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A quasilinear parabolic singular perturbation problem
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We study the following singular perturbation problem for a quasilinear uniformly parabolic operator
of interest in combustion theory:

divF(∇uε)− ∂tuε = βε(uε),

where uε > 0, βε(s) = (1/ε)β(s/ε), ε > 0, β is Lipschitz continuous, suppβ = [0, 1] and β > 0 in
(0, 1). We obtain uniform estimates, we pass to the limit (ε → 0) and we show that, under suitable
assumptions, the limit function u is a solution to the free boundary problem

divF(∇u)− ∂tu = 0 in {u > 0},

uν = α(ν,M) on ∂{u > 0},

in a pointwise sense and in a viscosity sense. Here uν denotes the derivative of u with respect to the
inward unit spatial normal ν to the free boundary ∂{u > 0}, M =

∫
β(s) ds, α(ν,M) := Φ−1

ν (M)

andΦν(α) := −A(αν)+αν ·F(αν), where A(p) is such that F(p) = ∇A(p) with A(0) = 0. Some
of the results obtained are new even when the operator under consideration is linear.
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1. Introduction

In this paper we study a singular perturbation problem for a quasilinear uniformly parabolic operator
of interest in combustion theory. The problem under consideration is the following:

divF(∇uε)− ∂tuε = βε(uε), (Pε)

in a domain D ⊆ RN+1 with uε > 0, βε(s) := (1/ε)β(s/ε) and ε > 0 small. Here β is a Lipschitz
continuous function, suppβ = [0, 1] and β > 0 in (0, 1).

In the particular case of the heat operator, problem (Pε) takes the form

∆uε − ∂tu
ε
= βε(u

ε). (1.1)
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This problem appears in combustion theory in the description of the propagation of curved,
premixed deflagration flames. The function uε represents the normalized temperature of the mixture,
more precisely, uε = λ(Tf − T ε) where Tf is the flame temperature and λ is a normalization factor.
We point out that uε may also be seen as the concentration of the reactant, so it is in general assumed
to be nonnegative. The parameter ε involved in the model represents the inverse of the activation
energy (see Appendix B for the derivation of equations (1.1) and (Pε)) .

The study of the limit as ε → 0 (the high activation energy analysis) of problem (1.1) was
proposed in the 1930s (see [29]) and has received a lot of attention in recent years. It has been
shown that, under certain assumptions, it is possible to pass to the limit in (1.1) and that the limit
function u is a solution to the free boundary problem

∆u− ∂tu = 0 in {u > 0},

|∇u| =
√

2M on ∂{u > 0},

where M =
∫
β(s) ds. We refer to [5, 17, 13, 14, 15, 23, 18, 28, 24, 1] for the precise results and

assumptions. See also the survey paper [27].
In the present study we consider a family of nonnegative solutions to problem (Pε) and we show

that under suitable assumptions the limit function u is a solution to the free boundary problem

divF(∇u)− ∂tu = 0 in {u > 0},
Φ(∇u) = M on ∂{u > 0},

in a sense that will be made precise later. HereM is as above,Φ(p) := −A(p)+p ·F(p) and A(p)
is such that F(p) = ∇A(p) with A(0) = 0.

More precisely, we show that under suitable assumptions the limit function u is a solution to the
free boundary problem

divF(∇u)− ∂tu = 0 in {u > 0},
uν = α(ν,M) on ∂{u > 0},

(P )

where uν denotes the derivative of u with respect to the inward unit spatial normal ν to the free
boundary ∂{u > 0}, α(ν,M) := Φ−1

ν (M) and Φν(α) := −A(αν) + αν · F(αν) (M and A as
above).

We point out that the derivation of the functions Φ and Φν appearing in the free boundary
condition requires a nontrivial analysis. Therefore we postpone it to Section 5.

Let us observe that we may also write the free boundary condition as

|∇u| = α(ν,M) on ∂{u > 0},

with ν, M and α(ν,M) as before.
In order to achieve our goal we proceed as follows: in Section 4 we consider a family uε of

nonnegative solutions to (Pε) in a domain D ⊂ RN+1 which are uniformly bounded in L∞ norm in
D and we obtain uniform estimates on the family uε that allow the passage to the limit as ε → 0.
We also show that the limit function u satisfies

divF(∇u)− ∂tu = µ,

with µ a nonnegative Radon measure supported on the free boundary D ∩ ∂{u > 0}.



PERTURBATION PROBLEM 449

In Section 5 we analyze some particular limits that are crucial to understanding the behavior of
general limits. In particular, we show that the free boundary condition is satisfied in the special case
the limit function is u = α〈x − x0, ν〉

+ for some unit vector ν ∈ RN and α > 0 (Theorem 5.1).
We remark that obtaining such a result in the evolutionary case is a nontrivial matter—as occurred
with the heat operator (cf. [14, 28, 24]). Thus, delicate auxiliary estimates are required to achieve
this purpose (see Lemma 4.5). In Section 5 we also present some examples of different operators
and we exhibit the resulting free boundary condition.

In Section 6 we prove upper bounds for the gradient of limit functions, which are related to the
free boundary condition.

In Section 7 we show that, under suitable assumptions, the free boundary condition is satisfied in
a pointwise sense. This is so either at free boundary points where there is an inward spatial normal
in the parabolic measure-theoretic sense (Theorem 7.1), or at free boundary points where the free
boundary is locally a differentiable surface (Theorem 7.2), provided a nondegeneracy condition
holds at that point.

Finally, we prove in Section 8 (Theorems 8.1 and 8.2) that limit functions are viscosity
supersolutions and viscosity subsolutions of the free boundary problem (P ) under certain
assumptions (see Remarks 8.2 to 8.4 for a discussion of our assumptions).

Let us mention that Theorem 8.2 is new even if the operator is linear, since the results of this
kind available in the literature for the heat operator in the one phase case are obtained either under
stronger assumptions on the limit function u or with a different concept of viscosity solution.

We also point out that in the recent work [1], in the case of the heat operator, in neighborhoods
of free boundary points satisfying a certain flatness condition in some space direction, the free
boundary was proved to be smooth (see Remark 8.5).

Concerning the assumptions on our quasilinear operator, we point out that at some stages we
are able to improve our results in the particular case of an operator taking an isotropic form. In that
case, we additionally assume that A(p) = f (|p|) so we have F(p) = ∇A(p) = (f ′(|p|)/|p|)p.
In the free boundary problem (P ), we then get α(ν,M) = α(M)—the free boundary condition is
independent of ν—and thus the free boundary problem becomes

divF(∇u)− ∂tu = 0 in {u > 0},
|∇u| = α(M) on ∂{u > 0},

where α = α(M) is the unique positive number such that −f (α)+ αf ′(α) = M .
Our work also includes a section with some preliminary results (Section 3) and Appendix A,

where we prove results on asymptotic developments at regular boundary points for nonnegative sub-
and supersolutions to homogeneous quasilinear parabolic equations, used throughout the paper.

2. Notation and assumptions

We will assume that the function F in equation (Pε) can be obtained as

F(p) = ∇A(p), ∀p ∈ RN , (2.1)

with
A(0) = 0 and A ∈ C3+α(RN ,R) (2.2)

for some α > 0. We will also assume that the operator

Lu := divF(∇u)− ∂tu (2.3)
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is uniformly parabolic: there are constants 0 < ϑmin 6 ϑmax such that

ϑmin|ξ |
2 6

N∑
i,j=1

∂Fi

∂pj
(p)ξiξj 6 ϑmax|ξ |

2
∀ξ, p ∈ RN . (2.4)

Observe that (2.4) implies

(F (p)− F(q)) · (p − q) > ϑmin|p − q|
2
∀p, q ∈ RN . (2.5)

We will also assume, without loss of generality, that F(0) = 0, and thus the assumptions above
imply that the function A is nonnegative.

The functions uε considered here will be weak solutions to (Pε) in a domain D ⊆ RN+1.
For the notion of weak solution we refer to [22, Chapter V]. We remark that, from our regularity
assumptions on F and β it follows that, given a weak solution uε of (Pε) in D, we have uε ∈
H 2+α,1+α/2(D′) for every D′ ⊂⊂ D (see [22]). Here we use the notation of [22] for Hölder spaces.

In addition, we will frequently consider solutions to the homogeneous equation

Lu = divF(∇u)− ∂tu = 0

in some domain D ⊆ RN+1. The regularity assumptions on F above also imply that weak solutions
to this equation are inH 3+α,(3+α)/2(D′) for anyD′ ⊂⊂ D (see, for instance, [19, Chapt. 3, Sect. 5]).

