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An optimal design problem governed by the wave equation is examined in detail. Specifically, we
seek the time-dependent optimal layout of two isotropic materials on a 1-d domain by minimizing a
functional depending quadratically on the gradient of the state with coefficients that may depend
on space, time and design. Typically, such problems are ill-posed in the sense that there is no
optimal design. We therefore examine relaxation by using the representation of two-dimensional
((x,1) € ]Rz) divergence free vector fields as rotated gradients. By means of gradient Young
measures, we transform the original optimal design problem into a non-convex vector variational
problem, for which we can compute an explicit form of the “constrained quasiconvexification” of
the cost density. Moreover, this quasiconvexification is recovered by first or second order laminates
which give us the optimal microstructure at every point. Finally, we analyze the relaxed problem,
and some numerical experiments are performed. The perspective is similar to the one developed
in previous papers for linear elliptic state equations. The novelty here lies in the state equation (the
wave equation), and our contribution consists in understanding the differences with respect to elliptic
cases.

1. Introduction

Optimal design problems in conductivity and elasticity have been extensively studied from various
perspectives. For the homogenization viewpoint, see [1]. For more simulation-oriented approaches,
see([4] 9]. For treatments based on variational reformulationg, see [23]. In many of these examples,
the state equation is assumed to be isotropic. There has also been attempts to understand non-
isotropic situations [([20] and references therein).

Suppose we choose two diagonal, non-isotropig,2matrices of the form
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and consider the state equation
div([x (x)Ag + (L — x(x))Ag]Vu) =0 ins2,

wheres2 c R? is a bounded, regular, simply connected domain. It is easy to see that we can also

write
. 1 0 .
d|v<<o 2o+ (1— X(ﬂ)ﬁ) Vu) =0 ing,

div(uy, [x (D 4+ (1 = x (x))Blux,) = 0.

Inthe case wher@ = (0, T) x (0, 1), and we take both andg negative, we see that we have a 1-d

wave equation as state equation, and 2-d optimal designs can be interpreted as 1-d time-dependent
optimal designs. For this reason, we change the notation andxtex,) for the spatial variable,

t (= x1) for the time variable, and replaee g by —«, —B, respectively, so that we focus on

such a wave equation. We also change accordingly the domain, and consider initial and boundary
conditions as is usual in hyperbolic problems. Yet notice that the non-isotropic elliptic example is
also contained in our analysis.

Problems with optimal control in the coefficients are rather well-known in the elliptic case.
Homogenization has been the main tool to deal with these when cost functionals do not depend
on derivatives of the state. As indicated earlief, [1] is still, as far as we can tell, an up-to-date
reference for the use of homogenization in optimal design problems. Our interest in understanding
optimal design problems for cost functionals depending on gradients of the state led us to explore
the use of gradient Young measures in this kind of problems ([23], [24])..Sée [27] for a pioneering
situation that is quite instructive to better understand how different optimal design problems with
quadratic cost functionals in the gradient can be. Other references that have treated similar situations
from the perspective of homogenization arel[11],/[14]. Our perspective does not require a full
understanding of th&-closure problem (as in homogenization) as the emphasis is not placed on
the tensors that can be obtained by mixtures (thedosure), but rather on the set of pairs of vectors
that can be related through some tensor of @helosure. Hence, although intimately connected
to homogenization, our approach focuses directly on pairs of fields that can occur in relaxed state
equations. In this way, we can treat cost functionals depending on the gradient of the state directly
without further ingredients.

Since, to some degree, the elliptic situation in the conductivity setting is understood (even
numerical simulations of optimal microstructures have been produced|as in [9]), a next natural step
is to examine the same optimal design problems with quadratic cost functionals on the gradient of
the state under a hyperbolic state equation, so as to better understand the differences introduced
in the analysis and on the numerics because of this hyperbolic nature. One issue here is the
phenomenon of concentration of cost (energy). It is well-understood that Young measures cannot
capture concentration effects. We easily resolve this issue by demanding some extra regularity on
initial data. Notice that if designs were not allowed to vary with time, the situation would be much
simpler as it would not require “homogenization” or the formation of microstructure on this time
variable. Many of the standard homogenization facts could be used and exploited. Indeed, one of
our main goals is to grasp this dependence of designs on time.

Except for the works of Luriel([15]. [16]. [17]), this sort of problems have not been addressed in
the literature. In particular, he has been investigating over the years the analogueetlisire

and even more so
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for dynamic designs. Being motivated by realistic applications, a main concern in his work is to
understand the relationship and interaction between the dynamic nature of the problem and the “dy-
namics” of microstructure. In a sense, even in a static situation, microstructure (laminates) is some-
thing dynamic as it is a never-ending refinement process. When this process interacts with real time,
some funny situations may occur (including the formation of shocks). This is well-documented for
instance in[[1l7], where restrictions on the velocity of formation of microstructure and the dynamics
of the state equation are explicitly given so that undesirable behavior is ruled out. We have avoided
this issue altogether as we model dynamic microstructure through families of probability measures
(Young measures) depending both on space and time so that there is only one dynamic process
associated with time. Even so, it is interesting to stress that the laminates we get in our numerical
simulations (Section 7) satisfy these requirements in the best way possible as they are oriented
parallel to the time axis. This is the most favorable situation in Lurie’s work. See also the comments
after Conjecturg]1. Another main difference of our work and that of Lurie is that we are interested
from the beginning in a cost functional which is quadratic in the gradient of the state. Our methods
allow us to treat directly this sort of problem without understanding firsGkdosure set. A main
concern in the work of Lurie is to better understanddhelosure set corresponding to a dynamical
situation, and, in particular, to discover the differences with respect to its elliptic counterpart.

Other works dealing with optimal control problems under the wave equation in greater
dimensions can be found ini[6], where the control is a time-dependent coefficient, and under other
constraints on modes where there is vibration. In this sense another work in which the authors
examine time-harmonic solutions of the wave equatiohlis [3], where they prove a relaxation result
for this problem and very interesting results on existence of classical solutions for some particular
cases. In the wave equation literature, we can find a huge family of optimal control problems where
the design variable is not in the highest derivative term. When the control term acts on the first order
derivative in time, the term is known as a “damping” term. These problems are of a different nature
physically as well as mathematically. Some relevant references on this togic¢larel[5, 10, 12].

