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We study existence and qualitative properties of traveling wave solutions of a new free boundary
problem which describes fluid flow in diatomite rocks. Diatomites are rather fragile and are
characterized by low permeability, which can increase due to the nonlocal accumulation of damage
caused by the fluid flow. The traveling wave solutions give insight into the behavior near the free
boundaries and show a strong parameter dependence. In particular, we find in certain parameter
ranges solutions with discontinuities across the free boundaries.
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1. Introduction

In this paper we study traveling wave solutions of the system{
ωt = ε

2(ωµ(p − I )
β
+ωx)x + a(1− ω)(p − I )

γ
+,

pt = (ω
αpx)x,

(1)

where a, µ, α, β, γ , ε are positive constants and I > 0. The subscript + indicates the positive part
(y+ = max{y, 0}).

System (1) is motivated by a model presented by Barenblatt & al. [4] for fluid flows in fragile
porous rock, for instance in oil bearing diatomite formations. The confined one-dimensional flow
of a slightly compressible fluid, in a deep reservoir made of elastic porous rock, is described in the
literature [3] by the following equation:

pt = (Kpx)x .
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Here p > 0 represents the pressure of the fluid andK is a coefficient proportional to the permeability
of the rock. Observations in the diatomite oil fields [4] suggest that the permeability of this rock is
an increasing function of the number of the accumulated microcracks. The latter physical quantity
can be taken into account by including into the equations the well known damage parameter ω(x, t),
which is the fraction of the broken bonds at time t around a point x, averaged in a proper way [11].
The damage ω is by definition a scalar field which takes values between 0 and 1. The key point
in [4] was the assumption that K = K(ω) with K(0) = 0 and K ′ > 0. Furthermore, to close the
equations, it was postulated that the damage evolves according to a nonlocal equation (see also [5])
of the form

ωt = [(D(ω, p)ωx)x + f (ω, p)]+.

Here D and f are positive nondecreasing functions of p. Both f and D are equal to zero if p 6 I ,
where I is a nonnegative constant which is related to the strength of the diatomite rock. Moreover,
we can assume that f is some increasing function of the pressure p, and proportional to the fraction
of unbroken bonds (1 − ω). The subscript + expresses the impossibility of damage healing. Since
all traveling wave solutions which we shall construct in this paper satisfy ωt > 0, we have omitted
the subscript + in system (1). In this context (1) can be considered as a model system (see also
[2, 11]). Its particular form makes it possible to distinguish several ranges of parameters α, β, γ, µ
and I .

In [6] we have constructed nonnegative compactly supported solutions, (ω(x, t), p(x, t)), of the
system of partial differential equations (1). In addition it is shown that the spatial supports of ω and
p coincide,

suppω(t) = suppp(t) for t > 0 (2)

(we assume without loss of generality that p = 0 corresponds to the rest pressure of the fluid in the
undamaged zone of the oil reservoir) and that

p > I in the interior of the support for t > 0, (3)

assuming that these properties hold at t = 0. In fact, ω and p are smooth solutions of the pde’s in
the interior of their supports. Finally, it has been shown that the supports do not shrink:

suppω(t1) ⊆ suppω(t2) if 0 6 t1 6 t2. (4)

According to these results system (1) can be viewed as a free boundary problem, and it is natural
to ask how ω and p behave near the boundary of their support. In [6] it has been shown that the
product

ω(p − I )+ vanishes at the interface for almost every t > 0, (5)

but this leaves open the question if ω and (p − I )+ can have jumps at the interfaces.
In the present paper we shall construct traveling wave solutions which show that indeed ω

and (p − I )+ can have jumps, and that their behavior strongly depends on the parameters in
the problem. In Section 3 we state and discuss the main results, comparing with some simplified
problems described in Section 2. In Section 4 we rewrite the equations for the traveling waves in a
more suitable way. In the rest of the paper we prove the results.
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2. Some preliminary remarks

Our main results are quite complicated due to a strong parameter dependence. In particular, it turns
out that the number of traveling wave solutions depends on the values of the parameters in the
system. In this section we shall discuss very briefly two different generalizations of the so-called
porous medium equation:

ut = ε
2(uµux)x, (6)

where µ > 0. In this way we will obtain, at least at an intuitive level, some insight into how
the number of traveling wave solutions can vary for our system (see the discussion at the end of
Section 3).

It is well-known that for any positive wave speed, λ > 0, equation (6) has a unique (up to
translation) traveling wave solution, (

λµ

ε2 (λt − x)+

)1/µ

, (7)

and that any general solution of (6) behaves near a moving interface (say with interface velocity
λ > 0) as such a traveling wave solution ([1, 12]).

As a first generalization we consider the equation

ut = ε
2(uµux)x + u

q , (8)

where 0 < q < 1. The traveling wave solutions of (8) have been extensively studied in the literature;
for their complete characterization and additional references we refer to Chapter 7 of the book by
Gilding and Kersner [8]. In particular, for all λ > 0 and µ > 0 there exists a unique traveling wave
solution in a neighborhood of x = λt which behaves like (7). On the other hand, if ε = 0 there
exists exactly one nontrivial traveling wave solution

uq(x, t) :=
(

1− q
λ

(λt − x)+

)1/(1−q)

if 0 < q < 1. (9)

It turns out that this traveling wave generates for ε > 0 a one-parameter family of traveling wave
solutions if and only if q + µ > 1 (and 0 < q < 1). All these solutions behave like (9) as x → λt

(i.e., they can be written in the form uq(x, t)(1 + o(1)) as x → λt), and as ε → 0 they converge
to (9). Similar results holds if uq is replaced by the Heaviside function H(u) (with the condition
q + µ > 1 replaced by µ > 1).

