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On a free boundary problem modelling inductive-heating processes
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We study a free boundary problem describing a melting process by using induction heating. The
mathematical model in one space dimension consists of a coupled parabolic system in each phase
along with a nonequilibrium kinetic condition on the interface. By applying an energy estimate and
Campanato type estimates, it is shown that the problem has a unique classical solution globally.
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1. Introduction

Superheating is a phenomenon in which the temperature in a solid phase is higher than the melting
temperature. This phenomenon is common when a microwave or an induction heating method
is used during a melting process. The classical interface conditions (Stefan conditions) have to
be modified in order to model this phenomenon. In this paper we study a melting process for
highly conductive materials by using an induction heating method with possible superheating in
the process.

To derive the mathematical model, we recall Maxwell’s equations for an electric field E(x, t)
and a magnetic field H(x, t) in R3 ([11, 16]):

εEt + σE = ∇ ×H, µHt +∇ × E = 0,

where ε is the electric permittivity, µ the magnetic permeability and σ the electric conductivity,
which may depend on temperature. Here a bold letter represents a vector or vector function in R3.

Since the targeted material is highly conductive, the eddy currents, J(x, t) := σE(x, t), are
much stronger than the displacement currents, εEt . It is a common approximation for induction
heating modelling ([16]) that one can neglect the displacement currents by simply setting ε = 0.
Hence, Maxwell’s equations become a single system for H(x, t):

µHt +∇ × [ρ∇ ×H] = 0,

where ρ := 1/σ represents the resistivity of the material which may depend on temperature as well
as on space and time variables.

The local density of Joule’s heat produced by eddy currents equals ([15, 16])

E · J = ρ|∇ ×H|2.
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For simplicity, the heat convection is neglected here. By Fourier’s law and the conservation of
energy, we see that the temperature, denoted by u, satisfies

ut −∇[k∇u] = ρ|∇ ×H|2,

where k represents the thermal conductivity and the other physical constants such as the material
density and specific heat are assumed to be constants.

The above coupled system for H and u has been studied by many researchers in the engineering
sciences (see [15, 16] and the references therein). Despite the importance of the model in
applications, many mathematical issues are still open due to the complicated nonlinear coupling
and degeneracy of the system for H(x, t). Some progress has been made during the past few years.
The author [24] proved the global existence of a weak solution in R3 under the assumption that ρ(u)
is bounded with a positive lower bound (see also [3] for a similar result). The regularity of weak
solutions is studied in [25]. In [24] (see also [10]), by deriving a De Giorgi–Nash type estimate
for the steady-state system of the magnetic field, classical solvability is established for the coupled
steady-state system for u(x) and H(x).

The problem, however, becomes much more difficult when a phase-change occurs in the system.
Some industrial problems can be reduced to or approximated by the one-dimensional case ([16]).
For example, assume that an electric field is restricted along the z-direction and its value depends
only on x, i.e., E(x, t) = {0, 0, e(x, t)}. Then the magnetic field must be in the y-direction,
H(x, t) = {0, h(x, t), 0}. The system for H becomes the following equation:

ht −
∂

∂x

[
ρ(x, t, u)

∂h

∂x

]
= 0.

Since the spatial dimension is equal to one, we may assume that the interface between the liquid
and solid materials can be expressed by x = s(t), t > 0. The classical Stefan condition at the
interface is given by

u(s(t)−, t) = u(s(t)+, t) = m, Ls′(t) = −k1ux(s(t)−, t)+ k2ux(s(t)+, t),

where m is the melting temperature, L is the latent heat, and the constants k1 and k2 represent
thermal conductivities in the solid and liquid, respectively. Here we denote by f (s−) and f (s+)
the left- and right-hand limit of a function f (x) as x → s.

Because of the internal heat source produced by electromagnetic waves, the superheating
phenomenon may occur. This leads to a nonequilibrium state at the interface, and the interface
is unstable and unrealistic. Moreover, a mushy region may occur. In this paper, however, we
only consider the classical case and assume that no mushy region occurs (see [29] for a different
model). In order to stabilize the interface, several different theories have been proposed (see [4,
21] for examples). In this paper we use the following kinetic condition proposed in [21] from the
nonequilibrium thermodynamics:

u(s(t)−, t) = u(s(t)+, t),

Ls′(t) = −k1ux(s(t)−, t)+ k2ux(s(t)+, t),

s′(t) = −g(u(s(t), t)),

where g(u) is a known nonnegative function of u, which represents the nonequilibrium force on the
interface. The sign condition on g is to ensure that the model describes a melting process.
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Let T > 0 and
QT = {(x, t) : 0 < x < 1, 0 < t 6 T }.

The interface is denoted by

ΓT = {(x, t) : x = s(t), 0 6 t 6 T }.

