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We deal with strongly competing multispecies systems of Lotka–Volterra type with homogeneous
Dirichlet boundary conditions. For a class of nonconvex domains composed of balls connected by
thin corridors, we show the occurrence of pattern formation (coexistence and spatial segregation of all
the species) as the competition grows indefinitely. As a result we prove the existence and uniqueness
of solutions for a remarkable system of differential inequalities involved in segregation phenomena
and optimal partition problems.

1. Introduction

In this paper we consider the system of k > 2 elliptic equations

−∆ui = fi(x, ui)− κui
∑
j 6=i

uj in Ω, (1)

for i = 1, . . . , k, where Ω ⊂ RN is a smooth, connected, bounded domain. Systems of this form
model the steady states of k organisms which coexist in the area Ω . The function ui represents
the population density of the i-th species (hence only ui > 0 are considered) and fi describes the
internal dynamics of ui . The coupling between different equations is the classical Lotka–Volterra
interaction term: the positive constant κ prescribes the competitive character of the relationship
between ui and uj and its largeness measures the strength of the competition.

Systems of this form have attracted considerable attention both in ecology and social science
since they furnish a relatively simple model to study phenomena of extinction, coexistence and
segregation of states of populations. Several theoretical studies have been carried out in this
direction, mainly in the case of two competing species and for the logistic nonlinearities fi(u) =
u(ai − u). We cite for instance [15, 18, 20, 21, 24, 25], where it is shown that both coexistence and
exclusion may occur, depending on the relations between the diffusion rates and the coefficients of
intraspecific and interspecific competitions.

In this paper we look at the multispecies Lotka–Volterra system (1) from the different
perspective investigated in [5, 9, 12, 13] and we study the possibility of coexistence governed by
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very strong competition. As we shall discuss in detail in Section 3, the presence of large interactions
of competitive type produces the spatial segregation of the densities in the limit configuration as
κ →∞, namely if (uκi )

k
i=1 solves (1), then, for all i = 1, . . . , k, uκi converges to some ui inH 1(Ω)

which satisfies
ui(x) · uj (x) = 0 a.e. in Ω, for all i 6= j, (2)

so that {ui > 0} ∩ {uj > 0} = ∅. Furthermore, in the limit, the densities satisfy a system of
differential inequalities of the form{

−∆ui 6 fi(x, ui) in Ω,
−∆ûi > f̂i(x, ûi) in Ω,

(3)

where ûi := ui −
∑
j 6=i uj and f̂i(x, ûi) := fi(x, ui) −

∑
j 6=i fj (x, uj ), in the sense of Definition

1.1 below. The link between the differential inequalities (3) and population dynamics is reinforced
by considering another class of segregation states between species, governed by a minimization
principle rather than strong competition-diffusion. In [3] (see also [2, 4]), the following energy
functional was considered:

J (U) =

k∑
i=1

{∫
Ω

(
1
2
|∇ui(x)|

2
− Fi(x, ui(x))

)
dx
}
,

given by the sum of the internal energies of k positive densities ui with internal potentials
Fi(x, s) =

∫ s
0 fi(x, u) du. The problem of finding the minimum of J (U) in the class of k-tuples

U = (u1, . . . , un) satisfying uj · ui = 0 a.e. on Ω for i 6= j was investigated in [3], where it is
proved that any nontrivial minimizer U (if it exists) satisfies the differential inequalities (3).

This further motivates the study of the solutions of (2)–(3) as a natural step in the understanding
of segregation phenomena occurring in population dynamics. Remarkably enough, (3) coupled with
(2) can be naturally interpreted as a free boundary problem with multiple phases: the unknown free
boundary set is given by

F =
k⋃
i=1

∂{x ∈ Ω : ui(x) > 0},

which represents the collection of the boundaries of the disjoint supports of the densities. On its
support each density ui solves the elliptic equation −∆ui = fi(x, ui), while the free boundary
conditions are implicitly contained in the global differential inequalities (3). The study of the
properties of F is important from the ecological point of view since it provides information about
how the segregation occurs, in particular about the way the territory is partitioned by the segregated
populations. In this direction, in [1–3, 5, 7] a number of qualitative properties both of ui and the free
boundary setF are exhibited. We refer the interested reader to [6] for a brief review of the regularity
theory so far developed, and to the above cited papers for proofs and details.

Another question of particular interest is the existence of a strictly positive solution to (2)–(3),
that is, a solution of the differential inequalities (3) with each component ui > 0 and ui positive on
a set of positive measure. As a matter of fact, since all the asymptotic states of the Lotka–Volterra
system have to satisfy (2)–(3), the existence of such a solution is necessary to ensure that all the
species survive under strong competition. It has to be stressed that in [3, 5], the strict positivity is
guaranteed by assuming positive boundary values for each component, in the form ui = φi on ∂Ω
with φi > 0 on a set of positive (N − 1)-measure.
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Hence a major problem consists in proving the existence of a positive solution under natural
boundary conditions, such as Dirichlet or Neumann homogeneous boundary conditions. This is
precisely the problem we face in this paper: we consider (2)–(3) with the Dirichlet condition

ui = 0 on ∂Ω, (4)

and we look for a strictly positive solution U = (u1, . . . , uk). The interesting case of the Neumann
condition will be treated elsewhere (see the concluding remarks).

This is an interesting and mathematically challenging problem: we cannot expect in general
to avoid extinction of one or more species. For instance, if Ω is convex, it is shown in [19]
that two competing species cannot coexist under strong competition. On the other hand, the main
variational procedure leading to solutions of (3), that is, the minimization of the internal energy J ,
may fail under Dirichlet homogeneous conditions, since it in general provides a k-tuple of the
form (0, . . . , ui, . . . , 0) with all but one component identically zero (see [26] for a similar result).
Therefore, some mechanism of different nature must occur in order to ensure coexistence of the
species.

In the present paper we show that the geometry of Ω can play a crucial role in segregation
phenomena. In line with [14, 24], where two populations in planar domains of dumbbell shape
are dealt with, we consider a class of nonconvex domains Ωn, n ∈ N, essentially composed
of k balls connected by thin corridors, as depicted in Figure 1 (see [8] and Section 1.1 for the
precise definition). Under the main assumption that the Dirichlet problems on each ball admit a

E

B1 B2

B3

(a) The set Ω0
= B1 ∪ B2 ∪ B3 and

segments E joining the balls.

Ωn

(b) Sets Ω obtained by small perturba-
tion of Ω0.

FIG. 1

nondegenerate local minimizer, we are able to prove existence and uniqueness of positive solutions
to the free boundary problem (2)–(3), where each component is close to such a local minimizer
(Theorem 1). In ecological terms this means that if in the unperturbed domain and in absence of
interaction each species lives in a stable configuration, then strong competition leads to coexistence
and segregation of the populations.

Our second result (Theorem 2) concerns the multispecies Lotka–Volterra system endowed with
the Dirichlet null condition. Under the same topological and nondegeneracy assumptions, we first
prove the existence of a positive solution, provided that the competition parameter κ is large enough.
This is obtained by exploiting a degree technique introduced by Dancer [8] to control domain
perturbation in the case of certain nonlinear equations. Theorem 2 is by itself an interesting result in
the framework of multispecies systems. In fact, in contrast to the rich literature dealing with the case
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k = 2 of two populations, the case of k > 3 species is less understood. We cite for instance [15, 20,
22, 23] for three-species competing systems with cross-diffusion and [10, 11] for the Lotka–Volterra
model, where various sufficient conditions for coexistence are provided, depending on the values of
the parameters involved.

Next we perform the asymptotic analysis as κ grows to infinity, and we prove that this solution
converges to the unique segregation state found in Theorem 1. The biological implication of this
result is now clear: all the species survive under strong competition in a segregating configuration.
Furthermore, as we shall see, they divide the domain in such a way that the i-th species does not
invade the native territory Bj of the other populations. We call this phenomenon the noninvading
property.

Both results come from the study of a multispecies system that can be seen as a generalized
Lotka–Volterra model with presence of spatial barriers localized in the balls. We shall introduce it
in (6), after some rigorous definitions and precise statements of our results.

