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Properties of Sobolev-type metrics in the space of curves
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We define a manifold M where objects c ∈ M are curves, which we parameterize as c : S1
→ Rn

(n > 2, S1 is the circle). We study geometries on the manifold of curves, provided by Sobolev-
type Riemannian metrics H j . These metrics have been shown to regularize gradient flows used in
computer vision applications (see [13, 14, 16] and references therein).

We provide some basic results on H j metrics; and, for the cases j = 1, 2, we characterize the
completion of the space of smooth curves. We call these completions “H 1 and H 2 Sobolev-type
Riemannian manifolds of curves”. This result is fundamental since it is a first step in proving the
existence of geodesics with respect to these metrics. As a byproduct, we prove that the Fréchet
distance of curves (see [7]) coincides with the distance induced by the “Finsler L∞ metric” defined
in §2.2 of [18].

1. Introduction

Suppose that c : S1
→ Rn is an immersed curve, where S1

⊂ R2 is the circle; we want to define a
geometry on M , the space of all such immersions c. The tangent space TcM of M at c contains all
the deformations h ∈ TcM of the curve c, which are all the vector fields along c. An infinitesimal
deformation of the curve c in “direction” h will yield (to first order) the curve c(u) + εh(u). For
simplicity, we postpone the details of the definitions (in particular on the regularity of c and h and
on the topology on M) to Section 2.

We would like to define a Riemannian metric on the manifold M of immersed curves; this
means that, given two deformations h, k ∈ TcM , we want to define a scalar product 〈h, k〉c, possibly
dependent on c. The Riemannian metric would then entail a distance d(c0, c1) between the curves
in M , defined as the infimum of the lengths Len(γ ) of all smooth paths γ : [0, 1]→ M connecting
c0 to c1. We define a minimal geodesic to be a path providing the minimum of Len(γ ) in the class
of γ with fixed endpoints.1
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At the same time, we would like to consider curves as “geometric objects,” i.e., curves up to
reparameterization; to this end, we will define the space of geometrical curves as the quotient space
B := M/Diff(S1), that is, the space of immersed curves up to reparameterization. For this reason
we will ask that the metric defined on M be independent of the parameterization of the curves. B
and M are the shape spaces that are studied in this paper.

1.i Shape theory

There are two different (but interconnected) fields of applications for shape theory in computer
vision.

Shape optimization: We want to find a shape that best satisfies a design goal. This is usually done
by minimizing a chosen energy that is defined on shapes.

Shape analysis: We study a family of shapes for purposes of computing statistics, (automatic)
cataloging, probabilistic modeling, etc., and possibly to create an a-priori model for better
shape optimization.

This entails an important remark.

REMARK 1 The aforementioned space B represents “curves up to reparameterization.” A different
approach would be to define the shape space S as “curves up to reparameterization, rotation,
translation, scaling. . . ” which is often more convenient for shape analysis tasks. The Riemannian
metrics we study are not defined on curves up to rotation, translation, scaling, etc., but they are
invariant with respect to joint application of these actions in the sense that d(g ◦ c0, g ◦ c1) =

d(c0, c1) where g is the action of rotation, translation, etc. Therefore the metric can be projected
from B to S.

If one wishes to have a consistent view of the geometry of the space of curves in both shape
optimization and shape analysis, then one should use the same metric when computing distances,
averages and morphings between shapes, as when optimizing with respect to shape. Consistency
is especially important when optimizing an energy that contains an a-priori model obtained from a
shape analysis study. In this case the optimization scheme has natural connections to the geometry
of the shape space (see Section IIA in [14] for more details).

1.ii Notation

We begin by introducing some notation. For a smooth curve c : S1
→ Rn, let

len(c) :=
∫
S1
|ċ(θ)| dθ (1)

be the length of the curve c; we will often write L = len(c), to shorten formulas.
For g : S1

→ Rk , we define the integration with respect to arc parameter∫
c

g(s) ds :=
∫
S1
g(θ)|ċ(θ)| dθ.

Let Ds be the differential operator 1
|∂θ c|

∂θ (the derivative with respect to arc parameter), so that
Dsc is the tangent unit vector, and D2

s c is the curvature vector of c.
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1.iii Origin of the problem

A number of methods have been proposed in shape analysis to define distances between shapes,
averages of shapes, and optimal morphings between shapes. At the same time, there has been
much previous work in shape optimization (for example image segmentation via active contours
and 3D stereo reconstruction via deformable surfaces). In these latter methods, many authors
have defined energy functionals E(c) on curves (or on surfaces), whose minima represent the
desired segmentation/reconstruction, and have then utilized the calculus of variations to derive curve
evolutions toward local minimizers of E(c), often referring to these evolutions as gradient flows.
The reference to these flows as gradient flows implies a certain Riemannian metric on the space of
curves, but this fact has been largely overlooked. We call this metric H 0, and define it by

〈h, k〉H 0 :=
1
L

∫
c

〈h(s), k(s)〉 ds

where h, k ∈ TcM , L is the length of c, the integration is performed with respect to arc parameter,
and 〈h(s), k(s)〉 is the usual Euclidean scalar product in Rn (which we sometimes also write as
h(s) · k(s)).

Unfortunately, gradient flows that are induced by theH 0 metric have many unpleasant properties
and limitations.

EXAMPLE 2 Consider a family C = C(θ, t) evolving by the geometric heat flow (also known as
motion by mean curvature)

∂C

∂t
= D2

sC.

This well known flow is often referred to as the gradient flow for length; indeed, by direct
computation we find that the H 0 gradient is

∇H 0 len(c) = len(c)D2
s c

so the previous statement is true up to a conformal factor 1/len(c), that is,

∂C

∂t
= −

1
len(C)

∇H 0 len(C).

It is important to remark that the geometric heat flow is well-posed only for increasing time.
This limits the usefulness of H 0 gradient flows in shape optimization, as illustrated in the following
example.

EXAMPLE 3 Let T = Dsc be the tangent vector of a planar curve c, and L = len(c). We define
the normal vector N as the unit-length vector obtained by rotating T counterclockwise by the angle
π/2. We define the scalar curvature κ so that D2

s c = κN . Let

avg(c) :=
1
L

∫
c

c(s) ds

be the center of mass of the curve. Let us fix a target point v ∈ R2. Let

E(c) :=
1
2
|avg(c)− v|2
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be a functional that penalizes the distance from the center of mass to v. By direct computation the
H 0 gradient descent flow is

∂c

∂t
= −∇H 0E(c) = 〈v − avg(c), N〉N − κN〈c − avg(c), v − avg(c)〉. (2)

Let P := {w : 〈w − avg(c), v − avg(c)〉 > 0} be the half plane “on the v side”. The first term
〈v − avg(c), N〉N in the gradient descent flow moves the whole curve towards v. The second term
−κN〈c − avg(c), v − avg(c)〉 tries to decrease the curve length out of P and increase the curve
length in P , and this is ill-posed.

