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Threshold dynamics for high order geometric motions
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A class of algorithms for the high order geometric motion of planar curves is developed. The
algorithms alternate two simple steps—a convolution and a thresholding step—to evolve planar
curves according to combinations of Willmore flow, surface diffusion flow and curvature motion.
A distinguishing feature of the methods is that they possess much better stability than typical explicit
algorithms. Formal expansions and numerical examples are provided for a variety of high order flows
to validate the methods and illustrate their behaviors.

1. Introduction

Higher order geometric motions of curves and surfaces arise in a variety of applications.
They constitute a notoriously difficult class of computational problems. These motions typically
correspond to the steepest descent for energies that are defined over curves and surfaces. For
example, one of the algorithms proposed in this paper computes gradient descent for the energy∫

C

(
1
2
κ2
+ α

)
ds (1)

where C is a closed curve in the plane, κ is its curvature, and ds is the length element. Energy (1)
is sometimes referred to as Euler’s elastica energy. The resulting motion moves every point on the
curve C by a normal velocity given by

vn = −κss −
1
2
κ3
+ ακ.

In Section 6.1 an algorithm is presented for a more general version of this motion. In Section 6.2,
we propose an algorithm for motion by surface diffusion of a curve, which is given by the normal
velocity

vn = −κss .
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Computer vision and digital image processing are two application areas that would greatly
benefit from improvements in computational methods for higher order geometric motion of curves
and surfaces. Indeed, many important problems of image processing and computer vision involve
minimizing curvature dependent functionals over curves and surfaces. For instance, the active
contours (or “snakes”) model [18] of Kass, Witkin, and Terzopoulos originally calls for minimizing
an energy that includes the square of the curvature integrated along the curve. Another important
example is the segmentation with depth involving disocclusion [20, 21] model of Nitzberg,
Mumford, and Shiota [24, 10], where curvature dependent functionals are to be minimized in order
to extract information about the three-dimensional arrangement of objects making up a scene from
a single two-dimensional image of the scene. Yet another related problem of the field that leads to
higher order geometric flows is the image inpainting problem of Bertalmio et al., where the goal is to
repair damaged regions in an image by connecting level lines of intensity using smooth curves [3].

There are a couple of techniques that are being applied and investigated for the type of high order
geometric motions considered in this paper. Explicit, semi-implicit, and implicit surface algorithms
have been introduced to track the evolution of the curves and surfaces (see for example, [1, 8, 9,
4, 12, 7, 6]). Due to the high order derivatives involved in the motions, stability conditions impose
a severe efficiency drawback for explicit discretization methods. On the other hand, the nonlinear
nature of the motions makes it difficult to develop implicit schemes; although there is significant
progress in this direction [30], questions remain about whether usable implicit schemes perform
quite as efficiently as what is required in applications such as image processing and vision.

In this paper, we will consider algorithms for computing a number of these geometric motions,
and illustrate them on some of the above mentioned applications. Our approach is based on
extending to fourth order flows the threshold dynamics (or diffusion generated motion) idea of
Merriman, Bence, and Osher [22, 23] proposed originally for motion by mean curvature. The
algorithms have excellent stability properties. We believe this makes them particularly promising
for rapid solution of problems in which steady states are sought; see [11] for an example in the
segmentation with depth problem of image processing.

2. Previous work

In this section we recall the Merriman–Bence–Osher threshold dynamics for motion by mean
curvature, and describe some recent work by Grzibovskis and Heintz on extending it to Willmore
flow.

In [22, 23], Merriman, Bence, and Osher introduced a very interesting algorithm for
approximating the motion of an interface by mean curvature motion. If we consider the interface
to be the boundary of a region Σ ⊂ RN , their idea is to alternate the following two steps: First,
convolve the characteristic function of Σ with a Gaussian kernel. Then, threshold the resulting
function at 1/2. More precisely, their algorithm can be described as follows: SetΣ0

= Σ . Alternate
the following steps for k = 0, 1, 2, . . . in order to generate the setsΣk so that ∂Σk approximate the
motion of ∂Σ0 by mean curvature at the discrete times tk = k · ∆t :

1. Form the convolution
K(x) := (1Σk ∗G∆t )(x)

where G∆t (x) is the fundamental solution of the heat equation in N space dimensions.
2. Set

Σk+1
= {x ∈ RN : K(x) > 1/2}
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A major benefit of the algorithm is that both steps can be implemented very efficiently: The
convolution can be done, for example, via the fast Fourier transform, and the second step—the
thresholding—is trivial. A potential drawback of this algorithm is that the accuracy on a fixed grid
is poor since there is no subcell resolution during the thresholding step. This limitation can be
overcome using fast Fourier transforms on grids adapted to the evolving interface [26]. The original
MBO algorithm that we described above has been rigorously shown to converge to motion by mean
curvature of ∂Σ in [14, 2]. Several generalizations of the basic algorithm are presented in [19, 25,
16, 27, 28, 29] and some applications to image segmentation are given in [17, 13].