1.1 Assumptions and main results

Let Ω0 :=
⋃k
i=1 Bi be a finite union of open balls Bi ⊂ RN such that the Bi are mutually disjoint,

i = 1, . . . , k. Following [8], we consider a sequence of domains {Ωn
}n∈N approximating Ω0 in the

following sense: there exists a compact zero measure set E ⊂ RN such that

(i) for any compact set K ⊂ Ω0, Ωn
⊃ K provided n is large;

(ii) for any open set U ⊃ E ∪Ω0, Ωn
⊂ U provided n is large

(see Figure 1). Let us fix a bounded smooth domain Ω strictly containing Ω0 ∪Ωn for all n ∈ N.
Notice that if Ω̃ ⊂ Ω and u ∈ H 1

0 (Ω̃), we can extend u to an element of H 1
0 (Ω) by defining it to

be zero outside of Ω̃ . Thus in all the paper we shall think of all our functions as being in H 1
0 (Ω).

We will make the following set of assumptions (for every i = 1, . . . , k):

(F1) fi(x, s) : Ω×R→ R is a Carathéodory function, it is odd and C1 in the variable s, uniformly
in x;

(F2) |f ′i (x, s)| = O(|s|
q−1) for large |s|, uniformly in x for some q < (N + 2)/(N − 2) (q <∞

if N = 2),

where f ′i (x, s) = ∂sfi(x, s). Furthermore, for any i = 1, . . . , k, we assume that the problem{
−∆u = fi(x, u) in Bi,
u = 0 on ∂Bi,

(5)

admits a positive solution u0
i ∈ H

1
0 (Bi) ∩ L

∞(Bi) which is nondegenerate in the following sense:

(ND) there exists ε > 0 such that∫
Bi

(|∇w|2 − f ′i (x, u
0
i )w

2) dx > ε

∫
Bi

|∇w|2 dx

for all w ∈ H 1
0 (Bi) and i.
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Note that this implies that the linearized problem at u0
i ,

−∆v − f ′i (x, u
0
i )v = 0, v ∈ H 1

0 (Bi),

has only the trivial solution. This is precisely the assumption used in [8]. Condition (ND) is stronger
and essentially means that u0

i is a local nondegenerate minimizer of the energy on Bi (see also [3]).
As a model for fi we can consider logistic type nonlinearities fi(x, s) = λ(s−|s|p−1s), p > 1. It is
well known that if λ > λ1(Bi) (where λ1(Bi) is the first eigenvalue of−∆ in Bi with homogeneous
Dirichlet boundary conditions) the elliptic problem (5) has a unique positive solution which is a
nondegenerate global minimizer for the energy.

Since u0
i is an isolated solution to (5), the parameter δ > 0 will be assumed throughout to be

small enough that, for all i:

if ui ∈ H 1
0 (Bi) is a solution to (5) such that ‖ui − u0

i ‖H 1
0 (Bi )

6 δ, then ui ≡ u0
i .

We shall also denote by U0 the k-tuple (u0
1, . . . , u

0
k) and by U = (u1, . . . , uk) generic k-tuples in

(H 1
0 (Ω

n))k . Let us clarify the meaning of solution to differential inequalities (3) in the following
definition.

DEFINITION 1.1 A solution to (3) is a k-tuple U = (u1, . . . , uk) such that, for every i = 1, . . . , k
and φ ∈ H 1

0 (Ω) with φ > 0 a.e. in Ω ,∫
Ω

∇ui(x) · ∇φ(x) dx 6
∫
Ω

fi(x, ui(x))φ(x) dx

and ∫
Ω

∇ûi(x) · ∇φ(x) dx >
∫
Ω

f̂i(x, ûi(x))φ(x) dx.

Our main theorem ensures the existence of a unique segregated solution to (3) in the perturbed
domain Ωn which is H 1-close to U0.

THEOREM 1 Define

S(Ωn) = {(u1, . . . , uk) ∈ (H
1
0 (Ω

n))k : ui > 0, ui · uj = 0 if i 6= j,

−∆ui 6 fi(x, ui), −∆ûi > f̂i(x, ûi), in Ωn, i = 1, . . . , k}.

Then there exists δ > 0 such that, for any n sufficiently large, the class S(Ωn) contains an element
U = (u1, . . . , uk) ∈ (H

1
0 (Ω

n))k such that ‖ui − u0
i ‖H 1

0 (Ω
n) < δ. Moreover, ui ≡ 0 in Bj for all

j 6= i and U is the unique element of S(Ωn) such that ‖U − U0
‖(H 1

0 (Ω
n))k < δ.

As already announced, the proof of Theorem 1 relies on a careful analysis of the following
auxiliary system:−∆ui = fi(x, ui)− κui

∑
j 6=i

uj − κui
∑
j 6=i

u0
j − κu

0
i

∑
j 6=i

uj in Ωn,

ui = 0 on ∂Ωn,

(6)

for i = 1, . . . , k.
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This system can be seen as a modification of the Lotka–Volterra model, through linear terms
which are localized in a single ball each: this feature will be crucial in order to obtain solutions with
the noninvading property. Notice that, due to the presence of the barriers, systems (6) fail to satisfy
the maximum principle, so that we cannot ensure the positivity of solutions nor even, by now, the
competitive character of the model. As we shall see, this will cause some technical difficulties.

Nonetheless, by careful energy estimates and eigenvalue theory, the system for fixed κ will be
shown to be suitably nondegenerate on Ωn if n is large enough. This will allow us the application
of the degree technique introduced in [8] to control domain perturbation, and as a result we will
obtain the existence of a solution Uκ of the system, which is close to U0. The major feature of this
approach is that the whole procedure turns out to be uniform with respect to κ . This uniformity will
allow us to perform successfully the asymptotic analysis of the solutions to the auxiliary system as
the competition parameter goes to infinity. The final result can be collected in the following form.

THEOREM 2 There exists δ > 0 such that, for any κ and n sufficiently large, both the Lotka–
Volterra system (1) with Dirichlet boundary conditions (4) on Ωn and the modified model (6) admit
a solution Uκ = (uκ1 , . . . , u

κ
k ) ∈ (H

1
0 (Ω

n))k such that ‖Uκ − U0
‖(H 1

0 (Ω
n))k < δ, and, in the case

of (1), Uκ is strictly positive. Furthermore, as κ → ∞, uκi → ui strongly in H 1(Ωn), where the
k-tuple U = (u1, . . . , uk) is the unique element in S(Ωn) close to U0.

1.2 Plan of the paper

In Section 2 we establish some preliminary facts to be used throughout the paper, in particular we
discuss the nondegeneracy of the problems in Ω0. Section 3 is devoted to the asymptotic analysis
of the solutions to the auxiliary system as κ → ∞. In Section 4 we prove the uniqueness of the
solution to (3) close to U0, as stated in the uniqueness part of Theorem 1. Section 5 is devoted to the
proof of the existence of a solution U close to U0 for system (6), when the domain is close enough
to Ω0 and the competition is large. We conclude Section 5 by presenting the proofs of Theorems 1
and 2 and giving some final remarks. A final appendix collects some technical proofs and lemmas
used throughout the paper.

2. Preliminary results

In this section we further modify the Lotka–Volterra system in order to ensure sign conditions and
boundedness of its solutions. Furthermore we derive from condition (ND) the main nondegeneracy
properties holding in the unperturbed set Ω0.

Let us consider the following system:−∆ui = fi(x, [ui + u0
i ]
+
− u0

i )− κ[ui + u0
i ]
+
∑
j 6=i

[uj + u0
j ]+ in Ω̃,

ui = 0 on ∂Ω̃,
(7)

for i = 1, . . . , k, where Ω0
⊂ Ω̃ ⊆ Ω . Here and throughout, the symbol [t (x)]+ will denote the

positive part of t , that is, [t (x)]+ = max{t (x), 0}. The motivation for this choice is contained in the
following lemma.