The second generalization of the porous medium equation (6) that we consider is the system

ut = (vux)x, vt = (uvx)x .

It is not difficult to see that for each wave speed λ > 0 all traveling wave solutions are given by the
one-parameter family

u(x, t) =
1
C
(1− e−λC(λt−x)+), v(x, t) =

1
C
(eλC(λt−x)+ − 1),

where C 6= 0 is the parameter (C = 0 corresponds to u = v = λ(λt − x)+, the solution (7) of
equation (6) with ε = µ = 1). Hence for given λ > 0 the unique traveling wave solution for the
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scalar equation ut = (uux)x is replaced by a one-parameter family in case of the system. All these
traveling wave solutions behave in first approximation like max{λ(λt − x), 0} near the interface
x = λt , so it could still be true that in case of general solutions the speed of the interface determines
the behavior of general solutions near the moving interface.

As a conclusion we could say that in case of the porous medium equation (6) both source terms
and generalizations to systems may generate one-parameter families of traveling wave solutions, at
least for certain parameter values.

3. Main results

We look for traveling wave of solutions of (1) with positive speed λ:

(ω(ξ), p(ξ)), ξ := x − λt, λ > 0.

We suppose that x = λt is the interface, ξ = 0, and in view of the general properties (2), (3) and (4)
we assume that

ω(ξ) = p(ξ) = 0 if ξ > 0 (10)

and
0 < ω(ξ) < 1 and p(ξ) > I if ξ0 < ξ < 0. (11)

Here ξ0 is a negative constant (since we are interested in the local behavior of solutions near the
interface, we focus our attention on traveling waves defined for ξ > ξ0). The upper bound ω(ξ) < 1
is motivated by the physical interpretation of the problem. It is easy to guess from the equation of
system (1) which are the natural free boundary conditions:

−λω = ε2ωµ(p − I )β
dω
dξ

at ξ = 0,

−λp = ωα
dp
dξ

at ξ = 0.

This leads to the following problem.

PROBLEM TW Let λ > 0 be given. Find functions ω(ξ) and p(ξ), defined and smooth in the
interval [ξ0, 0) for some negative constant ξ0, which satisfy

−λ
dω
dξ
= ε2 d

dξ

(
ωµ(p − I )β

dω
dξ

)
+ a(1− ω)(p − I )γ if ξ0 6 ξ < 0, (12)

−λp = ωα
dp
dξ

if ξ0 6 ξ < 0, (13)

0 < ω < 1 and p > I if ξ0 6 ξ < 0, (14)
dω
dξ

< 0 if ξ0 6 ξ < 0, (15)

ω(p − I )→ 0 as ξ ↗ 0, (16)

ε2ωµ(p − I )β
dω
dξ
+ λω→ 0 as ξ ↗ 0. (17)
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It is easy to prove that any solution of Problem TW is a (weak) solution of system (1) in the
sense of [6] (in a neighborhood of ξ = 0).

We briefly comment on the properties (12)–(17):

• (12), (13) and (17) express the equations for ω and p and the interface conditions at ξ = 0;
• (14) and (16) are motivated by the general properties (2), (3) and (10) (see also (11));
• to motivate (15), we distinguish two cases;

lim
ξ↗0

ω(ξ) = 0 and lim
ξ↗0

ω(ξ) > 0

(it follows from elementary BV-estimates that the limit exists and is finite). In the former case
assumption (15) is natural, since ω > 0 if ξ < 0. In the latter case it is enough to observe that

ε2ωµ(p − I )β
dω
dξ
= −λω − a

∫ ξ

0
(1− ω)(p − I )γ < 0

if ξ is small enough.

Now we are ready to list the main results of this paper. In view of (13) and (15) we may define

ω∗ := lim
ξ↗0

ω(ξ) and p∗ := lim
ξ↗0

p(ξ).

By (16) we can distinguish three cases: 0 < ω∗ < 1 and p∗ = I , ω∗ = 0 and p∗ > I , ω∗ = 0 and
p∗ = I . The first two cases concern traveling waves with discontinuities at ξ = 0 (for, respectively,
ω and (p − I )+), while the latter case treats continuous traveling waves.

THEOREM 3.1 (Traveling waves with jumps in ω) Suppose that

0 < ω∗ < 1, ω∗ := lim
ξ↗0

ω(ξ).

(i) Problem TW has a solution for some ξ0 < 0 if and only if I > 0 and 0 < β < 1.
(ii) If I > 0 and 0 < β < 1 the solution of Problem TW is uniquely determined by ω∗ and the

wave speed λ, and it behaves near ξ = 0 (for ξ < 0) as follows:

ω ≈ ω∗ +
ε2λ1−β

(1− β)Iβ
(ω∗)1+αβ−µ|ξ |1−β , p ≈ I + λ(ω∗)−αI |ξ |.

THEOREM 3.2 (Traveling waves with jumps in (p − I )+) Suppose that

p∗ := lim
ξ↗0

p(ξ) > I.

(i) If α > µ, Problem TW has no solution.
(ii) If µ < 1, Problem TW has no solution.

