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Godunov scheme and sampling technique for computing phase transitions in
traffic flow modeling
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A new version of Godunov scheme is proposed in order to compute solutions of a traffic flow
model with phase transitions. The scheme is based on a modified averaging strategy and a sampling
procedure. Several numerical tests are shown to prove the validity of the method. The convergence
of the algorithm is demonstrated numerically. We also give a higher order extension of the method
in space and time.
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1. Introduction

We are interested in the numerical approximation of the solutions of a continuous traffic flow
model taking into account the phenomenon of phase transitions between a free and a congested
environment. The model we consider has been proposed by Colombo [10]. It consists of a scalar
conservation law describing the free flow, and of a 2× 2 system of conservation laws when the flow
is congested. The coupling is achieved by introducing phase transitions between the free and the
congested phase. We recall that, from the analytical point of view, the model is well posed for all
initial data with bounded total variation [11].

Other traffic flow models with phase transitions have been considered in the literature since
the 60-ties, in order to explain empirical flow-density relations (see Helbing [15, Section II]
for description of the features recovered by a detailed analysis of the fundamental diagram). In
particular, we refer the reader to the scalar model of Drake, Schofer and May [12]. Another model
has been introduced recently by the second author [13].

Historically, one of the first continuous models introduced to describe traffic flow is the well
known Lighthill–Whitham [19] and Richards [20] (LWR) model, which reads

∂tρ + ∂x[ρv(ρ)] = 0, (1)
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where ρ ∈ [0, R] is the mean traffic density, and v(ρ), the mean traffic velocity, is a given non-
increasing function, non-negative for ρ between 0 and the positive maximal density R, which
corresponds to a traffic jam. This scalar model expresses conservation of the number of cars, and
relies on the assumption that the car speed depends only on the density (more complex closure
relations between speed and density, involving the density gradient, can be assumed: see [2] and
references therein). This phenomenological relation is valid in steady state conditions, and is not
realistic in more complicated situations. In particular, as shown in Figure 1, the corresponding
fundamental diagram in the (ρ, ρv)-plane does not qualitatively match experimental data at high
densities.

0 R

ρv

ρ

FIG. 1. Left: standard flow for the LWR model. Right: experimental data, taken from [17]; here q denotes the flux ρv.

The diagram above suggests that a good traffic flow model should exhibit two qualitatively
different behaviors:

• for low densities, the flow is free and essentially analogous to the LWR model;
• at high densities the flow is congested and covers a 2-dimensional domain in the fundamental

diagram; a “second order” model seems more appropriate to describe this dynamic.

From a numerical point of view, the presence of phase transitions makes standard numerical
schemes useless. For example, it is easy to see that the classical Godunov method is not applicable
due to the lack of convexity of the whole model phase space. Indeed, the latter turns out to be
a disconnected set in R2, made of two connected components associated with the free and the
congested domains, respectively. In the presence of phase transitions, the projection step taking
place in the classical Godunov method can then give values which are not in the domain. This
necessarily stops the procedure. We are thus led to propose a new version of the Godunov method,
based on a modified averaging strategy and a sampling procedure. More precisely, we modify the
mesh cells following the phase boundaries, so that the projection involves only values belonging to
the same phase. In order to come back to the original cells, we complete the projection step with a
Glimm-type sampling technique.

This scheme is essentially first order accurate, and hence introduces a considerable dissipation
away from phase transitions. In order to improve accuracy, we also present an extension of the
method to second-order accuracy in space and time, which is L1-stable in space.

We remark that the techniques presented here apply also to models in [12, 13].
The averaging procedure on modified cells that we introduce has first been used (up to our

knowledge) in [24] but in a different context and in a slightly different form. However, the idea
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of going back to the initial cells by means of a sampling procedure is new and allows us to avoid
dealing with moving meshes (as in [24]). It has been motivated by recent work by the first author
on approximating nonclassical solutions arising in certain nonlinear hyperbolic equations (see [4],
[5] and the references therein), and very recently by Chalons and Coquel in [6] on computing sharp
discrete shock profiles. Let us underline that the model studied here differs a lot from the one
addressed in [24], since we are coupling systems of different dimensions. Moreover, we describe a
higher order strategy adapted to our model.

The paper is organized as follows. In Section 2 we present the model, whose Riemann solver
is described in Section 3. Section 4 is devoted to the description of the modified Godunov scheme
and its higher order extension, which are tested in Section 5. Finally, Section 6 is devoted to the
computation of the conservation errors.

2. Governing equations

We describe here the traffic flow model introduced by Colombo [10].
For the free flow, the well known LWR scalar conservation law is used,

∂tρ + ∂x(ρvf (ρ)) = 0, x ∈ R, t > 0, (2)

where ρ is the car density and ρ 7→ vf (ρ) is the speed function given by

vf (ρ) = V
(

1− ρ

R

)
. (3)

When the traffic is congested, the model is a 2× 2 system of conservation laws [9]:{
∂tρ + ∂x(ρvc(ρ, q)) = 0,
∂tq + ∂x((q −Q)vc(ρ, q)) = 0, x ∈ R, t > 0, (4)

where ρ still denotes the car density, q is the weighted linear momentum and Q is a parameter
depending on the road under consideration and is related to the phenomenon of wide moving jams.
The speed law now reads

vc(ρ, q) =
(

1− ρ

R

)
q

ρ
. (5)

In (3) and (5), R and V are constants, the maximal possible car density and the maximal possible
speed respectively.

It is worth noticing that one may provide the free system with a natural value for q when setting
q = ρV . Indeed, vf (ρ) = vc(ρ, ρV ), so that the associated conservation law is obtained by
multiplying (2) by V and reads

∂tq + ∂x(qvf (ρ)) = 0, q = ρV,
or equivalently

∂tq + ∂x(qvc(ρ, q)) = 0, q = ρV.
Recall that for the congested phase, q evolves according to

∂tq + ∂x ((q −Q)vc(ρ, q)) = 0.
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This means that q is not conserved across a phase transition. On the contrary, ρ is conserved, as we
will see in Section 3.

