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Eulerian finite element method for parabolic PDEs on implicit surfaces
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We define an Eulerian level set method for parabolic partial differential equations on a stationary
hypersurface™ contained in a domaif2 c R"+1. The method is based on formulating the partial
differential equations on all level surfaces of a prescribed funcfiowhose zero level set if'.
Eulerian surface gradients are formulated by using a projection of the gradi@“?ﬁi% onto the

level surfaces of. These Eulerian surface gradients are used to define weak forms of surface elliptic
operators and so generate weak formulations of surface elliptic and parabolic equations. The resulting
equation is then solved in one dimension higher but can be solved on a mesh which is unaligned to the
level sets ofp. We consider both second order and fourth order elliptic operators with natural second
order splittings. The finite element method is applied to the weak form of the split system of second
order equations using piecewise linear elements on a fixed grid. The computation of the mass and
element stiffness matrices is simple and straightforward. Numerical experiments are described which
indicate the power of the method. We describe how this framework may be employed in applications.

1. Introduction

There has been burgeoning interest in the computation of partial differential equations on curves and
surfaces. Models involving partial differential equations on surfaces arise in many areas including
material science, bio-physics, fluid mechanics and image processing. For example, we refer to [10,
217,129] for applications of the Allen—Cahn and Cahn—Hilliard equations to phase ordering and
separation on surfaces. Models for thin fluid films on surfaces have been developed(inl [21, 24].
For image processing and geometry applications we mention geodesic flow of curves on surfaces
and active contours for segmentation on surfaces, [6, 22, 23, 28].

The work in this paper is concerned with an approach to the formulation and approximation
of parabolic equations on a prescribed stationagimensional surfacé™ in R"*1 (n = 1,2)
using an implicit representation of the surface. The surface is just one level set of a prescribed
function @ and the partial differential equation and its solution are extended to a daghain
R*+1 containing the surface. A general framework for formulating partial differential equations
on implicit surfaces was proposed by the authors bf [3]. They considered time dependent second
order linear and nonlinear diffusion equations in the context of finite difference approximations on
rectangular grids independent of the surfaces[ In [[20, 19] the authors presented finite difference
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methods for fourth order parabolic equations on implicit surfaces. A finite element approximation
of elliptic equations on implicit surfaces is presented_in [5].

Our work is concerned with the finite element discretization of second and fourth order parabolic
equations on surfaces. The idea is to solve PDEs on all level surfadesnof2 by discretizing a
suitable variational formulation by a finite element method on a mesh which is independent of the
surfaces. This defines an Eulerian formulation. Stable time stepping schemes are formulated in a
natural way. By using second order splitting of the fourth order operatpts;zonforming finite
element schemes can be employed for fourth order problems such as the Cahn—Hilliard equation.
When the boundary aP consists of level sets @ it is not necessary to impose artificial boundary
conditions because the triangulation is fitted to the doniA remarkable feature of our numerical
experiments is that, on a fixed level set, finite element approximations converge at an optimal rate.
Our approach can be extended to second order diffusion problems on evolving surfaces (see [14]).
See alsol]1] and [30]. The computing times for our method are similar to computing times for
cartesian PDEs.

This approach is in contrast to approximating the PDEs directly on triangulated surfates. In [11],
[12] and [13] we introduced the surface and evolving surface finite element method (respectively
SFEM and ESFEM) for the numerical solution of elliptic and parabolic equations on prescribed
stationary and moving hypersurfaces. The method relies on approximating the partial differential
equation on a triangulated surfaee=€ 2) or polygonal curve{ = 1). Naturally, where applicable,
this method is more efficient than solving PDEs on implicit surfaces. On the other hand, in
applications a surface might arise as a level set of a function computed from solving another
coupled equation in which case the method of this paper may be attractive. Also when the surface
is complex and evolving with possible topology changes it may be advantageous to employ a level
set description of the surface. Finally, the method is appropriate when a PDE has to be solved on all
level sets of a given function.

The layout of the paper is as follows. We begin in Sedfipn 2 by defining notation and essential
concepts from elementary differential geometry necessary to describe the problem and the numerical
method. The equations and variational formulations are presented in $éction 3. InSection 4 the finite
element method is defined. The results of numerical experiments are presented inf$ection 5. Finally,
in Sectior] § we make some concluding remarks.