P

v

c

c

This is just one example of a large class of energies that may be of interest in shape optimization
but whose H 0 gradient flow is ill-defined. A classical method to overcome such situations is to add
a regularization term to the energy; this remedy, though, does change the energy, and we end up
solving a different problem (see [13, 15, 16]).

The situation is even worse when we consider shape analysis. Surprisingly, H 0 does not yield
a well defined metric structure, since the associated distance is identically zero; this striking fact
was first described in [9], and is generalized to spaces of submanifolds in [5]. So H 0 completely
fails for our stated goal, which is to provide a geometry of the space of curves usable both for shape
optimization and shape analysis.

1.iv Previous work

When the above problems were recognized, there were many attempts at finding a better metric for
curves.

In [17, 18, 19] we proposed a set of desirable metric properties and discussed some models
available in the literature. Eventually we proposed and studied conformal metrics such as

〈h, k〉H 0
φ

:= len(c)
∫
〈h(s), k(s)〉 ds (3)

and proved results regarding this metric. In particular, we showed that the associated distance is
nondegenerate. We also proved that minimal geodesics exist if we restrict ourselves to only unit
length curves with an upper bound on curvature.

The same approach was proposed independently by J. Shah [10], who moreover proved that in
the simplest case given by (3), minimal geodesics are represented by a curve evolution with constant
speed along the normal direction.
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Another possible definition appeared in [7] (by Michor and Mumford), who proposed the metric

〈h, k〉H 0
A

:=
∫
(1+ Aκ2(s))〈h(s), k(s)〉 ds (4)

where κ is the curvature of c, andA > 0 is a fixed constant. They proved many results regarding this
metric, in particular, that the induced distance is nondegenerate, and that the completion of smooth
curves lies between the space Lip of rectifiable curves and the space BV2 of rectifiable curves whose
curvature is a bounded measure.

1.v Sobolev-type Riemannian metrics

In [12] we proposed a family of Sobolev-type Riemannian metrics.

DEFINITION 4 Let c ∈ M , L be the length of c, and h, k ∈ TcM . Let λ > 0. We define, for λ > 0
and j > 1 integer,

〈h, k〉H j := 〈h, k〉H 0 + λL
2j
〈D

j
s h,D

j
s k〉H 0 ,

〈h, k〉
H̃ j := avg(h) · avg(k)+ λL2j

〈D
j
s h,D

j
s k〉H 0 ,

where again avg(h) := L−1 ∫
c
h(s) ds and Djs is the j -th derivative with respect to arc parameter.

Note that 〈h, k〉H 0 = avg(h · k) so the difference in the two metrics above is in substituting the
term avg(h · k) by avg(h) · avg(k).

It is easy to verify that the above bilinear forms are inner products. Note that we have
introduced length dependent scale factors so that these inner products (and corresponding norms)
are independent of curve rescaling.

In the above paper, and in following papers [11, 13, 14, 15, 16] we studied how the use of
Sobolev metrics positively impacts shape optimization tasks. Indeed, we remark that changing
the metric will change the gradient and thus the gradient descent flow. This change will alter
the topology in the space of curves, but the change of topology does not affect the energy to be
minimized nor its global minima.

In these papers we showed that the Sobolev-type gradients regularize the gradient flows of
energies. This is exhibited in numerical experiments and applications, where it is observed that
Sobolev flows will not in general be trapped in local minima due to small scale details or noise. It is
also a mathematical property that a Sobolev metric will yield a lower degree gradient descent PDE
than H 0 and will thereby be well-posed in many cases where the H 0 flow is ill-posed. We provide
two simple examples.

EXAMPLE 5 If E(c) = 1
2 |avg(c)− v|2 is defined as in Example 3, the H̃ 1 gradient f = ∇

H̃ 1E(c)

of E is the unique function f satisfying

avg(f ) = avg(c)− v, λL2Dsf = Dsc〈avg(c)− v, c − avg(c)〉 + α

(where α ∈ Rn is the unique constant such that there exists a periodic solution f to the rightmost
equation). The gradient descent flow is the solution C = C(θ, t) of

∂C

∂t
= −∇H 1E(C); (5)
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during this flow, the length of curves C(·, t) is kept constant; the mean part

avg(∂tC) = v − avg(C)

of this flow simply moves the whole curve so that the center of mass will move towards v.

EXAMPLE 6 (§4.3 in [13]) In the case of the elastic energy E(c) =
∫
κ2 ds =

∫
|D2

s c|
2 ds, the H 0

gradient is ∇H 0E = LDs(2D3
s c + 3|D2

s c|
2Dsc), which includes fourth order derivatives; whereas

the H̃ 1 gradient is

−
2
λL
D2
s c − 3λL(|D2

s c|
2Dsc) ∗ K̃λ (6)

so that the gradient descent flow is an integro-differential second order PDE. The kernel K̃λ is
defined in equation (17) of [13].

In conclusion, Sobolev gradient methods effectively enlarge the family of energies that may be
used in shape optimization—without requiring extra regularization terms.

Since we did find great advantages by using Sobolev-type metrics in shape optimization, we
would like to further analyze the properties of the related Riemannian geometry. These metrics may
indeed eventually satisfy the goal expressed in Section 1.i, that is, provide a consistent geometry of
the space of curves to be used both in shape optimization and in shape analysis.

One question of major interest is whether or not the Riemannian space of curves is complete.
How can we characterize the completion of the space of smooth curves in the metric H j ? This
question is a fundamental first step if we wish to prove that geodesics do exist, but it is also important
in shape optimization since it would be a basic ingredient of any proof of existence and regularity
for minimizing gradient flows.

1.vi Related works.

A family of metrics similar to what we defined in Definition 4 (up to the length scale factors) was
concurrently studied in [6]. In that paper the geodesic equation, horizontality, conserved momenta,
lower and upper bounds on the induced distance and scalar curvatures are computed. In a much
earlier work, Younes [20] had proposed a computable definition of distance of curves, modeled on
elastic curves. This model may be viewed as a Sobolev-type metric in the space of curves up to
rotation, translation and scaling and has been studied in depth in a recent paper [8].