At some stages of the work we will restrict ourselves to an isotropic form of the operator L. In
that case we will additionally assume that

A(p) = f (|p|), A as in (2.1), (2.6)

for some function f with f (0) = f ′(0) = 0, and thus F(p) = (f ′(|p|)/|p|)p. If (2.6) is assumed,
equation (Pε) takes the form

div
(
f ′(|∇uε|)

|∇uε|
∇uε

)
− ∂tu

ε
= βε(u

ε).

We remark (see Lemma 3.1) that if (2.6) holds the function F satisfies (2.4) if and only if

ϑmin 6 f ′′(s) 6 ϑmax ∀s > 0, (2.7)

and (2.7) implies that ϑmin 6 f ′(s)/s 6 ϑmax for s > 0.
Throughout the paper N will denote the spatial dimension and the following notation will be

used:
For any x0 ∈ RN , t0 ∈ R and τ > 0,

Bτ (x0) := {x ∈ RN : |x − x0| < τ },

Bτ (x0, t0) := {(x, t) ∈ RN+1 : |x − x0|
2
+ |t − t0|

2 < τ 2
},

Qτ (x0, t0) := Bτ (x0)× (t0 − τ
2, t0 + τ

2),

Q−τ (x0, t0) := Bτ (x0)× (t0 − τ
2, t0],
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and for any set K ⊆ RN+1,

Nτ (K) := {(x, t) : (x, t) ∈ Qτ (x0,t0) for some (x0, t0) ∈ K},

N−τ (K) := {(x, t) : (x, t) ∈ Q−τ (x0,t0) for some (x0, t0) ∈ K}.

When necessary, we denote points in RN by x = (x1, x
′) with x′ ∈ RN−1. Also 〈·, ·〉 will refer

to the usual scalar product in RN . Given a function v we write v+ := max(v, 0). In addition the
symbols ∇,∆ and div will denote the corresponding operators in space variables and the symbol ∂p
will denote the parabolic boundary.

We will say that a function v is of class Liploc(1, 1/2) in a domain D ⊆ RN+1 if for every
D′ ⊂⊂ D there exists a constant L = L(D′) such that

|v(x, t)− v(y, τ )| 6 L(|x − y| + |t − τ |1/2)

for all (x, t), (y, τ ) in D′. If the constant L above does not depend on the set D′ we will say that
v ∈ Lip(1, 1/2) in D.

We assume that the functions βε are defined by scaling of a single function β : R→ R satisfying

(1) β is Lipschitz continuous,
(2) β > 0 in (0, 1) and β ≡ 0 otherwise,
(3)

∫ 1
0 β(s) ds = M ,

for some constant M > 0. Finally, we define

βε(s) :=
1
ε
β

(
s

ε

)
and its primitive

Bε(u) :=
∫ u

0
βε(s) ds. (2.8)

Observe that Bε(u) =
∫ u

0 βε(s) ds =
∫ u/ε

0 β(s) ds 6 M and Bε(ε) = M .

3. Preliminary results

For the sake of completeness we collect in this section some preliminary results for the operator L
defined in (2.3) that will be used throughout the paper.

We start with the following lemma, which deals with the isotropic case.

LEMMA 3.1 Assume (2.6), which implies F(p) = (f ′(|p|)/|p|)p. Then the function F satisfies
(2.4) iff the function f satisfies (2.7). Moreover, (2.7) implies that ϑmin 6 f ′(s)/s 6 ϑmax for
s > 0.

Proof. First observe that, since we have assumed that f ′(0) = 0, (2.7) implies that ϑmin 6
f ′(s)/s 6 ϑmax for s > 0.

Now observe that in the present case

DF(p) =

(
f ′′(|p|)−

f ′(|p|)

|p|

)
p ⊗ p

|p|2
+
f ′(|p|)

|p|
I,
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and the constants ϑmin and ϑmax are bounds for the minimal and maximal eigenvalues of DF(p).
We notice that p is the only nontrivial eigenvector of p ⊗ p and satisfies (p ⊗ p)p = |p|2p. Then
the result follows from the fact that DF(p)p = f ′′(|p|)p and that DF(p)ξ = (f ′(|p|)/|p|)ξ for
any ξ orthogonal to p. 2

The rest of the results in the section deal with general operators. We get

LEMMA 3.2 (Comparison principle) Let Ω ⊂ RN be a bounded domain. Consider two functions
U and w, both in H 1

loc(Ω × (0, T ))∩C(Ω × [0, T ]) such that LU 6 0 and Lw > 0 in Ω × (0, T )
and U > w on ∂p(Ω × (0, T )). Then U > w in Ω × (0, T ).

Proof. Let 0 < τ < T . Let ψ ∈ H 1(Ω × (0, τ )) ∩ C(Ω × [0, τ ]) be a nonnegative function
vanishing in a neighborhood of the parabolic boundary of Ω × (0, τ ). We infer that∫∫

Ω×(0,τ )
[(F (∇w)− F(∇U)) · ∇ψ + (w − U)tψ] dx dt 6 0.

We take δ > 0 and ψ = (w − U − δ)+, and use (2.5) to obtain

0 >
∫∫

Ω×(0,τ )
[(F (∇w)− F(∇U)) · ∇(w − U − δ)+ + (w − U − δ)t (w − U − δ)+] dx dt

>
∫∫
{w>U+δ}∩{t<τ }

ϑmin|∇w −∇U |
2 dx dt +

1
2

∫∫
Ω×(0,τ )

d
dt

[(w − U − δ)+]2 dx dt

=

∫∫
{w>U+δ}∩{t<τ }

ϑmin|∇w −∇U |
2 dx dt +

1
2

∫
Ω

[(w(x, τ )− U(x, τ)− δ)+]2 dx,

since (w −U − δ)+ = 0 on {t = 0}. Hence both integrals are equal to zero. Since the choice of the
time τ was arbitrary, the second integral being zero and the continuity of the functions then imply
that (w − U − δ)+ = 0 in Ω × [0, T ]. As the choice of δ > 0 was arbitrary, the result holds. 2

LEMMA 3.3 (Comparison principle in an unbounded domain) Let U ∈ Lip(1, 1/2) be a solution
to LU = 0 in the set A := {x1 > 0} ∩ {t > c} ⊂ RN+1, for some constant c ∈ R, with U = 0 on
∂pA. Then U 6 0 in A.

Proof. Let L be the Lip(1, 1/2) seminorm of U . For R > 0, define hR(x, t) := (1/R)(L|x|2 +
2NLϑmax(t − c)) and observe that LhR 6 0, as

div(F (∇hR))−
∂hR

∂t
=

N∑
i=1

∂Fi

∂pi

(
2Lx
R

)
2L
R
−

2NLϑmax

R

6 Nϑmax
2L
R
− ϑmax

2NL
R
= 0.

Let AR := A ∩ {|x| 6 R} and notice that U 6 hR in ∂pAR , since for x such that |x| = R,

U(x, t) = U(x1, x
′, t)− U(0, x′, t) 6 Lx1 6 L|x| = L

|x|2

R
6 hR(x, t).

Then, by the comparison principle (see, for instance, Corollary 9.2 in [25]) it follows that U 6 hR
in AR . Now, let (y, s) ∈ A. Then for all R > |y| we have (y, s) ∈ AR , and hence

U(y, s) 6 hR(y, s) =
1
R
(L|y|2 + 2NLϑmax(s − c)).

Letting R→∞, we get U(y, s) 6 0. 2
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The comparison principle (Lemma 3.2) allows us to obtain

LEMMA 3.4 Let Cτ := Q−τ (0, 0) ∩ {x1 > 0} and let U ∈ H 1
loc(C1) ∩ C(C1) be such that LU 6 0

in C1, with U > 0 in C1 and U(0, 0) = 0. Then

U(x, t) > αx1 in Cγ
for some α > 0 and 0 < γ < 1.

Proof. Let A = Ω × (−1, 0), with Ω ⊂ B3/4(0) ∩ {x1 > 0} a smooth domain, having B1/2(0) ∩
{x1 = 0} as part of its boundary. Let w ∈ H 2+α,1+α/2(A) be such that Lw = 0 in A and w = ϕ on
∂pA, with ϕ a smooth function such that 0 < ϕ < U on ∂pA∩Qτ (x̄, t̄) and ϕ ≡ 0 on ∂pA\Qτ (x̄, t̄),
for some x̄ ∈ ∂Ω ∩ {x1 > 0}, 0 < t̄ < 1 and τ > 0 small enough. Then, in Cγ ,

w(x1, x
′, t) = wx1(0, x

′, t)x1 + o(x1) > αx1,

for some α > 0 and γ > 0 small, the last inequality being due to the application of the Hopf
principle (Thm. 6, Chap. 3 in [26]).

