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The critical mass constraint in the Cahn–Hilliard equation
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When the mass constraint of the Cahn–Hilliard equation in two dimensions is lowered to the order
of ε2/3, where ε is the interface thickness parameter, the existence of droplet solutions becomes
conditional. For interior single droplet solutions, there is a critical value for the mass constraint such
that above this value two interior single droplet solutions exist, and below this value interior single
droplet solutions cannot be constructed. One solution has smaller droplet radius than the other. The
one with smaller radius is less stable. The center of the droplets in these solutions is (almost) the
point in the domain that is farthest from the boundary. A critical mass constraint also appears when
multiple droplet solutions are sought. Above the critical mass constraint, which now depends on the
number of droplets, there exist two multi-droplet solutions. In each solution the radii of the droplets
are about the same. However, when the two solutions are compared, one has larger droplet radius than
the other. The locations of the droplets are determined by the solution of a disc packing problem.

1. Introduction

The Cahn–Hilliard equation was originally proposed to study binary alloys [9]. Let u be the relative
concentration of one of the two components in an alloy, so 1− u is the relative concentration of the
other component. At a point x where u(x) ≈ 1 there is higher concentration of the first component,
and at a point where u(x) ≈ 0 there is high concentration of the second component. When u(x)
stays between 0 and 1, a mixture of the two components occupies x. Let Ω be the region taken by
the alloy, which we assume to be a smooth and bounded domain. The average concentration of the
first component is |Ω|−1 ∫

Ω
u(x) dx, denoted by m, often called the mass constraint. Here |Ω| is

the Lebesgue measure of Ω .
In a dimensionless form the free energy of the system is

I (u) =

∫
Ω

(
ε2

2
|∇u|2 + F(u)

)
dx. (1.1)

The function F is smooth with at least quadratic growth rate at ±∞. It is a balanced double well
potential with two global minimum points at 0 and 1. Both minima are non-degenerate: F ′′(0) > 0,
F ′′(1) > 0. Moreover, we assume that F ′′′(0) < 0. There is a third critical point between 0 and 1
which is a local maximum. We impose a symmetry condition F(u) = F(1 − u). Then the local
maximum point is 1/2. The reader may take the particular example F(u) = (1/4)u2(1 − u)2

throughout this paper.
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The functional I is defined for u in the admissible set

A =
{
u ∈ W 1,2(Ω) :

1
|Ω|

∫
Ω

u dx = m
}

(1.2)

with m ∈ (0, 1), the mass constraint, being a given number. In this paper a bar over a function
denotes its average. Hence u = m.

The Euler–Lagrange equation derived from (1.1, 1.2) is

−ε2∆u+ f (u) = η in Ω, ∂νu = 0 on ∂Ω. (1.3)

The function f is the derivative of F . If we use the particular F(u) = (1/4)u2(1 − u)2, then
f (u) = u(u − 1/2)(u − 1). ν is the outward normal direction on ∂Ω and ∂ν is the directional
derivative in that direction. Both the function u and the constant η are unknown in (1.3). The constant
η is the Lagrange multiplier coming from the constraint of u in (1.2). If we integrate (1.3), then

η = f (u).

We introduce a nonlinear operator S by

S(u) = −ε2∆u+ f (u)− f (u), (1.4)

so the equation (1.3) becomes
S(u) = 0.

To have low free energy the field u(x) has to be close to 0 or 1 because this makes F(u(x))
small. Any oscillation between 0 and 1 makes (ε2/2)|∇u|2 large, and is best avoided. However,
the constraint u = m ∈ (0, 1) does not allow u to be 0 (or 1) everywhere. The parameter ε is a
small positive number. If u(x)must vary between 0 and 1, it can do so over a narrow region without
raising the free energy too significantly.

Most works on this problem make the assumption that m is independent of ε. WhenΩ is a two-
dimensional domain, Alikakos and Fusco [3, 4], Alikakos, Bronsard and Fusco [1], and Alikakos,
Fusco and Karali [5] studied the development of a bubble profile under a dynamical law of I .
A bubble profile u(x) is a function that is close to 1 inside a round circle, a bubble, of radius r with
πr2/|Ω| ≈ m and close to 0 outside the circle. There is a narrow transition region whose width is
of order ε along the circle. In this region u(x) changes rapidly from 1 to 0. They showed that this
profile is rather stable in the dynamics and the bubble moves slowly towards the nearest boundary
point on ∂Ω . One byproduct of their work is that there exists an equilibrium, which is a solution of
(1.3), of the bubble profile. The location of the bubble in the equilibrium is not given in [4] or [1].
Wei and Winter [19] gave a static method, without using the dynamics of I , to show that a bubble
equilibrium exists with the center of the bubble being the farthest point in Ω from ∂Ω . A formal
justification of the location of this bubble was given by Ward [18].

When m is independent of ε, one powerful technique to study the Cahn–Hilliard equation is
Γ -convergence theory (cf. De Giorgi [11], Modica and Mortola [15], Modica [14], and Kohn and
Sternberg [13]). It reduces the variational problem (1.1) to the geometric problem of the perimeter
functional: Given a subset E of Ω (again assume Ω ⊂ R2) whose size is m|Ω|, the perimeter
functional PΩ(E) associates to E the arc length of the part of ∂E that is in Ω . One consequence of
Γ -convergence theory is that as ε → 0, the global minimizer of I must converge in some sense to
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a global minimizer of PΩ . For the global minimizer E of PΩ , the part of the boundary of E that is
in Ω is a circular arc. E also shares a part of its boundary with ∂Ω . The arc meets ∂Ω at a right
angle.

Another consequence of Γ -convergence theory is that if E is an isolated local minimizer of PΩ ,
one can find a local minimizer u of I that is close to the characteristic function ofE if ε is sufficiently
small. The set ∂E\∂Ω is approximated by the set {x : u(x) = 1/2}. Using this fact Chen and
Kowalczyk [10] proved that a small bubble solution exists if m is sufficiently small. The bubble
is attached to the boundary ∂Ω at a point whose mean curvature attains a local maximum, viewed
from insideΩ . Even thoughm is a small number, it must be independent of ε in the Γ -convergence
framework. On the other hand, Sternberg and Zumbrun [17] showed that in a strictly convex domain
the interface must be connected.

Alikakos, Chen and Fusco [2] studied the dynamics of a boundary bubble profile using another
dynamical law of I . Allowing m to depend on ε, they made an interesting discovery: To observe
boundary bubble dynamics and to have the existence of boundary bubble equilibrium, the mass
constraint cannot be too small, in terms of ε. It was shown that the mass constraint m can be of
order ε2/3 at the lowest. They called the boundary bubble profile in the case m ∼ ε2/3 the droplet
profile. If one writes m = ε2/3m0 + o(ε

2/3), a critical value for m0 exists. Below this value one
cannot construct a good approximate solution meeting all the requirements in their droplet dynamics
analysis. This droplet profile has its root in the bubble profile whenm is independent of ε. When we
decrease m to ε2/3 order, the bubble shrinks to a droplet.

If the mass constraint is above the critical level but still of order ε2/3, it was shown in [2] that
there is a second solution with a boundary droplet. This droplet has smaller radius than the first one.
It is less stable and has higher free energy. The existence of this second solution has its root in the
so called spike solutions.

Whenm is not too close to 1/2 but independent of ε, one can find a solution that is close tom for
most x ∈ Ω , except in a neighborhood of a point where the graph of the solution has a sharp peak.
This point may be on ∂Ω or inside of Ω . The solution is very unstable and has high free energy.
For more information about spike solutions in this parameter range see Bates and Fife [7], Bates,
Dancer and Shi [6], Bates and Fusco [8], and Wei and Winter [20, 21]. When m is decreased to the
ε2/3 range, a boundary spike solution flattens to become a boundary droplet solution. This droplet
solution is different from the earlier one. It has smaller radius and is less stable.

In this paper we study interior droplet solutions under the mass constraint m ∼ ε2/3 in two
dimensions: Ω ⊂ R2. More explicitly, we assume

m = ε2/3m0 + o(ε
2/3)

with m0 > 0 independent of ε. In the case of Ω being a unit disc, interior single droplet solutions
may be studied within the class of radially symmetric functions. In this class it was shown in [2]
that a critical mass constraint exists. When the mass constraint is in the ε2/3 range and above the
critical level, the droplet solutions and the constant solution have comparable free energy of order
ε4/3. We will show in this paper that a critical mass constraint also exists in the general domain
Ω for interior single droplet solutions. If the mass constraint is above the critical level and still of
order ε2/3 we find two interior droplet solutions. One of them has greater radius and is related to an
interior bubble solution (see [19]). The second one has smaller radius and is related to an interior
spike solution (see [21]). Both solutions are unstable. Of the two solutions, the one with smaller
droplet is less stable.
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Our approach is static. We do not use any of the dynamic laws associated with I . We use a
type of Lyapunov–Schmidt reduction procedure tailored for singularly perturbed problems. To
understand this method we must have a good understanding of the linearized operator at the solution
we want to construct. The linear operator admits eigenvalues that tend to 0 as ε → 0, which we
call critical eigenvalues. These eigenvalues are further divided according to the rates at which they
converge to 0. They give us a split into a finite-dimensional manifoldM, and at each point, say wξ ,
of the manifold, an infinite-dimensional fiber space Fξ . In this construction every member in M is
a function with a droplet profile. The center of the droplet is at ξ which serves to parametrizeM. In
each fiber space we look for a function φξ ∈ Fξ so that wξ + φξ “solves” the equation (1.3) in the
fiber direction. Nowwξ+φξ forms another manifold, sayN . We maximize I inN . The maximum is
achieved at a particular ξ which we call ξ∗. Thenwξ∗+φξ∗ is an exact solution of the equation (1.3).
This approach has been used to study the Cahn–Hilliard problem by Wei and Winter in [19, 20, 21].

It turns out that maximizing I (wξ + φξ ) with respect to ξ is equivalent to maximizing the
distance of ξ to the boundary ofΩ . Therefore this approach also gives us the location of the droplet
in a solution. The center ξ∗ of the droplet is (almost) the point in Ω that is farthest from ∂Ω .

We will also show the existence of solutions with multiple droplets. Here given any positive
integer K , we find a critical mass constraint and, above this critical level, two solutions, each of
which has a profile ofK droplets. In each solution the droplets are almost of the same size. However,
if we compare the two K-droplet solutions, one solution has smaller droplets than the other.

The locations of the droplets in both solutions are determined by solving a disc packing problem.
In the disc packing problem we are given K (open) discs of the same radius. What is the greatest
possible radius of these discs so that they can all be placed inside Ω without intersection? Let
ξ1, . . . , ξK be the centers of K discs. If we take the radius of the discs to be

ϕ(ξ1, . . . , ξK) = min{dξ k , |ξ
l
− ξm|/2 : k, l,m ∈ {1, . . . , K}, l 6= m}, (1.5)

where dξ k is the distance of ξ k to ∂Ω ,

dξ k = min{|x − ξ k| : x ∈ ∂Ω},

then the discs are all inside Ω and they are mutually disjoint. To find the greatest possible radius,
we simply maximize ϕ(ξ1, . . . , ξK). The locations of the droplets of our multi-droplet solutions are
(almost) the ξ1, . . . , ξK that maximize ϕ.

The paper is organized as follows. In Section 2 we describe the shape of a droplet. In Section 3
we show the existence of two radially symmetric single droplet solutions in the unit disc, using a
straightforward fixed point argument. In Section 4 we analyze the linear operator at each of the two
radial solutions. We obtain detailed information on the eigenvalues of the linear operator. Equipped
with this information we construct two interior droplet solutions in a general domain using the
Lyapunov–Schmidt reduction method in Section 5. Finally, in Section 6 we find two solutions
of multiple interior droplets. To do so, we employ the Lyapunov–Schmidt method to reduce the
problem to the disc packing problem. Some of the proofs are quite technical. To help the reader
follow the main framework of this paper, we leave these difficult proofs to the appendices.

To avoid overly complicated notations, a quantity’s dependence on ε is usually suppressed. For
instance we write I instead of Iε and S instead of Sε . On the other hand, if a quantity is independent
of ε, we often use a subscript 0 to emphasize this fact, such as m0 in m = ε2/3m0+ o(ε

2/3). We use
C, C0, C1, . . . and a, a0, a1, . . . , to denote positive constants independent of ε. Their values change
from line to line and even from place to place in the same line.
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2. The droplet profile

The shape of a droplet is described by the solution of the equation

−ε2∆v + f (v) = β (2.1)

in the entire space R2. This solution v is radially symmetric. In the language of the formal
asymptotic theory, v is known as an inner approximation. Also note that the two-parameter problem
(2.1) may be reduced to the one-parameter, β, problem by scaling the input variable of v, hence
eliminating ε2. We collect some well-known results about v in this section.

The constant β on the right side is assumed to be positive and have the expansion

β = ε2/3β0 + o(ε
2/3)

with β0 > 0 independent of ε. Denote the three zeros of f −β by z, z′, z′′, in increasing order. Here
z is positive and z′′ is greater than 1. Because β ∼ ε2/3,

z ∼ ε2/3, z′′ − 1 ∼ ε2/3.

