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Eulerian finite element method for parabolic PDEs on implicit surfaces
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We define an Eulerian level set method for parabolic partial differential equations on a stationary
hypersurfaceΓ contained in a domainΩ ⊂ Rn+1. The method is based on formulating the partial
differential equations on all level surfaces of a prescribed functionΦ whose zero level set isΓ .
Eulerian surface gradients are formulated by using a projection of the gradient inRn+1 onto the
level surfaces ofΦ. These Eulerian surface gradients are used to define weak forms of surface elliptic
operators and so generate weak formulations of surface elliptic and parabolic equations. The resulting
equation is then solved in one dimension higher but can be solved on a mesh which is unaligned to the
level sets ofΦ. We consider both second order and fourth order elliptic operators with natural second
order splittings. The finite element method is applied to the weak form of the split system of second
order equations using piecewise linear elements on a fixed grid. The computation of the mass and
element stiffness matrices is simple and straightforward. Numerical experiments are described which
indicate the power of the method. We describe how this framework may be employed in applications.

1. Introduction

There has been burgeoning interest in the computation of partial differential equations on curves and
surfaces. Models involving partial differential equations on surfaces arise in many areas including
material science, bio-physics, fluid mechanics and image processing. For example, we refer to [10,
27, 29] for applications of the Allen–Cahn and Cahn–Hilliard equations to phase ordering and
separation on surfaces. Models for thin fluid films on surfaces have been developed in [21, 24].
For image processing and geometry applications we mention geodesic flow of curves on surfaces
and active contours for segmentation on surfaces, [6, 22, 23, 28].

The work in this paper is concerned with an approach to the formulation and approximation
of parabolic equations on a prescribed stationaryn-dimensional surfaceΓ in Rn+1 (n = 1,2)
using an implicit representation of the surface. The surface is just one level set of a prescribed
functionΦ and the partial differential equation and its solution are extended to a domainΩ ⊂

Rn+1 containing the surface. A general framework for formulating partial differential equations
on implicit surfaces was proposed by the authors of [3]. They considered time dependent second
order linear and nonlinear diffusion equations in the context of finite difference approximations on
rectangular grids independent of the surfaces. In [20, 19] the authors presented finite difference
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methods for fourth order parabolic equations on implicit surfaces. A finite element approximation
of elliptic equations on implicit surfaces is presented in [5].

Our work is concerned with the finite element discretization of second and fourth order parabolic
equations on surfaces. The idea is to solve PDEs on all level surfaces ofΦ in Ω by discretizing a
suitable variational formulation by a finite element method on a mesh which is independent of the
surfaces. This defines an Eulerian formulation. Stable time stepping schemes are formulated in a
natural way. By using second order splitting of the fourth order operators,H 1 conforming finite
element schemes can be employed for fourth order problems such as the Cahn–Hilliard equation.
When the boundary ofΩ consists of level sets ofΦ it is not necessary to impose artificial boundary
conditions because the triangulation is fitted to the domainΩ. A remarkable feature of our numerical
experiments is that, on a fixed level set, finite element approximations converge at an optimal rate.
Our approach can be extended to second order diffusion problems on evolving surfaces (see [14]).
See also [1] and [30]. The computing times for our method are similar to computing times for
cartesian PDEs.

This approach is in contrast to approximating the PDEs directly on triangulated surfaces. In [11],
[12] and [13] we introduced the surface and evolving surface finite element method (respectively
SFEM and ESFEM) for the numerical solution of elliptic and parabolic equations on prescribed
stationary and moving hypersurfaces. The method relies on approximating the partial differential
equation on a triangulated surface (n = 2) or polygonal curve (n = 1). Naturally, where applicable,
this method is more efficient than solving PDEs on implicit surfaces. On the other hand, in
applications a surface might arise as a level set of a function computed from solving another
coupled equation in which case the method of this paper may be attractive. Also when the surface
is complex and evolving with possible topology changes it may be advantageous to employ a level
set description of the surface. Finally, the method is appropriate when a PDE has to be solved on all
level sets of a given function.

The layout of the paper is as follows. We begin in Section 2 by defining notation and essential
concepts from elementary differential geometry necessary to describe the problem and the numerical
method. The equations and variational formulations are presented in Section 3. In Section 4 the finite
element method is defined. The results of numerical experiments are presented in Section 5. Finally,
in Section 6 we make some concluding remarks.

2. Level set tangential gradients

Let Γ be a compact Lipschitz hypersurface without boundary inRn+1 which has a representation
defined by a level set functionΦ = Φ(x), x ∈ Rn+1, so that

Γ = {x ∈ Ω : Φ(x) = 0}

whereΩ is an open subset ofRn+1 with Lipschitz boundary∂Ω and unit outward pointing normal
ν∂Ω . We assume thatΦ satisfies the nondegeneracy condition

∇Φ 6= 0 inΩ. (2.1)

In particular we suppose that

Φ ∈ C0,1(Ω).
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The orientation ofΓ is set by taking the normalν to Γ to be in the direction of increasingΦ. Then
we define an extension ofν to all ofΩ using the normal vector field

ν(x) =
∇Φ(x)

|∇Φ(x)|
, x in Ω.