In [15], Grzibovskis and Heintz propose a generalization of the MBO algorithm to Willmore
flow for two-dimensional surfaces in three-space, which is a fourth order evolution of the interface
obtained as gradient descent for the Willmore functional. In Section 4 we will give a particularly
simple derivation of the Willmore flow algorithm in two dimensions in the special case where the
convolution kernel is a Gaussian; we believe that numerically this is a particularly relevant choice
for the kernel since the convolutional result is smooth and may be treated to high accuracy using the
techniques in [26]. We concentrate on two dimensions since this is the particularly relevant setting
for many applications, especially in image processing. In subsequent sections, this expansion will
be utilized extensively to obtain algorithms for more general geometric motions. Derivation of the
Willmore flow algorithm in 3D and with more general kernels can be found in [15]. That paper [15]
also presents a selection of interesting 3D computations.

3. Preliminaries

The Willmore functional in two dimensions is given by

E(C) =
1
2

∫
C

κ2 ds (2)

where κ is the curvature of the curve C, and ds is the length element. Gradient descent for (2) moves
the curve C with normal velocity given by

W = −κss −
1
2
κ3 (3)

where s is the arclength parameter for the curve. See [31] for the derivation.
Consider a smooth interface which is given by the graph of the function g(x), initially passing

through the origin, where it is tangent to the x-axis, as in Figure 1, so that g(0) = 0 and g′(0) = 0.
We shall be working with the curve given by the graph of g(x) and the region of the plane that lies
below this curve in the xy-plane, {(x, y) : y < g(x)}; our interface—the curve—is the boundary of
this region. At the origin we have

gss = gxx and κss = gxxxx − 3κ3,

which implies that

W = −gxxxx +
5
2
κ3 (4)

there. We shall see that this expression will arise in our truncation error analysis.
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FIG. 1. The initial interface.

4. Truncation error analysis: Willmore flow

In this section we derive a convolution-thresholding algorithm for Willmore flow in two dimensions.
The idea is to consider the convolution of the characteristic function of the interior of a curve (the
region {(x, y) : y < g(x)}) with a suitable kernel. We shall assume that g is smooth (C5). To
achieve good computational efficiency we consider Gaussian kernels, but other radially symmetric
kernels are also possible (cf. [15]).

First, define the function F(x, y, t) to be the convolution of the characteristic function of the
region below our curve with the fundamental solution of the heat equation at time t :

F(x, y, t) =

∫
∞

−∞

∫
∞

−∞

1
4πt

e−
(x−ξ)2+(y−η)2

4t 1{(ξ,η) : g(ξ)>η}(ξ, η) dξ dη

As in [19], the value of F(x, y, t) along the y-axis is given by

F(0, y, t) =
1

4πt

∫
∞

−∞

∫ 0

−∞

e−
ξ2
+(y−η)2

4t dη dξ +
1

4πt

∫
∞

−∞

∫ g(ξ)

0
e−

ξ2
+(y−η)2

4t dη dξ

=
1

2
√
πt

∫ 0

−∞

e−
(y−η)2

4t dη +
1

4πt

∫
∞

−∞

∫ g(ξ)

0
e−

ξ2
+(y−η)2

4t dη dξ

=
1

2
√
πt

∫
∞

0
e−

γ 2
4t dγ −

1
2
√
πt

∫ y

0
e−

γ 2
4t dγ +

1
4πt

∫
∞

−∞

∫ g(ξ)

0
e−

ξ2
+(y−η)2

4t dη dξ

=
1
2
−

1
2
√
tπ

∫ y

0
e−γ

2/4t dγ +
1

4tπ

∫
∞

−∞

e−ξ
2/4t

∫ g(ξ)

0
e−(y−η)

2/4t dη dξ.