(iii) If µ = 1 and α < 1, for any λ > 0 and p∗ > I which satisfy

4aε2(p∗ − I )β+γ < λ2, (18)

there exist
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(a) a solution of Problem TW which behaves near ξ = 0 (for ξ < 0) as follows:

ω ≈ A+|ξ |, p ≈ p∗ + C+|ξ |
1−α,

where

A+ =
λ

2ε2

(
1+

√
1−

4aε2(p∗ − I )β+γ

λ2

)
(p∗ − I )−β , C+ = λ(1− α)−1p∗A−α+ ;

(b) a one-parameter family of solutions of Problem TW which behave near ξ = 0 (for ξ < 0)
as follows:

ω ≈ A−|ξ |, p ≈ p∗ + C−|ξ |
1−α,

where

A− =
λ

2ε2

(
1−

√
1−

4aε2(p∗ − I )β+γ

λ2

)
(p∗ − I )−β

and C− is defined as C+ with A+ replaced by A−.

(iv) (a) If µ > 1 and α < µ, for any λ > 0 and p∗ > I there exists a solution of Problem TW
which behaves near ξ = 0 (for ξ < 0) as follows:

ω ≈ A|ξ |1/µ, p ≈ p∗ + C|ξ |1−α/µ,

where

A = (λµ)1/µ(p∗ − I )−β/µε−2/µ,

C = λ(µ−α)/µ(p∗ − I )αβ/µp∗(µ− α)−1µ(µ−α)/µε2α/µ.

(b) If µ > 1 and α < 1, for any λ > 0 and p∗ > I there exists a one-parameter family of
solutions of Problem TW which behave near ξ = 0 (for ξ < 0) as follows:

ω ≈ A0|ξ |, p ≈ p∗ + C0|ξ |
1−α,

where

A0 =
a(p∗ − I )γ

λ
, C0 =

λα+1p∗

aα(p∗ − I )αγ (1− α)
.

REMARK 3.1 Observe that A− → A0 and C− → C0 as ε → 0. As a matter of fact, it is not
difficult to show that if ε = 0, for any λ > 0 and p∗ > I Problem TW has a unique solution (ω, p)
which behaves, as ξ → 0−, as follows:

ω ≈ A0|ξ |, p ≈ p∗ + C0|ξ |
1−α.

THEOREM 3.3 (Continuous traveling waves)

(i) Let I > 0. If

β > 1 and α > max
{
µ,
µ(γ + 1)+ (β − 1)

β + γ

}
, (19)
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then Problem TW has a one-parameter family of solutions which behave near ξ = 0 (for
ξ < 0) as follows:

ω ≈ A|ξ |
β−1
αβ−µ , p ≈ I + C|ξ |

α−µ
αβ−µ , (20)

where

A = (ε−4β−2λβ−1Iβ |αβ − µ|β−1
|β − 1| |α − µ|−β)

1
αβ−µ

C = (ε
−2αβ−2α+4µβ−2µ

β−1 λα−µI−µ|αβ − µ|−µ+α|β − 1|−α|α − µ|µ)
1

αβ−µ .

(ii) Let I = 0. If

α > max
{
µ,
µγ + β

β + γ

}
, (21)

then Problem TW has a one-parameter family of solutions which behave near ξ = 0 (ξ < 0)
as

ω ≈ A|ξ |1/α, p ≈ C|ξ |
α−µ
αβ ,

where

A = (ε
2(1−β)
β+γ λαβ(α − µ)−1)1/α,

C = (ε
2(βµ−βα−µ+αγ )

β+γ λα−µβ−µαα−µ(α − µ)µ)1/αβ .

(iii) Let I > 0. If

α < min
{

1,
µ(γ + 1)+ β − 1

β + γ

}
, (22)

then Problem TW has a one-parameter family of solutions which behave near ξ = 0 (for
ξ < 0) as follows:

ω ≈ A|ξ |
γ+1
αγ+1 , p ≈ I + C|ξ |

1−α
αγ+1 ,

where

A = Cγ
a

λ

αγ + 1
γ + 1

,

C = (λ1+αIa−α(αγ + 1)1−α(γ + 1)α(1− α)−1)
1

αγ+1 .

(iv) Let I = 0. If

α < min
{

1,
µγ + β

β + γ

}
, (23)

then Problem TW has a one-parameter family of solutions which behave near ξ = 0 (for
ξ < 0) as follows:

ω ≈ A|ξ |1/α p ≈ C|ξ |
1−α
αγ ,

where

A =

(
λγα

1− α

)1/α

, C = (α1−αγ λ1+α(1− α)−1a−α)1/γ α.
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REMARK 3.2 Observe that in (iii) and (iv) the behavior of the traveling waves does not depend on
ε. It is not difficult to show that if ε = 0, for any λ > 0, α < 1 and I > 0 Problem TW has a unique
solution (ω, p) which behaves, as ξ → 0−, like the solutions of Theorem 3.3(iii) (if I > 0) and
Theorem 3.3(iv) (if I = 0).

REMARK 3.3 Conditions (19), (21), (22) and (23) can be reformulated, respectively, as

β > 1 and
{
α > µ if µ > 1,
(γ + 1)µ+ β < α(β + γ )+ 1 if µ < 1, (19′){

α > µ if µ > 1,
α(β + γ ) > µγ + β if µ < 1, (21′){
α < 1 if µ > 1,
α(β + γ ) < µ(γ + 1) if µ < 1, (22′){
α < 1 if µ > 1,
α(β + γ ) < µγ + β if µ < 1. (23′)

In view of the discussion in Section 2 and Remarks 3.1 and 3.2, it is not difficult to give an
interpretation of the strong parameter dependence of the number of traveling wave solutions and
their behavior near the interface. The one-parameter families of solutions defined by Theorem 3.1(ii)
(ω∗ is the parameter), Theorem 3.2(iii)(a) and (iv)(a) (p∗ is the parameter) and Theorem 3.3(i) and
(ii) are generated, for certain parameter values, by the fact that we deal with a system of diffusion
equations (observe that the coefficients which determine the local behavior strongly depend on ε,
but hardly on a). It follows from Remark 3.2 that the one-parameter families defined by Theorem
3.3(iii) and (iv) are generated by the source term in the equation for ω and the unique solution if
ε = 0 (see Section 2 for a comparison with the solutions generated by uq ). Similarly, concerning
the solutions defined by Theorem 3.2(iii)(b), and (iv)(b) it follows from Remark 3.1 that for ε = 0
a one-parameter family of solutions is generated by a system without diffusion for ω (p∗ is the
parameter), while for ε > 0 this one-parameter family becomes a two-parameter family.

