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Optimal design under the one-dimensional wave equation
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An optimal design problem governed by the wave equation is examined in detail. Specifically, we
seek the time-dependent optimal layout of two isotropic materials on a 1-d domain by minimizing a
functional depending quadratically on the gradient of the state with coefficients that may depend
on space, time and design. Typically, such problems are ill-posed in the sense that there is no
optimal design. We therefore examine relaxation by using the representation of two-dimensional
((x, t) ∈ R2) divergence free vector fields as rotated gradients. By means of gradient Young
measures, we transform the original optimal design problem into a non-convex vector variational
problem, for which we can compute an explicit form of the “constrained quasiconvexification” of
the cost density. Moreover, this quasiconvexification is recovered by first or second order laminates
which give us the optimal microstructure at every point. Finally, we analyze the relaxed problem,
and some numerical experiments are performed. The perspective is similar to the one developed
in previous papers for linear elliptic state equations. The novelty here lies in the state equation (the
wave equation), and our contribution consists in understanding the differences with respect to elliptic
cases.

1. Introduction

Optimal design problems in conductivity and elasticity have been extensively studied from various
perspectives. For the homogenization viewpoint, see [1]. For more simulation-oriented approaches,
see [4, 9]. For treatments based on variational reformulations, see [23]. In many of these examples,
the state equation is assumed to be isotropic. There has also been attempts to understand non-
isotropic situations ([20] and references therein).

Suppose we choose two diagonal, non-isotropic, 2× 2 matrices of the form

Aα =

(
1 0
0 α

)
, Aβ =

(
1 0
0 β

)
,
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and consider the state equation

div([χ(x)Aα + (1 − χ(x))Aβ ]∇u) = 0 inΩ,

whereΩ ⊂ R2 is a bounded, regular, simply connected domain. It is easy to see that we can also
write

div

((
1 0
0 χ(x)α + (1 − χ(x))β

)
∇u

)
= 0 inΩ,

and even more so
div(ux1, [χ(x)α + (1 − χ(x))β]ux2) = 0.

In the case whereΩ = (0, T )×(0,1), and we take bothα andβ negative, we see that we have a 1-d
wave equation as state equation, and 2-d optimal designs can be interpreted as 1-d time-dependent
optimal designs. For this reason, we change the notation and writex (= x2) for the spatial variable,
t (= x1) for the time variable, and replaceα, β by −α,−β, respectively, so that we focus on
such a wave equation. We also change accordingly the domain, and consider initial and boundary
conditions as is usual in hyperbolic problems. Yet notice that the non-isotropic elliptic example is
also contained in our analysis.

Problems with optimal control in the coefficients are rather well-known in the elliptic case.
Homogenization has been the main tool to deal with these when cost functionals do not depend
on derivatives of the state. As indicated earlier, [1] is still, as far as we can tell, an up-to-date
reference for the use of homogenization in optimal design problems. Our interest in understanding
optimal design problems for cost functionals depending on gradients of the state led us to explore
the use of gradient Young measures in this kind of problems ([23], [24]). See [27] for a pioneering
situation that is quite instructive to better understand how different optimal design problems with
quadratic cost functionals in the gradient can be. Other references that have treated similar situations
from the perspective of homogenization are [11], [14]. Our perspective does not require a full
understanding of theG-closure problem (as in homogenization) as the emphasis is not placed on
the tensors that can be obtained by mixtures (theG-closure), but rather on the set of pairs of vectors
that can be related through some tensor of theG-closure. Hence, although intimately connected
to homogenization, our approach focuses directly on pairs of fields that can occur in relaxed state
equations. In this way, we can treat cost functionals depending on the gradient of the state directly
without further ingredients.

Since, to some degree, the elliptic situation in the conductivity setting is understood (even
numerical simulations of optimal microstructures have been produced as in [9]), a next natural step
is to examine the same optimal design problems with quadratic cost functionals on the gradient of
the state under a hyperbolic state equation, so as to better understand the differences introduced
in the analysis and on the numerics because of this hyperbolic nature. One issue here is the
phenomenon of concentration of cost (energy). It is well-understood that Young measures cannot
capture concentration effects. We easily resolve this issue by demanding some extra regularity on
initial data. Notice that if designs were not allowed to vary with time, the situation would be much
simpler as it would not require “homogenization” or the formation of microstructure on this time
variable. Many of the standard homogenization facts could be used and exploited. Indeed, one of
our main goals is to grasp this dependence of designs on time.

Except for the works of Lurie ([15], [16], [17]), this sort of problems have not been addressed in
the literature. In particular, he has been investigating over the years the analogue of theG-closure
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for dynamic designs. Being motivated by realistic applications, a main concern in his work is to
understand the relationship and interaction between the dynamic nature of the problem and the “dy-
namics” of microstructure. In a sense, even in a static situation, microstructure (laminates) is some-
thing dynamic as it is a never-ending refinement process. When this process interacts with real time,
some funny situations may occur (including the formation of shocks). This is well-documented for
instance in [17], where restrictions on the velocity of formation of microstructure and the dynamics
of the state equation are explicitly given so that undesirable behavior is ruled out. We have avoided
this issue altogether as we model dynamic microstructure through families of probability measures
(Young measures) depending both on space and time so that there is only one dynamic process
associated with time. Even so, it is interesting to stress that the laminates we get in our numerical
simulations (Section 7) satisfy these requirements in the best way possible as they are oriented
parallel to the time axis. This is the most favorable situation in Lurie’s work. See also the comments
after Conjecture 1. Another main difference of our work and that of Lurie is that we are interested
from the beginning in a cost functional which is quadratic in the gradient of the state. Our methods
allow us to treat directly this sort of problem without understanding first theG-closure set. A main
concern in the work of Lurie is to better understand theG-closure set corresponding to a dynamical
situation, and, in particular, to discover the differences with respect to its elliptic counterpart.

Other works dealing with optimal control problems under the wave equation in greater
dimensions can be found in [6], where the control is a time-dependent coefficient, and under other
constraints on modes where there is vibration. In this sense another work in which the authors
examine time-harmonic solutions of the wave equation is [3], where they prove a relaxation result
for this problem and very interesting results on existence of classical solutions for some particular
cases. In the wave equation literature, we can find a huge family of optimal control problems where
the design variable is not in the highest derivative term. When the control term acts on the first order
derivative in time, the term is known as a “damping” term. These problems are of a different nature
physically as well as mathematically. Some relevant references on this topic are [5, 10, 12].

1.1 Problem statement

We will thus study the following optimal design problem. We consider a design domainΩ =

(0,1) ⊂ R, a positive timeT > 0, and a maximum amountVα ∈ (0,1) of one material at our
disposal. The optimal design problem consists in deciding, for each time 0< t < T , the best
distribution inΩ of the two materials in order to minimize the time-dependent cost functional
depending on the square of the gradient (with respect to both variables(t, x)) of the underlying
state. More precisely, let us denote by (P ) the problem that consists in minimizing

(P ) I (χ) =

∫ T

0

∫
Ω

[u2
t (t, x)+ a(t, x, χ)u2

x(t, x)] dx dt

whereu is the unique solution of

ut t − div([αχ + β(1 − χ)]ux) = 0 in (0, T )× (0,1),

u(0, x) = u0(x), ut (0, x) = u1(x) in Ω, (1)

u(t,0) = f (t), u(t, 1) = g(t) in [0, T ], (2)

and the functionsa, u0 andu1 are known. We have put a vanishing source term for simplicity. The
functionχ ∈ L∞([0, T ] × Ω; {0,1}) is the design variable, and it indicates where we place the
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α-material for each timet . Sinceχ is a binary variable,a(t, x, χ) ∈ {a(t, x,0), a(t, x, 1)}, we can
write

a(t, x, χ) = χ(t, x)aα(t, x)+ (1 − χ(t, x))aβ(t, x),

where
aα(t, x) = a(t, x,1), aβ(t, x) = a(t, x,0).

In addition, we make the assumption 0< α < β, and

aα(t, x)+ α > 0, aβ(t, x)+ β > 0.

The amount of theα-material is given, and therefore we have to enforce the volume constraint∫
Ω

χ(t, x)dx 6 Vα|Ω|, ∀t ∈ [0, T ].