Expanding two of the exponentials around 0 and replacing g(ξ) by the first few terms of its Taylor
series at 0, and noting that we shall be looking at F(0, y, t) at y = O(t2), gives the expansion
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F(0, y, t)

=
1
2
−

1
2
√
tπ

∫ y

0

(
1−

γ 2

4t

)
dγ

+
1

4tπ

∫
∞

−∞

e−ξ
2/4t

∫ 1
2 g

(2)(0)ξ2
+

1
3! g

(3)(0)ξ3
+

1
4! g

(4)(0)ξ4

0

[
1−

(y − η)2

4t

]
dη dξ +O(t5/2)

=
1
2
−

1
2
√
tπ
y

+
1

4tπ

∫
∞

−∞

e−ξ
2/4t

[
η +

1
12t

(y − η)3
]η= 1

2 g
(2)(0)ξ2

+
1
3! g

(3)(0)ξ3
+

1
4! g

(4)(0)ξ4

η=0
dξ +O(t5/2)

=
1
2
−

1
2
√
tπ
y

+
1

4tπ

∫
∞

−∞

e−ξ
2/4t

[
η +

1
12t

(−3y2η + 3yη2
− η3)

]η= 1
2 g

(2)ξ2
+

1
3! g

(3)ξ3
+

1
4! g

(4)ξ4

η=0
dξ +O(t5/2)

where we write g(n) for g(n)(0). Noting that terms which are odd powers of ξ cancel in the integral,
and remembering that we are looking for y = O(t2), a large number of terms can either be
eliminated or recognized to be O(t5/2). One ends up with

F(0, y, t) =
1
2
−

1
2
√
πt
y+

1
4πt

∫
∞

−∞

e−ξ
2/4t

[
1
2
g(2)ξ2

+
1
4!
g(4)ξ4

−
1

96t
(g(2))3ξ6

]
dξ +O(t5/2).

Using the integrals∫
∞

−∞

ξ2e−ξ
2

dξ =
1
2
√
π,

∫
∞

−∞

ξ4e−ξ
2

dξ =
3
4
√
π, and

∫
∞

∞

ξ6e−ξ
2

dξ =
15
8
√
π

and changing variables appropriately yields

F(0, y, t) =
1
2
−

1
2
√
π
yt−1/2

+
1

2
√
π
g(2)t1/2 +

1
4
√
π
g(4)t3/2 −

5
8
√
π
(g(2))3t3/2 +O(t5/2).

In terms of the curvature κ = g(2) and the Willmore flow speed W (see equation (4)) at x = 0 for
the curve given by the graph of g(x), the last equation reads

F(0, y, t) =
1
2
−

1
2
√
π
yt−1/2

+
1

2
√
π
κt1/2 −

1
4
√
π
Wt3/2 +O(t5/2). (5)

An algorithm for Willmore flow can be obtained if we eliminate the curvature term in the expression
above by evaluating F(0, y, t) at two different values of t and forming the appropriate linear
combination:

t
1/2
2 F(0, y, t1) =

t
1/2
2
2
−

1
2
√
π

(
t2

t1

)1/2

y +
1

2
√
π
(t1t2)

1/2κ −
1

4
√
π
t
3/2
1 t

1/2
2 W +O(t31 ),
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t
1/2
1 F(0, y, t2) =

t
1/2
1
2
−

1
2
√
π

(
t1

t2

)1/2

y +
1

2
√
π
(t1t2)

1/2κ −
1

4
√
π
t
3/2
2 t

1/2
1 W +O(t32 ).

Subtracting, one gets

√
t2F(0, y, t1)−

√
t1F(0, y, t2)−

√
t2/2+

√
t1/2

=
1

2
√
π

(√
t1

t2
−

√
t2

t1

)
y −

1
4
√
π
(
√
t2 t

3/2
1 −

√
t1 t

3/2
2 )W +O(t31 )+O(t

3
2 ). (6)

Choose a time step-size ∆t > 0 and a positive factor θ 6= 1, and set t1 =
√

2∆t/θ and t2 = θ
√

2∆t .
With these choices, the formula above reads

√
θ (2∆t)1/4F(0, y,

√
2∆t/θ)−

(2∆t)1/4
√
θ

F (0, y, θ
√

2∆t)−
(2∆t)1/4

2
(
√
θ − 1/

√
θ)

=
1

2
√
π

(
1
θ
− θ

)
y −

2∆t
4
√
π

(
1
θ
− θ

)
W +O(∆t3/2).

Hence, if the expression

A(x, y) :=
√
θ (2∆t)1/4F(x, y,

√
2∆t/θ)−

(2∆t)1/4
√
θ

F (x, y, θ
√

2∆t) (7)

is formed and thresholded at (2∆t)
1/4

2 (
√
θ − 1/

√
θ), the resulting curve would intersect the y-axis at

a y value such that

1
2
√
π

(
1
θ
− θ

)
y −

2∆t
4
√
π

(
1
θ
− θ

)
W +O(∆t3/2) = 0.