A possible choice forΦ is a signed distance functiond and in that case|∇Φ| = |∇d| = 1 onΩ.
We define the projection

PΦ := I − ν ⊗ ν, (PΦ)ij = δij − νiνj , i, j = 1, . . . , n+ 1. (2.2)

ThusP(x) is the projection onto the tangent space of the surfaceΓr := {y ∈ Rn+1 : Φ(y) = r},
r = Φ(x), so thatPΦν = 0. We define the Eulerian surface gradient by

∇Φη := PΦ∇η (2.3)

and observe that
∇Φη = ∇η − ∇η · ν ν

where, forx andy in Rn+1, x · y is the Euclidean scalar product and∇η denotes the usual gradient
onRn+1. Note that

∇Φη · ν = 0

and that for any level surfaceΓr ,
∇Γrη := ∇Φη|Γr

only depends on the values ofη restricted toΓr and is the tangential (surface) gradient onΓr .
Denoting the components of∇Φη byDΦi η := ∂xiη − ∇η · ννi we define the surface divergence of
a vector fieldξ by

∇Φ · ξ =

n+1∑
i=1

DΦi ξi .

Eulerian surface elliptic operators can then be defined in a natural way. For example the Eulerian
Laplace–Beltrami operator is defined by

∆Φη = ∇Φ · ∇Φη.

The Eulerian mean curvature of a level surface ofΦ ∈ C1,1(Ω) is defined by

HΦ := −∇ · ν = −∇ ·
∇Φ

|∇Φ|
.

We recall thecoarea formula:

LEMMA 2.1 (Coarea formula) LetΦ : Ω → R be Lipschitz continuous withΦM := supΦ and
Φm = infΦ. Assume that for for eachr ∈ R the level setΓr := {x ∈ Rn+1 : Φ(x) = r} is a
Lipschitzn-dimensional hypersurface inRn+1. Supposeη : Ω → R is continuous and integrable.
Then ∫ ΦM

Φm

(∫
Γr

η

)
dr =

∫
Ω

η|∇Φ|. (2.4)
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ForΦ ∈ C1,1(Ω) we define the Hilbert spaces

L2
Φ(Ω) := {η Lebesgue measurable onΩ : 〈η, η〉Φ < ∞}, (2.5)

H 1
Φ(Ω) := {η ∈ L2

Φ(Ω) : ∇Φη ∈ L2
Φ(Ω)}, (2.6)

where

〈η, η〉Φ :=
∫
Ω

η2
|∇Φ|, 〈η, η〉H1

Φ
:= 〈η, η〉Φ + 〈∇Φη,∇Φη〉Φ (2.7)

and we set

‖η‖L2
Φ (Ω)

:= 〈η, η〉
1/2
Φ , ‖η‖H1

Φ (Ω)
:= {‖η‖2

L2
Φ (Ω)

+ ‖∇Φη‖
2
L2
Φ (Ω)

}
1/2. (2.8)

Here we use the distributional derivative∇Φη which is defined in the usual way using the equation
(2.9) of the following lemma which gives the Eulerian formula for integration by parts over level
surfaces.

LEMMA 2.2 (Eulerian integration by parts) Letη ∈ H 1
Φ(Ω) andQ ∈ (H 1

Φ(Ω))
n+1. Then∫

Ω

∇Φη|∇Φ| = −

∫
Ω

ηHΦν|∇Φ| +

∫
∂Ω

η(ν∂Ω − ν · ν∂Ων)|∇Φ|, (2.9)∫
Ω

∇Φ · (ηQ)|∇Φ| = −

∫
Ω

HΦηQ · ν|∇Φ| +

∫
∂Ω

ηQ · (ν∂Ω − ν · ν∂Ων)|∇Φ|. (2.10)

Proof. We prove the first equation, from which the second follows. We employ the notation∂i :=
∂/∂xi and∂ij := ∂2/∂xi∂xj . Elementary calculations yield

∂i |∇Φ| = νk∂ikΦ = (D2Φν)i,

|∇Φ|∂jνk = ∂jkΦ − νk(D
2Φν)j ,

|∇Φ|HΦ = − Tr(D2Φ)+ ν ·D2Φν,

whereD2Φ is the Hessian matrix of second derivatives, Tr(·) is the trace of a matrix and we employ
the summation convention for repeated indices.

Using the definition of∇Φ we find that

LHS :=
∫
Ω

∇Φη|∇Φ| =

∫
Ω

|∇Φ|(∇η − ν · ∇ην)

and then we employ the standard integration formula onΩ. It follows that

(LHS)i = −

∫
Ω

η∂i |∇Φ|+

∫
Ω

η∂m(νiνm|∇Φ|)+

∫
∂Ω

η|∇Φ|((ν∂Ω)i−νi(ν ·ν∂Ω)) = I+II+III.

