plane ofµ exists.

Proof. The Radon–Nikodym theorem shows that the derivative

f (z) := D|∇ ′u|µ(z) := lim
r↘0

µ(Bn+1
r (z))

|∇ ′u|(Bn+1
r (z))

(8.28)

exists for|∇ ′u|-almost allz ∈ ΩT , andf ∈ L1(|∇ ′u|). By (8.15) we deduce that

µb∂∗
{u = 1} = f |∇

′u|. (8.29)

Similarly
1

f (z)
= Dµ|∇

′u|(z)

is finite forµ-almost allz ∈ ∂∗
{u = 1}. By (8.22) this implies that

f > 0 |∇
′u|-almost everywhere inΩT . (8.30)

Since|∇
′u| is rectifiable andf measurable with respect to|∇ ′u| we find from (8.29), (8.30) and

[31, Remark 11.5] that
µb∂∗

{u = 1} is rectifiable. (8.31)
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Moreover,Hn-almost allz ∈ ∂∗
{u = 1} satisfy

lim
r↘0

µ(Bn+1
r (z) \ ∂∗

{u = 1})

µ(Bn+1
r (z))

= 0, (8.32)

lim sup
r↘0

µ(Bn+1
r (z))

ωnrn
< ∞. (8.33)

In fact, (8.32) follows from [10, Theorem 2.9.11] and (8.22), and (8.33) from Proposition 8.1 and
(8.22). Let nowz0 ∈ ∂∗

{u = 1} satisfy (8.32), (8.33). For an arbitraryη ∈ C0
c (B

n+1
1 (0)) we then

deduce that

lim sup
r→0

∣∣∣∣ ∫
ΩT \∂∗{u=1}

η(r−1(z− z0))r
−n dµ(z)

∣∣∣∣
6 ‖η‖

C0
c (B

n+1
1 (0)) lim sup

r→0

µ(Bn+1
r (z0) \ ∂∗

{u = 1})

µ(Bn+1
r (z0))

lim sup
r→0

µ(Bn+1
r (z0))

rn
= 0

by (8.32), (8.33). Therefore

lim
r→0

∫
ΩT

η(r−1(z− z0))r
−n dµ(z) = lim

r→0

∫
∂∗{u=1}

η(r−1(z− z0))r
−n dµ(z)

if the latter limit exists. By (8.31) we therefore conclude that atHn-almost all points of∂∗
{u = 1}

the tangential plane ofµ exists and coincides with the tangential plane ofµb∂∗
{u = 1}. 2

Proof of Proposition 4.5. Sinceu ∈ BV (ΩT ) andu(t, ·) ∈ BV (Ω) for almost allt ∈ (0, T ),
we know that∂tu,∇u are Radon measures onΩT and that∇u(t, ·) is a Radon measure onΩ for
almost allt ∈ (0, T ). Moreover we observe thatv ∈ L1(|∇u|) since∫

ΩT

|v| d|∇u| 6
∫
ΩT

|v| d|∇
′u| 6

2

c0

∫
ΩT

g|v| dµ 6
2

c0
‖g‖L2(µ)‖v‖L2(µ) < ∞

by Theorem 4.4 and Proposition 8.2. From (3.3) and Proposition 8.3 we deduce that for anyη ∈

C1
c (ΩT ),

−

∫
ΩT

η d∂tu =

∫
ΩT

ηv d∇u =

∫
ΩT

ηv ·
∇u

|∇u|
d|∇u| =

∫ T

0

∫
Ω

ηV d|∇u(t, ·)| dt,

which proves (4.9). 2

9. Conclusions

Theorem 4.6 suggests defining a generalized action functionalS in the class ofL2-flows by

S(µ) := inf
v

∫
ΩT

|v −H |
2 dµ+ 4Snuc(µ), (9.1)

where the infimum is taken over all generalized velocitiesv for the evolution(µt )t∈(0,T ). In the
class ofn-rectifiableL2-flows we have

S(µ) =

∫
ΩT

|v −H |
2 dµ+ 4Snuc(µ), (9.2)

wherev is the unique normal velocity of(µt )t∈(0,T ) (see Proposition 3.3).
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In the present section we compare the functionalS with the functionalS0 defined in [17] (see
(1.2)) and discuss the implications of Theorem 4.6 on a full Gamma-convergence result for the
action functional. For ease of exposition we focus in this section on the switching scenario.