1.vii Paper outline

In the rest of this paper we present a mathematical study of the Riemannian geometry of curves
defined in Definition 4, and specifically the cases j = 1, 2. In Section 2 we properly define
the model space for the manifold of curves, and discuss benefits and shortcomings of different
choices of hypotheses. In Section 2.i we define the Fréchet distance of curves (see [7]) and prove
that it coincides with the distance induced by the “Finsler L∞ metric” defined in Section 2.2 of
[18]. In Section 3 we define H j Sobolev-type Riemannian metrics and prove some of their basic
properties. Eventually we characterize the completion of smooth curves in the H 1 and H 2 metric;
those complete spaces are the “H 1 and H 2 Sobolev-type Riemannian manifolds of curves”.
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2. Spaces of curves

As anticipated in the introduction, we want to define a geometry on M , the space of all immersions
c : S1

→ Rn.
We will sometimes specify exactly what M is, choosing between the space Imm(S1,Rn) of

immersions, Immf(S
1,Rn) of free immersions, and Emb(S1,Rn) of embeddings. We recall that

c : S1
→ R1 is a free immersion when the only diffeomorphism φ : S1

→ S1 satisfying c(u) =
c(φ(u)) for all u is the identity. More details are in §2.4 and §2.5 of [7].

We will equip M with a topology τ stronger than the C1 topology; for any such choice, M is an
open subset of the vector space C1(S1,Rn) (which is a Banach space), so it is a manifold.

The tangent space TcM to M at c contains vector fields h : S1
→ Rn along c.

Note that we represent both curves c ∈ M and deformations h ∈ TcM as functions S1
→ Rn;

this is a special structure that is not usually present in abstract manifolds: so we can easily define
“charts” for M:

REMARK 7 (Charts in M) Given a curve c, there is a neighborhood Uc of 0 ∈ TcM such that for
h ∈ Uc, the curve c+ h is still immersed; then the map h 7→ c+ h is the simplest natural candidate
to be a chart of Φc : Uc → M; indeed, if we pick another curve c̃ ∈ M and the corresponding Uc̃
such that Uc̃ ∩ Uc 6= ∅, then the equality Φc(h) = c + h = c̃ + h̃ = Φc̃(h̃) can be solved for h to
obtain h = (c̃ − c)+ h̃.

The above is trivial but is worth remarking for two reasons: it stresses that the topology τ must
be strong enough to maintain immersions; and is a basis block of what we will do in the space Bi,f
defined below.

We look mainly for metrics in the space M that are independent of the parameterization of the
curves c; to this end, we define the spaces of geometrical curves

Bi = Bi(S
1,R2) = Imm(S1,R2)/Diff(S1)

and
Bi,f = Bi,f(S

1,R2) = Immf(S
1,R2)/Diff(S1)

that are the quotients of the spaces Imm and Immf by Diff(S1); alternatively we may quotient
by Diff+(S1) (the space of orientation preserving automorphisms of S1), and obtain spaces of
geometrical oriented curves.

REMARK 8 (on model spaces and properties) We have two possible choices in mind for the
topology τ to put on M: the topology of the Fréchet space of C∞ functions; or that of a Hilbert
space such as standard Sobolev spaces H j (S1

→ Rn).
Suppose we define on M a Riemannian metric: we would like Bi to have a nice geometrical

structure; we would like our Riemannian geometry to have some useful properties.
Unfortunately, this currently seems an antinomy.
IfM is modeled on a Hilbert spaceH j , then most of the usual calculus carries over; for example,

the exponential map would be locally a diffeomorphism; but the quotient space M/Diff(S1) is not
a smooth bundle (since the tangent to the orbit contains ċ and this is in H j−1 in general!).

If M is modeled on the Fréchet space of C∞ functions, then the quotient space M/Diff(S1) is a
smooth bundle; but some of the usual calculus fails: the Cauchy–Lipschitz theorem on existence of
local solutions to ODEs does not hold in general; and the exponential map is not locally surjective.
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We will suppose in the following that τ is the Fréchet topology of C∞ functions; then Bi,f is a
manifold, the base of a principal fiber bundle, while Bi is not (see §2.4.3 in [7] for details).

To define charts on this manifold, we imitate what was done for M:

PROPOSITION 9 (Charts in Bi,f) Let Π be the projection from Immf(S
1,R2) to the quotient Bi,f.

Let [c] ∈ Bi,f, and pick a curve c such that Π(c) = [c]. We represent the tangent space T[c]Bi,f as
the space of all k : S1

→ Rn such that k(s) is orthogonal to ċ(s). Again we can define a simple
natural chart Φ[c] by projecting the chart Φc (defined in Remark 7):

Φ[c](k) := Π(c(·)+ k(·)),

that is, it moves c(u) in direction k(u); and it is easily seen that the chart does not depend on the
choice of c such that Π(c) = [c]. These maps Φ are a chart of Bi,f.

The proof may be found in [7], or in §4.4.7 and §4.6.6 of [2].
We now define a Finsler metric F on M , that is, a lower semicontinuous function F : TM →

R+ such that F(c, ·) is a norm on TcM for all c.
If γ : [0, 1] → M is a path connecting two curves c0, c1, then we may define a homotopy

C : S1
× [0, 1]→ Rn associated to γ by C(θ, v) = γ (v)(θ), and vice versa.

DEFINITION 10 Given a metric F inM , we could define the standard distance of two curves c0, c1
as the infimum of the lengths ∫ 1

0
F(γ (t), γ̇ (t)) dt

in the class of all γ connecting c0, c1.

This is not, though, the most interesting distance for applications: we are indeed interested in
studying metrics and distances in the quotient space B := M/Diff(S1).

We add a hypothesis on F .

DEFINITION 11 The metric F(c, h) is curve-wise parameterization invariant if it does not depend
on the parameterization of the curves c.

If this is satisfied, then F may be projected to B := M/Diff(S1); we will say that F is a
geometrical metric.

Consider two geometrical curves [c0], [c1] ∈ B, and a path γ : [0, 1] → Bi connecting
[c0], [c1]: then we may lift it to a homotopy C : S1

× [0, 1] → Rn; in this case, the homotopy
will connect a reparameterization c0 ◦ φ0 to a reparameterization c1 ◦ φ1, with φ0, φ1 ∈ Diff(S1).
Since F does not depend on the parameterization, we can factor out φ0 from the definition of the
projected length.

To summarize, we introduce

DEFINITION 12 Given c0, c1, we define the class A of homotopies C connecting the curve c0 to
a reparameterization c1 ◦ φ of the curve c1, that is, C(u, 0) = c0(u) and C(u, 1) = c1(φ(u)). We
define the geometric distance dF of [c0], [c1] in B := M/Diff(S1) as the infimum of the lengths

LenF (C) :=
∫ 1

0
F(C(·, v), ∂vC(·, v)) dv
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in the class of all such C ∈ A.2 Any homotopy that achieves the minimum of LenF (C) is called a
geodesic.

c1oφ

c
0

C

We call such distances dF (c0, c1), dropping the square brackets for simplicity.3

We provide an interesting example of the above ideas in the following section.