The interface of the droplet profile is identified by ρ > 0 where

v(ρ) = 1/2.

So for r > ρ, when ε is small v(r) is close to z, and for r < ρ, v(r) is close to z′′. It is known that
ρ ∼ ε1/3 (see for example [19, Lemma 2.1]). We therefore write

ρ = ε1/3ρ0 + o(ε
1/3).

v decays to z as r = |x| → ∞:
lim
r→∞

v(r) = z. (2.2)

The decay rates of v and v′ are given as follows (see [19, Lemma 2.8]).

LEMMA 2.1 There exist positive constants C0, C1, a0, a1 independent of ε such that

C0e
−a0ε

−2/3
e−
√
f ′(z)r/ε 6 v(r)− z, −v′(r) 6 C1e

a1ε
−2/3

e−
√
f ′(z)r/ε .

Near ρ we have the following expansion formula.

LEMMA 2.2 Near ρ, v can be expanded as

v(εt + ρ) = H(t)+ ε2/3P(t)+ ε4/3Q(t)+ o(ε4/3)

where H , P and Q are respectively the solutions of

−H ′′ + f (H) = 0, H(−∞) = 1, H(∞) = 0, H(0) = 1/2; (2.3)

−P ′′ + f ′(H)P =
ε1/3

ρ
H ′ + const, P (0) = 0; (2.4)

−Q′′ + f ′(H)Q =
ε1/3

ρ
P ′ −

ε2/3

ρ2 tH
′
−

1
2
f ′′(H)P 2, Q(0) = 0. (2.5)
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For the proof we refer the reader to [16, Section 2], particularly [16, Lemma 2.3]. There we
studied the more complex Ohta–Kawasaki model of diblock copolymers which in addition to the
two terms in (1.1) has a nonlocal term. The reader can simply ignore that nonlocal term when
applying the results there.

In (2.4), const is a constant determined by the solvability condition∫
R

(
ε1/3

ρ
H ′ + const

)
H ′ dt = 0. (2.6)

If we relate const to β, we find the following important relation between β0 and ρ0.

LEMMA 2.3 In the expansion ρ = ε1/3ρ0 + o(ε
1/3), ρ0 satisfies β0 = τ/ρ0 where τ is a constant

given by τ =
∫
R(H

′(t))2 dt .

The constant τ is independent of ε. It can also be given by

τ =

∫ 1

0

√
2F(q) dq. (2.7)

These two definitions are equivalent because of the first integral − 1
2 (H

′)2 + F(H) = 0 of H . Note
that H ′ =

√
2F(H) and hence∫

R
(H ′(t))2 dt =

∫
R

√
2F(H(t))H ′(t) dt =

∫ 1

0

√
2F(H) dH.

τ is known as the surface tension.

Proof of Lemma 2.3. From (2.6) we find

const =
ε1/3

ρ

∫
R
(H ′)2 dt =

ε1/3τ

ρ
.

If we send ε → 0, then const = ε1/3τ/ρ → τ/ρ0. On the other hand, by (2.2) and Lemma 2.2,
z = v(∞) = ε2/3P(∞) + o(ε2/3) and, by (2.4) of Lemma 2.2, f ′(0)P (∞) = const. Hence
z0f
′(0) = const+ o(1). But β0 = f

′(0)z0. Therefore const→ β0 as ε → 0. Hence β0 = τ/ρ0. 2

3. The radial case

We take Ω to be the unit disc:
Ω = {x ∈ R2 : |x| < 1}.

All functions that appear in this section are radially symmetric. We prove the following theorem.

THEOREM 3.1 Let Ω be a unit disc. If the mass constraint m is chosen so that m0 >

3(τ/(2f ′(0)))2/3, then there exist two droplet solutions in Ω .

The proof of the theorem consists of two steps. First we construct two approximate solutions
that satisfy the Neumann boundary condition, the mass constraint, and up to an exponentially small
error almost satisfy the differential equation. In the second step we use each of the two approximate
solutions and find an exact solution nearby, using a fixed point argument. To this end we analyze
the linearized operator. Most importantly, we show that the linearized operator is invertible and the
spectrum is bounded away from 0 by a distance of order ε4/3.
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An approximate solution takes the form

w(x) = v(x)+ g(x)

where v is the radial droplet profile given in Section 2. The function g(x) is the radial solution of
the linear equation

−ε2∆g + f ′(z)g = 0 in Ω, ∂νg = −∂νv on ∂Ω.

This correction function g is quite small. We denote the L∞(Ω) norm of a function by ‖ · ‖∞ in this
section.

LEMMA 3.2 ‖g‖∞ = O(εe−
√
f ′(z)/ε). Moreover, for any small ι > 0,

g(r) = O(e−(
√
f ′(z)+δ1)/ε) if r 6 1− ι

for some δ1 > 0.

Proof. We write g(r) = −v′(1)ĝ(r). Then v′(1) = O(e−
√
f ′(z)/ε). The function ĝ satisfies the

equation
−ε2∆ĝ + f ′(z)ĝ = 0, ∂ν ĝ = 1 on ∂Ω.

For a small ι > 0, ĝ(r) = O(ε) if r > 1− ι. If r 6 1− ι, there is δ1 > 0 so that ĝ(r) = O(e−δ1/ε).
More details of this proof may be found in [19]. 2

The construction of g ensures that w satisfies the Neumann boundary condition. By adjusting β, or
equivalently ρ or z, we will make w satisfy the mass constraint

w = m. (3.1)

The following is required by (3.1).

LEMMA 3.3 The constants ρ0 and m0 must satisfy the equation

ρ2
0 +

τ

ρ0f ′(0)
= m0.

So m0 cannot be less than 3(τ/(2f ′(0)))2/3. This last value for m0 is attained if ρ0 =

(τ/(2f ′(0)))1/3.

Proof. Because g is exponentially small, w is exponentially close to v. The integral of v inside the
interface ρ is

πρ2
+ o(ε2/3) = πε2/3ρ2

0 + o(ε
2/3),

and the integral of v outside the interface is

πz+ o(ε2/3) =
πβ

f ′(0)
+ o(ε2/3) =

πε2/3τ

ρ0f ′(0)
+ o(ε2/3)

as β = f (z) = f ′(0)z+ o(z) and by Lemma 2.3. The mass constraint implies that

πm = πε2/3ρ2
0 +

πε2/3τ

ρ0f ′(0)
+ o(ε2/3).
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This gives the relation
m0 = ρ

2
0 +

τ

ρ0f ′(0)
.

For this equation to have a solution for ρ0, m0 cannot be too small. The smallest value for m0 is
3(τ/(2f ′(0)))2/3, which is attained if ρ0 = (τ/(2f ′(0)))1/3. 2

Under the assumption of Theorem 3.1, we find two ρ0’s that solve the equation ρ2
0 + τ/(ρ0f

′(0)) =
m0. The smaller ρ0 is less than (τ/(2f ′(0)))1/3 and the larger ρ0 is greater than (τ/(2f ′(0)))1/3.
From these two ρ0’s we deduce that there exist two ρ’s of the form ε2/3ρ0 + o(ε

2/3) such that (3.1)
holds. These two ρ’s now give rise to two approximate solutions w. The w’s nearly solve (1.3) in
the following sense.

LEMMA 3.4 There exists δ > 0 independent of ε such that ‖S(w)‖∞ = O(e−(1+δ)
√
f ′(z)/ε).

Proof. Let ṽ = v − z. Define h(ṽ) by

f (v) = f (z+ ṽ) = f (z)+ f ′(z)ṽ + h(ṽ).

In the special case f (u) = u(u− 1/2)(u− 1),

h(ṽ) =
f ′′(z)

2
ṽ2
+
f ′′′(z)

6
ṽ3.

Then we have

−ε2∆w + f (w) = β − f (v)− f ′(z)g + f (v + g) = β − f (z+ ṽ)− f ′(z)g + f (z+ ṽ + g)

= β + h(ṽ + g)− h(ṽ) = β + h′(ṽ)g +O(‖g‖2∞)

= β +O(‖ṽg‖∞)+O(‖g‖
2
∞) = β +O(e

−(1+δ)
√
f ′(z)/ε)

for some δ > 0 by Lemmas 2.1 and 3.2. To reach the last line, we note that

ṽ(r) = O(e−
√
f ′(z)r/ε), g(r) = O(e−

√
f ′(z)/ε)

if r > 1− ι for a small ι; and if r 6 1− ι, then

g(r) = −v′(1)ĝ(r) = O(e−
√
f ′(z)/ε)O(e−δ1/ε)

for some δ1 > 0, since ĝ(r) = O(e−δ1/ε) there. We are now left with f (w). Since S(w) =
−ε2∆w + f (w)− f (w) and S(w) = 0, we find

f (w) = −ε2∆w + f (w) = β +O(e−(1+δ)
√
f ′(z)/ε).

Therefore
S(w) = O(e−(1+δ)

√
f ′(z)/ε). 2

In the second step we look for exact solutions. Take one of the two approximate solutions. Denote it
by w with w = v+g. Next ρ (hence z and β) is chosen so that w = m, and ρ0 satisfies the equation
in Lemma 3.3. We define two function spaces

X = {u ∈ W 2,2(Ω) : u = u(|x|), ∂νu = 0 on ∂Ω, u = m},

Y = {q ∈ L2(Ω) : q = q(|x|), q = 0}.

The nonlinear operator S maps X to Y .
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We look for a solution of S(u) = 0 of the form w + φ∗ where φ∗ is a small correction to the
approximate solution w. It is in the function space

F = {φ ∈ W 2,2(Ω) : φ = φ(|x|), ∂νφ = 0 on ∂Ω, φ = 0}.

Rewrite S(w + φ∗) = 0 as
S(w)+ L(φ∗)+ R(φ∗) = 0. (3.2)

In (3.2), L is the linearized operator of S at w:

L(φ) := −ε2∆φ + f ′(w)φ − f ′(w)φ, φ ∈ F .

The last term in (3.2) defines the remainder

R(φ) := f (w + φ)− f (w)− f ′(w)φ − f (w + φ)− f (w)− f ′(w)φ.

It turns out that the operator L is invertible. The spectrum of L is bounded away from 0 by a
distance of order ε4/3.

LEMMA 3.5 The operator L : F → Y is one-to-one and onto. There exists a constant C inde-
pendent of small ε so that ‖φ‖∞ 6 Cε−4/3

‖L(φ)‖∞ for all φ ∈ F .

The proof of this lemma is quite long, so we leave it to Appendix A. Rewrite (3.2) in a fixed
point form

φ∗ = L
−1(−S(w)− R(φ∗)).

Hence we define a nonlinear operator T by

T (φ) = L−1(−S(w)− R(φ)).

We set the domain of T to be

D = {φ ∈ L∞(Ω) : φ = φ(|x|), φ = 0, ‖φ‖∞ 6 e−(1+δ2)
√
f ′(z)/ε

}

where δ2 is any positive number independent of ε and less than the δ of Lemma 3.4. Note that we
use the L∞ norm in D.

LEMMA 3.6 The operator T on D is a contraction map. There is a unique fixed point φ∗.

Proof. From Lemmas 3.4 and 3.5 we deduce

‖T (φ)‖∞ 6 Cε−4/3(‖S(w)‖∞ + ‖R(φ)‖∞) 6 Cε−4/3(O(e−(1+δ)
√
f ′(z)/ε)+ ‖φ‖2∞).

Hence T maps D to itself if ε is sufficiently small. For two φ1 and φ2 in D,

‖T (φ1)− T (φ2)‖∞ 6 Cε−4/3
‖R(φ1)− R(φ2)‖∞

6 Cε−4/3(‖φ1‖∞ + ‖φ2‖∞)‖φ1 − φ2‖∞

6 Cε−4/3e−(1+δ2)
√
f ′(z)/ε

‖φ1 − φ2‖∞.

Therefore T is a contraction map when ε is small. A fixed point φ∗ exists in D. 2

The proof of Theorem 3.1 is complete.
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4. The critical eigenvalues

Let u be one of the two droplet solutions given in Theorem 3.1. The linearized operator is

Lφ := −ε2∆φ + f ′(u)φ − f ′(u)φ.

This L differs slightly from the one considered in the last section, for the one there is linearized
around w. However, the difference between u and w is the exponentially small function φ∗, which
is a rather insignificant quantity in this section. The stability of u is determined by solving the
eigenvalue problem

Lφ = λφ, ∂νφ = 0 on ∂Ω, φ = 0.

We first study this eigenvalue problem in the class of radial functions.

THEOREM 4.1 The linear operator L, acting on radial functions, has one eigenvalue equal to

ε4/3
(

2f ′(0)ρ0

τ
−

1
ρ2

0

)
+ o(ε4/3),

which determines the stability of the droplet solutions in the radial class. The corresponding
eigenfunction is, up to a constant multiple,

H ′ + ε2/3P ′ −H ′ + ε2/3P ′ +O(ε4/3)

where H and P are given in (2.3, 2.4). Other eigenvalues in the radial class are greater than a
positive number that is independent of ε. The smaller droplet solution is unstable and the larger
droplet solution is stable in the radial class.

