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On the energy of a flow arising in shape optimization
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In [8] we have defined a viscosity solution for the gradient flow of the exterior Bernoulli free
boundary problem. We prove here that the associated energy is non-increasing along the flow. For
this we build a discrete gradient flow in the flavour of Almgren, Taylor and Wang [2].

1. Introduction

In this paper we continue our investigation of a “gradient flow” for the Bernoulli free boundary
problem initiated in [8]. The exterior Bernoulli free boundary problem is to minimize the capacity
of a set under volume constraints. Using a Lagrange multiplier λ > 0, this problem can be recast
into the minimization with respect to the set Ω of the functional

Eλ(Ω) = capS(Ω)+ λ|Ω|,

where capS(Ω) denotes the capacity of the set Ω with respect to some fixed set S and |Ω| denotes
the volume of Ω . The set Ω is constrained to satisfy the inclusion S ⊂⊂ Ω . Notice that there is
a “competition” between the two terms in the minimization: the capacity is non-increasing with
respect to inclusion whereas the volume is non-decreasing.

Such a problem has quite a long history and we refer to the survey paper [12] for references
and interpretations in physics. Our study is motivated by several papers in numerical analysis where
discrete gradient flows are built via a level-set approach in order to solve free boundary and shape
optimization problems: see [1] and the references therein for the recent advances in this area. In
this framework, the exterior Bernoulli free boundary problem appears as a model problem in order
to better understand this numerical approach. In this work, we prove that the energy Eλ is non-
increasing along the generalized flow we built in [8]. This question is certainly essential to better
explain the numerical schemes of [1].

Let us now go further into the description of the gradient flow for E := E1 (we work here in the
case λ = 1 for simplicity of notation). The energy E being defined on sets, a gradient flow for E
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is a family (Ω(t))t>0 of sets evolving with a normal velocity which “instantaneously decreases the
energy the most”. For the Bernoulli problem, the corresponding evolution law is given by

Vt,x = h(x,Ω(t)) := −1+ h̄(x,Ω(t)) for all t > 0, x ∈ ∂Ω(t). (1)

In the above equation, Vt,x is the normal velocity of the setΩ(t) at the point x at time t and h̄(x,Ω)
is a non-local term of Hele–Shaw type, given, for any set Ω with smooth boundary, by

h̄(x,Ω) = |∇u(x)|2, (2)

where u : Ω → R is the capacity potential of Ω with respect to S, i.e., the solution of the partial
differential equation −∆u = 0 in Ω \ S,

u = 1 on ∂S,
u = 0 on ∂Ω.

(3)

The set S is a fixed source and we always assume above that S is smooth and S ⊂⊂ Ω(t). Let
us underline that h(x,Ω) is well defined as soon as Ω has “smooth” (say C2) boundary and that
S ⊂⊂ Ω .

The reason why a smooth solution (Ω(t)) of the geometric equation (1) can be considered as a
gradient flow of the energy

E(Ω) = |Ω| + capS(Ω) (4)

is the following: from the Hadamard formula we have

d

dt
E(Ω(t)) =

∫
∂Ω(t)

(1− |∇u|2)Vt,x = −
∫
∂Ω(t)

(−1+ |∇u|2)2 6 0.

Hence the choice of Vt,x = h(x,Ω(t)) in (1) appears to be the one which decreases the energy E the
most. In order to minimize the energy E , it is therefore very natural to follow the gradient flow (1).
This is precisely what is done numerically in [1].

In general the geometric flow (1) does not have classical solutions. In order to define the flow
after the onset of singularities, we have introduced in [8] a notion of generalized (viscosity) solution
and investigated its existence as well as uniqueness. In order to prove that the energy is non-
increasing along the generalized flow, we face a main difficulty: energy estimates are hard to derive
from the notion of viscosity solutions. Indeed, this latter notion is defined through a comparison
principle, which has very little to do with the energy associated to the flow. To the best of our
knowledge, such a question has only been settled for the mean curvature motion (MCM for short),
which corresponds (at least formally) to the gradient flow of the perimeter. There are two proofs of
the fact that the perimeter of the viscosity solution to the mean curvature flow decreases: the first
one is due to Evans and Spruck in their seminal papers [10, 11]; it is based on a regularized version
of the level set formulation for the flow and is probably specific to local evolution equations. The
other proof is due to Chambolle [9]. Its starting point is the fundamental construction of Almgren,
Taylor and Wang [2] who built generalized solutions of the MCM in a variational way as limits of a
“discrete gradient flow” for the perimeter (the so-called minimizing movements; see also Ambrosio
[5]). The key argument of Chambolle’s paper [9] is that Almgren, Taylor and Wang’s generalized
solutions coincide with the viscosity solutions, at least for a large class of initial sets. Hence the
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energy estimate available from [2]—which allows comparing the energy of the evolving set with
the energy of the initial position—can also be applied to the viscosity solution. Since the viscosity
solution enjoys a semigroup property, one can conclude that the energy is decreasing along the flow.

To prove that the energy E is decreasing along our viscosity solutions of (1), we borrow several
ideas from Almgren, Taylor and Wang [2] and Chambolle [9]. As in [2] for the MCM, we start
with the construction of a discrete gradient flow (Ωh

n ) for the energy E : namely Ωh
n+1 is obtained

from Ωh
n as a minimizer of a functional Jh(Ωh

n , ·) which is equal to E plus a penalizing term. The
penalizing term—which depends on the time step h—prevents the minimizing setΩh

n+1 from being
too far from Ωh

n . Then, as in Chambolle [9], we prove that the limits of these discrete gradient
flows converge to the viscosity solution of our equation (1) as the time step h goes to 0. In [9], this
convergence is proved by using the convexity of the equivalent of our functional Jh(Ωn

h , ·) for the
MCM. Here we use instead directly a weak form of the Euler equation for minimizers of Jh(Ωn

h , ·)

as described by Alt and Caffarelli [3] for the Bernoulli problem. We then conclude that the energy
of the flow is non-increasing.

The paper is organized in the following way. In Section 2 we recall the construction of [8] for
the viscosity solutions of (1). Section 3 is devoted to suitable generalizations of the capacity and
capacity potential needed for our estimates. In Section 4 we introduce the functional Jh and build
the discrete motions, the limits of which are discussed in Section 5. The fact that the energy is
non-increasing along the flow is finally proved in Section 6.

2. Definitions and notations for the generalized flow

Let us first fix some basic notations: ifA,B are subsets of RN , thenA ⊂⊂ B means that the closure
A of A is a compact subset which satisfies A ⊂ int(B), where int(B) is the interior of B. We set

D = {K ⊂⊂ RN : S ⊂⊂ K}.

Throughout the paper | · | denotes the euclidean norm (in RN or RN+1, depending on the context)
and B(x,R) denotes the open ball centered at x and of radius R. If E is a measurable subset of RN ,
we also denote by |E| the Lebesgue measure of E. If K is a subset of RN and x ∈ RN , then dK(x)
denotes the usual distance from x to K: dK(x) = infy∈K |y − x|. The signed distance dsK to K is
defined by

dsK(x) =

{
dK(x) if x /∈ K,
−d∂K(x) if x ∈ K, (5)

where ∂K = K \ int(K) is the boundary of K.
Here and throughout the paper, we assume that

S is the closure of an open, nonempty, bounded subset of RN with a C2 boundary. (6)

The generalized solution of the front propagation problem (1) is defined through its graph: if
(Ω(t))t>0 is family of evolving sets, then its graph is the subset of R+ × RN defined by

K = {(t, x) ∈ R+ × RN : x ∈ Ω(t)}.