2.i L∞-type Finsler metric and Fréchet distance

We digress from the main theme of the paper to prove a result that will be used in the following.
For any fixed immersed curve c and θ ∈ S1, we define for convenience πN : Rn → Rn to be the
projection on the space N(θ) orthogonal to the tangent vector Dsc(θ),

πN(θ)w = w − 〈w,Dsc(θ)〉Dsc(θ) ∀w ∈ Rn. (7)

Consider two immersed curves c0 and c1; the Fréchet distance df (as found in [7]) is defined by

DEFINITION 13 (Fréchet distance)

df(c0, c1) := inf
φ

sup
u
|c1(φ(u))− c0(u)|

where u ∈ S1 and φ runs over the class of diffeomorphisms of S1.

This is a well defined distance in the space Bi (which is not, though, complete with respect to
this distance: its completion is the space of Fréchet curves).

Another similar distance was defined in §2.2 of [18] by a different approach, using a Finsler
metric:

DEFINITION 14 (Finsler L∞ metric) If we wish to define a norm on TcM that is modeled on the
norm of the Banach space L∞(S1

→ Rn), we define

F∞(c, h) := ‖πNh‖L∞ = sup
θ

|πN(θ)h(θ)|.

We define the distance d∞(c0, c1) as in Definition 12.

Section §2.2.1 in [18] discusses the relationship between the distance d∞ and the Hausdorff
distance of compact sets. We discuss here the relationship between df and d∞; indeed, we prove
that df = d∞.

THEOREM 15 df = d∞.

2 Note the difference in notation between Len(C) and len(c), defined in (1).
3 We are abusing notation: these dF are not, properly speaking, distances in the space M , since the distance between c

and a reparameterization c ◦ φ is zero.
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Proof. Fix c0 and c1, and defineA as in Definition 12. We recall that d∞ is also equal to the infimum
of

d∞(c0, c1) = inf
C∈A

∫ 1

0
sup
θ

∣∣∣∣∂C∂v (θ, v)
∣∣∣∣ dv

(the proof follows immediately from Prop. 3.10 in [18]).
Consider a homotopy C = C(u, v) ∈ A connecting the curve c0 to a reparameterization c1 ◦ φ

of the curve c1:

sup
u
|c1(φ(u))− c0(u)| = sup

u
|C(u, 1)− C(u, 0)|

= sup
u

∣∣∣∣∫ 1

0

∂C

∂v
(u, v) dv

∣∣∣∣ 6
∫

sup
u

∣∣∣∣∂C∂v (u, v)
∣∣∣∣ dv

so that df 6 d∞.
On the other hand, let

Cφ(θ, v) := (1− v)c0(θ)+ vc1(φ(θ))

be the linear interpolation. Then

∂Cφ

∂v
(u, v) = c1(φ(u))− c0(u)

(which does not depend on v) so that

sup
u

∣∣∣∣∫ 1

0

∂Cφ

∂v
(u, v) dv

∣∣∣∣ = ∫ sup
u

∣∣∣∣∂Cφ∂v (u, v)
∣∣∣∣ dv

and then, for that particular homotopy Cφ ,

Len∞(Cφ) = sup
u
|c1(φ(u))− c0(u)|.

We compute the infimum over all possible choices of φ to get

d∞(c0, c1) = inf
C

Len∞(C) 6 inf
φ

Len∞(Cφ) = inf
φ

sup
u
|c1(φ(u))− c0(u)| = df(c0, c1). 2

The conclusion of the theorem holds as well if we use orientation preserving diffeomorphisms
Diff+(S1) both in the definition of the Fréchet distance and in the definition of L∞.

3. Sobolev-type H j metrics

We start by generalizing Definition 4. Fix λ > 0. Suppose that h ∈ L2. Then we can expand it in
Fourier series:

h(s) =
∑
l∈Z

ĥ(l) exp
(

2πi
L
ls

)
(8)

where ĥ ∈ `2(Z→ C).
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For any α > 0, given the Fourier coefficients ĥ, k̂ : Z → C of h, k, we define the fractional
Sobolev inner product

〈h, k〉Hα
0

:=
∑
l∈Z
(2πl)2αĥ(l) · k̂(l), (9)

independent of curve scaling; here k̂(l) is the complex conjugate of k̂(l). Then we can define

〈h, k〉Hα := avg(h · k)+ λ〈h, k〉Hα
0
,

〈h, k〉
H̃α := avg(h) · avg(k)+ λ〈h, k〉Hα

0
.

(10)

When α = j is an integer, these definitions coincide with those in Definition 4. So, for any
α > 0, we represent the Sobolev-type metrics by

〈h, k〉Hα =

∑
l∈Z
(1+ λ(2πl)2α )̂h(l) · k̂(l), (11)

〈h, k〉
H̃α = ĥ(0) · k̂(0)+

∑
l∈Z

λ(2πl)2αĥ(l) · k̂(l). (12)

REMARK 16 Unfortunately, for j that is not an integer, the inner products (therefore, norms) are
not local, that is, they cannot be written as integrals of derivatives of the curves. An interesting
representation is by kernel convolution: given r ∈ R+, we can represent them, for j integer >
r + 1/4, as

〈h, k〉
H̃ r =

∫
c

∫
c

Djh(s)K(s − s̃)Djk(s̃) ds ds̃,

that is, 〈h, k〉
H̃ r = 〈D

jh,K ∗Djk〉H 0 , for a specific kernel K . Here ∗ denotes convolution in S1

with respect to arc parameter.

REMARK 17 The norm ‖h‖
H̃ j has an interesting interpretation in connection with applications in

computer vision. Consider a deformation h ∈ TcM and write it as h = avg(h)+ h̃; this decomposes

TcM = Rn ⊕DcM (13)

with
DcM := {h : S1

→ Rn | avg(h) = 0}.

If we equip Rn with its usual Euclidean norm, and DcM with the scale-invariant Hα
0 norm defined

in (9), then we are naturally led to decompose, as in (10),

‖h‖2
H̃α = |avg(h)|2Rn + λ‖h̃‖

2
Hα

0
. (14)

This means that Rn and DcM are orthogonal with respect to H̃α .
In the above, Rn is akin to the space of translations and DcM to the space of non-translating

deformations. That labeling is not rigorous, though, since the subspace of TcM that does not move
the center of mass avg(c) is not DcM , but rather{

h :
∫
S1
h+ (c − avg(c))〈Dsh, T 〉 ds = 0

}
.

