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In this article under the assumption of “small” density for the negativity set, we prove local Lipschitz
regularity for the two-phase minimization problem with free boundary for the functional

Ep(v, 2) = ‘[(2[|VU|P + A{X{uﬁO} +)\5X{u>0}]a 1<p<oo,

whereiq, Ao are positive constants so that = )Jl’ — )‘[27 < 0, xp is the characteristic function
of the setD, 2 c R" is a (smooth) domain and the minimum is taken over a suitable subspace of
wlr(o).

1. Introduction

Let Kz = {v € whr(2):v—g e W&”’(Q)} for a given smooth functiog on 2 ¢ R” and
consider the energy minimization problem

Ep(u, 2)=inf £,(v,2), 1< p<oo, (1)
vekl,
with
gp(”a 2) = / [|Vu|P + )»fX{u<0} + )\gX{u>0}]~
Q
Here2 c R"is abounded and smooth domain, A are positive constants with = Af—ké’ <0,

andy,, is the characteristic function of the st ¢ R”, i.e.

_J1 ifxeM,
IM=10 ifx ¢ M.
The minimizeru is expected to satisfy the following overdetermined problem:

Apu=0 inu#0,
[Vut|? —|[Vu=|P =c ond{u>0)}, u=g o0nais,

(2)
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where theu™, u~ are respectively the positive and negative parts,of is a positive constant
and the boundary datais not necessarily nonnegative. This problem, usually termed a Bernoulli-
type problem, models for example cavitational flow of one or two perfect fluids, or equilibrium
configuration for heat or electrostatic energy optimization. Weak solutions of proplem (2) can be
obtained by minimizing, (see Theorem 2), and our objective here is to analyze the regularity of
those solutions.

Sinceu has a jump along théree boundaryl” = 9{u > 0}, the best expected regularity for
u is Lipschitz continuity. In the classical cage= 2, corresponding to the usual Laplacian, this is
proved in [ACF], and in[[DP] for any Ik« p < oo andu™ = 0. The main difficulty in attacking
the Lipschitz regularity for the general case is the lack of monotonicity formulas, firstly introduced
in [ACF], and subsequently developed lin [CJK], [OKS]. However, we can still proveﬁl@l?,oo’cl
if the negativity set2(x) = {u < 0} is reasonably small. Th€%! estimate plays a vital role in
establishingc1* regularity of the free boundary near flat points. However, here we solely focus
upon proving a locaC%?! estimate for solutions. The present study has been inspired by a recent
work [KKS] and by [LS], where a similar result is proven for another overdetermined problem:

F(D%u) = x(py inBi, u=|Vu|=0 inBy\D, (3)

for a certain class of uniformly elliptic operatofs We observe here that in contrast[t (3) we do
not have a pde which would be satisfied by solutioms (1) in £2.

2. Preliminaries

The following notations are used throughout the pagerc R” is a smooth and bounded domain,

g is a smooth function defined on some neighborhood@f W17 (£2), W&”’(Q) are the usual

Sobolev spacesBr(y) = {x € R" : |x — y| < R}, B = Bg(0), u™ are respectively the positive
and negative parts of, xp the characteristic function d?, andI” = d{u > 0} the free boundary.

Let A1 andA; be two positive constants so that= /\’1’ - Ag < O where 1< p < oco. Consider the

functional

Ep(u, 2) = / [IVul? + AL xw<oy + A5 xu=0)l-
2
In what follows we denote b («) the following function:

)Llf if u <O,
awy={"1
Ay ifu>0.

As in the classical paper [ACF] we defing0) = 17 if A < 0 andA(0) = A} if A > 0. For
brevity we focus on the casé < 0. Existence of solutions t¢](1) easily follows from the lower
semicontinuity of, as in [ACF].

THEOREM1 Letu be a (local) minimizer of,. Thenu is bounded.

Proof. First observe that

/[IVul”—l-)»'fX{u@} + 2 x>0 = / [IVul” + Axu<o] + A5 meas2. (4)
2 2
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For givenD c £2 consider the functionap(u, D) = fD[|Vu|1’ + Axu<oyl- If uis aminimizer of
&,(u, D) then it is also a minimizer ofp(x, D) and vice versa since the difference betwégand
&, is a constant for give.