LEMMA 2.1 Let U = (u1, . . . , uk) be a solution of system (7). Then ui > −u0
i in Ω̃ for all

i = 1, . . . , k. In particular the ui solve (6) and satisfy ui(x) > 0 for x ∈ Bj when j 6= i.
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Proof. Let vi = ui + u0
i . It satisfies the equation

−∆vi = fi(x, [ui + u0
i ]
+
− u0

i )+ fi(x, u
0
i )− κ[vi]+

∑
j 6=i

[vj ]+.

Now it suffices to test this equation with −[ui + u0
i ]
−, recalling that fi is odd. 2

REMARK 2.1 Notice that the original system (1) can be recovered in this model by the formal
identification u0

i ≡ 0. In particular, by Lemma 2.1 it turns out that the solutions obtained with
fi(x, [ui]+) instead of fi(x, ui) satisfy ui > 0 for all i, and thus are nonnegative solutions for the
Lotka–Volterra system (1).

2.1 Differential inequalities

Let (u1, . . . , uk) be a solution to (7). Since by Lemma 2.1 each ui satisfies ui+u0
i > 0, the coupling

term has negative sign and we immediately have

−∆ui 6 fi(x, ui). (8)

Furthermore, by a straightforward calculation we obtain an opposite differential inequality for ûi :

−∆ûi > fi(x, ui)−
∑
j 6=i

fj (x, uj ) = f̂i(x, ûi). (9)

Thus the solutions of (7) satisfy the differential inequalities (3).

2.2 Uniform L∞ bounds

We now suitably modify fi in order to ensure that the solutions of the new system are bounded
in L∞. This is based on the following result due to Dancer [8]: for n sufficiently large, the problem{

−∆u = fi(x, u) in Ωn,

u = 0 on ∂Ωn,

admits a positive solution φni ∈ H
1
0 (Ω

n) which is close to
∑
u0
i in some Lr(Ω) (r > 1). Fix n0

large such that Ωn
⊂ Ωn0 for all n > n0 and denote φn0

i simply by φi . Define

f̃i(x, s) =

{
fi(x, s) if s 6 φi(x),

fi(x, φi(x)) if s > φi(x).

LEMMA 2.2 For n > n0, let ui ∈ H 1
0 (Ω

n) be such that −∆ui 6 f̃i(x, ui) in Ωn. Then ui 6 φi
a.e. in Ω .

Proof. Summing up the differential inequalities for φi and ui gives{
−∆(φi − ui) > fi(x, φi)− f̃i(x, ui) in Ωn,

φi − ui > 0 on ∂Ωn.
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Set ω = {x ∈ Ωn : φi < ui}; note that ω is strictly contained in Ωn by the boundary conditions.
Hence by testing the first inequality with −(φi − ui)− we obtain∫

ω

|∇(φi − ui)
−
|
2 dx 6 −

∫
ω

(fi(x, φi)− f̃i(x, ui))(φi − ui)
− dx = 0,

which implies (φi − ui)− = 0 and so φi > ui . 2

As a consequence, any solution (u1, . . . , uk) to either (7) or (3), with f̃i instead of fi inΩn, satisfies

−u0
i 6 ui 6 φi, i = 1, . . . , k. (10)

In particular, any solution with ui close to u0
i will be a true solution of the original problem

with fi . Moreover, by the classical strong maximum principle and Harnack’s inequality, any solution
(u1, . . . , uk) to (7) satisfies either ui ≡ φi , or ui ≡ −u0

i , or −u0
i < ui < φi .

NOTATIONS. Throughout the paper we shall work with f̃i instead of fi , denoting f̃i simply by fi ;
supp ui will denote the set {ui > 0}.

2.3 Nondegeneracy in Ω0

Let us now consider (7) in Ω0. Then we immediately realize that U0
= (u0

1, . . . , u
0
k) is a solution

of the problem. Furthermore, it follows from (ND) that U0 is an isolated solution, uniformly in κ .

THEOREM 2.1 There exist κ̄ > 0 and δ > 0 such that if Uκ is a solution of (7) in Ω0 such that
‖Uκ − U0

‖ < δ in (H 1
0 (Ω

0))k , then Uκ ≡ U0 for all κ > κ̄ .

An analogous result holds for the solutions to (2)–(3), thanks to the following sign condition
prescribed by the validity of (9).

LEMMA 2.3 Let (u1, . . . , uk) be a solution of −∆ûi > f̂ (x, ûi) in Bi for some i. Assume that
ui · uj = 0 if i 6= j and that ‖uj − u0

j ‖H 1
0 (Ω)

6 δ for all j = 1, . . . , k. Then, if δ is small enough,
ûi > 0.

THEOREM 2.2 Let (u1, . . . , uk) ∈ S(Ω0) be such that ‖ui − u0
i ‖H 1

0 (Ω
0) 6 δ for all i = 1, . . . , k.

Then, if δ is small enough, ui ≡ u0
i for all i = 1, . . . , k.

All these results are crucial in what follows, but since the proofs are somewhat technical, we
postpone them to the Appendix.

3. Asymptotic analysis as κ →∞

This section is devoted to establishing the link between population systems and the original set of
differential inequalities (3). To this end, throughout the section let δ > 0 and assume that there exists
a solution (uκ1 , . . . , u

κ
k ) to (7) such that ‖uκi − u

0
i ‖H 1(Ω) 6 δ for all large κ . Our main result is

THEOREM 3.1 Let Ω̃ be a connected domain such that Ω0
⊂ Ω̃ ⊆ Ω . For each κ let Uκ =

(uκ1 , . . . , u
κ
k ) be a solution of (7) in Ω̃ such that ‖Uκ−U0

‖(H 1
0 (Ω))

k < δ. Then, if δ is small enough,
there exists U ∈ (H 1

0 (Ω̃))
k such that, for all i = 1, . . . , k:
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(i) up to a subsequence, uκi → ui strongly in H 1(Ω) as κ →∞,
(ii) ui > 0 in Bi ,

(iii) if i 6= j then ui = 0 a.e. in Bj ,
(iv) if i 6= j then ui · uj = 0 a.e. in Ω ,
(v) (u1, . . . , uk) satisfy the differential inequalities (3).

The proof of this fact is obtained through the next Lemmas 3.1–3.3.

LEMMA 3.1 Under the same assumptions of Theorem 3.1, if δ is small enough there exists U ∈
(H 1

0 (Ω̃))
k such that, for all i = 1, . . . , k:

(i) up to a subsequence, uκi ⇀ ui weakly in H 1(Ω) as κ →∞,
(ii) ui > 0 in Ω \ Bi ,

(iii) if i 6= j then ui = 0 a.e. in Bj ,
(iv) if i 6= j then ui · uj = 0 a.e. in Ω ,
(v) (u1, . . . , uk) satisfy the differential inequalities (3).

Proof. Since Uκ is bounded in (H 1(Ω))k by assumption, we immediately obtain the existence of
a weak limit U such that, up to subsequences, uκi ⇀ ui in H 1(Ω). Since each uκi is positive on Bj
when j 6= i by Lemma 2.1, property (ii) comes from almost everywhere pointwise convergence.
Furthermore, the differential inequalities (8) and (9) for uκi pass to the weak limit, so (v) is already
proved. Let us discuss properties (iii) and (iv). By testing (6) with uκi + u

0
i we see that

κ

∫
Ω

(uκi + u
0
i )

2
∑
j 6=i

(uκj + u
0
j ) is bounded uniformly in κ,

and hence, since uκj + u
0
j > 0 for all j ,∫

Ω

(uκi + u
0
i )

2
∑
j 6=i

(uκj + u
0
j )→ 0 as κ →∞.

Passing to the limit for Uκ ⇀ U we obtain, for all i 6= j , i, j = 1, . . . , k,

ui(x) · uj (x)+ u
0
i (x) · uj (x)+ ui(x) · u

0
j (x) = 0, ∀x ∈ Ω. (11)

Let x ∈ Ω̃ \
⋃
Bi . Then (11) ensures ui(x) · uj (x) = 0 for all i 6= j .

CLAIM. If x ∈ Bi then uj (x) = 0 for all j 6= i.