Now, from Lemma 3.2 we deduce that U > w in A, and the result follows. 2

REMARK 3.1 Let u be a solution to Lu = 0 in D ⊆ RN+1. Since, by our assumptions, u ∈
H 3+α,(3+α)/2(D′) for any D′ ⊂⊂ D, we have ut = divF(∇u) =

∑
i,j

∂Fi
∂pj
(∇u)uxj xi in D, and

thus, taking the derivative in direction ek , we get(
∂u

∂xk

)
t

=

∑
i,j

∂Fi

∂pj
(∇u)

(
∂u

∂xk

)
xj xi

+

∑
i,j,l

∂2Fi

∂pj∂pl
(∇u)

(
∂u

∂xk

)
xl

uxj xi in D.

That is, v = uxk satisfies the linear parabolic equation

vt =
∑
i,j

aij (x, t)vxj xi +
∑
l

bl(x, t)vxl in D

with continuous coefficients aij (x, t) = ∂Fi
∂pj
(∇u) and bl(x, t) =

∑
i,j

∂2Fi
∂pj ∂pl

(∇u)uxj xi .

If we now let v = ∂u
∂ν

for any vector ν ∈ SN−1, we arrive at the same conclusion.

REMARK 3.2 Let F be as in Section 2. Now, instead of the uniformly parabolic operator Lu =
divF(∇u)− ∂tu defined in that section, let us consider the operator L̃u = div F̃ (∇u)− ∂tu where
F̃ (p) = −F(w − p), for some w ∈ RN fixed.

Clearly, F̃ has the same smoothness as F . Moreover, if we let q ∈ RN , we notice that

∂F̃

∂qj
(q) =

∂

∂qj
(−F(w − q)) =

∂F

∂pj
(w − q),

and therefore F̃ satisfies (2.4) and L̃ is a uniformly parabolic operator as well.
We obtain the same conclusion if we consider instead the operator L̄u = div F̄ (∇u)−∂tuwhere

F̄ (p) = F(p − w).

4. Uniform estimates and passage to the limit as ε→ 0

In this section we consider a family uε of nonnegative solutions to (Pε) in a domain D ⊂ RN+1

which are uniformly bounded in L∞ norm in D and we obtain uniform estimates on the family uε

that allow the passage to the limit as ε→ 0.
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We also show that the limit function u is a solution of the free boundary problem (P ) in a very
weak sense. More precisely,

Lu = µ in D,

with µ a nonnegative Radon measure supported on the free boundary D ∩ ∂{u > 0}.
We start by recalling Theorem 1 of [13].

PROPOSITION 4.1 Let uε be a family of uniformly bounded nonnegative solutions of (Pε) in
B1(x0)×(−1, 0). Then this family is locally uniformly Lipschitz in space, i.e. there exists a constant
L, depending only on the uniform bound of ‖uε‖L∞ , such that

|∇uε| 6 L in B1/2(x0)× (−1/2, 0).

As a consequence we get

COROLLARY 4.1 Let uε be a family of nonnegative solutions to (Pε) in a domain D ⊂ RN+1such
that ‖uε‖L∞(D) 6 A for some A > 0. Let K ⊂ D be a compact set and let τ > 0 be such that
N−τ (K) ⊂ D. There exists a constant L = L(τ,A) such that

|∇uε| 6 L in K.

Proof. The proof is similar to the one of Corollary 2.1 in [14] and uses the fact that, for (x0, t0) ∈ K ,
the function vετ (x, t) := (1/τ)uε(x0 + τ(x − x0), t0 + τ

2t) satisfies in the present case

divF(∇vετ )− ∂tv
ε
τ = βε/τ (v

ε
τ ) in B1(x0)× (−1, 0). 2

The following lemma prepares the proof of Hölder 1/2 continuity in time.

LEMMA 4.1 Let u be a smooth nonnegative function in B1(0) × [0, 1/(4Nϑmax + Λ)] such that
|Lu| 6 Λ in {u > 1} for some Λ > 0. Assume that |∇u| 6 L for some L > 0. Then there exists a
constant C = C(L) such that

|u(0, T )− u(0, 0)| 6 C for 0 6 T 6
1

4Nϑmax +Λ
.

Proof. The proof is an adaptation of the proof of Proposition 2.2 in [14]. Assume that L > 1. We
want to prove that if Qt0,t1 := B1(0)× (t0, t1) ⊂ {u > 1} and t1 − t0 6 1/(4Nϑmax +Λ), then

|u(0, t1)− u(0, t0)| 6 2L. (4.1)

In fact, let
h±(x, t) := u(0, t0)± L± 2L|x|2 ± (4LNϑmax +Λ)(t − t0).

Then
h±t − divF(∇h±) = ±(−4LTr(DF(±4Lx))+ 4LNϑmax +Λ).

Observe that Tr(DF) 6 Nϑmax. Let

t2 = sup
t06t̄6t1

{t̄ : |u(0, t)− u(0, t0)| 6 2L ∀t0 6 t 6 t̄}
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and assume t2 < t1. We compare u with h+ and h− in Qt0,t2 . By the Lipschitz continuity in space
with Lipschitz constant L we deduce that

h− 6 u 6 h+ in ∂pQt0,t2 .

On the other hand,

h−t − divF(∇h−) 6 −Λ 6 ut − divF(∇u) 6 Λ 6 h+t − divF(∇h+).

Hence,
h− 6 u 6 h+ in Qt0,t2 .

In particular, since t2 − t0 < t1 − t0 6 1/(4Nϑmax +Λ),

|u(0, t2)− u(0, t0)| 6 |h−(0, t2)− u(0, t0)| = |h+(0, t2)− u(0, t0)|

< L+ L
4Nϑmax +Λ/L

4Nϑmax +Λ
< 2L.

The strict inequality contradicts the assumption t2 < t1.
We now want to deduce the result for a cylinder Q0,T with 0 < T 6 1/(4Nϑmax + Λ) which

is not necessarily a subset of {u > 1}. But this can be done exactly as in [14], and thus the proof is
complete. 2

As a consequence we obtain the following theorem

THEOREM 4.1 Let uε be a family of nonnegative solutions to (Pε) in a domain D ⊂ RN+1 such
that ‖uε‖L∞(D) 6 A for some A > 0. Let K ⊂ D be compact and let τ > 0 be such that
N2τ (K) ⊂ D. There exist constants L = L(τ,A) and C = C(L, τ,A) such that

|∇uε(x, t)| 6 L and |uε(x, t +∆t)− uε(x, t)| 6 C|∆t |1/2 for (x, t), (x, t +∆t) ∈ K .

Proof. The proof follows the one of Theorem 2.1 in [14] and makes use of Corollary 4.1, Lemma
4.1, and the scaling invariance with respect to parabolic scaling of problem (Pε), observed in the
proof of Corollary 4.1. 2

We are now ready to pass to the limit. We obtain

LEMMA 4.2 Let uε be a family of nonnegative solutions to (Pε) in a domain D ⊂ RN+1 such
that ‖uε‖L∞(D) 6 A for some A > 0. For every εn → 0 there exists a subsequence εn′ → 0 and
u ∈ Liploc(1, 1/2)(D) such that

(1) uεn′ → u uniformly on compact subsets of D,
(2) ∂uεn′ /∂t → ∂u/∂t weakly in L2

loc(D),
(3) ∇uεn′ → ∇u in L2

loc(D),
(4) Lu > 0 in D,
(5) Lu = 0 in D \ ∂{u > 0},
(6) for every compact K ⊂ D there exists CK > 0 such that∥∥∥∥∂uε∂t

∥∥∥∥
L2(K)

6 CK for every ε > 0.



456 C. LEDERMAN AND D. OELZ

Proof. We modify the proof of Lemma 3.1 in [14]. Let K ⊂ D be compact and let τ > 0 be such
that N3τ (K) ⊂ D.

Point (1) is a consequence of the uniform Lipschitz continuity in space and Hölder continuity in
time, by Theorem 4.1, and the Arzelà–Ascoli theorem.