We denote by (t, x) an element of such a set, where t ∈ R+ denotes the time and x ∈ RN is the
space coordinate. We set

K(t) = {x ∈ RN : (t, x) ∈ K}.
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The closure of the setK in RN+1 is denoted byK. The closure of the complement ofK is denoted K̂:

K̂ = (R+ × RN ) \K,
and we set

K̂(t) = {x ∈ RN | (t, x) ∈ K̂}.
We use here repeatedly the terminology of [6, 7, 8]:

• A tube K is a subset of R+ × RN such that K ∩ ([0, t] × RN ) is a compact subset of RN+1 for
any t > 0.
• A tube K is left lower semicontinuous if

∀t > 0, ∀x ∈ K(t), ∀tn→ t−, ∃xn ∈ K(tn), xn→ x.

• If s = 1, 2 or (1, 1), then a Cs tube K on some open interval I of R+ is a tube such that the
relative boundary of K in I × RN is at least Cs regular.
• A regular tube Kr on some open interval I of R+ is a tube with non-empty interior such that the

relative boundary of Kr in I × RN is at least C1 regular, and at any point (t, x) of this boundary,
the outward normal (νt , νx) toKr at (t, x) satisfies νx 6= 0. In this case, the normal velocity VKr(t,x)

at (t, x) ∈ ∂Kr is defined by

V
Kr
(t,x) = −

νt

|νx |
,

where (νt , νx) is the outward normal to Kr at (t, x).
• A C1 regular tubeKr on some open interval I of R+ is externally tangent to a tubeK at (t, x) ∈ K

if t ∈ I and
(I × RN ) ∩K ⊂ Kr and (t, x) ∈ ∂Kr .

It is internally tangent to K at (t, x) ∈ K̂ if t ∈ I and

(I × RN ) ∩Kr ⊂ K and (t, x) ∈ ∂Kr .
• We say that a sequence of C1,1 tubes (Kn) converges to some C1,1 tube K in some open interval
I in the C1,b sense if (Kn) converges to K and (∂Kn) converges to ∂K in the Hausdorff distance,
and if there is an open neighborhood O of the relative boundary of K in I × RN such that, if
dsK (respectively dsKn ) is the signed distance to K (respectively to Kn), then (dsKn) and (∇dsKn)
converge uniformly to dsK and DdK on O and ‖D2dsKn‖∞ is uniformly bounded on O.

We are now ready to define the generalized solutions of (1):

DEFINITION 2.1 Let K be a tube and K0 ∈ D be an initial set.

1. K is a viscosity subsolution to the front propagation problem (1) ifK is left lower semicontinuous
and K(t) ∈ D for any t , and, for any C2 regular tube Kr externally tangent to K at some point
(t, x), with Kr(t) ∈ D and t > 0, we have

V
Kr
(t,x) 6 h(x,Kr(t)),

where VKr(t,x) is the normal velocity of Kr at (t, x).
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We say that K is a subsolution to the front propagation problem with initial position K0 if K is a
subsolution and K(0) ⊂ K0.

2. K is a viscosity supersolution to the front propagation problem if K̂ left lower semicontinuous
and K(t) ⊂ D for any t , and, for any C2 regular tube Kr internally tangent to K at some point
(t, x), with Kr(t) ∈ D and t > 0, we have

V
Kr
(t,x) > h(x,Kr(t)).

We say that K is a supersolution to the front propagation problem with initial position K0 if K is
a supersolution and K̂(0) ⊂ RN \K0.

3. Finally, we say that a tube K is a viscosity solution to the front propagation problem (with initial
position K0) if K is a sub- and a supersolution to the front propagation problem (with initial
position K0).

In [8] we have proved that for any initial position there is a maximal solution, with a closed
graph, which contains any subsolution of the problem, as well as a minimal solution, which has an
open graph, and is contained in any supersolution of the problem.

3. Capacity and capacity potential

Let Ω be an open bounded subset of RN . We denote by C∞c (Ω) the set of smooth functions with
compact support in Ω , and by H 1

0 (Ω) its closure in the H 1 norm. By convention, if u ∈ H 1
0 (Ω),

then we extend u by setting u = 0 on RN \Ω . Let S be as in (6). For an open bounded subset Ω of
RN such that S ⊂⊂ Ω, the capacity of Ω with respect to S is defined by

capS(Ω) = inf
{∫

Ω\S

|∇φ|2 : φ ∈ C∞c (Ω), φ = 1 on S
}
.

Since S is a fixed set in what follows, we will write cap(Ω) instead of capS(Ω).
Obviously cap(Ω) is non-increasing with respect to Ω (for inclusion). Note that

cap(Ω) = inf
{∫

Ω\S

|∇v|2 : v ∈ H 1
0 (Ω), v = 1 on S

}
(7)

and the infimum is achieved for a unique u ∈ H 1
0 (Ω), called the capacity potential ofΩ with respect

to S, such that u = 1 on S, and u is harmonic in Ω \ S. If Ω has a C1,1 boundary, then it is known
that the infimum is achieved by some u ∈ C2(Ω \S)∩C1(Ω \ S) which is a classical solution to (3).

For any set E (not necessarily open) such that S ⊂⊂ E, we define a generalized capacity by

cap(E) = sup{cap(Ω) : E ⊂⊂ Ω, Ω open and bounded}.

With this definition, cap(E) is non-increasing with respect to E. Notice that this notion of capacity
does not take into account “thin closed sets” in the sense that, if F = E, then cap(E) = cap(F )
even when |E \ F | 6= 0. By construction, if E is open, then

cap(E) 6 cap(E),

but equality does not hold in general. Nevertheless, there is equality if the boundary of the set is
regular enough:
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LEMMA 3.1 If Ω is an open bounded subset of RN , with S ⊂⊂ Ω and with a C1,1 boundary, then
cap(Ω) = cap(Ω).

Proof. We have to prove that cap(Ω) > cap(Ω). It is enough to show that, if

Ωn = {y ∈ RN : dΩ(y) < 1/n},

then cap(Ωn) → cap(Ω) as n → +∞. Indeed, for n large enough, Ωn also has a C1,1 boundary.
Then from classical regularity arguments, the harmonic potential un toΩn converges to the capacity
potential u of Ω in the C1,α norm, where α ∈ (0, 1), whence the result. 2

LEMMA 3.2 Let En be a bounded sequence of subsets of RN , for which there exists some r > 0
with Sr ⊂ En for any n, where

Sr = {y ∈ RN : dS(y) 6 r}. (8)

Denote by K the Kuratowski upper limit of the (En), that is,

K = {x ∈ RN : lim inf
n

dEn(x) = 0}.

Then
lim inf

n
cap(En) > cap(K).

