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A multiscale tumor model
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We consider a tumor model with two time scales: the time t during which the tumor evolves and the
running time si for each of the phases of the cell cycle for the cells in the tumor. The model also
includes the effect of genes mutations in the sense that populations of cells with different mutations
and in different phases of the cell cycle evolve by different rules. The model is formulated as a
coupled system of partial differential equations; a transition from one population to another occurs at
the ‘restriction points’ located at the ends of the G1 and S phases. The PDEs for the cell populations
are hyperbolic equations based on mass conservation laws. The model includes also a diffusion
equation for the oxygen concentration and an elliptic equation for the internal pressure caused by
proliferation and death of cells. The tumor region is viewed as a domain with a moving boundary,
satisfying a continuity equation at the free boundary. Existence and uniqueness are proved for a small
time interval, for general initial conditions, and for all time in the case of radially symmetric initial
conditions.

1. Introduction

The cell cycle is divided into phasesG1, S,G2 andM . During the S phase the DNA is synthesized;
during the mitosis phase M sister chromosomes are segregated as the cell prepares to divide into
two daughter cells; G1 and G2 are ‘gap’ phases, during which the cell grows and prepares for the
next phase (S forG1, andM forG2). At a ‘restriction point’ R located near the end of theG1 phase
the cell decides either to proceed directly to the S phase, or to go into quiescent stateG0, depending
on the environment; the cell may also decide to go into apoptosis (i.e., to commit suicide) in case it
detects serious damage. At another restriction point, located at the end of the S phase, the cell again
has to make a decision: whether to proceed to theG2 phase or to go into apoptosis, in case it detects
damage. A cell remains in state G0 for a certain amount of time and then proceeds to the S phase.

At the restriction pointR the cell checks the environment for signals of hypoxia, overpopulation,
etc. Specific genes detect hypoxia and overpopulation signals. When these genes are mutated, the
cell may continue to proliferate uncontrollably and a tumor will develop. For example, one of the
first genes whose mutation is associated with colorectal cancer is APC. This gene detects a signal
of overpopulation and it then inhibits proliferation by sending the cell into the G0 state. Another
gene, SMAD, is activated after receiving hypoxia signals and it then inhibits proliferation, again
by sending the cell into the G0 state. If these genes are mutated, the cell ignores overpopulation
and hypoxia signals and this leads to uncontrollable cell division and the development of a tumor;
for more details see [24]. The gene APC is believed to be the primary gene in the initiation of a
colorectal tumor; other mutations subsequently develop.
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In this paper, we model tumor growth by distinguishing between populations of cells according
to their phase in the cell cycle and according to their mutations. For simplicity, we consider cells
with at most one mutation (e.g., only APC mutation in the case of colorectal cancer), but the analysis
easily extends to any number of mutations. We introduce, in addition to the absolute time t , the time
si for cells in the i-th phase. Our model is multiscale in the sense that it deals with two time scales
(t and si) and in the sense that it incorporates (molecular) DNA events with (macroscopic) cell
populations dynamics.

We consider first populations of cells with no mutations, and introduce the following notation:

p1(x, t, s1) = density of cells in phase G1, s1 ∈ K1 ≡ [0, A1];
p2(x, t, s2) = density of cells in phase S, s2 ∈ K2 ≡ [0, A2];
p0(x, t, s0) = density of cells in state G0, s0 ∈ K0 ≡ [0, A0];
p3(x, t, s3) = density of cells in phases G2 ∪M, s3 ∈ K3 ≡ [0, A3];
p4(x, t) = density of necrotic cells.

The variable x will vary in the tumor region Ω(t) in RN (N > 2) with boundary Γ (t).
We denote by w(x, t) the oxygen concentration and by Q(x, t) the density of live cells. Due to

cell proliferation and death, there is a velocity field Ev(x, t), which is assumed to be common to all
the cells. Then, by conservation of mass,

∂pi

∂t
+
∂pi

∂si
+ div(pi Ev) = λi(w)pi for 0 < si < Ai (i = 0, 1, 2, 3),

∂p4

∂t
+ div(p4Ev) = µ1p1(x, t, A1)+ µ2p2(x, t, A2)− λ4p4

(1)

where λi(w) are growth rates, which depend on the oxygen concentration w, λ4 is the clearing rate
of dead cells, and µ1, µ2 are the rates at which cells at the endpoints ofG1 and S go into apoptosis.

We also have:
p1(x, t, 0) = p3(x, t, A3),

p2(x, t, 0) = p1(x, t, A1)[1−K(w(x, t))− L(Q(x, t))− µ1]+ p0(x, t, A0),

p3(x, t, 0) = (1− µ2)p2(x, t, A2),

p0(x, t, 0) = p1(x, t, A1)[K(w(x, t))+ L(Q(x, t))].

(2)

The second equation in (2) expresses the assumption that at the end of the G1 phase a fraction
K(w)+L(Q) of the cells go into quiescence, and a fraction µ1 go into apoptosis, while the cells at
the end of the quiescence period enter the S phase. Naturally we assume that

K(w) > 0, L(Q) > 0, K(w)+ L(Q)+ µ1 < 1,
K(w) ↓ if w ↑ and L(Q) ↓ if Q ↓ .