The lack of classical solutions for such problems is well understood (see [22, Theorem 11]). In
this sense we propose and analyze a relaxation of the problem.

Our approach is based on an equivalent variational reformulation of the original optimal design
problem as a non-convex vector variational problem. As in other situations examined from this
perspective [2, 23], we replace a scalar problem with differential constraints by a vector variational
problem with integral constraints (where the state equation is implicit in the new cost function). It is
well-known that the non-existence of optimal solution for a vector variational problem is intimately
associated with the lack of quasiconvexity of the cost functional, and in this sense we propose
to analyze the “constrained quasiconvexification” for this last problem by using gradient Young
measures as generalized solutions of variational problems. We compute an explicit relaxation of the
original optimal design problem in the form of a relaxed (quasiconvexified) variational problem.

It is elementary to check (this is done with some detail in Section 2) the equivalence of our
dynamic optimal design problem with the following non-convex, vector variational problem:

(V P ) min
U
Î (U) =

∫ T

0

∫
Ω

W(t, x,∇U(t, x))dx dt

subject to
U = (U (1), U (2)) ∈ H 1([0, T ] ×Ω)2,

U (1)(0, x) = u0(x), U
(1)
t (0, x) = u1(x) in Ω,

U (1)(t,0) = f (t), U (1)(t,1) = g(t) in [0, T ],∫
Ω

V (t, x,∇U(t, x))dx 6 Vα|Ω|, ∀t ∈ [0, T ].

The two integrands involved are

W(t, x,A) =


a2

11 + aα(t, x)a
2
12 if A ∈ Λα,

a2
11 + aβ(t, x)a

2
12 if A ∈ Λβ \Λα,

+∞ else,

V (t, x, A) =

1 if A ∈ Λα,

0 if A ∈ Λβ \Λα,

+∞ else.

Here
Λγ = {A ∈ M2×2 : M−γA

(1)
− RA(2) = 0}, γ = α, β, (3)
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whereA(i) is thei-th row of the matrixA =
(
a11 a12
a21 a22

)
, and

M−γ =

(
1 0
0 −γ

)
, R =

(
0 −1
1 0

)
.

1.2 Results

To write down an explicit relaxation, put

h(t, x) = βaα(t, x)− αaβ(t, x)

and forF =
(
F11 F12
F21 F22

)
, s ∈ R, set

ψ(F, s) = F12F21 +
α

s(β − α)2
(βF12 + F21)

2
+

β

(1 − s)(β − α)2
(αF12 + F21)

2.

Consider the variational problem

(RP ) min
U,s

∫ T

0

∫
Ω

ϕ(t, x,∇U(t, x), s(t, x))dx dt

subject to
U ∈ H 1([0, T ] ×Ω)2, tr(∇U(t, x)) = 0,

U (1)(0, x) = u0(x), U
(1)
t (0, x) = u1(x) in Ω,

U (1)(t,1) = f (t), U (1)(t,0) = g(t) in [0, T ],

0 6 s(t, x) 6 1,
∫
Ω

s(t, x)dx 6 Vα|Ω| ∀t ∈ [0, T ],

whereϕ(t, x, F, s) is explicitly given by the surprising expression

h

sβ(β − α)2
(β2

|F12|
2
+ |F21|

2
+ 2βF12F21)+ |F11|

2
−
aβ

β
F12F21

if h(x, t) > 0, ψ(F, s) 6 0,
−h

(1 − s)α(β − α)2
(α2

|F12|
2
+ |F21|

2
+ 2αF12F21)+ |F11|

2
−
aα

α
F12F21,

if h(x, t) 6 0, ψ(F, s) 6 0,

− detF +
1

s(1 − s)(β − α)2

(
((1 − s)β2(α + aα)+ sα2(β + aβ))|F12|

2

+ ((1 − s)(α + aα)+ s(β + aβ))|F21|
2
+ 2((α + aα)β − sh)F12F21

)
if ψ(F, s) > 0.

tr stands for the trace of a matrix. All that matters is that this integrandϕ is known in closed form.

THEOREM 1 Suppose that the initial datau0 andu1 have the regularity

u0 ∈ H 2(0,1) ∩H 1
0 (0,1), u1 ∈ H 1

0 (0,1).

Then the variational problem(RP ) is a relaxation of the initial optimization problem(P ) in the
sense that
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(a) the infima of both problems coincide;
(b) there are optimal solutions for the relaxed problem(RP );
(c) these solutions codify (in the sense of Young measures) the optimal microstructures of the

original optimal design problem.

For the interpretation of Young measure solutions in this statement, we refer the reader to the
already mentioned contributions in the elliptic case. It is closely related to relaxation in vector,
non-convex variational problems ([8]). These optimal Young measures carry the information on
optimal microstructures, both on the local distribution of materials, and on the geometry of optimal
microarrangements. See more on this interpretation in Section 7.

In addition, we can provide optimal microstructures explicitly.

THEOREM 2 Optimal, dynamic microarrangements of the two materials leading to the relaxed
formulation are always laminates which can be given in a completely explicit form.

The formulae for all these laminates are given at the end of Section 4, where we compute these
optimal microstructures corresponding to first and second order laminates.

The main new contribution here is therefore to understand the character of the hyperbolic state
law, and the differences it introduces with respect to the better known elliptic case. Some of these
differences are related to the fact that the manifoldsΛγ are two 2-dimensional subspaces whose
intersection is another 1-dimensional manifold. Moreover, there are rank-one connections within
those manifolds. An interesting consequence is that the relaxed integrand is finite everywhere
(except for the condition involving the trace) in contrast with the elliptic case where the relaxed
integrand is finite only in a certain (quasi)convex subset. An important issue is that optimal Young
measures gives us the necessary information about the behavior of minimizing sequences of the
original optimal design problem.

A subsequent important step is to explore the relaxed problem(RP ) in some particular cases,
like the ones described in Section 5, with the objective of producing numerical simulations of
optimal time-dependent structures [18]. For some particular situations in the (static) elliptic case, it
has been shown that a simple relaxation consists in replacing the original discrete design variable
χ ∈ L∞(Ω; {0,1}) by its convex envelopes ∈ L∞(Ω; [0,1]). For the (dynamic) hyperbolic case
with aα = aβ = 1, some numerical experiments (see Section 7) suggest that the above assertion is
true. In this regard, we make the following conjecture (examined briefly in Section 6).

CONJECTURE1 Supposeaα = 1, aβ = 1. The optimization problem

(R̃P ) min
s
Ĩ (s) =

∫ T

0

∫
Ω

[u2
t (t, x)+ u2

x(t, x)] dx dt,

whereu is the unique solution of

ut t − div([αs + β(1 − s)]ux) = 0 in (0, T )× (0,1),

u(0, x) = u0(x), ut (0, x) = u1(x) in Ω,

u(t,0) = f (t), u(t, 1) = g(t) in [0, T ],∫
Ω

s(t, x)dx 6 Vα|Ω|, ∀t ∈ [0, T ],

0 6 s(t, x) 6 1,

is equivalent to the original optimal design problem(P ) in the sense that
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(a) the infima of both problems coincide, i.e., inf(R̃P ) = inf(P );
(b) the above optimal design problem(R̃P ) admits optimal solutions;
(c) these solutions (in the sense of Young measures) show that optimal microstructures are first

order laminates with normaln = (0,1) and volume fractions.

One can pass from(RP ) to (R̃P ) simply by minimizing the general relaxed integrand
ϕ(t, x, F, s) over the auxiliary variableF (2), the second row ofF , keeping all other variables fixed
(and takingaα = 1, aβ = 1). This is an elementary calculus exercise (Section 6). This vector, the
second row ofF , was introduced as an auxiliary field to go from the original formulation(P ) to
its variational form(V P ). After relaxation, in which this auxiliary vector plays an important role,
we eliminate it by minimizing over it, so that we are back to a state law which is the result of this
minimization process. More importantly, first order laminates involved in this process (the passage
from (RP ) to (R̃P )) always correspond to normal directionn = (0,1), i.e., the optimal laminates
have to be arranged in the direction perpendicular to the space axis with volume fractions(t, x).
These are, in particular, laminates of the class considered by Lurie in the previously cited works.
Our conjecture is that this procedure should capture the optimal relaxed state law.