Let x ∈ Bi for some fixed i. If ui(x) = 0 then (11) becomes u0
i (x) · uj (x) = 0 and hence

uj (x) = 0 for all j 6= i. If ui(x) > −u0
i (x) we have uj (x)(ui(x) + u0

i (x)) = 0, implying again
uj (x) = 0 for all j 6= i. Finally, let ui(x) = −u0

i (x). Since uj ·uh = 0 in Bi for all j 6= h, j, h 6= i,
there exists at most one index different from i (say j ) where uj (x) > 0. Let ωj be the connected
component of {uj > 0} which is contained in the set {y ∈ Bi : ui(y) = −u0

i (y)}, and such that
x ∈ ωj . Then by (9), since uh = 0 in ωj for all h 6= i, j , we have

−∆(ui − uj ) > fi(·, ui)− fj (·, uj ) in ωj .
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Adding −∆u0
i = fi(·, u

0
i ) we get

−∆(ui − uj + u
0
i ) > fi(·, ui)− fj (·, uj )+ fi(·, u

0
i ) in ωj .

Test this equation with −[ui − uj + u0
i ]
−. Note that [ui − uj + u0

i ]
−
≡ uj |ωj , so∫

ωj

|∇uj |
2 6

∫
ωj

fj (·, uj )uj 6 ‖fj (·, uj )‖LN/2(ωj )‖uj‖
2
L2∗ (ωj )

.

By (F1), (F2), since ‖uj‖H 1(ωj )
6 δ, we have ‖fj (·, uj )‖LN/2(ωj ) 6 Cδ, which implies uj ≡ 0 in ωj

if δ is small enough, giving rise to a contradiction. This proves the claim. 2

LEMMA 3.2 Under the assumptions of Theorem 3.1, if δ is small enough, then ui > 0 in the whole
of Bi . In particular, Bi ⊂ supp ui .

Proof. By Theorem 3.1, we already know that ui > 0 inΩ \Bi . Furthermore, ui ·uj = 0 for i 6= j
inΩ and (u1, . . . , uk) satisfies (9). Therefore Lemma 2.3 yields ûi = ui−

∑
j 6=i uj > 0 in Bi . Since

by Theorem 3.1(ii), uj > 0 in Bi , we have ui > 0 in Bi . Hence ui > 0 in Ω and it is not identically
null by its closeness to u0

i ; the strict positivity now comes from the Harnack inequality. 2

LEMMA 3.3 Under the assumptions of Theorem 3.1, the convergence uκi → ui is strong inH 1
0 (Ω)

(up to subsequences), where U = (u1, . . . , uk) is as in Lemma 3.1.

Proof. In order to prove the strong convergence of uκi to ui in H 1
0 (Ω), consider the functions

ûi = ui −
∑
j 6=i uj , which satisfy the inequality (9) in Ω̃ . Since ui > 0 from Lemma 3.2, testing

(9) with ui we obtain ∫
Ω

uifi(·, ui) 6
∫
Ω

|∇ui |
2. (12)

Testing
−∆uκi 6 fi(x, u

κ
i ) in Ω̃

with uκi + u
0
i (which is positive in view of Lemma 2.1) we have∫

Ω

∇uκi · ∇u
0
i +

∫
Ω

|∇uκi |
2 6

∫
Ω

u0
i fi(·, u

κ
i )+

∫
Ω

uκi fi(·, u
κ
i ). (13)

The uniform L∞-bound provided in Section 2.2 and the dominated convergence theorem allow us
to pass to the limit in (13) to obtain∫

Bi

∇u0
i · ∇ui + lim sup

κ→∞

∫
Ω

|∇uκi |
2 6

∫
Bi

u0
i fi(·, ui)+

∫
Ω

uifi(·, ui).

Since by Theorem 3.1, ui solves −∆ui = fi(x, ui) in Bi , testing with u0
i we have

∫
Bi
∇ui · ∇u

0
i =∫

Bi
u0
i fi(·, ui), which implies

lim sup
κ→∞

∫
Ω

|∇uκi |
2 6

∫
Ω

uifi(·, ui). (14)

Now (12), (14), and the lower semicontinuity of the norms yield

lim
κ→∞

∫
Ω

|∇uκi |
2
=

∫
Ω

|∇ui |
2.

The strong convergence follows easily from weak convergence and convergence of norms. 2
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REMARK 3.1 Notice that the above analysis can also be performed for the Lotka–Volterra
system (1), with some differences. In particular, following the proof of Lemma 3.1, the segregation
property (iv) immediately follows from (11), which reduces in this case to ui · uj = 0. In contrast,
we cannot prove, at the moment, the noninvading property (iii).

4. Uniqueness of the asymptotic limit

As in the previous section, let us here assume that the system (7) does have a solution on Ωn for
all κ large. Our goal now is to prove that the class S(Ωn) contains a single element which is close
to U0; it is worth noticing that U0 does not belong to S(Ωn), since the differential inequalities
involving the hat operation cannot hold outside Ω0.

THEOREM 4.1 For δ sufficiently small and n sufficiently large, the class S(Ωn) has at most one
element U such that ‖U − U0

‖(H 1
0 (Ω))

k < δ.

Proof. By Theorem 3.1, let Un ∈ S(Ωn) be the asymptotic limit of the solutions to (7), so that Un

enjoys the noninvading property. Now assume by contradiction the existence of V n ∈ S(Ωn) such
that Un 6= V n.

CLAIM 1 As n→∞, bothUn→ U0 and V n→ U0 weakly inH 1
0 (Ω) (hence strongly inLp(Ω)

for all 1 6 p < 2∗).

It suffices to prove the claim for Un. Since Un is bounded in (H 1(Ω))k , there exists U ∈
(H 1(Ω))k such that uni ⇀ ui weakly in H 1(Ω), and strongly in all Lp(Ω) with subcritical p. We
are going to prove that U ∈ S(Ω0) so that U ≡ U0 in light of Lemma 2.2. To this end, notice that
the differential inequalities characterizing S(Ω0) are satisfied by uni for all n, hence they pass to
the weak limit. It remains to prove that ui ∈ H 1

0 (Ω
0). To see this, notice that, for all open sets V

containing Ω0 ∪ E, we have
supp uni ⊂ Ω

n
⊂ V,

provided that n is sufficiently large. Hence

supp ui ⊂ V for all open sets V containing Ω0 ∪ E,

which implies that ui = 0 a.e. inΩ \ (Ω0∪E). Since ∂Ω ∪E has measure zero, ui = 0 onΩ \Ω0,
and the smoothness of ∂Ω0 ensures that ui ∈ H 1

0 (Ω
0) (see [17]).

Let us now start the argument that will lead to a contradiction. By setting ωni = {u
n
i > 0}, we

have ûni = u
n
i in ωni and

−∆uni = fi(x, u
n
i ) in ωni ,

−∆vni 6 fi(x, v
n
i ) in ωni .

If we now consider

wni =
vni − u

n
i

‖V n − Un‖L2(Ω)

,

we have {
−∆wni 6 ani (x)w

n
i in ωni ,

−∆ŵni > bni (x)ŵ
n
i in ωni ,

(15)
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where

ani (x) =
fi(x, v

n
i )− fi(x, u

n
i )

vni − u
n
i

and bni (x) =
f̂i(x, v̂

n
i )− fi(x, u

n
i )

v̂ni − u
n
i

.

Notice that ani ∈ L
∞ independently of n in light of the a priori estimates in (10) and Lemma 2.2

and since f ′i (·, 0) is bounded. We assert that this is also true for the second quotient. To see this,
remember that vni · v

n
j = 0 in Ω and notice that

bni (x) =
fi(x, v

n
i (x))− fi(x, u

n
i (x))

vni (x)− u
n
i (x)

for x ∈ Ω such that vni (x) > 0. On the other hand, if vj (x) > 0 for some j 6= i, then

bni (x) =
fi(x, u

n
i (x))+ fj (x, v

n
j (x))

uni (x)+ v
n
j (x)

.