For the proof of (2) we let (x0, t0) ∈ K and multiply the equation (Pε) by uεtψ
2 where ψ ∈

C∞c (Bτ (x0)), ψ > 0 and ψ ≡ 1 on Bτ/2(x0). After integration by parts we obtain∫∫
Qτ (x0,t0)

ψ2(uεt )
2 dx dt

= −

∫∫
Qτ (x0,t0)

[
2ψ∇ψ · F(∇uε)uεt + ψ

2 ∂

∂t
(A(∇uε)+ Bε(uε))

]
dx dt

6 2‖ψuεt ‖L2(Qτ (x0,t0))
‖∇ψ · F(∇uε)‖L2(Qτ (x0,t0))

−

[∫
Bτ (x0)

ψ2(A(∇uε)+ Bε(uε)) dx
]t0+τ 2

t0−τ 2

6 C1‖ψu
ε
t ‖L2(Qτ (x0,t0))

+ C2,

for some constants C1, C2 > 0, where we used the uniform bounds on ∇uε, F(∇uε) and A(∇uε)
and the definition (2.8). This implies the boundedness of ‖ψuεt ‖L2(Qτ (x0,t0))

uniformly in ε. Since
these bounds do not depend on the choice of (x0, t0) in K , from the compactness of K we conclude

‖uεt ‖L2(K) 6 C,

where the constant C does not depend on ε. The weak convergence of a subsequence uεn′t is an
immediate consequence.

Let us prove (5). Since u is continuous we may split the domain D as follows: D = {u > 0}
∪ ∂{u > 0} ∪ {u ≡ 0}◦, with {u > 0} open. It is obvious that u satisfies Lu = 0 in {u ≡ 0}◦. Since
uεn′ → u uniformly in K , for every (x0, t0) ∈ {u > 0} there is a neighborhood U(x0, t0) ⊂ K such
that uεn′ > u(x0, t0)/2 > 0 in U(x0, t0). Therefore βεn′ (u

εn′ ) = 0 on U(x0, t0) for n′ large enough,
which implies that uεn′ satisfies Luεn′ = 0 on U(x0, t0), and the same holds for the limit u. Here
we have used the fact that ∇uεn′ → ∇u uniformly in U(x0, t0) (see, for instance, Theorem 12.1
in [25]).

Let us now prove (3). Since Lu = 0 in {u > 0}, if we let δ > 0 and multiply this equation by
(u− δ)+ψ(x), with ψ as above, then integrate by parts in Qτ (x0, t0) and let δ→ 0, we get∫∫

{u>0}
F(∇u) · ∇uψ = −

∫∫
{u>0}

uF(∇u) · ∇ψ −
1
2

∫
{u>0}

u2(x, t0 + τ
2)ψ(x)

+
1
2

∫
{u>0}

u2(x, t0 − τ
2)ψ(x).

On the other hand, since ψ > 0 and βε(uε)uε > 0,∫ t0+τ
2

t0−τ 2

∫
Bτ (x0)

F(∇uε) · ∇uε ψ 6 −
∫ t0+τ

2

t0−τ 2

∫
Bτ (x0)

uε F(∇uε) · ∇ψ

−
1
2

∫
Bτ (x0)

(uε)2(x, t0 + τ
2)ψ(x)

+
1
2

∫
Bτ (x0)

(uε)2(x, t0 − τ
2)ψ(x),
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and therefore

lim sup
n′→∞

∫∫
Qτ (x0,t0)

F(∇uεn′ ) · ∇uεn′ ψ 6
∫∫

Qτ (x0,t0)
F(∇u) · ∇uψ,

which together with (2.5) implies

lim
n′→∞

∫∫
Qτ (x0,t0)

F(∇uεn′ ) · ∇uεn′ ψ =

∫∫
Qτ (x0,t0)

F(∇u) · ∇uψ.

This and (2.5) finally yield

ϑmin lim
n′→∞

∫∫
Qτ/2(x0,t0)

|∇uεn′ −∇u|2 6 lim
n′→∞

ϑmin

∫∫
Qτ (x0,t0)

|∇uεn′ −∇u|2 ψ

6 lim
n′→∞

∫∫
Qτ (x0,t0)

(F (∇uεn′ )− F(∇u)) · (∇uεn′ −∇u)ψ

= 0,

which implies (3).
Finally, we observe that Luεn′ > 0 and that, for a subsequence, ∇uεn′ → ∇u pointwise in K .

Therefore, Lu > 0, and the proof is now complete. 2

We next show that the limit function u is a solution to a free boundary problem in a very weak sense.

PROPOSITION 4.2 Let uεj be a family of nonnegative solutions to (Pεj ) in a domain D ⊂ RN+1

such that uεj → u uniformly on compact subsets of D and εj → 0. There exists a nonnegative
Radon measure µ supported on the free boundaryD∩∂{u > 0} such that βεj (u

εj )→ µ as measures
in D, and therefore

Lu = µ in D,

that is, for every φ ∈ C∞c (D),∫∫
D
(uφt − F(∇u) · ∇φ) dx dt =

∫∫
D
φ dµ. (4.2)

Proof. We find uniform L1 estimates for βεj (u
εj ) and obtain (4.2) by proceeding as in [14,

Proposition 3.1]. In the present case we use the uniform bound and the pointwise convergence
(for a subsequence) of ∇uεj . 2

As a consequence of the convergence result (Lemma 4.2), we obtain

LEMMA 4.3 Let uεj be a family of nonnegative solutions to (Pεj ) in a domain D ⊂ RN+1 such
that uεj → u uniformly on compact subsets of D and εj → 0. Let (x0, t0) ∈ D ∩ ∂{u > 0} and let
(xn, tn) ∈ D ∩ ∂{u > 0} be such that (xn, tn)→ (x0, t0) as n→∞. Let λn→ 0 and

uλn(x, t) =
1
λn
u(xn + λnx, tn + λ

2
nt), (uεj )λn(x, t) =

1
λn
uεj (xn + λnx, tn + λ

2
nt).

Assume that uλn → U as n → ∞ uniformly on compact subsets of RN+1. Then there exists
j (n)→+∞ such that, for every jn > j (n) we have εjn/λn→ 0 and
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(1) (uεjn )λn → U uniformly on compact subsets of RN+1,
(2) ∇(uεjn )λn → ∇U in L2

loc(R
N+1),

(3) ∂
∂t
(uεjn )λn →

∂
∂t
U weakly in L2

loc(R
N+1).

Also, we deduce that

(4) ∇uλn → ∇U in L2
loc(R

N+1),
(5) ∂

∂t
uλn →

∂
∂t
U weakly in L2

loc(R
N+1).

Proof. The lemma follows from the convergence result (Lemma 4.2), exactly as Lemma 3.2 in [14],
since it does not rely on the specific structure of the equation. 2

In addition we get

LEMMA 4.4 Let uεj be a nonnegative solution to (Pεj ) in a domain Dj ⊂ RN+1 with Dj ⊂ Dj+1

and
⋃
j Dj = RN+1 such that uεj → U uniformly on compact subsets of RN+1 and εj → 0.

Assume that for some choice of positive numbers dn and points (xn, tn) ∈ ∂{U > 0}, the sequence
Udn(x, t) = (1/dn)U(xn + dnx, tn + d2

n t) converges uniformly on compact subsets of RN+1 to a
function U0. Let (uεj )dn(x, t) = (1/dn)u

εj (xn+dnx, tn+d
2
n t). Then there exists j (n)→+∞ such

that, for every jn > j (n), εjn/dn→ 0 and

(1) (uεjn )dn → U0 uniformly on compact subsets of RN+1,
(2) ∇(uεjn )dn → ∇U0 in L2

loc(R
N+1),

(3) ∂
∂t
(uεjn )dn →

∂
∂t
U0 weakly in L2

loc(R
N+1).

Proof. We refer to the proof of Lemma 3.3 in [14]. 2

We also obtain

LEMMA 4.5 Let uεj be a family of nonnegative solutions to (Pεj ) in a domain D ⊂ RN+1 with
εj → 0 and assume ‖uεj ‖L∞(D) 6 A for some A > 0. Then, for a subsequence, Bεj (uεj )→ χ in
L1

loc(D), where χ(x, t) ∈ {0,M} a.e. in D.

Proof. We will generalize the idea in the proof of Proposition 4.1 in [28] to our operator (2.3). In
fact, let U := Br(x0)× (t1, t2) ⊂⊂ D with r > 0 so small that U ′ := B2r(x0)× (t1, t2) ⊂⊂ D. For
simplicity we suppress the subscript j .

Let ψ ∈ C∞c (D) be such that 0 6 ψ 6 1 and ψ ≡ 1 on U ′. Then

‖∂xiBε(u
ε)‖L1(U ′) 6

∫∫
D
ψ |βε(u

ε)∂xiu
ε
| dx dt 6 C

∫∫
D
βε(u

ε)ψ dx dt

= C

∫∫
D
(divF(∇uε)− uεt )ψ dx dt

= C

∫∫
D
(−∇ψ · F(∇uε)− uεtψ) dx dt 6 C (4.3)

due to the uniform L∞ bound on ∇uε and the uniform L2 bound on uεt . Observe that an analogous
computation for the time derivative fails since we do not control it in L∞.