The phase space Ωf (resp. Ωc) for the free system (resp. the congested system) is chosen to
be an invariant set for (2) (resp. (4)). (We refer the reader to [16] for definition and properties of
invariant sets.) This implies that if the initial data are entirely in the free (resp. congested) phase,
then the solution will belong to the free (resp. congested) phase for all time. The domains are chosen
to be

Ωf = {(ρ, q) ∈ [0, R]× [0,+∞[: vf (ρ) > Vf , q = ρV }
= {(ρ, q) ∈ [0, R]× [0,+∞[: ρ/R 6 1− Vf /V , q = ρV } (6)

and

Ωc =
{
(ρ, q) ∈ [0, R]× [0,+∞[: 0 6 vc(ρ, q) 6 Vc,

Q− −Q
R

6
q −Q
ρ

6
Q+ −Q

R

}
, (7)

where Vf > Vc are threshold speeds such that above Vf the flow is free and below Vc it is congested.
Notice that the strict inequality Vf > Vc is necessary to have uniqueness of solutions. In addition,
Q− ∈ ]0,Q[ and Q+ ∈ ]Q,+∞[ depend on the environmental conditions and determine the width
of the congested phase.

We introduce the following shortened form:

∂tu+ ∂xf(u) = 0, u ∈ Ω = Ωf ∪Ωc, (8)

for the model of phase transitions under consideration, with{
u = (ρ, q) and f(u) = (ρvf (ρ), qvf (ρ)) if (ρ, q) ∈ Ωf ,
u = (ρ, q) and f(u) = (ρvc(ρ, q), (q −Q)vc(ρ, q)) if (ρ, q) ∈ Ωc.

In the forthcoming developments, it is important to keep in mind that u and f(u) do not have the same
meaning in the free phase and in the congested phase. Moreover, the domain Ω is not connected,
hence it is not convex (see Figure 2, left, in Section 3).

To conclude this section, let us underline that (8) is now supplemented, as is customary, with
a given value of the solution at time t = 0. More precisely, we assume that given an initial data
u0 ∈ Ω we have

u(·, t = 0) = u0. (9)

3. The Riemann problem

We recall in this section the description of the Riemann solver for (8)–(9), i.e. the self-similar
solution of the Cauchy problem 

∂tu+ ∂xf(u) = 0,

u0(x) =
{

ul if x < 0,
ur if x > 0.

(10)

We refer the reader to [10] for the definition of admissible and consistent solutions to (10). In
particular, we recall that the Rankine–Hugoniot condition must hold at the phase transition:

ρ(Λt+, t)vc(u(Λt+, t))− ρ(Λt−, t)vf (ρ(Λt−, t)) = Λ(ρ(Λt+, t)− ρ(Λt−, t))
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for all t > 0, where x = Λt is the location of the phase transition. Notice that this condition ensures
that the total number of cars is conserved.

Before giving a detailed description of the solutions to (10), we recall the basic features of
models (2) and (4). In the free phase the characteristic speed is λ(ρ) = V (1 − 2ρ/R), while the
information on system (4) is collected in the following table:

r1(ρ, q) =
[

ρ

q −Q
]
, r2(ρ, q) =

[
R − ρ
R
ρ
q

]
,

λ1(ρ, q) =
(

2
R
− 1
ρ

)
· (Q− q)− Q

R
, λ2(ρ, q) = vc(ρ, q),

∇λ1 · r1(ρ, q) = 2
Q− q
R

, ∇λ2 · r2(ρ, q) = 0,

L1(ρ; ρ0, q0) = Q+ q0 −Q
ρ0

ρ, L2(ρ; ρ0, q0) = ρ

ρ0

R − ρ0

R − ρ q0,

w1(ρ, q) = vc(ρ, q), w2(ρ, q) = q −Q
ρ

,

(11)

where ri is the i-th right eigenvector, λi the corresponding eigenvalue, Li is the i-Lax curve and wi
is the i-Riemann invariant. Shock and rarefaction curves coincide, hence system (4) belongs to the
Temple class [21].

Using Riemann coordinates (w1, w2), we haveΩc = [0, Vc]× [W−2 ,W
+
2 ]. For (ρ, q) ∈ Ωf , we

extend the corresponding Riemann coordinates (w1, w2) as follows. Let ũ = (ρ̃, ρ̃V ) be the point
in Ωf defined by ρ̃ = Q/(V −W−2 ). Define

w1 = Vf and w2 =
{
V −Q/ρ if ρ > ρ̃,

vf (ρ̃)− vf (ρ)+ V −Q/ρ̃ if ρ < ρ̃,
(12)

so that, in the Riemann coordinates, Ωf = {Vf } × [W0,W
+
2 ] (see Figure 2).

q

ρ
0

Ωf

Ωc

RRc

Uc
ũ

Q

Q−

Q+
ρv

ρ
0

Ωf

Ωc

RRc

Uc

ũ
w

w2

0
Vc

Vf

W+
2

W−
2

W0

FIG. 2. Notations used in the paper.

All possible cases are listed below. Figures 3–5 are plotted using the parameter values given in
Section 5.

(A) The data in (10) are in the same phase, i.e. they are either both in Ωf or both in Ωc. Then the
solution is the standard Lax entropy solution to (2), resp. (4), and no phase boundary is present.
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FIG. 3. Hugoniot loci in the phase plane (ρ, ρv) for case (B).

(B) ul ∈ Ωc and ur ∈ Ωf (as in Figure 3). We consider the points uc ∈ Ωc and um ∈ Ωf implicitly
defined by (

1− ρ
c

R

)
(Q+ w2(ul)ρc) = ρcVc,(

1− ρ
m

R

)
(Q+ w2(ul)ρm) = ρmV

(
1− ρ

m

R

)
.

If w2(ul) > 0, the solution is made of a 1-rarefaction from ul to uc, a phase transition from uc
to um and a Lax wave from um to ur (Section 5: Test E). If w2(ul) 6 0, we have a shock-like
phase transition from ul to um and a Lax wave from um to ur (Section 5: Test F).
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FIG. 4. Hugoniot loci in the phase plane (ρ, ρv) for case (C).

(C) ul ∈ Ωf and ur ∈ Ωc with w2(ul) ∈ [W−2 ,W
+
2 ] (Figure 4). Consider the points uc and

um ∈ Ωc implicitly defined by
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1− ρ

c

R

)
(Q+ w2(ul)ρc) = ρcVc,(

1− ρ
m

R

)
(Q+ w2(ul)ρm) = ρmw1(ur).