Note that
√
〈h, h〉Hα

0
is a norm on DcM (by (16)), and it is a seminorm and not a norm on TcM .
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We define Finsler norms as

FH j (c, h) = ‖h‖H j =
√
〈h, h〉H j , F

H̃ j (c, h) = ‖h‖H̃ j =

√
〈h, h〉

H̃ j ,

and then we define distances dH j and d
H̃ j as explained in Definition 12.

3.i Preliminary results

We improve a result from [12]:4 we show that the norms associated with the inner products H j and
H̃ j are equivalent. We first prove

LEMMA 18 (Poincaré inequalities) Let h : [0, L] → Rn be weakly differentiable, with h(0) =
h(L) (so h is periodically extensible). Then

sup
u
|h(u)− avg(h)| 6

1
2

∫ L

0
|h′(s)| ds. (15)

The constant 1/2 is optimal and is approximated by a family of h such that

h′(s) = a(1[0,ε)(s)− 1[ε,2ε)(s))

when ε→ 0 (for a fixed a ∈ Rn); here 1A is the characteristic function of A.

Proof. Since h(0) = h(L), we have

h(u)− h(0) =
∫ u

0
h′(s) ds = −

∫ L

u

h′(s) ds.

Consequently,

h(u)− h(0) =
1
2

(∫ u

0
h′(s) ds −

∫ L

u

h′(s) ds
)
,

hence

avg(h)− h(0) =
1

2L

∫ L

0

(∫ u

0
h′(s) ds −

∫ L

u

h′(s) ds
)

du,

and therefore

|avg(h)− h(0)| 6
1

2L

∫ L

0

(∫ u

0
|h′(s)| ds +

∫ L

u

|h′(s)| ds
)

du

=
1

2L

∫ L

0

(∫ L

0
|h′(s)| ds

)
du =

1
2

∫ L

0
|h′(s)| ds,

so that (by extending h and replacing 0 with an arbitrary point) we obtain (15). 2

By using the Hölder inequality we can then derive many useful Poincaré inequalities of the form
‖h− avg(h)‖p 6 cp,q,j‖h

′
‖q , like the one below.

4 And we provide a better version that unfortunately was prepared too late for the printed version of [12].
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COROLLARY 19 For p = q = 2,∫ L

0
|h(s)− avg(h)|2 ds 6

L2j

(2π)2j

∫ L

0
|h(j)(s)|2 ds (16)

where the constant c2,2,j = (L/2π)2j is optimal and is achieved by h(s) = a sin(2πs/L) (with
a ∈ Rn).

The proof may be obtained by expanding in Fourier series.

PROPOSITION 20

‖h‖
H̃ j 6 ‖h‖H j 6

√
1+ (2π)2jλ
(2π)2jλ

‖h‖
H̃ j .

Proof. Fix a smooth immersed curve c : S1
→ Rn. Let L = len(c). By Hölder’s inequality, we

have |avg(h)|2 6 L−1 ∫ L
0 |h(s)|

2 ds so that ‖h‖
H̃ j 6 ‖h‖H j . On the other hand,

1
L

∫ L

0
|h(s)− avg(h)|2 ds =

1
L

∫ L

0
|h(s)|2 ds − |avg(h)|2, (17)

so that (by the Poincaré inequality (16)),

‖h‖2
H j =

∫ L

0

(
1
L
|h(s)|2 + λL2j−1

|h(j)(s)|2
)

ds

=
1
L

∫ L

0
|h(s)− avg(h)|2 ds +

∫ L

0
λL2j−1

|h(j)(s)|2 ds + |avg(h)|2

6 |avg(h)|2 + L2j−1
(

1
(2π)2j

+ λ

)∫ L

0
|h(j)(s)|2 ds 6

1+ (2π)2jλ
(2π)2jλ

‖h‖2
H̃ j . 2

More generally, we have

PROPOSITION 21 For i = 0, . . . , j , choose ã0 > 0 and ai > 0 with a0 + ã0 > 0 and aj > 0.
Define an H j -type Riemannian norm5

‖h‖2(a),j := ã0|avg(h)|2 +
j∑
i=0

aiL
2i−1

∫ L

0
|h(i)(s)|2 ds. (18)

Then all such norms are equivalent.
Moreover, choose r with 1 6 r 6 j , and choose b̃0 > 0, bi > 0 with b̃0 + b0 > 0 and br > 0.

Then the norm ‖h‖(a),j is stronger than ‖h‖(b),r .

Proof. The proof is just an application of (17) and of (16) (repeatedly); note also that for 1 6 i < j

the inequality (16) becomes∫ L

0
|h(i)(s)|2 ds 6

L2j−2i

(2π)2j−2i

∫ L

0
|h(j)(s)|2 ds (19)

since avg(h(i)) = 0. 2

5 The scalar product can be easily inferred, by using polarization.
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So our definitions of ‖ · ‖H j and ‖ · ‖
H̃ j are in a sense the simplest choices of a Sobolev-type norm

that are scale invariant; in particular:

REMARK 22 The H j type metric

‖h‖2M :=
∫ j∑

i=0

|h(i)(s)|2 ds

studied in [6] is equivalent to our choices:

b1‖ · ‖H̃ j 6 ‖ · ‖M 6 b2‖ · ‖H̃ j ,

but the constants b1, b2 depend on the length of the curve.

From these propositions, we will deduce some properties of theH 1 metric, and we will find that
they can be extended to H̃ 1 and to more general H j -type metrics defined as in (18).

We now prove a fundamental inequality:

PROPOSITION 23 Let C(u, v) be a smooth homotopy of immersed curves C(·, v). Then

‖∂vC(·, v)‖H 1 >
√
λ

∫
|∂uvC(u, v)| du. (20)

Proof. Fix a smooth immersed curve c : S1
→ Rn, and let L = len(c). Let h : S1

→ Rn be a
vector field. We rewrite for convenience

‖h‖2
H 1 > λL2

〈h′, h′〉H 0 = λL

∫ L

0
|h′(s)|2 ds = λ

∫
|ċ(u)| du

∫
|h′(u)|2|ċ(u)| du

where h′ = Dsh; then by Cauchy–Schwarz,∫
|ċ(u)| du

∫
|h′(u)|2|ċ(u)| du >

(∫
|h′(u)| |ċ(u)| du

)2

.

To conclude, set h(u, v) = ∂vC(u, v) so that Dsh = Ds∂vC = ∂uvC/|∂uC|. 2

As argued in Proposition 21, the above result extends to all H j -type norms (18).
We now relate the H 1-type metric to the L∞-type metrics.

PROPOSITION 24 The H̃ 1 metric is stronger than the L∞ metric defined in Definition 14. As a
consequence, by Proposition 20 and Theorem 15, the H j and H̃ j distances are lower bounded by
the Fréchet distance (with appropriate constants depending on λ).