The above value of the threshold was chosen so that constant terms of order o(∆t1/4) that appear in
the linear combination of the kernels drop out. Simplifying, we see that the solution is

y = ∆tW +O(∆t3/2).

First of all, note that y = O(∆t) = O(t2), as required by our expansion. Second, we see that the
curve moves with normal speed

vn = W

during this time step of size ∆t , with error O(
√
∆t).

5. Implementation

Based on the discussion of the last section, the resulting algorithm for Willmore flow can be
described as follows: Let Σ ⊂ R2 denote the set whose boundary is to be moved via Willmore
flow. Set Σ0 := Σ . Alternate the following steps for k = 0, 1, 2, . . . in order to generate the
approximations Σk to the flow at the discrete times tk = k · ∆t :



THRESHOLD DYNAMICS 269

1. Form the convolution:

A(x, y) := 1Σk (x, y) ∗ (2∆t)1/4
(
√
θG√2∆t/θ (x, y)−

1
√
θ
G
θ
√

2∆t (x, y)

)
where Gt (x, y) is the fundamental solution of the heat equation,

Gt (x, y) =
1

4πt
e−

x2
+y2
4t .

2. Set

Σk+1
=

{
(x, y) ∈ R2 : A(x, y) >

(2∆t)1/4

2
(
√
θ − 1/

√
θ)

}
.

Convolution with a Gaussian kernel eliminates the high frequencies that are present in the initial
characteristic function. Since this is a linear convolution, the different modes do not interact and
there is never a need to approximate the high frequency modes when using a Gaussian kernel.
This idea was exploited in [26] to give an efficient spectral discretization of the MBO method,
and in [15] to give an efficient implementation of their algorithm for Willmore flow. However,
analogues of the algorithm using other radially symmetric kernels can also be obtained. The original
algorithm of Grzibovskis and Heintz consists of two linear convolutions and a thresholding based on
a difference. We have preferred to (equivalently) construct the kernel corresponding to the difference
and convolve this with the characteristic function for the region, since this way only one convolution
is required using the combined kernel.

Various values of the parameter θ can be chosen, but notice that θ > 1 is required for
the consistency of the resulting algorithm. This implies that the combined kernel used in the
convolution step of the algorithm will be negative sufficiently far away from the origin. The
negativity discourages mergers (topological changes) from taking place as two interfaces approach
each other. Interestingly, this behavior agrees with the underlying Willmore flow of curves since the
Willmore functional (2) would be expected to become infinite at such transitions.

6. More general motions

The expansion obtained in Section 4 can be utilized to easily derive threshold based algorithms for
more general velocities than that of Willmore flow.

6.1 Willmore with lower order terms

In this section, we will consider interface motions with normal velocities of the form

vn = c0(x, y, t)+ c1(x, y, t)κ + c2(t)W

where the coefficients involved may be nonconstant both in space and in time. Since without the
higher order Willmore term, motions of this type have been previously considered using threshold
type schemes, we concentrate on the case when c2 does not vanish, i.e. c2(t) > 0 for all t . But then,
since one can always rescale time, we may as well consider only velocities of the form

vn = c0(x, y, t)+ c1(x, y, t)κ +W. (8)
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One application area where velocities of type (8) arise is computer vision. More specifically,
in the segmentation with depth model of Nitzberg, Mumford, and Shiota [24], as well as in digital
image inpainting models inspired by that work [3, 5], it is necessary to minimize an energy of the
form

∫
C
(α + (1/2)βκ2) dσ over curves C, which leads to the normal velocity v = ακ + βW for a

curve evolving via gradient descent for that energy.
As in the previous section, the idea is to take the correct linear combination of two different

Gaussians to form the convolution kernel (but, again, the results can be extended to combinations
of other nonnegative, radially symmetric kernels). In other words, using the same notation as in
Section 4, we will once again consider combinations of the form

αF(x, y,
√

2∆t/θ)+ βF(x, y, θ
√

2∆t)+ γ.

First, we eliminate the O(∆t−1/4) term that involves y in expansion (5):

θ−1/2(F (0, y,
√

2∆t/θ)− 1/2)− θ1/2(F (0, y, θ
√

2∆t)− 1/2)

=
κ

2
√
π
(1/θ − θ)(2∆t)1/4 +O(∆t3/4)

Hence, if we set

B(x, z) := θ−1/2(F (x, y,
√

2∆t/θ)− 1/2)− θ1/2(F (x, y, θ
√

2∆t)− 1/2) (9)

then we can form the combination

A(x, y)− ∆t(2∆t)−1/4c1(x, y, t)B(x, y)−
∆t

2
√
π
(1/θ − θ)c0(x, y, t)−

(2∆t)1/4

2
(
√
θ − 1/

√
θ)

=
1

2
√
π
(1/θ − θ){y − ∆t[W + c1(x, y, t)κ + c0(x, y, t)]} +O(∆t3/2).