ASSUMPTION9.1 Let(uε)ε>0 be a sequence of smooth functionsuε : ΩT → R with uniformly
bounded action (A1), zero Neumann boundary data (A3), and assume that for allε > 0,

uε(0, ·) = −1, uε(T , ·) = 1 inΩ. (9.3)

Following [17] we define the reduced action functional on the setM ⊂ BV (ΩT ; {−1,1}) ∩

L∞(0, T ;BV (Ω)) such that

• for everyψ ∈ C0
c (Ω) the function

t 7→

∫
Ω

u(t, ·)ψ dx

is absolutely continuous on [0, T ];
• (∂∗

{u(t, ·) = 1})t∈(0,T ) is up to countably many times given as a smooth evolution of hyper-
surfaces.

By Assumption 9.1 the functionalS0
nuc can be rewritten as

S0(u) := c0

∫ T

0

∫
Σt

|v(t, x)−H(t, x)|2 dHn−1(x)dt + 4S0
nuc(u), (9.4)

S0
nuc(u) :=

∑
t0∈S

sup
ψ

(
lim
t↓t0

c0

2
|∇u(t, ·)|(ψ)− lim

t↑t0

c0

2
|∇u(t, ·)|(ψ)

)
+ sup

ψ

lim
t↓0

c0

2
|∇u(t, ·)|(ψ), (9.5)

where the sup is taken over allψ ∈ C1(Ω) with 0 6 ψ 6 1.
In [17, Proposition 2.2] a (formal) proof of the limsup estimate was given for a subclass of

‘nice’ functions inM. Following the ideas of that proof, using the one-dimensional construction
[17, Proposition 3.1], and a density argument we expect that the limsup estimate can be extended
to the whole setM. We do not give a rigorous proof here but assume the limsup estimate in the
following.

ASSUMPTION9.2 For allu ∈ M there exists a sequence(uε)ε>0 that satisfies Assumption 9.1
such that

u = lim
ε→0

uε, S0(u) > lim sup
ε→0

Sε(uε). (9.6)

The natural candidate for the Gamma-limit ofSε with respect toL1(ΩT ) is theL1(ΩT )-lower
semicontinuous envelope ofS0,

S(u) := inf{lim inf
k→∞

S0(uk) : (uk)k∈N ⊂M, uk → u in L1(ΩT )}. (9.7)



ALLEN –CAHN ACTION FUNCTIONAL IN HIGHER DIMENSIONS 71

9.1 Comparison ofS andS0

If we associate with a functionu ∈ M the measure|∇u| on ΩT we can compareS0(u) and
S( c02 |∇u|).

PROPOSITION9.3 Letu ∈ M and letµ = L1
⊗ µt be anL2-flow of measures. Assume that for

almost allt ∈ (0, T ),

µt >
c0

2
|∇u(t, ·)|, (9.8)

and the nucleation costS0
nuc(u) is not larger than the nucleation costSnuc(µ). Then

S0(u) 6 S(µ). (9.9)

Forµ =
c0
2 |∇u| we obtain

S0(u) = S
(
c0

2
|∇u|

)
. (9.10)

Proof. The locality of the mean curvature [29] shows that the weak mean curvature ofµt and the
(classical) mean curvature coincide on∂{u(t, ·) = 1}. By Proposition 4.5 any generalized velocityv
and the (classical) normal velocityV are equal on the phase boundary. This shows that the integral
part ofS0(u) is not larger than the integral part ofS(µ), with equality if µt =

c0
2 |∇u(t, ·)| for

almost allt ∈ (0, T ). This proves (9.9). For the measurec02 |∇u| we observe that the nucleation cost
Snuc(

c0
2 µ) equals the nucleation costS0

nuc(u) and we obtain (9.10). 2

t 1

t 2

x1 x2

u=1

T

L

FIG. 1. The phases{u = 1}.

t 1

t 2

x1 x2

T

L

FIG. 2. The measureµ.