Hence the same argument used to estimate ani provides an L∞ control for bni , uniformly in n. As
a consequence, by testing the differential inequalities in (15) with [wni ]+ and −[ŵni ]− respectively,
we easily find that wni is bounded in H 1(Ω). Since this is true for all i = 1, . . . , k, there exists
W = (w1, . . . , wk) ∈ (H

1(Ω))k such that wni ⇀ wi weakly in H 1(Ω) and strongly in L2 so that
wi 6= 0 for some i.

CLAIM 2 wi ∈ H
1
0 (Bi) and −∆wi 6 f ′i (x, u

0
i )wi in Bi .

Reasoning as in Claim 1, we can easily prove that wi ∈ H 1
0 (Bi).

Let φ > 0 be such that φ ∈ C∞0 (Bi). Since by Theorem 3.2 we know that Bi ⊂ ωni , we can test
the first inequality in (15) with φ to obtain∫

Bi

[∇wni ∇φ − a
n
i (x)w

n
i φ] 6 0.

By the strong convergence of Un and V n to U0 in Lp(Ω) for all 1 6 p < 2∗ and by the continuity
of the Nemytskiı̆ operator f ′i : LN(q−1)/2(Ω) → LN/2(Ω) (see (25)), it is easy to realize that
ani → f ′i (·, u

0
i ) in LN/2(Ω) as n→∞. Hence we can pass to the limit to find∫

Bi

[∇wi∇φ − f ′i (x, u
0
i )wiφ] 6 0. (16)

By exploiting the same argument starting from the second inequality in (15), we can prove
the opposite inequality, −∆wi > f ′i (x, u

0
i )wi in Bi . To this end, we first notice that if we set

A
i,j
n := {x ∈ Bi : vnj (x) > 0}, then limn→∞ µ(A

j
n) = 0 if j 6= i.

Indeed, Ai,jn ⊂ {x ∈ Ω \ Bj : vni (x) = 0} for every j 6= i, so we have

o(1) =
∫
Bi

|u0
i − v

n
i |

2 dx >
∫
{x∈Bi : vni (x)=0}

|u0
i |

2 dx >
∫
A
i,j
n

|u0
i |

2 dx

as n → ∞. From the absolute continuity of the Lebesgue measure µ with respect to the measure
A 7→

∫
A
|u0
i |

2 dx in Bi , we deduce that

lim
n→∞

µ(A
i,j
n ) = 0. (17)
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In Bi we can write bni as

bni (x) =
fi(x, v

n
i (x))− fi(x, u

n
i (x))

vni (x)− u
n
i (x)

χBi∩supp vni (x)+
∑
j 6=i

fi(x, u
n
i (x))+ fj (x, v

n
j (x))

uni (x)+ v
n
j (x)

χ
A
i,j
n
(x).

From limn→∞ µ(A
i,j
n ) = 0, the a priori estimates in (10) and Lemma 2.2, and since f ′i (·, 0) is

bounded, we deduce that bni (x)→ f ′i (x, u
0
i (x)) for a.e. x ∈ Bi . From the uniformL∞-boundedness

of bni and the dominated convergence theorem, we conclude that bni → f ′i (·, u
0
i ) in LN/2(Ω) as

n→ ∞. Hence testing the second inequality in (15) with φ ∈ C∞0 (Bi), φ > 0, and passing to the
limit as n→∞ we obtain ∫

Bi

[∇ŵi∇φ − f ′i (x, u
0
i )ŵiφ] > 0. (18)

From (17) and L2-convergence of wnj to wj , for all j 6= i we have∫
Bi

|wj |
2 dx = lim

n→∞

∫
Bi

|wnj |
2 dx = lim

n→∞

∫
A
i,j
n

|wnj |
2 dx = 0.

Therefore wj = 0 a.e. in Bi for every j 6= i, and

ŵi = wi in Bi . (19)

From (16), (18), and (19), we conclude that wi is a nontrivial solution to the linearized equation
−∆wi = f

′

i (x, u
0
i )wi in Bi with boundary condition wi = 0 on ∂Bi . This provides a contradiction

with the nondegeneracy assumption (ND). 2

REMARK 4.1 We note that the weak H 1(Ω)-convergence stated in Claim 1 of the above proof is
actually strong. Indeed, from Theorem 3.1(v), we have

‖uni ‖
2
H 1(Ω)

=

∫
supp uni

|∇uni |
2 dx =

∫
Ω

χsupp uni (x)fi(x, u
n
i (x))u

n
i (x) dx.

By the choice of Ωn, Theorem 3.1(iii), and pointwise convergence of uni to u0
i , it follows that

χsupp uni → χBi a.e. in Ω . Hence the uniform L∞-bound provided in Section 2.2 and the dominated
convergence theorem allow passing to the limit on the right hand side to obtain

lim
n→∞
‖uni ‖

2
H 1(Ω)

=

∫
Bi

fi(x, u
0
i (x))u

0
i (x) dx = ‖u0

i ‖
2
H 1(Ω)

.

Strong H 1(Ω)-convergence now follows from weak convergence and convergence of norms.

5. Coexistence in Lotka–Volterra models

This section is devoted to proving the existence of solutions to the auxiliary system when the domain
is sufficiently close toΩ0 and the interspecific competition is sufficiently strong. Precisely, we shall
prove
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THEOREM 5.1 For any κ and n sufficiently large, the system with barriers (6) admits a solution
Uκ = (uκ1 , . . . , u

κ
k ) ∈ (H

1
0 (Ω

n))k which is close to U0
= (u0

1, . . . , u
0
k) in (H 1

0 (Ω
n))k .

In light of Remark 2.1, the above theorem immediately yields

COROLLARY 5.1 For any κ and n sufficiently large, the Lotka–Volterra system (1) admits a
solution Uκ = (uκ1 , . . . , u

κ
k ) ∈ (H

1
0 (Ω

n))k which is close to U0
= (u0

1, . . . , u
0
k) in (H 1

0 (Ω
n))k

and satisfies ui > 0 for all i.

The proof of Theorem 5.1 is obtained by using a standard topological degree technique (see e.g.
[16]) and it is based on the ideas introduced in [8] in order to control the perturbation of the domain.
As a first step, we introduce suitable operators which allow reformulating the existence of solutions
to (7) as a fixed point problem. For all integers n = 0, 1, . . . , we define

An,κ : (H 1
0 (Ω))

k
→ (H 1

0 (Ω))
k, An,κ := Ln ◦ F n,κ ◦ in,

where in : (H 1
0 (Ω))

k
→ (H 1(Ωn))k is the restriction in(u1, . . . , uk) = (u1|Ωn , . . . , uk|Ωn),

F n,κ : (H 1(Ωn))k → (H−1(Ωn))k,

F n,κ(U) = fi(·, [ui + u0
i ]
+
− u0

i )− κ[ui + u0
i ]
+
∑
j 6=i

[uj + u0
j ]+,

and
Ln : (H−1(Ωn))k → (H 1

0 (Ω
n))k ↪→ (H 1

0 (Ω))
k

is defined as: Ln(h1, . . . , hk) = (u1, . . . , uk) if and only if −∆ui = hi in Ωn and ui = 0 on ∂Ωn,
for all i = 1, . . . , k.

With the above notation, it turns out that the solutions of (7) in Ωn are in 1-1 correspondence
with the fixed points of An,κ . We are going to prove the existence of fixed points of An,κ by
showing that the Leray–Schauder degree of the map Id − An,κ in a small ball centered at U0 is
different from 0. We recall that the Leray–Schauder degree is well defined for operators which
differ from the identity by a compact map. To this end, we notice that it is not restrictive to assume
that An,κ is compact from (H 1

0 (Ω))
k into itself. Indeed, if N < 6, the growth of the nonlinearity

q̃ = max{2, q} is subcritical, i.e. q̃ < (N + 2)/(N − 2), and compactness is guaranteed by
the Sobolev–Rellich embedding theorem. Otherwise, for N > 6, using the L∞-bounds proved
in Section 2.2, compactness can be recovered by truncating the coupling term, thus obtaining a
subcritical nonlinearity without affecting the proofs.

The following lemma allows us to compute the topological degree of the unperturbed problem.
We will use the notation A′(U) to denote the Fréchet derivative at U ∈ X of any differentiable map
A from a Banach space X to a Banach space Y .