If w2(ul) > 0, the solution is made of a shock-like phase transition from ul to um and a 2-
contact discontinuity from um to ur (Section 5: Test G). If w2(ul) 6 0, the solution displays a
phase transition from ul to uc, a 2-rarefaction from uc to um and a 2-contact discontinuity from
um to ur (Section 5: Test H).
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FIG. 5. Hugoniot loci in the phase plane (ρ, ρv) for case (D).

(D) ul ∈ Ωf with w2(ul) < W−2 and ur ∈ Ωc (see Figure 5). Let um ∈ Ωc be the point on the
lower boundary of Ωc implicitly defined by(

1− ρ
m

R

)
(Q+W−2 ρm) = ρmw1(ur),

and consider the speed of the phase boundary joining ul ∈ Ωf to um ∈ Ωc

Λ(ul,um) = ρlvf (ρ
l)− ρmw1(ur)
ρl − ρm .

Let Uc = (Rc,Qc) ∈ Ωc be the point whose Riemann coordinates are (Vc,W−2 ). If λ1(Uc) >
Λ(ul,Uc), the solution is a phase transition from ul to Uc, a 1-rarefaction from Uc to um and a
2-contact discontinuity from um to ur . Otherwise:

– If λ1(um) 6 Λ(ul,um), the solution is a phase transition from ul to um followed by a
2-contact discontinuity from um to ur (Section 5: Test J).

– If λ1(um) > Λ(ul,um), let uc = (ρc, qc) ∈ Ωc be implicitly defined by

λ1(uc) = Λ(ul,uc),

i.e. ρc is the larger root of the equation

(Q−Q−)ρ2 − 2ρl(Q−Q−)ρ + R2(ρlvf (ρ
l)−Q)+ ρlR(2Q−Q−) = 0
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and qc = Q− ρc(Q−Q−)/R. Then the solution shows a phase transition from ul to uc, an
attached 1-rarefaction from uc to um and a 2-contact discontinuity from um to ur (Section 5:
Test I).

4. Numerical schemes

Let us first introduce a space step∆x and a time step∆t , both assumed to be constant for simplicity
in the forthcoming developments. We set ν = ∆t/∆x. Then we define the mesh interfaces xj+1/2 =
j∆x for j ∈ Z and the intermediate times tn = n∆t for n ∈ N, and we seek at each time tn an
approximation unj of the solution of (8)–(9) on the interval [xj−1/2, xj+1/2), j ∈ Z. Therefore, a
piecewise constant approximate solution x 7→ uν(x, tn) of the solution u is given by

uν(x, tn) = unj for all x ∈ Cj = [xj−1/2, xj+1/2), j ∈ Z, n ∈ N.

When n = 0, we set xj = 0.5 · (xj−1/2 + xj+1/2) and

u0
j = u0(xj ) for all j ∈ Z.

Note that the usual L2-projection is not adapted in the present context since, depending on initial
data, it could artificially introduce unphysical states which are not in the phase space at time t = 0
(recall that Ω = Ωf ∪Ωc is not convex).

Given a sequence (unj )j∈Z at time tn, it is now a question of proposing a way of advancing it to
the next time level tn+1. Two manners of tackling that are presented. We begin with the celebrated
Godunov scheme in its classical form and show that it is not relevant in the present setting of
possible phase transitions. We are thus led to present a new version of this scheme based on a
modified averaging strategy coupled with a sampling procedure. We also show an extension of this
last method to second-order accuracy.

4.1 Failure of the classical Godunov scheme

As is well known, the Godunov scheme consists of two steps: the first step in which the initial data
evolves in time according to the PDE model under consideration, and the second step of projection
onto the piecewise constant functions. We review the procedure in detail in order to fix the notations.

Step 1: Evolution in time. In this first step, one solves the Cauchy problem{
∂tv+ ∂xf(v) = 0, x ∈ R,
v(x, 0) = uν(x, tn),

(13)

for times t ∈ [0,∆t]. Recall that x 7→ uν(x, tn) is piecewise constant. Then, under the usual CFL
restriction

∆t

∆x
max

v
{|λi(v)| : i = 1 if v ∈ Ωf , i = 1, 2 if v ∈ Ωc} 6 1

2
(14)

for all the v under consideration, the solution of (13) is known by gluing together the solutions of
the Riemann problems set at each interface. More precisely,

v(x, t) = vr

(
x − xj+1/2

t
;unj ,unj+1

)
for all (x, t) ∈ [xj , xj+1]× [0,∆t], (15)
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where (x, t) 7→ vr(x/t; vl, vr) denotes the self-similar solution of the Riemann problem
∂tv+ ∂xf(v) = 0, x ∈ R, t > 0,

v(x, 0) =
{

vl if x < 0,
vr if x > 0,

whatever vl and vr are in the phase space Ωf ∪Ωc (see also Section 3 above).

Step 2: Projection (tn → tn+1). The aim of this second step is to get a piecewise constant
approximate solution on each cell Cj at time tn+1. This may be simply done by averaging the
solution x 7→ v(x,∆t) given by (15), as expressed by the following update formula:

un+1
j = 1

∆x

∫ xj+1/2

xj−1/2

v(x,∆t) dt, j ∈ Z. (16)

Actually, one can provide an even simpler formula for un+1
j by integrating equation (13) over the

elementE = (abcd) defined by [xj−1/2, xj+1/2]×[0,∆t] and represented in Figure 6. From Green’s

xj−3/2 xj−1/2 xj+1/2 xj+3/2

tn+1

b

a

c

dtn

FIG. 6. Averaging element in the classical Godunov method.

theorem and using (13) and (16), we get

un+1
j = unj −

∆t

∆x
(f n,−j+1/2 − f n,+j−1/2) for all j ∈ Z, (17)

where the numerical fluxes are given by

f n,±j+1/2 = f(vr(0±;unj ,unj+1)) for all j ∈ Z,

and classical notations have been used for the traces at 0− and 0+ of the Riemann solutions under
consideration.

