
Interfaces and Free Boundaries10 (2008), 79–86
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In this article under the assumption of “small” density for the negativity set, we prove local Lipschitz
regularity for the two-phase minimization problem with free boundary for the functional

Ep(v, Ω) =

∫
Ω

[|∇v|
p

+ λ
p
1χ{u60} + λ

p
2χ{u>0}], 1 < p < ∞,

whereλ1, λ2 are positive constants so thatΛ = λ
p
1 − λ

p
2 < 0, χD is the characteristic function

of the setD, Ω ⊂ Rn is a (smooth) domain and the minimum is taken over a suitable subspace of
W1,p(Ω).

1. Introduction

Let Kg = {v ∈ W1,p(Ω) : v − g ∈ W
1,p

0 (Ω)} for a given smooth functiong on Ω ⊂ Rn and
consider the energy minimization problem

Ep(u, Ω) = inf
v∈Kg

Ep(v, Ω), 1 < p < ∞, (1)

with

Ep(u, Ω) =

∫
Ω

[|∇u|
p

+ λ
p

1χ{u60} + λ
p

2χ{u>0}].

HereΩ ⊂ Rn is a bounded and smooth domain,λ1, λ2 are positive constants withΛ = λ
p

1−λ
p

2 < 0,
andχM is the characteristic function of the setM ⊂ Rn, i.e.

χM =

{
1 if x ∈ M,

0 if x 6∈ M.

The minimizeru is expected to satisfy the following overdetermined problem:

∆pu = 0 in u 6= 0,

|∇u+
|
p

− |∇u−
|
p

= c on ∂{u > 0}, u = g on ∂Ω,
(2)
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where theu+, u− are respectively the positive and negative parts ofu, c is a positive constant
and the boundary datag is not necessarily nonnegative. This problem, usually termed a Bernoulli-
type problem, models for example cavitational flow of one or two perfect fluids, or equilibrium
configuration for heat or electrostatic energy optimization. Weak solutions of problem (2) can be
obtained by minimizingEp (see Theorem 2), and our objective here is to analyze the regularity of
those solutionsu.

Sinceu has a jump along thefree boundaryΓ = ∂{u > 0}, the best expected regularity for
u is Lipschitz continuity. In the classical casep = 2, corresponding to the usual Laplacian, this is
proved in [ACF], and in [DP] for any 1< p < ∞ andu−

≡ 0. The main difficulty in attacking
the Lipschitz regularity for the general case is the lack of monotonicity formulas, firstly introduced
in [ACF], and subsequently developed in [CJK], [CKS]. However, we can still prove thatu ∈ C

0,1
loc

if the negativity setΩ−(u) = {u < 0} is reasonably small. TheC0,1 estimate plays a vital role in
establishingC1,α regularity of the free boundary near flat points. However, here we solely focus
upon proving a localC0,1 estimate for solutions. The present study has been inspired by a recent
work [KKS] and by [LS], where a similar result is proven for another overdetermined problem:

F(D2u) = χ{D} in B1, u = |∇u| = 0 in B1 \ D, (3)

for a certain class of uniformly elliptic operatorsF . We observe here that in contrast to (3) we do
not have a pde which would be satisfied by solutionsu of (1) in Ω.

2. Preliminaries

The following notations are used throughout the paper:Ω ⊂ Rn is a smooth and bounded domain,
g is a smooth function defined on some neighborhood of∂Ω, W1,p(Ω), W

1,p

0 (Ω) are the usual
Sobolev spaces,BR(y) = {x ∈ Rn : |x − y| < R}, BR = BR(0), u± are respectively the positive
and negative parts ofu, χD the characteristic function ofD, andΓ = ∂{u > 0} the free boundary.
Let λ1 andλ2 be two positive constants so thatΛ = λ

p

1 − λ
p

2 < 0 where 1< p < ∞. Consider the
functional

Ep(u, Ω) =

∫
Ω

[|∇u|
p

+ λ
p

1χ{u60} + λ
p

2χ{u>0}].

In what follows we denote byλ(u) the following function:

λ(u) =

{
λ

p

1 if u 6 0,

λ
p

2 if u > 0.