LEMMA 5.1 Let ε > 0 be as in assumption (ND). There exists κ̄ such that for all κ > κ̄ , the
eigenvalues of Id − (A0,κ)′(U0) in (H 1

0 (Ω
0))k are all greater than ε. In particular, the kernel of

Id− (A0,κ)′(U0) is trivial.

Proof. First notice that, by Lemma 6.2 in the Appendix, the map

F 0,κ : (H 1(Ω0))k → (H−1(Ω0))k
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is Fréchet differentiable at U0 and

(F 0,κ)′(U0)[V ] = JacGκ(U0)V for all V ∈ (H 1(Ω0))k, (20)

where

Gκ : Rk → Rk, Gκ(U) = fi(·, ui)− κui
∑
j 6=i

uj − κu
0
i

∑
j 6=i

uj − κui
∑
j 6=i

u0
j ,

and JacGκ(U0) denotes the Jacobian matrix of Gκ at U0.
Set Lκ := Id− (A0,κ)′(U0) and write (H 1

0 (Ω
0))k as the direct sum

(H 1
0 (Ω

0))k =

k⊕
i=1

Hi,

where

Hi = H 1
0 (Bi)×H

1
0 (Bi+1 (mod k))×H

1
0 (Bi+2 (mod k))× · · · ×H

1
0 (Bi+k−1 (mod k)).

The spaces Hi are mutually orthogonal and Lκ |Hi
: Hi → Hi , so that it is enough to prove that 0

is not an eigenvalue of Lκ |Hi
for all i = 1, . . . , k.

If λ is an eigenvalue of Lκ in H1, then there exists V = (v1, . . . , vk) ∈ H1 such that
(v1, . . . , vk) 6= (0, . . . , 0) and

−(1− λ)∆V = JacGκ(U0)V ,

i.e.
−(1− λ)∆vi =

(
f ′i (·, u

0
i )− 2κ

∑
j 6=i

u0
j

)
vi − 2κu0

i

∑
j 6=i

vj in Ω0 (21)

for all i = 1, . . . , k. Since (v1, . . . , vk) 6= (0, . . . , 0), there exists ` such that v` 6≡ 0. Equation (21)
for i = ` in B` reads

−(1− λ)∆v` = f ′`(·, u
0
`)v` in B`,

hence λ > ε in view of assumption (ND).
If λ is an eigenvalue of Lκ in Hi for i 6= 1, then there exists V = (v1, . . . , vk) ∈ Hi , V 6=

(0, . . . , 0), which solves (21). Let ` be such that v` 6≡ 0. Then equation (21) in Bi+`−1 reads

−(1− λ)∆v` = (f ′`(·, 0)− 2κu0
i+`−1)v`, v` ∈ H

1
0 (Bi+`−1).

Testing the above equation with v` we find

(1− λ)
∫
Bi+`−1

|∇v`|
2 dx =

∫
Bi+`−1

(f ′`(·, 0)− 2κu0
i+`−1)v

2
` dx

6
∫
Bi+`−1

(f ′`(·, 0)− 2κu0
i+`−1)

+v2
` dx

6 S−1
(∫

Bi+`−1

|∇v`|
2 dx

)
‖(f ′`(·, 0)− 2κu0

i+`−1)
+
‖LN/2(Bi+`−1)

,
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where S is the best constant in the Sobolev embedding. Therefore

λ > 1− S−1
‖(f ′`(·, 0)− 2κu0

i+`−1)
+
‖LN/2(Bi+`−1)

. (22)

By the dominated convergence theorem, ‖(f ′`(·, 0) − κu0
i+`−1)

+
‖LN/2(Bi+`−1)

→ 0 as κ → ∞ for
any ` and i, hence we can find κ̄ such that for all κ > κ̄ , and all i and `,

‖(f ′`(·, 0)− 2κu0
i+`−1)

+
‖LN/2(Bi+`−1)

< S(1− ε).

With this choice of κ̄ , from (22) it follows that if λ is an eigenvalue of Lκ in Hi for i 6= 1, then
λ > ε; in particular λ 6= 0. The proof is thereby complete. 2

LEMMA 5.2 There exist κ̄ and n̄ such that, for all n > n̄ and κ > κ̄ ,

U 6= tA0,κ(U)+ (1− t)An,κ(U)

for all t ∈ [0, 1] and U ∈ (H 1
0 (Ω))

k such that ‖U − U0
‖(H 1

0 (Ω))
k = δ.

Proof. Arguing by contradiction, suppose there exist sequences nj →∞ and κj →∞, tj ∈ [0, 1],
and U j ∈ (H 1

0 (Ω))
k such that ‖U j − U0

‖(H 1
0 (Ω))

k = δ and

U j = tjA
0,κj (U j )+ (1− tj )Anj ,κj (U j ). (23)

Since Anj ,κj takes values in (H 1
0 (Ω

nj ))k , we see that U j ∈ (H 1
0 (Ω

nj ))k . Taking the laplacian of
both sides in (23), we find that U j solves{

−∆U j = F κj (U j ),

U j ∈ (H 1
0 (Ω

nj ))k.

Since {U j }j is bounded in (H 1
0 (Ω))

k , up to a subsequence, U j converges weakly in (H 1
0 (Ω))

k to
some U = (u1, . . . , uk) ∈ (H

1
0 (Ω))

k . By Theorem 3.1, we know that ui · uj = 0 for i 6= j , ui > 0
in Ω and the k-tuple (u1, . . . , uk) solves the differential inequality (9), i.e.

−∆ûi > f̂i(x, ûi) in Ω.

As a matter of fact, arguing as in Theorem 4.1 (see the proof of Claim 1), it is possible to prove that
ui ∈ H

1
0 (Ω

0), hence U ∈ S(Ω0). Furthermore, since the convergence of U j to U is actually strong
in (H 1

0 (Ω))
k by Lemma 3.3, we have

∑
i ‖ui − u

0
i ‖

2
H 1

0 (Bi )
= ‖U − U0

‖
2
(H 1

0 (Ω))
k
= δ2 > 0. This

implies the existence of i such that ui 6≡ u0
i , in contradiction with Theorem 2.2. 2

We now have all the ingredients to conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. In view of Theorem 2.1, for all κ > κ̄ we can compute the Leray–Schauder
degree

deg(Id− A0,κ , B(H 1
0 (Ω))

k (U
0, δ), 0).

By Lemma 5.1 it turns out to be equal to +1. In light of Lemma 5.2, for n > n̄ and κ > κ̄ , it makes
sense to compute the Leray–Schauder degree

I = deg(Id− An,κ , B(H 1
0 (Ω))

k (U
0, δ), 0).
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By homotopy invariance,

deg(Id− An,κ , B(H 1
0 (Ω))

k (U
0, δ), 0) = deg(Id− A0,κ , B(H 1

0 (Ω))
k (U

0, δ), 0)

and hence I = +1. As a consequence, An,κ has a fixed point in B(H 1
0 (Ω))

k (U
0, δ), which provides a

solution U = (u1, . . . , uk) to (7) inΩn which is close to U0. To conclude the proof, it only remains
to show that U is a solution to (6) with the original nonlinearity fi , and this follows easily from
(10). 2

Collecting all the results so far obtained, we can finally prove our main theorems.

Proof of Theorem 1. For a fixed sufficiently large n, consider the sequence Uκ of solutions to (6)
as in Theorem 5.1. As κ →∞, thanks to Theorem 3.1 we know that Uκ converges strongly to some
U = (u1, . . . , un) in (H 1

0 (Ω
n))k such that U isH 1-close to U0, ui > 0 for all i, ui ·uj = 0 if i 6= j ,

U has the noninvading property and satisfies the differential inequalities (3). Hence U belongs to
S(Ωn). The uniqueness is ensured by Theorem 4.1. 2

Proof of Theorem 2. The existence of a solution Uκ close to U0 for the two systems is proved in
Theorem 5.1 and the subsequent corollary. The asymptotic analysis as κ → ∞ has been carried
out for (6) in Section 3 and all the results directly come from Theorem 3.1. For the Lotka–Volterra
model (1), U k converges to an element of S(Ωn) by Remark 3.1. 2

5.1 Concluding remarks

In this paper we have restricted our discussion to homogeneous Dirichlet boundary conditions. It
has to be stressed that the technique here employed cannot be used to treat the Neumann no-flux
boundary conditions

∂ui

∂ν
= 0 on ∂Ωn,

the two major obstacles being the difficulty in constructing suitable extension operators and the lack
of continuity of the eigenvalues of the Laplacian under Neumann boundary conditions with respect
to the perturbation of the domain. This will be an object of forthcoming studies.