Now, we define eε := A(∇uε)+ Bε(uε) and we notice that

‖eε‖L1(U ′) =
∫∫
U ′
|A(∇uε)+ Bε(uε)| dx dt 6 (C +M)HN+1(U ′) = C. (4.4)
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Let φδ > 0, 0 < δ < r , be a family of mollifiers such that suppφδ ⊂ Bδ(0). For any (x, t) ∈ U ,

∂t (eε ∗ φδ)(x, t) =

∫
RN
(F (∇uε) · ∇uεt + βε(u

ε)uεt )(y, t)φδ(x − y) dy

=

∫
RN

[F(∇uε) · ∇φδ(x − y)uεt (y, t)+ (− divF(∇uε)uεt + βε(u
ε)uεt )(y, t)φδ(x − y)] dy

=

∫
RN
F(∇uε) · ∇φδ(x − y)u

ε
t (y, t) dy −

∫
RN
(uεt )

2(y, t)φδ(x − y) dy

6 ‖∇φδ‖L∞(RN )‖F(∇u
ε)(t)‖L2(B2r (x0))

‖uεt (t)‖L2(B2r (x0))
.

Hence ∫∫
U
|∂t (eε ∗ φδ)| 6 Cδ1 . (4.5)

Furthermore,∫
Br (x0)

|∇(eε ∗ φδ)|(x, t) dx 6
∫
Br (x0)

∫
Bδ(0)
|∇φδ(y)|eε(x − y, t) dy dx

6 ‖∇φδ‖L1(RN )‖eε(t)‖L1(B2r (x0))
,

and thus
‖∇(eε ∗ φδ)‖L1(U) 6 ‖∇φδ‖L1(RN )‖eε‖L1(U ′) 6 Cδ2 .

Together with (4.4), (4.5) and by compact embedding, this implies that, for every δ, the family
(eε ∗ φδ) is precompact in L1(U).

On the other hand, we deduce from (4.3) that

‖Bε(uε)− Bε(uε) ∗ φδ‖L1(U) 6 Cδ.

Since, for a subsequence, A(∇uεj ) converges in L1(U ′), we also find that

sup
j

‖A(∇uεj )− A(∇uεj ) ∗ φδ‖L1(U)→ 0 as δ→ 0.

Then, using a diagonal sequence argument we conclude that, for a subsequence, Bεj (uεj ) → χ in
L1

loc(D). Finally, the limit function satisfies χ(x, t) ∈ {0,M} a.e. in D, as in the proof of Lemma
4.1 in [28]. 2

REMARK 4.1 We point out that existence of families uε of uniformly bounded nonnegative
solutions to (Pε) in particular domains D—and such that the results in this section and the
subsequent ones apply—can be easily obtained. We refer, for instance, to [25, Chap. XII, Sect. 6]
and to [22, Chap. V, Sect. 6].

5. Basic limits

In this section we analyze some particular limits of problems (Pε) that will be crucial to
understanding the behavior of general limits. In order to deal with these particular limits we need to
introduce a function Φν (Definition 5.1) and discuss its properties (Lemma 5.1).
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We study, in particular, the case in which the limit function is u = α〈x − x0, ν〉
+ for some unit

vector ν ∈ RN and α > 0 (Theorem 5.1). We characterize its slope as α = α(ν,M) (see (5.4)). This
characterization will give us the free boundary condition of the limit problem (P ) in the general
case (we refer to the subsequent sections for the precise assumptions and results).

We also present some examples of different operators L and we exhibit the resulting free
boundary condition.

DEFINITION 5.1 Let ν ∈ RN be a unit vector. We define Φν : R>0 → R>0 by

Φν(α) := −A(αν)+ αν · F(αν). (5.1)

LEMMA 5.1 The function Φν given in Definition 5.1 has the following properties:

(1) Φν(0) = 0.
(2) It is a strictly increasing function in α and therefore invertible.
(3) It satisfies

α2

2
ϑmin 6 Φν(α) 6

α2

2
ϑmax for every α > 0. (5.2)

(4) In case (2.6) holds, the function Φν does not depend on the direction ν and

Φν(α) = −f (α)+ αf
′(α). (5.3)

Proof. The properties are either straightforward to observe or a consequence of the fact that
Φ ′ν(α) = αν ·DF(αν)ν and thus, by (2.4), αϑmin 6 Φ ′ν(α) 6 αϑmax. 2

THEOREM 5.1 Let uεj be nonnegative solutions to (Pεj ) in a domain D ⊂ RN+1 and let
(x0, t0) ∈ D. Suppose that uεj converge to u = α〈x − x0, ν〉

+ uniformly on compact subsets
of D, for some unit vector ν ∈ RN and α > 0, and εj → 0. Then α = α(ν,M), with

α(ν,M) := Φ−1
ν (M), Φν as in (5.1). (5.4)

Moreover, √
2M
ϑmax

6 α(ν,M) 6

√
2M
ϑmin

. (5.5)

Proof. We will assume that (x0, t0) = (0, 0). Let us multiply (Pε) by ψ uεxiν
i
= ψ ∇uε · ν where

ψ ∈ C∞c (D). Integration by parts yields∫∫
D
(F (∇uε) · [ψ ∇uεxiν

i
+∇ψ ∇uε · ν]+ uεtψ ∇u

ε
· ν) dx dt = −

∫∫
D
∇Bε(uε) · ν ψ dx dt,

where we have used (2.8). Hence∫∫
D
uεtψ ∇u

ε
· ν dx dt

=

∫∫
D

(
−
∂

∂xi
(A(∇uε))ψ νi − F(∇uε) · ∇ψ ∇uε · ν

)
dx dt +

∫∫
D
Bε(uε)∇ψ · ν dx dt

=

∫∫
D

[A(∇uε)∇ψ · ν − F(∇uε) · ∇ψ ∇uε · ν + Bε(uε)∇ψ · ν] dx dt

=

∫∫
D

[(A(∇uε)+ Bε(uε))ν −∇uε · ν F (∇uε)] · ∇ψ dx dt. (5.6)
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Lemma 4.5 shows that (for a subsequence) Bεj (uεj ) → Mχ{〈x,ν〉>0} + M̄(x, t)χ{〈x,ν〉<0} in
L1

loc(D) with M̄(x, t) = 0 or M̄(x, t) = M almost everywhere. Here we have also used the fact that
if (y, τ ) ∈ D∩{u > 0}, then uεj (x, t) > u(y, τ )/2 > 0 for (x, t) in a neighborhood of (y, τ ) if j is
large enough and therefore, Bεj (uεj )(x, t) = M in this neighborhood for j large. On the other hand,
since ∇Bεj (uεj )→ 0 in L1

loc(D ∩ {u ≡ 0}◦) (recall that βεj (u
εj )→ 0 as measures in D ∩ {u ≡ 0}◦

by Proposition 4.2) we deduce that M̄(x, t) = M̄(t). Now, since ∇uεj → ανχ{〈x,ν〉>0} in L2
loc(D)

and u
εj
t ⇀ 0 weakly in L2

loc(D), as εj → 0, making use of (2.2) we obtain in the limit

0 =
∫∫
〈x,ν〉>0

[(A(αν)+M)ν − αν · ν F (αν)] · ∇ψ dx dt +
∫∫
〈x,ν〉<0

M̄(t)ν · ∇ψ dx dt

=

∫∫
〈x,ν〉=0

[(−A(αν)−M + M̄(t))ν + α F(αν)] · νψ dHn−1(x) dt.

Hence, using Definition 5.1, we get

Φν(α) = M − M̄(t). (5.7)

Since the left hand side in (5.7) does not depend on t , we see that M̄(t) = M̄ , with M̄ = M or
M̄ = 0. If M̄ = M , then the monotonicity of Φν implies that α = 0, a contradiction. Hence

Φν(α) = M (5.8)

and the monotonicity of Φν now implies that for every ν there is a unique solution to (5.8) given by
(5.4). Finally, the estimates (5.2) give (5.5). 2

REMARK 5.1 Notice that defining Φ(p) := −A(p) + p · F(p), we can also write (5.8) as
Φ(αν) = M.

Next we present some examples of different operators L and we exhibit the resulting free
boundary condition.

EXAMPLE 5.1 Let A(p) = |p|2/2. Then F(p) = p and we obtain α =
√

2M .

EXAMPLE 5.2 Let A(p) = 1
2p · Bp for some symmetric, positive definite matrix B ∈ RN×N .

Then F(p) = Bp and we obtain α =
√

2M/(ν · Bν). In particular, if B is a positive multiple of the
identity, B = c IdN×N with c > 0, we obtain α =

√
2M/c as the free boundary condition.