The solid and liquid phases are denoted by

Q−T = {(x, t) : 0 < x < s(t)}, Q+T = {(x, t) : s(t) < x < 1, 0 < t < T }.

Now we assume that the electric fields in the z-axis direction, denoted by f1(t) and f2(t), are applied
on the fixed boundaries x = 0 and x = 1, respectively. From the relation between the electric and
magnetic fields (Maxwell’s first equation with ε = 0), we see that

ρhx(0, t) = f1(t), ρhx(1, t) = f2(t).

For the temperature u(x, t), we assume that there is no heat exchange across the fixed boundary.
We summarize the above discussion to obtain the following mathematical model for a melting

process by using induction heating: Find (h(x, t), u(x, t)) and s(t) such that

ht −
∂

∂x

[
ρ(x, t, u)

∂h

∂x

]
= 0, (x, t) ∈ QT \ ΓT , (1.1)

ut −
∂

∂x

[
k(x, t, u)

∂u

∂x

]
= ρ(x, t, u)h2

x, (x, t) ∈ QT \ ΓT , (1.2)

h(s(t)−, t) = h(s(t)+, t), u(s(t)−, t) = u(s(t)+, t), 0 < t < T, (1.3)
ρ1hx(s(t)−, t) = ρ2hx(s(t)+, t), 0 < t < T, (1.4)
Ls′(t) = −k1ux(s(t)−, t)+ k2ux(s(t)+, t), s(0) = s0, 0 < t < T, (1.5)
s′(t) = −g(u(s(t), t)), 0 < t < T, (1.6)
ρ1(0, t, u(0, t))hx(0, t) = f1(t), 0 < t < T, (1.7)
ρ2(1, t, u(1, t))hx(1, t) = f2(t), 0 < t < T, (1.8)
ux(0, t) = ux(1, t) = 0, 0 < t < T, (1.9)
h(x, 0) = h0(x), u(x, 0) = u0(x), 0 < x < 1, (1.10)

where s0 ∈ (0, 1); f1(t), f2(t) are prescribed electric fields on the fixed boundary; u0(x) and h0(x)

represent the initial temperature and initial magnetic field; and

k =

{
k1(x, t, u) if (x, t) ∈ Q−T ,

k2(x, t, u) if (x, t) ∈ Q+T ,

and

ρ(x, t, u) =

{
ρ1(x, t, u) if (x, t) ∈ Q−T ,

ρ2(x, t, u) if (x, t) ∈ Q+T ,

During the past several decades, various free boundary problems have been studied by many
authors (see the monographs and conference proceedings [14, 18, 17] for examples). Several authors
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have studied the superheating and supercooling phenomena (see [7, 8, 22] etc.). For the Stefan
problem with a kinetic condition at the free boundary, the global existence and uniqueness in one
space dimension were established in [21, 23] with g(u) = −u. The asymptotic behavior of the free
boundary was obtained in [6]. Bossavit [2] studied the numerical solution for the model problem
associated with classical Stefan conditions on the free boundary. By assuming the magnetic field to
be time-harmonic in three space dimensions, the author [29] studied a phase-change problem for
a melting process using induction heating. A global weak solution for the phase-change problem
is established in [29]. Recently, the author of [28] studied a free boundary problem arising in a
microwave heating modelling, where a kinetic condition was used in the model. The general case in
R3 was studied in [13] where an enthalpy weak form is used to model the process.

In the present paper we study the phase-change problem (1.1)–(1.10). One of the major
difficulties for this problem is that the nonlinear term ρh2

x in (1.2) only belongs to the L1-space
even without the phase-change. By using a similar idea to that developed in [5, 28] we are able to
prove the global solvability for the problem (1.1)–(1.10). One of the key steps in the proof is the
L2,µ-theory developed in [30]. Another technique from [1] also plays an important role in the proof
of the existence theorem.

This paper is organized as follows. In Section 2, we study the coupled parabolic system when an
interface x = s(t) is fixed in a suitable space. The existence of a unique weak solution is established.
Moreover, various a priori estimates are derived. These estimates have a precise dependence upon
the smoothness of the interface. In Section 3, we use those estimates obtained in Section 2 and
Schauder’s fixed-point theorem to prove the existence of a solution for the free boundary problem
(1.1)–(1.10). The uniqueness is also proved.

2. A coupled system with discontinuous coefficients

In this section we study the coupled parabolic system (1.1)–(1.2) subject to appropriate initial-
boundary conditions and interface conditions when an interface x = s(t) is fixed. We will show that
the problem has a unique weak solution. Moreover, we derive various a priori estimates which have
a precise dependence upon the smoothness of the interface x = s(t). Those estimates are crucial in
order to prove the existence of a solution for the original free boundary problem in Section 3.