Suppose next that the tumor cells underwent only APC mutation, and introduce, analogously to
pi(x, t, si), densities of mutated cells pai (x, t, si) where si ∈ Ka

i , and Ka
i ≡ [0, Aai ], 0 6 i 6 3;

the density of the dead cell will be denoted by pa4 (x, t). Then, analogously to (1), we have

∂pai

∂t
+
∂pai

∂si
+ div(pai Ev) = λ

a
i (w)p

a
i for 0 < si < Aai (i = 0, 1, 2, 3),

∂pa4
∂t
+ div(pa4 Ev) = µ

a
1p

a
1 (x, t, A

a
1)+ µ

a
2p

a
2 (x, t, A

a
2)− λ

a
4p

a
4 ,

(3)
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and analogously to (2) we have

pa1 (x, t, 0) = pa2 (x, t, A
a
3),

pa2 (x, t, 0) = pa1 (x, t, A
a
1)[1−K(w(x, t))− µ

a
1]+ pa0 (x, t, A

a
0),

pa3 (x, t, 0) = (1− µa2)p
a
2 (x, t, A

a
2),

pa0 (x, t, 0) = pa1 (x, t, A
a
1)K(w(x, t)).

(4)

We introduce the total density of each population of cells:

Qi(x, t) =

∫ Ai

0
pi(x, t, si) dsi, Qa

i (x, t) =

∫ Aai

0
pai (x, t, si) dsi

and set
EQ = {Qi}

4
i=0,

EQa
= {Qa

i }
4
i=0;

here we have formally set

p4(x, t, s4) = p4(x, t), pa4 (x, t, s4) = p
a
4 (x, t),

s4 ∈ K4 = K
a
4 = [0, A4], A4 = A

a
4 = 1.

The density of the live cells is given by

Q =

3∑
i=0

(Qi +Q
a
i ).

We integrate each of the equations in (1) over si ∈ (0, Ai) and sum up the resulting equations. Using
(2) we find that all the boundary integrals resulting from integrating ∂pi/∂si cancel out, so that

4∑
i=0

[
∂Qi

∂t
+ div(Qi Ev)

]
=

3∑
i=0

λi(w)Qi − λ4Q4. (5)

Similarly,
4∑
i=0

[
∂Qa

i

∂t
+ div(Qa

i Ev)

]
=

3∑
i=0

λai (w)Q
a
i − λ

a
4Q

a
4 . (6)

We assume that the tumor tissue is a porous medium satisfying Darcy’s law

Ev = −∇σ

where σ is the pressure resulting from the movement of cells.
We also assume that the tumor tissue is packed uniformly by the cells, that is,

4∑
i=0

(Qi +Q
a
i ) = const = c0

and, for simplicity, take c0 = 1. Then, by summing up (5), (6) we obtain

div Ev ≡ −∇2σ = H( EQ, EQa) (7)
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where

H( EQ, EQa, w) =

3∑
i=0

[λi(w)Qi + λ
a
i (w)Q

a
i ]− (λ4Q4 + λ

a
4Q

a
4). (8)

If we substitute (7) into (1) and (3) we obtain a system of the form

∂pi

∂t
+
∂pi

∂si
−∇σ · ∇pi= pifi( EQ, EQ

a, w) (0 6 i 6 3),

∂pai

∂t
+
∂pai

∂si
−∇σ · ∇pai = p

a
i f

a
i (
EQ, EQa, w) (0 6 i 6 3),

∂p4

∂t
−∇σ · ∇p4 = µ1p1(x, t, A1)+ µ2p2(x, t, A2)+ p4f4( EQ, EQ

a, w),

∂pa4
∂t
−∇σ · ∇pa4 = µ

a
1p

a
1 (x, t, A

a
1)+ µ

a
2p

a
2 )(x, t, A

a
2)+ p

a
4f

a
4 (
EQ, EQa, w),

(9)

where

fi( EQ, EQ
a, w) = λi(w)−H( EQ, EQ

a, w) (0 6 i 6 3),
f ai (
EQ, EQa, w) = λai (w)−H(

EQ, EQa, w) (0 6 i 6 3),

f4( EQ, EQa, w) = −λ4 −H( EQ, EQa, w),

f4( EQ, EQa, w) = −λ
a
4 −H(

EQ, EQa, w).

Notice that the last equation in (9) is actually a consequence of the preceding equations in (9) and
(7). We can therefore drop it provided we set pa4 = 1−p4−

∑3
i=0(Qi +Q

a
i ) wherever pa4 appears.

Finally, we assume that the oxygen concentration satisfies the diffusion equation

wt −Dw∇
2w + λQw = 0 (10)

where Dw and λ are positive constants.
We next prescribe boundary conditions at the free boundary Γ (t):

w = w̄ on Γ (t), t > 0, (11)
σ = λκ on Γ (t), t > 0 (12)

where w̄, λ are positive constants and κ is the mean curvature; κ = 1/R if Γ (t) is a sphere of
radius R. We also impose the continuity assumption Ev · En = Vn where Vn is the velocity of the free
boundary in the outward normal direction En, i.e.,

Vn = −
∂σ

∂n
. (13)

Finally, we prescribe initial conditions:

Ω(t)|t=0 = Ω0 is given, with boundary Γ0,

w|t=0 = w0(x) for x ∈ Ω0,

pi |t=0 = pi0(x, si) for x ∈ Ω0, si ∈ Ki (0 6 i 6 4),
pai |t=0 = p

a
i0
(x, si) for x ∈ Ω0, si ∈ K

a
i (0 6 i 6 4),

(14)
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and the pi0 , p
a
i0

satisfy the conditions

pi0 > 0, pai0 > 0, and
4∑
i=0

(Qi +Q
a
i ) ≡ 1 at t = 0. (15)

Some of equations in (1)–(15) follow from the others; for instance, (9) is just a reformulation
of (1), (3). Nevertheless, for simplicity, we shall refer to the problem of solving for the pi, pai , w, Ev
and Ω(t) as Problem (1)–(15).