2. Level set tangential gradients

Let I" be a compact Lipschitz hypersurface without boundar’ifi! which has a representation
defined by a level set functioh = @ (x), x € R**1, so that

Fr=@xeR:okx) =0

wheres? is an open subset @t with Lipschitz boundary$2 and unit outward pointing normal
vye. We assume thak satisfies the nondegeneracy condition

Vo £0 inQ. (2.1)

In particular we suppose that
@ e COL(2).
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The orientation of” is set by taking the normalto I" to be in the direction of increasing. Then
we define an extension ofto all of £2 using the normal vector field

V& (x) R
vix) = ——, xIng2.
[V (x)]

A possible choice fow is a signed distance functiehand in that casév®| = |Vd| = 1 on 2.
We define the projection

Po:=1—vQRv, (Pe)ij =6ij —vivy, i,j=1...,n+1 (2.2)

ThusP(x) is the projection onto the tangent space of the surface= {y € R**1 : & (y) = r},
r = @(x), so thatPgv = 0. We define the Eulerian surface gradient by

Von :=PeVn (2.3)

and observe that
Ven=Vn—-Vn-vv

where, forx andy in R**1, x . y is the Euclidean scalar product a¥g denotes the usual gradient
onR"*1, Note that
Vqsr} -v=20
and that for any level surfacg.,
Vrn=Venlr,
only depends on the values gfrestricted tol', and is the tangential (surface) gradient Bn

Denoting the components &y n by Dl.‘z’n = dy,;n — Vn - vv; we define the surface divergence of

a vector fields by
n+1

Vo &= DP&.
i=1

Eulerian surface elliptic operators can then be defined in a natural way. For example the Eulerian
Laplace—Beltrami operator is defined by

Apn = Vg - Von.
The Eulerian mean curvature of a level surfac@of C11(2) is defined by

Vo

Hp =—V.v=-V.——.
? Vo
We recall thecoarea formula

LEMMA 2.1 (Coarea formula) Lep : 2 — R be Lipschitz continuous witkb,; := sup® and
®,, = inf @. Assume that for for each € R the level setl}, ;= {x € R"*1: &(x) = r}is a
Lipschitzn-dimensional hypersurface I"*+1. Suppose) : £2 — R is continuous and integrable.

Then
Dy
/ (f n)dr:/ n|vVa|. (2.4)
Dy Iy 2
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For® e C11(2) we define the Hilbert spaces

L% (£2) := {n Lebesgue measurable 6h: (1, n)e < oo}, (2.5)
Hg(R2) 1= {n € L5(2) : Von € L5(2)}, (2.6)
where
n,mae :=/anlv¢|, . m 1 = . me + (Von, Ven)e (2.7)
and we set
Iz @) = mmd s Inllse) = Ul o) + 1Vonl?s o )2 (2.8)

Here we use the distributional derivatiVig n which is defined in the usual way using the equation
(2.9) of the following lemma which gives the Eulerian formula for integration by parts over level
surfaces.

LEMMA 2.2 (Eulerian integration by parts) Lete H; (2) andQ € (H%(.Q))”“. Then
/ Von|Ve| = —f an>VIV¢>I+/ Ny —v-vyev)|Ve|, (2.9)
2 2 a2

/ Vo - Q)|VP| = —/ HpnQ - v|VP| +/ nQ - (vyo — v -vyv)|Ve|. (2.10)
2 2 082

Proof. We prove the first equation, from which the second follows. We employ the notatien
9/0x; ando;; = 82/8x,-8xj. Elementary calculations yield

% |IVP| = v ® = (D*®v);,
IV®|9jvr = 0jx® — v (D?Dv);,
VO |Hp = — Tr(D?®) + v - D*®v,

whereD?® is the Hessian matrix of second derivatives; Jis the trace of a matrix and we employ
the summation convention for repeated indices.
Using the definition oV we find that

LHS = / Von|Vo| = / IVO|(Vn —v-Vnv)
Q2 2
and then we employ the standard integration formul&omt follows that
(LHS); = —/ n3i|V¢|+/ nam(‘)ivm|v(p|)+/ Ve (vae)i—vi(v-vge)) = I+11+111.
2 2 082
Straightforward calculations yield
11 =/ n(v; TH(D?®) + (D?*Pv); — v - D?>®vvy).
2