Without loss of generality, we assume L = 1 in (1.5). It is clear that the interface conditions
(1.3), (1.5)–(1.6) for u(x, t) are equivalent to the following:

u(s(t)−, t) = u(s(t)+, t), 0 < t < T,

−k1ux(s(t)−, t)+ k2ux(s(t)+, t) = −g(u(s(t), t)), 0 < t < T,

s′(t) = −g(u(s(t), t)), 0 < t < T .

Throughout this section, we assume that s ∈ C1[0, T ] is fixed. Moreover, s(0) = s0, 0 < s(t) < 1,
0 6 t 6 T . Let ΓT be defined as in Section 1.

Consider the following problem:

ht −
∂

∂x

[
ρ(x, t, u)

∂h

∂x

]
= 0, (x, t) ∈ QT \ ΓT , (2.1)

ut −
∂

∂x

[
k(x, t, u)

∂u

∂x

]
= ρ(x, t, u)h2

x, (x, t) ∈ QT \ ΓT , (2.2)

h(s(t)−, t) = h(s(t)+, t), u(s(t)−, t) = u(s(t)+, t), 0 < t < T, (2.3)
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ρ1hx(s(t)−, t) = ρ2hx(s(t)+, t), 0 < t < T, (2.4)
−k1ux(s(t)−, t)+ k2ux(s(t)+, t) = −g(u(s(t), t)), 0 < t < T, (2.5)
ρ1(0, t, u(0, t))hx(0, t) = f1(t), 0 < t < T, (2.6)
ρ2(1, t, u(1, t))hx(1, t) = f2(t), 0 < t < T, (2.7)
ux(0, t) = ux(1, t) = 0, 0 < t < T, (2.8)
h(x, 0) = h0(x), u(x, 0) = u0(x), 0 < x < 1. (2.9)

Even without free boundary involved in (2.1)–(2.9), it is still a challenge to prove the global
existence of a weak solution for (2.1)–(2.9) because of the nonlinear term ρ(x, t, u)h2

x in (2.2), the
jump condition on the interface in (2.5) and the discontinuous coefficients k and ρ in (2.1)–(2.2).
We use the ideas from [5], [24] and [29] to establish the global existence of a unique weak solution.

We introduce the following assumptions:

H(2.1): ρ(x, t, u), k(x, t, u) are measurable with respect to (x, t) and continuous with respect to u
and there exist constants a0 and a1 such that

0 < a0 6 ρ(x, t, u), k(x, t, u) 6 a1 for a.e. (x, t, u) ∈ QT × R.

H(2.2): g ∈ C1(R) is nonnegative and there exists a constant G0 such that

|g′(s)| 6 G0, s ∈ R.

H(2.3): f1, f2 ∈ H
1(0, T ) and u0, h0 ∈ W

1,∞(0, 1).

We point out that the assumption on g is stronger than that of [21] due to our method used in this
paper. The nonnegativity of g(s) is purely to ensure s′(t) 6 0, a melting process. It will be seen
from the proof of the main result given below that g can be chosen to be of a general form (see
Remark 3.1 below).

The main result of this section is the following theorem.

THEOREM 2.1 Under the assumptions H(2.1)–(2.3) the problem (2.1)–(2.9) has a weak solution
(h, u) with

h ∈ L2(0, T ;H 1(0, 1)) ∩ Cα,α/2(Q̄T ), u ∈ L2(0, T ;H 1(0, 1)) ∩ Cα,α/2(Q̄T )

for some α ∈ (0, 1). Moreover, the following estimates hold:

sup
06t6T

∫ 1

0
[h2
+ u2] dx +

∫ T

0

∫ 1

0
[h2
x + u

2
x] dx dt 6 C1, (2.10)

‖h‖Cα,α/2(Q̄T ) + ‖u‖Cα,α/2(Q̄T ) 6 C2, (2.11)

where C1 and C2 depend only on the known data, but are independent of the bound of ‖s‖C1[0,T ].