To conclude the description of the classical Godunov scheme, observe that if unj and unj+1
belong to the same phase (free or congested), the same holds for the Riemann solution (x, t) 7→
vr(x/t;unj ,unj+1) so that vr(0−;unj ,unj+1) and vr(0+;unj ,unj+1) are actually in the same phase. As
a consequence, we necessarily have, for all j ∈ Z,

f(vr(0−;unj ,unj+1)) = f(vr(0+;unj ,unj+1)). (18)

That is indeed obvious if vr(0−;unj ,unj+1) = vr(0+;unj ,unj+1), while in the opposite case the
associated discontinuity is necessarily stationary and (18) follows from the Rankine–Hugoniot
conditions. In other words, the method is conservative at the corresponding interface j + 1/2.
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Otherwise, if unj and unj+1 are not in the same phase, the states vr(0−;unj ,unj+1) and
vr(0+;unj ,unj+1) may well be distinct and in two different phases. In such a situation, only the
first components of f(vr(0−;unj ,unj+1)) and f(vr(0+;unj ,unj+1)) associated with the conservation
of the mass in both the free and the congested system are equal. Indeed, recall that only the
Rankine–Hugoniot relation coming from the mass conservation applies across a phase transition
(see Section 3).

What is wrong with this method. Of course, the computation of the traces at 0− and 0+ of the
Riemann solvers at each interface xj+1/2 does not represent a problem, since these solutions are
known from Section 3 (see also [10]). Actually, the failure of this strategy is due to the lack of
convexity of the domain Ωf ∪Ωc in the (ρ, q)-plane (see Figure 2) and to the possible presence of
phase transitions in the Riemann solutions. In this case, the state un+1

j resulting from the averaging
procedure (16) may be outside Ωf ∪ Ωc for some j ∈ Z (even if the solution uν(·, tn) belongs to
the domain). This means that at the next time step, the Riemann solutions are generally not known
(even not defined actually) at each interface xj+1/2, so that the classical Godunov method stops. As
already discussed by Zhong, Hou and LeFloch in [24], and even earlier by Abgrall [1] for simpler
and more homogeneous problems, the problem we underline here is clearly located in the projection
step of the Godunov method (Step 2). In order to know, everywhere in the domain and at each time
step, in which phase the flow is, we now propose a modification of this second step.

4.2 A new version of the Godunov scheme

In this section, we present a new version of the Godunov scheme that will turn out to be more
adapted to the model under consideration. We keep unchanged the first step of the method as it
is described in the previous section. Indeed, let us recall that the failure of the classical Godunov
method comes from the projection strategy proposed in the second step. The difference thus lies
in the corresponding averaging procedure (16) that we are going to modify. The idea (see [24] in
a different context) is to no longer average the solution x 7→ v(x,∆t) on the mesh cells Cj =
[xj−1/2, xj+1/2), since they may contain states in different phases, but on (possibly) modified and
non-uniform cells that we will denote Cnj = [xnj−1/2, x

n
j+1/2). These are constructed to contain

values belonging to a single phase. To this end, the new cells are defined according to the position
of the phase transitions. Then a sampling strategy will allow us to recover a piecewise constant
solution on the initial mesh cells Cj (see also [4], [5] in a different context).

Step 2 (Modified): Projection (tn → tn+1). Let (σ nj+1/2 = σ(unj ,unj+1))j∈Z be a sequence of
characteristic speeds of propagation at interfaces (xj+1/2)j∈Z such that:

– if unj and unj+1 are not in the same phase (free or congested), then σ nj+1/2 coincides with the speed
of propagation of the phase transition in the Riemann solution (x, t) 7→ vr(x/t;unj ,unj+1),

– if unj and unj+1 belong to the same phase, then σ nj+1/2 = 0.

Then, assuming that for all j ∈ Z the interface xj+1/2 moves at velocity σ nj+1/2 between times tn

and tn+1 = tn +∆t , we define the new interface xnj+1/2 at time tn+1 setting

xnj+1/2 = xj+1/2 + σ nj+1/2∆t, j ∈ Z. (19)

We also introduce
∆x

n

j = xnj+1/2 − xnj−1/2, j ∈ Z.
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In particular and by definition of the sequence (σ nj+1/2)j∈Z, it is clear that on each modified cell

Cnj = [xnj−1/2, x
n
j+1/2), the solution x 7→ v(x,∆t) given by (15) is fully either in the free phase

or in the congested phase. Then, averaging this solution on cells Cnj provides us with a piecewise
constant approximate solution uν(x, tn+1) on a non-uniform mesh defined by

uν(x, tn+1) = un+1
j for all x ∈ Cnj , j ∈ Z, n ∈ N,

with

un+1
j = 1

∆x
n

j

∫ xn
j+1/2

xn
j−1/2

v(x,∆t) dt, j ∈ Z.

Let us underline that by the definition of the modified cells, we actually know which phase every
constant state of the solution uν(x, tn+1) belongs to. In fact, both Ωf and Ωc are convex domains
(and so are stable under L2-projection). This is the relevant difference from the solution uν(x, tn+1)

obtained in the classical Godunov method, and justifies the new approach.
Let us notice that the modified cells Cnj may be either smaller or larger than the original ones Cj ,

depending on the signs of the velocities σ nj+1/2, j ∈ Z. This is illustrated in Figures 7 and 8.

xj−3/2 xj−1/2 xj+1/2

xn
j−1/2 xn

j+1/2

xj+3/2

tn+1

tn

b

a

c

d

FIG. 7. A first example of averaging element in the modified Godunov method.

xj−3/2 xj−1/2 xj+1/2

xn
j−1/2 xn

j+1/2

xj+3/2

tn+1

tn

b

a

c

d

FIG. 8. A second example of averaging element in the modified Godunov method.

Even in this case, a simpler formula is obtained for un+1
j by integrating equation (13) over the

element E = (abcd) defined by

E = {(x, t) : t ∈ [0,∆t] and xj−1/2 + σ nj−1/2 t 6 x 6 xj+1/2 + σ nj+1/2 t}

(see again Figures 7 and 8). Nevertheless, one has to be careful when applying Green’s theorem
owing to the fact that E is no longer a rectangle. We get, using the same (usual) notations as in the
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previous section for the traces of the Riemann solutions at given points,

0 =
∫ ∫

E

[∂tv+ ∂xf(v)] dx dt

= ∆xnj un+1
j −∆x unj +

∫ ∆t

0
[f(vr(σ

n,−
j+1/2;unj ,unj+1)) − σ nj+1/2vr(σ

n,−
j+1/2;unj ,unj+1)] dt

−
∫ ∆t

0
[f(vr(σ

n,+
j−1/2;unj−1,unj )) − σ nj−1/2vr(σ

n,+
j−1/2;unj−1,unj )] dt.