If higher multiplicities occur for the measureµ, the nucleation costs ofµ andu may differ and
the value ofS0(u) might be larger thanS(µ), as the following example shows. LetΩ = (0, L), let
{u = 1} be the shaded regions in Figure 1, and letµ be the measure supported on the phase boundary
and with double density on a hidden boundary connecting the upper and lower parts of the phase
{u = 1} (see Figure 2). At timet2 a new phase is nucleated, but this time is not singular with
respect to the evolution(µt )t∈(0,T ). On the other hand, no propagation cost occurs for the evolution
(u(t, ·))t∈(t1,t0) whereas there is a propagation cost for(µt )t∈(t1,t2). The difference in action is given
by

S0(u)− S(µ) = 8c0 − 2c0
(x2 − x1)

2

t2 − t1
,
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x1 x2

t 1

t 2

T

= L

FIG. 3. Phases{uk = 1}.

t 2

t 1

1x x2=

T

L

FIG. 4. The limit.

wherex1 is the annihilation point at timet1 andx2 the nucleation point at timet2 (see Figure 1).
This shows that as soon asx2 − x1 < 4

√
t2 − t1 we have

S(µ) < S0(u).

The same example withx2 = x1 shows thatS0 is not lower semicontinuous and that a relaxation
is necessary in order to obtain the Gamma-limit ofSε. In fact, consider a sequence(uk)k∈N with
phases{uk = 1} given by the shaded region in Figure 3. Assume that the neck connecting the
upper and lower parts of the shaded region disappears ask → ∞ and thatuk converges to the
phase indicator functionu with phase{u = 1} indicated by the shaded regions in Figure 4. Then a
nucleation cost at timet2 appears foru. For the approximationsuk however there is no nucleation
cost for t > 0 and the approximation can be made such that the propagation cost in(t1, t2) is
arbitrarily small, which shows that

S0(u) > lim inf
k→∞

S0(uk).

The situation in higher space dimensions is even more involved than in the one-dimensional
examples discussed above. For instance one could create a circle with double density (no new phase
is created) at a timet1 and let this double-density circle grow until a timet2 > t1 where the circle
splits and two circles evolve in different directions, one of them shrinking and the other growing.
In this way a new phase is created at timet2. In this exampleS counts the creation of a double-
density circle at timet1 and the cost of propagating that circle between the timest1, t2. In contrast,
S0 counts the nucleation cost of the new phase at timet2, which is larger than the nucleation cost
Snuc at timet1, but no propagation cost between the timest1, t2.

The analysis in [17] suggests that minimizers of the action functional exhibit nucleation
and annihilation of phases only at the initial and final times. This class is therefore particularly
interesting.

THEOREM 9.4 Let (uε)ε>0 satisfy Assumption 9.1 and suppose that Assumption 9.2 holds.
Suppose thatuε → u in L1(ΩT ), u ∈ M, andu exhibits nucleation and annihilation of phases
only at the final and initial times. Then

S(u) = S0(u) 6 lim inf
ε→0

Sε(uε). (9.11)
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In particular,Sε Gamma-converges toS0 for those evolutions inM that have nucleations only at
the initial time.

Proof. From the definition of the functionalS we deduce that

S(u) 6 S0(u) (9.12)

and there exists a sequence(uk)k∈N ⊂M such that

u = lim
k→∞

uk, S(u) = lim
k→∞

S0(uk).