On the other hand, our results can be immediately extended to a great variety of competitive
models, not necessarily of Lotka–Volterra type, since they essentially depend only on the validity of
the differential inequalities (9).

6. Appendix

In this appendix, we collect some lemmas used throughout the paper and the proofs of our most
technical results. The following simple lemma is needed to prove Theorem 2.1, i.e. to prove isolation
of U0.

LEMMA 6.1 For all ε > 0 there exists δ > 0 such that for all i = 1, . . . , k and u ∈ H 1
0 (Ω

0),
‖u− u0

i ‖H 1
0 (Ω

0) 6 δ implies∣∣∣∣∫
Ω0
(fi(x, ui)− fi(x, u

0
i )− f

′

i (x, u
0
i )(ui − u

0
i ))(ui − u

0
i ) dx

∣∣∣∣ 6 ε‖ui − u
0
i ‖

2
H 1

0 (Ω
0)
. (24)
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Proof. Denote by I the integral in (24). We can estimate it as follows:

I =

∣∣∣∣∫
Ω0

[∫ 1

0
(f ′i (x, tui + (1− t)u

0
i )− f

′

i (x, u
0
i ))(ui − u

0
i )

2 dt
]

dx
∣∣∣∣

6 ‖ui − u
0
i ‖

2
L2∗ (Ω0)

∫ 1

0
‖f ′i (·, tui + (1− t)u

0
i )− f

′

i (·, u
0
i )‖LN/2(Ω0) dt

6 S−1
‖ui − u

0
i ‖

2
H 1

0 (Ω
0)

∫ 1

0
‖f ′i (·, tui + (1− t)u

0
i )− f

′

i (·, u
0
i )‖LN/2(Ω0) dt,

where S is the best constant of the Sobolev embedding H 1
0 ↪→ L2∗ . By continuity of the Nemytskiı̆

operator f ′i : H 1
0 (Ω

0)→ LN/2(Ω0), u 7→ f ′i (·, u(·)), there exists δ > 0 such that

‖w − ui0‖H 1
0 (Ω

0) 6 δ ⇒ ‖f ′i (·, w)− f
′

i (·, u
0
i )‖LN/2(Ω0) 6 Sε. (25)

This completes the proof. 2

Let us now prove Theorem 2.1, which has played a crucial role in the degree argument developed
in Section 5, as it ensures the isolation of the solution to the unperturbed problem.

Proof of Theorem 2.1. Assume that there exists a sequence Uκ = (uκ1 , . . . , u
κ
k ) of solutions to (6)

such that uκi > −u
0
i for all i and Uκ → U0 as κ → ∞. Set V κ = Uκ − U0. By subtracting the

respective differential equations we obtain, for all i = 1, . . . , k,

−∆vκi = fi(x, u
κ
i )− fi(x, u

0
i )− κvκi

∑
j 6=i

vκj − 2κuκi
∑
j 6=i

u0
j − 2κu0

i

∑
j 6=i

uκj in Ω0.

Add and subtract the term f ′i (x, u
0
i )v

κ
i , then multiply by vκi and integrate on Bh for a fixed h to

obtain∫
Bh

[
|∇vκi |

2
− f ′i (x, u

0
i )|v

κ
i |

2
− (fi(x, u

κ
i )− fi(x, u

0
i )− f

′

i (x, u
0
i )v

κ
i )v

κ
i

+ 2κu0
i

(∑
j 6=i

vκj

)
vκi + 2κ

(∑
j 6=i

u0
j

)
|vκi |

2
+ κ

(∑
j 6=i

vκj

)
|vκi |

2
]
= 0. (26)

In particular, since vj |Bh = uj if j 6= h while vh|Bh = uh − u
0
h, by choosing h 6= i we have∫

Bh

|∇vκi |
2
−

∫
Bh

(fi(x, u
κ
i )− fi(x, 0)− f ′i (x, 0)vκi )v

κ
i =

∫
Bh

(
f ′i (x, 0)− κu0

h − κ
∑
j 6=i

uκj

)
|vκi |

2.

Let 0 < ε < 1 be given. If κ is large enough, in light of Lemma 6.1 and since ui(x) > 0 for x ∈ Bj
when j 6= i, we know that

(1− ε)
∫
Bh

|∇vκi |
2 6

∫
Bh

[f ′i (x, 0)− κ(uκh + u
0
h)]
+
|vκi |

2

6 ‖[f ′i (x, 0)− κ(uκh + u
0
h)]
+
‖LN/2(Bh)

‖vκi ‖
2
L2∗ (Bh)

.
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CLAIM. The LN/2-norm of [f ′i (·, 0) − κ(uκh + u
0
h)]
+ can be made arbitrarily small by letting

κ →∞.

First note that uκh + u
0
h > 0 by assumption, hence

‖[f ′i (·, 0)− κ(uκh + u
0
h)]
+
‖LN/2(ω) < ‖[f

′

i (·, 0)]+‖LN/2(ω) 6 ( sup
x∈Ω0

[f ′i (x, 0)]+)µ(ω)2/N

for any measurable ω ⊂ Ω0. Secondly, since ‖uκh − u
0
h‖H 1

0 (Ω
0) 6 δ, by the Sobolev embedding we

have

δ2 >
∫
Ω0
|∇(uκh − u

0
h)|

2 > S

(∫
Aδ

|uκh − u
0
h|

2∗
)2/2∗

> δµ(Aκδ )
2/2∗

where
Aκδ = {x ∈ Bh : |uκh(x)− u

0
h(x)|

2 > δ}.

Choose δ (independent of κ) small enough so that

( sup
x∈Ω0

[f ′i (x, 0)]+)N/2 · µ(Aκδ ) 6
1
4
(S(1− ε))N/2.

Now fix r > 0 such that

( sup
x∈Ω0

[f ′i (x, 0)]+)N/2 · µ(Bh \ Bh(r)) 6
1
4
(S(1− ε))N/2,

where Bh(r) denotes the ball of radius r and with the same center as Bh. We note that there exists
m > 0 such that u0

h(x) > m for all x ∈ Bh(r). Also, for 0 <
√
δ < m/2, we have uκh + u

0
h > m/2

in Bh(r) \ Aκδ . With this choice we finally obtain κ̄ such that, for all κ > κ̄ , we have

[f ′i (x, 0)− κ(uκh + u
0
h)]
+(x) = 0

for any x in Bh(r) \ Aκδ . Summing up, the above argument yields

‖[f ′i (·, 0)− κ(uκh + u
0
h)]
+
‖
N/2
LN/2(Bh)

6 ‖[f ′i (·, 0)− κ(uκh + u
0
h)]
+
‖
N/2
LN/2(Bh(r)\A

κ
δ )

+ ‖[f ′i (·, 0)− κ(uκh + u
0
h)]
+
‖
N/2
LN/2((Bh\Bh(r))∪A

κ
δ )

6
1
2
(S(1− ε))N/2

for κ large enough, and proves the Claim.