1.1 Problem statement

We will thus study the following optimal design problem. We consider a design domaia
(0,1) C R, a positive timeT' > 0, and a maximum amounif, € (0, 1) of one material at our
disposal. The optimal design problem consists in deciding, for each time:O< T, the best
distribution in 2 of the two materials in order to minimize the time-dependent cost functional
depending on the square of the gradient (with respect to both varigbbeg of the underlying
state. More precisely, let us denote I#) ¢he problem that consists in minimizing

T
Py I(x) =/ /[u,z(t,x)~|—a(t,x,x)u§(t,x)]dxdt
0 2

whereu is the unique solution of
uy —div(fax + B(1— )Jux) =0 in(0,T) x (0, 1),
u(0, x) =uo(x), u;(0,x)=u1(x) in £, (2)
u(t,0) = f@), u(,1) =g in [0, T], )

and the functiong, up anduj are known. We have put a vanishing source term for simplicity. The
function x € L°°([0, T] x £2; {0, 1}) is the design variable, and it indicates where we place the
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a-material for each time. Sincey is a binary variableg(z, x, x) € {a(t, x, 0), a(t, x, 1)}, we can
write
a(t,x, x) = x(t, x)ag(t, x) + (L — x(t, x))ag(t, x),
where
aq(t,x) =a(t,x,1), ag(t,x)=a(t x,0).
In addition, we make the assumptionOx < 8, and

ag(t,x)+a >0, ag(t,x)+B=>0.
The amount of the-material is given, and therefore we have to enforce the volume constraint

/x(z,x>dx<va|9|, vi € [0, 7).
2

The lack of classical solutions for such problems is well understood|(see [22, Theorem 11]). In
this sense we propose and analyze a relaxation of the problem.

Our approach is based on an equivalent variational reformulation of the original optimal design
problem as a non-convex vector variational problem. As in other situations examined from this
perspective |2, 23], we replace a scalar problem with differential constraints by a vector variational
problem with integral constraints (where the state equation is implicit in the new cost function). It is
well-known that the non-existence of optimal solution for a vector variational problem is intimately
associated with the lack of quasiconvexity of the cost functional, and in this sense we propose
to analyze the “constrained quasiconvexification” for this last problem by using gradient Young
measures as generalized solutions of variational problems. We compute an explicit relaxation of the
original optimal design problem in the form of a relaxed (quasiconvexified) variational problem.

It is elementary to check (this is done with some detail in Section 2) the equivalence of our
dynamic optimal design problem with the following non-convex, vector variational problem:

T
(VP) minf(U):/ /W(t,x,VU(t,x))dxdt
Y 0 Je
subject to
U=Ww®, u®) eHY0,T] x 2)?
UD(0,x) =uo(x), U0, x) =ui(x) ing,
uvPe,0=fwn, vPr, =g in[0,T],
/ V(t,x, VU, x))dx < Vy|82], Vi el0,T].
2
The two integrands involved are

afl+aa(t,x)afz if A e Ag,
W(t,x, A) =1 a2 +ag(t,x)a?, if Ae Ag\ Aq,

400 else
1 if A e Ay,

V(t,x,A)=130 if Ae Ag\ Aq,
+o00 else.

Here
Ay ={AeM??:M_,AD —RAP =0}, y=a,B8, ©)
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whereA@ is thei-th row of the matrix4 = (g3t ¢2), and

1 O 0 -1
(b 0) (3

To write down an explicit relaxation, put

1.2 Results

h(t,x) = Bau(t, x) — aag(t, x)

and forF = (%i %2) s € R, set

B

m(aFlz + F21)2.

o
Y(F,s) = FioFo1 + m(ﬂﬂz + F21)? +

B
Consider the variational problem

T
(RP) min/ / o, x,VU(t, x), s(t, x)) dx dr
Us Jo Je
subject to
U e HY0,T] x 2)°, tr(VU(t,x)) =0,
UD©0,x) =uox), U0 x) =ui(x) ing,
vPa, ) =f@o, UP@,0=g@ info,T],
0<s(t,x) <1, / s(t,x)dx < Vu|2] Vi e][0,T],
2

whereo(t, x, F, s) is explicitly given by the surprising expression

2 2 2 2 4ag
_ F F: 2B F1oF F — — F1oF;
s,B(,B—oz)z('B| 12|° + |F21]" + 2B F12F21) + [F1a] 5 12F21
if h(x,t) =0, ¥ (F,s) <0,
——h(a2|F12|2 + [ F21% + 20 F12F1) + | Fu1)? — a—aF12F21
(1—s)a(f —a)? o ’
if h(x,1) <0, ¥(F,s) <O,
1
—detF+ ————_((1—+s)B2 2 Fyo|?
+S(1_S)(ﬂ_a)2((( $)B (o + ag) + sa”(B + ag))| F12l

+ (A =s)(a+ay) +s(B+ aﬂ))Ilel2 + 2(( + aq)B — sh) F12F>1)
if w(F,s)>0.

tr stands for the trace of a matrix. All that matters is that this integgaiscknown in closed form.

THEOREM1 Suppose that the initial daig andu have the regularity
up € H%0,1) N HY(0,1), w1 € H(O,1).

Then the variational problerR P) is a relaxation of the initial optimization proble@®) in the
sense that



92 F. MAESTRE, A. MUNCH AND P. PEDREGAL

(a) the infima of both problems coincide;

(b) there are optimal solutions for the relaxed problgt?);

(c) these solutions codify (in the sense of Young measures) the optimal microstructures of the
original optimal design problem.

For the interpretation of Young measure solutions in this statement, we refer the reader to the
already mentioned contributions in the elliptic case. It is closely related to relaxation in vector,
non-convex variational problems [[8]). These optimal Young measures carry the information on
optimal microstructures, both on the local distribution of materials, and on the geometry of optimal
microarrangements. See more on this interpretation in Section 7.

In addition, we can provide optimal microstructures explicitly.

THEOREM2 Optimal, dynamic microarrangements of the two materials leading to the relaxed
formulation are always laminates which can be given in a completely explicit form.

The formulae for all these laminates are given at the end of Section 4, where we compute these
optimal microstructures corresponding to first and second order laminates.

The main new contribution here is therefore to understand the character of the hyperbolic state
law, and the differences it introduces with respect to the better known elliptic case. Some of these
differences are related to the fact that the manifoldsare two 2-dimensional subspaces whose
intersection is another 1-dimensional manifold. Moreover, there are rank-one connections within
those manifolds. An interesting consequence is that the relaxed integrand is finite everywhere
(except for the condition involving the trace) in contrast with the elliptic case where the relaxed
integrand is finite only in a certain (quasi)convex subset. An important issue is that optimal Young
measures gives us the necessary information about the behavior of minimizing sequences of the
original optimal design problem.

A subsequent important step is to explore the relaxed probRm) in some particular cases,
like the ones described in Section 5, with the objective of producing numerical simulations of
optimal time-dependent structurés|[18]. For some particular situations in the (static) elliptic case, it
has been shown that a simple relaxation consists in replacing the original discrete design variable
x € L*°(£2; {0, 1}) by its convex envelope € L*°(£2; [0, 1]). For the (dynamic) hyperbolic case
with a, = ag = 1, some numerical experiments (see Section 7) suggest that the above assertion is
true. In this regard, we make the following conjecture (examined briefly in Section 6).