Proof. Let Ω be any open bounded set such that K ⊂⊂ Ω . Since (En) is bounded and has K as
upper limit, the inclusion En ⊂ Ω holds for n large enough. Hence cap(En) > cap(Ω) for every n.
Therefore

lim inf
n

cap(En) > cap(Ω).

The open set Ω being arbitrary, the desired conclusion holds. 2

Let Ω be an open bounded subset of RN with S ⊂⊂ Ω . We denote by H 1
0 (Ω) the intersection of

the spacesH 1
0 (Ωn) where (Ωn) is a decreasing sequence of open bounded sets such thatΩ ⊂⊂ Ωn

and Ω =
⋂
nΩn. One easily checks that H 1

0 (Ω) does not depend on the sequence (Ωn).

LEMMA 3.3 Assume that |∂Ω| = 0. Then

cap(Ω) = inf
{∫

Ω\S

|∇v|2 : v ∈ H 1
0 (Ω), v = 1 on S

}
,

and there is a unique u ∈ H 1
0 (Ω) such that

u = 1 on S and
∫

RN\S
|∇u|2 =

∫
Ω\S

|∇u|2 = cap(Ω).

Moreover, u is harmonic in Ω \ S and |{u > 0} \Ω| = 0.

DEFINITION 3.4 Such a function u is called the capacity potential of Ω with respect to S.

REMARK 3.1 1. If ∂Ω is C1,1, then the capacity potential u ofΩ with respect to S is the (classical)
solution of (3) and is equal to the (classical) capacity potential (7) of Ω.
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2. In what follows, we study the energy of subsets Ω ⊃⊃ S which is defined as the sum of the
capacity and the volume ofΩ with respect to S (see (4)). This energy is well-defined for bounded
sets Ω ⊃⊃ S. That is why we assumed all the sets to be bounded. But let us mention that all
classical results of this section hold upon replacing Ω,S bounded by Ω \ S bounded. We need
this generalization in the proof of Lemma 4.5.

Proof of Lemma 3.3. The proof is easily obtained by approximation. By construction of cap(Ω),
we can find a decreasing sequence of open bounded sets Ωn such that

Ω ⊂⊂ Ωn,
⋂
n

Ωn = Ω and cap(Ω) = lim
n

cap(Ωn).

Let un be the (classical) capacity potential of Ωn. From the maximum principle, the sequence (un)
is decreasing, and converges to some u which is non-negative with support in Ω and equals 1 on S.
In particular, {u > 0} ⊂ Ω a.e. since |∂Ω| = 0. Furthermore, by a classical stability result, u is
harmonic in Ω because so are the un. Since we can find a smooth function φ with compact support
in Ω such that φ = 1 on S, we have∫

Ωn\S

|∇un|
2 6

∫
Ωn\S

|∇φ|2 =

∫
Ω\S

|∇φ|2,

which proves that (un) is bounded in H 1(RN ). Thus the limit u belongs to H 1(RN ). Since un ∈
H 1

0 (Ωn) with H 1
0 (Ωn+1) ⊂ H 1

0 (Ωn), u belongs to H 1
0 (Ωn) for any n. Therefore u ∈ H 1

0 (Ω). In
particular, the support of u lies in Ω = Ω a.e. So we have

cap(Ω) = lim
n

cap(Ωn) = lim
n

∫
Ωn\S

|∇un|
2

= lim inf
n

∫
RN\S
|∇un|

2 >
∫

RN\S
|∇u|2 =

∫
Ω\S

|∇u|2. (9)

For every n,

cap(Ωn) =
∫
Ωn\S

|∇un|
2
= inf

{∫
Ωn\S

|∇v|2 : v ∈ H 1
0 (Ωn), v = 1 on S

}
6 inf

{∫
Ω\S

|∇v|2 : v ∈ H 1
0 (Ω), v = 1 on S

}
,

since H 1
0 (Ω) ⊂ H

1
0 (Ωn). Letting n go to infinity, we obtain

cap(Ω) 6 inf
{∫

Ω\S

|∇v|2 : v ∈ H 1
0 (Ω), v = 1 on S

}
.

From (9), we get equality in the above inequality and the fact that u is optimal. 2

4. The discrete motions

Let us fix h > 0 which has to be understood as a time step. Let us recall that S is the closure of an
open bounded subset of RN with C2 boundary. We introduce the function space

E(S) := {u ∈ H 1(RN ) ∩ L∞(RN ) : u = 1 on S and u has compact support}.
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If S and S′ are two compact subsets of RN with C2 boundary such that S ⊂ S′, then we note that
E(S′) ⊂ E(S).

For any bounded open subset Ω of RN with S ⊂⊂ Ω we define the functional Jh : E(S)→ R
by setting

J Sh (Ω, u) =

∫
RN\S

(
|∇u|2 + 1{u>0}

(
1+

1
h
dsΩ

)
+

)
,

where dsΩ is the signed distance to Ω defined by (5), 1A denotes the indicator function of any set
A ⊂ RN and r+ = r ∨ 0 for any r ∈ R. We write Jh(Ω, u) if there is no ambiguity about S.

Let us recall some existence and regularity results given in [3]:

PROPOSITION 4.1 (Alt and Caffarelli [3]) Let Ω be an open subset of RN such that Ω \ S is
bounded and with S ⊂⊂ Ω . Then there is at least a minimizer u ∈ E(S) to Jh(Ω, ·). Moreover, u
is Lipschitz continuous and is harmonic in {u > 0} \ S. Finally, HN−1(∂{u > 0}) < +∞.

REMARK 4.1 We note that S ⊂⊂ {u > 0} because u is Lipschitz continuous with u = 1 in S.

The existence of u and its Lipschitz continuity come from [3, Theorem 1.3 and Corollary 3.3].
The fact that u has a compact support is established in [3, Lemma 2.8], and its harmonicity in
[3, Lemma 2.4]. The finiteness of HN−1(∂{u > 0}) is given in [3, Theorem 4.5].

We are now ready to define the discrete motions.
Let Ω0 ⊃⊃ S be a fixed initial condition. We define by induction the sequence (Ωh

n ) of open
bounded subsets of RN with Ωh

n ⊃⊃ S by setting

Ωh
0 := Ω0 and Ωh

n+1 := {un > 0} ∪ {x ∈ Ωh
n : d∂Ωh

n
(x) > h},

where

un ∈ argmin
v∈E(S)

J Sh (Ω
h
n , v).

We call such a family of open sets a discrete motion. Of course, it is defined so that it converges
to a solution of the front propagation problem (1) (see Theorem 5.2 and Remark 4.2).

In order to investigate the behavior of discrete motions, we need some properties of the
minimizers of Jh.

LEMMA 4.2 Let Ω and u be as in Proposition 4.1. Let Ω ′ = {u > 0} ∪ Ω̂h, where

Ω̂h := {y ∈ Ω : d∂Ω(y) > h} = {y ∈ RN : dsΩ(y) < −h}. (10)

Then |∂Ω ′| = 0 and u is the capacity potential of Ω ′.