As in the classical paper [ACF] we defineλ(0) = λ
p

1 if Λ < 0 andλ(0) = λ
p

2 if Λ > 0. For
brevity we focus on the caseΛ < 0. Existence of solutions to (1) easily follows from the lower
semicontinuity ofEp as in [ACF].

THEOREM 1 Letu be a (local) minimizer ofEp. Thenu is bounded.

Proof. First observe that∫
Ω

[|∇u|
p

+ λ
p

1χ{u60} + λ
p

2χ{u>0}] =

∫
Ω

[|∇u|
p

+ Λχ{u60}] + λ
p

2 measΩ. (4)
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For givenD ⊂ Ω consider the functionalI0(u, D) =
∫
D

[|∇u|
p

+ Λχ{u60}]. If u is a minimizer of
Ep(u, D) then it is also a minimizer ofI0(u, D) and vice versa since the difference betweenI0 and
Ep is a constant for givenD.

Now takeuε = u + ε min(M − u, 0), whereM = supg > 0 andε is a small positive number.
Then takingD = Ω and testingu againstuε we get∫

Ω

[|∇u|
p

+ Λχ{u60}] 6
∫

Ω

[|∇uε|
p

+ Λχ{uε60}].

Note thatu anduε are different on the set{u > M}, therefore the last inequality becomes∫
Ω∩{u>M}

|∇u|
p 6

∫
Ω∩{u>M}

[|∇u|
p(1 − ε)p + Λχ{uε60}],

which is a contradiction sinceΛ < 0 and henceu 6 M. Now takeuε = u − min(u − m, 0) where
m = inf g < 0 andε is a positive number. Again sinceu is a minimizer we have∫

Ω

[|∇u|
p

+ Λχ{u60}] 6
∫

Ω

[|∇uε|
p

+ Λχ{uε60}].

On the set{u < m}, whereu anduε are different, we have∫
Ω∩{u<m}

[|∇u|
p

+ Λχ{u<m}] 6
∫

Ω∩{u<m}

[|∇uε|
p(1 − ε)p + Λχ{u6−

εm
1−ε

}].

Note that− εm
1−ε

> 0 and therefore∫
Ω∩{u<m}

|∇u|
p 6

∫
Ω∩{u<m}

[|∇uε|
p(1 − ε)p + Λ](χ{u6−

εm
1−ε

} − χ{u<m})

=

∫
Ω∩{u<m}

|∇uε|
p(1 − ε)p.

This implies thatm 6 u. 2

THEOREM 2 u ∈ Cα
loc(Ω).

Proof. Let BR(y) ⊂ Ω andw be the solution to the following Dirichlet problem:

∆pw = 0 in BR(y), w = u on ∂BR(y). (5)

Then ∫
BR(y)

[|∇u|
p

+ λ(u)] 6
∫

BR(y)

[|∇w|
p

+ λ(w)]

whereλ(u) = λ
p

1χ{u60} + λ
p

2χ{u>0}. Note that we also have∫
BR(y)

|∇u|
p >

∫
BR(y)

|∇w|
p.
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Sinceλ(u) is bounded this implies that∫
BR(y)

[|∇u(x)|p − |∇v(x)|p] dx 6 CRn (6)

Furthermore, from [DP] one has∫
BR(y)

[|∇u|
p

− |∇v|
p]

>


c

(∫
BR(y)

|∇(u − v)|p
)2/p(∫

BR(y)

|∇u|
p

)1−2/p

, 1 < p 6 2,

c

∫
BR(y)

|∇(u − v)|p, 2 6 p < ∞.

(7)

which together with (6) implies that

∫
BR(y)

|∇(u − w)|p 6

Cλ
p2/2
+ Rnp/2

(∫
BR(y)

|∇u|
p

)1−p/2

, 1 < p 6 2,

Cλ
p
+Rn, 2 6 p < ∞.

(8)

Recall that from the gradient estimates for harmonic functions we have

sup
BR/2(y)

|∇w| 6 C
supΩ |u|

R
.

Now for smallR andp > 2 we have∫
BR/2(y)

|∇u|
2 6 C

∫
BR/2(y)

|∇(u − w)|p + C

∫
BR/2(y)

|∇w|
p

6 C

∫
BR/2(y)

|∇(u − w)|p + CRn−p. (9)

Then combining (8) and (9) as in [DP] the result follows. 2

COROLLARY 1 u is p-subharmonic.