CONJECTUREL1 Suppose, = 1,ag = 1. The optimization problem

T
(]?ﬁ) min 1 (s) =/ / [ulz(t,x) —i—u)zc(t,x)] dx dr,
s 0 2

whereu is the unique solution of

uy —div(fas + B(L—9s)]uy) =0 in(0,T) x (0, 1),
u(0, x) =uo(x), u;0,x)=u1(x) in$,
u(t,0) = f(t), u(,1) =g in[0,T],

/s(t,x)dgia|.Q|, vt € [0, T],
2

0<s(t,x) <1,

is equivalent to the original optimal design problém) in the sense that
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(@) the infima of both problems coincide, i.e.,(ifafVP) = inf(P);

(b) the above optimal design problgR P) admits optimal solutions;

(c) these solutions (in the sense of Young measures) show that optimal microstructures are first
order laminates with normal = (0, 1) and volume fraction.

One can pass fron{RP) to (RP) simply by minimizing the general relaxed integrand
@(t, x, F, s) over the auxiliary variabl¢"®, the second row of, keeping all other variables fixed
(and takinga, = 1,ag = 1). This is an elementary calculus exercise (Section 6). This vector, the
second row off’, was introduced as an auxiliary field to go from the original formulatign to
its variational form(V P). After relaxation, in which this auxiliary vector plays an important role,
we eliminate it by minimizing over it, so that we are back to a state law which is the result of this
minimization process. More importantly, first order laminates involved in this process (the passage
from (R P) to (RP)) always correspond to normal directian= (0, 1), i.e., the optimal laminates
have to be arranged in the direction perpendicular to the space axis with volume fraction
These are, in particular, laminates of the class considered by Lurie in the previously cited works.
Our conjecture is that this procedure should capture the optimal relaxed state law.

Notice how this process cannot produce a general relaxation theorem (this is in fact our previous
theorem foR P)), as itis tailored and computed for the particular choice of the coefficignts 1,
ag = 1. It asserts that among the many relaxed wave-like equations that can be produced by mixing
dynamically the two materials, the one providing optimal microstructures for the particular choice of
the coefficients,, = 1,ag = 1 is precisely the one obtained by replacing {0, 1} by s € [0, 1]

(as in the situation of [27]). For other choices of the coefficiegtsandag, the optimal relaxed
equation would possibly be different. One can see this phenomenon for the elliptic situation in [9].
The importance of having this more “economic” relaxation (compare Conjéqture 1 with Thiglorem 1)
is that simulations can be performed for these, while it is out of the question (®u#Sedirectly. We

have written this in the form of a conjecture because, even though the passag&#®yrno (R P)

is elementary, its formal rigorous proof requires a careful analysis. It has been shown to be correct
in a number of situations in the elliptic case ([26]). For our situation here, showing the validity of
the conjecture is in progress (]18]).

The paper is organized as follows. In Section 2, we describe in more detail the equivalent
variational reformulation as well as a general relaxation result when integrands are not continuous
and may take on infinite values abruptly. As there is nothing new here compared to other previous
works in the elliptic case, our description is rather a reminder included for the sake of completeness.
Sections 3 and 4 are technical in nature but interesting, as we first compute a lower bound of the
constrained quasiconvexificatigBection 3), by using in a fundamental way the weak continuity of
the determinant. Section 4 is concerned with the search for laminates furnishing the precise value
of the lower bound in an attempt to show equality of the three convex hulls (poly-, quasi- and rank-
one convex hulls), as is standard in this kind of calculation. In Section 5, we show some particular
examples of this relaxation for different and interesting choices of the coefficignig. Finally,
in Section 6 we analyze the relaxed problem and propose a simpler relaxation, while in Section 7
we numerically solve it by using a gradient descent method.

2. Reformulation and relaxation

The lack of classical solution of the original optimal design problem is well-established. We propose
to reformulate the problem as a vector variational problem to which we apply suitable tools to study
its relaxation. We follow a similar approach to the on€ir [2, 23].
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Under the hypothesis of simple connectednes®dfn interval), there exists a potentiale
HL((0, T) x £2) such that the state equation can be recast as

—div(u(t, x), —[ax(t, x) + B(L— x (@, x)]u,(t,x)) =0 in[0, T] x £2,

where the div operator is now considered with respect to the variabledx. The state equation is
equivalent to the pointwise constraint

u(t, x)
= RV .

(—[ax(r,x> + B (. )]ur, x)) RV x) ae@x)el0.T]x 2,
whereR is the counterclockwise /2-rotation in the space-time plane. If we lét,, be as in|(B),
this constraint reads

Vu(t, x)
<Vv(t, x)) €eA_oUA_g ae(t,x)el0,T] x £2. (4)
It is clear that we can identify the design variablewith the vector fieldU = (u, v) complying
with (4); and conversely, a palif = (u, v) which satisfies[p) determines a characteristic functipn
so that we can consider the new design varidble (U, U®@) = (u, v), whereU : R? — R?
andVU (z, x) € R?*2, under the main constrairt|(4).

Therefore, by using the above statement and the notation of the Introduction, it is easy to check

that the original optimal design problef®) is equivalent to the variational problet# P).

We have thus recast our optimal design problem as a typical variational problem. We see that it
is a non-convex vector problem, which we are going to analyze by seeking its relaxation. We use
Young measures as the main tool in the computation of a suitable density for the relaxed problem.
In this sense, we can rely on the following relaxation result [2] whose main idea has been a useful

tool in other situations |2, 23, 25].
We denote the initial conditiofi1) by I.C., the boundary conditjgn (2) by B.C. and put

T
m = inf{/ / Wi(t,x,VU(t,x))dr dx :
2 J0
U e HY(0,T) x 2)%, UY satisfies the B.C. and I.C.

/ V(t, x, VU(t, x)) dx < V,|82], ¥z € [0, T]}.
Q
We know [2] that
T
m>=m= inf{/ / COW(t,x,VU(t,x),s(t,x))drdx :
2 J0

U e HY([0, T] x )%, UD satisfies the B.C. and I.C.

0<s(t,x) <1, / s(t, x)dx < Vu|82], Vr €0, T]},
2

where
COW(,x,F,s) = inf{/ L, Wax, A)dv(A) ;v e A(F, s)}
M X
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with
A(F,s) = {v : v is a homogeneoud *-Young measure,

F=/ Adv(A),/ Vi, x, A)dv(A) =s}. (5)
M2x2 M2x2

Notice that the inequality: > m will be an equality wher¥ is a CaratBodory function with
appropriate growth constrains. However, in our situation it is still possible to prove this equality
despite the fact tha¥ is not a Caratbodory function. Let us consider the minimization problem

T
m= inf{/ / W(t,x, A)dv; x(A)drdx : v € B(B.C,I.C., Va)},
2Jo M2><2
where
BB.C,I1.C,V,) = {v : Hl-Young meas., Sufp:,x) C Aq U Ag,
U € HY([0, T] x )%, U satisfies the I.C. and B.C.

VU(t, x) = / Adv; (A),
M2><2

// V(t,x,A)dv,,x(A)dx<Va|9|,Vre[o,T]}.
Q2 JMm2x2

We have the following result, whose proof is essentially identical to the oné in [2].
THEOREM 3 ([2]) Suppose that the initial datey andu; have the regularity

uo € H%0,1) N H}(0,1), w1 e HZ(O,1).

Then

m=m=m.