Proof. Indeed, by (15),

sup
θ

|πN(θ)h(θ)| 6 sup
θ

|h(θ)| |avg(h)| +
1
2

∫
|h′| ds

6 |avg(h)| +

√
L

2

√∫
|h′|2 ds 6

√
2

√
|avg(h)|2 +

L

4

∫
|h′|2 ds

(πN was defined in (7)). For example, choosing λ = 1/4, we obtain

F∞(c, h) 6
√

2‖h‖
H̃ 1 . 2

We also establish the relationship between the length len(c) of a curve and the Sobolev metrics.
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PROPOSITION 25 Suppose again that C(u, v) is a smooth homotopy of immersed curves, and let
L(v) := len(C(·, v)) be the length at time v. Then

∂vL =

∫ 〈
∂uvC,

∂uC

|∂uC|

〉
du 6

∫
|∂uvC| du 6

1
√
λ
‖Cv(·, v)‖H 1

by (20).

There are many interesting consequences:

• We have
|L(1)− L(0)| 6

1
√
λ

Len(C) (21)

where the length Len(C) of the homotopy/path C is computed using either H 1 or H̃ 1 (or using
any metric as in (18) above, but in this case the constant in (21) would change).
• Define the length functional c 7→ len(c) on our space of curves; endow the space of curves with

the H 1 metric; then the length functional is Lipschitz.
• The “zero curves” are the constant curves (of zero length); these are points in the space of curves

where the space of curves is, in a sense, singular; by the above, the “zero curves” form a closed
set in the H 1 space of curves, and an immersed curve c is at distance at least len(c)

√
λ from the

“zero curves”.

But the most interesting consequence is

THEOREM 26 (Completion of Bi with respect to H 1) Let dH 1 be the distance induced byH 1. Then
the metric completion of the space of curves is contained in the space of all rectifiable curves.

Proof. This statement is a bit fuzzy: indeed, dH 1 is not a distance on M , whereas in Bi objects
are not functions, but classes of functions. So it must be understood “up to reparameterization of
curves”, as follows.6

Let (cn)n∈N be a Cauchy sequence. Since dH 1 does not depend on parameterization, we assume
that all cn are parameterized by arc parameter, that is, |∂θcn| = ln constant in θ . By Proposition 24,
all curves are contained in a bounded region; since len(cn) = 2πln by Proposition 25 above, the
sequence ln is bounded. So the (reparameterized) family (cn) is equibounded and equilipschitz; by
the Ascoli–Arzelà theorem, up to a subsequence, cn converges uniformly to a Lipschitz curve c, and
|∂θc| 6 limn ln. 2

We also prove

THEOREM 27 Any rectifiable planar curve is approximable by smooth curves according to the
distance induced by H 1.

To prove this theorem, we will need a lemma from [18]. Let c be a rectifiable curve, and assume
that it is non-constant. We identify S1 with [0, 2π). Let also L2

= L2([0, 2π ]).

LEMMA 28 Suppose that |∂θc| = 1. Define the measurable angle function to be a measurable
function τ : [0, 2π)→ [0, 2π) such that ∂θc(θ) = (cos τ(θ), sin τ(θ)). Set

S = {τ ∈ L2([0, 2π ]) | φ(τ) = (0, 0)}

6 The concept is clarified by introducing the concept of horizontality inM , which we must unfortunately skip for brevity.
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where φ : L2
→ R2 is defined by

φ1(τ ) =

∫ 2π

0
cos τ(s) ds, φ2(τ ) =

∫ 2π

0
sin τ(s) ds

(this is similar to what was done in Srivastava et al. works on “shape representation using direction
functions”, see [3]).

(i) Assume that c is not flat, that is, the image of c is not contained in a line in the plane. Then,
by the implicit function theorem, S is a smooth immersed submanifold of codimension 2 in L2,
locally near τ .

(ii) Moreover, there exists a smooth projection π : V → S defined in a neighborhood V ⊂ L2 of τ
such that, if f (s) is smooth in s, then π(f )(s) is smooth in s.

Proof. (i) The proof is a simple adaptation of the proof of Proposition 2.12 in [18]. Suppose by
contradiction that ∇φ1,∇φ2 are linearly dependent at θ ∈ M , that is, there exists a ∈ R2, a 6= 0,
such that

a1 cos(τ (θ))+ a2 sin(τ (θ(s))) = 0.

This means that, at all θ , ∂θc is orthogonal to (a1, a2), which implies that c is a flat curve. So, if c is
not flat, then by the implicit function theorem (5.9 in [4]) S is a smooth immersed submanifold of
L2, locally near τ .

(ii) We adapt part of the proof of Proposition 2.15 in [18]. Fix τ0 ∈ S associated to a non-flat
curve c0. Let T = Tτ0S be the tangent at τ0. It is the vector space orthogonal to ∇φi(τ0) for i = 1, 2.
Let ei = ei(s) ∈ L2

∩ C∞ be near ∇φi(τ0) in L2, so that the map (x, y) : T × R2
→ L2,

(x, y) 7→ τ = τ0 + x +

2∑
i=1

eiyi, (22)

is a linear isomorphism. Let M ′ be M in these coordinates; by the implicit function theorem, there
exists an open set U ′ ⊂ T with 0 ∈ U ′, an open V ′ ⊂ R2 with 0 ∈ V ′, and a smooth function
f : U → R2 such that M ′ ∩ (U ′ × V ′) is the graph of y = f (x).

We define a smooth projection π ′ : U ′×V ′→ M ′ by setting π ′(x, y) = (x, f (x)). This may be
expressed in L2. Let (x(τ ), y(τ )) be the inverse of (22) and U = x−1(U ′); we define the projection
π : U → M by setting

π(τ) = τ0 + x +

2∑
i=1

eifi(x(τ )).

Then

π(τ)(s)− τ(s) =

2∑
i=1

ei(s)ai, ai := fi(x(τ ))− yi ∈ R, (23)

so if τ(s) is smooth, then π(τ)(s) is smooth. 2

Proof of Theorem 27. We sketch how we can approximate c by smooth curves. Since the metric is
independent of reparameterization and rescaling, we rescale c, and assume that |∂θc| = 1.