Combining/ and! I using the formula foiHHy gives the desired result. O

REMARK 2.3 The boundary terms in the integration by parts formulae disappearmwhen .
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3. PDEs on surfaces
3.1 Conservation and diffusion

Let® : 2 — R be a prescribed nondegenerate level set functiond et2 — R*+1 be a given
flux. Then the Eulerian conservation law we consider is

d
d_/ |V<D|u=—/ Q- vyr (3.2)
t JR AR

for each subdomai of £2 wherevy, is the outward unit normal tdR. In particular we consider a
flux of the form

Q=|VPlge

wheregs : 2 — R*1is a flux satisfying

qe -v =0. 3.2)
Since q
— Volu = Vo
" /R Vo lu /R V|
and
/ qe - Vor|VP| =/ Vo - qo|VP|, (3.3)
JR R

where we have used Eulerian integration by parts {2.10)[and (3.2), it follows that
[ 1901+ Vo - 40) = 0
R

for every subdomaim®, which implies the partial differential equation
ur +Ve -qo =0 ing2. (3.4)
We take for the constitutive law tha, is a diffusive flux given by
go = —DVgpw. (3.5)

Herew is another field variable which will be defined in terms«dfy a constitutive relation ant
is a symmetric diffusion tensor with the property

Dvt.v=0 (3.6)
for every tangent vectar-. We assume that there existd@> 0 such that
z-Dz>doz-z forallz-v=0. (3.7)
This leads to the diffusion equation

u; — Vo - (DVgpw) =0 o0ng2. (38)
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Throughout we assume the initial condition
u(-, 0) = uo("). (3.9)
The constitutive relation betweenandw is still to be defined. Observe that (B.8) can be written as
u; = PopV - (DPsVuw),

which can be seen as a degenerate parabolic equation, depending on the relation oetweean
becauséPy has a zero eigenvalue in the normal direction

The variational form is then obtained in the following way. We multiply equafior] (3.8) by a test
functionn and integrate to obtain

[ = Vo - @Vounniver <o
2
Observe that integration by parts, (3.10), together with the observation that
DV@U) -v=20
gives
/ DVeow - Ven|VO| = —/ Vo - DVpwn|V®| —i—/ DVeow - vyon|Ve|.

2 2 Eles

In order to proceed we need a boundary conditionf@n 2. It is natural to impose the zero flux

condition
V@ |DVgpw - vy =0 0nos2 (3.10)

and obtain the equivalent variational equation

/uﬂﬂV(DH—/ DVew - Ven|Vo| =0. (3.11)
2 2

REMARK 3.1 (Conservation) Let : R — R be an arbitrary smooth function and set £(®).
SinceVgn = £'(@)Ve @ = 0 we find the conservation equation

E/ UE(P)|VP| = 0. (3.12)
dr o

It follows from the coarea formula that

Dy Dy
/ E(r) (/ u) dr = f E(r) (/ uo> dr, (3.13)
D Iy D, I

which implies that on each level surfafe = {x : @(x) = r} of & we have conservation

/ru 2/, uo. (3.14)
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ExAamPLE 3.2 (Linear diffusion) Settingy = u andD = 7 we find the heat equation on surfaces,
u; = Agplt, (3.15)
and [3.11) becomes d
—/ un|v¢|+/ Vou - Ven|Ve| = 0. (3.16)
dr I?) I?)
Note that for smootlg : R — R the functionu = g(®) is @-harmonic, that is,
Aq)M =0.

Setting

1
¢) = | uo (3.17)
|Fr| I
we see that in the case of no-flux boundary conditions the long time steady state solution is
Uoo = (D). (3.18)

However, as we will see in the computational Exanjplé 5.7 in Seflion 5, it is possibje for
defined by[(3.1]7) to be discontinuous, which leads to discontindeharmonic functions.

Furthermore, it is interesting to observe that the unique steady state of the equation under no-flux
boundary conditions for any positive

uy = Agpu — A(u — @), (3.19)

ISUgo = PD.