EXAMPLE 5.3 If (2.6) holds (and thus A(p) = f (|p|) and F(p) = (f ′(|p|)/|p|)p, with f
satisfying (2.7)), then the slope α at the free boundary does not depend on the direction ν. With
abuse of notation we write in this case

α(M) = α(ν,M), α(ν,M) as in (5.4), (5.9)

and, since (5.3) holds, we observe that α(M) is the solution of

−f (α)+ αf ′(α) = M. (5.10)

EXAMPLE 5.4 We finally observe that, when A(p) = |p|q/q with q > 1, q 6= 2 and thus F(p) =
|p|q−2p, the condition α = α(ν,M) gives α =

( qM
q−1

)1/q . However, this choice of A and F does
not in general satisfy (2.4) nor our smoothness assumptions.
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In the isotropic case we obtain, in addition,

THEOREM 5.2 Let uεj be nonnegative solutions to (Pεj ) in a domainD ⊂ RN+1 and assume (2.6)
holds. Let (x0, t0) ∈ D and suppose that uεj converge to u = α(x− x0)

+

1 +α(x− x0)
−

1 with α > 0,
α > 0 uniformly on compact subsets of D and εj → 0. Then

α = α 6 α(M) (5.11)

where α(M) is given by (5.9).

Proof. We follow the lines of Proposition 5.3 in [14]. Set Qr = Qr(0, 0) and assume (x0, t0) =

(0, 0) and Q2 ⊂⊂ D (take u(x, t) := (1/λ)u(x0 + λx, t0 + λ
2t) with λ small). Reasoning as in

Theorem 5.1, we obtain
Bεj (u

εj )→ M in L1
loc(D).

Going back to (5.6), letting ν = e1 there, and making use of the fact that ∇uεj → αχ{x1>0}e1 −

αχ{x1<0}e1 in L2
loc(D) and u

εj
t → 0 weakly in L2

loc(D), in the limit we obtain

0 =
∫∫
{x1<0}

[(A(−αe1)+M)e1 + αe1 · e1 F(−αe1)] · ∇ψ dx dt

+

∫∫
{x1>0}

[(A(αe1)+M)e1 − αe1 · e1F(αe1)] · ∇ψ dx dt

=

∫∫
{x1=0}

[A(−αe1)e1 + α F(−αe1)− A(αe1)e1 + α F(αe1)] · e1ψ dHn−1(x) dt.

Using Definition 5.1 we obtain Φe1(α) = Φ−e1(α), which gives

Φe1(α) = Φe1(α),

and thus α = α. We remark again that the function Φν does not depend on the direction ν in this
case and is given by (5.3). To show the inequality in (5.11) we assume Φe1(α) > M . Let

bεj = sup
Q2

|uεj − u|.

Now let vεj be the solutions to (Pεj ) in Q2 such that

vεj = (u− bεj )+ on ∂pQ2.

Since vεj is a family of uniformly bounded nonnegative solutions to (Pεj ) in Q2, it follows from
Lemma 4.2 that there exists v ∈ Liploc(1, 1/2) in Q2 such that, for a subsequence, vεj → v

uniformly on compact subsets of Q2. We will show that v = u. From the fact that uεj > vεj on
∂pQ2, we deduce that uεj > vεj in Q2 and therefore u > v.

In order to see that u 6 v, let g(s) = F(se1) · e1 and choose w ∈ C2(R) such that

(g(w′(s)))′ = β(w(s)), s ∈ R, w(0) = 1, w′(0) = α

(such a w exists by our assumptions). Multiply by w′(s) and observe that

(Φe1(w
′(s)))′ = (g(w′(s)))′w′(s) = B(w(s))′,
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where B(τ ) =
∫ τ

0 β(s) ds. For every s ∈ R by integration we obtain

Φe1(w
′(s))− B(w(s)) = Φe1(α)−M = Φe1(γ ), γ > 0

(here we have used the fact that Φe1(α) > M). Therefore w′(s) > 0 in R and moreover, since Φe1

is monotone in R>0, we conclude that

0 < γ 6 w′(s) 6 α ∀s ∈ R.

It follows that there is s < 0 such that

w(s) =

{
1+ αs, s > 0,
γ (s − s), s 6 s.

Now let

wεj (x1) = εjw

(
1
εj

(
x1 −

bεj

γ

)
+ s

)
.

Using the fact that wεj (0) = −bεj and the bounds on w′, we deduce that

wεj 6 u− bεj in R.

Hence wεj is a family of solutions to (Pεj ) in RN+1, satisfying wεj 6 vεj on ∂pQ2. Therefore
wεj 6 vεj in Q2. Since wεj → u uniformly on compact subsets of {x1 > 0}, we deduce that u 6 v

in Q2 ∩ {x1 > 0}. Finally, by the symmetry vεj (x1,x
′, t) = vεj (−x1,x

′, t), we conclude that u 6 v

in Q2.
Next, let

R := {(x, t) : 0 < x1 < 1, |x′| < 1, |t | < 1}.

Multiply (Pεj ) by v
εj
x1 . Integration yields∫∫

R

∂

∂x1
A(∇vεj ) =

∫∫
R
F(∇vεj ) · ∇v

εj
x1

=

∫∫
R

(
−v

εj
t v

εj
x1 −

∂

∂x1
Bεj (v

εj )

)
+

∫
∂R
v
εj
x1 F(∇v

εj ) · nx dS

and∫
∂R∩{x1=1}

(A(∇vεj )− v
εj
x1 F(∇v

εj ) · e1 + Bεj (v
εj )) dx′ dt

=

∫
∂R∩{x1=0}

(A(∇vεj )+ Bεj (v
εj )) dx′ dt +

∫∫
R
−v

εj
t v

εj
x1 +

∫
∂R∩{|x′|=1}

v
εj
x1 F(∇v

εj ) · n dS

>
∫∫
R
−v

εj
t v

εj
x1 +

∫
∂R∩{|x′|=1}

v
εj
x1 F(∇v

εj ) · n dS.

The inequality holds since the functions Bεj and A are nonnegative. Observe that we have used
the equality v

εj
x1 = 0 on {x1 = 0} due to the symmetry of vεj . The first integral on the right hand

side converges to zero since v
εj
t ⇀ ut = 0 weakly in L2(Q3/2) and ∇vεj → ∇u in L2(Q3/2).
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Additionally we infer that v
εj
x1F(∇v

εj )→ αF(αe1) pointwise onQ3/2∩{x1 > 0} and n(x1, x
′, t) =

−n(x1,−x
′, t) on {|x′| = 1}, hence the remaining integral converges to zero. Furthermore, observe

that Bεj (vεj ) ≡ M on Q3/2 ∩ {x1 > 1/2}, since vεj > εj if εj is small enough. In the limit we
therefore obtain

M > −A(αe1)+ α F(αe1) · e1 = Φe1(α),

which is a contradiction to our assumption. 2

6. Upper bounds for the gradient of limit functions

In this section we prove upper bounds for the gradient of limit functions, related to the free boundary
condition. In the particular case of an isotropic operator this upper bound says that any limit function
is, in a sense that we may call pseudo-classical, a supersolution to the free boundary problem (P ),
without imposing any additional hypothesis (Theorem 6.1).

We first consider the isotropic case and we obtain

THEOREM 6.1 Let uεj be nonnegative solutions to (Pεj ) in a domain D ⊂ RN+1 and assume
(2.6) holds. Suppose uεj → u uniformly on compact subsets of D and εj → 0, and let (x0, t0) ∈

D ∩ ∂{u > 0}. Then
lim sup

(x,t)→(x0,t0)

|∇u(x, t)| 6 α(M),

where α(M) is given by (5.9).

Proof. We will follow the lines of Theorem 6.1 in [14]. Let

α := lim sup
(x,t)→(x0,t0)

|∇u(x, t)|.

Since u ∈ Liploc(1, 1/2) in D, we know that α < ∞. If α = 0 there is nothing to prove. So let us
assume that α > 0 and let (xn, tn)→ (x0, t0) be such that u(xn, tn) > 0 and |∇u(xn, tn)| → α. Let
(zn, sn) ∈ D ∩ ∂{u > 0} be such that

dn := max{|xn − zn|, |tn − sn|1/2} = inf
(z,s)∈∂{u>0}

{
max{|xn − z|, |tn − s|1/2}

}
.

Let us consider the sequence

udn(x, t) :=
1
dn
u(zn + dnx, sn + d

2
n t).

Since u ∈ Liploc(1, 1/2) in D and dn → 0, given a compact set K ⊂ RN+1 the functions udn
are uniformly bounded with respect to the Lip(1, 1/2) seminorm on K , if n is large enough. On
the other hand, udn(0, 0) = 0 for every n. This implies that the family udn is uniformly bounded on
compact subsets of RN+1. Hence for a subsequence (that we will still call udn ), udn → u0 uniformly
on compact subsets of RN+1, where u0 ∈ Lip(1, 1/2) in RN+1.