Proof. We use Schauder’s fixed-point theorem to prove the global existence. Let

K = {v ∈ Cβ,β/2(Q̄T ) : ‖v‖Cβ,β/2(Q̄T ) 6 K0},

where the constants K0 and β ∈ (0, 1) will be determined later.
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For any v ∈ K , we solve the following parabolic problem:

ht −
∂

∂x

[
ρ(x, t, v)

∂h

∂x

]
= 0, (x, t) ∈ QT , (2.11)

ρ1(0, t, v(0, t))hx(0, t) = f1(t), 0 < t < T, (2.12)
ρ2(1, t, v(1, t))hx(1, t) = f2(t), 0 < t < T, (2.13)
h(x, 0) = h0(x), 0 < x < 1. (2.14)

It is known from [12] that the problem (2.11)–(2.14) has a unique weak solution h ∈

L2(0, T ;H 1(0, 1))∩Cα1,α1/2(Q̄T ) for some α1 ∈ (0, 1). Note that the weak solution h satisfies the
interface conditions (2.3)–(2.4) automatically in the weak sense. Moreover, there exist constants C1
and C2 such that

sup
06t6T

∫ 1

0
|h|2 dx +

∫ T

0

∫ 1

0
|hx |

2 dx dt 6 C1, ‖h‖Cα1,α1/2(Q̄T )
6 C2,

where C1 and C2 depend only on a0, a1, the upper bound of T , ‖f1‖H 1(0,T ), ‖f2‖H 1(0,T ), and
‖h0‖Cα1 [0,1], but are independent of the bound on K0, β, and the smoothness of s(t).

Next we consider the following parabolic problem:

ut − [k(x, t, u)ux]x = ρ(x, t, v(x, t))h2
x, (x, t) ∈ QT \ ΓT , (2.15)

ux(0, t) = ux(1, t) = 0, 0 < t < T, (2.16)
u(s(t)−, t) = u(s(t)+, t), 0 < t < T, (2.17)
k1ux(s(t)−, t)− k2ux(s(t)+, t) = g(u(s(t), t)), 0 < t < T, (2.18)
u(x, 0) = u0(x), 0 < x < 1. (2.19)

First of all, we use a technique from [25] employing the Dirac-delta function to absorb the
interface conditions into the equation. Since ρh2

x ∈ L
1(QT ), it is easy to see that the problem

(2.15)–(2.19) is equivalent to the following problem in the weak sense, as long as the weak solution
is continuous in Q̄T :

ut − [k(x, t, u)ux]x + g(u(x, t))δ(x − s(t)) = ρ(x, t, v(x, t))h2
x in QT , (2.20)

ux(0, t) = ux(1, t) = 0, 0 < t < T, (2.21)
u(x, 0) = u0(x), 0 < x < 1, (2.22)

where δ(x − s(t)) is the Dirac-delta function with mass concentrated at x = s(t).
To obtain a weak solution with desired regularity for (2.20)–(2.22) we have to make a suitable

substitution in order to handle the nonlinear term on the right-hand side of (2.20).
We introduce

w(x, t) = u(x, t)+ h(x, t)2/2, (x, t) ∈ QT . (2.23)

By using (2.11) we see that (2.20) is equivalent to the following equation in the weak sense:

wt − [k(x, t, u)wx]x + g(u)δ(x − s(t)) = [(ρ − k)hhx]x in QT . (2.24)
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Moreover,

wx(0, t) =
h(0, t)f1(t)

ρ1(0, t, u(0, t))
, wx(1, t) =

h(1, t)f2(t)

ρ2(1, t, u(1, t))
, 0 < t < T, (2.25)

w(x, 0) = u0(x)+ h0(x)
2/2, 0 < x < 1, (2.26)

where u(x, t) = w(x, t)− h(x, t)2/2 in (2.25).
Note that for one space dimension the Dirac-delta function can be expressed by the derivative

of the Heaviside function in the sense of distributions:

g(u(x, t))δ(x − s(t)) = g(u(x, t))[H(x − s(t))]x in QT ,

where H(x) is the classical Heaviside function.
Now we can rewrite the singular term in the weak sense:

g(u(x, t))
∂H(x − s(t))

∂x
=

∂

∂x
[g(u(x, t))H(x − s(t))]−H(x − s(t))g′(u(x, t))ux

=
∂

∂x
[g(u(x, t))H(x − s(t))]−H(x − s(t))g′(u(x, t))[wx − hhx].

Since g′(u) is uniformly bounded, we see from the theory of parabolic equations ([12]) that the
problem (2.24)–(2.26) has a unique weak solution w ∈ L2(0, T ;H 1(0, 1)). Moreover, from the
estimate for h(x, t) and H(2.1) we see that∥∥∥∥h(0, t)f1(t)

ρ1

∥∥∥∥
L∞(0,T )

+

∥∥∥∥h(1, t)f2(t)

ρ2

∥∥∥∥
L∞(0,T )

6 C,

I := H(x − s(t))g′(u)hhx ∈ L2(QT ) by H(2.2) and∫∫
QT

|I |2 dx dt 6 C

∫∫
QT

h2
x dx dt 6 C,

where C depends only on the known data, but is independent of K0 and the smoothness of s(t). It
follows from regularity theory (Theorem 7.1 in [12]) that w ∈ Cα2,α2/2(Q̄T ) for some α2 ∈ (0, 1).
Moreover, there exists a constant C3 such that

‖w‖Cα2,α2/2(Q̄T )
6 C3, (2.27)

where C3 is independent of β, K0, and the smoothness of s(t).
Define a mapping M from K into K as follows:

M : v ∈ K 7→ u := M[v],

where u(x, t) = w(x, t)− 1
2h(x, t)

2 for (x, t) ∈ QT and w is the weak solution of (2.24)–(2.26).
It is clear that the mapping M is well-defined. From the estimates (2.15) and (2.27), we see that

‖u‖Cα,α/2(Q̄T ) 6 C4,

where α = min{α1, α2} and C4 depends only on C2, C3.