The proof mimics the work in [16]. Several ideas have already appeared in the proof of Lemma
3.5. We give an outline of the proof in Appendix B.

Theorem 4.1 only addresses the stability of the droplet solutions in the radial class. To study the
stability in the nonradial class, we may separate variables in the equation Lφ = λφ, this time for
nonradial φ. For each j = 1, 2, . . . there are two independent eigenfunctions φ = ζ(r) cos(jθ) and
φ = ζ(r) sin(jθ). The radially symmetric function ζ is a solution of the equation

−ε2ζrr −
ε2

r
ζr +

ε2j2

r2 ζ + f ′(u)ζ = λζ, ζr(1) = 0.

Arguing as in the proof of Theorem 4.1 we may show the following asymptotic expansions for the
eigenvalues and eigenfunctions.

THEOREM 4.2 For each j = 1, 2, . . . there is an eigenvalue equal to

ε4/3(j2
− 1)

ρ2
0

+ o(ε4/3).

To this eigenvalue there correspond two independent eigenfunctions ζ(r) cos(jθ) and ζ(r) sin(jθ)
where, up to a constant multiple, ζ is equal to

H ′ + ε2/3P ′ +O(ε4/3)

where H and P are given in (2.3, 2.4). Other eigenvalues are greater than a positive number that is
independent of ε.
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One sees from this theorem that the eigenvalues corresponding to j > 2 are all of order ε4/3 and
positive. So with respect to these modes both droplet solutions are stable. However, when j = 1,
we have an eigenvalue of higher order o(ε4/3). The theorem does not tell us whether this eigenvalue
is positive or negative, i.e. we do not know whether the droplet solutions are stable with respect to
the j = 1 mode. We will return to this issue later.

5. The general domain

The main result we will prove here is the analogy of Theorem 3.1 in a general bounded and smooth
domain Ω .

THEOREM 5.1 In a general domain Ω , if the mass constraint m = ε2/3m0 + o(ε
2/3) is above the

critical level, i.e.

m0 > 3
(

τ

2f ′(0)

)2/3(
π

|Ω|

)1/3

,

then there exist two droplet solutions.

The construction of droplet solutions in a general domain is more complex. We do expect that
the spectral properties obtained in Theorems 4.1 and 4.2 remain more or less valid even ifΩ is not a
disc. But we cannot restrict ourselves to radial functions. Without the radial symmetry in addition to
the small eigenvalue corresponding to the one in Theorem 4.1, the small eigenvalues, corresponding
to the ones in Theorem 4.2, have to be considered as well. The small eigenvalues fall into two
scales. The one in Theorem 4.1 and the ones in Theorem 4.2 with j > 2 are of order ε4/3. Their
absolute values are considerably greater than that of the one in Theorem 4.2 with j = 1, which is of
order o(ε4/3). The exact size of the latter eigenvalue will be discussed near the end of this section.
Our construction of two droplet solutions in a general domain must take this scale difference into
consideration.

Let us give an outline of our approach. The reader must be aware that although the notations
used in the rest of this paper look similar to the ones used in the earlier sections, we are taking a
significantly different approach. We define two function spaces

X = {u ∈ W 2,2(Ω) : ∂νu = 0 on ∂Ω, u = m}, Y = {q ∈ L2(Ω) : q = 0}

and the nonlinear operator S given in (1.4) maps X to Y . Note that X and Y differ from the
corresponding spaces in Section 3 in that here the functions in these spaces are generally not radially
symmetric.

We first construct a good approximate solution of a droplet, centered at a point ξ . ξ must have
some distance from ∂Ω . Let σ > 0 be independent of ε and

Ωσ = {ξ ∈ Ω : dξ > 5σ } (5.1)

where dξ is the distance of ξ to ∂Ω . At each ξ we construct an approximate solution whose droplet
is centered at ξ . This ξ is first an arbitrary point in Ωσ . It will be determined in the last step. The
constant σ is chosen to be sufficiently small so that

max{dξ : ξ ∈ Ω \Ωσ } < max{dξ : ξ ∈ Ω}. (5.2)
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This ensures that a point in Ω with the largest distance to ∂Ω is in Ωσ . The choice of the number 5
in (5.1) will be explained in the proof of Lemma 5.5. All estimates in this section are uniform in
ξ ∈ Ωσ .

Denote the approximate solution by wξ . As ξ varies in Ωσ , the wξ form a two-dimensional
manifold in X which we denote by

M = {wξ : ξ ∈ Ωσ }. (5.3)

At each point wξ we define an approximate tangent plane to M spanned by two functions b1,ξ and
b2,ξ that are essentially the truncated versions of the two eigenfunctions of mode j = 1 studied in
Theorem 4.2. Perpendicular to b1,ξ and b2,ξ is the space Fξ that is almost normal to the surfaceM.

Next we “solve” S(u) = 0 in each Fξ direction. More precisely, we look for a correction
function φξ so that

S(wξ + φξ ) = c1b1,ξ + c2b2,ξ (5.4)

for some c1, c2 ∈ R. Now we have a second manifold

N = {wξ + φξ : ξ ∈ Ωσ } (5.5)

of improved approximate solutions.
In the last step we find an exact solution in N . To do this we maximize I (wξ + φξ ) in N :

max{I (wξ + φξ ) : ξ ∈ Ωσ }. (5.6)

We will show that the maximizer exists at an interior point of Ω . Actually we will show this
maximizer has almost the greatest distance from ∂Ω , among all the points in Ω .

These three steps (5.3, 5.4, 5.6) are carried out in the rest of this section. It turns out that in
constructing (5.3) we can find two approximate solutions wξ at any fixed point ξ . One corresponds
to a smaller droplet and the other to a larger droplet. Starting with the two approximate solutions
and completing the three steps, we will find two droplet solutions in the general domain.

We first recall the profile of a droplet: v(r) given in (2.1). It is a radially symmetric function that
decays to z as r →∞. Note that f (z) = β. Define

ṽ = v − z.

Note that ṽ decays to 0 at infinity. It satisfies the equation

−ε2∆ṽ + f ′(z)ṽ + h(ṽ) = 0 (5.7)

where
h(ṽ) = f (v)− f (z)− f ′(z)(v − z).

In the particular case f (u) = u(u− 1/2)(u− 1),

h(ṽ) =
f ′′(z)

2
ṽ2
+
f ′′′(z)

6
ṽ3.

We need to choose z properly to reflect the mass constraint of the Cahn–Hilliard problem. We
look for z so that z and the corresponding v (and ṽ) determined from z satisfy the relation

f ′(z)(m− z)|Ω| +

∫
R2
h(ṽ) dx = 0. (5.8)
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Let us explain how we arrive at (5.8). Shift v to v(· − ξ). Integrate (5.7) over Ω to derive

−ε2
∫
∂Ω

∂ṽ(· − ξ)

∂ν
ds + f ′(z)

∫
Ω

ṽ(· − ξ) dx +
∫
Ω

h(ṽ(· − ξ)) dx = 0.

We ignore the first term on the left side since it is very small. We replace the last term by
∫
R2 h(ṽ) dx.

Regarding the mass constraint we must have v(· − ξ) ≈ m in Ω , i.e.∫
Ω

ṽ(· − ξ) dx ≈ (m− z)|Ω|.

After these replacements, we obtain (5.8). Note that z defined in this way is independent of the
choice of the center ξ of the droplet.

LEMMA 5.2 When m is above the critical level, (5.8) has two solutions of z. More precisely, let
z = ε2/3z0 + o(ε

2/3) with z0 independent of ε. Then z0 satisfies the condition

z0|Ω| +
πτ 2

f ′(0)2z2
0
= m0|Ω|, where m = ε2/3m0 + o(ε

2/3).

Proof. The equation (5.8) implies that

f ′(z)(m− z)|Ω| + h(1)πρ2
+ o(ε2/3) = 0.

The lemma follows once we note that h(1) = −f ′(0) + o(1) and ρ0 = τ/(f ′(0)z0) in view of
f ′(0)z0 = β0 and Lemma 2.3. 2

Here one solution z corresponds to a smaller droplet and the other to a larger droplet. In terms of ρ
(recall that v(ρ) = 1/2) this lemma says the following.

LEMMA 5.3 Suppose m = ε2/3m0 + o(ε
2/3) and ρ = ε1/3ρ0 + o(ε

1/3). Then ρ0 and m0 must
satisfy the equation

π

|Ω|
ρ2

0 +
τ

ρ0f ′(0)
= m0.

Therefore m0 cannot be less than 3(τ/(2f ′(0)))2/3(π/|Ω|)1/3. This last value for m0 is attained if
ρ0 = (|Ω|τ/(2πf ′(0)))1/3.

Proof. Use the relations β0 = f
′(0)z0 and β0 = τ/ρ0 from Lemma 2.3 to rewrite the equation in

Lemma 5.2 in terms of ρ0 instead of z0. 2

Now we move v to v(· − ξ) so that the center of the droplet is at an arbitrary point ξ ∈ Ωσ . This
v(· − ξ) does not satisfy the Neumann boundary condition. We introduce gξ which is the solution
of the linear problem

−ε2∆gξ + f
′(z)gξ = 0 in Ω, ∂νgξ = −∂νv(· − ξ) on ∂Ω.

Then v(· − ξ)+ gξ satisfies the Neumann boundary condition. Finally, to have the mass constraint
satisfied we introduce a number ηξ so that

wξ = v(· − ξ)+ gξ + ηξ and wξ = m. (5.9)

Here wξ is our approximate solution, from which we obtain the manifold M (5.3), in X .
The properties of wξ are given in the following lemma. We leave its rather technical proof to

Appendix C.
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LEMMA 5.4 Let the distance from ξ ∈ Ωσ to ∂Ω be dξ = min{|x − ξ | : x ∈ ∂Ω}.

(1) ‖S(wξ )‖L2(Ω) = O(e
−(1+δ)

√
f ′(z)dξ /ε) for some small δ > 0 independent of ε.

(2) There exist constants C0, C1, a0 and a1 independent of ε and ξ , and a constant Cε independent
of ξ but depending on ε so that

Cε − C0e
a0ε
−2/3

e−2
√
f ′(z)dξ /ε 6 I (wξ ) 6 Cε − C1e

−a1ε
−2/3

e−2
√
f ′(z)dξ /ε .

When we keep track of the decay rate of I (wξ ) to Cε , the dominating part is e−2
√
f ′(z)dξ /ε . Both

ea0ε
−2/3

and e−a1ε
−2/3

are rather negligible.
Now that we have a family of approximate solutions, we proceed to solve (5.4). It is sometimes

more convenient to work with the rescaled domain. LetΩξ = {y ∈ R2 : εy+ ξ ∈ Ω}. Note thatΩξ
is a large domain that depends on ε as well as ξ . The L2 andW 2,2 norms on the rescaled domainΩξ
are more appropriate for our problem than the corresponding norms on Ω . For simplicity we will
write φ(y) = φ(x) with x = εy + ξ . In the following, differentiation, as in the Laplace operator, is
taken with respect to y.

At each wξ we define an approximate tangent plane to M. Recall the two eigenfunctions
associated with eigenvalue λ1 studied in Theorem 4.2. They are of the form

(H ′ + ε2/3P ′ +O(ε4/3)) cos θ and (H ′ + ε2/3P ′ +O(ε4/3)) sin θ.

We shift the center of these functions to ξ so that r = |x − ξ | and θ = arctan((x2 − ξ2)/(x1 − ξ1)).
The radial parts of these two functions decay exponentially fast. We truncate the exponentially small
tails of H ′ + ε2/3Q′ +O(ε4/3) to define

b1,ξ = (H
′
+ ε2/3P ′ +O(ε4/3)) cos θ, b2,ξ = (H

′
+ ε2/3P ′ +O(ε4/3)) sin θ,

which have compact support in Ω . More precisely, the supports of b1,ξ and b2,ξ must be in Bσ (ξ)
where σ is given after (5.1).

At each wξ of the manifold M we define

Fξ = {φ ∈ W 2,2(Ωξ ) : φ = 0, ∂νφ = 0 on ∂Ωξ , φ ⊥ bj,ξ , j = 1, 2}

where ⊥ is defined from the L2(Ωξ ) inner product. Note that in the rescaled domain Ωξ , φ is the
average of φ over Ωξ . Then wξ + Fξ is a subset of {u ∈ W 2,2(Ωξ ) : ∂νu = 0 on ∂Ωξ , u = m},
which we call the ξ -fiber of M. Define

Eξ = {q ∈ L2(Ωξ ) : q = 0, q ⊥ bj,ξ , j = 1, 2},

which is a subspace of {q ∈ L2(Ωξ ) : q = 0}. Let the projection to Eξ be

πξ : {q ∈ L2(Ωξ ) : q = 0} → Eξ .