Moreover, for each measuves B(B.C., 1.C., V,,) such that supp, ;) C A, U Ag fora.e.(r, x) €
[0, T] x £2, there exists a sequenfeU;} such that

(i) Ux e (HY([0, T] x £2))?, U satisfies the I.C. and B.C., afid’ Uy |} is equi-integrable,
(i) VU(t,x) € Aq U Ag fora.e.(t,x) € [0, T] x §2 and allk, and

/ V(t,x, VU(t, x) dx < V,|82|, Vt e[0, T] Vk,
2

T T
(iii) lim / / W(t, x, VU(t, x))dx dr = / / W(t, x, A) dv; »(A) dx dr.
k—o0 Jo I?) 0 Q Jm2x2

The only remark worth making concerns the regularity of initial data. The proof of this theorem
in the elliptic case in[2] relies in a fundamental way on the elliptic character of the maniiglds
discard concentrations of the sequefiSeUy|2}. For the hyperbolic case, this equi-integrability can
also be shown, in a standard way, based on the regularity of solutions for the wave equation (with

uniformly elliptic spatial part) coming from the regularity of initial conditions (see [13]).
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3. The lower bound: polyconvexification
We would like to compute explicitly theonstrained quasiconvexificatiaiefined as

CQW(I,x,F,s):inf{ 2W(t,x,A)dv(A):ve.A(F,s)}

M2x
where A(F, s) is given in [$). Since the variablé,x) € [0,7] x §2 can be considered as

a parameter, we drop this dependence to simplify the notation. In this form, the constrained
quasiconvexification can be expressed as

inf{/ W(A)dv(A):F:/ Adv(A),/ V(A)dv(A) = s, ¥z € [0, T]} (6)
v M2x2 M?2x2 M2x2

with v a homogeneou# 1-Young measure with sugp) C Ay U Apg.

For (F, s) (and(z, x)) fixed, we are going to compute the value [of (6), CEQQW (¢, x, F, s).

The main difficulty here is that we do not know explicitly the set of admissible measures, which
we denote asl. We propose the following strategy. Consider two claségsA* of probability
measures such that

A CACA
We first calculate the minimum over the greater claiss and then we check that the optimal
value is attained by at least one measure over the narrowerAlagshis tells us that the optimal
value so achieved is the sameJh) and hence we will have in fact computed the exact value
COW(t,x, F,s).

Following [23], we choose forA* the set of polyconvex measures, which are not
necessarily gradient Young measures, and therefore obtain a lower bound (the (constrained)
polyconvexification). The main property of these measures is that they commute with the
determinant. This constraint can be imposed in a more or less manageable way. We also choose
for A, the class ofaminateswhich is a subclass of the gradient Young measures. By working with
this class, we would get an upper bound (the (constrained) rank-one convexification).

The polyconvexificatiorC PW (F, s) can be computed through the optimization problem

min/ W(A)dv(A),
v M2><2
where

veA(F,s) = {v : v is a homogeneous Young measure

which commutes with def = / Adv(4), (O
M2><2

f V(A)dv(A) = s}. (8
M2x2
From [8) we have the decomposition
v=tvgy +(1—-10vg, Suppv,)C 4, y=a/pb,
and therefore, fronf {7),

F :s/ Advg(A)+ (1 —5) Advg(A). (9)
Ay Ag
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If we put
F)/Z/ AdVy(A), VZ‘X,,B,

Y
we haveF, € A, for y = «, 8, so from this property ana[](Q), we have a non-compatible system
on F, unless
Fi1+ F» =0, ie. t(F)=0.

Let us suppose henceforth that this compatibility condition holds. This condition lets us simplify
the problem from 2< 2 matrices to 3-d vectors, using the identification

F = (m —ya:) < (r,y, 2).

Therefore the manifoldd,, can be rewritten as
Ay ={@®@.y.2) eR>: 2+ yy =0}

In this way, the above system does not uniquely determine its solution. Indeed,

X —SA
Faz()\a)’ou_aya)a F,BZ 1—S vYﬁ,_,BY,B ’

where

1
Yo = ———BYy+2), ¥ (ay + 2)

-1
s(B—a) S A-9B-a)
andx € R. We can check that il = (a1, az, az) € A, with y = «, g, then
detA = —a? 4 ya3,

and by using the important constraint about the commutativity with det, we know that
detF :/ detAdv(A) = s/ detA dv,(A) + (1 — s)/ detA dvg(A)
R3 R3 R3
- / a?dv®P(A) + sa/ as @A)+ 1 -5)p / a3 dv;?)(A),
R R R

wherev;', designates the projection of onto thei-th component.
On the other hand, we can write the cost functional in the form

/ W(A) dv(A):/ afdv(A)—}—saa/ a%dva(A)+(1—s)a,3/ a3 dvg(A),
R3 R3 R3 R3

so if we put
sl=/ azdv(A), S, =/ asdv,(A)  withy =a, 8,
R3 A

v
and use Jensen’s inequality, we have the constraints

Sl>x27 S)/ 2)’;& VZ(Y’.B
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By using the notation just introduced, the above inequalities and the constraint on the determinant,
the constrained polyconvexification is given by the linear programming problem

minimize S1 + saq Sy + (1 — s)agSg
(51,8y ,xy)

subject to
—detF = $1 —saSy — (L—9)BSp.  S1>ax® S, >y, withy =a.p.

We can eliminate§; by replacing its value from the equality constraint in the cost functional. By so
doing, only the variable&S,, Sg) occur, with inequality constraints (see Fig[ife 1 for a geometrical
interpretation of the programming problem). It is easy to solve this problem. Under the conditions
aq > —a andag > —p, the optimal value depends on the relative position of the oblique line and
the P point. Namely, the optimal solution can be attaine®at’; or P,.

N
N

/.
P Pl\ Sa

FiG. 1. New mathematical programming problem

If we define the function

i 5@y + 2)%,

_ 2
Y(F.s) =yz+ - B+ 2%+ e

_*
(-

the optimal value is

h
)zwzyz + 2%+ 2Byz) + a” — %"’yz if h(x,1) > 0,%(F,s5) <0,
o
—h

sp(B —
m(azyz ¥ 22 4 2ay2) + 2 — %“yz if h(x,1) <0, ¥(F,s) <O,
—detF + m(((l — S)ﬂz(Ol + Cla) + Saz(lg —+ aﬂ))yZ

+ (A=) +a) + 5B +ap)z?+2((@ +ax) — sPyz) if Y(F,s) > 0.

In addition, the optimal value is attained at
P1:S, =y2andS; = x? if h(x,1) >0, ¥(F,s) <0, (10)
Py:Sp=ysandSi=x® if h(x,1) <O, Y(F,s) <O, (11)
P:Sy=yZandSg=y3 if y(F,s)>0. (12)

)
)
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Therefore we have an explicit computation of the constrained polyconvexification given by

h a
mE (B%y? + 2% + 2By2) + a° — gﬁyz

sB(B —
if h(x,) >0, ¥ (s, F) <0, tr(F) =0,
—h 2,2 2 2 Qo
A5 _a)z(oz Y-+ z°4+ 20yz) +x " Yz,
CPW(F,s) = if h(x,1) <0,¢(s, F) <0,tr(F) =0,

1
A @ e (@98t aw) +sa®(B +ap)y”

+ (L= 9) (o +ao) + 5B+ ap))z” + 2((a + az) p — sP)yz) — detF
if w(s, F) > 0,tr(F) =0,
+o0 if tr(F) # 0.