This last formula gives us a thresholding algorithm for normal velocities of the form (8), with
error O(

√
∆t). It consists in the following: Let Σ ⊂ R2 denote the set whose boundary is to be

moved via the geometric motion described by (8). Set Σ0 := Σ . Alternate the following steps for
k = 0, 1, 2, . . . in order to generate the approximationsΣk to the flow at the discrete times t = k·∆t :

1. Form the combination

C(x, y) := A(x, y)− ∆t(2∆t)−1/4c1(x, y, t)B(x, y)−
∆t

2
√
π
(1/θ − θ)c0(x, y, t)

where A(x, y) is as in (7) and B(x, y) is as in (9).
2. Set

Σk+1
=

{
(x, y) ∈ R2 : C(x, y) >

(2∆t)1/4

2
(
√
θ − 1/

√
θ)

}
.

Note that by utilizing the expansion of Section 4 and the approach of this and the previous
section, one can devise more elaborate linear combinations of kernels in order to kill off leading
order error terms (i.e. Richardson extrapolation) and thus obtain thresholding algorithms with higher
order accuracy.
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6.2 Surface diffusion

If we break away from simple linear combinations of convolutions, we can also obtain thresholding
algorithms for other important fourth order flows. In this section, we will extend our results to
motion by surface Laplacian of curvature for a curve, which is an important geometric motion that
arises in a number of applications. The normal velocity takes the form

vn = −κss,

where s is the arclength and κ is the curvature of the curve.
In Section 4 we presented a threshold algorithm for Willmore flow. Our approach to surface

diffusion is to utilize the expansion in that section, in particular the term A(x, y) defined in (7), and
to modify the Willmore flow algorithm so that surface diffusion flow is approximated instead. The
normal velocity for Willmore flow is given by equation (3). It differs from surface diffusion velocity
by the term 1

2κ
3. We can use the term B(x, y) (equation (9) from Section 6.1) to compensate for the

difference. Indeed, we have

(2∆t)1/4B3(0, y) =
1

4π3/2 (1/θ − θ)
3κ3(∆t)+O(∆t3/2).

Hence, we can form the combination

A(0, y)+
π

(1/θ − θ)2
(2∆t)1/4B3(0, y)−

(2∆t)1/4

2
(
√
θ − 1/

√
θ)

=
1

2
√
π
(1/θ − θ){y − ∆t · κss} +O(∆t

3/2).

This leads to the following algorithm for the motion of a curve by surface diffusion: Let Σ ⊂ R2

denote the set whose boundary is to be evolved according to surface diffusion. Set Σ0 := Σ .
Alternate the following steps for k = 0, 1, 2, . . . in order to generate the approximations Σk to the
flow at the discrete times tk = k · ∆t :

1. Form the combination

D(x, y) := A(0, y)+
π

(1/θ − θ)2
(2∆t)1/4B3(0, y)

where A(x, y) is as in (7) and B(x, y) is as in (9).
2. Set

Σk+1
=

{
(x, y) ∈ R2 : D(x, y) >

(2∆t)1/4

2
(
√
θ − 1/

√
θ)

}
.

This algorithm differs from the standard convolution generated motions in that the first step—i.e.
the convolution step—involves a nonlinear expression. Nevertheless, both steps of the algorithm
maintain the efficiency of their counterparts in the standard MBO scheme, since the nonlinear
operation involved in the convolution step is pointwise. We anticipate that designing such an
algorithm for surface diffusion in 3D may be more involved because of the appearance of a Gaussian
curvature term in Willmore velocity.
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7. Numerical experiments for Willmore flow

We now provide some experiments to verify the numerical convergence of our Willmore flow
algorithm. Following [26], FFTs on unequally spaced grids are used to carry out the spatial
discretization. These adaptive methods lead to results which are essentially free of spatial
discretization error, allowing us to better focus on the behavior of the underlying semi-discrete
method. Typical values for the adaptive spatial discretization were 256× 256 basis functions and a
finest grid cell size of 2−14. For our time step choices, this gives kernel sizes that are much larger
than the finest grid cell size.