Straightforward calculations yield

II =

∫
Ω

η(νi Tr(D2Φ)+ (D2Φν)i − ν ·D2Φννi).

CombiningI andII using the formula forHΦ gives the desired result. 2

REMARK 2.3 The boundary terms in the integration by parts formulae disappear whenν = ν∂Ω .
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3. PDEs on surfaces

3.1 Conservation and diffusion

LetΦ : Ω → R be a prescribed nondegenerate level set function. LetQ : Ω → Rn+1 be a given
flux. Then the Eulerian conservation law we consider is

d

dt

∫
R

|∇Φ|u = −

∫
∂R

Q · ν∂R (3.1)

for each subdomainR of Ω whereνR is the outward unit normal to∂R. In particular we consider a
flux of the form

Q = |∇Φ|qΦ

whereqΦ : Ω → Rn+1 is a flux satisfying

qΦ · ν = 0. (3.2)

Since
d

dt

∫
R

|∇Φ|u =

∫
R

ut |∇Φ|

and ∫
∂R

qΦ · ν∂R|∇Φ| =

∫
R

∇Φ · qΦ |∇Φ|, (3.3)

where we have used Eulerian integration by parts (2.10) and (3.2), it follows that∫
R

|∇Φ|(ut + ∇Φ · qΦ) = 0

for every subdomainR, which implies the partial differential equation

ut + ∇Φ · qΦ = 0 inΩ. (3.4)

We take for the constitutive law thatqΦ is a diffusive flux given by

qΦ = −D∇Φw. (3.5)

Herew is another field variable which will be defined in terms ofu by a constitutive relation andD
is a symmetric diffusion tensor with the property

Dν⊥
· ν = 0 (3.6)

for every tangent vectorν⊥. We assume that there exists ad0 > 0 such that

z ·Dz > d0z · z for all z · ν = 0. (3.7)

This leads to the diffusion equation

ut − ∇Φ · (D∇Φw) = 0 onΩ. (3.8)
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Throughout we assume the initial condition

u(·,0) = u0(·). (3.9)

The constitutive relation betweenu andw is still to be defined. Observe that (3.8) can be written as

ut = PΦ∇ · (DPΦ∇w),

which can be seen as a degenerate parabolic equation, depending on the relation betweenw andu,
becausePΦ has a zero eigenvalue in the normal directionν.

The variational form is then obtained in the following way. We multiply equation (3.8) by a test
functionη and integrate to obtain∫

Ω

{ut − ∇Φ · (D∇Φw)}η|∇Φ| = 0.

Observe that integration by parts, (2.10), together with the observation that

D∇Φw · ν = 0

gives ∫
Ω

D∇Φw · ∇Φη|∇Φ| = −

∫
Ω

∇Φ ·D∇Φwη|∇Φ| +

∫
∂Ω

D∇Φw · ν∂Ωη|∇Φ|.

In order to proceed we need a boundary condition forw on∂Ω. It is natural to impose the zero flux
condition

|∇Φ|D∇Φw · ν∂Ω = 0 on∂Ω (3.10)

and obtain the equivalent variational equation∫
Ω

utη|∇Φ| +

∫
Ω

D∇Φw · ∇Φη|∇Φ| = 0. (3.11)

REMARK 3.1 (Conservation) Letξ : R → R be an arbitrary smooth function and setη = ξ(Φ).
Since∇Φη = ξ ′(Φ)∇ΦΦ = 0 we find the conservation equation

d

dt

∫
Ω

uξ(Φ)|∇Φ| = 0. (3.12)

It follows from the coarea formula that∫ ΦM

Φm

ξ(r)

(∫
Γr

u

)
dr =

∫ ΦM

Φm

ξ(r)

(∫
Γr

u0

)
dr, (3.13)

which implies that on each level surfaceΓr = {x : Φ(x) = r} of Φ we have conservation∫
Γr

u =

∫
Γr

u0. (3.14)
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EXAMPLE 3.2 (Linear diffusion) Settingw = u andD = I we find the heat equation on surfaces,

ut = ∆Φu, (3.15)

and (3.11) becomes
d

dt

∫
Ω

uη|∇Φ| +

∫
Ω

∇Φu · ∇Φη|∇Φ| = 0. (3.16)

Note that for smoothg : R → R the functionu = g(Φ) isΦ-harmonic, that is,

∆Φu = 0.

Setting

g(r) =
1

|Γr |

∫
Γr

u0 (3.17)

we see that in the case of no-flux boundary conditions the long time steady state solution is

u∞ = g(Φ). (3.18)

However, as we will see in the computational Example 5.7 in Section 5, it is possible forg

defined by (3.17) to be discontinuous, which leads to discontinuousΦ-harmonic functions.
Furthermore, it is interesting to observe that the unique steady state of the equation under no-flux

boundary conditions for any positiveλ,

ut = ∆Φu− λ(u−Φ), (3.19)

is u∞ = Φ.