REMARK 4.2 We do not claim that u is positive in Ω ′. For instance, consider a set Ω with two
connected components Ω1 and Ω2 such that S ⊂⊂ Ω1. In this case, u ≡ 0 in Ω2. Notice that
this explains why we define Ωh

n+1 := {un > 0} ∪ {x ∈ Ωh
n : d∂Ωh

n
(x) > h}. Adding the

set {x ∈ Ωh
n : d∂Ωh

n
(x) > h} prevents the discrete motion from a sudden disappearance of a

connected component. Indeed, the discrete motion is built in order to approach a solution of the
front propagation problem (1), and a connected component which does not contain any part of the
source is expected to move with constant normal velocity −1.
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Proof of Lemma 4.2. First notice that |∂Ω ′| = 0. Indeed, we already know that |∂{u > 0}| = 0
(because its HN−1-measure is finite from Proposition 4.1). On the other hand, ∂Ω̂h ⊂ {y ∈ Ω :
d∂Ω ′(y) = h} also has a finite HN−1-measure thanks to [4, Lemma 2.4].

Let now ε > 0 be fixed and set, for any α > 0, Ωα = {y ∈ RN : dΩ ′(y) < α}. The set Ωα
is open, bounded and satisfies Ω ′ ⊂⊂ Ωα. Moreover, since 1Ωα → 1

Ω ′
and Ω ′ is bounded with

|∂Ω ′| = 0, for α > 0 enough small we have∫
Ωα\Ω ′

(
1+

1
h
ds∂Ω

)
+

6 ε. (11)

Let v be the capacity potential of Ωα and set

vk(x) = v(x)+
1
k
dRN\Ωα (x) ∀x ∈ RN .

Then (vk) converges to v in H 1(RN ) and |Ωα \ {vk > 0}| = 0. Therefore

Jh(Ω, vk) =

∫
RN\S

(
|∇vk|

2
+ 1{vk>0}

(
1+

1
h
dsΩ

)
+

)
→
k

cap(Ωα)+
∫

RN\S
1Ωα

(
1+

1
h
dsΩ

)
+

.

Since Jh(Ω, vk) > Jh(Ω, u), from (11) we get

cap(Ω ′) > cap(Ωα) > lim
k
Jh(Ω, vk)−

∫
RN\S

1Ωα

(
1+

1
h
dsΩ

)
+

> Jh(Ω, u)−

∫
RN\S

1Ωα

(
1+

1
h
dsΩ

)
+

>
∫

RN\S

(
|∇u|2 − 1Ωα\{u>0}

(
1+

1
h
dsΩ

)
+

)
>
∫

RN\S

(
|∇u|2 − 1Ωα\Ω ′

(
1+

1
h
dsΩ

)
+

)
>
∫

RN\S
|∇u|2 − ε.

Thus
∫
RN\S |∇u|

2 6 cap(Ω ′), so u is the capacity potential of Ω ′ by Lemma 3.3. 2

Next we need to compare solutions to Jh(Ω, ·) for different S and Ω .

PROPOSITION 4.3 Let S1 and S2 be the closures of two open bounded subsets of RN with C2

boundary, and let Ω1 and Ω2 be open bounded subsets of RN such that S1 ⊂⊂ Ω1 and S2 ⊂⊂ Ω2.
Let u1 and u2 be, respectively, minimizers of J S1

h (Ω1, ·) and J S2
h (Ω2, ·). If S1 ⊂ S2 and Ω1 ⊂ Ω2,

then u1 ∧ u2 and u1 ∨ u2 are, respectively, minimizers of J S1
h (Ω1, ·) and J S2

h (Ω2, ·).

REMARK 4.3 1. In particular, if J S2
h (Ω2, ·) has a unique minimizer u2, then {u1 > 0} ⊂ {u2 > 0}.

2. This proposition still holds true if we replace, for i = 1, 2, Ωi, Si bounded by Ωi \ Si bounded;
see Remark 3.1 and Lemma 4.5.



232 P. CARDALIAGUET AND O. LEY

Proof of Proposition 4.3. Let us set

I := J S1
h (Ω1, u1 ∧ u2)+ J

S2
h (Ω2, u1 ∨ u2)− J

S1
h (Ω1, u1)− J

S2
h (Ω2, u2)

=

∫
RN\S1

(
|∇(u1 ∧ u2)|

2
− |∇u1|

2
+ (1{u1∧u2>0} − 1{u1>0})

(
1+

1
h
dsΩ1

)
+

)
+

∫
RN\S2

(
|∇(u1 ∨ u2)|

2
− |∇u2|

2
+ (1{u1∨u2>0} − 1{u2>0})

(
1+

1
h
dsΩ2

)
+

)
.

Since Ω1 ⊂ Ω2 we have dsΩ2
6 dsΩ1

in RN . It follows that

I 6
∫

RN\S2

(|∇(u1 ∧ u2)|
2
− |∇u1|

2
+ |∇(u1 ∨ u2)|

2
− |∇u2|

2)

+

∫
S2\S1

(|∇(u1 ∧ u2)|
2
− |∇u1|

2)

+

∫
RN\S1

(1{u1∧u2>0} − 1{u1>0})

(
1+

1
h
dsΩ1

)
+

+

∫
RN\S2

(1{u1∨u2>0} − 1{u2>0})

(
1+

1
h
dsΩ1

)
+

Moreover, by classical results,

|∇(u1 ∧ u2)|
2
+ |∇(u1 ∨ u2)|

2
= |∇u1|

2
+ |∇u2|

2 a.e. in RN . (12)

So we get

I 6
∫
S2\S1

(
|∇(u1 ∧ u2)|

2
− |∇u1|

2
+ (1{u1∧u2>0} − 1{u1>0})

(
1+

1
h
dsΩ1

)
+

)
.

But u1 ∧ u2 = u1 on S2 \ S1, which gives I 6 0, and thus

J
S1
h (Ω1, u1 ∧ u2)+ J

S2
h (Ω2, u1 ∨ u2) 6 J

S1
h (Ω1, u1)+ J

S2
h (Ω2, u2). (13)

Since u1 and u2 are minimizers we have

J
S1
h (Ω1, u1) 6 J

S1
h (Ω1, u1 ∧ u2) and J

S2
h (Ω2, u2) 6 J

S2
h (Ω2, u1 ∨ u2). (14)

The inequalities in (13) and (14) are therefore equalities. Hence u1∧u2 and u1∨u2 are respectively
minimizers of J S1

h (Ω1, ·) and J S2
h (Ω2, ·). 2

We define the energy E(Ω) by
E(Ω) = |Ω| + cap(Ω)

(cf. (4)).

LEMMA 4.4 Let (Ωh
n ) be a discrete motion with |∂Ωh

0 | = 0. Then the energy E(Ωh
n ) is non-

increasing with respect to n. More precisely,

E(Ωh
n+1)− E(Ωh

n ) 6
∫

RN
(1Ωh

n \{d
s

∂Ωhn
<−h} − 1{un>0}\{ds

∂Ωhn
<−h})

1
h
ds
Ωh
n

6 0,

where un is a minimizer for Jh(Ωh
n , ·).
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Proof. Let us fix n. In order to simplify the notations, let us set

Ω := Ωh
n , Ω̂h := {x ∈ Ω : dsΩ(x) < −h} = {x ∈ Ω : d∂Ω(x) > h} .