RemMARK 3.3 (Diffusion in a layered medium) Observing that

1
V¢~I=WV-(|V®|t), Vt-v=0,

we can rewrite the diffusion equatidn (B.8) as
(IV@lu); =V - (Do Vw) (3.20)

where
Do = |VP|DPyp. (3.21)

Thus we may view (3]8) as a usual diffusion equatioffri* with a special diffusivity tensor and
mass density. We interpret this as a diffusion equation for a striated or layered material whose layers
are infinitesimally thick, tangential to the level surfaceoénd are insulated from each other.

ExampLE 3.4 (Fourth order linear diffusion) Setting
w=—Agpu (3.22)
leads to the fourth order linear diffusion equation

Uur = —V@ -'Dng(Aqbu). (323)
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Using the boundary condition
Vou -vyo =0 (3.24)
and splitting into two second order equations we obtain the following definition of a weak solution
which only usei* spaces: The paiw, w) € (H3(£2))? is a weak solution of (3.23) if
/ u[n|V¢|+/ DVew - Ven|Ve| =0, (3.25)
2 2
/ V¢M~V¢7]|V<D|—f wn|Ve| =0, (3.26)
2 2

foralln € H3($2).

3.2 More equations
Other standard equations can be formulated on implicit surfaces in a straightforward manner.

ExAmMPLE 3.5 (Nonlinear diffusion) Settingg = f(u) andD = m(u)Z we find the nonlinear
diffusion equation
u; = Ve - (K(u)Veu) (3.27)

where K (u) = m(u) f'(u). Linear diffusion and the porous medium equation are recovered by
suitable choices of andm.

ExAMPLE 3.6 (Parabolic surfacg-Laplacian equation) Setting = « andD = |Veu|P~2T for
p > lyields the following parabolic surfageLaplacian equation:

= Vo - ((Voul”*Vou), (3.28)
which is the gradient flow for the energy
1
Ep(u) = —/ |Voul? V.
pJ
ExampLE 3.7 (Cahn—Hilliard equation) Setting
1 !/
w=—€Agpu + —¥ (u),
€

wherey is a double well potential (e.gr (1) = %(uz— 1)2), leads to the fourth order Cahn—Hilliard
equation,[[17],
Iﬂ’(u)>

€

Uur = —V@ ~DV¢ (Equu — (329)

ExAMPLE 3.8 (Eulerian Allen—Cahn equation) Consideration of the gradient flow for the
gradient energy functional

E(v)=/ (§|V¢v|z+3w<v>|va>|) (3.30)
Q €

leads to 1
€u; = eApu — ' (u). (3.31)
€
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3.3 Energy estimates
3.3.1 Linear diffusion. A functionu € Hq%(Q) is a weak solution 08) if

/ um|Vao| —i—/ DVeu-Ven|Vo| =0 (3.32)
2 9}

for everyn € Héla (£2). Letu be a weak solution. Then choosing= u leads to

1d
—— u2|v<p|+/ DVeu - Vou|VP| =0 (3.33)
2dt 2 I?)
and choosing = u, leads to
2 1d
u?lVo|+ = — [ DVeu - Veu|Ve| =0. (3.34)
Q 2dr Q

3.3.2 Fourth order diffusion. Let (u, w) be a weak solution. Then choosing= w andn = u,
in the above equations (3]25), (3.26) leads to

/utw|Vd>|—|—/ DVgw - Vow|VP| = 0,
2 2
1df|v 1’|V / V| =0
- u - wu =0,
2dr Jo ® 2 !

which yields
1d
——/ |V¢u|2|VCI§|+/ DVgw - Vow|VP| = 0. (3.35)
2dt Q Q

3.3.3 Cahn-Hilliard equation. The pair(u, w) € (H; (£2))? is a weak solution of the surface
Cahn-Hilliard equation if

/u,n|v¢|+/ DVgw - Von|Ve| = 0, (3.36)
2 Q2

1
/ (qu)u -Veon + ;W(u)n) V| —/ wn|Ve| =0, (3.37)
2 2

foralln e H(%, (£2). Let (u, w) be a weak solution. Then choosing= w andn = u, in the above
equations leads to

/u,w|V¢>|+/ DVeow - Vow|VP| =0,
9} 9}

d € , 1
—/ 5IVoul®+ -y ) | IVP] —/ wu V@[ =0,
dr 0 2 € I?)