Introducing now the numerical fluxes

f n,±j+1/2 = f(vr(σ
n,±
j+1/2;unj ,unj+1)) − σ nj+1/2vr(σ

n,±
j+1/2;unj ,unj+1) for all j ∈ Z, (20)

a condensed form, similar to (17), is obtained for un+1
j :

un+1
j = ∆x

∆x
n

j

unj −
∆t

∆x
n

j

(f n,−j+1/2 − f n,+j−1/2) for all j ∈ Z. (21)

At this stage, notice that if unj and unj+1 are in the same phase, then vr(σ
n,−
j+1/2;unj ,unj+1) and

vr(σ
n,+
j+1/2;unj ,unj+1) also does. The conservation property

f(vr(σ
n,−
j+1/2;unj ,unj+1))− σ nj+1/2vr(σ

n,−
j+1/2;unj ,unj+1)

= f(vr(σ
n,+
j+1/2;unj ,unj+1))− σ nj+1/2vr(σ

n,+
j+1/2;unj ,unj+1) (22)

then remains valid thanks to the Rankine–Hugoniot conditions. Actually, in such a situation
σ nj+1/2 = 0 by definition. Otherwise, if vr(σ

n,−
j+1/2;unj ,unj+1) and vr(σ

n,+
j+1/2;unj ,unj+1) are not in

the same phase, equality (22) makes sense only for the first component associated with the mass
conservation.

Finally, we introduce the notation f n,±j+1/2 = f±(unj ,unj+1) for the interface fluxes, with of course

f±(unj ,unj+1) = f(vr(σ
n,±
j+1/2;unj ,unj+1))− σ nj+1/2vr(σ

n,±
j+1/2;unj ,unj+1). (23)

Recall that σ nj+1/2 = σ(unj ,unj+1) by definition.
In order to avoid having to deal with moving meshes, we complete the projection step defining

a new approximation un+1
j of the solution at time tn+1 on the (uniform) cells Cj , j ∈ Z. To this

end, for all j ∈ Z, we propose to pick up randomly on the cell Cj a value un+1
j−1 , un+1

j or un+1
j+1 , in

agreement with their rate of presence in the cell. More precisely, given a well distributed random
sequence (an) within (0, 1), it amounts to setting

un+1
j =


un+1
j−1 if an+1 ∈ (0, ∆t∆x max(σ nj−1/2, 0)),

un+1
j if an+1 ∈ [ ∆t

∆x
max(σ nj−1/2, 0), 1+ ∆t

∆x
min(σ nj+1/2, 0)),

un+1
j+1 if an+1 ∈ [1+ ∆t

∆x
min(σ nj+1/2, 0), 1),

(24)

for all j ∈ Z. Following a proposal by Collela [8], we consider the van der Corput random sequence
(an) defined by

an =
m∑
k=0

ik2−(k+1),
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where n =∑m
k=0 ik2

k , ik = 0, 1, denotes the binary expansion of the integer n = 1, 2, . . . . For the
sake of illustration, we easily find that the first few elements of this sequence are

a1 = 0.5, a2 = 0.25, a3 = 0.75, a4 = 0.125,
a5 = 0.625, a6 = 0.375, a7 = 0.875, a8 = 0.0625.

This sequence is actually well distributed within (0, 1). Moreover, one can prove for instance that
ai < 0.5 for i even and ai > 0.5 for i odd. This well-known sequence is often favorite since,
when used in the context of the Glimm scheme, it leads to very good results in the smooth parts
of the solutions (see for instance [8] and [7] for illustration). This concludes the description of the
modified Godunov scheme.

We finish this section by emphasizing that due to the sampling procedure, the whole algorithm
we propose (Step 1 + Step 2 (Modified)) is not “strictly” conservative in the classical sense of
finite volume methods. However, we numerically demonstrate in the next sections that it is actually
“weakly” conservative in the following sense: first, phase transitions propagate with the right speeds
(given by the Rankine–Hugoniot conditions) and then conservation errors seem to tend to zero with
the mesh size.

REMARK. Of course, the random choice method (Glimm scheme) can be applied successfully
to compute solutions of (8). Nevertheless, our method does not require computing all the values
in the Riemann solution, but only the values on both sides of the phase transition. Moreover, the
algorithm coincides with the classical Godunov scheme, and hence it is conservative, away from
phase transitions.

4.3 Higher order extension of the method in space and time

In this section, we describe a simultaneous space and time second-order extension of the new
version of the Godunov scheme. Our strategy relies on the very popular MUSCL approach for the
space accuracy and on a Runge–Kutta technique for the time accuracy. As usual, the second-order
accuracy is obtained for smooth solutions only, even if better numerical results are also expected
when discontinuities (or non-smooth regions) are present. In our context, it is important to notice
that smooth solutions exist but necessarily remain in the same phase (free or congested) since phase
changes are always associated with discontinuities. As a consequence, the resulting procedure has
to be understood as second-order accurate away from phase transitions. This is the reason why we
will focus on the first part of the projection step only, the sampling procedure being kept unchanged.

This section is organized as follows. We first address the space accuracy and show how to obtain
a MUSCL scheme which is stable in the L1 sense. Then we deal with the time accuracy and show
how to apply a second-order Runge–Kutta technique.

Accuracy in space. We begin by briefly recalling the MUSCL method for obtaining the second-
order accuracy in space. For more details we refer the reader to [23], [14], [22] and the references
therein, and also to a recent work by Berthon [3]. Assume that there exists a change of variables
u 7→ U = ϕ(u) from Ω onto some set ΩU. The starting point of the method consists in replacing
at each time tn and on each cell Cj the constant values unj by means of ϕ and a linear reconstruction
of U. We set un(x) = ϕ−1(Un(x)), x ∈ Cj = [xj−1/2, xj+1/2), with

Un(x) = Unj + snj
x − xj
∆x

, Unj = ϕ(unj ), j ∈ Z.
(25)
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In (25), xj represents the center of the cell Cj : xj = 1
2 (xj−1/2 + xj+1/2), and snj is the slope of the

linear reconstruction. The choice of the reconstructed variable U generally depends on the system
under consideration. In the present study, we will see below that in order to ensure the L1-stability
of the method, the reconstruction can be performed on the conservative variable for the free system
(U = u), while the Riemann variables U = (w1, w2) turn out to be more adapted for the congested
phase.