Let u0 be the capacity potential of Ω and u be a minimizer of Jh(Ω, ·). We finally set Ω ′ :=
Ωh
n+1 = {u > 0} ∪ Ω̂h. Recall that Ω ′ ∈ D and |∂Ω ′| = 0: indeed, this is true for n = 0 from the

assumption and by Lemma 4.2 for n > 1. With these notations we have to prove that

E(Ω ′) 6 E(Ω).
For this we introduce for any k > 1 the function uk defined by

uk(x) =

{
u0(x)+

1
k
d∂Ω(x) if x ∈ Ω,

u0(x) otherwise.

Then (uk) converges to u0 inH 1(RN ) and {uk > 0} = Ω a.e. because {u0 > 0} ⊂ Ω and |∂Ω| = 0.
Hence

lim
k
Jh(Ω, uk) = lim

k

∫
RN\S

(
|∇uk|

2
+ 1{uk>0}

(
1+

1
h
dsΩ

)
+

)
= cap(Ω)+

∫
RN\S

1Ω
(

1+
1
h
dsΩ

)
+

= E(Ω)− |Ω| +
∫
Ω\Ω̂h

(
1+

1
h
dsΩ

)
= E(Ω)+

∫
Ω\Ω̂h

1
h
dsΩ − |Ω̂h|.

On the other hand, since cap(Ω ′) =
∫
RN\S |∇u|

2 from Lemma 4.2, and since |Ω ′| = |Ω ′|, we also
have

Jh(Ω, u) =

∫
RN\S

(
|∇u|2 + 1{u>0}

(
1+

1
h
dsΩ

)
+

)
= E(Ω ′)− |Ω ′| +

∫
{u>0}\Ω̂h

(
1+

1
h
dsΩ

)
= E(Ω ′)+

∫
{u>0}\Ω̂h

1
h
dsΩ − |Ω̂h|.

Noting that Jh(Ω, u) 6 Jh(Ω, uk), we get the desired claim. 2

Next we show that the solution does not blow up when h becomes small.

LEMMA 4.5 Let R > 0 and r0 ∈ (0, R/21/(N−2)) be fixed. Let us also fixM such that
√

1+M >
4(N − 2)/r0. Then there is some h0 = h0(N, r0, R,M) such that, for any h ∈ (0, h0) and r ∈
(r0, R/21/(N−2)), for any Ω ∈ D open bounded, for any x /∈ Ω with r 6 dΩ(x), R 6 dS(x) and
for any u minimizer of Jh(Ω, ·), we have

d
{u>0}∪Ω̂h

(x) > r −Mh,

where Ω̂h is defined by (10).

Proof. The idea is to compare the solution with radial ones. For simplicity we assume that N > 3,
the computation in the case N = 2 being similar. We also suppose without loss of generality that
x = 0.
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Let us first investigate the problem of minimizing J
BcR
h (Bcr , ·), where Br = B(0, r) and BR =

B(0, R). Notice that neither the source BcR nor the subset Bcr is bounded, but Bcr \ B
c
R = BR \ Br

is bounded, so the previous results on the minimization problem apply (see Remark 3.1). Standard

symmetrization arguments show that a minimizer v of J
BcR
h (Bcr , ·) must be radially symmetric. For

ρ ∈ (0, R), let us denote by vρ the (radial) harmonic function which vanishes on ∂Bρ and is equal

to 1 on ∂BR . We also set Jh(ρ) := J
BcR
h (Bcr , vρ). Notice that a minimizer of J

BcR
h (Bcr , ·) has to be

either of the form vρ with ρ a minimizer of Jh(·), or constant equal to v0 := 1. Let us fix h0 small
enough that r + h < R for h ∈ (0, h0). We have

Jh(0+) = J
BcR
h (Bcr , v0) =

αN−1(r + h)
N+1

hN(N + 1)
,

where αN−1 is the volume of the unit sphere of RN . For Jh(ρ) with ρ > 0, we distinguish two
cases. If r + h < ρ < R, then

Jh(ρ) =
αN−1(N − 2)
ρ2−N − R2−N .

If 0 < ρ 6 r + h, then

Jh(ρ)

αN−1
=

N − 2
ρ2−N − R2−N +

1
h

(
(r + h)N+1

N(N + 1)
+
ρN+1

N + 1
−
(r + h)ρN

N

)
.

We show that v0 cannot be a minimizer by comparing Jh(0+) with Jh(ρ) for 0 < ρ 6 r + h.

Choosing ρ = β
√
h with β > 0, we have

1
αN−1

(Jh(ρ)− Jh(0) = ρN−2
(

N − 2
1− (ρ/R)N−2 +

ρ3

h(N + 1)
−
(r + h)ρ2

hN

)
6 ρN−2

(
N − 2

1− βN−2h(N−2)/2/RN−2 +
β3h1/2

N + 1
−
rβ2

N

)
. (15)

Recalling that r0 ∈ (0, R/21/(N−2)) is fixed, we choose

β >
N(2(N − 2)+ 1)

r0
(16)

and then h0 = h0(N, β, r0, R) > 0 small enough that

1−
βN−2h

(N−2)/2
0

RN−2 >
1
2

and
β3h

1/2
0

N + 1
< 1. (17)

For all h ∈ (0, h0), we see that (15) is negative, which proves that v0 is not a minimizer.
Therefore minimizers have to be of the form vρ for some ρ ∈ (0, R). On (r + h,R), Jh(ρ) is

increasing. For ρ ∈ (0, r + h), we have

J ′h(ρ)

αN−1
=

(N − 2)2ρ1−N

(ρ2−N − R2−N )2
+
ρN

h
−
(r + h)ρN−1

h
.
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The stationary points of Jh on (0, r + h] satisfy

f (ρ) :=
(N − 2)2

[ρ(1− (ρ/R)N−2)]2 −
1
h
(r + h− ρ) = 0. (18)

Notice that ρ 7→ f (ρ) is convex on (0, r + h] and tends to +∞ as ρ → 0+ and as ρ → R−. If we
find some value ρ for which f (ρ) is negative, then there are exactly two solutions to (18).

For this, let us choose ρ = β
√
h with β > 0. Then

hf (β
√
h) =

(N − 2)2

β(1− (βh1/2/R)N−2)N−2)2
− r − h+ βh1/2.

Choosing β > 0 satisfying (16) and

β > 4(N − 2)/r1/2
0

and h0 satisfying (17) and

βh
1/2
0 < r0/2, (19)

we find that f (β
√
h) < 0 for h ∈ (0, h0).

Let us fix h ∈ (0, h0) and let ρ1 and ρ2 be respectively the smallest and largest solutions to
(18). By the above arguments, ρ1 6 β

√
h 6 ρ2, where β is defined as above. Since J ′h(ρ) =

αN−1ρ
N−1f (ρ), we have

J ′′h (ρ1) = αN−1ρ
N−1
1 f ′(ρ1)

= αN−1ρ
N−1
1

[
−2(N − 2)2(1− (N − 1)(ρ1/R)

N−2)

(ρ1(1− (ρ1/R)N−2))3
+

1
h

]
6 αN−1ρ

N−1
1

[
−

2(N − 2)2

ρ3
1

(
1− (N − 1)

(
ρ1

R

)N−2)
+
β2

ρ2
1

]
.