which yields

E/ E|V¢u|2+}1ﬂu) |V<1>|+/ DVpw - Vow|VP| = 0. (3.38)
dr o \2 € I?)
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4. Finite element approximation
4.1 Semi-discrete approximation

4.1.1 Linear diffusion. Our Eulerian SFEM is based on the the weak fdrm (3.32). Eitdr) €
Sy, such that

/ U[n|V¢|+/ DVeU -Ven|V®| =0 VneS,. (4.2)
2 2
Setting
N
U= ajt)x()
j=1
we find that

N N
/Za,-,zxjmwwf DY aj(t)Voxj - VonlVe®| =0 Vne S,

and takingn = xx, k= 1,..., N, we obtain
Ma+Sa=0 (4.2)
whereM is the weighted mass matrix
./\/ljsz XixklVel, jk=1,...,N,
Q
andS is the weighted stiffness matrix

Sijf DVoxjVoxxIV®I|, j,k=1...,N.
2

Because of the assumption érthe mass matri¥M (¢) is uniformly positive definite, so that we
get existence and uniqueness of the semi-discrete finite element solution.

REMARK 4.1 A significant feature of our approach is the fact that the matrideasndS depend
only on the evaluation of the gradient of the level set functioriThe method does not require an
explicit numerical evaluation of surface quantities.

4.1.2 Fourth order linear diffusion. Find (U(-, 1), W(-, 1)) € (S;)? such that
/ UV +/ DVeW - Von|Ve| = 0, (4.3)
2 2
/ VoU - Von|VO| —/ Wn|Vo| =0, (4.4)
2 2

for everyn € S;,. Setting

J

N N
U= ai®x(), Wen=> ginx()
=1 j=1
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we find that, for ally € Sy,
N N
/ Zaj,txjmwwf DY Bi(t)Voyx; - VonlVe| =0,
2=1 2 =1
N N
/ Zaj(f)v¢)(j'v¢n|v¢|_/ BixinlVe®| =0,
25 $2 j=1

j=1 J

and takingn = xx, k=1, ..., N, we obtain

Mo +Sp =0, (4.5)
S% — M =0, (4.6)
where
Sjok:/QVq§X/V¢Xk|V¢|, jok=1,....N,
which yields

Ma + SM™18% = 0. 4.7)

4.1.3 Cahn-Hilliard equation. We formulate a mixed finite element scheme based on the
splitting into second order elliptic operators (¢f. [7]) to obtain the scheme(lid ), W(-, 1)) €
(Sn)? such that

/UmIV<15|+/ DVoW - Von|Vo| = 0, (4.8)
2 2
1
e/ V¢>U~V¢>nIV<DI+f gnh(W(U»quﬂ—f WnIVae| = o, (4.9)
2 2 2

for everyn € §;,. Here we uséT;, to denote the usual interpolation operator $gr Setting

N N
UG =Y ajx(), W= Binx),
j=1 j=1
in a similar manner to the fourth order linear diffusion case we find that
Ma +SB =0, (4.10)
1
€S + MY/ (@) - MB =0, (4.11)
€

where{¥’(a)}; = ¥'(«;), which yields

1
M + eSM18% + =S¥/ (@) = 0. (4.12)
€
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4.2 Time stepping

4.2.1 Implicit Euler scheme. The time discretization in our computations may be carried out by
an implicit method. We introduce a time step stze- 0 and use upper indices for the time levels.
ThusU™ represent$/ (-, mt). With these notations we propose the following algorithm.

ALGORITHM 4.2 (Fully discrete scheme) Lé&t° € S, be given. Form = 0, ..., my solve the
linear system

1 1
_/ Um+1x,-|vq>|+/ Dv¢Wm+l-v¢x]-|va>|=—/ U xjlvel (.1)
TJo 0 TJo

forallj=1,..., N.

In the case of the second order linear diffusion equalioa: U this leads to the linear algebraic
system
(M + t8)a"™ 1t = Ma™. (4.2)

For the linear fourth order diffusion equation with= I we obtain the linear system
M + 18OM7L8% et = Ma™. (4.3)

Gradient stable time stepping schemes for the Cahn—Hilliard system such as backward Euler
and convexity splitting are formulated, for example,[in[[4} 16]. Here we chose to implement the
following simple scheme wit® = I:

(M + 1eS"M18% a1 = Mo — %SlI//(am). (4.4)

The symmetric systems in the computational examples are solved using the conjugate gradient
algorithm which was adequate for the purposes of this work.