Notice how this process cannot produce a general relaxation theorem (this is in fact our previous
theorem for(RP )), as it is tailored and computed for the particular choice of the coefficientsaα = 1,
aβ = 1. It asserts that among the many relaxed wave-like equations that can be produced by mixing
dynamically the two materials, the one providing optimal microstructures for the particular choice of
the coefficientsaα = 1, aβ = 1 is precisely the one obtained by replacingχ ∈ {0,1} by s ∈ [0,1]
(as in the situation of [27]). For other choices of the coefficientsaα andaβ , the optimal relaxed
equation would possibly be different. One can see this phenomenon for the elliptic situation in [9].
The importance of having this more “economic” relaxation (compare Conjecture 1 with Theorem 1)
is that simulations can be performed for these, while it is out of the question to use(RP ) directly. We
have written this in the form of a conjecture because, even though the passage from(RP ) to (R̃P )
is elementary, its formal rigorous proof requires a careful analysis. It has been shown to be correct
in a number of situations in the elliptic case ([26]). For our situation here, showing the validity of
the conjecture is in progress ([18]).

The paper is organized as follows. In Section 2, we describe in more detail the equivalent
variational reformulation as well as a general relaxation result when integrands are not continuous
and may take on infinite values abruptly. As there is nothing new here compared to other previous
works in the elliptic case, our description is rather a reminder included for the sake of completeness.
Sections 3 and 4 are technical in nature but interesting, as we first compute a lower bound of the
constrained quasiconvexification(Section 3), by using in a fundamental way the weak continuity of
the determinant. Section 4 is concerned with the search for laminates furnishing the precise value
of the lower bound in an attempt to show equality of the three convex hulls (poly-, quasi- and rank-
one convex hulls), as is standard in this kind of calculation. In Section 5, we show some particular
examples of this relaxation for different and interesting choices of the coefficientsaα, aβ . Finally,
in Section 6 we analyze the relaxed problem and propose a simpler relaxation, while in Section 7
we numerically solve it by using a gradient descent method.

2. Reformulation and relaxation

The lack of classical solution of the original optimal design problem is well-established. We propose
to reformulate the problem as a vector variational problem to which we apply suitable tools to study
its relaxation. We follow a similar approach to the one in [2, 23].
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Under the hypothesis of simple connectedness ofΩ (an interval), there exists a potentialv ∈

H 1((0, T )×Ω) such that the state equation can be recast as

− div(ut (t, x),−[αχ(t, x)+ β(1 − χ(t, x))]ux(t, x)) = 0 in [0, T ] ×Ω,

where the div operator is now considered with respect to the variablest andx. The state equation is
equivalent to the pointwise constraint(

ut (t, x)

−[αχ(t, x)+ β(1 − χ(t, x))]ux(t, x)

)
= R∇v(t, x) a.e. (t, x) ∈ [0, T ] ×Ω,

whereR is the counterclockwiseπ/2-rotation in the space-time plane. If we letΛ−γ be as in (3),
this constraint reads(

∇u(t, x)

∇v(t, x)

)
∈ Λ−α ∪Λ−β a.e. (t, x) ∈ [0, T ] ×Ω. (4)

It is clear that we can identify the design variableχ with the vector fieldU = (u, v) complying
with (4); and conversely, a pairU = (u, v)which satisfies (4) determines a characteristic functionχ ,
so that we can consider the new design variableU = (U (1), U (2)) = (u, v), whereU : R2

→ R2

and∇U(t, x) ∈ R2×2, under the main constraint (4).
Therefore, by using the above statement and the notation of the Introduction, it is easy to check

that the original optimal design problem(P ) is equivalent to the variational problem(V P ).
We have thus recast our optimal design problem as a typical variational problem. We see that it

is a non-convex vector problem, which we are going to analyze by seeking its relaxation. We use
Young measures as the main tool in the computation of a suitable density for the relaxed problem.
In this sense, we can rely on the following relaxation result [2] whose main idea has been a useful
tool in other situations [2, 23, 25].

We denote the initial condition (1) by I.C., the boundary condition (2) by B.C. and put

m = inf

{∫
Ω

∫ T

0
W(t, x,∇U(t, x))dt dx :

U ∈ H 1((0, T )×Ω)2, U (1) satisfies the B.C. and I.C.,∫
Ω

V (t, x,∇U(t, x))dx 6 Vα|Ω|, ∀t ∈ [0, T ]

}
.

We know [2] that

m > m̄ = inf

{∫
Ω

∫ T

0
CQW(t, x,∇U(t, x), s(t, x))dt dx :

U ∈ H 1([0, T ] ×Ω)2, U (1) satisfies the B.C. and I.C.,

0 6 s(t, x) 6 1,
∫
Ω

s(t, x)dx 6 Vα|Ω|, ∀t ∈ [0, T ]

}
,

where

CQW(t, x, F, s) = inf

{∫
M2×2

W(t, x,A)dν(A) : ν ∈ A(F, s)

}
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with

A(F, s) =

{
ν : ν is a homogeneousH 1-Young measure,

F =

∫
M2×2

Adν(A),
∫
M2×2

V (t, x,A) dν(A) = s

}
. (5)

Notice that the inequalitym > m̄ will be an equality whenW is a Carath́eodory function with
appropriate growth constrains. However, in our situation it is still possible to prove this equality
despite the fact thatW is not a Carath́eodory function. Let us consider the minimization problem

m̃ = inf

{∫
Ω

∫ T

0

∫
M2×2

W(t, x,A)dνt,x(A)dt dx : ν ∈ B(B.C., I.C., Vα)

}
,

where

B(B.C., I.C., Vα) =

{
ν : H 1-Young meas., supp(νt,x) ⊂ Λα ∪Λβ ,

∃U ∈ H 1([0, T ] ×Ω)2, U (1) satisfies the I.C. and B.C.,

∇U(t, x) =

∫
M2×2

Adνt,x(A),∫
Ω

∫
M2×2

V (t, x,A)dνt,x(A)dx 6 Vα|Ω|, ∀t ∈ [0, T ]

}
.

We have the following result, whose proof is essentially identical to the one in [2].

THEOREM 3 ([2]) Suppose that the initial datau0 andu1 have the regularity

u0 ∈ H 2(0,1) ∩H 1
0 (0,1), u1 ∈ H 1

0 (0,1).

Then
m = m̄ = m̃.

Moreover, for each measureν ∈ B(B.C., I.C., Vα) such that supp(νx,t ) ⊂ Λα ∪Λβ for a.e.(t, x) ∈

[0, T ] ×Ω, there exists a sequence{∇Uk} such that

(i) Uk ∈ (H 1([0, T ] ×Ω))2, U (1) satisfies the I.C. and B.C., and{|∇Uk|2} is equi-integrable,
(ii) ∇Uk(t, x) ∈ Λα ∪Λβ for a.e.(t, x) ∈ [0, T ] ×Ω and allk, and∫

Ω

V (t, x,∇Uk(t, x))dx 6 Vα|Ω|, ∀t ∈ [0, T ] ∀k,

(iii) lim
k→∞

∫ T

0

∫
Ω

W(t, x,∇Uk(t, x))dx dt =

∫ T

0

∫
Ω

∫
M2×2

W(t, x,A)dνt,x(A)dx dt.

The only remark worth making concerns the regularity of initial data. The proof of this theorem
in the elliptic case in [2] relies in a fundamental way on the elliptic character of the manifoldsΛγ to
discard concentrations of the sequence{|∇Uk|

2
}. For the hyperbolic case, this equi-integrability can

also be shown, in a standard way, based on the regularity of solutions for the wave equation (with
uniformly elliptic spatial part) coming from the regularity of initial conditions (see [13]).
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3. The lower bound: polyconvexification

We would like to compute explicitly theconstrained quasiconvexificationdefined as

CQW(t, x, F, s) = inf

{∫
M2×2

W(t, x,A)dν(A) : ν ∈ A(F, s)

}
where A(F, s) is given in (5). Since the variable(t, x) ∈ [0, T ] × Ω can be considered as
a parameter, we drop this dependence to simplify the notation. In this form, the constrained
quasiconvexification can be expressed as

inf
ν

{∫
M2×2

W(A)dν(A) : F =

∫
M2×2

Adν(A),
∫
M2×2

V (A)dν(A) = s, ∀t ∈ [0, T ]

}
(6)

with ν a homogeneousH 1-Young measure with supp(ν) ⊂ Λα ∪Λβ .
For (F, s) (and(t, x)) fixed, we are going to compute the value of (6), i.e.CQW(t, x, F, s).