We denote by un,±j and Un,±j the values at the edges x = xj±1/2 of un and Un respectively:{
un,±j = ϕ−1(Un,±j ),

Un,±j = Unj ±∆Unj with ∆Unj = 1
2 s
n
j .

(26)

Then, following the basic principle of the MUSCL method, we propose to replace the couple
(unj ,unj+1) with (un,+j ,un,−j+1) in the evaluation of the numerical fluxes f n,±j+1/2 at each interface

j + 1/2. More precisely, we now set f n,±j+1/2 = f±(un,+j ,un,−j+1) instead of f n,±j+1/2 = f±(unj ,unj+1)

in (23).
We now draw a particular attention to the choice of the reconstructed variable U and the

slopes snj . It is well-known that these have to be carefully determined for stability reasons. Once U
is chosen, a usual choice for snj , or equivalently for ∆Unj , is given by a slope-limiter procedure with
for instance the so-called minmod limiter. It reads

∆Unj =
1
2

minmod(Unj+1 − Unj ,Unj − Unj−1), (27)

where the minmod function is defined by

minmod(a, b) =
{

sign(a)min(|a|, |b|) if ab > 0,
0 otherwise,

for two scalar quantities a and b (sign denotes the sign function). In (27), minmod is applied
componentwise.

REMARK. In the rest of this section, in order to avoid cumbersome notations, we will assume that
the three states Unj−1, Unj and Unj+1 in (27) belong to the same phase. Otherwise, if Unj−1 and/or
Unj+1 are not in the same phase of Unj , they are replaced in practice with ϕ(u+(unj−1,unj )) and/or
ϕ(u−(unj ,unj+1)), where u±(unj ,unj+1) represent for all j the values on both sides of the phase
transition in the Riemann solution associated with the initial states unj and unj+1. Then, by definition,
ϕ(u+(unj−1,unj )), unj and ϕ(u−(unj ,unj+1)) belong to the same phase.

Our objective is to enforce the L1-stability of the reconstruction procedure in the sense that we
want un,±j to necessarily belong to the phase space Ω . This stability property will be obtained by a
relevant choice of U and after a possible correction of the “guess” increment defined by (27).

Let us begin with the case unj ∈ Ωf and consider a conservative reconstruction: U = u. Since q
always equals ρV in the free phase, the constraints un,±j ∈ Ωf read{

0 6 ρ
n,±
j 6 R,

Vf 6 vf (ρ
n,±
j ),
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which by definition of vf is first equivalent to{
0 6 ρ

n,±
j 6 R,

ρ
n,±
j 6 R(1− Vf /V ),

and then to
0 6 ρ

n,±
j 6 R(1− Vf /V )

by positivity of Vf and V . But ρn,±j = ρnj ± ∆ρnj so that a straightforward transformation shows
that these two conditions read as follows on the increment ∆ρnj :

|∆ρnj | 6 min(ρnj , R(1− Vf /V )− ρnj ). (28)

Then, choosing the “guess” increment (27) under the constraint (28) immediately leads to the
following definition of ∆ρnj :

∆ρnj = sign(∆ρ)min(ρnj , R(1−Vf /V )−ρnj ,∆ρ), with ∆ρ = 1
2

minmod(ρnj+1−ρnj , ρnj −ρnj−1).

We now turn to the case unj ∈ Ωc. The constraints un,±j ∈ Ωc are equivalent to{
0 6 w1(ρ

n,±
j , q

n,±
j ) 6 Vc,

W−2 6 w2(ρ
n,±
j , q

n,±
j ) 6 W+2 .

(29)

Due to the nonlinearity of the two functions w1 and w2, we propose to perform the reconstruction
on these variables (the Riemann coordinates) and to set U = (w1, w2)(ρ, q). Then choosing the
corresponding increments ∆(w1)

n
j and ∆(w2)

n
j according to (27) yields{

(w1)
n,±
j = (w1)

n
j ± 1

2 minmod((w1)
n
j+1 − (w1)

n
j , (w1)

n
j − (w1)

n
j−1),

(w2)
n,±
j = (w2)

n
j ± 1

2 minmod((w2)
n
j+1 − (w2)

n
j , (w2)

n
j − (w2)

n
j−1),

which is easily seen to imply the last two constraints in (29) by definition of the minmod function
(and since unj−1 and unj+1 are also assumed to be in Ωc). This shows that the “guess” choice (27)
need not be modified in order to obtain the required L1-stability property, provided that Riemann
coordinates are used in the linear reconstruction procedure.

Accuracy in time. To conclude this section, we aim at proposing a time discretization which is
second-order accurate in smooth regions and away from phase transitions. Of course, the definition
of the strategy must take into account the presence of phase transitions. Actually, our objective is to
propose a simple numerical time integration which is equivalent, away from phase transitions, to the
well-known RK2 method (2nd order Runge–Kutta, or Heun). The reader is assumed to be familiar
with the latter.

The MUSCL scheme obtained below reads

un+1
j − unj =

∆x −∆xnj
∆x

n

j

unj −
∆t

∆x
n

j

(f−(un,+j ,un,−j+1)− f+(un,+j−1,un,−j )).

From this formula and the approximated values (unj )j∈Z on the cells Cj , we then define a first

approximation un+1=
j of the updated value on the cell Cnj by
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un+1=
j − unj =

∆x −∆xnj
∆x

n

j

unj −
∆t

∆x
n

j

(f−(un,+j ,un,−j+1)− f+(un,+j−1,un,−j )).

Then another one denoted un+1−
j is obtained from the first approximations (un+1=

j )j∈Z:

un+1−
j − un+1=

j = ∆x −∆xnj
∆x

n

j

un+1=
j − ∆t

∆x
n

j

(f−(un+1=,+
j ,un+1=,−

j+1 )− f+(un+1=,+
j−1 ,un+1=,−

j )).