In Section 4 we prove that Problem (1)–(15) has a unique solution for a small time interval. In
Section 5 we consider the case of radially symmetric initial data and prove that there exists a global-
in-time radially symmetric solution with free boundary r = R(t). Sections 2 and 3 are preparations
for proving the existence theorems.

REMARK 1.1 If X = X(t) is a characteristic curve of the hyperbolic system (1), (3) and X(t0) ∈
Γ (t0), then

dX
dt

∣∣∣∣
t=t0

· En = Ev(X(t0), t0) · En = Vn

where En is the outward normal to Γ (t0) at X(t0); hence a characteristic curve starting on the free
boundary Γ (t0) will remain on the free Γ (t) for all t . Consequently, we do not need to prescribe
boundary conditions for pi(x, t, si), pai (x, t, si) on the free boundary Γ (t).

REMARK 1.2 A multiscale hybrid model for a colorectal tumor was recently introduced by Ribba
et al. [24]. In this model, the si is replaced by a finite number of time steps, and the model is
considered in a fixed domain. Another multiscale tumor model in a fixed domain was recently
introduced by Ayati et al. [2]. Their model includes diffusion of cells and haptotaxis.

REMARK 1.3 A mathematical model of tumor with three populations of cells, namely,
proliferating, quiescent, and necrotic, was introduced and studied numerically in [23]; mathematical
analysis of the model appeared in [10], [11], [13], [14]. A tumor model with just proliferating cells
was studied by many authors; see [1], [4]–[6], [8], [9], [15], [17]–[20] and the references in the
review article [16]. The boundary condition (12) first appeared in the work of Greenspan [21], [22],
and the role of the cell-to-cell adhesion as represented by the parameter γ was discussed by Byrne
[3], [5] and Byrne and Chaplain [7].

2. The main result

DEFINITION 2.1 If the conditions (2), (4) are satisfied at t = 0 by the initial data (14), and if
w0 = w̄ on Γ0, then we say that the first order compatibility conditions are satisfied.

Our goal is to prove that under these compatibility conditions the system (1)–(15) has a unique
solution for some time interval 0 6 t 6 T . In order to define the regularity class for the solution we
need some notation.
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Let ϕ = ϕ(x, t, s), β = (β1, . . . , βN , βN+1, βN+2), βi integers > 0, |β| = β1 + · · · + βN+2.
Then we write

Dβϕ = D
β

(x,t,s)ϕ =
∂ |β|ϕ

(∂x1)β1 . . . (∂xN )βN (∂t)βN+1(∂s)βN+2
,

‖ϕ‖0 = sup |ϕ|, ‖ϕ‖m =
∑
|β|6m

‖Dβϕ‖0,

|ϕ|α1,α2,α3 = sup
|ϕ(x, t, s)− ϕ(x̄, t̄ , s̄)|

|x − x̄|α1 + |t − t̄ |α2 + |s − s̄|α3
,

‖ϕ‖m+α1,m+α2,m+α3 = ‖ϕ‖0 +
∑
|β|=m

|Dβϕ|α1,α2,α3; (16)

here m is an integer > 0 and 0 < αi < 1. The domain in which the norms are defined will
be specified later on. If ϕ does not depend on s, then we define the corresponding norms by
dropping α3. If ϕ = ϕ(x, t), we define, for 0 < α < 1,

‖ϕ‖3+α,(3+α)/3 = ‖ϕ‖0 + ‖D
3
xϕ‖α,α/3 + ‖Dtϕ‖α,α/3, (17)

Note that the norm (16) dominates ‖ϕ‖m, and, by standard estimates, the norm (17) dominates

|D2
xϕ|0,(1+α)/2 + |Dxϕ|0,(2+α)/3

where |ψ |0,α = supx |ψ(x, ·)|α if ψ = ψ(x, t).
We say that a function ϕ = ϕ(x, t, s) is in Cm+α1,m+α2,m+α3 if

‖ϕ‖m+α1,m+α2,m+α3 <∞.

Similarly we define the notion of ϕ = ϕ(x, t) in C3+α,(3+α)/3.
In the following we assume that

Γ0 ∈ C
m+4+α (18)

where 0 < α < 1 and m is an integer > 0. Denote by ξ a variable point in Γ0 and by En(ξ) the unit
outward normal to Γ0 at ξ . We shall write Γ (t) in the form of [11], [12] where these coordinates
are used and play an important role:

Γ (t) = {ξ + ρ(ξ, t)En(ξ)}.

Set d = d(x) = d(x, Γ0) = signed distance from x to Γ0 (d > 0 if x /∈ Ω0). Then for x near
Γ0 we can write

x = ξ + d En(ξ)

where ξ is uniquely determined by x.
In what follows we shall use a local coordinate transformation to flatten the boundary Γ (t). We

fix a point ξ0 in Γ0 and take local coordinates y′ = (y1, . . . , yn−1) near the origin 0 in RN−1, about
ξ0, so that any point ξ ∈ Γ0 with |ξ − ξ0| small can be written in the form ξ = S(y′). Then any
point x ∈ RN near ξ0 can be written in the form

x = S(y′)+ (ρ(ξ, t)+ yN )En(S(y
′))
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where yN = d(x, Γ0) − ρ(ξ, t). This defines a local mapping y 7→ x from a neighborhood of the
origin in RN into an RN -neighborhood of ξ0 such that x ∈ Γ (t) corresponds to (y′, 0). Although the
coordinates (y′, yN ) will not appear explicitly in the following, they do appear implicitly; indeed,
we shall refer the reader from time to time to results from [11], [12] where these coordinates are
used and play an important role.