4. A change of variables

In view of (15), we can introduce logω as an independent variable:

y = logω. (24)
As new dependent variables we use

u = −
ε2

λ
ωµ−1(p − I )β

dω
dξ

> 0, (25)

v =

∫
1

p(p − I )β
dp. (26)

We observe that ∫
I

1
p(p − I )β

dp > −∞ ⇔ I > 0 and 0 < β < 1 (27)

and in this case we specify the primitive in (26):

v =

∫ p

I

1
s(s − I )β

ds if I > 0 and 0 < β < 1. (28)
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We observe that
(17) ⇔ ω(u− 1) = 0 at ξ = 0,

which implies that

u = 1 at y = log(ω(0)) if ω > 0 at ξ = 0, (29)
eyu(y)→ 0 as y →−∞ if ω = 0 at ξ = 0. (30)

To determine the equation for u(y) we observe that

du
dy
=

du
dω

dω
dy
= ω

du
dω
= −u+

d(ωu)
dω

= −u−
ε2

λ

d
dξ

(
ωµ(p − I )β

dω
dξ

)
1

dω
dξ

.

Using relations (12), (24) and (25) we obtain

du
dy
= −u−

1
λ

(
−λ

dω
dξ
− a(1− ω)(p − I )γ

)
1

dω
dξ

= 1− u−
a

λ2 (1− ω)ω
µ−1(p − I )β+γ

ε2

u

= 1− u−
ε2a

λ2 (1− e
y)e(µ−1)y h(v)

u
,

where we have set
h(v) := (p − I )β+γ . (31)

The equation for v(y) follows at once from (13), (24), (25) and (26):

dv
dy
=

dv
dp
·

dp
dξ
·

dξ
dω
·

dω
dy
=

1
p(p − I )β

·
−λp

ωα
·
ε2ωµ−1(p − I )β

−λu
· ω =

ε2ωµ−α

u
=
ε2

u
e(µ−α)y .

The proof of the main result is based on the analysis of the system for u(y) and v(y):
du
dy
= 1− u−

ε2a

λ2 (1− e
y)e(µ−1)y 1

u
h(v),

dv
dy
=
ε2

u
e(µ−α)y .

(32)

5. Traveling waves with jumps in ω: proof of Theorem 3.1

Since ω∗ > 0 it follows from (16) that

p→ I as ξ → 0. (33)

Setting y∗ = logω∗ > −∞, we see from (24) that we have to look for solutions of system (32) for
y∗ 6 y 6 y0 for some y0 > y∗ which satisfy (see (29)) the condition

u(y∗) = 1.
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It follows from (26), (27), (28) and (33) that

v(y∗) =

{
0 if I > 0 and 0 < β < 1,
−∞ otherwise.

On the other hand, by (32),

dv
dy
→

ε2

u(y∗)
e(µ−α)y

∗

= ε2e(µ−α)y
∗

as y → y∗, (34)

and hence there exists no solution such that v(y∗) = −∞. It remains to consider the case I > 0 and
0 < β < 1, and it follows at once that there exists a unique solution of (32) satisfying u(y∗) = 1
and v(y∗) = 1. It is straightforward to check the correspondence between the solutions (u(y), v(y))
and (ω(ξ), p(ξ)). The local behavior of ω and p follows easily from the relations

ω − ω∗ ≈
ε2(ω∗)1+α−µ

(1− β)I
(p − I )1−β and

dp
dξ
≈ −λ(ω∗)−αp.

The latter relation follows from (13) and the former from

v ≈
1

(1− β)I
(p − I )1−β (by (28)),

v ≈ ε2(ω∗)µ−α(y − y∗) (by (34)),

and

y − y∗ = log
ω

ω∗
≈
ω − ω∗

ω∗
. 2

6. Traveling waves with a jump in (p − I )+: proof of Theorem 3.2

Since p∗ > I , (16) implies that ω → 0 as ξ ↗ 0. Let v∗ be the value of v (see (26)–(28)) which
corresponds to p∗. We look for solutions of system (32) in (−∞, y0) for some −∞ < y0 < 0 such
that

v→ v∗ as y →−∞. (35)

We claim that
u(y) < 1 for all y < y0. (36)

Indeed, if u(y1) > 1 for some y1 < y0, then (32) implies that

du
dy

6 1− u in (−∞, y1)

and hence (u − 1)ey is nonincreasing in (−∞, y1). Since (u − 1)ey > 0 at y = y1 and u 6= 1 in
(−∞, y1), this means that eyu(y) does not vanish as y →−∞. This contradicts (30).

Proof of (i). It follows from (32) and (36) that

dv
dy

> ε2e(µ−α)y .

If α > µ we conclude that v→−∞ as y →−∞, a contradiction with (35). 2
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Proof of (ii). We set
X(ω) = ωu(logω).