Finally, un+1
j is defined from these two approximations setting

un+1
j = unj +

1
2

[(un+1=
j − unj )+ (un+1−

j − un+1=
j )],

which can be equivalently recast as

un+1
j = unj +

∆x −∆xnj
2∆xnj

(unj + un+1=
j )− ∆t

2∆xnj
(f−(un,+j ,un,−j+1)− f+(un,+j−1,un,−j ))

− ∆t

2∆xnj
(f−(un+1=,+

j ,un+1=,−
j+1 )− f+(un+1=,+

j−1 ,un+1=,−
j )).

To conclude this section, note that away from phase transitions, we have ∆xnj = ∆x and that the
numerical fluxes coincide with the ones of the usual Godunov method. So that we get in such a
situation

un+1
j = unj −

∆t

2∆x
(f(vr(0;un,+j ,un,−j+1))− f(vr(0;un,+j−1,un,−j )))

− ∆t

2∆x
(f(vr(0;un+1=,+

j ,un+1=,−
j+1 ))− f(vr(0;un+1=,+

j−1 ,un+1=,−
j ))),

and the classical method consisting in a RK2 time integration together with a MUSCL
reconstruction strategy for the space discretization is recovered. The scheme is then second-order
accurate in both space and time in smooth regions.

5. Numerical experiments

We now test our algorithm on several Riemann initial data leading to typical solutions of interest,
involving phase transitions or not (see also Section 3 above). The various constants involved in the
models (free or congested) are taken as follows:

R = 1, V = 2, Vf = 1, Vc = 0.85, Q = 0.5, Q− = 0.25, Q+ = 1.5.

Note that a state in the free phase will be characterized by the value of its density ρ, while for a
congested state, we will use the density ρ and the flux f = ρvc(ρ, q) (the value of q is recovered
by inverting (5)). The exact and numerical profiles of the density and the speed are systematically
plotted, at a final time Tf and for a space step ∆x that will be specified for each test case.

5.1 The case of a single phase

In this section, we consider four Riemann initial data located in a single phase (free or congested).
More precisely, the left and right states are as follows.
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FIG. 9. Test A: ρ (left) and v (right).
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FIG. 10. Test B: ρ (left) and v (right).
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FIG. 11. Test C: ρ (left) and v (right).
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FIG. 12. Test D: ρ (left) and v (right).

Test A

ul (free): ρl = 0.1
ur (free): ρr = 0.4

Test B

ul (free): ρl = 0.4
ur (free): ρr = 0.25

Test C

ul (congested): ρl = 0.7 f l = 0.2
ur (congested): ρr = 0.4 f r = 0.3

Test D

ul (congested): ρl = 0.4 f l = 0.3
ur (congested): ρr = 0.7 f r = 0.2

In all these situations, there is no phase transition. Then our method simply reduces to the
usual Godunov method since at each interface xj+1/2, j ∈ Z, we necessarily have σ nj+1/2 = 0. In
particular, the method is conservative. In the free phase, the left state is connected directly to the
right state, by a shock in Test A (see Figure 9) and a rarefaction in Test B (see Figure 10). In the
congested phase, the solution is generally made of two distinct waves. More precisely, we have a
rarefaction wave followed by a contact discontinuity in the case of Test C (Figure 11), and a shock
wave followed by a contact discontinuity in the case of Test D (Figure 12). Solutions are plotted at
time Tf = 0.4 for Tests A, C, and Tf = 0.5 for Tests B, D. The computations have been performed
with a mesh containing 100 points per unit interval (∆x = 0.01). As expected, we observe that the
numerical solutions are in good agreement with exact ones.

5.2 The case of a phase transition from congested to free

In order to assess the validity of our method, we now consider various situations where a phase tran-
sition is present in the solution. We begin with phase transitions from a congested state to a free state.

For Test E, we consider the following left and right states for the Riemann initial data:

Test E

ul (congested): ρl = 0.7 f l = 0.3
ur (free): ρr = 0.3
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FIG. 13. Test E: ρ (left) and v (right).
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FIG. 14. Test F: ρ (left) and v (right).

leading to a solution made of a rarefaction in the congested phase, followed by a phase transition to
a free state, itself followed by a rarefaction wave in the free phase (see Figure 3, left). The solutions
are plotted in Figure 13 at time Tf = 0.5. For this test case, we have used a mesh containing 500
points (∆x = 0.002).

The next table concerns Test F:

Test F

ul (congested): ρl = 0.45 f l = 0.25
ur (free): ρr = 0.3

Here, the solution is a shock-like phase transition from the left state to a free state, followed by a
shock wave in the free phase (see Figure 3, right). See Figure 14 for the solution at time Tf = 0.35
with ∆x = 0.01.

For these two test cases, we observe a very good agreement between the exact and numerical
solutions. In particular, we note that the phase transitions we obtain join the right states and
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propagate apparently with the right speed (theoretically given by the Rankine–Hugoniot conditions).
This means that the mass conservation property is not lost at the discrete level.

In the case of Test E, we note that the numerical diffusion of the scheme on the rarefaction
waves makes the free state of the phase transition hardly apparent at the final time Tf proposed.
This phenomenon will be even more pronounced in the numerical solutions presented below for
Tests H, I.

5.3 The case of a phase transition from free to congested

Let us now address the case of phase transitions from a free state to a congested state.
For the Test G, we choose

Test G

ul (free): ρl = 0.35
ur (congested): ρr = 0.6 f r = 0.25

The corresponding solution is a shock-like phase transition to a congested state followed by a contact
discontinuity (see Figure 4, left). Figure 15 plots the solution at time Tf = 0.6 with ∆x = 0.002.
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FIG. 15. Test G: ρ (left) and v (right).

For Tests H and I, we take

Test H

ul (free): ρl = 0.24
ur (congested): ρr = 0.7 f r = 0.2

Test I

ul (free): ρl = 0.215
ur (congested): ρr = 0.7 f r = 0.2

leading to two solutions composed of a phase transition followed by a rarefaction wave, and a
contact discontinuity propagating with a positive speed. In the case of Test H, the “foot” of the
rarefaction wave propagates with a speed very close to the one of the phase transition (see Figure 4,
right), while for Test I, the rarefaction is simply attached to the transition (see Figure 5, left). These
properties make the congested state of the phase transition more difficult to capture properly, due
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to the numerical diffusion of the scheme which is present in the rarefaction wave. Note that this
state is always over-estimated from the proposed averaging strategy. However, we observe a good
agreement between the numerical solution and the exact solution, and as expected, the numerical
solution becomes really better when the order of accuracy of the method is higher, as illustrated in
Figures 16 and 17 where ∆x = 0.0005 (Tf = 0.8 for both cases).
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FIG. 16. Test H: ρ (left) and v (right).
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FIG. 17. Test I: ρ (left) and v (right).