If we choose h0 > 0 satisfying (17), (19) and furthermore

(N − 1)
(
βh

1/2
0
R

)N−2

<
1
2

and h
1/2
0 <

N − 2
β3 , (20)

we deduce that J ′′h (ρ1) < 0 for h ∈ (0, h0) and ρ1 is not a minimum to Jh. Therefore, Jh is
increasing on (0, ρ1), decreasing on (ρ1, ρ2) and increasing on (ρ2, R). The minimum is achieved
at ρ = ρ2.

Let us now estimate ρ2. We suppose that h0 satisfies (17), (19), (20) and

h0 6
r0

2M
where 1+M >

16(N − 2)2

r2
0

.

Then, for all h ∈ (0, h0) and r ∈ (r0, R/21/(N−2)), we have r −Mh > r0/2 > 0 and we compute

f (r −Mh) =
(N − 2)2

(r −Mh)2(1− ((r −Mh)/R)N−2)2
− (1+M)

6
4(N − 2)2

(r −Mh)2
− (1+M) 6 0.

Therefore ρ2 > r −Mh.
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To summarize, we know that, setting h0 = h0(N, r0, R,M) small enough, for all h ∈ (0, h0)

and r ∈ (r0, R/21/(N−2)), the problem of minimizing J
BcR
h (Bcr , ·) has a unique solution vρ2 , which

is radially symmetric and such that ρ2 > r −Mh.

S

{vρ2
>0}

r

R x

r−Mhρ2

Ω {u > 0}
Ω̂h

FIG. 1. Illustration of the proof of Lemma 4.5.

Let now Ω ∈ D, x /∈ Ω with R 6 dS(x), r 6 dΩ(x), and let u be a minimizer of Jh(Ω, ·).
Since S ⊂ BcR(x) and Ω ⊂ Bcr (x), Proposition 4.3 states that {u > 0} ⊂ {vρ2 > 0} ⊂ Bcr−Mh(x)
(see Figure 1). Since Ω̂h ⊂ Ω ⊂ Bcr , we conclude that d

{u>0}∪Ω̂h
(x) > r −Mh. 2

Finally, we show that the set {u > 0} satisfies some inequalities in the viscosity sense. Here again
the regularity results of Alt and Caffarelli [3] play a crucial role. Let Σ be an open set with C1,1

boundary such that S ⊂⊂ Σ and Σ \ S is bounded. We denote by uΣS the (classical) solution to (3)
(replacing Ω by Σ), i.e., the capacity potential of Σ with respect to S.

LEMMA 4.6 Let Ω be a bounded open subset of RN with S ⊂⊂ Ω and u be a minimizer of
Jh(Ω, ·). Set

Ω̂h = {x ∈ Ω : d∂Ω(x) > h} and Ω ′ = {u > 0} ∪Ωh.

Let Σ be an open bounded subset of RN with C1,1 boundary.

1. [Outward estimate] Suppose that Σ is such that

{u > 0} ⊂ Σ and ∃x ∈ ∂Σ ∩ ∂{u > 0}.

Then

|∇uΣS (x)| >

(
1+

1
h
dsΩ(x)

)1/2

+

.

2. [Inward estimate] Now assume that Σ is such that

S ⊂⊂ Σ, Σ ⊂ Ω ′ and ∃x ∈ ∂Σ ∩ ∂Ω ′.
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Then

|∇uΣS (x)| 6

(
1+

1
h
dsΩ(x)

)1/2

+

.

Proof. Let us set gΩ(x) = (1+ dsΩ(x)/h)+. We first prove the outward estimate. From [3, Lemma
4.10] we have

lim sup
x′→x, x′∈{u>0}

u(x′)

dB(x′)
>
√
gΩ(x)

for any ball B contained in {u = 0} and tangent to {u > 0} at x. Let ν be the outward unit normal
to Σ at x, and r > 0 be such that the ball B := B(x + rν, r) is tangent to Σ at x. Then B is also
tangent to {u > 0} at x. Since by the maximum principle, u 6 uΣS , we have

|∇uΣS (x)| = lim sup
x′→x, x′∈{u>0}

uΣS (x
′)

dB(x′)
> lim sup
x′→x, x′∈{u>0}

u(x′)

dB(x′)
>
√
gΩ(x).

We now turn to the proof of the inward estimate. We first prove that uΣS 6 u in {uΣS > 0}. Indeed,
from Lemma 4.2, u is the capacity potential of Ω ′. In particular, u is harmonic in Ω ′ \ S ⊃ Σ \ S,
u = uΣS on ∂S and 0 = uΣS 6 u on ∂{uΣS > 0}. Hence uΣS 6 u in {uΣS > 0}. Let us note that u = 0
on ∂Ω ′. Therefore u(x) = uΣS (x) = 0.

We now consider two cases. If x /∈ ∂{u > 0}, then x ∈ ∂Ω̂h; thus dsΩ(x) = −h and gΩ(x) = 0.
But 0 6 uΣS 6 u = 0 in a neighborhood of x so that ∇uΣS (x) = 0. Therefore

|∇uΣS (x)| = 0 = gΩ(x).

Let us now consider the case x ∈ ∂{u > 0}. Then [3, Theorem 6.3] states that

sup
B(x,r)

|∇u| 6
√
gΩ(x)+m(r),

where m(r) → 0 as r → 0+. Since we want to prove that |∇uΣS (x)| 6
√
gΩ(x), we can assume

without loss of generality that ∇uΣS (x) 6= 0. Let ν be the outward unit normal to Σ at x. Since
ν = −∇uΣS (x)/|∇u

Σ
S (x)|, for r > 0 sufficiently small, the segment ]x, x − rν[ is contained in Σ

and in {uΣS > 0}, and thus in {u > 0}. So u is smooth at each point of this segment. Since moreover
u > uΣS , we have, for some ξ ∈ (x, x − rν),

uΣS (x − rν) 6 u(x − rν) = u(x)+ 〈∇u(ξ),−rν〉 6 r(
√
gΩ(x)+m(r)).

Therefore

|∇uΣS (x)| = lim
r→0+

uΣS (x − rν)

r
6
√
gΩ(x). 2

5. Discrete motions and viscosity solutions

Let us fixΩ0 open and bounded such that S ⊂⊂ Ω0. Let (Ωh
n )n be a discrete motion withΩh

0 = Ω0.
Let us now introduce a lower and upper envelope for the sequences (Ωh

n )n as the time step h
tends to 0+: the upper envelope K∗ is

K∗(t) :=
{
x ∈ RN : ∃hk → 0+, nk →+∞, xk ∈ Ω

hk
nk

with xk → x and hknk → t

}
, (21)
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while the lower envelope K∗ is defined by its complement:

RN \K∗(t) =
{
x ∈ RN : ∃hk → 0+, nk →+∞, xk /∈ Ω

hk
nk

with xk → x and hknk → t

}
. (22)

LEMMA 5.1 The setK∗ is closed whileK∗ is open. Moreover, the maps t 7→ K∗(t) and t 7→ K̂∗(t)
are left lower semicontinuous on (0,+∞).