368 H. M. YIN

We choose K0 = C4 and β ∈ (0, α). Then M maps K into K . The proof of the continuity of M
fromK intoK is a simpler case of that for the mappingM1 defined in Section 3. Hence we skip this
step here. Since the embedding from Cα,α/2(Q̄T ) into Cβ,β/2(Q̄T ) is compact for any 0 < β < α,
it follows that M is compact and continuous from K into K . By Schauder’s fixed-point theorem,
M has a fixed point. This fixed point along with the weak solution h form a weak solution of the
problem (2.1)–(2.9). 2

By using classical regularity theory, we can easily obtain more regularity for the solution of the
problem, provided that the known data have more regularity.

Consider the following assumption:

H(2.4): (a) ρi, ki ∈ C1+α,α,1+α(QT × R).
(b) f1, f2 ∈ C

1+α[0, T ], u0 ∈ W
1,∞(0, 1) ∩ C2+α[0, s0] ∩ C2+α[s0, 1].

Moreover, the following consistency condition holds:

k1u
′

0(s0−)− k2u
′

0(s0+) = g(u0(s0)).

THEOREM 2.2 Under the assumptions H(2.1)–H(2.4) the problem (2.1)–(2.9) a unique
classical solution h, u ∈ C2+α,1+α/2(Q±T ) ∩ C

α,α/2(Q̄T ). Moreover, hx and ux are continuous
up to the interface x = s(t) on [0, T ]. Furthermore, there exist constants C5 and C6 such that

‖hx‖L∞(QT ) + ‖ux‖L∞(QT ) 6 C5, (2.28)∫ T

0

{∫ s(t)

0
[u2
xx + h

2
xx] dx +

∫ 1

s(t)

[u2
xx + h

2
xx] dx

}
dt 6 C6, (2.29)

where C5 and C6 depend on the known data and ‖s‖C1[0,T ].

Proof. Since s ∈ C1[0, T ], we know from [9] that ux and hx are continuous up to the interface
x = s(t). The regularity theory for parabolic equations implies that h and u satisfy the equation in
the classical sense inQT \ΓT . Moreover, hx and ux are bounded ([9]). The energy method (see [26])
yields the second estimate. Finally, since the solution is classical, the uniqueness follows easily. 2

3. The free boundary problem

We again use Schauder’s fixed-point theorem to prove the existence of a solution for the problem
(1.1)–(1.10).

Let δ > 0 be a small constant and β ∈ (0, α/2), where α is the Hölder exponent in Theorem
2.2. Let

K1 = {s ∈ C
1+β [0, T ] : s(0) = s0, δ 6 s(t) 6 1− δ, ‖s‖C1+β [0,T ] 6 L0},

where L0 is a constant to be determined later. The constant L0 depends only on the upper bound
of T .

For each fixed s ∈ K1, we solve the system (2.1)–(2.9) to obtain a unique solution (h, u) from
Theorems 2.1 and 2.2. Define a mapping M1 from K1 into C1+α/2[0, T ] as follows:

M1 : s ∈ K1 7→ s∗(t) = M1[s](t) := s0 −
∫ t

0
g(u(s(τ ), τ )) dτ,

where u is the solution of (2.1)–(2.9) corresponding to s.



INDUCTIVE-HEATING PROCESSES 369

It is clear from Theorem 2.2 that the mappingM1 is well-defined. Moreover, a fixed point ofM1
along with the solution (h, u) for (2.1)–(2.9) form a solution to the original free boundary problem
(1.1)–(1.10).

LEMMA 3.1 Under the assumptions H(2.1)–H(2.4) the mappingM1 is fromK1 intoK1 on [0, T0]
for some T0 > 0, provided that L0 is chosen properly.

Proof. From the definition of s∗ and Hölder continuity of u, we have

|(s∗)′(t)| = |g(u(x, t))| 6 G0|u(x, t)− u0(x)| + |g(u0(x))| 6 G1,

where G1 = 2G0C3 +maxx∈[0,1] |g(u0(x))|. Moreover, we see that for any t1, t2 ∈ [0, T ],

|(s∗)′(t1)− (s
∗)′(t2)| 6 G0|u(x, t1)− u(x, t2)| 6 G0C3|t1 − t2|

α/2.