We claim that in fact this is an exact value. This amounts to finding laminates which yield this
same optimal value.

4. Optimal microstructures: laminates

We have the lower bound given by the polyconvexification, and we will show that this bound is in
fact attained. To this end, we seek an optimal microstructure (a laminate) whose second moments
recover the value of the bound.

We try to findv = sv, + (1 — s)vg, a laminate with supp,) C 4,y =«a, 8,5 € (0, 1), and
first momentF. We have different optimal conditions depending on the sigr @nd#, and we
analyze different cases accordingly.

4.1 Casey >0

We start with the case whef(F, s) > 0 holds. In this case the optimal conditiops]|(12) tell us that
Su2=Y5 Sp2= Y§

and therefore, by the strict convexity of the square function, we can deduce that
v}(,z) =6y, v=aop

Hence

xr
Fo =, Yo, —tyq), Fﬂ = (

SA
- 13
1, " F ,3}’,B>’ (13)

with A € R arbitrary. This means that for everye R we can decomposEg as a convex combination
of two matrices inA,, Az respectively, and satisfying the volume constraint (see F[dure 2).

The next step is to check that there exist someR such that rankF, — Fg) = 1. After some
algebra, we can write

rankFy, — Fg) =1 & Crs(A) =0
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Ao

7%13

FIG. 2. Infinite decompositions af

where

2 2 F11—sA 2 2
Crs(A) = —detF —s(A” —ayy) — (1 — S)((l——s> - ,3)’,3>

is a second degree polynomial bnlt is easy to check that the discriminant®©f  is ¥ (F, s), and

so its roots are
1=
=x 4D T y(Fs), =12
S

Therefore for all pair§F, s) such thaty (F, s) > 0, there exist two first order laminates

v=S5FaJ+(1—S)8FﬂJ, i=12,

o M Far) gm0 P
ot —aFy12 —Ai )’ B —BFg 12 — XSk

1—s
and they provide the optimal value of the polyconvexification.

where

Aa

Ap

FIG. 3. Two first order laminates

Thanks to the spatial identificatioR = («, y, z), we can observe the above computations
from a geometric point of view (see FigJrg 3). For any maffix= (x, y, z) the determinant is
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detF = —(x?+yz), which means that for any matrix there exists a confec? +yz = 0} of rank-

one directions through this matrix. From optimality conditions we obtain an explicit identification
(I3) of F, y = «, B, up to the first component, which gives us a degree of freedom in the search
of the optimal decomposition. Geometrically, we notice that the intersection between the manifolds
A, and the rank-one cone are ellipses, whose intersection with the admiBgilales two points
Fyi,y =a, pandi =1,2.

42 Casey <0

We now study the other case;(F,s) < 0. In this situation, we have two different optimal
conditions depending on the sign/afWe treat the caske > 0. The other case is similar.
From the optimal conditiorj (10) for this case, we have

Sa2=Y5 S1=a?
and by using similar arguments to those above, we can deduce
véz) = dy,, v® = Oy,
where

1. vy = 8F, with
Fa = ((B, Ya, _ayol)s (14)

2. sinceF is the first moment of, there exists a uniqgue decomposition
F=s5F,+1—-5)Fg
with F, € A, y = a, B, WhereF, is of the form just indicated, and
Fg = (z, yg, —Byp)- (15)
Consider a paitF, s) such thaty (F, s) < 0. After an elementary manipulation, we get

Y(F,$) <0 & —(B—a)yzs®+ (@Bla— By* + (B —)2® + (B — @) ’y2)s
+ (@p?y? + az® + 2aByz) <O.

Let Pr(s) be this second degree polynomialsifior fixed F. The set where/ (F, s) < 0 is the set
wherePr has solutions in [01], ands lies between those two solutions. There exist real solutions if
the discriminant is non-negative, and, in addition, it is easy to checlPhd@), Pr(1) are positivE]
if F ¢ Ay U Ag. Therefore there are positive solutionsPif is decreasing at 0.

After some algebra the discriminant is

g(F) = a®B%y* + 2* + (@ + 4Ba + BAyz + 20py°z + 2(a + B)z°y > 0,
and the decreasing condition is
h(F) = (a + B)yz +afy® + 2% < 0.

L Pr(0) = alfy + 22, Pr(D) = Blay + =2
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Therefore the set of paild, s) wherey (F, s) < 0 can be described as
{(F,s) € M*>? xR :g(F) >0, h(F) <0, s € (r1, r2)},

where
1 1

== - — 2,2 (i .
=5 G —aygs Y T DV, =12

We thus have a characterization of the g€fF, s) < 0. We now look for rank-one connections
between both manifolds.
We would like to write
F=rBy+Q—-r)Bg

withr € (0,1), B, € A,, (B))1=x, y =a, 8, andrankB, — Bg) = 1.
On the one hand,

B, e A
(gy)l zyw} = By =(x,yy, —vYy), v=uapB.

The constraint on the vanishing determinant can be rewritten, after some manipulation, as
Pp(r) =0,

whose roots are;. We can therefore guarantee that there exist two rank-one directions betyeen
andAg with barycenterF.

We are now in a position to find an optimal second order laminate which recovers the lower
bound given by the polyconvexification. We take= 65, andvg as a convex combination of two
Dirac masses supported in themanifold (see Figurg]4).

Fa,2

Eﬁl
FIG. 4. Second order laminates

Put
Fgi = (x, yp,i, —Byp.i)
with

-1 .
:atfﬁﬁfamy+””—L2

Sincery < s < rp, itis clear thatyg is a convex combination dfg ;, i = 1, 2.

YB.,i
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If we considerFg; = Fy + 1;(Fg.; — Fy;) With [; such thatFs ; € Ag, and take

R [ty B Bt [ Bk
! ’ " ri —7j ’ " ril+r)+s(1- rj)’

(16)

we can define the second order laminate with suppotipy Ag, barycenterr, and mass im,
equal tos, by putting

Vij =Ti,j0F; + (1 — Ti,j)(pi,jaﬁﬂ,j + A - pi,j)dF,)
with i, j € {1, 2},i # j, where
det(Fg; — Fy) =0, detFg; — (pi,jFp; + (L — pi ;) Fa)) = 0.

Again, using the spatial identification we can interpret geometrically the above analytical
computations. We lost the degree of freedom of the first component of the maficasd Fg,

since these matrices are explicitly determined[by (14) (15), and their first componeint is

both cases. This fact lets us simplify the spatial situation to a 2-d case in the plane determined by
the first component equal te. The intersection of the manifolda, and the cone of rank-one
directions througlF reduces to two matrices in each manifold, which we have denBtedFrom

these matrices connected by rank-one directions we can obtain a second order laminate with volume
fractions on A, and 1—s on Ag. This construction is shown in Figyrg 4, where the spatial situation

is reduced to the plane of the first component equad.td similar result holds for the other point
where the optimal value is attainefd(f, s) < 0).