REMARK 3.3 (Diffusion in a layered medium) Observing that

∇Φ · τ =
1

|∇Φ|
∇ · (|∇Φ|τ), ∀τ · ν = 0,

we can rewrite the diffusion equation (3.8) as

(|∇Φ|u)t = ∇ · (DΦ∇w) (3.20)

where
DΦ = |∇Φ|DPΦ . (3.21)

Thus we may view (3.8) as a usual diffusion equation inRn+1 with a special diffusivity tensor and
mass density. We interpret this as a diffusion equation for a striated or layered material whose layers
are infinitesimally thick, tangential to the level surfaces ofΦ and are insulated from each other.

EXAMPLE 3.4 (Fourth order linear diffusion) Setting

w = −∆Φu (3.22)

leads to the fourth order linear diffusion equation

ut = −∇Φ ·D∇Φ(∆Φu). (3.23)
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Using the boundary condition
∇Φu · ν∂Ω = 0 (3.24)

and splitting into two second order equations we obtain the following definition of a weak solution
which only usesH 1 spaces: The pair(u,w) ∈ (H 1

Φ(Ω))
2 is a weak solution of (3.23) if∫

Ω

utη|∇Φ| +

∫
Ω

D∇Φw · ∇Φη|∇Φ| = 0, (3.25)∫
Ω

∇Φu · ∇Φη|∇Φ| −

∫
Ω

wη|∇Φ| = 0, (3.26)

for all η ∈ H 1
Φ(Ω).

3.2 More equations

Other standard equations can be formulated on implicit surfaces in a straightforward manner.

EXAMPLE 3.5 (Nonlinear diffusion) Settingw = f (u) andD = m(u)I we find the nonlinear
diffusion equation

ut = ∇Φ · (K(u)∇Φu) (3.27)

whereK(u) = m(u)f ′(u). Linear diffusion and the porous medium equation are recovered by
suitable choices off andm.

EXAMPLE 3.6 (Parabolic surfacep-Laplacian equation) Settingw = u andD = |∇Φu|
p−2I for

p > 1 yields the following parabolic surfacep-Laplacian equation:

ut = ∇Φ · (|∇Φu|
p−2

∇Φu), (3.28)

which is the gradient flow for the energy

Ep(u) =
1

p

∫
Ω

|∇Φu|
p
|∇Φ|.

EXAMPLE 3.7 (Cahn–Hilliard equation) Setting

w = −ε∆Φu+
1

ε
ψ ′(u),

whereψ is a double well potential (e.g.ψ(u) =
1
4(u

2
−1)2), leads to the fourth order Cahn–Hilliard

equation, [17],

ut = −∇Φ ·D∇Φ

(
ε∆Φu−

ψ ′(u)

ε

)
. (3.29)

EXAMPLE 3.8 (Eulerian Allen–Cahn equation) Consideration of theL2 gradient flow for the
gradient energy functional

E(v) =

∫
Ω

(
ε

2
|∇Φv|

2
+

1

ε
ψ(v)|∇Φ|

)
(3.30)

leads to

εut = ε∆Φu−
1

ε
ψ ′(u). (3.31)
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3.3 Energy estimates

3.3.1 Linear diffusion. A functionu ∈ H 1
Φ(Ω) is a weak solution of (3.8) if∫

Ω

utη|∇Φ| +

∫
Ω

D∇Φu · ∇Φη|∇Φ| = 0 (3.32)

for everyη ∈ H 1
Φ(Ω). Letu be a weak solution. Then choosingη = u leads to

1

2

d

dt

∫
Ω

u2
|∇Φ| +

∫
Ω

D∇Φu · ∇Φu|∇Φ| = 0 (3.33)

and choosingη = ut leads to∫
Ω

u2
t |∇Φ| +

1

2

d

dt

∫
Ω

D∇Φu · ∇Φu|∇Φ| = 0. (3.34)

3.3.2 Fourth order diffusion. Let (u,w) be a weak solution. Then choosingη = w andη = ut
in the above equations (3.25), (3.26) leads to∫

Ω

utw|∇Φ| +

∫
Ω

D∇Φw · ∇Φw|∇Φ| = 0,

1

2

d

dt

∫
Ω

|∇Φu|
2
|∇Φ| −

∫
Ω

wut |∇Φ| = 0,

which yields
1

2

d

dt

∫
Ω

|∇Φu|
2
|∇Φ| +

∫
Ω

D∇Φw · ∇Φw|∇Φ| = 0. (3.35)

3.3.3 Cahn–Hilliard equation. The pair(u,w) ∈ (H 1
Φ(Ω))

2 is a weak solution of the surface
Cahn–Hilliard equation if ∫

Ω

utη|∇Φ| +

∫
Ω

D∇Φw · ∇Φη|∇Φ| = 0, (3.36)∫
Ω

(
ε∇Φu · ∇Φη +

1

ε
ψ ′(u)η

)
|∇Φ| −

∫
Ω

wη|∇Φ| = 0, (3.37)

for all η ∈ H 1
Φ(Ω). Let (u,w) be a weak solution. Then choosingη = w andη = ut in the above

equations leads to ∫
Ω

utw|∇Φ| +

∫
Ω

D∇Φw · ∇Φw|∇Φ| = 0,

d

dt

∫
Ω

(
ε

2
|∇Φu|

2
+

1

ε
ψ(u)