Later on we shall make the following regularity assumptions:

λi(z), λ
a
i (z), K(z) and L(z) belong to Cm+1+α(R1), (19)

w0 ∈ C
m+1+α(Ω̄0), the pi0 belong to Cm+1+α(Ω̄0 ×Ki),

and the pai0 belong to Cm+1+α(Ω̄0 ×K
a
i ) (20)

where m is an integer > 0.
We first consider the case m = 0 and assume that

the first order compatibility conditions are satisfied. (21)

THEOREM 1 Under the assumptions (18)–(20) for m = 0 and (21), there exists a unique solution
of Problem (1)–(15) for some time interval 0 6 t 6 T (T > 0) such that

Dξρ ∈ C
3+α,(3+α)/3(Γ0 × [0, T ]),

and σ , w, pi , pai can be extended to functions satisfying:

D2
xσ ∈ C

α,α/3(RN × [0, T ]), w ∈ C2+α,1+α/3(RN × [0, T ]),

pi ∈ C
1+α,α/3,α/3(RN × [0, T ]×Ki), pai ∈ C

1+α,α/3,α/3(RN × [0, T ]×Ka
i ).

The proof of Theorem 1 is given in Section 4; it uses auxiliary lemmas which are given in
Section 3. At the end of Section 4 we shall briefly consider higher regularity of the solution, when
(19),(20) hold with m > 0.

REMARK 2.1 It will be convenient to extend the initial data w0, pi0 , pai0 from x ∈ Ω0 to x ∈ RN

so that they vanish if |x| is sufficiently large and (20) holds with Ω0 replaced by RN . The existence
and uniqueness assertions of Theorem 1 will be established for these extended initial data. Since, by
Remark 1.1, characteristic curvesX = X(t) withX(t0) ∈ Ω(t0) do not leaveΩ(t) for all t ∈ [0, T ]
and characteristic curves with X(t0) ∈ Γ (t0) will lie in Γ (t) for all t ∈ [0, T ]), the uniqueness part
of Theorem 1 does not depend on the above extension of the initial data.

3. Auxiliary lemmas

The proof of Theorem 1 is based on two lemmas. The first one, taken from [11], is concerned with
the inhomogeneous Hele–Shaw problem: Find a function σ(x, t) and domains Ω(t) such that

∆σ = h(x, t) in Ω(t), 0 6 t 6 T , (22)

σ = γ κ, Vn = −
∂σ

∂n
on Γ (t), 0 6 t 6 T , (23)

where Ω(0) = Ω0 is given, Γ0 = ∂Ω0 is as in (18), and

h ∈ Cm+α,m+α/3(RN × [0, T0]) (24)

for some T0 > 0.
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LEMMA 3.1 Under the assumptions (18), (24) for some integer m > 0, there exists a unique
solution of (22), (23) for some 0 < T 6 T0, such that

DξD
m
(ξ,t)ρ ∈ C

3+α,(3+α)/3(Γ0 × [0, T ])

and σ can be extended to a function satisfying

D2
xD

m
(x,t)σ ∈ C

α,α/3(RN × [0, T ]);

furthermore, T depends only on the Cm+4+α regularity of Γ0, and

‖DξD
m
(ξ,t)ρ‖3+α,(3+α)/3 + ‖D

2
xD

m
(x,t)σ‖α,α/3 6 C‖h‖m+α,m+α/3

where C depends only on the Cm+4+α regularity of Γ0.

In the last inequality the first norm on the left-hand side is taken over Γ0× [0, T ] and the second
norm is taken over RN × [0, T ].

Lemma 3.1 was briefly stated in [11]. Its proof follows very similarly to the proof of Theorem 1
in [12]; most specifically, one needs just to observe that the estimates of the model problem in
[12] for the inhomogeneous system (22) of [12] immediately extend to the system (22), (23) with
general h.

The second lemma is an extension of Lemma 2.2 of [11] to the case of two time variables.
Consider the hyperbolic equation

Wt +Ws + Eb(x, t) · ∇xW = G(x, t, s,W) for x ∈ RN , 0 < t < T, 0 < s < A (25)

with initial conditions

W |t=0 = W0(x, s) for x ∈ RN , 0 6 s 6 A,

W |s=0 = W1(x, t) for x ∈ RN , 0 6 t 6 T ,
(26)

satisfying the compatibility condition

W0(x, 0) = W1(x, 0), x ∈ RN . (27)

LEMMA 3.2 Assume that

Eb,Dx Eb belong to Cα1,α2(RN × [0, T ]);
G,DWG belong to Cα1,α2,α2(RN × [0, T ]× [0, A])

and DxG,DsG belong to Cα1,α2,α2(N0)

for any W = W(x, t, s) in Cα1,α2,α2(RN × [0, T ]× [0, A])

where N0 is the disjoint union

RN × [0, T ]× [0, A] ∩ {t < s} ∪ RN × [0, T ]× [0, A] ∩ {s < t};

DxW0,DsW0 belong to Cα1,α2(RN × [0, A]);
DxW1,DtW1 belong to Cα1,α2(RN × [0, T ]).
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Then there exists a unique solution of (25)–(27) such that

W belongs to Cα1,α2,α2(RN × [0, T ]× [0, A]),
and Wt ,Ws,DxW belong to Cα1,α2,α2(N0);

furthermore, if

‖(Eb,Dx Eb)‖α1,α2 6 β, ‖(W0,DxW0,DsW0,DxW1,DtW1‖)‖α1,α2 6 γ

‖(G,DxG,DtG,DsG,DWG)‖α1,α2,α2 6 K at W = W(x, t, s),

then
‖(DxW,DtW,DsW)‖α1,α2,α2 6 c1γ + c2(β,K)T (28)

where the last two norms are taken over N0, c2(β,K) is a constant depending on β,K , but c1 is
independent of β,K .