To solve (5.4) we look for a φξ ∈ Fξ so that

πξ ◦ S(wξ + φξ ) = 0. (5.10)

For each φ ∈ Fξ we expand

S(wξ + φ) = S(wξ )+ Lξ (φ)+ Rξ (φ)
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where
Lξ (φ) = −∆φ + f

′(wξ )φ − f ′(wξ )φ

is the linearization of S at wξ , and

Rξ (φ) = f (wξ + φ)− f (wξ )− f
′(wξ )φ − f (wξ + φ)− f (wξ )− f ′(wξ )φ.

Note that when we use the rescaled variable y, there is no ε2 in front of ∆ in Lξ . Then (5.10) is
written as

πξ ◦ S(wξ )+ πξ ◦ Lξ (φξ )+ πξ ◦ Rξ (φξ ) = 0. (5.11)

Regarding the linear operator πξ ◦ Lξ : Fξ → Eξ we have the following lemma.

LEMMA 5.5 The operator πξ ◦Lξ is one-to-one from Fξ onto Eξ . There exists C > 0 independent
of ε such that ‖φ‖W 2,2(Ωξ )

6 Cε−4/3
‖πξ ◦ Lξ (φ)‖L2(Ωξ )

for all φ ∈ Fξ .

The proof of this lemma is difficult. We leave it to Appendix D. Lemma 5.5 gives a measurement
of the invertibility of πξ ◦ Lξ . The equation (5.11) can now be solved by a fixed point argument.

LEMMA 5.6 There exists φξ ∈ Fξ so that πξ ◦ Sξ (wξ + φξ ) = 0. Moreover,

‖φξ‖W 2,2(Ωξ )
= O(e−(1+δ)

√
f ′(z)dξ /ε)

for some small δ > 0 independent of ε.

Proof. We write (5.11) in a fixed point form:

φξ = (πξ ◦ Lξ )
−1(−πξ ◦ S(wξ )− πξ ◦ Rξ (φξ )).

We define the operator Tξ from Dξ to itself by

Tξ (φ) = (πξ ◦ Lξ )
−1(−πξ ◦ S(wξ )− πξ ◦ Rξ (φ))

where
Dξ = {φ ∈ W 2,2(Ωξ ) : φ = 0, φ ⊥ bj,ξ , j = 1, 2}.

By Lemma 5.4(1), on the rescaled domain Ωξ we have

‖S(wξ )‖L2(Ωξ )
= O(ε−1e−(1+δ)

√
f ′(z)dξ /ε).

Let Bξ be a closed ball in Dξ defined by

Bξ = {φ ∈ Dξ : ‖φ‖W 2,2(Ωξ )
6 C1ε

−7/3e−(1+δ)
√
f ′(z)dξ /ε}

where C1 is a constant independent of ε to be determined soon. Then for every φ ∈ Bξ ,

‖Tξ (φ)‖W 2,2(Ωξ )
6 ε−4/3(‖πξ ◦ S(wξ )‖L2(Ωξ )

+ ‖πξ ◦ R(φ)‖L2(Ωξ )
)

6 ε−4/3O(ε−1e−(1+δ)
√
f ′(z)dξ /ε)+ Cε−4/3

‖φ‖2
L4(Ωξ )

6 O(ε−7/3e−(1+δ)
√
f ′(z)dξ /ε)+ Cε−4/3

‖φ‖2
W 2,2(Ωξ )

6 O(ε−7/3e−(1+δ)
√
f ′(z)dξ /ε)+ Cε−4/3[C1ε

−7/3e−(1+δ)
√
f ′(z)dξ /ε]2
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where C is a constant and we have used the Sobolev embedding theorem. We see that if we choose
C1 to be sufficiently large, then Tξ maps Bξ into itself. As in the proof of Lemma 3.6 we can
similarly show that this mapping is a contraction. Then by the contraction mapping theorem we
conclude that there is a fixed point φξ . Since φξ ∈ Dξ , we have

‖φξ‖W 2,2(Ωξ )
= O(ε−7/3e−(1+δ)

√
f ′(z)dξ /ε).

By changing δ to a smaller value we obtain

‖φξ‖W 2,2(Ωξ )
= O(e−(1+δ)

√
f ′(z)dξ /ε). 2

In the final step we look for a particular ξ∗ so that ξ∗ maximizes I (wξ + φξ ) with respect to ξ and
consequently S(wξ∗ + φξ∗) = 0. To this end we first show

LEMMA 5.7
I (wξ + φξ ) = I (wξ )+O(e

−(2+δ)
√
f ′(z)dξ /ε)

for some δ > 0.

Proof. Let

Rξ,1(φξ ) = F(wξ + φξ )− F(wξ )− f (wξ )φξ −
1
2
f ′(wξ )φ

2
ξ .

We expand I (wξ + φξ ) as follows:

I (wξ + φξ ) = I (wξ )+

∫
Ω

S(wξ )φξ dx +
1
2

∫
Ω

Lξ (φξ )φξ dx +
∫
Ω

Rξ,1(φξ ) dx.

Since S(wξ + φξ ) = 0, we have

S(wξ )+ Lξ (φξ )+ Rξ,2(φξ ) = const

where
Rξ,2(φξ ) = f (wξ + φξ )− f (wξ )− f

′(wξ )φξ .

After substitution we obtain

I (wξ + φξ ) = I (wξ )+
1
2

∫
Ω

S(wξ )φξ dx +
∫
Ω

[
Rξ,1(φξ )−

1
2
Rξ,2(φξ )φξ

]
dx.

The third term on the right side is bounded by∣∣∣∣∫
Ω

[
Rξ,1(φξ )−

1
2
Rξ,2(φξ )φξ

]
dx
∣∣∣∣ 6 C

∫
Ω

|φξ |
3 dx 6 Cε2

‖φξ‖
3
W 2,2(Ωξ )

= O(e−(2+δ)
√
f ′(z)dξ /ε)

for some δ > 0 by Lemma 5.6. For the second term one has∣∣∣∣∫
Ω

S(wξ )φξ dx
∣∣∣∣ = ε2

∣∣∣∣∫
Ωξ

S(wξ )φξ dy
∣∣∣∣ 6 ε2

‖S(wξ )‖L2(Ωξ )
‖φξ‖L2(Ωξ )

= O(e−(2+δ)
√
f ′(z)dξ /ε)

for some δ > 0 by Lemmas 5.4(1) and 5.6. Lemma 5.7 then follows. 2
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Combining Lemmas 5.4(2) and 5.7 we deduce that I (wξ +φξ ) and I (wξ ) have the same asymptotic
property:

Cε − C0e
a0ε
−2/3

e−2
√
f ′(z)dξ /ε 6 I (wξ + φξ ) 6 Cε − C1e

a1ε
−2/3

e−2
√
f ′(z)dξ /ε .

To maximize I (wξ + φξ ) we just need to maximize dξ . The maximizer ξ∗ is exponentially close to
a point whose distance to ∂Ω is the greatest among all ξ ∈ Ω .

One can then show that wξ∗ + φξ∗ is an exact solution of S(wξ∗ + φξ∗) = 0. The idea is that at
ξ = ξ∗,

∂I (wξ + φξ )

∂ξj

∣∣∣∣
ξ=ξ∗

= 0, j = 1, 2.

This implies that c1 = c2 = 0 at ξ = ξ∗ where c1 and c2 are given in (5.4). This argument is
standard and the details can be found, for instance, in [12, Section 5]. The proof of Theorem 5.1 is
complete.

A remark about the stability of these two droplet solutions is in order. As in the last section,
the smaller droplet solution is unstable. For the larger droplet solution, when we solve the equation
πξ ◦ S(wξ + φξ ) = 0, the solution wξ + φξ is stable in this step, very much like in the last section
where we were restricted to radial functions. However, to find wξ∗+φξ∗ , we maximized I (wξ +φξ )
with respect to ξ . In this step the solution wξ∗ + φξ∗ is unstable. Overall, the larger droplet solution
is also unstable. In the last section we were left with the question whether with respect to the
j = 1 mode the larger radial droplet solution is stable. Now we know that the j = 1 mode is
unstable. Moreover, because, as we vary ξ , I (wξ + φξ ) changes by an exponentially small amount,
the eigenvalue of the j = 1 mode of the last section should be negative but exponentially close to 0.

6. Multiple droplets

We now consider solutions with multiple droplets. Let K be a positive integer. We show the
existence of a critical mass constraint, which depends on K , so that when the mass is above this
critical value, two solutions with multiple droplets exist. Our approach closely follows the argument
in the last section. We only emphasize the modifications that are needed while omitting the details
that are identical to the ones before.

In the case of single droplet solutions, the center of the droplet is given by ξ∗ that almost
maximizes the distance function dξ of ξ ∈ Ω to ∂Ω . In the multi-droplet case the role of the
distance function is played by the function ϕ(ξ1, . . . , ξK) given in (1.5) for any

(ξ1, . . . , ξK) ∈ Ω × · · · ×Ω, ξ l 6= ξm if l 6= m.

If ξ k → ∂Ω for some k or |ξ l − ξm| → 0 for some l and m, then ϕ(ξ1, . . . , ξK) → 0. Hence ϕ
admits a maximum. Maximizing ϕ(ξ1, . . . , ξK) is a disc packing problem. If we place K discs, all
of radius ϕ(ξ1, . . . , ξK), centered at ξ k , k = 1, . . . , K , these K discs reside inside Ω and they are
mutually disjoint. The maximum value of ϕ(ξ) is the greatest possible radius we can have as we
pack the discs.

The main result in this section is the following existence theorem.

THEOREM 6.1 If the mass constraint m = ε2/3m0 + o(ε
2/3) is above the critical level:

m0 > 3
(

τ

2f ′(0)

)2/3(
Kπ

|Ω|

)1/3

,
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then there exist two solutions with K droplets. For each of the two solutions the centers of the
droplets ξ1

∗ , . . . , ξ
K
∗ almost maximize the function ϕ(ξ1, . . . , ξK).

For multiple droplet solutions, the critical mass constraint is greater than the critical mass
for single droplet solutions. If the critical mass constraint were to be attained, the radius of each
droplet would be ρ = ε1/3ρ0 + o(ε

1/3) with ρ0 being (|Ω|τ/(2Kπf ′(0)))1/3 which is less than the
corresponding value in the single droplet case (see Lemma 6.3 below).

The proof of the theorem is again divided into three steps. First we construct a family of
approximate solutions parametrized by ξ = (ξ1, . . . , ξK). We have promoted ξ to a K-vector
which is an arbitrary member in

ΩK
σ = {(ξ

1, . . . , ξK) ∈ ΩK : dξ k > 5σ, |ξ k − ξ l | > 10σ, k, l = 1, . . . , K}. (6.1)

Here σ is a small positive number independent of ε. It is chosen so that any maximum of ϕ is in
ΩK
σ . We will explain in the proof of Lemma 6.5 why we have the numbers 5 and 10 in (6.1). All

estimates in this section are uniform in ξ ∈ ΩK
σ .

We use the same function spaces X , Y and the nonlinear operator S as in the last section. The
droplet profile is again given by v of (2.1). To determine the value z we solve, instead of (5.8),

f ′(z)(m− z)|Ω| +K

∫
R2
h(ṽ) = 0 where ṽ = v − z.

LEMMA 6.2 Whenm is above the critical level, (5.8) has two solutions z. Let z = ε2/3z0+o(ε
2/3)

with z0 independent of ε. Then z0 satisfies the condition

z0|Ω| +
Kπτ 2

f ′(0)2z2
0
= m0|Ω|, where m = ε2/3m0 + o(ε

2/3).

LEMMA 6.3 Suppose m = ε2/3m0 + o(ε
2/3) and ρ = ε1/3ρ0 + o(ε

1/3). Then ρ0 and m0 must
satisfy the equation

Kπ

|Ω|
ρ2

0 +
τ

ρ0f ′(0)
= m0.

Therefore m0 cannot be less than 3(τ/(2f ′(0)))2/3(Kπ/(|Ω|))1/3. The latter value for m0 is
attained if ρ0 = (|Ω|τ/(2Kπf ′(0)))1/3.

Move ṽ to ṽ(· − ξ k) = ṽξ k = ṽk for a ξ k ∈ Ω . Define gk to be the solution of

−ε2∆gk + f
′(z)gk = 0, ∂νgk = −∂νv(· − ξ

k) on ∂Ω.

Given ξ we define

w̃ξ =

K∑
k=1

(ṽk + gk), wξ = w̃ξ + z+ ηξ

where ηξ is a number chosen so that wξ = m. As we vary ξ in wξ we obtain a manifold M of
dimension 2K in X . The next lemma generalizes Lemma 5.4 whose proof is left to Appendix E.
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LEMMA 6.4 (1) ‖S(wξ )‖L2(Ω) = O(e
−(1+δ)

√
f ′(z)ϕ(ξ)/ε) for some small δ > 0 independent of ε.

(2) There exist constants C0, C1, a0 and a1 independent of ε and ξ , and a constant Cε independent
of ξ but depending on ε so that

Cε − C0e
a0ε
−2/3

e−2
√
f ′(z)ϕ(ξ)/ε 6 I (wξ ) 6 Cε − C1e

−a1ε
−2/3

e−2
√
f ′(z)ϕ(ξ)/ε .