)
|∇Φ| −

∫
Ω

wut |∇Φ| = 0,

which yields

d

dt

∫
Ω

(
ε

2
|∇Φu|

2
+

1

ε
ψ(u)

)
|∇Φ| +

∫
Ω

D∇Φw · ∇Φw|∇Φ| = 0. (3.38)
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4. Finite element approximation

4.1 Semi-discrete approximation

4.1.1 Linear diffusion. Our Eulerian SFEM is based on the the weak form (3.32). FindU(·, t) ∈

Sh such that ∫
Ω

Utη|∇Φ| +

∫
Ω

D∇ΦU · ∇Φη|∇Φ| = 0 ∀η ∈ Sh. (4.1)

Setting

U(·, t) =

N∑
j=1

αj (t)χj (·)

we find that∫
Ω

N∑
j=1

αj,tχjη|∇Φ| +

∫
Ω

D
N∑
j=1

αj (t)∇Φχj · ∇Φη|∇Φ| = 0 ∀η ∈ Sh,

and takingη = χk, k = 1, . . . , N , we obtain

Mα̇ + Sα = 0 (4.2)

whereM is the weighted mass matrix

Mjk =

∫
Ω

χjχk|∇Φ|, j, k = 1, . . . , N,

andS is the weighted stiffness matrix

Sjk =

∫
Ω

D∇Φχj∇Φχk|∇Φ|, j, k = 1, . . . , N.

Because of the assumption onΦ the mass matrixM(t) is uniformly positive definite, so that we
get existence and uniqueness of the semi-discrete finite element solution.

REMARK 4.1 A significant feature of our approach is the fact that the matricesM andS depend
only on the evaluation of the gradient of the level set functionΦ. The method does not require an
explicit numerical evaluation of surface quantities.

4.1.2 Fourth order linear diffusion. Find (U(·, t),W(·, t)) ∈ (Sh)
2 such that∫

Ω

Utη|∇Φ| +

∫
Ω

D∇ΦW · ∇Φη|∇Φ| = 0, (4.3)∫
Ω

∇ΦU · ∇Φη|∇Φ| −

∫
Ω

Wη|∇Φ| = 0, (4.4)

for everyη ∈ Sh. Setting

U(·, t) =

N∑
j=1

αj (t)χj (·), W(·, t) =

N∑
j=1

βj (t)χj (·)
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we find that, for allη ∈ Sh,∫
Ω

N∑
j=1

αj,tχjη|∇Φ| +

∫
Ω

D
N∑
j=1

βj (t)∇Φχj · ∇Φη|∇Φ| = 0,

∫
Ω

N∑
j=1

αj (t)∇Φχj · ∇Φη|∇Φ| −

∫
Ω

N∑
j=1

βjχjη|∇Φ| = 0,

and takingη = χk, k = 1, . . . , N , we obtain

Mα̇ + Sβ = 0, (4.5)

S0α −Mβ = 0, (4.6)

where

S0
jk =

∫
Ω

∇Φχj∇Φχk|∇Φ|, j, k = 1, . . . , N,

which yields

Mα̇ + SM−1S0α = 0. (4.7)

4.1.3 Cahn–Hilliard equation. We formulate a mixed finite element scheme based on the
splitting into second order elliptic operators (cf. [7]) to obtain the scheme: find(U(·, t),W(·, t)) ∈

(Sh)
2 such that ∫

Ω

Utη|∇Φ| +

∫
Ω

D∇ΦW · ∇Φη|∇Φ| = 0, (4.8)

ε

∫
Ω

∇ΦU · ∇Φη|∇Φ| +

∫
Ω

1

ε
Πh(ψ

′(U))η|∇Φ| −

∫
Ω

Wη|∇Φ| = 0, (4.9)

for everyη ∈ Sh. Here we useΠh to denote the usual interpolation operator forSh. Setting

U(·, t) =

N∑
j=1

αj (t)χj (·), W(·, t) =

N∑
j=1

βj (t)χj (·),

in a similar manner to the fourth order linear diffusion case we find that

Mα̇ + Sβ = 0, (4.10)

εS0α +
1

ε
MΨ ′(α)−Mβ = 0, (4.11)

where{Ψ ′(α)}j = ψ ′(αj ), which yields

Mα̇ + εSM−1S0α +
1

ε
SΨ ′(α) = 0. (4.12)
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4.2 Time stepping

4.2.1 Implicit Euler scheme. The time discretization in our computations may be carried out by
an implicit method. We introduce a time step sizeτ > 0 and use upper indices for the time levels.
ThusUm representsU(·, mτ). With these notations we propose the following algorithm.