In view of (30), X(ω)→ 0 as ω→ 0. In addition, X satisfies the equation

d
dω
(X2) = 2X

d
dy
(eyu)

dy
dω
= 2X

1
ω

(
ωu+ ω

(
1− u−

ε2a

λ2 (1− ω)ω
µ−1(p − I )β+γ

1
u

))
,

where we have used (24), (31) and (32). Hence

d
dω
(X2) = 2X −

2ε2a

λ2 (1− ω)ωµ(p − I )β+γ 6 2(ω − Cωµ)

for some positive constant C. Here we have used the fact that X 6 ω, by (36), and that 1− ω→ 1
and p−I → p∗−I > 0 as ω→ 0. Hence d

dω (X
2) < 0 for ω small enough; but this is not possible,

since X(0) = 0. 2

Proof of (iii). We look first for solutions u(y) which tend to some constant u∗ ∈ (0, 1] as
y →−∞. Since

du
dy
= 1− u−

ε2a

λ2 (1− e
y)
h(v)

u

and since, by (35), v→ v∗ as y →−∞, we expect that u∗ is a solution of the quadratic equation

u2
− u+

ε2ah(v∗)

λ2 = 0. (37)

If 4ε2ah(v∗) < λ2, which, in view of the definition of h(v), is equivalent to (18), equation (37) has
two solutions:

u± =
1
2
±

1
2

√
1−

4ε2ah(v∗)

λ2 .

We observe that
0 < u− < 1/2 < u+ < 1.

Set
z = (v − v∗)e(α−1)y, v = v∗ + ze(1−α)y .

Then u and z satisfy the system
du
dy
= 1− u−

ε2a

λ2 (1− e
y)

1
u
h(v∗ + ze(1−α)y),

dz
dy
=
ε2

u
− (1− α)z.

(38)

If u→ u± as y →−∞, asymptotically the system becomes
du
dy
= f (u, z) := 1− u−

ε2ah(v∗)

λ2u
,

dz
dy
= g(u, z) :=

ε2

u
− (1− α)z.

(39)
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System (39) has two equilibrium points:

(u+, z+) :=
(

1
2
+

1
2

√
1−

4ε2ah(v∗)

λ2 ,
ε2

(1− α)u+

)
,

(u−, z−) :=
(

1
2
−

1
2

√
1−

4ε2ah(v∗)

λ2 ,
ε2

(1− α)u−

)
.

Linearizing around these equilibria we obtain the Jacobian matrix(
fu(u±, z±) fz(u±, z±)

gu(u±, z±) gz(u±, z±)

)
=

(
−2+ 1/u± 0

−ε2/u2
± −(1− α)

)

which has two eigenvalues:

λ1 = −(1− α) < 0, λ±2 = −2+
1
u±
=

{
< 0 if u = u+,
> 0 if u = u−.

By standard theory, system (39) has a unique solution (u(y), z(y)) in a neighborhood of −∞ such
that

(u(y), z(y))→ (u+, z+) as y →−∞

and a one-parameter family of solutions such that

(u(y), z(y))→ (u−, z−) as y →−∞.

By [9, Chapter IV, Theorems 2.1 and 3.1], the same result holds for the original nonautonomous
system (38).

Going back to the original variables we obtain Theorem 3.2(iii). We observe that h(v∗) =
(p∗ − I )β+γ . The behavior of the solutions near ξ = 0 follows easily from the relations

v ≈ v∗ +
1
u±
·
ε2

1− α
e(1−α)y = v∗ +

1
u±
·
ε2

1− α
ω1−α,

v − v∗ ≈
1

p∗(p∗ − I )β
(p − p∗),

ωαdp ≈ −λp∗dξ. 2

Proof of (iv). The proof of part (a) is similar to the one of (iii). Setting

z = (v − v∗)e−(µ−α)y

we obtain the system
du
dy
= 1− u−

ε2a

λ2 (1− e
y)

1
u
h(v∗ + e(µ−α)yz)e(µ−1)y,

dz
dy
=
ε2

u
− (µ− α)z.



TRAVELING WAVE SOLUTIONS 389

Asymptotically, as y →−∞, the system reduces to
du
dy
= 1− u,

dz
dy
=
ε2

u
− (µ− α)z,

and the linearized system around the equilibrium point (1, ε2/(µ− α)) has two negative
eigenvalues, −1 and −(µ− α). We omit the details of the proof.

To prove part (b) we look for solutions (u(y), v(y)) such that

u(y)→ 0 as y →−∞.

The equation for u suggests that such a solution should satisfy

ue−(µ−1)y
→

ε2ah(v∗)

λ2 .

Therefore we set
z = ue−(µ−1)y and q = (v − v∗)e−(1−α)y .

This leads to the system
dz
dy
= −µz+ e−(µ−1)y

(
1−

ε2a

λ2 (1− e
y)

1
z
h(v∗ + qe(1−α)y)

)
,

dq
dy
= −(1− α)q +

ε2

z
.

To eliminate the factor e−(µ−1)y we introduce a new independent variable:

t = e−(µ−1)y
→∞ as y →−∞.

Hence z and q satisfy
dz
dt
= −

1
µ− 1

(
1−

ε2a

λ2 (1− t
−

1
µ−1 )

1
z
h(v∗ + qt

−
1−α
µ−1 )

)
+

µ

µ− 1
z

t
,

dq
dt
=

1
µ− 1

(
(1− α)q −

ε2

z

)
1
t
.

(40)

To obtain an autonomous system we introduce a third dependent variable:

s2n
= 1/t, n ∈ N,

hence
s2n
= 1/t → 0 as t →∞.
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This leads to the system

dz
dt
= −

1
µ− 1

(
1−

ε2a

λ2 (1− |s|
2n 1

µ−1 )
1
z
h(v∗ + q|s|

2n 1−α
µ−1 )

)
+

µ

µ− 1
s2nz,

dq
dt
=

1
µ− 1

(
(1− α)q −

ε2

z

)
s2n,

ds
dt
= −

s2n+1

2n
.