Now takeu, = u + e min(M — u, 0), whereM = supg > 0 ande is a small positive number.
Then takingD = §2 and testing: against:, we get

/[IVulerAX{u@}] </[|Vue|p+AX{uS<0}]-
2 2

Note thaty andu. are different on the s¢it > M}, therefore the last inequality becomes

f |Vul? </ [Vul? (1 - &)’ + Axu. <ol
2n{u>M} 20{u>M}

which is a contradiction sincda < 0 and hence < M. Now takeu, = u — min(u — m, 0) where
m = inf g < 0 ande is a positive number. Again sineeis a minimizer we have

/[IVMIPJrAX{u@}] S/[IVuslerAX{uSgo;]-
2 2

On the sefu < m}, whereu andu, are different, we have

/ [IVul? + AX{u<m}] < / [[Vue P (1 —¢)? + Ax{ug_%}],
2N{u<m} 2MN{u<m} '

Note that—fT’"S > 0 and therefore

/ |VulP < / [(IVuel”(1 = &) + Al Otpug— 2y — Xgu<m))
20{u<m) 20{u<m} ‘

= / |Vue|P (1 —e)P.
2N{u<m}

This implies thain < u. O
THEOREM2 u € Cp.(£2).
Proof. Let Br(y) C §2 andw be the solution to the following Dirichlet problem:

Apw=0 InBr(y), w=u 0ndBr(y). (5)

Then
/ [|w|f’+x<u)]</ [IVwl? + A@w)]
Br(y)

Br(y)

wherex(u) = Af x(u<oy + A5 xju=0;. Note that we also have

/ |w|f’>/ Vwl”.
Br(y) Br(y)
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Sincei(u) is bounded this implies that
/ [Vu(x)? — [Vu(x)|[Pldx < CR"
Br(y)

Furthermore, from [DP] one has

f [IVul? —|Vv|P]
Br(y)

2/p 1-2/p
c(/ |V(u—v)|p> </ |Vu|P> , 1<p<2
S Br(y) Br(y)

=

c/ IV(u —v)|?, 2< p < oo
Br(y)

which together with[(6) implies that

—p/2
P2/2 np/2 14 el
» CA, "R |Vu| , 1<p<2
- )IV(M —w)” < Br(»)
R(Y

CAL R, 2< p < o0.
Recall that from the gradient estimates for harmonic functions we have
sup, |u
sup |Vw| < CLH.
Brj2(y) R

Now for smallR andp > 2 we have

/ |Vu|2<c/ |V<u—w)|f’+c/ Vwl?
Br/2(y) Br/2(y) Br/2(y)

SC/ [V(u —w)|” + CR"P.
BRrj2(y)

Then combining[(8) and[9) as in [DP] the result follows.
COROLLARY 1 u is p-subharmonic.

Proof. We first note that ifv satisfies
Apv=0 inBr(y), v=u 0ndBr(y),

whereBg(y) C £2, then testing: against miru, v) we find that

/ [IVu(x)|? — |V min(u(x), v(x))|’]dx < A/ 1 dx.
Br(y)

BrN{u>0>v}

Sinceu is Holder continuous, the s@t > v} is open and we can apply|(7) to infer that

/ [IVu|? — |V min(u, v)|?] > O.
Br(»)

(6)

(7)

(8)

(9)

However,A < 0, which yields ma& — v,0) = 0 in Bg, that is,u < v in Bg. Henceu is

p-subharmonic irf2.

O
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Before proceeding further we summarize some basic properties of solutifns to (1).
THEOREM3 Letu be the solution td{1). Then

o Apu=0in[{u >0}U{u <0}]N g,
° AthZOin.Q,

. Iim/ ((p—1)|vbt|1’—x’1’)v-n+lim/ ((p—DIVul? =25 -n=0
ed0 Jofu<—e) 810 Jo{u>s)
for anyn e C3(s2, R") provided meaig: = 0} = 0.

The proof follows precisely as in [ACF].

3. Main result
In this section we assume that = 0, since introducing{ = A5 —A{ = —A > 0 we can consider
a new functional
f [IVul? + 2§ xw=0] = Ep(u, 2) — 1] meas2.
2

Therefore we identifyf, (u, £2) with [,[|Vu|? 4+ A? x(,~0)] for some positive constant Next we
define the main class of functions that we are going to work with.

DEFINITION 1 Letz be a fixed point and & r < 1. Thenu is said to be of clas®, (z, M) if

(i) u is alocal minimizer o€, in B, (z),
(i) supg, () lul < M,
(iii) z € 9{u > 0}.
Let 0N B
O(xo.r) = meag{u < 0} N B,)
measB,

THEOREM4 Letu € Q1(xo, M). There exists a universal constant- 0 such that

, xp€ d{u > 0O}

provided® (xg,r) < Cforall0 <r < 1.