To define the approximate tangent space ofM atwξ , we move the eigenfunctions corresponding
to λ1 in Theorem 4.2 to each ξ k . Truncate the radial part so that they have support in Ω . Denote
these functions by bk1,ξ and bk2,ξ (k = 1, . . . , K). The fiber space at wξ is

Fξ = {φ ∈ W 2,2(Ωξ ) : ∂νφ = 0 on ∂Ωξ , φ = 0, φ ⊥ bkj,ξ , k = 1, . . . , K, j = 1, 2}

Also define
Eξ = {q ∈ L2(Ωξ ) : q = 0, q ⊥ bkj,ξ , k = 1, . . . , K, j = 1, 2}

and let πξ be the projection to Eξ as in the last section.
In the second step we solve the equation πξ ◦ S(wξ + φξ ) = 0. First we must be able to invert

the linearized operator Lξ .

LEMMA 6.5 The operator πξ ◦Lξ is one-to-one from Fξ onto Eξ . There exists C > 0 independent
of ε such that ‖φ‖W 2,2(Ωξ )

6 Cε−4/3
‖πξ ◦ Lξ (φ)‖L2(Ωξ )

for all φ ∈ Fξ .

The proof of this lemma is given in Appendix F. Using a fixed point argument we obtain

LEMMA 6.6 There exists φξ ∈ Fξ so that πξ ◦ Sξ (wξ + φξ ) = 0. Moreover,

‖φξ‖W 2,2(Ωξ )
= O(e−(1+δ)

√
f ′(z)ϕ(ξ)/ε)

for some δ > 0 independent of ε.

In the third and final step we maximize I (wξ+φξ )with respect to ξ . Again it suffices to consider
I (wξ ) based on the following lemma.

LEMMA 6.7
I (wξ + φξ ) = I (wξ )+O(e

−(2+δ)
√
f ′(z)ϕ(ξ)/ε)

for some δ > 0 independent of ε.

Combining Lemma 6.4(2) and Lemma 6.7 we see that I (wξ + φξ ) has the asymptotic property

Cε − C0e
a0ε
−2/3

e−2
√
f ′(z)ϕ(ξ)/ε 6 I (wξ + φξ ) 6 Cε − C1e

−a1ε
−2/3

e−2
√
f ′(z)ϕ(ξ)/ε .

As indicated at the beginning of this section ϕ(ξ) has an interior maximum, so I (wξ + φξ ) is
maximized at some ξ∗. It follows that wξ∗ + φξ∗ is an exact solution of S(wξ∗ + φξ∗) = 0. This
proves Theorem 6.1.

Appendix A. Proof of Lemma 3.5

Let us define
p = H ′ + ε2/3P ′ −H ′ + ε2/3P ′ (A.1)

where H and P are given in (2.3, 2.4).
Regarding the linear operator L we have the following results.



320 X. REN AND J. WEI

LEMMA A.1 There exists a constant C independent of ε such that ‖ψ‖∞ 6 C‖L(ψ)‖∞ for all
ψ ∈ F with ψ ⊥ p.

Proof. Suppose that the lemma is false: there exist ψ and some r∗ such that ‖ψ‖∞ = ψ(r∗) = 1,
ψ ⊥ p and L(ψ) = o(1). Then r∗ must lie in a neighborhood of ρ. The size of this neighborhood
must be of order ε. Otherwise −ε2∆ψ(r∗) > 0, f ′(w)ψ = (f ′(w)− f ′(z))ψ = o(1) (as ψ = 0),
and f ′(w(r∗))ψ(r∗) is positive and bounded away from 0 independent of ε. Then L(ψ) = o(1) is
not satisfied at r∗.

So let us assume that r∗ is in a neighborhood, of size ε, of ρ. Then ψ(ρ + εt) → Ψ0(t) in
C2

loc(R) as ε tends to 0. We have −Ψ ′′0 + f
′(H)Ψ0 = 0. Therefore Ψ0 = cH ′ for some constant

c 6= 0. On the other hand, ψ ⊥ p implies

0 = 〈ψ,H ′ −H ′ + ε2/3(P ′ − P ′)〉 = 2πcερ
∫

R
(H ′)2 dt + o(ε4/3) = 2πcερτ + o(ε4/3),

which is possible only if c = 0. A contradiction. 2

Before proving the estimate ‖φ‖∞ 6 Cε−4/3
‖L(φ)‖∞ of Lemma 3.5, we note that the estimate

implies that L is one-to-one. The surjectivity of L means that for any q ∈ Y there is φ ∈ F so that
L(φ) = q. We write this equation as

ε2φ + (−∆)−1(f ′(w)φ − f ′(w)φ) = (−∆)−1q

where (−∆)−1 is a bijection fromY ontoF . The left side of the equation defines an operator fromF
to itself which is of the form “ε2 identity + compact”. For this operator,F is equipped with theW 2,2

norm. The Fredholm alternative asserts that the equation is solvable if and only if the homogeneous
equation

ε2φ + (−∆)−1(f ′(w)φ − f ′(w)φ) = 0

only has the trivial solution. But this is a consequence of L being one-to-one.
Hence it suffices to prove the estimate. Suppose it is not true. Then there exists φ with ‖φ‖ = 1

and L(φ) = o(ε4/3) along a sequence of ε that tends to 0.
Decompose φ into

φ = cp + φ⊥, p ⊥ φ⊥.

We start with L(p). First we estimate

L(H ′ −H ′) = −ε2(H ′)rr −
ε2

r
(H ′)r + f

′(w)(H ′ −H ′)− f ′(w)(H ′ −H ′),

in which

f ′(w)H ′ = 2
∫ 1

0
(f ′(H)+ ε2/3Pf ′′(H))H ′r dr + o(ε4/3)

= 2ε
∫

R
[f ′(H)ρ + εtf ′(H)+ ε2/3Pf ′′(H)ρ]H ′ dt + o(ε4/3) = o(ε4/3), (A.2)

since
∫
R f
′(H)H ′ dt =

∫
R tf

′(H)H ′ dt =
∫
R Pf

′′(H)H ′ dt = 0 (tf ′(H)H ′ and Pf ′′(H)H ′ are
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odd). Then

L(H ′ −H ′)

= (f ′(w)− f ′(H))H ′ −
ε

r
H ′′ + (f ′(w)− f ′(w))H ′ + o(ε4/3)

= ε2/3f ′′(H)PH ′ + ε4/3
(
f ′′(H)Q+

f ′′′(H)P 2

2

)
H ′ −

ε

r
H ′′ + (f ′(w)− f ′(w))H ′ + o(ε4/3).

By differentiating (2.4) we have

−P ′′′ + f ′(H)P ′ + f ′′(H)H ′P −
ε1/3

ρ
H ′′ = 0.

Then

L(P ′ − P ′) = −ε2(P ′)rr −
ε2

r
(P ′)r + f

′(w)(P ′ − P ′)− f ′(w)(P ′ − P ′)

= (f ′(w)− f ′(H))P ′ − f ′′(H)H ′P +
ε1/3

ρ
H ′′ −

ε

r
P ′′ + (f ′(w)− f ′(w))P ′ + o(ε2/3)

= ε2/3f ′′(H)PP ′ − f ′′(H)H ′P +
ε1/3

ρ
H ′′ −

ε

r
P ′′ + (f ′(w)− f ′(w))P ′ + o(ε2/3),

where we have used the fact that

f ′(w)P ′ = 2
∫ 1

0
f ′(w)P ′r dr = o(ε2/3).

Therefore

L(p) = ε4/3
[(
f ′′(H)Q+

f ′′′(H)P 2

2

)
H ′ + f ′′(H)PP ′ +

(
1

ε1/3ρ
−

1
ε1/3r

)
H ′′ −

ε1/3

r
P ′′
]

+ (f ′(w)− f ′(w))H ′ + ε2/3P ′ + o(ε4/3).

On the other hand,

H ′ = 2
∫ 1

0
H ′r dr = 2ε

∫
R
H ′(t)(ρ + εt) dt + o(ε4/3)

= 2ερ
∫

R
H ′(t) dt + 2ε2

∫
R
H ′(t)t dt + o(ε4/3) = −2ερ + o(ε4/3)

since H ′(t)t is odd, and

P ′ = 2
∫ 1

0
P ′r dr = 2ερ

∫
R
P ′ dt +O(ε2) = O(ε2)

since P ′ is odd. We find
H ′ + ε2/3P ′ = −2ερ + o(ε4/3). (A.3)
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Hence we deduce that

L(p) = ε4/3
[(
f ′′(H)Q+

f ′′′(H)P 2

2

)
H ′ + f ′′(H)PP ′ +

(
1

ε1/3ρ
−

1
ε1/3r

)
H ′′ −

ε1/3

r
P ′′
]

− 2ερ(f ′(w)− f ′(w))+ o(ε4/3). (A.4)

Note that in (A.4), (
1

ε1/3ρ
−

1
ε1/3r

)
H ′′ =

ε2/3tH ′′(t)

ρ(ρ + εt)
= O(1).

In particular
L(p) = O(ε4/3). (A.5)

We write L(φ) = o(ε4/3) as

L(φ⊥) = −cL(p)+ o(ε4/3) = O(ε4/3
|c|)+ o(ε4/3).

We deduce from the last equation and Lemma A.1 that

φ⊥ = O(ε4/3
|c|)+ o(ε4/3). (A.6)

We now return to
cL(p)+ L(φ⊥) = o(ε4/3).

Multiply the equation by p and integrate over Ω to deduce

c〈L(p), p〉 + 〈φ⊥, L(p)〉 = o(ε8/3). (A.7)

Note that we have used the fact ‖p‖1 = O(ε4/3) to obtain the right side of (A.7).
The two terms on the left side are calculated as follows:

〈L(p), p〉 = c0ε
8/3
+ o(ε8/3), c0 6= 0,

where c0 is independent of ε. To see this we note that P ′ decays exponentially fast. Then (A.4)
implies that

〈L(p), p〉 = 〈L(H ′ −H ′ + ε2/3(P ′ − P ′)),H ′ + ε2/3P ′〉

= ε4/3
〈(
f ′′(H)Q+

f ′′′(H)P 2

2

)
H ′ + f ′′(H)PP ′ +

ε2/3tH ′′j

ρr
−
ε1/3

r
P ′′, H ′ + ε2/3P ′

〉
− 2ερ〈f ′(w)− f ′(w),H ′ + ε2/3P ′〉 + o(ε8/3)

= ε4/3
〈(
f ′′(H)Q+

f ′′′(H)P 2

2

)
H ′ + f ′′(H)PP ′ +

ε2/3tH ′′j

ρr
−
ε1/3

r
P ′′, H ′

〉
− 2ερ〈f ′(w)− f ′(w),H ′〉 + o(ε8/3)

= 2πε7/3ρ

{∫
R

[(
f ′′(H)Q+

f ′′′(H)P 2

2

)
H ′ + f ′′(H)PP ′ +

ε2/3tH ′′

ρ2 −
ε1/3

ρ
P ′′
]
H ′ dt

}
+ 4ε2πρ2 f ′(w)+ o(ε8/3). (A.8)
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To find the integral in (A.8), we differentiate (2.5) to obtain

−Q′′′+f ′(H)Q′+f ′′(H)H ′Q−
ε1/3

ρ
P ′′+

ε2/3

ρ2 (H
′
+ tH ′′)+

f ′′′(H)H ′P 2

2
+f ′′(H)PP ′ = 0.

Multiplying by H ′ and integrating over (−∞,∞) yield∫
R

[
f ′′(H)Q(H ′)2−

ε1/3P ′′H ′

ρ
+
ε2/3

ρ2 ((H
′)2+tH ′′H ′)+

f ′′′(H)P 2(H ′)2

2
+f ′′(H)PP ′H ′

]
dt=0.

The integral in (A.8) now becomes

−
ε2/3

ρ2

∫
R
(H ′)2 dt = −

ε2/3τ

ρ2 .

Therefore

〈Lp, p〉 = 4πε2ρ2f ′(0)−
2πε3τ

ρ
+ o(ε8/3). (A.9)

For the smaller droplet solution with ρ0 < (τ/(2f ′(0)))1/3, the first two terms on the right
hand side of (A.9) give a negative number of order ε8/3. For the larger droplet solution with
ρ0 > (τ/(2f ′(0)))1/3, the first two terms on the right hand side of (A.9) give a positive number
of order ε8/3. In each of the two cases the right side is c0ε

8/3
+ o(ε8/3) for some c0 6= 0.

Next we estimate 〈φ⊥, L(p)〉. Although, by (A.5) and (A.6), we could have

〈φ⊥, L(p)〉 = (O(ε4/3
|c|)+ o(ε4/3))O(ε4/3),

this estimate is not good enough. Instead we note that

|〈φ⊥, L(p)〉| 6 ‖φ⊥‖∞‖L(p)‖1 = (O(ε
4/3
|c|)+ o(ε4/3))‖L(p)‖1.