The estimate (28) did not appear in [11] since it was not needed there; however this estimate is
essential for the proof of Theorem 1.

Proof. It will be convenient to solve, instead of (25), the equation for W(x, t, s):

Wt +Ws + b(x, t) · ∇xW =

{
G1(x, t, s,W) if s > t,

G2(x, t, s,W) if s < t,
(251)

with the same initial conditions (26), where

G1(x, t, s,W) = G(x, t, t + s,W),G2(x, t, s,W) = G(x, t + s, s,W).

We note that the assumptions and assertions of the lemma remain valid if we replace (25) by (251).
We introduce the characteristic curves with velocity Eb:

dX(x, l)
dl

= Eb(X(x, l), l) for l > 0, X(x, 0) = x.

Suppose W is a solution of (251). We can then express it as a solution of an ODE along the
characteristic curves. Indeed, the function

U1(x, t, s) = W(X(x, t), t, t + s)

satisfies, for fixed s,
dU1

dt
= G1(x, t, s, U1), U1|t=0 = W0(x, s), (29)

and the function
U2(x, t, s) = W(X(x, t + s), t + s, s)

satisfies, for fixed t ,
dU2

ds
= G2(x, t, s, U2), U2|s=0 = W1(x, t). (30)
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We denote by ζ = ζ(·, t) the inverse of the function X = X(·, t), i.e., x = X(ζ(x, t), t). Then
W(x, t, s) = U1(ζ(x, t), t, t + s) is a solution of (251) for t < s. As in [11] one can prove that∥∥∥∥ ∂ζ∂X

∥∥∥∥
L∞

6 C, |∇xζ(x, t)−∇xζ(x̄, t̄)| 6 C(|x − x̄|α1 + |t − t̄ |α2)

where C is a constant which depends only on β.
Using (29) we deduce that

Wx =
∂U1

∂ξ
ξx ∈ C

α1,α2,α2 , Ws =
∂U1

∂s
∈ Cα1,α2,α2 ,

and then also Wt = G− Eb · ∇xW −Ws is in Cα1,α2,α2 .
Similarly one can prove with the representation U2 the existence and regularity of W for t > s.

Finally, the compatibility condition (27) implies that U1 = U2 along the common characteristic
curves initiating at any of the points (ζ, 0), and thus at any point (x, t, t). Hence W belongs to
Cα1,α2,α2(RN × [0, T ]× [0, A]).

In order to prove the assertion (28) we note that

d
dt

(
∂U1

∂ξ

)
=
∂G1

∂ξ
(ξ, t, s, U1)+

∂G1

∂U1
(ξ, t, s, U1)

∂U1

∂ξ

so that, by (29),∣∣∣∣ d
dt

[
∂U1

∂ξ
(ξ1, t, s)−

∂U1

∂ξ
(ξ2, t, s)

]∣∣∣∣
6

∣∣∣∣∂G1

∂ξ
(ξ1, t, s, U1(ξ1, t, s))−

∂G1

∂ξ
(ξ2, t, s, U1(ξ2, t, s))

∣∣∣∣
+

∣∣∣∣∂G1

∂U1
(ξ1, t, s, U1(ξ1, t, s))

∂U1

∂ξ
(ξ1, t, s)−

∂G1

∂U1
(ξ2, t, s, U1(ξ2, t, s))

∂U1

∂ξ
(ξ2, t, s)

∣∣∣∣.
As in [11] one can show that the right-hand side is bounded by |ξ1−ξ2|

α1 times a constant which
depends on β,K . Hence∣∣∣∣∂U1

∂ξ
(ξ1, t, s)−

∂U1

∂ξ
(ξ2, t, s)

∣∣∣∣ 6 [c1γ + c2(β,K)T ]|ξ1 − ξ2|
α1 .

Similarly we can estimate
∂U1

∂ξ
(ξ, t1, s)−

∂U1

∂ξ
(ξ, t2, s)

and all the other terms in (28).

4. Proof of Theorem 1

We introduce the Banach space Y of functions

B ≡ {p1(x, t, A1), p2(x, t, A2), p
a
1 (x, t, A

a
1), p

a
2 (x, t, A

a
2),
EQ(x, t), EQa(x, t), w(x, t)}
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with norm
‖B‖ ≡ ‖(p1, p2, p

a
1 , p

a
2 ,
EQ, EQa)‖1+α,α/3 + ‖w‖α,α/3

where x ∈ RN , 0 6 t 6 T , and the subset

YM = {B ∈ Y : the initial values are as in (14), and ‖B‖ 6 M}

where M is a positive constant to be determined.
For any B ∈ YM we set

h(x, t) = −H( EQ, EQa)

and solve the inhomogeneous Hele–Shaw problem (22), (23) with m = 0, thus generating a family
of domains Ω(t) and a function σ(x, t). We extend σ(x, t) to a function σ∗(x, t) in RN × [0, T ] by
continuing it along normals and using a fixed cutoff function, so that

D2
xσ∗ ∈ C

α,α/3(RN × [0, T ]).

Next we solve (10), (11) with initial data w0(x) and denote the solution by w∗(x, t). We extend
w∗(x, t), in the same way as σ(x, t), along normals with the same cutoff function, so that (cf. [11])

D2
xw∗,Dtw∗ ∈ C

2α/3,α/3(RN × [0, T ]).