Finally, we consider Test J for which the solution is a phase transition followed by a contact
discontinuity (see Figure 5, right). The initial data is such that

Test J

ul (free): ρl = 0.1
ur (congested): ρr = 0.7 f r = 0.2

and the solutions are plotted in Figure 18 at time Tf = 1.5 (∆x = 0.01).
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FIG. 18. Test J: ρ (left) and v (right).

We have covered in this section all possible situations described in Section 3 for a Riemann
problem. We have observed that the numerical solutions are in accordance with the exact ones and
exhibit sharp phase transitions when present (i.e. the corresponding profiles are infinitely thin).
This proves the relevance of our approach. In the next section, we propose to estimate the mass
conservation errors introduced by the sampling procedure of the scheme. Of course, these are
expected to be very small since otherwise the numerical solutions would not be as close as they are
to the exact ones. Moreover, we will see that the conservation errors decrease with the mesh size.

6. Measure of the conservation errors

Due to the random sampling present in Step 2 (Modified), our method does not strictly conserve the
mass ρ. We therefore propose to measure the conservation errors on piecewise constant numerical
solutions ρν defined as

ρν(x, t) = ρnj if (x, t) ∈ [xj−1/2, xj+1/2)× [tn, tn+1),

between times t = 0 and t = T , for some T > 0. We denote by [x0, x1] the computational domain
and we proceed exactly as in [4]: we compare with 0 the function E : T ∈ R+ → E(T ) ∈ R with
E(T ) defined by relation∫ x1

x0

ρν(x, T ) dx × E(T ) =
∫ x1

x0

ρν(x, T ) dx −
∫ x1

x0

ρν(x, 0) dx

+
∫ T

0
{ρvc(ρ, q)}ν(x1, t) dt −

∫ T

0
{ρvc(ρ, q)}ν(x0, t) dt. (30)

Recall that q = ρV in the free phase. E(T ) represents the relative conservation error of ρ at time
T on the interval [x0, x1]. In the tables below, we give for Tests E, F, G, H, I, J the values of the
L1-norm 1

Tf
‖E‖L1(0,Tf ) of E, namely

1
Tf
‖E‖L1(0,Tf ) =

1
Tf

∫ Tf

0
|E(T )| dT =

n=Tf /∆t−1∑
n=0

tn+1 − tn
Tf

|E(tn)|,
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TABLE 1
Conservation errors (first-order scheme).

# of points Test E Test F Test G Test H Test I Test J
100 0.44% 0.22% 0.64% 0.39% 0.91% 0.65%
500 0.16% 0.11% 0.17% 0.11% 0.22% 0.15%

1000 0.094% 0.075% 0.095% 0.055% 0.11% 0.081%
2000 0.051% 0.039% 0.057% 0.025% 0.052% 0.045%

TABLE 2
Conservation errors (second-order scheme).

# of points Test E Test F Test G Test H Test I Test J
100 0.25% 0.26% 0.23% 0.35% 0.87% 0.71%
500 0.054% 0.12% 0.071% 0.10% 0.21% 0.19%

1000 0.030% 0.08% 0.044% 0.054% 0.11% 0.11%
2000 0.016% 0.041% 0.031% 0.027% 0.052% 0.05%

where Tf is the final time of the corresponding simulations presented in the previous section. We
will consider four different meshes containing 100, 500, 1000 and 2000 points per unit interval. The
computational domain [x0, x1] is always [−0.5, 0.5] except for Test J for which it is [−0.2, 0.8].
Of course, when the solution remains in a single phase (Tests A, B, C, D), our algorithm reduces
to the classical Godunov scheme and so is actually conservative. As expected, we observe for the
other test cases that the conservation errors are decreasing with the mesh size. We do not note a
great improvement when dealing with the second-order scheme. This is not really surprising since
conservation errors come from the presence of phase transitions, and the scheme remains first-order
accurate near phase transitions.

For the sake of completeness, in the following two tables we give the L1-error between the
numerical solution and the exact one for all the test cases and several mesh sizes. Note that the L1-
norm is computed on the whole computational domain, that is, taking into account regions that are

TABLE 3
L1-errors (first-order scheme).

# of points Test A Test B Test C Test D Test E
100 2.29e−3 3.22e−3 7.87e−3 9.50e−3 8.64e−3

500 4.58e−4 9.87e−4 3.17e−3 4.29e−3 2.99e−3

1000 2.29e−4 5.72e−4 2.08e−3 3.04e−3 1.74e−3

2000 1.14e−4 3.26e−4 1.34e−3 2.15e−3 1.05e−3

# of points Test F Test G Test H Test I Test J
100 3.50e−3 9.67e−3 9.84e−3 8.19e−3 1.18e−2

500 7.76e−4 2.03e−3 4.81−3 4.76e−3 5.13e−3

1000 6.05e−4 1.63e−3 3.55e−3 3.27e−3 2.82e−3

2000 1.95e−4 1.01e−3 2.53e−3 2.12e−3 2.13e−3
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TABLE 4
L1-errors (second-order scheme).

# of points Test A Test B Test C Test D Test E
100 1.73e−3 1.07e−3 4.27e−3 5.92e−3 4.18e−3

500 3.48e−4 2.16e−4 1.11e−3 2.11e−3 8.60e−4

1000 1.74e−4 1.08e−4 6.10e−4 1.34e−3 3.17e−4

2000 8.69e−5 5.40e−5 3.37e−4 8.52e−4 2.15e−4

# of points Test F Test G Test H Test I Test J
100 3.00e−3 5.12e−3 7.42e−3 5.00e−3 7.98e−3

500 5.98e−4 6.19e−4 2.16e−3 2.48e−3 3.02e−3

1000 5.16e−4 7.23e−4 1.25e−3 1.41e−3 1.23e−3

2000 1.49e−4 4.13e−4 7.59e−4 6.97e−4 7.12e−4

possibly not smooth. However, we observe that for each scheme the errors decrease with the mesh
size (the convergence seems secured), while the second-order scheme allows obtaining smaller
errors as expected.
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