Assumption 9.2 implies that for allk ∈ N there exists a sequence(uε,k)ε>0 such that

uk = lim
ε→0

uε,k, S0(uk) > lim sup
ε→0

Sε(uε,k). (9.13)

Therefore we can choose a diagonal sequence(uε(k),k)k∈N such that

S(u) > lim sup
k→∞

Sε(k)(uε(k),k). (9.14)

By Propositions 4.1 and 4.2 there exists a subsequencek → ∞ such that

uε(k),k → u, µε(k),k → µ, µ >
c0

2
|∇u|, (9.15)

where the last inequality follows from

c0

2

∫
Ω

η d|∇u(t, ·)| 6 lim inf
ε→0

∫
Ω

η|∇G(uε)| dx 6 lim inf
ε→0

∫
Ω

η dµtε =

∫
Ω

η dµt ,

with G as in (8.23). By Theorem 4.6 we further deduce that

lim inf
k→∞

Sε(k)(uε(k),k) > S(µ).

This implies by (9.14) that
S(u) > S(µ). (9.16)

Sinceµ0
= 0 andµt > c0

2 |∇u(t, ·)| the nucleation cost ofµ at t = 0 is not lower than the nucleation
cost foru. Since by assumption there are no more nucleation times we can apply Proposition 9.3 to
obtainS0(u) 6 S(µ). By (9.12), (9.16) we conclude thatS0(u) = S(u) = S(µ).

Applying Proposition 4.1 and Theorem 4.6 to the sequence(uε)ε>0 we deduce that there exists
a subsequenceε → 0 such that

µε → µ̃, µ̃ >
c0

2
|∇u| (9.17)

and
lim inf
ε→0

Sε(uε) > S(µ̃).

Repeating the arguments above we deduce from Proposition 9.3 thatS0(u) 6 S(µ̃) and

S0(u) 6 lim inf
ε→0

Sε(uε).

Combining the upper bound (9.6) with (9.11) proves the Gamma-convergence ofSε in u. 2
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9.2 Gamma-convergence under an additional assumption

Using Theorem 4.6 we can prove the Gamma-convergence ofSε under an additional assumption on
the structure of the set of those measures that arise as limits of sequences with uniformly bounded
action.

ASSUMPTION9.5 Consider any sequence(uε)ε>0 with uε → u in L1(ΩT ) that satisfies
Assumption 9.1. Define the energy measuresµε according to (2.5) and letµ be any Radon measure
such that for a subsequenceε → 0,

µ = lim
ε→0

µε. (9.18)

Then we assume that there exists a sequence(uk)k∈N ⊂M such that

u = lim
k→∞

uk, S(µ) > lim
k→∞

S0(uk). (9.19)

For any u ∈ M that exhibits nucleation and annihilation only at initial and final times
Assumption 9.5 is always satisfied: The proof of Theorem 9.4 and our results in Section 4 show that
for any limitµ as in (9.18) we can apply Proposition 9.3. ThereforeS0(u) 6 S(µ) and the constant
sequenceu satisfies (9.19). However, a characterization of thoseu ∈ M such that Assumption 9.5
holds is open.

THEOREM 9.6 Suppose that Assumptions 9.1, 9.2, and 9.5 hold. Then

Sε → S asε → 0 (9.20)

in the sense of Gamma-convergence with respect toL1(ΩT ).

Proof. We first prove the limsup estimate forSε,S. In fact, fix an arbitraryu ∈ L1(ΩT ; {−1,1})

with S(u) < ∞. We deduce that there exists a sequence(uk)k∈N as in (9.7) such that

S(u) = lim
k→∞

S0(uk). (9.21)

By (9.6) for allk ∈ N there exists a sequence(uε,k)ε>0 such that

lim
ε→0

uε,k = uk, S0(uk) > lim sup
ε→0

Sε(uε,k).