5. Numerical results

ExamPLE 5.1 To start, we solve the heat equation on a circle. We ch@bse be the annular
region with outer radius 1 and inner radiu$.0We setd (x) = |x| — 0.75 so that the boundaiBs2
comprises level lines ap. The functionu(x, t) = exp(—z/|x|%)x2/|x| is an exact solution of

u— Aru=20

onI'(t) = I'p = {x € R? : |x| = 0.5} with initial dataug(x) = x2/|x|. We have chosen the
couplingr = k2 in order to show the higher order convergence frand L™ errors. The time
interval isT = 1.0. In Tableg[ 1 we show the absolute errors and the corresponding experimental
orders of convergence for the norms@n

T 1/2
0o 72 _ 2,171 _ 2
L5 @) = Sl — il o) L(H“”(Q))_(/o ||vq>(u—uh>||Lé(m> ,

T 1/2
L&) = supllu —unllL=(). LZ(Hl(m):(/O ||V(u—uh)||§2(m> :
0.7T)
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and for the following norms on the zero level $gt= {x € R?: & (x) = 0}:

T 1/2
0o 72 _ _ 2,71 _ _ 2
L¥(L3 (o) = SUplun = uall 3y, L(qu(Fo))—(f(J |V (u uh)nLé(ro)) ,

L(L* (1)) = sup|llu — up ||z (rp)-
O,T)
For an errorE (h1) and E (ko) for the grid sizedi; andha the experimental order of convergence is

defined as ed@y, hz) = log £43 (log 2) ™.

TABLE 1
Heat equation on circles. Errors and experimental orders of convergence for Example 5.1

h L>®(LZ(2)) eoc | L2(H}(2)) eoc | L2(HY(2)) eoc | L®(L™®(2)) eoc
0.5176 | 0.07401 - | 0.1090 - | 0.09565 - | 0.1139 -
0.2831 | 0.02594 1.74| 0.03986 1.67| 0.1325 0.93| 0.04539 1.52
0.1500 | 0.007796 1.89 0.01587 1.45 0.07188 0.96| 0.01696 155
0.07716| 0.002192 1.9 0.007147 1.20| 0.03879 0.93| 0.006144 1.53
0.03912| 0.0006067  1.89 0.003438 1.08 0.02042 0.95| 0.002333 1.43
0.01969 | 0.0001694  1.86 0.001699 1.03 0.01061 0.95| 0.0009357 1.33

h L>®(L2(Ip)) eoc | L2(HL(Ip)) eoc | L®(L*®(Ip)) eoc

0.5176 | 0.07401 - | 0.0874 - | 0.06148 -

0.2831 | 0.03142 1.77| 0.04512 1.10| 0.02389 1.57

0.1500 | 0.009560 1.88 0.02653 0.84| 0.009116 1.52

0.07716| 0.002690 1.91] 0.01149 1.26| 0.002446 1.98

0.03912| 0.0006343 2.13 0.006237 0.90, 0.0005447 2.21

0.01969 | 0.0001484 1.89 0.002943 1.10| 0.0001484 1.89

ExAmPLE 5.2 In Figurd | we show a computation on the dom@ir= (-1, 1) x (-1, 1) of the
solution of

u; — Apu =0

with @ (x) = xp and initial valueug = xgo,, Wheres2p = (-1, —0.9) x (-0.5,0.5). The grid
orientation is(1, —1), (0, 1), (1, 0), (1, 1) and thus aligned with the levels d@f. The grid size was

h = 0.04419 and time step size was= 0.142. We see that the numerical diffusion vertical to the
levels of @ is quite small. The figure shows the level lines of the solution between0.05 and

u = 1.0 and the distance of the level lines i985.

In Figure[2 we show a similar example but now we have distributed the “initial mas€yoa
{(r1,x2) 1 =1 < x1 < 8, x1—8— 3v/3 < V/3xz < x1 — 8+ 3+/3}. With the choicel = 0.8997889
the same amount of mass has to be diffused along the leveisasfin the previous example. We
have now choser (x) = 0.5(x1 — +/3x») so that the levels of® are not aligned with the grid
anymore. We observe that the numerical diffusion vertical to the leveds appears to be larger
than for the previous orientation of the levels®f The level lines in Figurg]2 are spaced as in the
previous figure.
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FiG. 1. Exampl§¢5: Horizontal level lines df (left). Level lines of the solution at time steps 0, 100, 500, 1300.