We summarize all of these computations of optimal laminates leading to the relaxed integrand
When ¢ (F,s) > 0 there exist two optimal first order laminates leading to the value of the
relaxed integrang,

v =sdp,; +(1— s)8pﬂvl., i=1,2, @an
where
Fi1—ski
P i Fo12 Foo— o Fp12
l —afFy12 —Ai )’ B —BFg 12 ——Fljl_:‘;)”'
with

1=
= Fu+ (DL = y(F,s), i=12
S

1 -1
Fo12= ——(BF12+ F21), Fgiz= — ———
12 S(ﬂ_a)(ﬁ 12+ F21) 8,12 1—5F —a)

Whenvy (F, s) < 0andh(x, t) > 0, there exist two optimal second order laminates

(aF12+ F21).

vij = Ti.j8Fs; + (1= 1) (i 8,  + (1= pij)dF,) (18)
with i, j € {1, 2},i # j, where the scalars are

R el D1 ) B O Bt D) Bl
Pi.j ri — 71 ’ J ril+r)+s@A—r))
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and the matrices are
F11 Fy12 Fi11 Fg12;
Fy = o), Fpi= ;
* (—OtFa,lz —F11 Pt —BFp12i —Fn
with

-1 o
Ao @2t oo, =12

(@Bl F1al® — |Faal? + (=)' Vg (F)). i=12

Fgi12i =

1
. S
"2 2B—a)FioFn

_ T
Fgi=Fy+1i(Fpi— Foi), li=—.

Similarly, wheny (F, s) < 0 andh(x, t) < 0, the optimal microstructure is another second order
laminate given by

vij =T j0F,; + Q=1 ;)i df, 4+ L= pij)8F,)
with i, j € {1, 2},i # j, where the scalars are

- rj(ri =) (s —rjri

= . T = i
" ri —rj " ri(ri =D +rj(1—s)

and the matrices involved are

Fa— F11 Fg 12 Fo— F11 Fy12i
f _,BFﬂ,lZ —F11 )’ ! _ﬁFa,lzi —F11

with
1 .
Fy12i = ———(BF2+ Fa1), =12
ri(B—a)
— l—ri
Foi=Fg—1i(Fgi— Foi), [li= 1.

5. Some particular examples

In this section we exhibit some particular examples where, by using Theorem 1, we can compute
the relaxed cost functional explicitly.

EXAMPLE 1 Aninteresting and academic example corresponds tQ x) = «, ag(t, x) = f SO
thath = 0, the cost functional can be written as

T
/ / [u?(t, x) + (ex + B(L — x))ui(t, )] dx dt,
0 Jo
and theconstrained quasiconvexificatios
F} — FioFn if ¥ (s, F) <0,

_ 1 2
@(F,s) = { —detF + m(zaﬂ(m + (1—9)B)|Fi2l
+2((1 = $)at + 5P| F21|? + dap F12F21) if ¥(s, F) > 0.
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ExXAMPLE 2 Another interesting case occurs when we takex, x) = 1, the simplest quadratic
cost function but very interesting from the mathematical point of view. In this case the relaxed cost
functional is

T
/ / [ulz(t, x) + ui(r, x)] dx dr,
0 Je
and therefore, (f, x) = ag(t, x) = 1. Hence
ht,x) =8 —«a,

and theconstrained quasiconvexificati@mplifies to

1
———(sB(B — )| Fr1)® + B2|F12l® + | F21/? + (s + B(2 — 5)) F12F21)
sB(B — )
if ¥ (s, F) <0,
o(F,5)=1 _ N S PR 2 2 (19)
detF + pr o[)2(((1 $)B%( + 1) + sa®(B + 1))| Faa|

+((L—s)a + 58+ DIF2? +2(B(L —5) +als + B)) F12F21)
if ¥ (s, F) > 0.

ExaMPLE 3 The last case lies on the border line for our computations to be valid. We take
aq(t, x) = —a andag(t, x) = —pB so thath identically vanishes. The cost functional is

T
/ /[ﬁ@ﬁ)—@X+ﬁﬂ—XDﬁUwﬂmﬂh
0 2

and for this case the relaxed integrand surprisingly @et (recall the restriction on the trace):
@(F,s) = F2 + F1pFp = — detF.

Note that depending on the choice of the coefficients:s we obtain different cost densities for
the relaxed problem, yet this choice is independent of the state equation. It is interesting to remark
that for all these examples the optimal laminates correspond to the ones computed in the last section:
(T7) wheny > 0 and [(I8) wheny < 0, which are independent of,, ag.

6. Analysis of (R P) in the quadratic case

In this section we analyze the quadratic case which is Example 2 in the preceding section, and thus
focus on(R P) where the cost density is given Ky {19).
From the previous sections we know that this problem admits optimal solutions, and moreover
they are first or second order laminates depending on the sign of the fugictdom interesting fact
is that all functions involved are quadratic in the vector gradient variable and therefore regular, yet it
is the presence of gradients and the pointwise constraint that make the problem difficult to examine.
One first attempt would lead us to look at optimality conditions introducing several multipliers
to keep track of the restrictions. This makes the problem more difficult in the sense that we have
to solve a system of partial differential equations. Instead we follow a similar strategy to [9]. The
pointwise constraint given by depends only on the variablés,, F21, therefore we try to find the
“optimal” relationship between these two variables. The next lemma is completely elementary.
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LEMMA 1 For fixed s, the optimal solution of the quadratic, mathematical programming problem
Minimize in F21) : ¢(F, s)

occurs when
(as + B(A—s)Fio+ F21=0.

In addition, the associated optimal microstructures are first order laminates with volume fsaction
for the-material and orientation of layers always vertical (along the time axis):

s(t,x)8F, + (1 —s(t, x))(SFﬁ

with normal direction of lamination = (0, 1). Having in mind the trace conditiofy1 + F22 = 0
the optimal value of the cost function simplifies to
Ff+ Fhy. (20)
The idea is then to replace the complicated cost funafidsy the expressior] (20) and then
minimize under the constraints

(as + B(A—s))Fio(t, x) + F21(t,x) =0,  Fia1(t, x) + F(t, x) =0,

Fra(z, x) )
<_[as(t,x) +B(L— s(t,x))]Flz(t,x)> =TF¥(x,t) ae (t,x)e€[0,T] x £2,

which is equivalent to

. Fi1(t, x) _
d"’(—[as(t, X) + B(L— s(t, x))] Faa(t, x)) =0

Therefore we can write the minimization problem in terms of the original varigile =
leading to the new relaxed problem (stated in Conjegtjre 1):

T
(I?ﬁ) min/ / [u,z(t, x)+ u)zc(t, x)] dx dt,
N O .Q

whereu is the unique solution of

ug — div(fas + B(1 — s)]uy) =0 in(0,7T) x (0, 1),
u(0,x) =uolx), u0,x)=ui(x) ing, (22)
u(@,0 =0 u@1)=0 in [0, T].