7.1 Expanding circle

For our first example, consider the evolution of a circle according to Willmore flow. By symmetry,
the curve will remain a circle and will evolve according to the ordinary differential equation

Ṙ =
1
2

(
1
R

)3

.

From this differential equation, it is straightforward to determine the radius at any time t :

R(t) =
4
√
R(0)4 + 2t .

Our tests set the initial radius equal to 0.2 and evolve for a time T = 0.0025. In this and subsequent
examples, the time step-size was chosen sufficiently fine to give a clear indication of the convergence
rate. This leads to the absolute errors and numerically observed convergence rates given in Table 1
(all measured in terms of area). The expected convergence rate of O(

√
∆t) is clearly observed.

TABLE 1
Absolute errors in the final area of the expanding circle.

∆t Error Conv. rate
T/256 0.01918 -
T/512 0.01277 0.587
T/1024 0.00864 0.562
T/2048 0.00595 0.540
T/4096 0.00413 0.527

REMARK. This test set θ = (1.001)2. Ignoring the numerical cancellation issues discussed in
Section 7.2, values of θ close to 1 are expected to produce better accuracy since such values
correspond to kernels with smaller support. Our next example examines this choice more closely.

7.2 Evolving polynomial

Our second example approximates the initial velocity at the origin for the curve

y =
1
2
d2x

2
+

1
3!
d3x

3
+

1
4!
d4x

4.

Since the curve is initially a polynomial, it is easily shown that the initial velocity at the origin is

vn =
5
2
d2 − d4.



THRESHOLD DYNAMICS 273

For simplicity our experiments set d2 = d3 = d4 = 1, although qualitatively similar results were
observed for other choices as well.

Our first task is to see how θ affects the accuracy of the algorithm, so we fix ∆t = T/400 and
vary θ . This produces the relative errors displayed in Table 2. These results illustrate our earlier
conjecture: kernels with smaller support (corresponding to θ -values close to 1) have smaller errors,
provided roundoff errors do not dominate.

TABLE 2
Relative errors in initial velocity for various θ and ∆t = T/400.

θ Error in velocity
(2)2 24.6
(1.125)2 0.148
(1.01)2 0.074
(1.001)2 0.074
(1.0001)2 0.074
(1.0000001)2 0.074
(1.00000000000001)2 5.933

Directing our attention now to the numerical convergence of our algorithm, we take θ =
(1.001)2 and vary ∆t . This gives the relative errors and numerically observed convergence rates
displayed in Table 3 (all measured in terms of velocity at the origin). Similar to the case of the

TABLE 3
Relative errors in initial velocity for the evolving polynomial.

∆t Error in velocity Conv. rate
T/400 0.0735 -
T/800 0.0258 1.51
T/1600 0.0187 0.46
T/3200 0.0135 0.47
T/6400 0.0097 0.48
T/12800 0.0068 0.50

expanding circle, the expected convergence rate of O(
√
∆t) is clearly observed.

7.3 Evolution of a flower-shaped region

A further example of Willmore flow, this time with a more interesting, flower-shaped curve as initial
data, is given in Figure 2. Figure 3 shows computations with the same initial data but with much
larger choices of time step-size. As can be seen, the method is free of numerical instabilities even
when the time step is so large that the first plotted stage of the previous calculation is reached in a
single step. This unconditional stability property was observed in all the motions we investigated.
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FIG. 2. A flower-shaped curve evolving under Willmore flow. A: Initial curve (t = 0). B: Computed solution at t =
0.001/256. C: Computed solution at t = 0.010/256. D: Final contour is very closely a circle (t = 0.030/256). The time
step-size was ∆t = 0.001/(50× 256).
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FIG. 3. Illustration of the stability properties of the proposed Willmore flow algorithm: Arbitrarily large time steps can be
taken, with accuracy considerations being the only constraint. The curves, from left to right, represent the computed solution
at a fixed time, starting from the same initial data as in the experiment of Figure 2, using 50, 5, and 1 time steps.
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8. Numerical experiments for generalized motions

This section focuses on the application of the algorithm to more general flows. Similar to the
previous section, all spatial discretizations are carried out using the methods described in [26].

8.1 Combined motion

To examine the numerical behavior of the general algorithm, we consider the motion law

vn = −10+ πκ + 2W

and approximate the initial numerical velocity at the origin for the polynomial interface

y =
1
2
x2
+

1
3!
x3
+

1
4!
x4. (10)

Taking θ = (1.001)2 and varying ∆t gives the relative errors and numerically observed convergence
rates displayed in Table 4. The expected convergence rate of O(

√
∆t) is clearly observed.