Proof. The fact that K∗ is closed comes from its construction since the upper limit of sets is always
closed. The argument works in a symmetric way for K∗.

We now prove that t 7→ K∗(t) is left lower semicontinuous on (0,+∞) (see Section 2 for the
definition). We proceed by contradiction supposing there exist t > 0, x ∈ K∗(t), ρ > 0 and a
sequence tp → t− such that B(x, ρ) ∩K∗(tp) = ∅. Therefore dK∗(tp)(x) > ρ > 0 for all p.

Set R = dS(x) and choose r0 < min{ρ,R/21/(N−2)
} andM > 0 with

√
1+M > 8(N−2)/r0.

Then Lemma 4.5 states that there is some h0 = h0(N, r0, R,M) with the following property: for
any r ∈ (r0/2, R/21/N−2) and h ∈ (0, h0), for any Ω with r 6 dΩ(x) and for any minimizer u of
Jh(Ω, ·), we have d

{u>0}∪Ω̂h
(x) > r −Mh, where Ω̂h = {dsΩ < −h}.

For h ∈ (0, h0), let nh = [tp/h] be the integer part of tp/h. From the definition of K∗(tp) and
r0, we can find some h1 ∈ (0, h0) such that dΩh

nh
(x) > r0 for any h ∈ (0, h1). We are going to prove

by induction that
dΩh

nh+kh
(x) > r0 −Mkh for all k ∈ {0, . . . , kh0 }, (23)

where kh0 = [r0/(2Mh)]. Indeed, inequality (23) holds for k = 0. Assume that it holds for some
k < kh0 . Let u be a minimizer for Jh(Ωh

nh+kh
, ·) and define

Ωh
nh+(k+1)h = {u > 0} ∪ {y ∈ Ωh

nh+kh
: dΩh

nh+kh
(y) > h}.

Then since r0−Mkh > r0/2 and r0−Mkh 6 r0 6 R/21/(N−2), Lemma 4.5 recalled above implies
that

dΩh
nh+(k+1)h

(x) > r0 −Mkh−Mh.

So (23) is proved.
Let us set τ = r0/(4M) and fix s ∈ (0, τ ). Let (kh) be such that khh→ s as h→ 0+. We notice

that kh ∈ {0, . . . , kh0 } for h sufficiently small. Letting h→ 0+ in inequality (23) for any such (kh)
implies that

dK∗(tp+s)(x) > r0 −Ms > r0/2 > 0. (24)

Since τ does not depend on x and tp and since tp → t−, for p large enough, we have s =
t−tp 6 τ. Therefore, from (24), we obtain dK∗(t)(x) = dK∗(tp+s)(x) > r0/2 > 0, which contradicts
the assumption x ∈ K∗(t).

The proof of the left lower semicontinuity of K̂∗ is simpler. As above, we proceed by
contradiction supposing that there exists x ∈ K̂∗(t) for t > 0 and a sequence tp → t− with
dK̂∗(tp)(x) > ρ > 0 for all p. From the definition of Ωh

nh+1, for (nh) such that nhh → tp and h

sufficiently small, we have Bρ/2(x) ⊂ Ωh
nh
. From the definition of Ωh

nh+1, we have therefore

Bρ/2−h(x) ⊂ {y ∈ Ω
h
nh

: d∂Ωh
nh
(x) > h} ⊂ Ωh

nh+1.
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By induction we prove in a similar way that, for any k 6 ρ/(4h),

Bρ/2−kh(x) ⊂ {y ∈ Ω
h
nh+(k−1)h : d∂Ωh

nh+(k−1)h
(x) > h} ⊂ Ωh

nh+k
.

Letting now h→ 0+ we get

Bρ/4(x) ∩ K̂∗(tp + s) = ∅ for all s ∈ [0, ρ/4].

Since ρ is independent of p, we get a contradiction by taking p so large that t − tp = s 6 ρ/4. 2

THEOREM 5.2 The tube K∗ (respectively K∗) is a viscosity subsolution (respectively supersolu-
tion) to the front propagation problem V = h(x,Ω), where

h(x,Ω) = −1+ h̄(x,Ω)

and h̄ is defined by (2).

Proof. Let us setΩh :=
⋃
n{nh}×Ω

h
n . Let (t0, x0) ∈ K∗ with t0 > 0 be such that there is a smooth

regular tube Kr with K∗ ⊂ Kr and x0 ∈ ∂Kr(t0). Without loss of generality we can assume that
K∗ ∩ ∂Kr = {(t0, x0)}. Then by standard stability arguments (see [7]), one can find a sequence of
smooth regular tubes Kkr converging to Kr in the C1,b sense (see Section 2 for the definition), and
sequences hk → 0 and nk → +∞ such that Ωhk ⊂ Kkr , (nkhk, xk) → (t0, x0), xk ∈ ∂Ω

hk
nk and

xk ∈ ∂Kkr (nkhk).
Let u be a minimizer of Jhk (Ω

hk
nk−1, ·). By definition of the discrete motion, we have

Ωhk
nk
= {u > 0} ∪ {y ∈ Ωhk

nk−1 : ds
Ω
hk
nk−1

(y) < −hk}. (25)

Let vk := uK
k
r (nkhk)

S be the capacity potential of Kkr (nkhk).
Let us first assume that xk ∈ ∂{u > 0} for some subsequence of (xk) (still denoted by (xk)). The

case xk ∈ int{u = 0} for any k is treated later. From the discrete viscosity condition in Lemma 4.6
and the inclusion Ωhk

nk−1 ⊂ Kkr ((nk − 1)hk), we know that

|∇vk(xk)| >

(
1+

1
hk
ds
Ω
hk
nk−1

(xk)

)1/2

+

>

(
1+

1
hk
dsKkr ((nk−1)hk)

(xk)

)1/2

+

.

Hence
1
hk
dsKkr ((nk−1)hk)

(xk) 6 −1+ |∇vk(xk)|2. (26)

Let us now recall that the normal velocity of Kkr at a point (t, x) ∈ ∂Kkr is given by − ∂
∂t
dsKkr (t)

(x).

Since xk ∈ ∂Kkr (nkhk), since (nkhk, xk)→ (t0, x0) and since Kkr converges to Kr , we have

dsKkr ((nk−1)hk)
(xk) = d

s
Kkr (nkhk)

(xk)− hk
∂

∂t
dsKkr (nkhk)

(xk)+ hkε(k) = hkV
Kr
(t0,x0)

+ hkε(k),

where ε(k)→ 0 as k→+∞ and VKr(t0,x0)
is the normal velocity of Kr at (t0, x0). From (26) we get,

for k large enough,

h(xk,Kkr (nkhk)) = −1+ |∇vk(xk)|2 > V
Kr
(t0,x0)

+ ε(k).



240 P. CARDALIAGUET AND O. LEY

Letting k→+∞, we obtain

h(x0,Kr(t0)) = lim
k
h(xk,Kkr (nkhk)) > V

Kr
(t0,x0)

.