Furthermore, from the definition of s∗ there exists a number T0 > 0 such that

0 < δ < s∗(t) 6 1− δ, t ∈ [0, T0].

It follows thatM1 mapsK1 into C1+β [0, T0]. Moreover, the image ofK1,M1(K1), is a subset ofK1

if we choose L0 = G1[1+ C3T
α/2−β

0 ]+ 1.
Since β < α/2 and the embedding from C1+α/2[0, T ] into C1+β [0, T ] is compact, we see

that M1 is pre-compact if M1 is continuous. 2

To apply Schauder’s fixed-point theorem, we only need to show that M1 is continuous from K1
into K1. This is the most complicated step.

LEMMA 3.2 Under the assumptions H(2.1)–H(2.4) the mapping M1 is continuous from K1
into K1.

Proof. Fix any sequence sn ∈ K1 with sn → s in C1+β [0, T ]. We denote by (hn, un) and (h, u),
respectively, the solutions of (2.1)–(2.9) from Theorem 2.1, corresponding to x = sn and x = s. Let
s∗n = M1[sn] and s∗ = M1[s].

From Theorem 2.1, we know that the estimates (2.10)–(2.11) in Theorem 2.1 hold uniformly for
(hn, un). Moreover, since

‖sn‖C1+β [0,T ] 6 K0, ‖s‖C1+β [0,T ] 6 K0,

it follows that the estimates (2.28)–(2.29) in Theorem 2.2 also hold for (hn, un) and (h, u).
Now we use a transformation similar to the one employed in [1]. Let

ψ : [0, 1]× [δ, 1− δ]→ [−1, 1]

be a function such that

(i) ψ ∈ C3([0, 1] × [δ, 1 − δ]) and |Dγψ | 6 d0 for all multi-indices γ = (γ1, γ2) with |γ | :=
|γ1| + |γ2| 6 3;

(ii) ψ(0, s) = 0, ψ(1, s) = 1, ψ(s, s) = 0, for all s ∈ [δ, 1− δ];
(iii) ψx(s, s) = 1/2, ψx(x, s) > d1 > 0, for all (x, s) ∈ [0, 1]× [δ, 1− δ],

where d0 and d1 are constants.
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Let ξ = ψ(x, s(t)), 0 6 t 6 T and Q∗T = (−1, 1)× (0, T ]. We use (ξ, t) as new variables and
set I (ξ, t) = h(x, t), v(ξ, t) = u(x, t). It is clear that

ht = It + Iξψss
′, hx = Iξψx, hxx = Iξξ (ψx)

2
+ Iξψxx .

Similarly, one can calculate vt , vξ and vξξ .
Let

S− = (−1, 0)× (0, T ], S+ = (0, 1)× (0, T ].

A direct calculation shows that I (ξ, t) and v(ξ, t) satisfy the following equations:

It −
∂

∂ξ
[ρ1(x, t, u)ψxIξ ]ψx = J1(ξ, t, I, v, s), (ξ, t) ∈ S−, (3.1)

It −
∂

∂ξ
[ρ2(x, t, u)ψxIξ ]ψx = J2(ξ, t, I, v, s), (ξ, t) ∈ S+, (3.2)

vt −
∂

∂ξ
[k1(x, t, u)ψxvξ ]ψx = J3(ξ, t, I, v, s), (ξ, t) ∈ S−, (3.3)

vt −
∂

∂ξ
[k2(x, t, u)ψxvξ ]ψx = J4(ξ, t, I, v, s), (ξ, t) ∈ S+, (3.4)

where

J1(ξ, t, I, v, s) := −ψss′Iξ , J2(ξ, t, I, v, s) := −ψss′Iξ ,

J3(ξ, t, I, v, s) := ρ1[Iξψx]2
− ψss

′vξ , J4(ξ, t, I, v, s) := ρ2[Iξψx]2
− ψss

′vξ .

On the interface ξ = 0, 0 6 t 6 T ,

h(0−, t) = h(0+, t), (3.5)
ρ1(0−, t, v(0, t))hξ (0−, t) = ρ2(0+, t, v(0, t))hξ (0+, t), (3.6)
v(0−, t) = v(0+, t), (3.7)

k1(0, t, v(0, t))vξ (0−, t)− k2(0, t, v(0, t))vξ (0+, t) =
g(v(0, t))
ψx

. (3.8)

We also introduce the same transformation ξ = ψ(x, sn(t)) corresponding to the solution
(hn, un, sn) and define

In(ξ, t) = hn(x, t), vn(ξ, t) = un(x, t), (x, t) ∈ QT .