Let x̄n := (xn − zn)/dn and t̄n := (tn − sn)/d
2
n . Then (x̄n, t̄n) ∈ ∂Q1(0, 0) so that (for a

subsequence), x̄n → x̄ and t̄n → t̄ with (x̄, t̄) ∈ ∂Q1(0, 0). On the other hand, since udn > 0 in
Q1(x̄n, t̄n), we have Ludn = 0 there. Let us show that ∇udn → ∇u0 uniformly on compact subsets
of Q1(x̄, t̄).
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In fact, if K ⊂⊂ Q1(x̄, t̄) then, for some τ > 0 and for n large, Nτ (K) ⊂ Q1(x̄n, t̄n) and thus
Ludn = 0 in Nτ (K). It then follows that ∇udn → ∇u0 uniformly in K (see, for instance, Theorem
12.1 in [25]).

Therefore we deduce that, in Q1(x̄, t̄), u0(x, t) > 0 and Lu0 = 0.
Now consider the sequence νn := ∇udn(x̄n, t̄n)/|∇udn(x̄n, t̄n)| = ∇u(xn, tn)/|∇u(xn, tn)|. We

may assume (by taking a subsequence) that νn→ ν. From the uniform convergence of the gradients
we deduce that

|∇u(xn, tn)| =
∂udn

∂νn
(x̄n, t̄n)→

∂u0

∂ν
(x̄, t̄),

and therefore
∂u0

∂ν
(x̄, t̄) = α.

On the other hand, it is easy to see that |∇u0| 6 α in RN+1. In fact, let R > 0 and δ > 0 be
fixed. There exists λ0 such that

|∇u(x, t)| 6 α + δ for (x, t) ∈ QλR(x0, t0)

if λ 6 λ0. Since QdnR(zn, sn) ⊂ Q3λnR(x0, t0) if λn = max{|xn − x0|, |tn − t0|
1/2
} (> dn), and

R > 1 and since λn→ 0 as n→∞, we deduce that

|∇udn(x, t)| 6 α + δ for (x, t) ∈ QR(0, 0)

if n is large enough. Thus ∇udn → ∇u0 in the weak∗ topology on L∞(QR(0, 0)) and therefore
|∇u0| 6 α + δ in QR(0, 0). Since δ and R were arbitrary we deduce that

|∇u0| 6 α in RN+1.

Let V := ∂u0/∂ν and observe that V 6 α in {u0 > 0} and V (x̄, t̄) = α. Since α > 0 we must
have u0(x̄, t̄) > 0, because otherwise u0 ≡ 0 in Q−1 (x̄, t̄), due to the strong maximum principle, as
Lu0 = 0 in this set (see, for instance, [26, Chap. 3, Sect. 3]). Thus u0 > 0 in Qρ(x̄, t̄) for some
ρ > 0. This fact, together with Remark 3.1, allows us to apply the same strong maximum principle
to V in Qρ(x̄, t̄) and conclude that V ≡ α in Q−ρ (x̄, t̄). Moreover, if we denote by R the set of
points in {u0 > 0} ∩ {t < t̄} which can be connected to (x̄, t̄) by a continuous curve in {u0 > 0}
along which the t-coordinate is nondecreasing, we see that V ≡ α in R.

Now using the fact thatLu0=0 inR and reasoning as in [14], we deduce thatR={(x−x̃)1 > 0,
t < t̄} for some x̃ ∈ RN , and

u0(x, t) = α(x − x̃)1 in {(x − x̃)1 > 0, t < t̄}

(we have assumed that ν = e1). Let

(uεj )dn(x, t) =
1
dn
uεj (zn + dnx, sn + d

2
n t).

By Lemma 4.3, there exists a sequence jn → ∞ such that (uεjn )dn → u0 uniformly on compact
subsets of RN+1 and εjn/dn→ 0. It is easy to see that (uεjn )dn is a solution to (Pεjn/dn) inQ1(x̃, t̄),
if n is large.
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Let us now apply Corollary A.1 of Appendix A to u0 in {(x− x̃)1 < 0, t < t̄}. We get, for some
ᾱ > 0,

u0(x, t) = ᾱ(x − x̃)
−

1 + o(|x − x̃| + |t − t̄ |
1/2) in {(x − x̃)1 < 0, t < t̄}.

Let us consider for λ > 0 the function (u0)λ(x, t) = (1/λ)u0(λx + x̃, λ
2t + t̄ ). Since u0 ∈

Lip(1, 1/2) and u0(x̃, t̄) = 0, there exists a sequence λk → 0 such that (u0)λk converges uniformly
on compact subsets of RN+1 to a function u00 ∈ Lip(1, 1/2) in RN+1. Thus,

u00(x, t) = αx
+

1 + ᾱx
−

1 in {t 6 0}.

If we set ε0
n = εjn/dn and uε

0
n = (uεjn )dn then uε

0
n are solutions to Pε0

n
in Q1(x̃, t̄) such that

uε
0
n → u0 as n→∞ uniformly on compact subsets of Q1(x̃, t̄),

(u0)λk → u00 as k→∞ uniformly on compact subsets of RN+1,

and ε0
n → 0 and λk → 0. Therefore we can apply Lemma 4.3 again and find a sequence ε00

n → 0
and solutions uε

00
n to (Pε00

n
) in Q1(0, 0) such that

uε
00
n → u00 = αx

+

1 + ᾱx
−

1 uniformly on compact subsets of Q−1 (0, 0).

If ᾱ = 0 we apply Theorem 5.1, and if ᾱ > 0 we apply Theorem 5.2. In any case, we deduce
that α 6 α(M). Thus the theorem is proved. 2

Also in the isotropic case we get

THEOREM 6.2 Let uεj be nonnegative solutions to (Pεj ) in a domain Dj ⊂ RN+1 such that Dj ⊂
Dj+1 and

⋃
j Dj = RN+1, and assume (2.6) holds. Suppose that uεj → U uniformly on compact

subsets of RN+1 and εj → 0. Assume in addition thatU ∈ Lip(1, 1/2) in RN+1 and ∂{U > 0} 6= ∅.
Then

|∇U | 6 α(M) in RN+1,

where α(M) is given by (5.9).

Proof. We modify the proof of Theorem 6.2 in [14] in the same way as we generalised the proof of
Theorem 6.1 in [14] in the case of the previous result, Theorem 6.1. 2

For a general operator we obtain

THEOREM 6.3 Let uεj be nonnegative solutions to (Pεj ) in a domain D ⊂ RN+1 such that Dj ⊂
Dj+1 and

⋃
j Dj = RN+1. Suppose that uεj → U uniformly on compact subsets of RN+1 and

εj → 0. Assume in addition that U ∈ Lip(1, 1/2) in RN+1, U > 0 in {x1 > 0} and U ≡ 0 in
{x1 < 0}. Then

|∇U | 6 α(e1,M) in RN+1,

where α(e1,M) is given by (5.4).
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Proof. We follow the steps of Theorem 6.2 in [14]. Let α := sup |∇U |. By assumption α < ∞. If
α = 0 there is nothing to prove, so assume α > 0. Then there exist (xn, tn) with U(xn, tn) > 0 such
that |∇U(xn, tn)| → α as n→∞. Let (zn, sn) ∈ ∂{U > 0} be such that

dn := max{|xn − zn|, |tn − sn|1/2} = inf
(z,s)∈∂{U>0}

{
max{|xn − z|, |tn − s|1/2}

}
and observe that since ∂{U > 0} = {x1 = 0} we may write (xn, tn) = (xn,1, x

′
n, tn), (zn, sn) =

(0, x′n, tn) and dn = xn,1. We define

Udn(x, t) :=
1
dn
U(zn + dnx, sn + d

2
n t)

and we observe that Udn is uniformly bounded in Lip(1, 1/2) seminorm and Udn(0, 0) = 0, so, for a
subsequence, Udn → U0 uniformly on compact subsets of RN+1, with U0 ∈ Lip(1, 1/2) in RN+1.
Notice that U0 ≡ 0 in {x1 < 0}, since this holds for U and for Udn . Moreover, Udn > 0 inQ1(e1, 0)
and hence LUdn = 0 there, so LU0 = 0 in Q1(e1, 0).