\

FIG.2. Exampl¢ 5R: Level lines @b (left). Level lines of the solution at time steps 0, 100, 500, 1300.

ExAmMPLE 5.3 Additionally we computed the same situation as in the first part of Exgmple 5.2 but
with initial functionue = 0 and with the right hand sidg¢ = 100 sin207x2) x(-1,-0.9) x(-1.1)- The
results are shown in Figufé 3.

FIG. 3. Values betweer-1 and 1 of the solution of ExampJe 5.3 for the time steps 50, 100 and 450. The colour scale is
shown. We only show values of the solution betwednand 1. Blue represents the valié, green @ and red the value 1.
(For the colours here and in subsequent figures, see the pdf file at http://www.ems-ph.org.)

ExXAMPLE 5.4 In the case of homogeneous Neumann boundary conditions the solution is
conserved on each level surface. Thus we expect that the solutievolves to a stationary
solution which is constant on each level line®f In this example we take the level set function
D(x) = x2 —2(1 — x%) sin(0.3) sin(2r x1) and the initital valua«g(x1, x2) = x2 on the domain

2 = (-1,1 x (-1, 1). In Figure[4 we show level lines of for several time steps. The function

u becomes constant on the level linesdaf Therefore in Figurg]4 we do not plot the levels®f

since they are nearly identical with the last shown time step.
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FiG. 4. Level lines of the solution for the time steps 0, 100, 400 and 5200. The last picture nearly shows the level lines
of @. Levels between-1 and 1 equally spaced with incremen2 @re shown.

ExAMPLE 5.5 Let nows2 be the unit disk. We solve with initial daia(x) = x1 on the levels

of the level set functiom® (x1, x2, 1) = (x1 — 0.252 + (x2 + 0.1)2, so that the level sets @ are

circles. (Note the degeneracy®fat the centre). In this example we solve under Dirichlet boundary
conditionsu(-, t) = ug ond£2. Thus we see thal may be decomposed into s&®s in which the

level lines have two end points @182, £21 with no end points 0@ $2 and a dividing single level line

I, which touche$$2 at just one point. Clearly the Dirichlet boundary condition plays a role in the
evolution on the level surfaces i, and in the long time the solution converges to a solution of a
boundary value problem which is linear in the arc length on each circular level surface. On the other
hand, the solution is conserved on closed level surfaces and in the long time the solution converges
to a constant on these circles. This may be observed in the figures. We used a triangulation with
1089 nodesh = 0.1137 andr = 0.001294.

FIG.5. Solution of thep-heat equation under Dirichlet boundary conditions. Level® @ind then levels of for the time
steps 0200, 800, 1500 and 3000. Levels betweerl and 1 are shown at an increment of.0
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ExamMPLE 5.6 We show computations for a three-dimensional problem with homogeneous
Neumann boundary conditions. The computational domaid is (—1, 1), and we use the level
set function

D (x1, x2, x3) = x1x3 — 2(1 — x%) sin 0.3 sin(2mrx1).

The initial value is taken to beg(x1, x2, x3) = x2. In Figured B[ 7 anfl]8 we show various level
surfaces ofp which are coloured according to the values:pfat three time steps. The continuous
solution tends to a constant on the levelsfofThe time step size was = 3.125Q: — 04 and we

used piecewise linear elements with 35937 nodes. The colour coding is such that blue corresponds
to the value—1, red to the value 1 with a linear scale between.

SRz

FIG.6. Level surface® = —0.75, —0.5, 0.0, 0.5, 0.75 with colouring according to the valuesuf(-, 0).
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FIG.7. Level surface® = —0.75, —0.5, 0.0, 0.5, 0.75 with colouring according to the values:gf: 1000-th time step.
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FIG.8. Level surface® = —0.75, —0.5, 0.0, 0.5, 0.75 with colouring according to the values:gf: 3900-th time step.