Then In(ξ, t) and vn(ξ, t) satisfy the same set of equations and the boundary conditions as do I (ξ, t)
and v(ξ, t) in S±.

Set

P(ξ, t) = I (ξ, t)− In(ξ, t), U(ξ, t) = v(ξ, t)− vn(ξ, t), (ξ, t) ∈ S±.

Then a direct calculation shows that P(ξ, t) satisfies the following equation in the weak sense:

Pt −
∂

∂ξ
[ρ1(x, t, u)ψxPξ ]ψx = J1 − J1n + R1 in S−, (3.9)
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Pt −
∂

∂ξ
[ρ2(x, t, u)ψxPξ ]ψx = J2 − J2n + R2 in S+, (3.10)

where

R1 =
∂

∂ξ
{[ρ1(x, t, u)ψx − ρ1(x, t, un)ψnx]Inξ }ψx +

∂

∂ξ
[ρ1ψnxInξ ](ψx − ψnx),

R2 =
∂

∂ξ
{[ρ2(x, t, u)ψx − ρ2(x, t, un)ψnx]Inξ }ψx +

∂

∂ξ
[ρ2ψnxInξ ](ψx − ψnx).

Similarly, we can derive the equations for U(ξ, t) in S±.
Since ψx, ψs, ψnx, ψns, Iξ , Inξ , s′, s′n are uniformly bounded, from the equations for P(x, t)

and U(x, t) and the estimates (2.28)–(2.29) we can derive the following energy estimates:∫ 1

−1
|P |2 dξ +

∫ T

0

∫ 1

−1
|Pξ |

2 dξ dt 6 δ

∫ T

0

∫ 1

−1
[|Pξ |2 + |Uξ |2] dξ dt

+ C(δ)

∫ T

0

∫ 1

−1
[P 2
+ U2] dξ dt + C(δ)

∫ T

0
|s′n(t)− s

′(t)|2 dt,∫ 1

−1
|U |2 dξ +

∫ T

0

∫ 1

−1
|Uξ |

2 dξ dt 6 δ

∫ T

0

∫ 1

−1
[|Pξ |2 + |Uξ |2] dξ dt

+ C(δ)

∫ T

0

∫ 1

−1
[P 2
+ U2] dξ dt + C(δ)

∫ T

0
|s′n(t)− s

′(t)|2 dt,

where δ > 0 is a small parameter.
Since T in the above estimates can be replaced by any T ∗ ∈ (0, T ], by first choosing δ

sufficiently small and then using Gronwall’s inequality we obtain∫ 1

−1
[P 2
+ U2] dξ +

∫ T

0

∫ 1

−1
[|Pξ |2 + |Uξ |2] dξ dt 6 C

∫ T

0
|s′(t)− s′n(t)|

2 dt.

It follows that hn→ h and un→ u in L2(0, T ;H 1(Ω)) as n→∞.
Now we use L2,µ-theory (see [20]) to show that un converges to u in Cα,α/2(Q̄T ) as n → ∞.

First of all, from L2,µ-theory for any µ ∈ (0, 1) (see [30]) we have

‖Px‖L2,µ(Q∗T )
6 C‖s′n − s

′
‖L∞(0,T ) + ‖P ‖L2(0,T ;H 1(−1,1)) + ‖U‖L2(0,T ;H 1(−1,1))

6 C‖s − sn‖W 1,∞(0,T ).

Next we use the same technique as in Section 2 to rewrite the nonlinear term ρiP
2
ξ , i = 1, 2, in

divergence form and then introduce W(ξ, t) = U(ξ, t)+ P(ξ, t)2/2. For the equation for W(ξ, t),
we apply L2,µ-theory to obtain

‖Wx‖L2,µ(Q∗T )
6 C[‖Px‖L2,µ(Q∗T )

+ ‖P ‖L2(0,T ;H 1(−1,1)) + ‖U‖L2(0,T ;H 1(−1,1))]
6 C‖s − sn‖W 1,∞(0,T ).

Finally, by applying parabolic interpolation we obtain

‖P ‖Cα,α/2(Q∗T )
+ ‖W‖Cα,α/2(Q∗T )

6 C‖s − sn‖W 1,∞(0,T ),

which approaches 0 as n→∞ since sn→ s in C1+β [0, T ].
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Thus, from the definition ofW we see that un converges to u in Cα,α/2(Q̄T ), which implies that
the mapping M1 is continuous from K1 into K1. 2

Now we use Lemmas 3.1–3.2 and Schauder’s fixed-point theorem to obtain the following main
result.

THEOREM 3.3 Under the assumptions H(2.1)–H(2.4) the problem (1.1)–(1.10) has a unique
classical solution in QT for some T > 0.