As a first step, we assume that c is not flat; then, by Lemma 28, S is a manifold near τ ; and let
π be as in the above lemma.
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Let fn be a sequence of smooth functions with fn→ τ in L2; then gn := π(fn)→ τ . Let then

Gn(θ, t) := π(tτ + (1− t)gn)(θ)

be the projection on S of the linear path connecting gn to τ . Since S is smooth in V , the L2 distance
‖τ − gn‖ is equivalent to the geodesic induced distance; in particular,

lim
n

ES(Gn) = 0

where

ES(G) :=
∫ 1

0
‖∂tG(·, t)‖

2
L2 dt

is the action of the path G in S ⊂ L2.
The above Gn can be associated to a homotopy by defining

Cn(s, t) := c(0)+
∫ s

0
(cos(Gn(θ, t)), sin(Gn(θ, t))) dθ;

note that Cn(s, 0) = c(s) and Cn(s, 1) is a smooth closed curve.
We now compute the H 1 action of Cn,

EH 1(Cn) :=
∫ 1

0
‖∂tCn‖

2
H 1 dt =

∫ 1

0

∫ 2π

0
(|∂tCn|

2
+ |Ds∂tCn|

2) ds dt.

Since any Cn(·, t) is parameterized by arc parameter, we have Ds∂tCn = ∂stCn so

Ds∂tCn = N(s)∂tGn(s, t)

where
N(s) := (− sin(Gn(s, t)), cos(Gn(s, t)))

is the normal to the curve; so the second term in the action EH 1(Cn) is exactly equal to ES(Gn),
that is,

EH 1(Cn) =

∫ 1

0
‖∂tCn‖

2
H 1 dt =

∫ 1

0

∫ 2π

0
|∂tCn|

2 ds dt + ES(Gn).

We can also prove that
∫ 1

0

∫ 2π
0 |∂tCn|

2 ds dt → 0, so EH 1(Cn)→ 0, and then

lim
n

LenH 1(Cn) = 0.

Now we assume that c is flat, that is, the image of c is contained in a line in the plane; then, up
to translation and rotation,

c(θ) = (c1(θ), 0);

since c is parametrized by arc parameter, ċ1 = ±1. Let then f : [0, 2π ]→ R be smooth and with
support in [1, 3] and f (2) = 1; let moreover

C(θ, t) := (c1(θ), tf (θ))

so
|∂θC| =

√
1+ (tf ′(θ))2 > 1.

Then, by direct computation, we can prove that LenH 1(C) < ∞; moreover, any curve C(·, t) for
t > 0 is not flat, so it can be approximated by smooth curves. 2
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3.ii The completion of M according to H 2 distance

Let d(c0, c1) be the geometric distance induced by H 2 on M (Definition 12). Let E(c) :=∫
|D2

s c|
2 ds be defined on non-constant smooth curves. We prove that

THEOREM 29 (i) E is locally Lipschitz in M with respect to d; and the local Lipschitz constant
depends on the length of c.

(ii) As a corollary, all non-constant curves in the completion of C∞(S1
→ Rn) according to the

metric H 2 admit curvature as a measurable function, and the energy of the curvature is finite,
that is, E(c) <∞.

(iii) Vice versa, any non-constant curve admitting curvature in a weak sense and satisfying E(c)
<∞ is approximable by smooth curves.

The rest of this section is devoted to proving the above three statements.

Proof of 29(i). Fix a curve c0; let L0 := len c0 be its length. By (21) and Proposition 21, the length
function c 7→ len(c) is Lipschitz in M with respect to the distance d , that is,

|len(c0)− len(c1)| 6 a1d(c0, c1)

where a1 is a positive constant (dependent on λ).
Choose any c1 with d(c0, c1) < L0/(4a1). Let C(θ, t) be a smooth homotopy connecting c0 to

(a reparameterization of) c1; choose it so that LenC < 2d(c0, c1). Then LenC < L0/(2a1).
Let L(t) := lenC(·, t) be the length of the curve at time t . Since at all times t ∈ [0, 1],

d(c0, C(·, t)) < L0/(2a1), we have |L(t)− L0| < a1L0/(2a1) = L0/2; in particular,

L0/2 < L(t) < L03/2.

By using this last inequality, we are allowed to discard L(t) in most of the following estimates.

We set ‖f ‖ :=
√∫
|f (s)|2 ds and

N(t) := ‖D2
s ∂tC(·, t)‖ =

√∫
|D2

s ∂tC|
2 ds

for convenience; using this notation, we recall that

‖∂tC‖H 2 =

√
λL(t)3N(t)2 +

1
L(t)
‖∂tC‖2;

so ‖∂tC‖H 2 >
√
λL3/2N(t).

Up to reparameterization in the t parameter, we can suppose that the path t 7→ C(·, t) in M
is parametrized by (approximate) arc parameter, that is, ‖∂tC‖H 2 is (almost) constant in t ; so we
assume, with no loss of generality, that ‖∂tC‖H 2 6 2d(c0, c1) for all t ∈ [0, 1], and then N(t) 6
a2d(c0, c1) where a2 = 2/

√
(L0/2)3λ.

We want to prove that
E(c1)− E(c0) 6 a5d(c0, c1)

where the constant a5 will depend on L0 and λ.
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By direct computation

∂tE(C(·, t)) =

∫
|D2

sC|
2
〈Ds∂tC,DsC〉 ds + 2

∫
〈D2

sC, ∂tD
2
sC〉 ds.

We deal with the two terms separately.
By the Poincaré inequality (15) we deduce

sup
θ

|Ds∂tC| 6
1
2

∫
|D2

s ∂tC| ds 6
√
L(t)

√∫
|D2

s ∂tC|
2 ds =

√
L(t)N(t)

since avg(Ds∂tC) = 0. So we estimate the first term as∫
|D2

sC|
2
〈Ds∂tC,DsC〉 ds 6 E(C)

√
L(t)N(t).

On the other hand, the commutator of Ds and ∂t is 〈Ds∂tc,Dsc〉Ds : indeed,

∂tDs =
1
|∂θc|

∂θ∂t +

(
∂t

1
|∂θc|

)
∂θ = Ds∂t −

〈∂t∂θc, ∂θc〉

|∂θc|3
∂θ

= Ds∂t − 〈Ds∂tc,Dsc〉Ds,

so

∂tD
2
sC = Ds∂tDsC − 〈Ds∂tC,DsC〉D

2
sC

= D2
s ∂tC −Ds(〈Ds∂tC,DsC〉DsC)− 〈Ds∂tC,DsC〉D

2
sC

= D2
s ∂tC − 〈D

2
s ∂tC,DsC〉DsC − 〈Ds∂tC,D

2
sC〉DsC − 2〈Ds∂tC,DsC〉D2

sC,

so (since |DsC| = 1)

‖∂tD
2
sC‖ 6 2‖D2

s ∂tC‖ + 3‖D2
sC‖ sup |Ds∂tC|,

which yields an estimate of the second term:∫
〈D2

sC, ∂tD
2
sC〉 ds 6

√
E(C)(2N(t)+ 3

√
E(C)

√
L(t)N(t))

by using Cauchy–Schwarz.
Summing up,

|∂tE(C(·, t))| 6 2
√
E(C)N(t)+ 4E(C)

√
L(t)N(t)

or, since
√
x 6 1+ x,

|∂tE(C(·, t))| 6 2N(t)+ 2E(C)N(t)+ 4E(C)
√
L(t)N(t).