We then proceed to solve (9) with fi = fi( EQ, EQa, w∗) for pi(x, t, s), pai (x, t, s), x ∈ RN , 0 <
t < si (i = 0, 1, 2, 3) and for p4(x, t), p

a
4 (x, t) using the initial conditions (14); here we use the

proof of Lemma 3.2 for t < s. We denote the solution by p∗i (x, t, si), p
a
∗i
(x, t, si) (0 6 i 6 3),

and p∗4(x, t), p
a
∗4
(x, t). The functions p∗i (x, t, Ai), p

a
∗i
(x, t, Aai ) belong to C1+α,α/3. We proceed

to solve the same system (9) for t > si (i = 0, 1, 2, 3) using the data pi(x, t, 0), pai (x, t, 0) (which
are obtained by the relations (2) from p∗i (x, t, Ai), p

a
∗i
(x, t, Ai)) and the proof of Lemma 3.2 for

t > s. In view of the compatibility condition (21), the functions p∗i , p
a
∗i

are continuous across t = si
and thus they belong to Cα1,α2,α2(RN × [0, T ] × [0, Ai]) and Cα1,α2,α3(RN × [0, T ] × [0, Aai ]),
respectively.

From the functions p∗i , p
a
∗i

we now construct the integrals

Q∗i =

∫ Ai

0
p∗i (x, t, si) dsi, Qa

∗i
=

∫ Aai

0
pa∗i (x, t, si) dsi

and define a mapping W by WB = B∗ where

B∗ ≡ {p∗1(x, t, A1), p∗2(x, t, A2), p
a
∗1
(x, t, Aa1), p

a
∗2
(x, t, Aa2),

EQ∗(x, t), EQ
a
∗(x, t), w∗(x, t)}

and
EQ∗ = {Q∗i }

4
i=0,

EQa
∗ = {Q

a
∗i
}
4
i=0.

From the estimate (28) with Eb = −∇σ we deduce that

‖(p∗i , p
a
∗i
)‖1+α,1+α/3,1+α/3 6 c1γ + c2(β,M)T

where the norm for p∗i is taken over

N∗0i = {(R
N
× [0, T ]× [0, Ai]) ∩ (t < si)} ∪ {(RN × [0, T ]× [0, Ai]) ∩ (si < t)}
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and the norm for pa∗i is taken over the same set but with Aai ; by Lemma 3.1 with m = 0, we have
β 6 c3(M).

Hence if
M = c1γ + 1 (31)

and T is sufficiently small then W maps YM into itself.
We next show thatW is a contraction in the L∞-norm. To prove it take two elements B1 and B2

in YM and set WBi = B∗i . We introduce the differences

σ̂ = σ∗1 − σ∗2 , ŵ = w∗1 − w∗2

corresponding to B1 and B2. As in [11],

‖σ̂‖1+α,(1+α)/3 6 c‖B1 − B2‖L∞ , ‖ŵ‖1+α,(1+α)/3 6 c‖B1 − B2‖L∞

where c is a constant. By the arguments used to prove Lemma 3.2 we then obtain the estimate

‖p∗1,i − p∗2,i‖α,α/3 6 c‖B1 − B2‖L∞

where p∗1,i (x, t, Ai)− p∗2,i (x, t, Ai) correspond to B1 and B2, respectively. Hence

‖p∗1,i − p∗2,i‖L∞ 6 cT β‖B1 − B2‖L∞

for some β > 0. The same inequality can be proved for the pa∗i . Hence, if T is sufficiently small,

‖WB1 −WB2‖L∞ = ‖B∗1 − B∗2‖L∞ 6 cT β‖B1 − B2‖L∞ 6
1
2
‖B1 − B2‖L∞ . (32)

It follows that W can have at most one fixed point.
Take any B1 ∈ YM . Then, by (32), the sequence W nB1 is convergent in the L∞-norm to some

element B in YM . It is also weakly convergent in the Y -norm. One can then easily show that B is a
fixed point of W . In order to complete the proof of Theorem 1, it remains to show that

4∑
i=0

(Qi +Q
a
i ) = 1

for the fixed point of W. But this follows immediately from (15) and the easily derived relation

∂

∂t

4∑
i=0

(Qi +Q
a
i ) = 0.

REMARK 4.1 If the assumptions of Theorem 1 are satisfied for an integer m > 0, then as in the
proof of Theorem 1, Lemma 3.1 shows that

DξD
m
ξ,tρ ∈ C

3+α,(3+α)/3(Γ0 × [0, T ]),

D2
xD

m
(x,t)σ ∈ C

α,α/3(RN × [0, T ]),

and, by applying Lemma 3.2 step-by-step m times,

pi, p
a
i ∈ C

m+1+α,m+α/3,m+α/3 for t 6= si .
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In order to prove higher regularity of the pi, pai across t = si we need higher order compatibility
conditions at t = si = 0. We consider here just the second order compatibility conditions and, for
clarity, we begin with the system (25), (26). We need to show thatWx andWs are continuous across
t = s. The function Ws satisfies a hyperbolic equation similar to (25) with initial values, at t = 0,

Ws |t=0 = W0,s(x, s),

and, from the differential equation (25),

Ws |s=0 = [−Wt − Eb · ∇xW +G]s=0 = [−W1,t − Eb · ∇xW +G]s=0.