The main difficulty here is that we do not know explicitly the set of admissible measures, which
we denote asA. We propose the following strategy. Consider two classesA∗,A

∗ of probability
measures such that

A∗ ⊂ A ⊂ A∗.

We first calculate the minimum over the greater classA∗, and then we check that the optimal
value is attained by at least one measure over the narrower classA∗. This tells us that the optimal
value so achieved is the same inA, and hence we will have in fact computed the exact value
CQW(t, x, F, s).

Following [23], we choose forA∗ the set of polyconvex measures, which are not
necessarily gradient Young measures, and therefore obtain a lower bound (the (constrained)
polyconvexification). The main property of these measures is that they commute with the
determinant. This constraint can be imposed in a more or less manageable way. We also choose
for A∗ the class oflaminates, which is a subclass of the gradient Young measures. By working with
this class, we would get an upper bound (the (constrained) rank-one convexification).

ThepolyconvexificationCPW(F, s) can be computed through the optimization problem

min
ν

∫
M2×2

W(A)dν(A),

where

ν ∈ A(F, s) =

{
ν : ν is a homogeneous Young measure

which commutes with det,F =

∫
M2×2

Adν(A), (7)∫
M2×2

V (A)dν(A) = s

}
. (8)

From (8) we have the decomposition

ν = tνα + (1 − t)νβ , supp(νγ ) ⊂ Λγ , γ = α, β,

and therefore, from (7),

F = s

∫
Λα

Adνα(A)+ (1 − s)

∫
Λβ

Adνβ(A). (9)
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If we put

Fγ =

∫
Λγ

Adνγ (A), γ = α, β,

we haveFγ ∈ Λγ for γ = α, β, so from this property and (9), we have a non-compatible system
onFγ unless

F11 + F22 = 0, i.e. tr(F ) = 0.

Let us suppose henceforth that this compatibility condition holds. This condition lets us simplify
the problem from 2× 2 matrices to 3-d vectors, using the identification

F =

(
x y
z −x

)
↔ (x,y, z).

Therefore the manifoldsΛγ can be rewritten as

Λγ = {(x,y, z) ∈ R3 : z + γy = 0}.

In this way, the above system does not uniquely determine its solution. Indeed,

Fα = (λ, yα,−αyα), Fβ =

(
x − sλ

1 − s
, yβ ,−βyβ

)
,

where

yα =
1

s(β − α)
(βy + z), yβ =

−1

(1 − s)(β − α)
(αy + z)

andλ ∈ R. We can check that ifA = (a1, a2, a3) ∈ Λγ with γ = α, β, then

detA = −a2
1 + γ a2

2,

and by using the important constraint about the commutativity with det, we know that

detF =

∫
R3

detAdν(A) = s

∫
R3

detAdνα(A)+ (1 − s)

∫
R3

detAdνβ(A)

= −

∫
R
a2

1 dν(1)(A)+ sα

∫
R
a2

2 dν(2)α (A)+ (1 − s)β

∫
R
a2

2 dν(2)β (A),

whereνiγ designates the projection ofνγ onto thei-th component.
On the other hand, we can write the cost functional in the form∫

R3
W(A)dν(A) =

∫
R3
a2

1 dν(A)+ saα

∫
R3
a2

2 dνα(A)+ (1 − s)aβ

∫
R3
a2

2 dνβ(A),

so if we put

S1 =

∫
R3
a2

1 dν(A), Sγ =

∫
Λγ

a2
2 dνγ (A) with γ = α, β,

and use Jensen’s inequality, we have the constraints

S1 > x2, Sγ > y2
γ , γ = α, β.
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By using the notation just introduced, the above inequalities and the constraint on the determinant,
the constrained polyconvexification is given by the linear programming problem

minimize
(S1,Sγ ,xγ )

S1 + saαSα + (1 − s)aβSβ

subject to

− detF = S1 − sαSα − (1 − s)βSβ , S1 > x2, Sγ > y2
γ with γ = α, β.

We can eliminateS1 by replacing its value from the equality constraint in the cost functional. By so
doing, only the variables(Sα, Sβ ) occur, with inequality constraints (see Figure 1 for a geometrical
interpretation of the programming problem). It is easy to solve this problem. Under the conditions
aα > −α andaβ > −β, the optimal value depends on the relative position of the oblique line and
theP point. Namely, the optimal solution can be attained atP , P1 or P2.

Sa

Sb

P P1

P2

FIG. 1. New mathematical programming problem

If we define the function

ψ(F, s) = yz +
α

s(β − α)2
(βy + z)2 +

β

(1 − s)(β − α)2
(αy + z)2,

the optimal value is

h

sβ(β − α)2
(β2y2

+ z2
+ 2βyz)+ x2

−
aβ

β
yz if h(x, t) > 0, ψ(F, s) 6 0,

−h

(1 − s)α(β − α)2
(α2y2

+ z2
+ 2αyz)+ x2

−
aα

α
yz if h(x, t) 6 0, ψ(F, s) 6 0,

− detF +
1

s(1 − s)(β − α)2

(
((1 − s)β2(α + aα)+ sα2(β + aβ))y

2

+ ((1 − s)(α + aα)+ s(β + aβ))z
2
+ 2((α + aα)β − sβ)yz

)
if ψ(F, s) > 0.

In addition, the optimal value is attained at

P1 : Sα = y2
α andS1 = x2 if h(x, t) > 0, ψ(F, s) 6 0, (10)

P2 : Sβ = y2
β andS1 = x2 if h(x, t) 6 0, ψ(F, s) 6 0, (11)

P : Sα = y2
α andSβ = y2

β if ψ(F, s) > 0. (12)
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Therefore we have an explicit computation of the constrained polyconvexification given by

CPW(F, s) =



h

sβ(β − α)2
(β2y2

+ z2
+ 2βyz)+ x2

−
aβ

β
yz

if h(x, t) > 0, ψ(s, F ) 6 0, tr(F ) = 0,
−h

(1 − s)α(β − α)2
(α2y2

+ z2
+ 2αyz)+ x2

−
aα

α
yz,

if h(x, t) 6 0, ψ(s, F ) 6 0, tr(F ) = 0,
1

s(1 − s)(β − α)2

(
((1 − s)β2(α + aα)+ sα2(β + aβ))y

2

+ ((1 − s)(α + aα)+ s(β + aβ))z
2
+ 2((α + aα)β − sβ)yz

)
− detF

if ψ(s, F ) > 0, tr(F ) = 0,
+∞ if tr(F ) 6= 0.

We claim that in fact this is an exact value. This amounts to finding laminates which yield this
same optimal value.

4. Optimal microstructures: laminates

We have the lower bound given by the polyconvexification, and we will show that this bound is in
fact attained. To this end, we seek an optimal microstructure (a laminate) whose second moments
recover the value of the bound.

We try to findν = sνα + (1 − s)νβ , a laminate with supp(νγ ) ⊂ Λγ , γ = α, β, s ∈ (0,1), and
first momentF . We have different optimal conditions depending on the sign ofψ andh, and we
analyze different cases accordingly.

4.1 Caseψ > 0

We start with the case whenψ(F, s) > 0 holds. In this case the optimal conditions (12) tell us that

Sα,2 = y2
α, Sβ,2 = y2

β

and therefore, by the strict convexity of the square function, we can deduce that

ν(2)γ = δyγ , γ = α, β.

Hence

Fα = (λ, yα,−αyα), Fβ =

(
x − sλ

1 − s
, yβ ,−βyβ

)
, (13)

with λ ∈ R arbitrary. This means that for everyλ ∈ R we can decomposeF as a convex combination
of two matrices inΛα,Λβ respectively, and satisfying the volume constraint (see Figure 2).

The next step is to check that there exist someλ ∈ R such that rank(Fα − Fβ) = 1. After some
algebra, we can write

rank(Fα − Fβ) = 1 ⇔ CF,s(λ) = 0
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La

LbFa

Fb

F

FIG. 2. Infinite decompositions ofF

where

CF,s(λ) = − detF − s(λ2
− αy2

α)− (1 − s)

((
F11 − sλ

1 − s

)2

− βy2
β

)
is a second degree polynomial onλ. It is easy to check that the discriminant ofCF,s isψ(F, s), and
so its roots are

λi = x + (−1)i
√

1 − s

s
ψ(F, s), i = 1,2.