Proof. The existence follows from Schauder’s fixed-point theorem. Indeed, from Lemmas 3.1 and
3.2 the mapping M1 is from K1 into K1. Moreover, since the image of K1 under M1 is a subset of
C1+α/2[0, T ] and the embedding from C1+α/2[0, T ] into C1+β [0, T ] is compact when 0 < β <

α/2, it follows that M1 is also compact. Schauder’s fixed-point theorem implies that M1 has a
fixed point s = M[s]. This fixed point s along with (h, u) form a solution of the original problem
(1.1)–(1.10).

To show the uniqueness, we use the same argument as in Lemma 3.2. Suppose (h1, u1, s1) and
(h2, u2, s2) are two solutions of the problem (1.1)–(1.10). Let

h(x, t) = h1(x, t)− h2(x, t), u(x, t) = u1(x, t)− u2(x, t), s(t) = s1(t)− s2(t).

By introducing the same new variables ξ = ψ(x, s) as in Lemma 3.2, we can easily derive the
estimate

‖P ‖L2(0,T ;H 1(−1,1)) + ‖U‖L2(0,T ;H 1(−1,1)) 6 C

∫ T

0
|s′1(t)− s

′

2(t)|
2 dt,

where P(ξ, t) = h(x, t) and U(ξ, t) = u(x, t). Using the free boundary condition (1.6) and the
Sobolev interpolation, we have

|s′1(t)− s
′

2(t)| = |g(u1(s1(t), t))− g(u2(s2(t), t))| 6 C|U(0, t)|

6 ε

∫ 1

−1
|Uξ |

2 dξ + C(ε)
∫ 1

−1
U2 dξ,

where ε is a small parameter. After choosing ε properly and using Gronwall’s inequality, we obtain∫ 1

−1
[|P |2 + |U |2] dξ = 0,

which yields the uniqueness. 2

Now we show that the solution (h(x, t), u(x, t), s(t)) can be extended to any interval [0, T ] for any
T > 0.

THEOREM 3.4 Under the conditions H(2.1)–(2.4), the solution (h, u, s) can be extended to any
interval [0, T ], where s(t) = 0 if the interface x = s(t) intersects the fixed boundary x = 0.

Proof. Suppose T > 0 is arbitrary. From the above proof, we see that the solution (h, u, s) can be
extended as long as the free boundary x = s(t) stays away from the fixed boundary x = 0. If s(t)
stays away from the fixed boundary x = 0 on [0, T ], then the conclusion holds from Theorem 3.3.
On the other hand, suppose x = s(t) intersects the fixed boundary x = 0, say, at t = t∗ < T .
Namely,

lim
t→t∗−

s(t) = 0,

where the existence of the limit is guaranteed by the uniform boundedness of s(t) in C1+β [0, t∗).
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Note that
s′(t) = −g(u(s(t), t)), 0 < t < t∗,

is uniformly bounded on [0, t∗). Moreover, h and u are Hölder continuous in Qt∗ . It follows that

lim
t→t∗

h(·, t) = h(·, t∗) ∈ Cα[0, 1]

and
lim
t→t∗

u(·, t) = u(·, t∗) ∈ Cα[0, 1].

Moreover, from the regularity theory for parabolic equations, we know that h(·, t∗), u(·, t∗) ∈
Cα[0, 1] ∩ C2+α(0, 1). Now we can use h(x, t∗) and u(x, t∗) as new initial values and consider
the problem (1.1)–(1.2) associated with the same initial-boundary conditions in [t∗, T ] (no interface
conditions are involved). By using the same method as in Section 2, we see that this problem has a
unique solution on [t∗, T ]. 2

If the coefficients in (1.1)–(1.2) are smooth, then we can obtain the smoothness of the solution.

THEOREM 3.5 Let 0 < s(t) < 1 on [0, T ]. Suppose all coefficients in (1.1)–(1.2) are smooth and
g ∈ C∞(R). Then h and u are smooth in Q±T and s ∈ C∞(0, T ).

Proof. The idea of the proof comes from [9, 19]. From the interface condition (1.6), we know
that s ∈ C2+α/2(0, T ]. From the regularity theory for parabolic equations we see that h and u
are in C2,1+α/2(Q±T ). Moreover, uxx is continuous up to the interface x = s. This implies that
s ∈ C3+α/2(0, T ]. Then we use the regularity theory again to find that uxxx is continuous up to
x = s(t). By continuing this process, we see that s ∈ C∞(0, T ].

REMARK 3.1 It is easy to see that the results in this paper hold for a more general free-boundary
condition with suitable assumptions:

s′(t) = −g(s(t), u(s(t), t)), 0 6 t 6 T .
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