Hence the compatibility condition is

W1,t +W0,s + Eb · ∇xW0 = G(x, 0, 0,W0) at t = s = 0. (33)

The compatibility condition for Wx follows from (27).
Consider next the second compatibility conditions in the case of Theorem 1, and take for

simplicity the case of p1 at (x, 0, 0) and p3 at (x,A3, 0). Then analogously to (33) we find that
if

∂p10(x, 0)
∂s

− p10(x, 0)f1( EQ(x, 0), EQa(x, 0), w0(x))

=
∂p30(x,A3)

∂s
− p30(x,A3)f3( EQ(x, 0), EQa(x, 0), w0(x)) (34)

then ∂p1/∂s is continuous across t = s1. The remaining second order compatibility conditions
can similarly be written (but they have a more complicated form for p2 and p0). When all these
conditions for both the pi and the pai are satisfied, then pi and pai will belong to C2+α,1+α/3,1+α/3

across t = si .

5. Radially symmetric solutions

In this section, we consider the case when the initial data are radially symmetric, that is, in (14)

Ω0 is a sphere of radius R0, and
w0 = w0(r), pi0 = pi0(r, si), pai0 = p

a
i0(r, si) (35)

where r = |x|. We seek a solution of Problem (1)–(15) which is radially symmetric in x, with

Ω(t) = {r < R(t)}.

In this special case we can relax the assumptions (19), (20) for m = 0 by assuming that

the conditions (19), (20) hold with Cm+1+α replaced by C1. (36)

We shall establish the existence and uniqueness of global-in-time solution.
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Set

Ω∞ = {(x, t) : |x| 6 R(t), 0 6 t <∞},

Ω i
∞ =

{
(x, t, si) ∈ Ω∞ ×Ki : t 6= si +

3∑
j=0

njAj for any nonnegative integers nj
}
,

Ω ia
∞ =

{
(x, t, si) ∈ Ω∞ ×K

a
i : t 6= si +

3∑
j=0

njAj for any nonnegative integers nj
}
.

THEOREM 2 Under the assumptions (35), (36), and (21) there exists a unique radially symmetric
solution of Problem (1)–(15) for all t > 0, with R(t) in C1[0,∞), (Dxσ,w) in C1(Ω∞), pi in
C(Ω∞ × Ki), ∂pi/∂r and ∂pi/∂s in C(Ω i

∞), p
a
i in C(Ω∞ × Ka

i ), and ∂pai /∂r and ∂pai /∂s in
C(Ω ia

∞).

REMARK 5.1 In order to explain why the discontinuities of the first derivatives of pi(r, t, si) are
included in the set t = si +

∑3
j=0 njAj where nj are nonnegative integers, consider a special case

where A3 < A1 and A1 < A0, A1 < A2. For t < A1 the discontinuities of the first derivatives of
p1(r, t, s1) can occur either at t = s1 or at t = s1+A3 due to the relation p1(r, t, 0) = p3(r, t, A3).
For t > s1 but t−s1 small, discontinuities may occur at t = s1+A1 and t = s1+A3. As t increases
new discontinuous branches may be introduced because of the relations (2), but they are all of the
form t = si +

∑3
j=0 njAj .

Proof of Theorem 2. Note that in the radially symmetric case

Ev =
x

r
u(r, t),

div(pEv) = u
∂p

∂r
+ p

1
rN−1

∂

∂r
(rN−1u) if p = p(r),

u(r, t) =
1

rN−1

∫ r

0
rN−1H( EQ, EQa, w) dr,

(37)

and the free boundary condition is
dR
dt
= u(R(t), t).

We introduce a change of variables

r̃ =
r

R(t)
, p̃i(r̃, t, si) = pi(r, t, si), p̃ai (r̃, t, si) = p

a
i (r, t, si),

w̃(r̃, t) = w(r, t) and ũ(r̃, t) =
u(r, t)

R(t)
.

Then the system (1)–(15) is transformed into a new system in the fixed domain {r̃ < 1}. Dropping
the tildes in the above variables, the new PDE system takes the following form:

∂pi

∂t
+
∂pi

∂si
+ ν

∂pi

∂r
= pifi( EQ, EQ

a, w) (0 6 i 6 3), (38)

∂pai

∂t
+
∂pai

∂si
+ ν

∂pai

∂r
= pif

a
i (
EQ, EQa, w) (0 6 i 6 3), (39)
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∂p4

∂t
+ ν

∂p4

∂r
= µ1p1(r, t, A1)+ µ2p2(r, t, A2)+ p4f4(Q, EQ

a, w) (40)

where

ν(r, t) = u(r, t)− ru(1, t), (41)

wt −
r

R
Ṙwr −

1
R2Dw∇

2w + λQw = 0. (42)

The initial and boundary conditions have the same form as before, and the free boundary condition
is

dR
dt
= R(t)u(1, t), (43)

where u is given by (37).
Analogously to the proof of Theorem 1 we introduce the Banach space Y of functions

B = {p1(r, t, A1), p2(r, t, A2), p
a
1 (r, t, A

a
1), p

a
2 (r, t, A

a
2),
EQ(r, t), EQa(r, t), w(r, t), R(t)}

for 0 6 t 6 T , with norm

‖B‖ = ‖(p1, p2, p
a
1 , p

a
2 ,
EQ, EQa)‖0 + ‖w‖0 + ‖(R, Ṙ)‖0

where the uniform norm ‖ ‖0 is taken over 0 6 r 6 1, 0 6 t 6 T .
Let

YM = {B ∈ Y with initial data as in (34), ‖B‖ 6 M,R(0) = R0}

where M is to be determined. If T is sufficiently small then R(t) > const > 0.
The characteristic curves of (38)–(40) are given by

dr
dt
= ν(r, t), and

∂ν

∂r
is bounded.