ALGORITHM 4.2 (Fully discrete scheme) LetU0
∈ Sh be given. Form = 0, . . . , mT solve the

linear system

1

τ

∫
Ω

Um+1χj |∇Φ| +

∫
Ω

D∇ΦW
m+1

· ∇Φχj |∇Φ| =
1

τ

∫
Ω

Umχj |∇Φ| (4.1)

for all j = 1, . . . , N.

In the case of the second order linear diffusion equationW = U this leads to the linear algebraic
system

(M+ τS)αm+1
= Mαm. (4.2)

For the linear fourth order diffusion equation withD = I we obtain the linear system

(M+ τS0M−1S0)αm+1
= Mαm. (4.3)

Gradient stable time stepping schemes for the Cahn–Hilliard system such as backward Euler
and convexity splitting are formulated, for example, in [4, 16]. Here we chose to implement the
following simple scheme withD = I :

(M+ τεS0M−1S0)αm+1
= Mαm −

1

ε
SΨ ′(αm). (4.4)

The symmetric systems in the computational examples are solved using the conjugate gradient
algorithm which was adequate for the purposes of this work.

5. Numerical results

EXAMPLE 5.1 To start, we solve the heat equation on a circle. We chooseΩ to be the annular
region with outer radius 1 and inner radius 0.5. We setΦ(x) = |x| − 0.75 so that the boundary∂Ω
comprises level lines ofΦ. The functionu(x, t) = exp(−t/|x|2)x2/|x| is an exact solution of

ut −∆Γ u = 0

on Γ (t) = Γ0 = {x ∈ R2 : |x| = 0.5} with initial datau0(x) = x2/|x|. We have chosen the
couplingτ = h2 in order to show the higher order convergence forL2 andL∞ errors. The time
interval isT = 1.0. In Table 1 we show the absolute errors and the corresponding experimental
orders of convergence for the norms onΩ,

L∞(L2
Φ(Ω)) = sup

(0,T )
‖u− uh‖L2

Φ (Ω)
, L2(H 1

Φ(Ω)) =

(∫ T

0
‖∇Φ(u− uh)‖

2
L2
Φ (Ω)

)1/2

,

L∞(L∞(Ω)) = sup
(0,T )

‖u− uh‖L∞(Ω), L2(H 1(Ω)) =

(∫ T

0
‖∇(u− uh)‖

2
L2(Ω)

)1/2

,
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and for the following norms on the zero level setΓ0 = {x ∈ R2 : Φ(x) = 0}:

L∞(L2
Φ(Γ0)) = sup

(0,T )
‖u− uh‖L2

Φ (Γ0)
, L2(H 1

Φ(Γ0)) =

(∫ T

0
‖∇Φ(u− uh)‖

2
L2
Φ (Γ0)

)1/2

,

L∞(L∞(Γ0)) = sup
(0,T )

‖u− uh‖L∞(Γ0).

For an errorE(h1) andE(h2) for the grid sizesh1 andh2 the experimental order of convergence is
defined as eoc(h1, h2) = log E(h1)

E(h2)

(
log h1

h2

)−1.

TABLE 1
Heat equation on circles. Errors and experimental orders of convergence for Example 5.1

h L∞(L2
Φ (Ω)) eoc L2(H1

Φ (Ω)) eoc L2(H1(Ω)) eoc L∞(L∞(Ω)) eoc

0.5176 0.07401 - 0.1090 - 0.09565 - 0.1139 -
0.2831 0.02594 1.74 0.03986 1.67 0.1325 0.93 0.04539 1.52
0.1500 0.007796 1.89 0.01587 1.45 0.07188 0.96 0.01696 1.55
0.07716 0.002192 1.91 0.007147 1.20 0.03879 0.93 0.006144 1.53
0.03912 0.0006067 1.89 0.003438 1.08 0.02042 0.95 0.002333 1.43
0.01969 0.0001694 1.86 0.001699 1.03 0.01061 0.95 0.0009357 1.33

h L∞(L2
Φ (Γ0)) eoc L2(H1

Φ (Γ0)) eoc L∞(L∞(Γ0)) eoc

0.5176 0.07401 - 0.0874 - 0.06148 -
0.2831 0.03142 1.77 0.04512 1.10 0.02389 1.57
0.1500 0.009560 1.88 0.02653 0.84 0.009116 1.52
0.07716 0.002690 1.91 0.01149 1.26 0.002446 1.98
0.03912 0.0006343 2.13 0.006237 0.90 0.0005447 2.21
0.01969 0.0001484 1.89 0.002943 1.10 0.0001484 1.89

EXAMPLE 5.2 In Figure 1 we show a computation on the domainΩ = (−1,1) × (−1,1) of the
solution of

ut −∆Φu = 0

with Φ(x) = x2 and initial valueu0 = χΩ0, whereΩ0 = (−1,−0.9) × (−0.5,0.5). The grid
orientation is(1,−1), (0,1), (1,0), (1,1) and thus aligned with the levels ofΦ. The grid size was
h = 0.04419 and time step size wasτ = 0.1h2. We see that the numerical diffusion vertical to the
levels ofΦ is quite small. The figure shows the level lines of the solution betweenu = 0.05 and
u = 1.0 and the distance of the level lines is 0.05.