Therefore for all pairs(F, s) such thatψ(F, s) > 0, there exist two first order laminates

ν = sδFα,i + (1 − s)δFβ,i , i = 1,2,

where

Fα,i =

(
λi Fα,12

−αFα,12 −λi

)
, Fβ,i =

(
x−sλi
1−s

Fβ,12

−βFβ,12 −
x−sλi
1−s

)
and they provide the optimal value of the polyconvexification.

La

Lb

Fa
Fb

F

Fa 1

2

Fb1

2

FIG. 3. Two first order laminates

Thanks to the spatial identificationF = (x,y, z), we can observe the above computations
from a geometric point of view (see Figure 3). For any matrixF = (x,y, z) the determinant is
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detF = −(x2
+yz), which means that for any matrixF there exists a cone{x2

+yz = 0} of rank-
one directions through this matrix. From optimality conditions we obtain an explicit identification
(13) ofFγ , γ = α, β, up to the first component, which gives us a degree of freedom in the search
of the optimal decomposition. Geometrically, we notice that the intersection between the manifolds
Λγ and the rank-one cone are ellipses, whose intersection with the admissibleFγ are two points
Fγ,i , γ = α, β andi = 1,2.

4.2 Caseψ 6 0

We now study the other case,ψ(F, s) 6 0. In this situation, we have two different optimal
conditions depending on the sign ofh. We treat the caseh > 0. The other case is similar.

From the optimal condition (10) for this case, we have

Sα,2 = y2
α, S1 = x2,

and by using similar arguments to those above, we can deduce

ν(2)α = δyα , ν(1) = δx,

where

1. να = δFα with
Fα = (x, yα,−αyα), (14)

2. sinceF is the first moment ofν, there exists a unique decomposition

F = sFα + (1 − s)Fβ

with Fγ ∈ Λγ , γ = α, β, whereFα is of the form just indicated, and

Fβ = (x, yβ ,−βyβ). (15)

Consider a pair(F, s) such thatψ(F, s) < 0. After an elementary manipulation, we get

ψ(F, s) 6 0 ⇔ −(β − α)2yzs2
+ (αβ(α − β)y2

+ (β − α)z2
+ (β − α)2yz)s

+ (αβ2y2
+ αz2

+ 2αβyz) 6 0.

Let PF (s) be this second degree polynomial ins for fixedF . The set whereψ(F, s) 6 0 is the set
wherePF has solutions in [0,1], ands lies between those two solutions. There exist real solutions if
the discriminant is non-negative, and, in addition, it is easy to check thatPF (0), PF (1) are positive1

if F /∈ Λα ∪Λβ . Therefore there are positive solutions ifPF is decreasing at 0.
After some algebra the discriminant is

g(F ) = α2β2y4
+ z4

+ (α2
+ 4βα + β2)yz + 2αβy3z + 2(α + β)z3y > 0,

and the decreasing condition is

h(F ) = (α + β)yz + αβy2
+ z2 6 0.

1 PF (0) = α|βy + z|
2, PF (1) = β|αy + z|

2.
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Therefore the set of pairs(F, s) whereψ(F, s) 6 0 can be described as

{(F, s) ∈ M2×2
× R : g(F ) > 0, h(F ) 6 0, s ∈ (r1, r2)},

where

ri =
1

2
−

1

2(β − α)yz

(
αβy2

− z2
+ (−1)i

√
g(F )

)
, i = 1,2.

We thus have a characterization of the setψ(F, s) 6 0. We now look for rank-one connections
between both manifolds.

We would like to write
F = rBα + (1 − r)Bβ

with r ∈ (0,1), Bγ ∈ Λγ , (Bγ )1 = x, γ = α, β, and rank(Bα − Bβ) = 1.
On the one hand,

Bγ ∈ Λγ
(Bγ )1 = x

}
⇒ Bγ = (x, yγ ,−γyγ ), γ = α, β.

The constraint on the vanishing determinant can be rewritten, after some manipulation, as

PF (r) = 0,

whose roots areri . We can therefore guarantee that there exist two rank-one directions betweenΛα
andΛβ with barycenterF .

We are now in a position to find an optimal second order laminate which recovers the lower
bound given by the polyconvexification. We takeνα = δFα andνβ as a convex combination of two
Dirac masses supported in theβ manifold (see Figure 4).

La

Lb

Ma

Fa1

Fb1

Fb,2

Fa,2

Fb,2

Fb1

F

FIG. 4. Second order laminates

Put
Fβ,i = (x, yβ,i,−βyβ,i)

with

yβ,i =
−1

(1 − ri)(β − α)
(αy + z), i = 1,2.

Sincer1 6 s 6 r2, it is clear thatyβ is a convex combination ofFβ,i , i = 1,2.
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If we considerF̄β,i = Fα + li(Fβ,i − Fα,i) with li such thatF̄β,i ∈ Λβ , and take

li =
ri

s
, ρi,j =

(1 − rj )(ri − s)

ri − rj
, τi,j =

(rj − s)(ri − 1)

rj (1 + ri)+ s(1 − rj )
, (16)

we can define the second order laminate with support onΛα ∪ Λβ , barycenterF , and mass inΛα
equal tos, by putting

νi,j = τi,j δFβ,i + (1 − τi,j )(ρi,j δF̄β,j + (1 − ρi,j )δFα )

with i, j ∈ {1,2}, i 6= j , where

det(F̄β,j − Fα) = 0, det(Fβ,i − (ρi,j F̄β,j + (1 − ρi,j )Fα)) = 0.

Again, using the spatial identification we can interpret geometrically the above analytical
computations. We lost the degree of freedom of the first component of the matricesFα andFβ ,
since these matrices are explicitly determined by (14) and (15), and their first component isx in
both cases. This fact lets us simplify the spatial situation to a 2-d case in the plane determined by
the first component equal tox. The intersection of the manifoldsΛγ and the cone of rank-one
directions throughF reduces to two matrices in each manifold, which we have denotedFγ,i . From
these matrices connected by rank-one directions we can obtain a second order laminate with volume
fractions onΛα and 1−s onΛβ . This construction is shown in Figure 4, where the spatial situation
is reduced to the plane of the first component equal tox. A similar result holds for the other point
where the optimal value is attained (h(x, s) 6 0).

We summarize all of these computations of optimal laminates leading to the relaxed integrandϕ.
Whenψ(F, s) > 0 there exist two optimal first order laminates leading to the value of the

relaxed integrandϕ,
ν = sδFα,i + (1 − s)δFβ,i , i = 1,2, (17)

where

Fα,i =

(
λi Fα,12

−αFα,12 −λi

)
, Fβ,i =

(
F11−sλi

1−s
Fβ,12

−βFβ,12 −
F11−sλi

1−s

)
with

λi = F11 + (−1)i
√

1 − s

s
ψ(F, s), i = 1,2,

Fα,12 =
1

s(β − α)
(βF12 + F21), Fβ,12 =

−1

(1 − s)(β − α)
(αF12 + F21).

Whenψ(F, s) 6 0 andh(x, t) > 0, there exist two optimal second order laminates

νi,j = τi,j δFβ,i + (1 − τi,j )(ρi,j δF̄β,j + (1 − ρi,j )δFα ) (18)

with i, j ∈ {1,2}, i 6= j , where the scalars are

ρi,j =
(1 − rj )(ri − s)

ri − rj
, τi,j =

(rj − s)(ri − 1)

rj (1 + ri)+ s(1 − rj )
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and the matrices are

Fα =

(
F11 Fα,12

−αFα,12 −F11

)
, Fβ,i =

(
F11 Fβ,12,i

−βFβ,12,i −F11

)
with

Fβ,12,i =
−1

(1 − ri)(β − α)
(αF12 + F21), i = 1,2,

ri =
1

2
−

1

2(β − α)F12F21

(
αβ|F12|

2
− |F21|

2
+ (−1)i

√
g(F )

)
, i = 1,2,

F̄β,i = Fα + li(Fβ,i − Fα,i), li =
ri

s
.