Although L(p) = O(ε4/3), a close observation of (A.4) shows that only in a neighborhood, whose
size is of order ε, L(p) is of order O(ε4/3) and outside of this neighborhood L(p) is of order
o(ε4/3). Therefore

‖L(p)‖1 = o(ε
4/3), (A.10)

and consequently
〈φ⊥, L(p)〉 = (O(ε4/3

|c|)+ o(ε4/3))o(ε4/3).

Then (A.7) becomes

c(c0ε
8/3
+ o(ε8/3))+ (O(ε4/3

|c|)+ o(ε4/3))o(ε4/3) = o(ε8/3),

which implies that
c = o(1).

By (A.6) we find that φ⊥ = o(ε4/3) and φ = o(1). This is a contradiction to the assumption that
‖φ‖∞ = 1.
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Appendix B. Proof of Theorem 4.1

Let λ be an eigenvalue. We claim that
lim inf
ε→0

λ > 0.

This may be proved by the maximum principle argument as in the proof of Lemma A.1.
We now only need to consider λ that satisfies

lim
ε→0

λ = 0.

Such an eigenvalue is called a critical eigenvalue. Let φ be an eigenfunction corresponding to λ.
We decompose φ into

φ = cp + φ⊥, p ⊥ φ⊥,

where p is given by the same formula (A.1). We write L(φ) = λφ as

cL(p)+ L(φ⊥) = λ(cp + φ⊥). (B.1)

Since L(p) = O(ε4/3), we find

L(φ⊥) = O(ε4/3
|c|)+O(|λ|)(|c| + ‖φ⊥‖∞).

As in Lemma A.1 we deduce that

‖φ⊥‖∞ = O(ε
4/3
|c|)+O(|λ|)(|c| + ‖φ⊥‖∞),

which implies, since λ = o(1),

‖φ⊥‖∞ = O(ε
4/3
|c|)+O(|λ|)|c|. (B.2)

We multiply (B.1) by p and integrate to find

c〈L(p), p〉 + 〈φ⊥, L(p)〉 = λc‖p‖22. (B.3)

The right hand side is
λc(2περτ + o(ε4/3)).

We estimate the second term on the left:

|〈φ⊥, L(p)〉| 6 ‖φ⊥‖∞‖L(p)‖1.

Here ‖φ⊥‖∞ is given in (B.2). By (A.10) we find

〈φ⊥, L(p)〉 = (O(ε4/3
|c|)+O(|λ|)|c|)o(ε4/3).

We now return to (B.3) and, with the help of (A.9), we find

c

(
4πε2ρ2f ′(0)−

2πε3τ

ρ
+ o(ε8/3)

)
+ (O(ε4/3

|c|)+O(|λ|)|c|)o(ε4/3) = λc(2περτ + o(ε4/3)).
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Ignoring the higher order terms, we obtain

lim
ε→0

ε−4/3λ =
2f ′(0)ρ0

τ
−

1
ρ2

0
. (B.4)

This gives the asymptotic expansion of λ, claimed in the theorem. Knowing λ = O(ε4/3), we return
to (B.2) to deduce

φ = cp +O(ε4/3
|c|),

which gives the expansion of the eigenfunction.
Recall that the smaller droplet solution has ρ0 < (τ/(2f ′(0)))1/3 and the larger droplet solution

has ρ0 > (τ/(2f ′(0)))1/3. The right hand side of (B.4) is negative if ρ0 < (τ/(2f ′(0)))1/3, and
positive if ρ0 > (τ/(2f ′(0)))1/3. Hence the solution with smaller ρ0 leads to a negative λ and the
one with larger ρ0 leads to a positive λ. Therefore the smaller droplet solution is unstable in the
radial class and the larger droplet solution is stable in the radial class.

The critical eigenvalue λ is unique. Otherwise there would be two eigenfunctions φ1 and φ2 with
the same expansion property, i.e. cp +O(ε4/3

|c|). On the other hand, by the self-adjointness of L,
φ1 and φ2 must be perpendicular. One can then find a contradiction (see [16, Section 4]).

It can also be shown, as in [16, Section 4], that there always exists a simple eigenvalue with the
property claimed in the theorem.

Appendix C. Proof of Lemma 5.4

We start with an estimate of ηξ . Let ṽξ = v(· − ξ)− z and w̃ξ = wξ − z− ηξ = ṽξ + gξ . Then w̃ξ
satisfies the equation

−ε2∆w̃ξ + f
′(z)w̃ξ + h(ṽξ ) = 0, ∂νw̃ξ = 0 on ∂Ω.

Integrate the above equation to deduce

f ′(z)(m− z− ηξ )|Ω| +

∫
Ω

h(ṽξ ) dx = 0.

From (5.8) we deduce

ηξ = −
1

f ′(z)|Ω|

∫
R2\Ω

h(ṽξ ) dx.

If we multiply the equation for ṽξ by ṽξ and integrate over R2
\Ω , we find∫

R2\Ω
[ε2
|∇ṽξ |

2
+ f ′(z)ṽ2

ξ ] dx = −ε2
∫
∂Ω

∂ṽξ

∂ν
ṽξ ds −

∫
R2\Ω

h(ṽξ )ṽξ dx

= −ε2
∫
∂Ω

∂ṽξ

∂ν
ṽξ ds +O(e−(2+δ)

√
f ′(z)dξ /ε)

for some δ > 0. Here we have used the fact that h(ṽξ ) = O(ṽ2
ξ ) and Lemma 2.1. In the boundary

integral, ν points outwards from Ω (into R2
\Ω). Consequently,∫

R2\Ω
|h(ṽξ )| dx 6 C

∫
R2\Ω

ṽ2
ξ dx 6 −Cε2

∫
∂Ω

∂ṽξ

∂ν
ṽξ ds +O(e−(2+δ)

√
f ′(z)dξ /ε).
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So we have

|ηξ | 6 −Cε
2
∫
∂Ω

∂ṽξ

∂ν
ṽξ ds +O(e−(2+δ)

√
f ′(z)dξ /ε). (C.1)

If we apply Lemma 2.1, then we obtain

ηξ = O(e
−2
√
f ′(z)dξ /ε). (C.2)

Now we turn our attention to I (wξ ) to see how it depends on ξ . Here

I (wξ ) =

∫
Ω

[
ε2
|∇w̃ξ |

2

2
+ F(w̃ξ + z+ ηξ )

]
dx

=

∫
Ω

[
ε2
|∇w̃ξ |

2

2
+ F(z+ w̃ξ )+ f (z+ w̃ξ )ηξ

]
dx +O(η2

ξ )

=

∫
Ω

[
ε2
|∇w̃ξ |

2

2
+ F(z+ w̃ξ )

]
dx +O(ε2/3ηξ )

=

∫
Ω

[
ε2
|∇w̃ξ |

2

2
+ F(z)+ f (z)w̃ξ +

f ′(z)

2
w̃2
ξ +H(w̃ξ )

]
dx +O(ε2/3ηξ )

=

∫
Ω

[
ε2
|∇w̃ξ |

2

2
+
f ′(z)

2
w̃2
ξ +H(w̃ξ )

]
dx + |Ω|(F (z)+ f (z)(m− z− ηξ ))+O(ε2/3ηξ )

= Ĩ (w̃ξ )+ |Ω|(F (z)+ f (z)(m− z))+O(ε
2/3ηξ ) (C.3)

where the second term in the last line is independent of ξ and

Ĩ (w̃ξ ) =

∫
Ω

[
ε2
|∇w̃ξ |

2

2
+
f ′(z)

2
w̃2
ξ +H(w̃ξ )

]
dx.

To compute Ĩ (w̃ξ ) we use the integral identity∫
Ω

[ε2
|∇w̃ξ |

2
+ f ′(z)w̃2

ξ + h(ṽξ )w̃ξ ] dx = 0,

which follows from the equation for w̃ξ . We can rewrite Ĩ (w̃ξ ) as

Ĩ (w̃ξ ) =

∫
Ω

[
H(w̃ξ )−

1
2
h(ṽξ )w̃ξ

]
dx

=

∫
Ω

[
H(ṽξ )−

1
2
h(ṽξ )ṽξ

]
dx +

1
2

∫
Ω

h(ṽξ )gξ dx +O
(∫

Ω

ṽξg
2
ξ dx

)
. (C.4)

The three terms are estimated as follows. The first is∫
Ω

[
H(ṽξ )−

1
2
h(ṽξ )ṽξ

]
dx =

∫
R2

[
H(ṽ)−

1
2
h(ṽ)ṽ

]
dx +

∫
R2\Ω

[
H(ṽξ )−

1
2
h(ṽξ )ṽξ

]
dx

=

∫
R2

[
H(ṽ)−

1
2
h(ṽ)ṽ

]
dx +O(e−(2+δ)

√
f ′(z)dξ /ε) (C.5)

for some δ > 0 by Lemma 2.1. Note that the integral in the last line is independent of ξ .
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Before we estimate the second term in (C.4) we need to know a bit more about gξ . Let ĝ be the
solution of

−ε2∆ĝ + f ′(z)ĝ = 0, ∂ν ĝ = 1 on ∂Ω.

LEMMA C.1 (1) There exist C > 0 and a > 0 so that

|gξ (x)| 6 Ceaε
−2/3

e−
√
f ′(z)dξ /ε ĝ(x).

(2) There exist C > 0 and δ > 0 such that

gξ (x) > −Ce−(1+δ)
√
f ′(z)dξ /ε ĝ(x).

Proof. Note that on ∂Ω ,

∂νgξ (x) = −v
′(|x − ξ |)

〈x − ξ, ν〉

|x − ξ |
.

Item (1) follows from Lemma 2.1 and the comparison principle.
Fix δ small. Then for x ∈ B(1+2δ)dξ (ξ)∩∂Ω , we have 〈x − ξ, ν〉/|x − ξ | = 1+O(δ) and hence

∂νgξ (x) > 0 there. For x ∈ ∂Ω \ B(1+2δ)dξ (ξ), we have, again by Lemma 2.1,

∂νgξ (x) > −Ce−(1+δ)
√
f
′
(z)dξ /ε

By the comparison principle, we have (2). 2

Now we can estimate∫
Ω

h(ṽξ )gξ dx =
∫
Ω

(ε2∆ṽξ − f
′(z)ṽξ )gξ dx = ε2

∫
∂Ω

[
∂ṽξ

∂ν
gξ −

∂gξ

∂ν
ṽξ

]
ds

= ε2
∫
∂Ω

∂ṽξ

∂ν
(gξ + ṽξ ) dx

= ε2
∫
∂Ω∩B(1+2δ)dξ (ξ)

v′(|x − ξ |)
〈x − ξ, ν〉

|x − ξ |
(ṽξ + gξ ) ds +O(e−(2+δ)

√
f
′
(z)dξ /ε)

for some δ > 0 by Lemmas 2.1 and C.1(1).
Note that since 〈x − ξ, ν〉/|x − ξ | = 1+O(δ) for x in ∂Ω ∩B(1+2δ)dξ (ξ), for some positive C

and a we have∫
∂Ω∩B(1+2δ)dξ (ξ)

ε2v′(|x − ξ |)
〈x − ξ, ν〉

|x − ξ |
ṽξ 6 −Ce−aε

−2/3
∫
∂Ω∩B(1+2δ)dξ (ξ)

e−2
√
f
′
(z)|x−ξ |/ε

6 −Ce−aε
−2/3

e−2
√
f
′
(z)dξ /ε

by Lemma 2.1. By Lemma C.1(2),∫
∂Ω∩B(1+2δ)dξ (ξ)

ε2v′(|x − ξ |)
〈x − ξ, ν〉

|x − ξ |
gξ ds 6 Ce−(2+δ)

√
f
′
(z)dξ /ε .

Thus we obtain ∫
Ω

h(ṽξ )gξ dx 6 −Ce−aε
−2/3

e−2
√
f
′
(z)dξ /ε .
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On the other hand, by Lemmas 2.1 and C.1(1), we have∣∣∣∣∫
Ω

h(ṽξ )gξ dx
∣∣∣∣ 6 Ceaε

−2/3
e−2
√
f
′
(z)dξ /ε .

Combining the last two, we have the following important estimate:

−C1e
a1ε
−2/3

e−2
√
f
′
(z)dξ /ε 6

∫
Ω

h(ṽξ )gξ dx 6 −C0e
−a0ε

−2/3
e−2
√
f
′
(z)dξ /ε . (C.6)

To estimate the third term in (C.4) we let ι be a small positive number and divide Ω into Ω1
which consists of points in Ω whose distance to ∂Ω is less than ι, and Ω2 = Ω \Ω1. On Ω1, since
gξ = O(e

−

√
f ′(z)dξ /ε) and ṽξ is exponentially small by Lemma 2.1, we have∫

Ω1

ṽξg
2
ξ dx = O(e−(2+δ)

√
f ′(z)dξ /ε)

for some δ > 0. On Ω2 we know that ĝ = O(e−δ1/ε) for some δ1 > 0, and by Lemma C.1,
gξ (x) = ĝ(x)O(e

aε−2/3
e−
√
f ′(z)dξ /ε). Again we have∫

Ω2

ṽξg
2
ξ dx = O(e−(2+δ)

√
f ′(z)dξ /ε)

for some δ > 0. So on the whole Ω we have∫
Ω

ṽξg
2
ξ dx = O(e−(2+δ)

√
f ′(z)dξ /ε) for some δ > 0. (C.7)

Before we can prove Lemma 5.4(2) by combining (C.5–C.7), we must deal with the O(ε2/3ηξ )

term in (C.3). Fortunately (C.1) and the estimate of
∫
Ω
h(ṽξ )gξ dx imply that

O(ε2/3ηξ )+
1
2

∫
Ω

h(ṽξ )gξ dx =
(

1
2
+O(ε2/3)

)∫
Ω

h(ṽξ )gξ dx.