If t < si then a characteristic curve, when extended backward in time, arrives, at t = 0, at some
point r|t=0 = ξ , where ξ ∈ (0, 1). If we denote such a characteristic curve by r(ξ, t), then

∂r(ξ, t)

∂ξ
= exp

{∫ t

0

∂ν

∂r
(r(ξ, τ ), τ ) dτ

}
. (44)

For any element B in YM we solve the system for pi, pai , w by using Lemma 3.2, and denote
the solution by p∗i , p

a
∗i
, w∗. In accordance with (37) we define

u∗(r, t) =
1

rN−1

∫ r

0
rN−1H( EQ∗, EQ

a
∗, w∗) dr (45)

where EQ∗, EQa
∗ are defined in terms of the p∗i , p

a
∗i

as in the proof of Theorem 1. We also define
R∗(t) by (43) with u = u∗, that is,

R∗(t) = R0 exp
(∫ t

0
u∗(1, τ ) dτ

)
. (46)
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As in the proof of Lemma 3.2 we can derive uniform estimates on ∂p∗i/∂r , ∂p∗i/∂si and
∂pa∗i/∂r, ∂p

a
∗i
/∂si for t < si , and then also for si < t , and p∗i , p

a
∗i

are continuous at t = si by
the compatibility assumption (21). Thus∥∥∥∥(∂p∗i∂r

,
∂pa∗i

∂r
,
∂p∗i

∂si
,
∂pa∗i

∂si

)∥∥∥∥∗
0

6 c̄1 + c̄2T (47)

where the upper star “∗” indicates that the uniform norm is taken separately over t < si and over
t > si ; c̄1, c̄2 are constants which depend on a uniform bound on the initial data, and ξ depends also
on M .

Setting

B∗ = {p∗1(r, t, A1), p∗2(r, t, A2), p
a
∗1
(r, t, Aa1), p

a
∗2
(r, t, Aa2),

EQ∗(r, t), EQ
a
∗(r, t), w∗(r, t), R∗(t)}

we define a mapping W by WB = B∗.
From (47) we deduce that if M is large enough, depending on the initial data, then, for T small

enough, W maps YM into itself.
One can also show by the same argument as in [12; Section 3] that W is a contraction if T is

sufficiently small. We conclude that there exists a unique radially symmetric solution of Problem
(1)–(15) for 0 6 t 6 T , T small.

In order to prove global-in-time existence we need to prove some a priori estimates. Assuming
that a solution exists for some time interval 0 6 t < T , where T is any positive number, all we need
to prove is that

0 < c1 6 R(t),

∣∣∣∣dRdt
∣∣∣∣ 6 c2 for 0 6 t < T (48)

and that∥∥∥∥(pi, ∂pi∂r , ∂pi∂s
)∥∥∥∥

0,Ω i
∞∩{t<T }

+

∥∥∥∥(pai , ∂pai∂r , ∂pai∂s
)∥∥∥∥

0,Ω ia
∞∩{t<T }

+ ‖(w,wr)‖0,Ω∞∩{06t<T } 6 c3 (49)

where the ci are positive constant (which may depend on T ). Indeed, the M used in the proof of
local existence will then remain uniformly bounded in ε if we repeat the proof starting at any time
t = T − ε, ε > 0, and thus the solution can be extended to some interval 0 6 t 6 T + ε0, ε0 > 0.

SinceQ is uniformly bounded it follows by the maximum principle thatw is uniformly bounded.
From (37) and the boundedness of the Qi,Q

a
i we also deduce that∥∥∥∥∂ν∂r

∥∥∥∥
0

6 c4 for 0 6 t < T . (50)

Since u is also bounded, (43) gives

−c5 6
1
R

dR
dt

6 c6,

and (48) follows. Using (48) and Lp estimates in (41) we deduce that wr is uniformly bounded as
claimed in (49). We next use the representation of pi by means of characteristic curves as in (29),
(30) to deduce, using the form of equations (9), that

‖pi‖0 + ‖p
a
i ‖0 6 c5 (actually c5 = C0c

c0T where C0, c0 are independent of T ).
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Differentiating these equations in si we obtain similar estimates for ∂pi/∂s if t 6= si +
∑3
j=0 njAj

where nj are nonnegative integers, and similar estimates for ∂pai /∂s if t 6= si +
∑3
j=0 njAj .

Similarly we estimate ∂pi/∂r, ∂pai /∂r using the fact that∣∣∣∣∂Qi(r, t)

∂r

∣∣∣∣ 6 Ai sup
si

∣∣∣∣∂pi(r, t, si)∂r

∣∣∣∣, ∣∣∣∣∂Qa
i (r, t)

∂r

∣∣∣∣ 6 Aai sup
si

∣∣∣∣∂pai (r, t, si)∂r

∣∣∣∣.
This completes the proof of Theorem 2.

We conclude this section with some open problems.

OPEN PROBLEMS 1. In the case where there are only three types of cells, proliferating, quiescent
and dead, it was proved in [13] that the global solution satisfies

0 < δ 6 R(t) 6 A <∞ for all t > 0.

Under what conditions on the λi(w), λai (w) and λ4, λ
a
4 are these inequalities valid?

2. In the case where there are only proliferating and dead cells, it was proved in [14] that there
exists a unique stationary solution, and it was shown in [10] that this solution is linearly stable.
Can such results be proved for the present model?

3. Consider Problem (1)–(15) in the case when there are no mutations and denote the free boundary
by r = Rs(t). Prove that R(t) > Rs(t).
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