Choosing a suitable diagonal sequenceuε(k),k we deduce that

S(u) > lim
k→∞

Sε(k)(uε(k),k), (9.22)

which proves the limsup estimate.
We next prove the liminf estimate. Consider an arbitrary sequence(uε)ε>0 that satisfies

Assumption 9.1. By Theorem 4.6 there existsu ∈ BV (ΩT ; {−1,1}) and a measureµ on ΩT
such that

uε → u in L1(ΩT ), µε → µ (9.23)

for a subsequenceε → 0, and
lim inf
ε→0

Sε(uε) > S(µ). (9.24)



ALLEN –CAHN ACTION FUNCTIONAL IN HIGHER DIMENSIONS 75

By Assumption 9.5 there exists a sequence(uk)k∈N ⊂ M such that (9.19) holds. By (9.24) and the
definition ofS this yields

lim inf
ε→0

Sε(uε) > S(µ) > lim
k→∞

S0(uk) > S(u) (9.25)

and proves the liminf estimate. 2

Appendix A. Rectifiable measures and weak mean curvature

We briefly summarize some definitions from geometric measure theory. We always restrict ourselves
to the hypersurface case, that is, ‘tangential plane’ and ‘rectifiability’ of a measure inRd means
‘(d − 1)-dimensional tangential plane’ and ‘(d − 1)-rectifiable’.

DEFINITION A.1 Letµ be a Radon measure inRd , d ∈ N.

1. We say thatµ has a (generalized) tangential planeatz ∈ Rd if there exist a numberΘ > 0 and
a (d − 1)-dimensional linear subspaceT ⊂ Rd such that

lim
r↘0

r−d+1
∫
η

(
y − z

r

)
dµ(y) = Θ

∫
T

η dHd−1 for everyη ∈ C0
c (R

d). (A1)

We then setTzµ := T and callΘ themultiplicity of µ in z.
2. If for µ-almost allz ∈ Rd a tangential plane exists then we callµ rectifiable. If in addition the

multiplicity is integer-valuedµ-almost everywhere we say thatµ is integer-rectifiable.
3. Thefirst variationδµ : C1

c (Rd ,Rd) of a rectifiable Radon-measureµ onRd is defined by

δµ(η) :=
∫

divTzµ η dµ.

If there exists a functionH ∈ L1
loc(µ) such that

δµ(η) = −

∫
H · η dµ

we callH theweak mean-curvature vectorof µ.

Appendix B. Measure-function pairs

We recall some basic facts about the notion ofmeasure-function pairsintroduced by Hutchinson
in [15].

DEFINITION B.1 Let E ⊂ Rd be an open subset. Letµ be a positive Radon measure onE.
Supposef : E → Rm is well definedµ-almost everywhere, andf ∈ L1(µ,Rm). Then we say
(µ, f ) is ameasure-function pairoverE (with values inRm).

Next we define two notions of convergence for a sequence of measure-function pairs onE with
values inRm.
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DEFINITION B.2 Suppose{(µk, fk)}k and(µ, f ) are measure-function pairs overE with values
in Rm. Suppose

lim
k→∞

µk = µ

as Radon measures onE. Then we say(µk, fk) converges to(µ, f ) in the weak sense(in E) and
write

(µk, fk) → (µ, f ),

if µkbfk → µbf in the sense of vector-valued measures, that is,

lim
k→∞

∫
fk · η dµk =

∫
f · η dµ

for all η ∈ C0
c (E,Rm).

The following result is a slightly less general version of [15, Theorem 4.4.2], sufficient for our
aims.

THEOREM B.3 LetF : Rm → [0,∞) be a continuous, convex function with superlinear growth
at infinity, that is,

lim
|y|→∞

F(y)

|y|
= ∞.

Let {(µk, fk)}k be measure-function pairs overE ⊂ Rd with values inRm. Supposeµ is a Radon
measure onE andµk → µ ask → ∞. Then the following are true:

(1) If

sup
k

∫ ∫
F(fk)dµk < ∞, (B1)

then some subsequence of{(µk, fk)} converges in the weak sense to some measure-function
pair (µ, f ) for somef .

(2) If (B1) holds and(µk, fk) → (µ, f ) then

lim inf
k→∞

∫
F(fk)dµk >

∫
F(f )dµ. (B2)
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