The above equality is a straightforward application of [13, Theorem 8.33] since Kkr converges to Kr
in the C1,b sense (see Section 2 for the definition).

We now assume that xk ∈ int{u = 0} for any k. Then from (25) we have

ds
Ω
hk
nk−1

(xk) = −d
∂Ω

hk
nk−1

(xk) = −hk.

Arguing as above we get

−hk = d
s

Ω
hk
nk−1

(xk) > dsKkr ((nk−1)hk)
(xk) = hkV

Kr
(t0,x0)

+ hkε(k),

where ε(k)→ 0. Dividing by hk and letting k→+∞ gives

V
Kr
(t0,x0)

6 −1 6 −1+ |∇uKr (t0)S (x0)|
2
= h(x0,Kr(t0)).

So we have finally proved that K∗ is a subsolution.
We now show that K∗ is a supersolution. The proof starts exactly as above: if there is a smooth

regular tube Kr with Kr ⊂ K∗ and some (t0, x0) ∈ ∂K∗ with t0 > 0 and x0 ∈ ∂Kr(t0), then one
can find a sequence of smooth regular tubes Kkr converging to Kr in the C1,b sense and sequences
hk → 0 and nk → +∞ such that Kkr (nhk) ⊂ Ω

hk
n for any n, (nkhk, xk) → (t0, x0), and xk ∈

∂Ωhk (nkhk) ∩ ∂Kkr (nkhk). Let u be a minimizer of Jhk (Ω
hk
nk−1, ·). Then (25) holds for Ωhk

nk .

Then using Lemma 4.6 we get

|∇vk(xk)| 6

(
1+

1
hk
ds
Ω
hk
nk−1

(xk)

)1/2

+

6

(
1+

1
hk
dKkr ((nk−1)hk)(xk)

)1/2

+

, (27)

where vk := u
Kkr (nkhk)
S is the capacity potential of Kkr (nkhk) with respect to S. Since xk ∈

∂Ωhk (nkhk), we have from (25) that ds
Ωhk (nkhk)

(xk) > −hk . Therefore inequality (27) can also
be written as

1
hk
dKkr ((nk−1)hk)(xk) > −1+ |∇vk(xk)|2.

As before we have
dsKkr ((nk−1)hk)

(xk) = hkV
Kr
(t0,x0)

+ hkε(k).

Hence
h(xk,Kkr (nkhk)) = −1+ |∇vk(xk)|2 6 V

Kr
(t0,x0)

+ ε(k)→ V
Kr
(t0,x0)

.

Then we can complete the proof as above to get the required condition:

h(x0,Kr(t0)) 6 V
Kr
(t0,x0)

. 2

In particular we immediately obtain the following theorem:
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THEOREM 5.3 Let Ω0 be an open bounded subset of RN such that S ⊂⊂ Ω0. Let K+ and K− be,
respectively, the largest and smallest viscosity solutions to the front propagation problem (1) with
initial position Ω0. Then

K− ⊂ K∗ ⊂ K∗ ⊂ K+.
In particular, if the problem has a unique solution, i.e., K− = K+, then

K− = K∗ = K∗ = K+.

Proof. Since K+ contains any subsolution and K− is contained in any supersolution (see [8]), we
have K∗ ⊂ K+ and K− ⊂ K∗. The inclusion K∗ ⊂ K∗ holds by construction. Hence the result
follows. 2

6. The energy is non-increasing along the flow

Let Ω0 be a bounded open subset of RN . In this section we assume that the front propagation
problem (1) with initial position Ω0 satisfies

|∂Ω0| = 0 and |K+ \K−| = 0, (28)

where K+ and K− denote the maximal and minimal solutions respectively.

REMARK 6.1 Assumption (28)—which is a strong uniqueness condition for the viscosity solution
of the front propagation problem (1)—is not too restrictive. Indeed, it is generic in the following
sense: let (Ωλ

0 )λ>0 be a strictly increasing family of bounded open initial positions containing the
source, i.e.,

for all 0 < λ < λ′, S ⊂⊂ Ωλ
0 ⊂⊂ Ω

λ
0
′
.

If K+λ (respectively K−λ ) is the maximal (respectively minimal) viscosity solution to (1) with initial
position Ωλ

0 , then (28) holds for all λ > 0 except for a countable subset. See [8, Props. 4 and 5] for
details. For simplicity of notation, we have chosen to consider the case λ = 1 and to assume that
(28) holds for the initial position Ω0.

THEOREM 6.1 Under assumption (28), there is a set T ⊂ [0,+∞) of full measure such that

E(K+(t)) 6 E(K+(s)) for all s, t ∈ T , s < t.

Proof. Let (Ωh
n ) be a discrete motion starting from Ω0. Recall for later use that, from Lemma 4.4,

E(Ωh
n ) 6 E(Ω0) ∀n > 0, ∀h > 0, (29)

because we have assumed that |∂Ω0| = 0. Let K∗ and K∗ be the associated generalized evolutions
defined by (21) and (22). We have

K− ⊂ K∗ ⊂ K∗ ⊂ K+.

Let
T := {t ∈ [0,+∞) : |K+(t) \K−(t)| = 0}.

From assumption (28) and the Fubini theorem, the set T is of full measure in [0,+∞).
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We first prove that
E(K+(t)) 6 E(Ω0) ∀t ∈ T . (30)

For this, let t ∈ T , and let hk → 0+ and nk → +∞ be such that hknk → t . For simplicity we
setΩk := Ωhk

nk . Since the Kuratowski upper limit of (Ωk) is contained inK+(t), which is a compact
subset, the sequence (Ωk) is bounded. Since moreover the upper limit of (RN \Ωk) is contained in
RN \ K−(t), the latter with boundary at a positive distance from S, there is some r > 0 such that
Sr ⊂ Ωk for any k sufficiently large (see (8) for the definition of Sr ). Since finally the capacity is
non-increasing with respect to the inclusion, Lemma 3.2 yields

lim inf
k

cap(Ωk) > cap(K+(t)). (31)

The next step towards (30) amounts to showing that

|K+(t)| 6 lim inf |Ωk|. (32)

Let R > 0 be so large that K+(t) ⊂⊂ BR , where BR = B(0, R). By definition of the Kuratowski
upper limit and the construction of K∗, we have

1BR\K∗(t) > lim sup
k

1BR\Ωk .

The Fatou lemma then states that

|BR \K∗(t)| > lim sup |BR \Ωk|,

whence (32) follows since K−(t) ⊂ K∗(t) and |K+(t)| = |K−(t)| because t ∈ T .
Combining (31), (32) and (29) finally gives

E(K+(t)) 6 lim inf
k

E(Ωk) 6 E(Ω0) ∀t ∈ T .

This proves (30).
Let now 0 6 s 6 t with s, t ∈ T . From the uniqueness of the solution starting from K0, the

maximal solution to the front propagation problem starting at time s from K+(s) is equal at time t
to K+(t). Since |∂K+(s)| = 0, because s ∈ T , inequality (30) states that

E(K+(t)) 6 E(K+(s)),

which is the desired result. 2
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