Proof. We first note that ifv satisfies

∆pv = 0 in BR(y), v = u on ∂BR(y),

whereBR(y) ⊂ Ω, then testingu against min(u, v) we find that∫
BR(y)

[|∇u(x)|p − |∇ min(u(x), v(x))|p] dx 6 Λ

∫
BR∩{u>0>v}

1 dx.

Sinceu is Hölder continuous, the set{u > v} is open and we can apply (7) to infer that∫
BR(y)

[|∇u|
p

− |∇ min(u, v)|p] > 0.

However,Λ < 0, which yields max(u − v, 0) = 0 in BR, that is,u 6 v in BR. Henceu is
p-subharmonic inΩ. 2
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Before proceeding further we summarize some basic properties of solutions to (1).

THEOREM 3 Letu be the solution to (1). Then

• ∆pu = 0 in [{u > 0} ∪ {u < 0}] ∩ Ω,
• ∆pu > 0 in Ω,

• lim
ε↓0

∫
∂{u<−ε}

((p − 1)|∇u|
p

− λ
p

1 )ν · η + lim
δ↓0

∫
∂{u>δ}

((p − 1)|∇u|
p

− λ
p

2 )ν · η = 0

for anyη ∈ C1
0(Ω, Rn) provided meas{u = 0} = 0.

The proof follows precisely as in [ACF].

3. Main result

In this section we assume thatλ1 = 0, since introducingλp

0 = λ
p

2 −λ
p

1 = −Λ > 0 we can consider
a new functional ∫

Ω

[|∇u|
p

+ λ
p

0χ{u>0}] = Ep(u, Ω) − λ
p

1 measΩ.

Therefore we identifyEp(u, Ω) with
∫
Ω

[|∇u|
p

+ λpχ{u>0}] for some positive constantλ. Next we
define the main class of functions that we are going to work with.

DEFINITION 1 Let z be a fixed point and 0< r < 1. Thenu is said to be of classQr(z, M) if

(i) u is a local minimizer ofEp in Br(z),
(ii) supBr (z)

|u| 6 M,
(iii) z ∈ ∂{u > 0}.

Let

Θ(x0, r) =
meas({u < 0} ∩ Br)

measBr

, x0 ∈ ∂{u > 0}.

THEOREM 4 Letu ∈ Q1(x0, M). There exists a universal constantC > 0 such that

|u(x)| 6
2M

C
|x|

providedΘ(x0, r) 6 C for all 0 < r < 1.

Proof. Without loss of generality we may assumex0 = 0. It is enough to prove that

sup
B2−(k+1)

|u(x)| 6 max

{
M

C2k
,
S(k)

2
, . . . ,

S(k − m)

2m+1
, . . . ,

S(0)

2k+1

}
(10)

whereS(k) = supB2−k
|u|. Assume otherwise. Then there are integerskj , j = 1, 2, . . . , so that

sup
B

2
−(kj +1)

|uj (x)| > max

{
jM

2kj
,
Sj (kj )

2
, . . . ,

Sj (kj − m)

2m+1
, . . . ,

Sj (0)

2kj +1

}
(11)

and
Θ(0, 2−kj ) 6 1/j → 0. (12)
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Here
Sj (kj − m) = sup

B
2
−(kj −m)

|uj |, m = 0, 1, . . . , kj ,

anduj ∈ Q1(z, M). Observe that|uj | 6 M implieskj → ∞.
Consider the auxiliary functionvj defined as

vj (x) =
uj (x2−kj )

Sj (kj + 1)
.

We start by provingW1,p estimates forvj . Setσj = 2−kj S−1
j (kj + 1). Note that by (11),σj 6

j−1
→ 0. For fixedR0 > 0 we have∫

BR0

|∇vj (x)|p dx = σ
p
j

∫
BR0

|∇uj (x2−kj )|p dx = σ
p
j 2nkj

∫
B

R02
−kj

|∇uj (y)|p dy. (13)

Let ρ > 0 andϕ be the standard cut-off function ofBρ . Thenη = ϕpu+

j is an admissible test
function and (ii) yields ∫

Bρ

|∇u+

j |
p−2

∇u+

j ∇η 6 0.