ExaMPLE 5.7 The purpose of this computational example is to show how our algorithm behaves
for a nonsmooth level set functiot. Thus this result is purely experimental. We have chosen
2 =(-11 x (-1, 1) as domain and

@ (x1, x2) = v/ (x1 — x01)2 + 82 + v/ (x2 — x02)2 + 862

as a regularization of (x1, x2) = |x1 — xo01| + |x2 — x02| wWith xo1 = 0.25, xp2 = —0.75 and
= 104, As initial value we have taken the functio(x1, x2) = x1. In Figure@ we show
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the level lines of® and the colouring is done according to the values of the solutioffe have

used the grid sizé = 0.044 and the time step size= 0.0002. Note that we are approximating
solutions on curves with corners. Computationally there were no special problems in connection
with the “nonsmoothness” @ or with the size of the regularization parametefgain we consider
homogeneous Neumann boundary conditions so that the solution is conserved on each level set.
Since the level curves have different lengths and in each corn& thfere is a level line which
divides the level lines into a set without corners and a set with corners. The length of the level
lines varies jumps discontinuously at these dividing lines. Thus in the steady state we expect the
development of a solution which jumps discontinuously across these dividing lines. This is seen
clearly in the third image of Figufg 9 and in Figi{irg 10.

FIG.9. Level lines of® (left) and level lines of the solution for the time steps = 0.00,7 = 0.1953 and = 3.164. The
colouring of the values of u ranges between blué.0) and red (10). We also show the levels df.

FIG.10. Equally spaced level lines of the solution at tim#63 close to the middle of the upper part of the dom@in
exhibiting the development of a discontinuity:of

ExAMPLE 5.8 We solve the Cahn—Hilliard equation on the annulus with inner radiLes(®l outer
radius 10. The levels ofp are concentric circles,

@ (x) = |x| — 0.75, (5.1)
and as initial function we choose
uo(x) = 0.01sin4e + r1)(sin(7p + r2) — 0.25) sin(10p + r3),

wherery, rp andrz are random numbers froii®, 1) and¢ is the polar angle in the, x>-plane.
The paramete¢ was chosen as.05. The grid size wag = 0.02492 and the time step size was
T = 0.0006215. The results are shown in Figurég 11.
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FiG. 11. Solution of thep-Cahn—Hilliard equation on an annulus withas in
times = 0.0 = 0.006837 and = 0.7402. The values are coloured b
according to the scale shown. Second row: plot of the level lines of the solution for the same situations

In order to test the numerical diffusion in the direction vertical to the levek® @fe compute

the following example. The domaif2 and® are chosen as in the previous example. We choose as

initial value the discontinuous function
u0(X) = Xpx:|lx|-0.75/<0.01) (¥)0.1SiN207 ). (5.2)
The results in Figurg 12 show that the decomposition effect appears to be quite Igcip00.75.

FIG.12. Solution of thep-Cahn—Hilliard equation on an annulus withas in [5.1) and the initial valug (§.2). From left to
right we show level lines of the solution at the times:= 0.0, + = 0.002386,; = 0.04360 and = 0.1304. The values are

etween minimum (blue) and maximum (red) of the solution according to the scale shown ifi Higure 11. Note that
olour stands for values of the solution close to 0

coloured b
the green c
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6. Concluding remarks

We have shown how the finite element method can be employed to solve PDEs on implicit surfaces.
A numerical example indicates that the rate of convergence is optimal. In a practical example where
one wishes to use this approach to approximate the solution on just one surface there are some
issues to be addressed. In particular we mention the need to extend the data off the givensurface
into a neighbourhood and to consider the formulation in a narrow band. These have been addressed
in the context of finite difference approximations(in|[19} 20]. Asmarrow band formulation of our
finite element approach to equations on implicit surfaces is proposed in [8] for elliptic equations. An
optimal orderH1(I") error bound is proved and numerical experiments are presented which indicate
higher order convergence i?(I"). The numerical analysis in the case of parabolic equations and
computations on large domaigixis still open.

In [14] we have extended the method proposed in this paper to parabolic equations on evolving
surfaces in the spirit of our evolving surface finite element method (ESFEM). An aim is to develop
a numerical tool for the computation of the motion of an interface with complex morphology on
which a concentration is being diffused and advected (see for example [15]).
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