Similarly, whenψ(F, s) 6 0 andh(x, t) 6 0, the optimal microstructure is another second order
laminate given by

νi,j = τi,j δFα,i + (1 − τi,j )(ρi,j δF̄α,j + (1 − ρi,j )δFβ )

with i, j ∈ {1,2}, i 6= j , where the scalars are

ρi,j =
rj (ri − s)

ri − rj
, τi,j =

(s − rj )ri

ri(rj − 1)+ rj (1 − s)
,

and the matrices involved are

Fβ =

(
F11 Fβ,12

−βFβ,12 −F11

)
, Fα,i =

(
F11 Fα,12,i

−βFα,12,i −F11

)
with

Fα,12,i =
1

ri(β − α)
(βF12 + F21), i = 1,2,

F̄α,i = Fβ − li(Fβ,i − Fα,i), li =
1 − ri

1 − s
.

5. Some particular examples

In this section we exhibit some particular examples where, by using Theorem 1, we can compute
the relaxed cost functional explicitly.

EXAMPLE 1 An interesting and academic example corresponds toaα(t, x) = α, aβ(t, x) = β so
thath ≡ 0, the cost functional can be written as∫ T

0

∫
Ω

[u2
t (t, x)+ (αχ + β(1 − χ))u2

x(t, x)] dx dt,

and theconstrained quasiconvexificationis

ϕ(F, s) =


F 2

11 − F12F21 if ψ(s, F ) 6 0,

− detF +
1

s(1 − s)(β − α)2

(
2αβ(sα + (1 − s)β)|F12|

2

+ 2((1 − s)α + sβ)|F21|
2
+ 4αβF12F21

)
if ψ(s, F ) > 0.
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EXAMPLE 2 Another interesting case occurs when we takea(t, x, χ) = 1, the simplest quadratic
cost function but very interesting from the mathematical point of view. In this case the relaxed cost
functional is ∫ T

0

∫
Ω

[u2
t (t, x)+ u2

x(t, x)] dx dt,

and thereforeaα(t, x) = aβ(t, x) = 1. Hence

h(t, x) = β − α,

and theconstrained quasiconvexificationsimplifies to

ϕ(F, s) =



1

sβ(β − α)
(sβ(β − α)|F11|

2
+ β2

|F12|
2
+ |F21|

2
+ (sα + β(2 − s))F12F21)

if ψ(s, F ) 6 0,

− detF +
1

s(1 − s)(β − α)2

(
((1 − s)β2(α + 1)+ sα2(β + 1))|F12|

2

+ ((1 − s)α + sβ + 1)|F21|
2
+ 2(β(1 − s)+ α(s + β))F12F21

)
if ψ(s, F ) > 0.

(19)

EXAMPLE 3 The last case lies on the border line for our computations to be valid. We take
aα(t, x) = −α andaβ(t, x) = −β so thath identically vanishes. The cost functional is∫ T

0

∫
Ω

[u2
t (t, x)− (αχ + β(1 − χ))u2

x(t, x)] dx dt,

and for this case the relaxed integrand surprisingly is− det (recall the restriction on the trace):

ϕ(F, s) = F 2
11 + F12F21 = − detF.

Note that depending on the choice of the coefficientsaα, aβ we obtain different cost densities for
the relaxed problem, yet this choice is independent of the state equation. It is interesting to remark
that for all these examples the optimal laminates correspond to the ones computed in the last section:
(17) whenψ > 0 and (18) whenψ 6 0, which are independent ofaα, aβ .

6. Analysis of (RP ) in the quadratic case

In this section we analyze the quadratic case which is Example 2 in the preceding section, and thus
focus on(RP ) where the cost density is given by (19).

From the previous sections we know that this problem admits optimal solutions, and moreover
they are first or second order laminates depending on the sign of the functionψ . An interesting fact
is that all functions involved are quadratic in the vector gradient variable and therefore regular, yet it
is the presence of gradients and the pointwise constraint that make the problem difficult to examine.

One first attempt would lead us to look at optimality conditions introducing several multipliers
to keep track of the restrictions. This makes the problem more difficult in the sense that we have
to solve a system of partial differential equations. Instead we follow a similar strategy to [9]. The
pointwise constraint given byψ depends only on the variablesF12, F21, therefore we try to find the
“optimal” relationship between these two variables. The next lemma is completely elementary.
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LEMMA 1 For fixed s, the optimal solution of the quadratic, mathematical programming problem

Minimize in F(21) : ϕ(F, s)

occurs when
(αs + β(1 − s))F12 + F21 = 0.

In addition, the associated optimal microstructures are first order laminates with volume fractions

for theα-material and orientation of layers always vertical (along the time axis):

s(t, x)δFα + (1 − s(t, x))δFβ

with normal direction of laminationn = (0,1). Having in mind the trace conditionF11 + F22 = 0
the optimal value of the cost function simplifies to

F 2
11 + F 2

12. (20)

The idea is then to replace the complicated cost functionϕ by the expression (20) and then
minimize under the constraints

(αs + β(1 − s))F12(t, x)+ F21(t, x) = 0, F11(t, x)+ F22(t, x) = 0,

i.e. (
F11(t, x)

−[αs(t, x)+ β(1 − s(t, x))]F12(t, x)

)
= T F (2)(x, t) a.e. (t, x) ∈ [0, T ] ×Ω,

which is equivalent to

div

(
F11(t, x)

−[αs(t, x)+ β(1 − s(t, x))]F12(t, x)

)
= 0.

Therefore we can write the minimization problem in terms of the original variableU (1) = u

leading to the new relaxed problem (stated in Conjecture 1):

(R̃P ) min
s

∫ T

0

∫
Ω

[u2
t (t, x)+ u2

x(t, x)] dx dt,

whereu is the unique solution of

ut t − div([αs + β(1 − s)]ux) = 0 in (0, T )× (0,1),

u(0, x) = u0(x), ut (0, x) = u1(x) in Ω, (21)

u(t,0) = 0, u(t,1) = 0 in [0, T ].

This new problem may be seen as the continuous version of the original design problem in
which the functionχ(x, t) is replaced by the continuous functions(x, t). We cannot prove directly
that the above problem admits optimal solutions, though we claim, by our conjecture, that it indeed
does because of the particular form of the problem and not as a consequence of general results. A
deeper and exhaustive analysis of this problem is still in progress (see [18]). Hopefully, the existence
of solutions of these problems will be proved. We support our conclusion numerically in the next
section. All we can say at this point is contained in the following assertion.
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LEMMA 2 We have
inf(P ) = inf(R̃P ) = min(RP ).

Proof. It is easy to see that

inf(P ) > inf(R̃P ) and inf(R̃P ) > min(RP ),

and the relaxation Theorem 3 shows that

inf(P ) = min(RP ). 2

7. Numerical simulations

In this section we address the numerical resolution of the problem (R̃P ) in accordance with
Conjecture 1 foraα(t, x) = 1 andaβ(t, x) = 1. We first describe the minimization algorithm
and then present some numerical experiments.

7.1 Minimization algorithm

We briefly present the resolution of the relaxed problem(R̃P ) using a gradient descent method. To
this end, we compute the first variation of the cost function.

For anyη ∈ R+, η � 1, and anys1 ∈ L∞((0, T ) × Ω), we associate with the perturbation
sη = s + ηs1 of s the derivative ofĨ with respect tos in directions1 as follows:

∂Ĩ (s)

∂s
· s1 = lim

η→0

Ĩ (s + ηs1)− Ĩ (s)

η
.

We obtain the following result.