(41)

The system can be written in the following way:

dz̃
dt
= −

1
µ− 1

λ2

ε2ah(v∗)
z̃+ Z(z̃, q̃, s),

dq̃
dt
= Q(z̃, q̃, s),

ds
dt
= S(s).

(42)

Here z̃ = z− ε2ah(v∗)/λ2, q̃ = q(1−α)−λ2/ah(v∗) and S(s) ≡ −s2n+1/2n. Moreover, near the
origin we have the asymptotic expansions

Q(z̃, q̃, s) ≈
(1− α)s2n

µ− 1

(
q̃ +

λ4

ε2a2h2(v∗)
z̃

)
+O(s2nz̃2),

Z(z̃, q̃, s) ≈ O(|s|2nϕ + z̃2), ϕ = min
{

1,
1− α
µ− 1

}
.

In system (42) we are interested in the stability of the equilibrium point (0, 0, 0).
Let n > (µ− 1)/2(1− α). Then the functionsQ, Z and S are smooth in a neighborhood of the

origin. In particular, we have

Q(0, 0, 0) = Z(0, 0, 0) = S(0) = 0, |∇Q(0, 0, 0)| = |∇Z(0, 0, 0)| = S′(0) = 0.

Therefore we apply center manifold theory (see [7]). In view of [7, Chapter I, Theorem 1] there
exists a smooth invariant manifold z̃ = L(q̃, s) (the so called “center manifold”) such that

L(0, 0) ≡ 0, (43)
|∇L(0, 0)| ≡ 0. (44)

The flow on this invariant manifold is governed by the system
dq̃
dt
= Q(L(q̃, s), q̃, s),

ds
dt
= S(s).

(45)

From the asymptotic expansion of Q and (43) and (44), we get
dq̃
dt
=
(1− α)q̃s2n

µ− 1
+ o(s2n+1

+ |q̃|s2n),

ds
dt
= −

s2n+1

2n
.
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After the change of variables τ = log t = −2n log s the equations on the center manifold are
dq̃
dτ
=
(1− α)q̃
µ− 1

+ o(|s| + |q̃|),

ds
dτ
= −

s

2n
.

The origin is unstable and the flux diagram of the system is represented in Figure 1. In particular,
there exists a unique solution converging asymptotically to the origin as t → ∞. We denote by
(z̄(t), q̄(t)) the corresponding solution in the original coordinate system (z, q) and in Figure 2 we
represent it by Γ in the coordinate system (z, q, t).

s

q̃

FIG. 1. The flux diagram on the center manifold.

z

q

C

Γ

Wm Wm+1

t

FIG. 2. The invariant manifolds Wm, and the center manifold C represented in the system of coordinates (z, q, t); Γ is the
unique asymptotically stable trajectory on the center manifold.
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Our goal is to show that there is a one-parameter family of solutions which converge
asymptotically to (ε2ah(v∗)/λ2, λ2/a(1− α)h(v∗)) as t → ∞. In order to achieve this result we
rewrite the equations for the new variables x1 = z − z̄ and x2 = q − q̄. The system assumes the
following general form:

Ẋ = F(X, t), X =

(
x1
x2

)
.

We denote by Φ the flux of our system, so that

X(t) = Φ(X0; t, t0)

is the trajectory at time t which is equal toX0 at time t0. Hence we consider a family of time-discrete
fluxes

Φm(X) = Φ(Xm; tm+1, tm)

where ti+1 = ti +∆t . We can now write the family in the form

Φm(X) = AmX + αm(X),

where Am denotes the exponential matrix

exp
∫ tm+1

tm

JF(X, t)|X=0 dt (J is the Jacobian)

and αm(X) = O(|X|2) contains the higher order terms and is C1
loc-bounded uniformly in m. We

claim that in our case for m large enough the matrices Am have a spectral gap, i.e. there are two
constants ν1 < 1 6 ν2 such that the eigenvalues λ1m and λ2m satisfy λ1m 6 ν1 < ν2 6 λ2m for m
large enough.

Indeed, JF(X, t)|X=0 is nothing but the Jacobian of the map defined, for fixed t , by the right
hand side of (40), evaluated at (z̄(t), q̄(t)):−

ε2ah(v∗ + q̄(t)t
−

1−α
µ−1 )(1− t−

1
µ−1 )

(µ− 1)z̄(t)2λ2 +
µt

µ+ 1
t
−

1−α
µ−1 ah′(v∗ + q̄(t)t

−
1−α
µ−1 )(1− t−

1
µ−1 )

(µ− 1)z̄(t)λ2

1
t

1
z̄(t)2(µ− 1)

1− α
t(µ− 1)

 .
A straightforward calculation shows that this matrix has two real eigenvalues δ1(t) < δ2(t) which
satisfy

δ1(t)→−δ1∞ ≡ −
λ2

ε2(µ− 1)ah(v∗)
< 0 and δ2(t) = O

(
1
t

)
→ 0 as t →+∞.