Lemma 5.4(2) now follows from (C.3–C.7).
To show Lemma 5.4(1), note that

−ε2∆wξ + f (wξ ) = β + f
′(z)ηξ + h(ṽξ + gξ + ηξ )− h(ṽξ ).

We focus on

h(ṽξ + gξ + ηξ )−h(ṽξ ) = h(ṽξ + gξ )−h(ṽξ )+O(ηξ ) = h(ṽξ + gξ )−h(ṽξ )+O(e
−2
√
f ′(z)dξ /ε)

by (C.2). We then argue as in the proof of Lemma 3.4 to conclude that

h(ṽξ + gξ )− h(ṽξ ) = O(e
−(1+δ)

√
f ′(z)dξ /ε).

This shows that

−ε2∆wξ + f (wξ ) = β + f
′(z)ηξ +O(e

−(1+δ)
√
f ′(z)dξ /ε).
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If we integrate this equation, then

f ′(wξ ) = β + f
′(z)ηξ +O(e

−(1+δ)
√
f ′(z)dξ /ε).

Therefore
S(wξ ) = −ε

2∆wξ + f (wξ )− f (wξ ) = O(e
−(1+δ)

√
f ′(z)dξ /ε),

and Lemma 5.4 is proved.

Appendix D. Proof of Lemma 5.5

To prove Lemma 5.5, it suffices to prove the estimate. The one-to-one property follows immediately,
and the onto property follows from the Fredholm alternative.

To simplify notation we omit subscript ξ in quantities likeLξ , b1,ξ and b2,ξ . We prove the lemma
by contradiction. Suppose that there exists φ such that ‖φ‖W 2,2(Ωξ )

= 1 and ‖π ◦ L(φ)‖L2(Ωξ )
=

o(ε4/3). Denote π ◦ L(φ) by q and f ′(w)φ by c0. Then we write the equation πξ ◦ Lξ (φ) = q as

−∆φ + f ′(w)φ = c0 + c1b1 + c2b2 + q, φ = 0, φ ⊥ b1, φ ⊥ b2, (D.1)

where c1 and c2, like c0, are unknown constants.
We first consider a region in Ω that is far away from the droplet. Recall Ωσ given in (5.1) and

the small positive number σ given in (5.2). For any ξ ∈ Ωσ , B5σ (ξ) ⊂ Ω . The functions b1 and b2
are supported in Bσ (ξ). After rescaling, B5σ (ξ) becomes B5σ/ε whose radius is 5σ/ε and center is
the origin. In the region Ωξ \ Bσ/ε , we note that φ − c0/f

′(z) satisfies the equation

−∆

(
φ −

c0

f ′(z)

)
+ f ′(w)

(
φ −

c0

f ′(z)

)
= q +O(e−C/ε)

and the Neumann boundary condition on ∂Ωξ . Let κ be a smooth cut-off function so that κ = 1 in
Ω \ B2σ and κ = 0 in Bσ . Then it is easy to see that∥∥∥∥−∆[(φ − c0

f ′(z)

)
κ

]
+ f ′(w)

[(
φ −

c0

f ′(z)

)
κ

]∥∥∥∥
L2(Ωξ \Bσ/ε)

= O(ε).

By elliptic regularity theory, ∥∥∥∥φ − c0

f ′(z)

∥∥∥∥
W 2,2(Ωξ \B2σ/ε)

= O(ε). (D.2)

Next we consider φ in B4σ/ε . Let ψ be the solution of

−∆ψ + f ′(z)ψ = 0 in B4σ/ε, ∂νψ = ∂νφ on ∂B4σ/ε .

Define ϕ = φ − ψ − α where α is the average of φ − ψ over B4σ/ε :

α =
1

|B4σ/ε |

∫
B4σ/ε

(φ − ψ) dy.
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Note that ϕ satisfies the Neumann boundary condition on ∂B4σ/ε and has zero average. The equation
for ϕ is

−∆ϕ + f ′(w)ϕ = c0 + c1b1 + c2b2 + q + (f
′(z)− f ′(w))ψ − αf ′(w).

Since (f ′(z)− f ′(w))ψ = O(e−C/ε) for some C > 0 independent of ε, we write

LB(ϕ) = c1b1 + c2b2 + q − Av(q)− α(f ′(w)− Av(f ′(w)))+O(e−C/ε) (D.3)

where we define the linear operator LB in B4σ/ε by

LB(ϕ) = −∆ϕ + f
′(w)ϕ − Av(f ′(w)ϕ),

in which Av(. . . ) is the average of a function over B4σ/ε .
We now use the results obtained in Sections 3 and 4. However, there the radius of the disc is 1,

and here, before rescaling, the radius is 4σ . We could redo the two sections with the more general
radius. But for simplicity we will just assume without the loss of generality that 4σ = 1. Using
complex notation we organize the eigenpairs by modes, i.e. λj l and ej l where j = 0,±1,±2, . . .
and l = 1, 2, 3, . . . . Here λj l = λ−j,l . Each ej l is normalized and takes the form

ej l = e
2πjθζj l(r).

λ0,1 is the eigenvalue discussed in Theorem 4.1 and λ±j,1, j = 1, 2, . . . , are the critical eigenvalues
discussed in Theorem 4.2. Up to translation, normalization and an exponentially small error caused
by truncation, e−1,1 is b1 − ib2 and e11 is b1 + ib2. Decompose ϕ so that

ϕ =

∞∑
j=−∞

∞∑
l=1

dj lej l,

where we let

ϕ⊥ =

∞∑
l=2

d0le0l, ϕ̃ =

∞∑
l=2

(d1le1l + d−1,le−1,l)+

∞∑
|j |=2

∞∑
l=1

dj lej l,

d0 = d01, d±1 = d±1,1, e0 = e01, e±1 = e±1,1

so that
ϕ = d0e0 + d1e1 + d−1e−1 + ϕ

⊥
+ ϕ̃. (D.4)

One remark is in order. The linear operator LB here differs from the linear operator in Section 4
in that LB is linearization around w while in Section 4 the linearization is around a solution.
However, the difference between the two functions is exponentially small. Exponentially small
quantities are negligible in this proof. Hence the ej ’s are approximate eigenfunctions of LB :

LB(ej ) = λj ej +O(e
−C/ε), j = 0,±1,

where we have set λ0 = λ01 and λ1 = λ11 = λ−1 = λ−1,1. Theorems 4.1 and 4.2 show that there
exists c > 0 independent of ε so that

〈LB(ϕ
⊥), ϕ⊥〉 > c‖ϕ⊥‖2

L2(B4σ/ε)
(D.5)
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and

〈LB(ϕ̃), ϕ̃〉 > cε4/3
‖ϕ̃‖2

L2(B4σ/ε)
. (D.6)

We claim that d±1 are exponentially small. We have used 〈 , 〉 to denote the inner product in
L2(B4σ/ε). Note that φ ⊥ b1, b2 in L2(Ωξ ) implies that 〈ϕ + ψ + α, e±1〉 = O(e

−C/ε). It follows
that 〈ϕ, e±1〉 = O(e

−C/ε). This implies that

d±1 = O(e
−C/ε). (D.7)

In (D.4), ϕ̃ is also easy to analyze. We write the equation (D.3) as

λ0d0e0 + λ1d1e1 + λ1d−1e−1 + LB(ϕ
⊥)+ LB(ϕ̃)

= c1b1 + c2b2 + q − Av(q)− α(f ′(w)− Av(f ′(w))). (D.8)

Multiply (D.8) by ϕ̃ and integrate to obtain

〈LB(ϕ̃), ϕ̃〉 = 〈q, ϕ̃〉.

Note that 〈f ′(w), ϕ̃〉 = 0 since f ′(w) is radial and ϕ̃ is perpendicular to radial functions. Hence by
(D.6),

‖ϕ̃‖L2(B4σ/ε)
= o(1). (D.9)

The analysis of d0 is trickier. It has to be done together with the estimation of ϕ⊥. Multiply
(D.8) by ϕ⊥ and integrate to find that

〈LB(ϕ
⊥), ϕ⊥〉 = 〈q, ϕ⊥〉 − α〈f ′(w)− f ′(z), ϕ⊥〉.

Using (D.5) and the fact that

‖f ′(w)− f ′(z)‖L2(B4σ/ε)
= O(ε−1/3)

we find that

‖ϕ⊥‖L2(B4σ/ε)
= o(ε4/3)+ αO(ε−1/3). (D.10)

Multiply (D.8) by e0 and integrate to find (since ‖e0‖L2(B4σ/ε)
= 1)

λ0d0 = 〈q, e0〉 − α〈f
′(w), e0〉.

Since λ0 ∼ ε
4/3 and ‖q‖L2(B4σ/ε)

= o(ε4/3), we deduce

d0 = o(1)−
〈f ′(w), e0〉α

λ0
. (D.11)
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Calculations show that

c0 =
ε2

|Ω|

∫
Ωξ

f ′(w)φ dy =
ε2

|Ω|

∫
Ωξ

(f ′(w)− f ′(z))φ dy

=
ε2

|Ω|

∫
B4σ/ε

(f ′(w)− f ′(z))φ dy +O(e−C/ε)

=
ε2

|Ω|

∫
B4σ/ε

(f ′(w)− f ′(z))(d0e0 + d1e1 + d−1e−1 + ϕ
⊥
+ ϕ̃ + α) dy +O(e−C/ε)

=
ε2

|Ω|

∫
B4σ/ε

(f ′(w)− f ′(z))(d0e0 + ϕ
⊥
+ α) dy +O(e−C/ε)

=
ε2
〈f ′(w), e0〉d0

|Ω|
+ ‖f ′(w)− f ′(z)‖L2(B4σ/ε)

‖ϕ⊥‖L2(B4σ/ε)
O(ε2)+ αO(ε4/3)

=
ε2
〈f ′(w), e0〉d0

|Ω|
+ αO(ε4/3)+ o(ε3)

where the last line follows from (D.10). Thus we have the important fact that

c0 =
ε2
〈f ′(w), e0〉d0

|Ω|
+ αO(ε4/3)+ o(ε3). (D.12)

The calculations in Appendix A between (A.2) and (A.3) show that

〈f ′(w), e0〉 =

√
2ρ0π

τ
f ′(0)ε−1/3

+ o(ε−1/3) (D.13)

since e0 is essentially the scaled and normalized version of p there. Plugging (D.11) into (D.12) and
using (D.13) we find

c0 = −
〈f ′(w), e0〉

2ε2α

λ0|Ω|
+ αO(ε4/3)+ o(ε5/3). (D.14)

We consider φ in the matching region B3σ/ε \ B2σ/ε . Since the L2 norm of φ − c0/f
′(z) is of order

O(ε) in this region by (D.2), and ψ in φ = ϕ + ψ + α is exponentially small, we find that∥∥∥∥d0e0 + ϕ̃ + α −
c0

f ′(z)

∥∥∥∥
L2(B3σ/ε\B2σ/ε)

6

∥∥∥∥φ − c0

f ′(z)

∥∥∥∥
L2(B3σ/ε\B2σ/ε)

+ ‖ϕ⊥‖L2(B3σ/ε\B2σ/ε)
+ |d1| + |d−1| +O(e

−C/ε)

= O(ε)+ o(ε4/3)+ αO(ε−1/3) = O(ε)+ αO(ε−1/3)

by (D.10). Because d0e0 + α − c0/f
′(z) is still orthogonal to ϕ̃ in this region, we write∥∥∥∥d0e0 + ϕ̃ + α −

c0

f ′(z)

∥∥∥∥2

L2(B3σ/ε\B2σ/ε)

= ‖ϕ̃‖2
L2(B3σ/ε\B2σ/ε)

+

∥∥∥∥d0e0 + α −
c0

f ′(z)

∥∥∥∥2

L2(B3σ/ε\B2σ/ε)

>

∥∥∥∥d0e0 + α −
c0

f ′(z)

∥∥∥∥2

L2(B3σ/ε\B2σ/ε)

.
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Therefore we conclude that∥∥∥∥d0e0 + α −
c0

f ′(z)

∥∥∥∥
L2(B3σ/ε\B2σ/ε)

= αO(ε−1/3)+O(ε). (D.15)

In this matching region, uniformly in y, as the scaled and normalized version of p, e0 satisfies the
estimate

e0(y) =

√
2ρ0

πτ
ε5/3
+ o(ε5/3).