As a consequence, if κ is large enough, we obtain vκi |Bh ≡ 0 for all h 6= i. Making use of this
in (26) for the choice h = i we get∫

Bi

(|∇vκi |
2
− f ′i (x, u

0
i )|v

κ
i |

2) =

∫
Bi

(fi(x, u
κ
i )− fi(x, u

0
i )− f

′

i (x, u
0
i )v

κ
i )v

κ
i

for κ large enough. In light of assumption (ND) the left hand side is always greater than ε‖vκi ‖
2
H 1

0 (Bi )

for some positive ε. On the other hand, Lemma 6.1 ensures that the right hand side is less than
(ε/2)‖vκi ‖

2
H 1

0 (Bi )
if ‖vκi ‖H 1

0 (Bi )
is suitably small. Hence we reach a contradiction for κ large enough

unless vκi ≡ 0 for all i = 1, . . . , k, that is, Uκ ≡ U0. 2
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Proof of Lemma 2.3. Let i be fixed and consider the differential inequality

−∆ûi > f̂i(x, ûi) in Bi .

Testing it with −û−i and setting ωi := {̂u−i > 0} yields∫
ωi

|∇ (̂u−i )|
2 6 −

∫
ωi

f̂i(x, û
−

i )

û−i
(u−i )

2 6 Mµ(ωi)
2/NS−1

∫
ωi

|∇ (̂u−i )
2
|, (27)

where M := ‖f̂i(x, û−i )/û
−

i ‖L
∞ is finite by the a priori L∞-estimate for ui as in (10) and taking

into account that f ′j (0) is finite for all j . Now, since ‖ûi − u0
i ‖H 1

0 (Bi )
6 kδ, we have

k2δ2 >
∫
Bi

|∇ (̂ui − u
0
i )|

2 > const
(∫

Bi

|̂ui − u
0
i |

2∗
)2/2∗

> const
(∫

ωi

|u0
i |

2∗
)2/2∗

.

By absolute continuity of Lebesgue integral, we can choose δ sufficiently small to ensure that
µ(ωi) < (S/2M)N/2. Hence by (27) we find∫

ωi

|∇ (̂u−i )|
2 6

1
2

∫
ωi

|∇ (̂u−i )
2
|,

which implies û−i ≡ 0. 2

Proof of Theorem 2.2. By Lemma 2.3 we know that ûi > 0 in Bi for all i. Since uj > 0 for all
j and the supports are disjoint,

∑
j 6=i uj = (̂ui)

−
= 0, implying ûi ≡ ui . Hence by coupling the

differential inequalities for ui and ûi we find that ui is a solution to

−∆ui = fi(x, ui) in Bi,

with null boundary conditions. Hence by assumption (ND) we obtain ui ≡ u0
i . 2

The following lemma establishes the Fréchet differentiability of the map F 0,κ defined in Section 5.

LEMMA 6.2 For any r ∈ [ 2Nq̃
N+2 ,

2N
N−2 ], the Nemytskiı̆ operator

F 0,κ : (Lr(Ω0))k → (Lr/q̃(Ω0))k,

F 0,κ(U) = fi(·, [ui + u0
i ]
+
− u0

i )− κ[ui + u0
i ]
+
∑
j 6=i

[uj + u0
j ]+,

is Fréchet differentiable at U0 and

(F 0,κ)′(U0)[V ] =
((
f ′i (·, u

0
i )− 2κ

∑
j 6=i

u0
j

)
vi − 2κu0

i

∑
j 6=i

vj

)
i=1,...,k

.

Proof. We shall prove that for all i = 1, . . . , k,∥∥∥fi(·, [ui + u0
i ]
+
− u0

i )− fi(·, u
0
i )− f

′

i (·, u
0
i )(ui − u

0
i )

− κ
[
[ui + u0

i ]
+
∑
j 6=i

[uj + u0
j ]+ − 2

(∑
j 6=i

u0
j

)
(ui − u

0
i )− 2u0

i

∑
j 6=i

(uj − u
0
j )
]∥∥∥
(Lr/q̃ (Ω0))k

= o(‖U − U0
‖(Lr (Ω0))k ) as ‖U − U0

‖(Lr (Ω0))k → 0.
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We have
‖fi(·, [ui + u0

i ]
+
− u0

i )− fi(·, u
0
i )− f

′

i (·, u
0
i )(ui − u

0
i )‖

r/q̃

(Lr/q̃ (Ω0))k

‖ui − u
0
i ‖
r/q̃

(Lr (Ω0))k

6 I1 + I2,

where

I1 =

∫
{ui+u

0
i>0} |fi(·, ui)− fi(·, u

0
i )− f

′

i (·, u
0
i )(ui − u

0
i )|

r/q̃

(
∫
Ω0 |ui − u

0
i |
r)1/q̃

,

I2 =

∫
{ui+u

0
i<0} |2fi(·, u

0
i )+ f

′

i (·, u
0
i )(ui − u

0
i )|

r/q̃

(
∫
{ui+u

0
i<0} |ui − u

0
i |
r)1/q̃

.

Mimicking the proof of Lemma 6.1, we can easily show that I1 → 0 as ui → u0
i in Lr(Ω). Setting

ωi := {x ∈ Ω : ui(x)+ u0
i (x) < 0}, we observe that∫

Ω

|ui − u
0
i |
r >

∫
ωi

|u0
i |
r ,

hence |ωi | → 0 as ui → u0
i in Lr(Ω).

From assumptions (F1), (F2) we find that fi(x, s) 6 const (|s| + |s|q̃), hence

(
∫
ωi
|fi(·, u

0
i )|

r/q̃)q̃/r

(
∫
ωi
|ui − u

0
i |
r)1/r

6
(
∫
ωi
|u0
i |
r/q̃)q̃/r

(
∫
ωi
|u0
i |
r)1/r

+
(
∫
ωi
|u0
i |
r)q̃/r

(
∫
ωi
|u0
i |
r)1/r

(28)

6 |ωi |
(q̃−1)/r

+

(∫
ωi

|u0
i |
r

)(q̃−1)/r

= o(1)

as ui → u0
i in Lr(Ω). Moreover,

(
∫
ωi
|f ′i (·, u

0
i )(ui − u

0
i )|

r/q̃)q̃/r

(
∫
ωi
|ui − u

0
i |
r)1/r

6
‖u− u0

i ‖L
r (ωi )‖f

′

i (·, u
0
i )‖Lr/(q̃−1)(ωi )

‖u− u0
i ‖L

r (ωi )

= o(1) (29)

as ui → u0
i in Lr(Ω). From (28) and (29) it follows that I2 = o(1) as ui → u0

i in Lr(Ω). Hence

‖fi(·, [ui + u0
i ]
+
− u0

i )− fi(·, u
0
i )− f

′

i (·, u
0
i )(ui − u

0
i )‖(Lr/q̃ (Ω0))k = o(‖ui − u

0
i ‖(Lr/q̃ (Ω0))k )

as ui → u0
i in Lr(Ω). On the other hand,∥∥∥[ui + u0

i ]
+
∑
j 6=i

[uj + u0
j ]+ − 2

(∑
j 6=i

u0
j

)
(ui − u

0
i )− 2u0

i

∑
j 6=i

(uj − u
0
j )

∥∥∥
(Lr/q̃ (Ω0))k

6
∑
j 6=i

(∫
Ω0\(ωi∪ωj )

|ui − u
0
i |
r/q̃
|uj − u

0
j |
r/q̃
+

∫
ωi∪ωj

|2u0
j (ui − u

0
i )+ 2u0

i (uj − u
0
j )|

r/q̃

)q̃/r
6 const

∑
j 6=i

(
‖ui − u

0
i ‖
r/q̃

Lr (Ω)‖uj − u
0
j ‖
r/q̃

Lr/(q̃−1)(Ω)

+ ‖ui − u
0
i ‖
r/q̃

Lr (Ω)‖u
0
j ‖
r/q̃

Lr/(q̃−1)(ωi∪ωj )
+ ‖uj − u

0
j ‖
r/q̃

Lr (Ω)‖u
0
i ‖
r/q̃

Lr/(q̃−1)(ωi∪ωj )

)q̃/r
= o(1) as ‖U − U0

‖(Lr (Ω0))k → 0.

The proof is thereby complete. 2
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Since we are actually working with the truncation f̃i instead of fi , and f̃i is not C1 with respect to
the second variable, it is worth noticing that this does not create any problem when linearizing the
operator at U0 and the linearization of the truncated operator is still given by (20). As the proof is
very similar to the proof of Lemma 6.2, we omit it.
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