(Observe that δ1(t) converges to the coefficient of the linear term on the right hand side of (42).)
The eigenvalues of the matrix Am are

λ1m = exp
∫ tm+1

tm

δ1(t) dt, λ2m = exp
∫ tm+1

tm

δ2(t) dt,

and the spectral gap follows since λ1m → exp(−δ1∞∆t) and λ2m ↘ 1. In these hypotheses the
Perron–Hadamard theorem [10] claims that for each m there exists a unique one-dimensional C1

manifold Wm such that:
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A. In the system of coordinates x̂1m, x̂2m such that Amx̂im = λimx̂im, the manifold can be
represented as a graph:

Wm ≡ {(x̂1m, φm(x̂1m))};

B. Φm(Wm) = Wm+1;

C. Wm = {X ∈ R2 : ‖Φm+L ◦ · · · ◦Φm(X)‖
L→∞
−−→ 0};

D. The family of manifolds depends continuously in the C1 topology on the family Φm.
E. The tangent set of φm is invariant under the action of the differential of Φm.

It follows from D that in the three-dimensional space (z, q, t) (see Figure 2) we obtain a two-
dimensional C1 manifold W given by the union of all the Wm obtained by varying continuously
the time discretization ∆t . In Figure 2 we denote the center manifold by C. The manifold W is
transversal to the center manifold and the intersection is Γ . All the trajectories contained in W
converge asymptotically to Γ (and hence to (ε2ah(v∗)/λ2, λ2/a(1− α)h(v∗),∞)) and form a one-
parameter family. Our proof is complete if we can prove that these are all the trajectories satisfying
this property.

By contradiction we denote by Γ̄ such a trajectory which does not belong toW . Applying again
the Perron–Hadamard theorem we obtain another C1 two-dimensional manifold W̄ containing Γ̄ .
Since the eigenvectors corresponding to δ1(t) (or λ1m) asymptotically, as t →∞ (or asm→+∞),
point into the z-direction, it follows from E that, as t →∞, the z-direction is tangent to the invariant
manifold W at the equilibrium point. Moreover, by (44), the z-direction is orthogonal to the center
manifold. The intersection of C and W̄ is a solution of the problem, which converges asymptotically
to the equilibrium. By the uniqueness of the asymptotically stable solution on the center manifold,
W̄ intersects C in Γ . Hence there are two distinct two-dimensional invariant manifolds W and W̄
given by the Perron–Hadamard theorem and intersecting on Γ , and we have a contradiction.

The asymptotic behavior of the solutions as ξ ↗ 0 follows easily from the relations

v ≈ v∗ +
λ2

a(p∗ − I )β+γ (1− α)
ω1−α

(
since

dv
dy
=
ε2

z
e(1−α)y ≈

λ2

a(p∗ − I )β+γ
e(1−α)y

)
,

v − v∗ ≈
1

p∗(p∗ − I )β
(p − p∗),

and ωαdp ≈ −λp∗dξ. 2

7. Continuous traveling waves: proof of Theorem 3.3

Proof of (i). Let h(v) = (p − I )γ+β (cf. (31)). Set

H(y) = h(v(y))e−ky

for some k > 0, and consider u and H satisfying
du
dy
= 1− u−

ε2a

λ2 (1− e
y)

1
u
He(k+µ−1)y,

dH
dy
= −kH + p(β + γ )

ε2

u
H

2β+γ−1
β+γ e

(µ−α+k
β−1
β+γ

)y
.

(46)
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Choosing

k =
(α − µ)(β + γ )

β − 1

reduces the latter equation to

dH
dy
= −kH + p(β + γ )

ε2

u
H

2β+γ−1
β+γ .

If condition (19) is satisfied, then

k > 0 and k + µ− 1 > 0.

It is natural to look for solutions u(y)→ 1 as y → −∞. In this case asymptotically, as y → −∞,
the system reduces to 

du
dy
= 1− u,

dH
dy
= −kH + ε2I (β + γ )H

2β+γ−1
β+γ ,

which has the equilibrium point

(u,H) = (1, (ε2I (β − 1)(α − µ)−1)
β+γ
1−β ).

Linearizing around the equilibrium leads to one negative and one positive eigenvalue (β > 1). If we
argue as in the previous sections, the rest of the proof is straightforward. 2

Proof of (ii). As in the proof of (i), system (46) is replaced by
du
dy
= 1− u−

ε2a

λ2 (1− e
y)

1
u
He(k+µ−1)y,

dH
dy
= −kH + (β + γ )

ε2

u
H 2β+γ /β+γ e

(µ−α+k
β

β+γ
)y
,

and we choose

k =
(α − µ)(β + γ )

β
.

By (21), k > 0 and k + µ− 1 > 0, and linearizing around the asymptotic equilibrium point(
1,
(
α − µ

ε2β

)1+γ /β)
yields one positive and one negative eigenvalue. We leave the details to the reader.

Proof of (iii). Let u and h be defined as before. We look for solutions such that u(y) vanishes as
y →−∞, and set

ϕ(y) = e−ryu(y), ψ(y) = e−ρyh(v(y)),
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where r and ρ are positive constants to be determined. Then ϕ and ψ satisfy
dϕ
dy
= −(r + 1)ϕ + e−ry

(
−
ε2a

λ2 (1− e
y)
ψ

ϕ
e(µ−1+ρ−r)y

)
,

dψ
dy
= −ρψ + (I + ψ

1
β+γ e

ρ
β+γ

y
)(β + γ )

ε2

ϕ
ψ

2β+γ−1
β+γ e

(µ−α+ρ
β−1
β+γ
−r)y

.

Choosing r and ρ such that

µ− 1+ ρ − r = µ− α + ρ
β − 1
β + γ

− r = 0,

we obtain

ρ =
(β + γ )(1− α)

γ + 1
and r = µ− α +

(1− α)(β − 1)
γ + 1

.

We observe that ρ > 0 (since α < 1) and r > 0 (since, by (22), (γ + 1)r = µ(γ + 1) + β − 1 −
α(β + γ ) > 0).

We introduce the new independent variable

t = e−ry →+∞ as y →−∞.