It follows from (D.15) that∥∥∥∥d0

√
2ρ0

πτ
ε5/3
+ α −

c0

f ′(z)

∥∥∥∥
L2(B3σ/ε\B2σ/ε )

6

∥∥∥∥d0e0 + α −
c0

f ′(z)

∥∥∥∥
L2(B3σ/ε\B2σ/ε)

+ ‖d0o(ε
5/3)‖L2(B3σ/ε\B2σ/ε)

6 aO(ε−1/3)+ d0o(ε
2/3)+O(ε),

which implies that

d0

√
2ρ0

πτ
ε5/3
+ α −

c0

f ′(z)
= αO(ε2/3)+ d0o(ε

5/3)+O(ε2).

Upon substitution of (D.11) and (D.14) we deduce that

−
〈f ′(w), e0〉α

λ0

√
2ρ0

πτ
ε5/3
+ α +

〈f ′(w), e0〉
2ε2α

λ0|Ω|f ′(z)
= αO(ε2/3)+ o(ε5/3).

This shows, from Theorem 4.1 and (D.13), that

α

[
1−

2ρ0f
′(0)
τ

(1− π
|Ω|
)

2ρ0f ′(0)
τ
−

1
ρ2

0

+ o(1)
]
= o(ε5/3).

Note that the big fraction is 1 precisely when ρ3
0 = |Ω|τ/(2πf

′(0)), which is attained at the
critical mass. Under the assumption of Theorem 5.1, ρ3

0 6= |Ω|τ/(2πf
′(0)) (see Lemma 5.3). Hence

the fraction is not 1 and we conclude that

α = o(ε5/3) and hence d0 = o(1), c0 = o(ε
5/3) (D.16)

by (D.11) and (D.14). Moreover, from (D.10) we have

‖ϕ⊥‖L2(B4σ/ε)
= o(ε4/3). (D.17)

It follows from (D.7), (D.9), (D.16) and (D.17) that ‖ϕ‖L2(B4σ/ε)
= o(1), and consequently

‖φ‖L2(B3σ/ε)
= o(1). In the region Ωξ \ B2σ/ε we have ‖φ‖W 2,2(Ωξ \B2σ/ε)

= o(ε2/3) by (D.2) and
c0 = o(ε

5/3). In the whole region Ωξ we have

‖φ‖L2(Ωξ )
= o(1).
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Rewrite the equation for φ as

−∆φ + f ′(z)φ = (f ′(z)− f ′(w))φ + c0 + c1b1 + c2b2 + q.

The elliptic regularity theory asserts that

‖φ‖W 2,2(Ωξ )
6 C‖(f ′(z)− f ′(w))φ + c0 + c1b1 + c2b2 + q‖L2(Ωξ )

(D.18)

where C is independent of ε. The only quantities that remain to be estimated are c1 and c2. Multiply
the equation (D.1) for φ by bj , j = 1, 2, and integrate to find

λ1

∫
Ωξ

φ(bj +O(e
−C/ε)) dy = cj‖bj‖2L2(Ωξ )

+

∫
Ωξ

qbj dy.

Hence, for j = 1, 2, since φ ⊥ bj in L2(Ωξ ),

cj =
O(e−C/ε)−

∫
Ωξ
qbj dy

‖bj‖
2
L2(Ωξ )

=
O(‖q‖L2(Ωξ )

)

‖bj‖L2(Ωξ )

=
o(ε4/3)

‖bj‖L2(Ωξ )

.

It follows from (D.18) that ‖φ‖W 2,2(Ωξ )
= o(1) and we have a contradiction to the assumption that

‖φ‖W 2,2(Ωξ )
= 1. 2

Appendix E. Proof of Lemma 6.4

The constant ηξ in the definition of wξ satisfies

ηξ = −
1

f ′(z)|Ω|

∫
R2\Ω

K∑
k=1

h(ṽk) dx.

It follows as in Appendix C that

|ηξ | 6 −Cε
2
∫
∂Ω

K∑
k=1

∂ṽk

∂ν
ṽk ds +O(e−(2+δ)

√
f ′(z)ϕ(ξ)/ε)

and
ηξ = O(e

−2
√
f ′(z)ϕ(ξ)/ε).

The functional I (wξ ) can be written as

I (wξ ) = Ĩ (w̃ξ )+ |Ω|(F (z)+ f (z)(m− z))+O(ε
2/3ηξ )

where the second term on the right side is independent of ξ and

Ĩ (w̃ξ ) =

∫
Ω

[
ε2
|∇w̃ξ |

2

2
+
f ′(z)

2
w̃2
ξ +H(w̃ξ )

]
dx.

To estimate the first term we note an important but trivial fact

C1ṽ
2 6 −h(ṽ) 6 C2ṽ

2, C1, C2 > 0,
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because of the assumption F ′′′(0) < 0. This implies that∫
Ω

(−h(ṽi)ṽj ) 6 C

∫
Ω

ṽ2
i ṽj 6 Cεaε

−2/3
∫
Ω

e−2
√
f ′(z)|x−ξ i |/εe−

√
f ′(z)|x−ξ j |/ε

6 Cεaε
−2/3

e−
√
f ′(z)|ξ i−ξ j |/ε .

Similarly we have a lower bound and

−C1ε
a1ε
−2/3

e−
√
f ′(z)|ξ i−ξ j |/ε 6

∫
Ω

h(ṽi)ṽj 6 −C0ε
−a0ε

−2/3
e−
√
f ′(z)|ξ i−ξ j |/ε . (E.1)

Let w̃k = ṽk + gk . We compare Ĩ (w̃ξ ) with
∑K
k=1 Ĩ (w̃k):

Ĩ
( K∑
k=1

w̃k

)
=

K∑
k=1

Ĩ (w̃k)+
1
2

∑
i 6=j

∫
Ω

[ε2
∇w̃i∇w̃j + f

′(z)w̃iw̃j ] dx

+

∫
Ω

[
H
( K∑
k=1

w̃k

)
−

K∑
k=1

H(w̃k)
]

dx.

Using the equation for w̃i , we see that∫
Ω

[ε2
∇w̃i∇w̃j + f

′(z)w̃iw̃j ] = −
∫
Ω

h(ṽi)w̃j .

Next, since
|h(w̃i)− h(ṽi)| |w̃j | 6 C(|w̃i | + |ṽi |)|gi | |w̃j |,

we obtain ∫
Ω

|h(w̃i)− h(ṽi)|w̃j = O(e
−(2+δ)

√
f ′(z)ϕ(ξ1,...,ξK )/ε).

It follows that∫
Ω

[
H
( K∑
k=1

w̃k

)
−

K∑
k=1

H(w̃k)
]
=

∑
i 6=j

∫
Ω

h(w̃i)w̃j +O
(∑
i 6=j

∫
Ω

|w̃i |
2
|w̃j |

2
)

=

∑
i 6=j

∫
Ω

h(ṽi)w̃j +O(e
−(2+δ)

√
f ′(z)ϕ(ξ1,...,ξK )/ε).

Therefore

I
( K∑
k=1

w̃k

)
=

K∑
k=1

Ĩ [w̃k]+
1
2

∑
i 6=j

∫
Ω

h(ṽi)w̃j dx + |Ω|(F (z)+ f (z)(m−Kz))

+O(ε2/3
|ηξ | + e

−(2+δ)
√
f ′(z)ϕ(ξ1,...,ξK )/ε).

By Lemma C.1(2), we have

−

∫
Ω

h(ṽi)(ṽj + gj ) > Cεaε
−2/3

e−
√
f ′(z)|ξ i−ξ j |/ε

− Ce
−(1+δ)

√
f ′(z)d

ξj
/ε

(
−

∫
Ω

h(ṽi)ĝ

)
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where

−

∫
Ω

h(ṽi)ĝ = ε
2
∫
∂Ω

(
ṽi − ĝ

∂ṽi

∂ν

)
= O(eaε

−2/3
e
−

√
f ′(z)d

ξi
/ε
).

Hence by (E.1),

−

∫
Ω

h(ṽi)w̃j > Ceaε
−2/3

e−
√
f ′(z)|ξ1−ξ2|/ε −O(e−(2+δ)

√
f ′(z)ϕ(ξ1,...,ξK )/ε). (E.2)

By Lemma C.1(1) and (E.1), we also have

−

∫
Ω

h(ṽi)gj 6 e
−

√
f ′(z)d

ξj
/ε
∫
Ω

(−h(ṽi))ĝ 6 Cεaε
−2/3

e
−

√
f ′(z)(d

ξi
+d

ξj
)/ε
.

Hence
−

∫
Ω

h(ṽi)w̃j 6 Ceaε
−2/3

[e−
√
f ′(z)|ξ i−ξ j |/ε

+ e
−

√
f ′(z)(d

ξi
+d

ξj
)/ε]. (E.3)

In Appendix C we have learned that Ĩ (w̃k) is estimated in (C.6), the most dominating term in (C.4).
Combining it with (E.2) and (E.3), we see that the exponential decay rates in these terms are given
by |ξ i − ξ j |, dξ i + dξ j , and 2dξ k . Therefore the slowest decay rate is ϕ(ξ1, . . . , ξK). This proves
Lemma 6.4(2).

To prove Lemma 6.4(1), we note that

−ε2∆wξ + f (wξ ) = −ε
2
K∑
k=1

∆w̃k + f
( K∑
k=1

w̃k + z+ ηξ

)
= −f ′(z)

K∑
k=1

w̃k −

K∑
k=1

h(ṽk)+ f (z)+ f
′(z)

( K∑
k=1

w̃k + ηξ

)
+ h

( K∑
k=1

w̃ξ + ηξ

)
= f (z)+ f ′(z)ηξ + h

( K∑
k=1

w̃ξ + ηξ

)
−

K∑
k=1

h(ṽk).

We only need to focus on, as in Appendix C,

h
( K∑
k=1

w̃k + ηξ

)
−

K∑
k=1

h(ṽk) = h
( K∑
k=1

w̃k

)
−

K∑
k=1

h(ṽk)+O(e
−2
√
f ′(z)ϕ(ξ)/ε)

= h
( K∑
k=1

w̃k

)
−

K∑
k=1

h(w̃k)+

K∑
k=1

[h(w̃k)− h(ṽk)]+O(e−2
√
f ′(z)ϕ(ξ)/ε)

=

∑
i 6=j

O(|w̃i ||w̃j |)+O(e
−(1+δ)

√
f ′(z)ϕ(ξ)/ε) = O(e−(1+δ)

√
f ′(z)ϕ(ξ)/ε).

This completes the proof.

Appendix F. Proof of Lemma 6.5

It suffices to prove the estimate. Assume on the contrary ‖φ‖W 2,2(Ωξ )
= 1 and ‖πξ ◦Lξ (φ)‖L2(Ωξ )

=

o(ε4/3).
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Let σ > 0 be the small number given in (6.1), which is independent of ε, so that the B5σ (ξ
k)’s

are mutually disjoint and contained in Ω . Denote f ′(w)φ by c0. In Ωξ \
⋃
k B2σ/ε(ξ

k) we have, as
in Appendix D, ∥∥∥∥φ − c0

f ′(z)

∥∥∥∥
W 2,2(Ωξ \

⋃
k B2σ/ε(ξ k))

= O(ε).

Next we consider φ in each B4σ/ε(ξ
k). Let ψk be the solution of

−∆ψk + f ′(z)ψk = 0 in B4σ/ε(ξ
k), ∂νψ

k
= ∂νφ on ∂B4σ/ε(ξ

k).

Define ϕk to be φ − ψk − αk where αk is the average of φ − ψk in the ball:

αk =
1

|B4σ/ε(ξ k)|

∫
B4σ/ε(ξ k)

(φ − ψk) dy.

We follow the same argument as in the proof of Lemma 5.5 and arrive at

(1− λ−1
0 ẽ0〈f

′(w), e0〉)α
k
+

K∑
k=1

〈f ′(w), e0〉
2ε2

λ0|Ω|f ′(z)
αk = o(ε5/3), k = 1, . . . , K. (F.1)

We sum these K equations to deduce

( K∑
k=1

αk
)[

1−
2ρ0f

′(0)
τ

(1− Kπ
|Ω|
)

2f ′(0)ρ0
τ
−

1
ρ2

0

+ o(1)
]
= o(ε5/3).

Note that the big fraction is 1 precisely when ρ3
0 = |Ω|τ/(2Kπf

′(0)), which is attained at the
critical mass. When the mass is larger, this fraction is not 1 and we conclude that

K∑
k=1

αk = o(ε5/3).

We now return to (F.1) to find that
αk = o(ε5/3)

for each k, because

1− λ−1
0 ẽ0〈f

′(w), e0〉 = 1−
2ρ0f

′(0)
τ

2f ′(0)ρ0
τ
−

1
ρ2

0

+ o(1),

which does not tend to 0 as ε → 0. The rest of the proof is the same as in Appendix D.
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