TABLE 4
Relative errors in initial velocity for the evolving polynomial, and a general motion.

∆t Error in velocity Conv. rate
T/800 0.0575 -
T/1600 0.0204 1.50
T/3200 0.0148 0.46
T/6400 0.0107 0.47
T/12800 0.0077 0.48
T/25600 0.0055 0.49

8.2 Surface diffusion flow

Section 6.2 gives an extension of the basic algorithm which can be used to treat surface diffusion or
intrinsic Laplacian of curvature flows. To understand the numerical behavior of this algorithm, we
approximate the initial velocity at the origin for the polynomial interface (10). This is compared to
the (analytically derived) exact result.

Taking θ = (1.001)2 and varying ∆t gives the relative errors and numerical convergence rates
displayed in Table 5. The expected convergence rate of approximately O(

√
∆t) is again observed.

TABLE 5
Relative errors in initial velocity for the evolving polynomial, and a general motion.

∆t Error in velocity Conv. rate
T/800 0.0165 -
T/1600 0.0120 0.46
T/3200 0.0087 0.46
T/6400 0.0063 0.47
T/12800 0.0045 0.49
T/25600 0.0031 0.51
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FIG. 4. Ellipse evolving under surface diffusion flow. A: Initial ellipse (t = 0). B: Intermediate contour (t = 0.0003125).
C: Final contour approximates a circle (t = 0.0025). The time step was taken to be ∆t = 0.0025/512.
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FIG. 5. A flower-shaped curve evolving under surface diffusion flow. A: Initial curve (t = 0). B: Computed solution at
t = 0.001/256. C: Computed solution at t = 0.003/256. D: Final contour is very closely a circle (t = 0.04/256). The time
step-size was ∆t = 0.001/(50× 256). Compare to a similar computation in [30].

Another example for surface diffusion flow is provided in Figure 4. This test case evolves an
initial ellipse until it becomes nearly circular. The results obtained are clearly stable in the sense that
there are no spurious oscillations, even with very large time steps that far exceed the CFL condition
of explicit schemes. We also find that the relative error in the area enclosed by the final curve is
less than 1.5%. (The exact value of the final area is known from the fact that surface diffusion flow
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FIG. 6. Illustration of the stability properties of the proposed surface diffusion algorithm: Arbitrarily large time steps can be
taken, with accuracy considerations being the only constraint. The curves, from left to right, represent the computed solution
at a fixed time, starting from the same initial data as in the experiment of Figure 5, using 50, 5, and 1 time steps.

preserves the area enclosed by curves.) In fact, arbitrarily large time steps lead to regular evolutions
and no observed instabilities.

For a further example of surface diffusion flow, we again consider the flower-shaped curve as
initial data. See Figure 5 and compare to a similar computation in [30]. Figure 6 shows computations
with the same initial data but with much larger choices of time step-size. Similar to the case of
Willmore flow, the method is free of numerical instabilities even when the time step is so large that
the first plotted stage of the previous calculation is reached in a single step.

8.3 Reconstructed shape

In [11], it was shown that threshold dynamics can be applied to minimize the energy (1) and thereby
reconstruct missing (or occluded) parts of shapes described by their characteristic functions. In that
paper the shape was evolved by sequentially carrying out a step of Willmore flow, followed by a
step of the Merriman–Bence–Osher algorithm for curvature motion.

Using the approach for general flows described in Section 6.1, these two steps can be combined
into one. The corresponding simplified algorithm takes the following form: Let D be the image
region, D̃ be a subdomain of D where image (i.e. shape) information is known to be missing and
Σ0
⊂ D denote the initial guess for the shape. By alternating the following steps, approximations

Σk , k = 0, 1, 2, . . . , to the shape can be generated until a steady solution is obtained:
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1. Evolution step: Form the combination

C(x, y) := A(x, y)− ∆t(2∆t)−1/4αB(x, y)

where A(x, y) is as in (7) and B(x, y) is as in (9).
2. Fidelity step: Set

Σk+1
=

{
(x, y) ∈ D̃ : C(x, y) >

(2∆t)1/4

2
(
√
θ − 1/

√
θ)

}
∪ (Σ0

∩ (D \ D̃)).