We recall that N(t) 6 a2d(c0, c1), L(t) 6 L03/2, so we rewrite the above as

|∂tE(C(·, t))| 6 2a2d(c0, c1)+ 2E(C)a2d(c0, c1)+ 4E(C)a4a2d(c0, c1)
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with a4 =
√
L03/2. Apply Gronwall’s lemma to obtain

E(c1) 6 (E(c0)+ 2a2d(c0, c1)) exp((2+ 4a4)a2d(c0, c1)).

Let
g(y) := (E(c0)+ 2a2y) exp((2+ 4a4)a2y).

Then E(c1) 6 g(d(c0, c1)); since g is convex, and g(0) = E(c0), there exists a5 > 0 such that
g(y) 6 E(c0) + a5y when 0 6 y 6 L0/(4a1); since we assumed that d(c0, c1) < L0/(4a1), it
follows that

E(c1) 6 E(c0)+ a5d(c0, c1).

Note that a5 is ultimately dependent on L0 and λ.
This ends the proof of the first statement of Theorem 29.

Proof of Theorem 29(ii). To prove the second statement, let (cn)n∈N be a Cauchy sequence. Since
dH 1 6 adH 2 , as in the proof of Theorem 26 we assume that, up to reparameterization and a choice
of subsequence, cn converges uniformly to a Lipschitz curve c.

Let L0 = len c. We have assumed in the statement that c is non-constant, so L0 > 0.
Again, the length function c 7→ len(c) is Lipschitz, so the sequence len(cn) is Cauchy in R,

hence it converges; moreover, c 7→ len(c) is lower semicontinuous with respect to uniform
convergence, so limn len(cn) > len(c) > 0. Consequently, we assume that, up to taking a
subsequence, 2L0 > len(cn) > L0.

We proved above that, in a neighborhood of c of size L0/(8a1), the function E(c) :=∫
|D2

s c|
2 ds is Lipschitz; so the sequence E(cn) is bounded, and therefore (since curves are

parameterized by arc parameter and len(cn) > L0) the energy
∫
|∂2
θ c|

2 ds is bounded. Then ∂θcn are
uniformly Hölder continuous, so by the Ascoli–Arzelà compactness theorem, up to a subsequence,
∂θcn(θ) converges.

As a corollary, limn len(cn) = len(c), c is parameterized by arc parameter, and Dscn(θ)

converges to Dsc(θ).
Since the functional

∫
|∂2
θ cn|

2 ds is bounded in n, a theorem in [1] shows that c admits weak
derivative ∂2

θ c and
∫
|∂2
θ c|

2 ds <∞, and equivalently,
∫
|D2

s c|
2 ds <∞.

Proof of 29(iii). For the third statement, let c be a rectifiable curve, and assume that it is non-
constant, and E(c) < ∞. Since the metric is independent of rescaling, we rescale c, and assume
that |∂uc(u)| = 1.

We expand in Fourier series
c(u) =

∑
n∈Z

ln exp(inu) (24)

(by viewing S1
= R/2π ), and set

C(u, t) :=
∑
n∈Z

ln exp(inu− f (n)t) (25)

with f (n) = f (−n) > 0 and lim f (n)/log(n) = ∞ (for example, f (n) = |n| or f (n) =
(log(|n| + 2))2). Then C(·, t) is smooth for any t > 0.

We want to prove that, for t small, C(·, t) is near c in the H 2 metric. To this end, let C̃ be the
linear interpolator

C̃(u, t, τ ) := (1− τ)c(u)+ τC(u, t) =
∑
n∈Z

lne
inu(1− τ + τe−f (n)t ). (26)
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We will prove that ∫ 1

0

(∫
S1
|∂τ C̃|

2 ds + λL4
∫
S1
|D2

s ∂τ C̃|
2 ds

)
dτ < δ(t) (27)

where limt→0 δ(t) = 0, and L is the length of C̃(·, t, τ ).
We need some preliminary results:

•We prove that ∫
S1
|∂uuc − ∂uuC̃|

2 du < δ1(t) (28)

where limt→0 δ1(t) = 0, uniformly in τ ∈ [0, 1]; indeed,∫
S1
|∂uuc − ∂uuC̃|

2 du = 2πτ 2
∑
n∈Z
|ln|

2
|n|4(1− e−f (n)t )2

and since
2π
∑
n∈Z
|ln|

2
|n|4 = E(c) =

∫
S1
|∂uuc|

2 ds <∞

and limt→0(1− e−f (n)t )2 = 0, we can apply Lebesgue’s dominated convergence theorem.

•We prove that
|∂uc − ∂uC̃| < δ2(t) (29)

where limt→0 δ2(t) = 0 uniformly in u and τ ∈ [0, 1]; indeed,

|∂uc − ∂uC̃| 6 τ
∑
n∈Z
|ln| |n|(1− e−f (n)t )

6

√∑
n∈Z
|ln|2|n|4

√√√√ ∑
n∈Z,n 6=0

1
n2 (1− e

−f (n)t )2

and again we apply Lebesgue’s dominated convergence theorem.

• By the above we also see that for t small,

3/2 > |∂uC̃| > 1/2 uniformly in τ, u. (30)

•We can similarly prove that
|c − C̃| < δ3(t). (31)

Returning to the proof of (27), by direct computation, we have

D2
s ∂τ C̃ =

∂uuτ C̃

|∂uC̃|2
+
〈∂uuC̃, ∂uC̃〉∂uτ C̃

|∂uC̃|4
.

Then, for t small, by (30),

|D2
s ∂τ C̃| 6 4|∂uuτ C̃| + 24|∂uuC̃| |∂uτ C̃|.
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We use the fact that

∂uuτ C̃ = ∂uuC − ∂uuc, ∂uτ C̃ = ∂uC − ∂uc, ∂τ C̃ = C − c,

so by (28) and (29), ∫∫
|D2

s ∂τ C̃|
2 ds dτ 6 a1(δ1(t)+ E(c)δ2(t)),

and by (31),
∫∫
|∂τ C̃|

2 ds dτ 6 8δ3(t). Finally, we combine all the above to obtain (27) with δ(t) =
a2δ3(t)+ λa2(δ1(t)+ E(c)δ2(t)).

This concludes the proof.
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