THEOREM 4 If (u0, u1) ∈ (H 2(Ω)∩H 1
0 (Ω))×H 1

0 (Ω), then the derivative of̃I with respect tos
in any directions1 exists and takes the form

∂Ĩ (s)

∂s
· s1 =

∫ T

0

∫
Ω

s1((aα − aβ)u
2
x + (α − β)uxpx)dx dt, (22)

whereu is the solution of (21) andp is the solution inC1([0, T ];H 1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) of

the adjoint problemdiv(pt ,−[sα + (1 − s)β]px) = div(ut , a(t, x, s)ux) in (0, T )×Ω,

p = 0 on(0, T )× ∂Ω,

p(T , x) = 0, pt (T , x) = ut (T , x) in Ω.
(23)

Sketch of proof. Let us explain briefly how we obtain the expression (22). We introduce the
lagrangian

L(s, φ, ψ) =

∫ T

0

∫
Ω

(φ2
t + a(t, x, s)φ2

x)dx dt +
∫ T

0

∫
Ω

[φt t − div([αs + β(1 − s)]φx)]ψ dx dt
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for any s ∈ L∞((0, T ) × Ω), φ ∈ C([0, T ];H 2(Ω) ∩ H 1
0 (Ω)) ∩ C1([0, T ];H 1

0 (Ω)) andψ ∈

C([0, T ];H 1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) and then write formally

dL

ds
· s1 =

∂

∂s
L(s, φ, ψ) · s1 +

〈
∂

∂φ
L(s, φ, ψ),

∂φ

∂s
· s1

〉
+

〈
∂

∂ψ
L(s, φ, ψ),

∂ψ

∂s
· s1

〉
.

The first term is

∂

∂s
L(s, φ, ψ) · s1 =

∫ T

0

∫
Ω

s1((aα − aβ)φ
2
x + (α − β)φxψx)dx dt (24)

for any s, φ, ψ , whereas the third term is equal to zero ifφ = u the solution of (21). We then
determine the solutionp so that, for allφ ∈ C([0, T ];H 2(Ω)∩H 1

0 (Ω))∩C
1([0, T ];H 1

0 (Ω)), we
have 〈

∂

∂φ
L(s, φ, p),

∂φ

∂s
· s1

〉
= 0,

which leads to the formulation of the adjoint problem (23). Next, writingĨ (s) = L(s, u, p), we
obtain (22) from (24). 2

In order to take into account the volume constraint ons, we introduce the Lagrange multiplier
functionγ ∈ L∞((0, T ),R) and the functional

Ĩγ (s) = Ĩ (s)+

∫ T

0
γ (t)

∫
Ω

s(t, x)dx dt.

Using Theorem 4, we find that the derivative ofĨγ is

∂Ĩγ (s)

∂s
· s1 =

∫ T

0

∫
Ω

s1((aα − aβ)u
2
x + (α − β)uxpx)dx dt +

∫ T

0
γ (t)

∫
Ω

s1 dx dt,

which permits defining the following descent direction:

s1(x, t) = −((aα − aβ)u
2
x + (α − β)uxpx + γ (t)), ∀x ∈ Ω, ∀t ∈ (0, T ). (25)

Consequently, for anyη ∈ L∞(Ω × (0, T ); R+) with ‖η‖L∞(Ω×(0,T )) small enough, we have
Ĩγ (s + ηs1) 6 Ĩγ (s). The multiplier functionγ is then determined in order that‖s + ηs1‖L1(Ω) =

Vα|Ω| for anyη ∈ L∞(Ω × (0, T ); R+), leading to

γ (t) =
(
∫
Ω
s(t, x)dx − Vα|Ω|)−

∫
Ω
η(t, x)((aα − aβ)u

2
x + (α − β)uxpx)dx∫

Ω
η(t, x)dx

(26)

for all t ∈ (0, T ). Finally, the functionη is chosen so thats + ηs1 ∈ [0,1] for all x ∈ Ω and
t ∈ (0, T ). A simple and efficient choice consists in takingη(t, x) = εs(t, x)(1 − s(t, x)) for all
x ∈ Ω and t ∈ (0, T ) with ε small real positive. Consequently, the descent algorithm to solve
numerically the relaxed problem(R̃P ) may be structured as follows :

LetΩ ⊂ RN , (u0, u1) ∈ (H 2(Ω) ∩H 1
0 (Ω))×H 1

0 (Ω), L ∈ (0,1), T > 0, andε < 1, ε1 � 1
be given.
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• Initialize the density functions0
∈ L∞(Ω, (0,1)).

• Fork > 0, iterate until convergence (i.e.|Ĩ (sk+1)− Ĩ (sk)| 6 ε1|Ĩ (s
0)|) as follows:

– Compute the solutionusk of (21) and then the solutionpsk of (23), both corresponding to
s = sk.

– Compute the descent directionsk1 defined by (25) where the multiplierγ k is defined by (26).
– Update the density function inΩ:

sk+1
= sk + εsk(1 − sk)sk1

with ε ∈ R+ small enough in order to ensure the decrease of the cost function andsk+1
∈

L∞(Ω × (0, T ); [0,1]).

7.2 Numerical experiments in the quadratic case

In this section, we present some numerical simulations forΩ = (0,1) in the quadratic case, i.e.
(aα, aβ) = (1,1). We highlight that the numerical resolution of the descent algorithm isa priori
difficult because the descent direction (25) depends on the derivative ofu andp, both solving a
wave equation with space and time coefficients only inL∞((0, T ) × Ω; R?+). To the knowledge
of the authors, there does not exist any numerical analysis for this kind of equation. We use a
C0-finite element approximation foru andp with respect tox and a finite difference centered
approximation with respect tot . Moreover, we add a vanishing viscosity and dispersive term of the
typeε2div([sα + (1 − s)β]uxtt ) with ε of order ofh, the space discretization parameter. This term
has the effect of regularizing the descent term (25) and leads to a convergent algorithm. Finally, this
provides an implicit and unconditionally stable scheme, consistent with (21) and (23), and of order
two in time and space.

Below, we treat the following two simple and smooth initial conditions onΩ = (0,1):

• CASE 1: u0(x) = sin(πx), u1(x) = 0;
• CASE 2: u0(x) = exp−80(x−0.5)2, u1(x) = 0,

and we discuss the results depending on the values ofα, β andVα. Results are obtained withh =

dt = 10−2, ε1 = 10−5, s0(t, x) = Vα on [0, T ] ×Ω andε = 10−2 (see the algorithm).

7.2.1 Case 1. We first consider Case 1 withT = 2 and(α, β) = (1,1.1). Figure 5 depicts the
iso-values of the optimal limit densitys lim (obtained at the convergence of the descent algorithm)
for Vα = 0.3 (top) andVα = 0.5 (bottom) respectively. For these values ofα andβ, we observe
that the limit densities are characteristic functions taking either the value 0 or 1. As a consequence,
the relaxed problem (̃RP ) coincides with the original one (P ), which is well-posed in the class of
characteristic functions. This validates Conjecture 1 in this case. Moreover, we observe that the limit
densities are independent of the choice of the initializations0. This suggests that̃I admits a unique
minimum.

Figure 6 represents the corresponding evolution of the energyE(t) =
1
2

∫
Ω
(y2
t + [sα +

(1−s)β]y2
x)dx with respect tot . Due to the time dependence of the coefficients of the state equation,

the system is not conservative nor necessarily dissipative.
Results are qualitatively different if we now consider a larger gapβ − α. Figures 7 and 8

represent the result obtained with(α, β) = (1,6). We observe that the limit densities are no more
characteristic functions and take values in(0,1). This clearly indicates that the original problem
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FIG. 5. Case 1,T = 2, (α, β) = (1,1.1). Iso-values of the limit density. Top:Vα = 0.3, Ĩ (s lim) ≈ 9.7451. Bottom:
Vα = 0.5, Ĩ (s lim) ≈ 9.5613.
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FIG. 6. Case 1,T = 2, (α, β) = (1,1.1). E(t) vs. t . Left: Vα = 0.3, Ĩ (s lim) ≈ 9.7451. Right:Vα = 0.5, Ĩ (s lim) ≈ 9.5613.
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FIG. 7. Case 1,T = 2, (α, β) = (1,6). Iso-values of the limit density. Top:Vα = 0.3, Ĩ (s lim) ≈ 7.9567. Bottom:Vα = 0.5,
Ĩ (s lim) ≈ 6.1439.
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FIG. 9. Case 1 with the volume constraint (27),T = 2, Vα = 0.5. Iso-value of the limit density. Top:(α, β) = (1,1.1),
Ĩ (s lim) ≈ 9.2147. Bottom:(α, β) = (1,6), Ĩ (s lim) ≈ 4.3109.

may not be well-posed and justifies the search of a relaxed formulation. We also observe that this
property depends on the value ofVα: for Vα or 1− Vα arbitrarily small, numerical simulation leads
to bi-valued limit densities for allα andβ.