This new problem may be seen as the continuous version of the original design problem in
which the functiony (x, t) is replaced by the continuous functie¢x, ¢). We cannot prove directly
that the above problem admits optimal solutions, though we claim, by our conjecture, that it indeed
does because of the particular form of the problem and not as a consequence of general results. A
deeper and exhaustive analysis of this problem is still in progress (sSee [18]). Hopefully, the existence
of solutions of these problems will be proved. We support our conclusion numerically in the next
section. All we can say at this point is contained in the following assertion.
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LEMMA 2 We have
inf(P) = inf(RP) = min(RP).

Proof. Itis easy to see that
inf(P) > inf(RP) and inf(RP) > min(RP),
and the relaxation Theordm 3 shows that

inf(P) = min(RP). O

7. Numerical simulations

In this section we address the numerical resolution of the problﬁﬁﬁ) (in accordance with
Conjecturg [L fora,(z, x) = 1 andag(r, x) = 1. We first describe the minimization algorithm
and then present some numerical experiments.

7.1 Minimization algorithm

We briefly present the resolution of the relaxed probté?ﬁ’) using a gradient descent method. To
this end, we compute the first variation of the cost function.

Foranyn € RT, n « 1, and anys; € L*((0, T) x £2), we associate with the perturbation
s = s 4+ nsp of s the derivative ofl with respect to in directions1 as follows:

31 (s) _T(s+ns1) — 1(s)
-s1 = IIm .
as n—0 n

We obtain the following result.
THEOREM4 If (ug, u1) € (H2(22) N HY(2)) x H}(£2), then the derivative of with respect to
in any directions; exists and takes the form

31(s)
as

T
o / / s1((ag — ag)u? + (@ — Buy py) dx dr, (22)
0 J@

whereu is the solution of[(2]L) ang is the solution inC1([0, T]; H3(£2)) N C(0, T]: L2(£2)) of
the adjoint problem

p=0 on(0, T) x 942, (23)

div(p;, —[sa + (L —s)B]px) = div(u;, a(t, x, s)uy) in(0,T) x £2,
p(T7 x)=0’ pT(T’x) =M1(T,x) in Q

Sketch of proof. Let us explain briefly how we obtain the expressipn]| (22). We introduce the
lagrangian

T T
L(s,¢,w)=/0 /ﬂ(¢3+a(z,x,s>¢§>dxdr+fo fg[cﬁn—div([as+ﬂ(1—s>]¢x>]wdxdr
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foranys € L>®((0,T) x £2), ¢ € C([0, T]; H3(£2) N H}(2)) N CL([0, T]; Hy(2)) andy €
C ([0, T]; H}(£2)) N cX([0, T]; L?(£2)) and then write formally
dl 9 <

— -s1=—L(s,0,¢) - 51+
S S

ad d ad ad
d a_ _L(S’ ¢a w),a_fsl>+<_£'(s’ ¢7 W)a%sl>

3 Y

The first term is

9 T
L85, 51 = / / $1((da — ag)d? + (@ — Bury) dr (24)
N 0 2

for any s, ¢, ¥, whereas the third term is equal to zergpif= u the solution of [(Z2]l). We then
determine the solutiop so that, for alky € C([0, T]; H?(£2) N H}(£2)) N C([0, T]; H}(£2)), we
have

9 00\
<%£}(S, ¢7 P)’ g : Sl> - 0’

which leads to the formulation of the adjoint probl(23). Next, Writﬁqg) = L(s, u, p), we
obtain [22) from[(Z}). U

In order to take into account the volume constraintsomve introduce the Lagrange multiplier
functiony € L*°((0, T), R) and the functional

T
Ty(s)=’1“(s)+/ y(t)f s(t, x) cbx dr.
0 2

Using Theorer4, we find that the derivativelofis

dI (s)
as

T T
= [ [ sata—apu + @ prpodrar+ [y [ sava
0 Je 0 2
which permits defining the following descent direction:

510, 1) = —((ag — ap)u? + (@ — Puxpx +y (1)), Vx € 2,Vt € (0, T). (25)

Consequently, for any € L*(£2 x (0, T); R™) with |In]lL@x.7y) Small enough, we have
Iy (s + ns1) < I, (s). The multiplier functiony is then determined in order thit + ns1l 1) =
V,|82] foranyn € L®(£2 x (0, T); RT), leading to

(fos(t,x)dx — Vo |2]) — [ n(t, x)((aa — ap)u? + (@ — Bux py) dx
fon(t, x) dx

for all + € (O, T). Finally, the functionn is chosen so that + ns; € [0, 1] for all x € £ and
t € (0, T). A simple and efficient choice consists in taking, x) = es(¢, x)(1 — s(t, x)) for all
x € £ andt € (0, T) with ¢ small real positive. Consequently, the descent algorithm to solve
numerically the relaxed probleR P) may be structured as follows :
Let2 C RN, (ug, u1) € (H3(2) N Hi(2)) x H}(2), L € (0,1), T > 0,ands < 1,61 < 1
be given.

y(@) = (26)
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e Initialize the density function® € L>(£2, (0, 1)). _
e Fork > 0, iterate until convergence (i.H.(s**t1) — T(s%)| < e1/1(s%)]) as follows:
— Compute the solutiom of (21)) and then the solutiopy of (23), both corresponding to
S = Sk.
— Compute the descent directi@fm defined by) where the multiplier* is defined by).
— Update the density function if2:

skt = gk 4 esk(1 - sk)slf

with ¢ € Rt small enough in order to ensure the decrease of the cost functios‘ahds
L*(£2 x (0, T); [0, 1]).

7.2 Numerical experiments in the quadratic case

In this section, we present some numerical simulationgZoe (0, 1) in the quadratic case, i.e.
(aa,ag) = (1,1). We highlight that the numerical resolution of the descent algorithenpgsiori
difficult because the descent directipn](25) depends on the derivativeanél p, both solving a
wave equation with space and time coefficients only.fi((0, 7) x £2; R} ). To the knowledge
of the authors, there does not exist any numerical analysis for this klnd of equation. We use a
COfinite element approximation far and p with respect tax and a finite difference centered
approximation with respect to Moreover, we add a vanishing viscosity and dispersive term of the
typee?div([sa + (1 — s)Blu.s,) With € of order of, the space discretization parameter. This term
has the effect of regularizing the descent tgrnj (25) and leads to a convergent algorithm. Finally, this
provides an implicit and unconditionally stable scheme, consistentwith (21) and (23), and of order
two in time and space.

Below, we treat the following two simple and smooth initial conditionsgdga= (0, 1):

e CASE 1:ug(x) = sin(zwx), ul(x)
o CASE 2: ug(x) = exp 8%:—05% 1 (x) =

and we discuss the results depending on the values gpfandV,,. Results are obtained with =
dt =102, e1 = 102,50, x) = V, on [0, T] x £2 ande = 102 (see the algorithm).