In Figure 2 we show a similar example but now we have distributed the “initial mass” onΩ0 =

{(x1, x2) : −1< x1 < δ, x1 − δ−
1
2

√
3<

√
3x2 < x1 − δ+

1
2

√
3}. With the choiceδ = 0.8997889

the same amount of mass has to be diffused along the levels ofΦ as in the previous example. We
have now chosenΦ(x) = 0.5(x1 −

√
3x2) so that the levels ofΦ are not aligned with the grid

anymore. We observe that the numerical diffusion vertical to the levels ofΦ appears to be larger
than for the previous orientation of the levels ofΦ. The level lines in Figure 2 are spaced as in the
previous figure.
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FIG. 1. Example 5.2: Horizontal level lines ofΦ (left). Level lines of the solution at time steps 0, 100, 500, 1300.

FIG. 2. Example 5.2: Level lines ofΦ (left). Level lines of the solution at time steps 0, 100, 500, 1300.

EXAMPLE 5.3 Additionally we computed the same situation as in the first part of Example 5.2 but
with initial functionu0 = 0 and with the right hand sidef = 100 sin(20πx2)χ(−1,−0.9)×(−1,1). The
results are shown in Figure 3.

FIG. 3. Values between−1 and 1 of the solution of Example 5.3 for the time steps 50, 100 and 450. The colour scale is
shown. We only show values of the solution between−1 and 1. Blue represents the value−1, green 0.0 and red the value 1.
(For the colours here and in subsequent figures, see the pdf file at http://www.ems-ph.org.)

EXAMPLE 5.4 In the case of homogeneous Neumann boundary conditions the solution is
conserved on each level surface. Thus we expect that the solutionu evolves to a stationary
solution which is constant on each level line ofΦ. In this example we take the level set function
Φ(x) = x2 − 2(1 − x2

2) sin(0.3) sin(2πx1) and the initital valueu0(x1, x2) = x2 on the domain
Ω = (−1,1) × (−1,1). In Figure 4 we show level lines ofu for several time steps. The function
u becomes constant on the level lines ofΦ. Therefore in Figure 4 we do not plot the levels ofΦ,
since they are nearly identical with the last shown time step.
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FIG. 4. Level lines of the solutionu for the time steps 0, 100, 400 and 5200. The last picture nearly shows the level lines
of Φ. Levels between−1 and 1 equally spaced with increment 0.2 are shown.

EXAMPLE 5.5 Let nowΩ be the unit disk. We solve with initial datau0(x) = x1 on the levels
of the level set functionΦ(x1, x2, t) = (x1 − 0.25)2 + (x2 + 0.1)2, so that the level sets ofΦ are
circles. (Note the degeneracy ofΦ at the centre). In this example we solve under Dirichlet boundary
conditionsu(·, t) = u0 on ∂Ω. Thus we see thatΩ may be decomposed into setsΩ2 in which the
level lines have two end points on∂Ω,Ω1 with no end points on∂Ω and a dividing single level line
Γ∗ which touches∂Ω at just one point. Clearly the Dirichlet boundary condition plays a role in the
evolution on the level surfaces inΩ2 and in the long time the solution converges to a solution of a
boundary value problem which is linear in the arc length on each circular level surface. On the other
hand, the solution is conserved on closed level surfaces and in the long time the solution converges
to a constant on these circles. This may be observed in the figures. We used a triangulation with
1089 nodes,h = 0.1137 andτ = 0.001294.

FIG. 5. Solution of theΦ-heat equation under Dirichlet boundary conditions. Levels ofΦ and then levels ofu for the time
steps 0,200,800,1500 and 3000. Levels between−1 and 1 are shown at an increment of 0.1.
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EXAMPLE 5.6 We show computations for a three-dimensional problem with homogeneous
Neumann boundary conditions. The computational domain isΩ = (−1,1)3, and we use the level
set function

Φ(x1, x2, x3) = x1x3 − 2(1 − x2
3) sin 0.3 sin(2πx1).

The initial value is taken to beu0(x1, x2, x3) = x2. In Figures 6, 7 and 8 we show various level
surfaces ofΦ which are coloured according to the values ofuh at three time steps. The continuous
solution tends to a constant on the levels ofΦ. The time step size wasτ = 3.1250e − 04 and we
used piecewise linear elements with 35937 nodes. The colour coding is such that blue corresponds
to the value−1, red to the value 1 with a linear scale between.

FIG. 6. Level surfacesΦ = −0.75,−0.5,0.0,0.5,0.75 with colouring according to the values ofuh(·,0).