An example illustrating the algorithm appears in Figure 7. The algorithm effectively imposes
Dirichlet boundary conditions on ∂D̃ by forcing the solution to coincide with the known image
information outside of D̃ at the end of each time step. This is a convenient but not necessarily the
most accurate treatment of boundaries; indeed, when ∆t is taken to be larger, as shown in the third
plot of Figure 7, kinks may be introduced into the solution at the boundary.
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FIG. 7. Image reconstruction example. The central square is the damaged region in the left image. Taking the initial region
Σ0 to be the union of the missing region and the two rectangular subregions and α = 1 leads to the reconstructed bent
bar shown in the second image from the left (time t = 0.05); this result was very carefully computed with time step-size
0.00001/1024 using 128 × 128 basis functions. The rightmost was obtained by repeating the calculation with 1000 time
steps and a time step-size of 0.0000005. Larger time steps did not produce oscillations in the missing region, D̃, but did lead
to a further loss of accuracy.
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8.4 Junctions

Similar to the original threshold dynamics of Merriman, Bence and Osher [22, 23], the algorithm
for Willmore flow extends naturally to multiple junctions even though the asymptotic expansions
require smoothness of the interfaces. This extension involves convolving the characteristic function
for each region with the appropriate kernel, and thresholding according to the maximum pointwise
value of the convolutions. More precisely, let Σi ⊂ R2 denote the set of the ith region (2 6 i 6 N )
whose boundary is to be moved via Willmore flow and set Σ0

i := Σi . We then alternate the
following steps for k = 0, 1, 2, . . . in order to generate the approximations Σk

i to the flow at the
discrete times tk = k · ∆t :

1. Form the convolution

Ai(x, y) := 1Σk
i
(x, y)∗(2∆t)1/4

(
√
θG√2∆t/θ (x, y)−

1
√
θ
G
θ
√

2∆t (x, y)

)
, 1 6 i 6 N,

where Gt (x, y) is the fundamental solution of the heat equation,

Gt (x, y) =
1

4πt
e−

x2
+y2
4t .

2. Set
Σk+1
i = {(x, y) ∈ R2 : Ai(x, y) > Aj (x, y), i 6= j}, 1 6 i 6 N.
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FIG. 8. Evolution according to Willmore flow. Unstable junction at time t = 0 (left) breaks into two symmetric triple
junctions by time t = 0.01 (right). The time step-size was taken to be ∆t = 0.01/10000.

An illustration of junctions evolving by Willmore flow is given in Figure 8. The initial system
is taken to be four regions meeting at a point. The symmetry of this configuration suggests that it is
an unstable equilibrium: different nearby initial data would be expected to diverge. Our numerical
algorithm perturbs this state into a lower energy configuration, and leads to the evolution shown.
Note that our simulation makes use of homogeneous Neumann boundary conditions; this explains
why curves meet the boundary at right angles in the final configuration. We are not aware of any
analytical work concerning Willmore flow of junctions.
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9. Challenges

An important issue is the width of the kernels used. Wide kernels lead to nonlocal effects in the
resulting motion, by coupling the flow of disparate parts of the interface to each other. This source
of error becomes particularly acute as the distance between two different parts of the interface
becomes comparable to the width of the kernel, which happens for example when the interface
is about to touch itself. In such a scenario, one can no longer think of the interface as locally
the graph of a function, and our asymptotic expansions become inaccurate. In order to compute
faithfully the motion at such difficult times, one is forced to take very narrow kernels, which in
effect translates into taking very small time steps. However, even with small kernels we have found
that this effect can prevent topological changes from taking place in both Willmore and surface
diffusion flows. Energy considerations suggest topological changes of curves under Willmore flow
would be discouraged; however, no such energetic impediment is apparent for surface diffusion
flow.

10. Conclusions

In this paper threshold dynamics algorithms for the high-order geometric motion of curves are
investigated. Our work continues earlier studies by Grzibovskis and Heintz [15] to give two-
dimensional Willmore flow plus lower order terms as well as methods for surface diffusion flow.
Asymptotic expansions and numerical convergence studies are carried out throughout the paper to
validate the methods.

Our methods have several characteristic properties. These include a very simple structure which
consists of alternating convolution and thresholding steps. Our methods also have excellent stability
properties, and in practice did not exhibit any apparent instabilities.

From a mathematical perspective, this article as well as earlier studies [15, 19, 25, 16, 27, 28,
29] hint at the diversity of motions possible under threshold dynamics and we feel that rigorous
mathematical studies of such motions would be of great interest. We are also optimistic about the
practical uses of such schemes and note that convolution and thresholding are simple operations
that have the potential to be treated rapidly at the level of the graphics processing unit (GPU). Given
the excellent stability properties exhibited by the algorithms, and the diversity of motion laws that
are possible, we consider this class of algorithms to be interesting candidates for the treatment of
certain geometric motion laws arising in applications such as image processing.
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