Then 
dϕ
dt
= Φ(ϕ,ψ, t) :=

r + 1
rt

ϕ −
1
r

(
1−

ε2a

λ2 (1− t
−1/r)

ψ

ϕ

)
,

dψ
dt
=

1
t
Ψ (ϕ,ψ, t) :=

ψ

rt

(
ρ − (I + ψ

1
β+γ t

−
ρ

r(β+γ ) )(β + γ )
ε2

ϕ
ψ

β−1
β+γ

)
.

(47)

Since Φ(ϕ∗, ψ∗,+∞) = Ψ (ϕ∗, ψ∗,+∞) = 0 if we set

ϕ∗ =
ε2a

λ2 ψ
∗ and ψ∗ =

(
λ2I (γ + 1)
a(1− α)

) β+γ
γ+1
,

it is natural to look for solutions such that

ϕ(r)→ ϕ∗ and ψ(t)→ ψ∗ as t →∞.

The structure of the system (47) is very similar to the one of (40) and we proceed as in the proof
of Theorem 3.2(iv)(b). Linearizing around (ϕ∗, ψ∗), we obtain a matrix which, for large t , behaves
like 

−
1
rϕ∗

ε2a

λ2rϕ∗

λ2(1− α)(β + γ )
ε2a(γ + 1)rt

(1− β)(1− α)
(γ + 1)rt

 .
Introducing s = t−1/n for n large enough, one easily proves the existence of a smooth two-
dimensional center manifold which, at (ϕ∗, ψ∗, 0), is orthogonal to the vector (−λ2, ε2a, 0). On
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replacing t by τ = log t , the linear approximation of the equation for ψ(τ) − ψ∗ and s(τ ) on the
center manifold is governed by the matrix

1− α
r

0

0 −
1
n

 .
Since 1−α > 0, the center manifold contains a unique solution converging to (ϕ∗, ψ∗). This defines
a solution (ϕ̄, ψ̄) converging to (ϕ∗, ψ∗) as t → ∞. The Jacobian matrix of the map defined, for
fixed t , by the right hand side of (47), evaluated at (ϕ̄(t), ψ̄(t)), is given by the matrix

r+1
rt
−

ε2a(1−t−1/r )ψ̄

rλ2ϕ̄2
ε2a(1−t−1/r )

rλ2ϕ̄

ε2(β+γ )(I+ψ̄
1

β+γ t
−

ρ
r(β+γ ) )ψ̄

1+ β−1
β+γ

rtϕ̄2
ρ
rt
−

ε2(2β+γ−1)(I+ψ̄
1

β+γ t
−

ρ
r(β+γ ) )ψ̄

β−1
β+γ

rtϕ̄
+

ε2ψ̄
β

β+γ

rt
1+ ρ

r(γ+β) ϕ̄

 .
In particular, as t → ∞, its trace converges to −1/rϕ∗ < 0 and its determinant behaves as
−(1− α)/r2tϕ∗ < 0. Hence it has two real eigenvalues δ1(t) < 0 < δ2(t) which satisfy

δ1(t)→−
1
rϕ∗

and δ2(t) = O

(
1
t

)
→ 0 as t →+∞. (48)

Arguing as in the proof of Theorem 3.2(iv)(b) we obtain the existence of a one-parameter family of
solutions. The behavior of the solutions near ξ = 0 follows at once from the relations

p − I = h
1

β+γ ≈ e
ρy
β+γ ψ∗

1
β+γ = ω

1−α
γ+1

(
λ2I (γ + 1)
a(1− α)

) 1
γ+1
,

dp
dξ
≈ −λIω−α.

Proof of (iv). We proceed as in the proof of (iii) and introduce ϕ = e−ryu and ψ = e−ρyh. This
yields the system 

dϕ
dy
= −(r + 1)ϕ + e−ry

(
−
ε2a

λ2 (1− e
y)
ψ

ϕ
e(µ−1+ρ−r)y

)
,

dψ
dy
= −ρψ + e

ρ
β+γ

y
(β + γ )

ε2

ϕ
ψ

2β+γ
β+γ e

(µ−α+ρ
β

β+γ
−r)y

.

Requiring that µ− 1+ ρ − r = µ− α + ρ β
β+γ
− r = 0 we obtain

ρ =
(1− α)(β + γ )

γ
and r = µ− 1+

(1− α)(β + γ )
γ

.

By (23) both ρ and r are positive. We set t = e−ry . Then
dϕ
dt
=
(r + 1)
rt

ϕ −
1
r

(
−
ε2a

λ2 (1− t
−1/r)

ψ

ϕ

)
,

dψ
dt
=
ψ

rt

(
ρ − (β + γ )

ε2

ϕ
ψ

β
γ+β

)
,
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and arguing as before it is natural to look for solutions converging, as→∞, to (ϕ∗, ψ∗), where

ϕ∗ =
ε2a

λ2 ψ
∗ and ψ∗ =

(
λ2γ

a(1− α)

)1+β/γ

.

Linearizing around (ϕ∗, ψ∗) yields the matrix −
1
rϕ∗

ε2a

λ2rϕ∗

λ2(1− α)(β + γ )
ε2aγ rt

−
β(1− α)
γ rt

 ,
and introducing s as before we find a smooth center manifold orthogonal, at (ϕ∗, ψ∗, 0), to
(−λ2, ε2a, 0). The equations for ψ(τ) − ψ∗ and s(τ ) (τ = log t) on the center manifold are, in
linear approximation, governed by 

1− α
r

0

0 −
1
n

 .
and the rest of the proof is identical to the previous one. 2
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