Proof. Without loss of generality we may assumge= 0. It is enough to prove that

M S(k) S(k — m) S0
< —_—, ey ey 10
5o ol < max| g 25 S (10
whereS (k) = SUpg, |u]. Assume otherwise. Then there are integers = 1, 2, ..., so that
M Sj(k;) Sj(kj —m) S;(0)
i — 11
. _35331) luj ()] > maX{ ST T L oAl (11)
2

and
©(0,27%) < 1/j — 0. (12)
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Here
S/(kj—m): sup |u.,~|, mzo,l,...,k/’,

Bzf(kj —m)

andu; € Q1(z, M). Observe thalu;| < M impliesk; — oo.
Consider the auxiliary function; defined as

We start by provingW-? estimates fow;. Seto; = 27k Sj_l(k,- + 1). Note that by)aj <
j~1 — 0. For fixedRy > 0 we have

/B Iij(x)l”dx=oj”/ IVu‘,‘(xZ"‘f)l”dx=aj”2”"f/ |Vu;(y)|Pdy. (13)
R R

B .
0 0 Rg2~ "I

Let p > 0 andg be the standard cut-off function d@,. Thenn = <p1’ujf is an admissible test
function and (ii) yields

/ [Vut|P=2vutvy <0.
J J

BP

Rearranging terms and using thélder inequality we get

[ orwute < p [ varrter gl
Bp

B,
1/p 1-1/p
<p(f |Vw|P<u,-+>”> (f |w,-+|"¢>"> . (14)
B, B,

So we get Caccioppoli's inequality
[ e < S [ whr < e rsupig)y. (1)
Bpj2 PT B, By
Let us takep/2 = Ro/2% in the last inequality,
2Ro\" P
Vil 1? < el 5°) ( sup .
B J ok; J
Rg2 i 2R/
ChooseRo = 2/~ for a fixed integef < k;. Then
+ 275 N ks otk 1)
[VvT|P < c[—] 2M 2UTRIN=P) (Csup |ui|)?
/21*1 ! Sj(kj +1) B -k !

2

2—k' 14
< [m] 24200 @ (g + 1) = 2", (16)
J N
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where the second inequality follows frofn [11). Therefgkév;||.» is locally bounded, implying
local uniformWw?™? estimates fow; for j large.

If p > n then the Sobolev imbedding theorem implies uniform lac&lestimate for;, for j
large. Suppose & p < n. Consider the scaled energy functional

&.0) = [ 19017+ /3 x1-00. (17)
D

First observe that a simple calculation gives

& (vj, Bro) =0/ 2" €, (u;, B (18)

R()Z_kj )

Thereforev; is a solution to
— i . o 1, . i lp
Ej(Uj) = vlenléj 5j(v), IC./ ={veWw p(szj) SV —v; € WO (szj)}
Applying Theorem 1 tow; we have a uniformCy . estimate. Using the uniforriv1? and Cite
estimates we have, at least for a subsequence,
vj = Voo in WHP(Bp) N C¥(By). (19)

Now we claim thab is a local minimizer ofD,(v) = [ |Vv|?. Indeed, for any € Cy°(By),
/B [IVil? + /A7 xp;~0)] < /B [V + @7 + 0] 17 xp;+0-0)]-
1 1

By (19) we have

[ wur— [ wurs [ vesor > [ Vet
B1 B1 By B1

Since alsw; < 1/;, we get

ajp/ AP x>0y = 0, UJ'p/ M Xty +o>0) = 0.
B1 By

Hence we conclude that
[VUso|? <f IV(voo + @)I7.
B1 B1

In view of C* regularity this shows that. is a local minimizer forD, (v) in By.
From the definition ob; and [12) we conclude:

0 < vs < 2in By,
Apvoo = 0in By,
Voo (0) =0,
SUPg, , |vec| = 1.

which contradicts the strong maximum principle. O
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COROLLARY 2 Assume tha®,(z,r) < C forallz € By N I". Thenu € Q1(0, M) is Lipschitz
in Byya.

Proof. Letu(x) > 0 andd(x) = dist(x, 0{u > 0}). Letz € 9{u > 0} so thatd(x) = |x — z|. Then
u(x) < 2MC~1d(x). By Harnack’s inequalityy < 2cMC~Yd(x) in By(y)2. Considerv(y) =
u(x +d(x)y)/d(x). Then

Apw=0 inB;, 0<v(y)<2eMC™! inByp.

Then from the local gradient estimgtév(0)| < C(n, p, M, C). |
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