We have also observed that as soon as the gap is large enough, the limit of the density depends
on the initializations0, highlighting the existence of several infima forĨ . We found that the choice
of s0 constant on(0, T ) × Ω—which has the advantage of not favoring any distribution between
α andβ—leads to the lowest value of̃I (s lim). Moreover, for this choice, the algorithm appears
robust, stable and convergent with respect to the discretization parametersh and∆t . Under these
circumstances, we suspect that the infimum of(R̃P ) (see Lemma 2) is in fact a minimum.

We remark that the relaxation analysis and the results presented in the previous sections are
unchanged if we consider the weaker volume constraint:

∫ T

0

∫
Ω

s(t, x)dx dt 6 Vα|Ω|T . (27)
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Figure 9 depicts the limit densities forVα = 0.5 for (α, β) = (1,1.1) (top) and(α, β) = (1,6)
(bottom) respectively. Furthermore, as expected, these densities lead to a better distribution of
materials: we obtaiñI (s lim) ≈ 9.2147 and̃I (s lim) ≈ 3.4709 respectively (cf.̃I (s lim) ≈ 9.5613
andĨ (s lim) ≈ 6.1439 for the initial volume constraint

∫
Ω
s(t, x)dx 6 Vα|Ω| for all t).

7.2.2 Case 2. We now present some results for the second case. Similarly to the first case, the
optimal density takes values in(0,1) if and only if the gapβ − α is large enough. The pictures also
clearly highlight that the optimal distribution is related to the propagation of the components of the
solution on the cylinder(0, T ) × (0,1). For this case, we observe that the two volume constraints
give similar results on the density and the optimal cost (see Figures 10 and 12). Furthermore, in
the case(α, β) = (1,10), we observe in Figure 13 the strong damping mechanism of the optimal
distribution and explain why, fort sufficiently large, the value of the cost function is less sensitive
to the densitys (i.e. for t large, the variations ofs with respect tox andt are low).
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FIG. 10. Case 2,T = 2, (α, β) = (1,1.1). Iso-value of the limit density.Vα = 0.5, Ĩ (s lim) ≈ 15.48.
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FIG. 11. Case 2,T = 2, (α, β) = (1,1.1). E(t) vs. t . Vα = 0.5, Ĩ (s lim) ≈ 15.48.
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FIG. 12. Case 2,T = 2, (α, β) = (1,6). Iso-value of the limit density.Vα = 0.5, Ĩ (s lim) ≈ 4.5414.
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FIG. 13. Case 2,T = 2, (α, β) = (1,6). E(t) vs. t . Vα = 0.5, Ĩ (s lim) ≈ 4.5414.

7.2.3 Construction of a characteristic density associated tos lim . In the case where the optimal
densitys lim is not inL∞((0, T )×Ω; {0,1}), one may associate withs lim a characteristic function
spen

∈ L∞((0, T )×Ω; {0,1}) whose cost̃I (spen) is arbitrarily near tõI (s lim). Following [21], one
may proceed as follows: we first decompose the cylinder(0, T ) × Ω into M × N cells such that
(0, T ) × Ω =

⋃M
i=1[ti, ti+1] ×

⋃N
j=1[xj , xj+1]. Then we associate with each cell the mean value

mi,j ∈ [0,1] defined by

mi,j =
1

(ti+1 − ti)(xj+1 − xj )

∫ ti+1

ti

∫ xj+1

xj

s lim(t, x)dx dt. (28)

Finally, we define the functionspen
M,N in L∞([0, T ] ×Ω) by

s
pen
M,N (t, x) =

M∑
i=1

N∑
j=1

χ[ti ,(1−
√
mi,j )ti+

√
mi,j ti+1]×[xj ,(1−

√
mi,j )xj+

√
mi,j xj+1](t, x). (29)
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FIG. 14. Case 1,T = 1, (α, β) = (1,2). Vα = 0.5, spen
30,30, Ĩ (s lim) ≈ 4.7584,Ĩ (spen

30,30) ≈ 5.62.

We easily check that‖spen
M,N‖L1((0,T )×Ω) = ‖s lim

‖L1((0,T )×Ω) for allM,N > 0. Thus, the bi-valued

functionspen
M,N takes advantage of the information codified in the densitys lim .

In order to illustrate this, we consider Case 1 withT = 1, (α, β) = (1,2) andVα = 0.5.
Figure 14 depicts the corresponding optimal densitys lim and the associated functionspen

M,N forM =

N = 30. We obtaiñI (spen
30,30) = 5.62 andĨ (s lim) = 4.7584 respectively. By lettingM andN go

to infinity, we expect convergence to the valueĨ (s lim) and then construct a minimizing sequence
of domainsωM,N such thatχω∞,∞ is the infimum forI (see Table 1). We refer to [19] for more
examples.

TABLE 1
Case 1,T = 1, (α, β) = (1,3), Vα = 0.5. Values of the cost functioñI (spen

M,N )

M = N 10 20 30 40 50

Ĩ (s
pen
M,N

) 7.45 6.21 5.62 5.09 4.93
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22. MURAT, F. Contre-exemples pour divers problèmes òu le contr̂ole intervient dans les coefficients.Ann.

Mat. Pura Appl.112(1977), 49–68. Zbl 0349.49005 MR 0438205
23. PEDREGAL, P. Vector variational problems and applications to optimal design.ESAIM-COCV15 (2005),

357–381. Zbl 1089.49022 MR 2148849

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1062.49011&format=complete
http://www.ams.org/mathscinet-getitem?mr=2018097
http://www.ams.org/mathscinet-getitem?mr=2332468
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1059.74001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2008524
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0983.35095&format=complete
http://www.ams.org/mathscinet-getitem?mr=1825863
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1073.35032&format=complete
http://www.ams.org/mathscinet-getitem?mr=1932956
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0956.74001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1763123
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0703.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0990890
http://www.ams.org/mathscinet-getitem?mr=2176301
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0999.35010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1655858
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1001.49002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1867929
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05055493&format=complete
http://www.ams.org/mathscinet-getitem?mr=2020637
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0223.35039&format=complete
http://www.ams.org/mathscinet-getitem?mr=0350177
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1080.78003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1936008
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1035.78021&format=complete
http://www.ams.org/mathscinet-getitem?mr=1792692
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0915.35102&format=complete
http://www.ams.org/mathscinet-getitem?mr=1640028
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:02202502&format=complete
http://www.ams.org/mathscinet-getitem?mr=2069904
http://www.ams.org/mathscinet-getitem?mr=2357775
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0993.74002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1899805
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1105.49005&format=complete
http://www.ams.org/mathscinet-getitem?mr=2287890
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0349.49005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0438205
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1089.49022&format=complete
http://www.ams.org/mathscinet-getitem?mr=2148849


OPTIMAL DESIGN UNDER WAVE EQUATION 117

24. PEDREGAL, P. Constrained quasiconvexification of the square of the gradient of the state in optimal
design.Quart. Appl. Math.62 (2004), 459–470. Zbl 1086.49013 MR 2086039

25. PEDREGAL, P. Optimal design in 2-D conductivity for quadratic functionals in the field.Nonlinear
Homogenization and its Applications to Composites, Polycrystals and Smart Materials(Warszawa, 2003),
Kluwer (2004), 229–246. MR 2268907

26. PEDREGAL, P. Optimal design in two-dimensional conductivity for a general cost depending on the field.
Arch. Ration. Mech. Anal.182(2006), 367–385. Zbl 1104.74052 MR 2276496

27. TARTAR, L. Remarks on optimal design problems.Calculus of Variations, Homogenization and
Continuum Mechanics, G. Buttazzo et al. (eds.), World Sci., Singapore (1994), 279–296. Zbl 0884.49015
MR 1428706

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1086.49013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2086039
http://www.ams.org/mathscinet-getitem?mr=2268907
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1104.74052&format=complete
http://www.ams.org/mathscinet-getitem?mr=2276496
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0884.49015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1428706

	Introduction
	Problem statement
	Results

	Reformulation and relaxation
	The lower bound: polyconvexification
	Optimal microstructures: laminates
	Case 0
	Case 0

	Some particular examples
	Analysis of (RP) in the quadratic case
	Numerical simulations
	Minimization algorithm
	Numerical experiments in the quadratic case
	Case 1
	Case 2
	Construction of a characteristic density associated to slim