Rearranging terms and using the Hölder inequality we get∫
Bρ

ϕp
|∇u+

j |
p 6 p

∫
Bρ

|∇u+

j |
p−1ϕp−1

|∇ϕ|u+

j

6 p

(∫
Bρ

|∇ϕ|
p(u+

j )p
)1/p(∫

Bρ

|∇u+

j |
pϕp

)1−1/p

. (14)

So we get Caccioppoli’s inequality∫
Bρ/2

|∇u+

j |
p 6

c

ρp

∫
Bρ

(u+

j )p 6 cρn−p(sup
Bρ

|uj |)
p. (15)

Let us takeρ/2 = R0/2kj in the last inequality,∫
B

R02
−kj

|∇u+

j |
p 6 c

(
2R0

2kj

)n−p

( sup
B

2R0/2
kj

|uj |)
p.

ChooseR0 = 2l−1 for a fixed integerl < kj . Then∫
2l−1

|∇v+

j |
p 6 c

[
2−kj

Sj (kj + 1)

]p

2nkj 2(l−kj )(n−p)( sup
B

2
l−kj

|uj |)
p

6 c

[
2−kj

Sj (kj + 1)

]p

2nkj 2(l−kj )(n−p)(2l+1Sj (kj + 1))p = 2ln+p, (16)
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where the second inequality follows from (11). Therefore‖∇vj‖Lp is locally bounded, implying
local uniformW1,p estimates forvj for j large.

If p > n then the Sobolev imbedding theorem implies uniform localCα estimate forvj , for j

large. Suppose 1< p 6 n. Consider the scaled energy functional

Ej (v, D) =

∫
D

[|∇v|
p

+ σ
p
j λpχ{v>0}]. (17)

First observe that a simple calculation gives

Ej (vj , BR0) = σ
p
j 2nkj Ep(uj , BR02−kj ). (18)

Thereforevj is a solution to

Ej (vj ) = inf
v∈Kj

Ej (v), Kj = {v ∈ W1,p(B2kj ) : v − vj ∈ W
1,p

0 (B2kj )}.

Applying Theorem 1 tovj we have a uniformCα
loc estimate. Using the uniformW1,p andCα

loc
estimates we have, at least for a subsequence,

vj → v∞ in W1,p(B2) ∩ Cα(B2). (19)

Now we claim thatv∞ is a local minimizer ofDp(v) =
∫

|∇v|
p. Indeed, for anyϕ ∈ C∞

0 (B1),∫
B1

[|∇vj |
p

+ σ
p
j λpχ{vj >0}] 6

∫
B1

[|∇(vj + ϕ)|p + σ
p
j λpχ{vj +ϕ>0}].

By (19) we have∫
B1

|∇vj |
p

→

∫
B1

|∇v∞|
p,

∫
B1

|∇(vj + ϕ)|p →

∫
B1

|∇(v∞ + ϕ)|p.

Since alsoσj 6 1/j , we get

σ
p
j

∫
B1

λpχ{vj >0} → 0, σ
p
j

∫
B1

λpχ{vj +ϕ>0} → 0.

Hence we conclude that ∫
B1

|∇v∞|
p 6

∫
B1

|∇(v∞ + ϕ)|p.

In view of Cα regularity this shows thatv∞ is a local minimizer forDp(v) in B1.
From the definition ofvj and (12) we conclude:

• 0 6 v∞ 6 2 in B1,
• ∆pv∞ = 0 in B1,
• v∞(0) = 0,
• supB1/2

|v∞| = 1.

which contradicts the strong maximum principle. 2
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COROLLARY 2 Assume thatΘr(z, r) 6 C for all z ∈ B1/2 ∩ Γ . Thenu ∈ Q1(0, M) is Lipschitz
in B1/4.

Proof. Let u(x) > 0 andd(x) = dist(x, ∂{u > 0}). Let z ∈ ∂{u > 0} so thatd(x) = |x − z|. Then
u(x) 6 2MC−1d(x). By Harnack’s inequalityu 6 2cMC−1d(x) in Bd(x)/2. Considerv(y) =

u(x + d(x)y)/d(x). Then

∆pv = 0 in B1, 0 6 v(y) 6 2cMC−1 in B1/2.

Then from the local gradient estimate|∇v(0)| 6 C(n, p,M, C). 2
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