FIG. 7. Level surfacesΦ = −0.75,−0.5,0.0,0.5,0.75 with colouring according to the values ofuh: 1000-th time step.

FIG. 8. Level surfacesΦ = −0.75,−0.5,0.0,0.5,0.75 with colouring according to the values ofuh: 3900-th time step.

EXAMPLE 5.7 The purpose of this computational example is to show how our algorithm behaves
for a nonsmooth level set functionΦ. Thus this result is purely experimental. We have chosen
Ω = (−1,1)× (−1,1) as domain and

Φ(x1, x2) =

√
(x1 − x01)2 + δ2 +

√
(x2 − x02)2 + δ2

as a regularization ofΦ(x1, x2) = |x1 − x01| + |x2 − x02| with x01 = 0.25, x02 = −0.75 and
δ = 10−4. As initial value we have taken the functionu0(x1, x2) = x1. In Figure 9 we show
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the level lines ofΦ and the colouring is done according to the values of the solutionu. We have
used the grid sizeh = 0.044 and the time step sizeτ = 0.0002. Note that we are approximating
solutions on curves with corners. Computationally there were no special problems in connection
with the “nonsmoothness” ofΦ or with the size of the regularization parameterδ. Again we consider
homogeneous Neumann boundary conditions so that the solution is conserved on each level set.
Since the level curves have different lengths and in each corner ofΩ there is a level line which
divides the level lines into a set without corners and a set with corners. The length of the level
lines varies jumps discontinuously at these dividing lines. Thus in the steady state we expect the
development of a solution which jumps discontinuously across these dividing lines. This is seen
clearly in the third image of Figure 9 and in Figure 10.

FIG. 9. Level lines ofΦ (left) and level lines of the solutionu for the time stepst = 0.00, t = 0.1953 andt = 3.164. The
colouring of the values of u ranges between blue (−1.0) and red (1.0). We also show the levels ofΦ.

FIG. 10. Equally spaced level lines of the solution at time 3.164 close to the middle of the upper part of the domainΩ

exhibiting the development of a discontinuity ofu.

EXAMPLE 5.8 We solve the Cahn–Hilliard equation on the annulus with inner radius 0.5 and outer
radius 1.0. The levels ofΦ are concentric circles,

Φ(x) = |x| − 0.75, (5.1)

and as initial function we choose

u0(x) = 0.01 sin(4ϕ + r1)(sin(7ϕ + r2)− 0.25) sin(10ϕ + r3),

wherer1, r2 andr3 are random numbers from(0,1) andϕ is the polar angle in thex1, x2-plane.
The parameterε was chosen as 0.05. The grid size wash = 0.02492 and the time step size was
τ = 0.0006215. The results are shown in Figure 11.
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0.008
-0.012
 

0.003
-0.004
 

1.085
-1.085
 

FIG. 11. Solution of theΦ-Cahn–Hilliard equation on an annulus withΦ as in (5.1). From left to right we show the solution
at the timest = 0.0,t = 0.006837 andt = 0.7402. The values are coloured between minimum and maximum of the solution
according to the scale shown. Second row: plot of the level lines of the solution for the same situations.

In order to test the numerical diffusion in the direction vertical to the levels ofΦ we compute
the following example. The domainΩ andΦ are chosen as in the previous example. We choose as
initial value the discontinuous function

u0(x) = χ{x:‖x|−0.75|<0.01}(x)0.1 sin(20πϕ). (5.2)

The results in Figure 12 show that the decomposition effect appears to be quite local on|x| = 0.75.

FIG. 12. Solution of theΦ-Cahn–Hilliard equation on an annulus withΦ as in (5.1) and the initial value (5.2). From left to
right we show level lines of the solution at the timest = 0.0, t = 0.002386,t = 0.04360 andt = 0.1304. The values are
coloured between minimum (blue) and maximum (red) of the solution according to the scale shown in Figure 11. Note that
the green colour stands for values of the solution close to 0.
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6. Concluding remarks

We have shown how the finite element method can be employed to solve PDEs on implicit surfaces.
A numerical example indicates that the rate of convergence is optimal. In a practical example where
one wishes to use this approach to approximate the solution on just one surface there are some
issues to be addressed. In particular we mention the need to extend the data off the given surfaceΓ0
into a neighbourhood and to consider the formulation in a narrow band. These have been addressed
in the context of finite difference approximations in [19, 20]. Anh-narrow band formulation of our
finite element approach to equations on implicit surfaces is proposed in [8] for elliptic equations. An
optimal orderH 1(Γ ) error bound is proved and numerical experiments are presented which indicate
higher order convergence inL2(Γ ). The numerical analysis in the case of parabolic equations and
computations on large domainsΩ is still open.

In [14] we have extended the method proposed in this paper to parabolic equations on evolving
surfaces in the spirit of our evolving surface finite element method (ESFEM). An aim is to develop
a numerical tool for the computation of the motion of an interface with complex morphology on
which a concentration is being diffused and advected (see for example [15]).
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