7.2.1 Case 1. We first consider Case 1 with = 2 and(«, ) = (1, 1.1). Figure[$ depicts the
iso-values of the optimal limit densitsf™ (obtained at the convergence of the descent algorithm)
for V, = 0.3 (top) andV,, = 0.5 (bottom) respectively. For these valuesoofnd 8, we observe

that the limit densities are characteristic functions taking either the value 0 or 1. As a consequence,
the relaxed problemR P) coincides with the original oneR), which is well-posed in the class of
characteristic functions. This validates Conjecfyre 1 in this case. Moreover, we observe that the limit
densities are independent of the choice of the initializatfbThis suggests thdtadmits a unique
minimum.

Figure@ represents the corresponding evolution of the enéngy = %fg(yl2 + [sa +
(1—s)B]y?) dx with respect ta. Due to the time dependence of the coefficients of the state equation,
the system is not conservative nor necessarily dissipative.

Results are qualitatively different if we now consider a larger gap «. Figures[} and(|8
represent the result obtained witl, 8) = (1, 6). We observe that the limit densities are no more
characteristic functions and take values(y1). This clearly indicates that the original problem
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1Y

FIG.5. Case 1T = 2, (@, ) = (1, 1.1). Iso-values of the limit density. Topz,y = 0.3, I(s"™) ~ 9.7451. Bottom:
Vo =05, 1(s'M) ~ 95613
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FIG.6. Case 1T = 2, (o, ) = (L, 1.1). E(1) vs.1. Left: V = 0.3, T(s'M) ~ 9.7451. Right:V,, = 0.5, T(s'™) ~ 9.5613.
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FIG.7. Case 1T = 2, (a, B) = (1, 6). Iso-values of the limit density. Top, = 0.3, i(s”m) ~ 7.9567. Bottom:V, = 0.5,
7(s'My ~ 6.1439.

12

FiG.8. Case 1T = 2, (&, B) = (1, 2). E(t) vs.t. Left: V,, = 0.3, I(s'"M) ~ 7.9567. Right:V, = 0.5, 7(s'M) ~ 6.1439.
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FiG. 9. Case 1 with the volume c0nstrai_27),= 2,V = 0.5. Iso-value of the limit density. Togw, 8) = (1, 1.1),
1(s"™) ~ 9.2147. Bottomi(, B) = (1, 6), I (s'™) ~ 4.3109.

may not be well-posed and justifies the search of a relaxed formulation. We also observe that this
property depends on the valueWf: for V,, or 1 — V,, arbitrarily small, numerical simulation leads
to bi-valued limit densities for alk and 3.

We have also observed that as soon as the gap is large enough, the limit of the density depends
on the initializations, highlighting the existence of several infima flarwWe found that the choice
of 50 constant on0, T) x 2—which has the advantage of not favoring any distribution between
o and B—leads to the lowest value df(s"™). Moreover, for this choice, the algorithm appears
robust, stable and convergent with respect to the discretization pararhetedsA:. Under these
circumstances, we suspect that the infimuntP) (see LemmEZ) is in fact a minimum.

We remark that the relaxation analysis and the results presented in the previous sections are
unchanged if we consider the weaker volume constraint:

T
/ /s(t,x)dxdtgvamm 27)
0 2
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Figure[9 depicts the limit densities féf, = 0.5 for («, ) = (1, 1.1) (top) and(e, B) = (1, 6)
(bottom) respectively. Furthermore, as expected, these densities lead to a better distribution of
materials: we obtail (s'™) ~ 9.2147 andl(s'™) ~ 3.4709 respectively (cfl(s'™) ~ 9.5613
and7(s'M) ~ 6.1439 for the initial volume constrairft, s(r, x) dx < V, |2 for all 7).

7.2.2 Case 2. We now present some results for the second case. Similarly to the first case, the
optimal density takes values (), 1) if and only if the gaps — « is large enough. The pictures also
clearly highlight that the optimal distribution is related to the propagation of the components of the
solution on the cylinde(O, T) x (0, 1). For this case, we observe that the two volume constraints
give similar results on the density and the optimal cost (see Fifufes 10 and 12). Furthermore, in
the casdua, ) = (1, 10), we observe in Figure 13 the strong damping mechanism of the optimal
distribution and explain why, far sufficiently large, the value of the cost function is less sensitive

to the density (i.e. forz large, the variations of with respect tor andr are low).

FIG.10. Case 2T = 2, (a, B) = (1, 1.1). Iso-value of the limit density,, = 0.5, IN(s"m) ~ 15.48.

FiG.11. Case 2T = 2, (, ) = (1, 1.1). E(t) vs.t. V4 = 0.5, I(s'M) ~ 15.48.
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FIG.13. Case 2T = 2, (a, ) = (1, 6). E(t) vs.t. Vo4 = 0.5, I (s'M) ~ 45414,

7.2.3 Construction of a characteristic density associated'f8. In the case where the optimal
densitys'™ is not in L*((0, T) x £2; {0, 1}), one may associate with™ a characteristic function
sPeN e Lo°((0, T) x £2; {0, 1}) whose cosT (sPe™ is arbitrarily near ta (s"™). Following [21], one
may proceed as follows: we first decompose the cylin@ef’) x §2 into M x N cells such that
O, T)x 2 = Ui"il[t,-, tit1] X U]N:l[.xj', xj+1]- Then we associate with each cell the mean value
m; ; € [0, 1] defined by

1 li+l [Xj+1 i
mi /t / s"™M (¢, x) dx dr. (28)
i xj

(tiv1 — ) (xj+1 — xj)

Finally, we define the functios}y; '\ in L>([0, T] x £2) by

M N

en

SJF[JLN(L x) = E E X[t (1— /mi jti+ /mi’jti+1]X[Xj,(1— /mi j)Xj+ /mi.jxj+l] (t’ -x)' (29)
i=1;=1
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pen

FIG.14. Case 17 = 1, (a, B) = (1, 2). Vo = 05,5530, T(s"™) ~ 4.7584,1(s553) ~ 5.62.

We easny check thaLsM N||L1((o Tyx) = = ||s"m 210, 7)x ) forall M, N > 0. Thus, the bi-valued
functions® iy takes advantage of the information codified in the dendity

In order to illustrate this, we consider Case 1 with= 1, (o, 8) = (1,2) andV, = 0.5.
F|gur 4 depicts the corresponding optimal dengyand the associated functmﬁf” for M =

pen

= 30. We obtalnl(s30 30) = 5.62 and7(s'™) = 4.7584 respectively. By letting/ and N go

to |nf|n|ty, we expect convergence to the vallig™) and then construct a minimizing sequence
of domainswy v such thaty,,, . is the infimum forI (see Tabléi]l). We refer to_[19] for more
examples.

TABLE 1
Case 1T = 1, (&, B) = (1, 3), V,, = 0.5. Values of the cost functlol(spen )

M =N 10 20 30 40 50
) 745 6.21 562 5.09 4.93

7 (spen
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