Furthermore, for a subsequence,

∇U(xn, tn)

|∇U(xn, tn)|
=
∇Udn(e1, 0)
|∇Udn(e1, 0)|

→ ν

for some unit vector ν, and since

∇Udn(e1, 0) ·
∇Udn(e1, 0)
|∇Udn(e1, 0)|

= |∇Udn(e1, 0)| → α,

we infer ∂U0
∂ν
(e1, 0) = α. Also, since |∇Udn(x, t)| = |∇U(zn + dnx, sn + d

2
n t)| 6 α, we obtain

∂U0
∂ν
(x, t) 6 |∇U0(x, t)| 6 α. We let V := ∂U0/∂ν and we deduce, with similar arguments to

those in the proof of Theorem 6.1, that V ≡ α in R ⊃ Q−1 (e1, 0), with R being the set of points
of {U0 > 0} ∩ {t < 0} which can be connected to (e1, 0) by a continuous curve in {U0 > 0} along
which the t-coordinate is nondecreasing. Then U0(x, t) = α〈x, ν〉 + C in R for a constant C ∈ R,
and U0(0, 0) = 0 implies that C = 0. Finally, the fact that U0 ≡ 0 in {x1 < 0} implies that ν = e1
and hence

U0(x, t) = αx
+

1 in {t 6 0},

where α = α(e1,M) by Theorem 5.1. 2

7. Asymptotic development at free boundary points

In this section we prove that, under suitable assumptions, the free boundary condition is satisfied
in a pointwise sense. This happens either at free boundary points where there is an inward normal
in the parabolic measure-theoretic sense (Theorem 7.1), or at free boundary points where the free
boundary is locally a differentiable surface (Theorem 7.2), provided a nondegeneracy condition at
the point holds.

DEFINITION 7.1 We say that ν ∈ SN−1 is the inward unit spatial normal to the free boundary
∂{u > 0} at a point (x0, t0) ∈ ∂{u > 0} for times t 6 t0, in the parabolic measure-theoretic sense,
if

lim
r→0+

1
rN+2

∫∫
Q−r (x0,t0)

|χ{u>0} − χ{(x,t) : 〈x−x0,ν〉>0}| dx dt = 0. (7.1)

In this case the point (x0, t0) ∈ ∂{u > 0} will be called regular.
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DEFINITION 7.2 We say that u is nondegenerate at (x0, t0) ∈ D ∩ ∂{u > 0} if there exists a
constant C > 0 such that, for every r > 0 small,

sup
∂pQ

−
r (x0,t0)

u > Cr. (7.2)

In the isotropic case we get

THEOREM 7.1 Let uεj be nonnegative solutions to (Pεj ) in a domain D ⊂ RN+1 and assume
(2.6) holds. Suppose that uεj → u uniformly on compact subsets of D and εj → 0. Let (x0, t0) ∈

D ∩ ∂{u > 0} be a regular point and assume that u is nondegenerate at (x0, t0). Then, for t 6 t0,

u(x, t) = α(M)〈x − x0, ν〉
+
+ o(|x − x0| + |t − t0|

1/2),

where ν is the inward unit spatial normal to the free boundary ∂{u > 0} at (x0, t0) for times t 6 t0,
in the parabolic measure-theoretic sense, and α(M) is given by (5.9).

Proof. We follow the lines of Theorem 7.1 in [24]. We assume that (x0, t0) = (0, 0) and ν = e1.
Let

uλ(x, t) :=
1
λ
u(λx, λ2t),

and let r > 0 be such that Qr(0, 0) ⊂⊂ D. We have uλ ∈ Lip(1, 1/2) in Qr/λ(0, 0) uniformly
in λ, and uλ(0, 0) = 0. Therefore, for every λn → 0, there exists a subsequence, which we still
call λn, and a function U ∈ Lip(1, 1/2) in RN+1 such that uλn → U uniformly on compact subsets
of RN+1.

Our aim is to prove that U = α(M)x+1 for t 6 0. By (7.1), it follows that for every k > 0, as
λ→ 0,

|{uλ > 0} ∩ {x1 < 0} ∩Q−k (0, 0)| → 0, |{uλ ≡ 0} ∩ {x1 > 0} ∩Q−k (0, 0)| → 0.

This implies that U ≡ 0 in {x1 < 0} ∩ {t 6 0}. On the other hand, U is nonnegative, LU > 0 and
LU = 0 in {U > 0}, with {U > 0} ∩ {t < 0} ⊂ {x1 > 0}. Then, by Corollary A.1, there exists
α > 0 such that

U(x, t) = αx+1 + o(|x| + |t |
1/2) in {x1 > 0} ∩ {t < 0}. (7.3)

The nondegeneracy assumption on u at (x0, t0) implies that necessarily α > 0. Let us now show
that α = α(M). By Lemma 4.3 there exists a subsequence εjn such that δn := εjn/λn → 0 and
uδn(x, t) := (1/λn)uεjn (λnx, λ2

nt) → U(x, t) uniformly on compact subsets of RN+1 and uδn is a
solution to (Pδn).

Now let Uλ(x, t) = (1/λ)U(λx, λ2t). Then for a sequence λk → 0, Uλk → αx+1 in {t 6 0},
uniformly on compact subsets. As before, there exists a subsequence δnk such that δ̄k := δnk/λk → 0
and uδ̄k (x, t) := (1/λk)uδnk (λkx, λ2

kt) satisfies uδ̄k → αx+1 in {t 6 0}, uniformly on compact
subsets. Since uδ̄k is a solution to (Pδ̄k ), we may apply Theorem 5.1 and deduce that α = α(M).

Let us finally see that U = α(M)x+1 in {t 6 0}. In fact, U > 0, ∂{U > 0} 6= ∅ and thus by
Theorem 6.2 we have |∇U | 6 α(M). Using the fact that U ≡ 0 in {x1 = 0} ∩ {t 6 0} we deduce
that

U 6 α(M)x1 in {x1 > 0} ∩ {t 6 0}. (7.4)
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Consider the function V := α(M)x1 − U which is nonnegative in {x1 > 0} ∩ {t 6 0} and
satisfies V = 0 on {x1 = 0} ∩ {t 6 0}. Moreover, if we define (see Remark 3.2)

L̃V = div F̃ (∇V )− Vt with F̃ (p) = −F(α(M)e1 − p),

we see that L̃V = 0 in {U > 0}.
Next, assume there exists (x̄, t̄) ∈ {x1 > 0} ∩ {t 6 0} such that V (x̄, t̄) = 0. Then U > 0 in

Q−ρ (x̄, t̄) for some ρ > 0, and therefore L̃V = 0 in Q−ρ (x̄, t̄). It follows from the strong maximum
principle (Thm. 5, Chap. 3 in [26]) that V ≡ 0 in Q−ρ (x̄, t̄). If we now define R to be the set of
points in {U > 0} ∩ {x1 > 0} ∩ {t < t̄} which can be connected to (x̄, t̄) by a continuous curve
in {U > 0} along which the t-coordinate is nondecreasing, then R ⊃ Q−ρ (x̄, t̄) and U = α(M)x1
in R so necessarily R = {x1 > 0} ∩ {t < t̄} and V ≡ 0 there.

It follows that the only possibilities are

V ≡ 0 in {x1 > 0} ∩ {t 6 0}, (7.5)

or else
V > 0 in {x1 > 0} ∩ {δ < t 6 0} (7.6)

for some δ < 0. If (7.6) holds, since L̃V 6 0 and V (0, 0) = 0, Lemma 3.4 yields V (x, t) >
σx1 + o(|x| + |t |

1/2) in {x1 > 0} ∩ {t 6 0} for some σ > 0. But this contradicts the fact that (7.3)
holds with α = α(M). Therefore, we have (7.5), which completes the proof. 2

For a general operator we get

THEOREM 7.2 Let uεj be a family of nonnegative solutions to (Pεj ) in a domain D ⊂ RN+1 such
that uεj → u on compact subsets ofD and εj → 0, and assume that the free boundaryD∩∂{u > 0}
is a differentiable surface at (x0, t0) ∈ D∩ ∂{u > 0} with nonvanishing spatial normal. Assume that
u is nondegenerate at (x0, t0). Then

u(x, t) = α(ν,M)〈x − x0, ν〉
+
+ o(|x − x0| + |t − t0|

1/2), (7.7)

where ν is the inward unit spatial normal at (x0, t0) and α(ν,M) is given by (5.4).

Proof. We assume that ν = e1. We consider, for λ > 0, uλ(x, t) := (1/λ)u(x0 + λx, t0 + λ
2t),

and a sequence λj → 0. Then there exists a function U ∈ Lip(1, 1/2) in RN+1 such that, for a
subsequence, uλj → U uniformly on compact subsets of RN+1.

It is not difficult to see that U ≡ 0 in {x1 < 0} and U > 0 in {x1 > 0}. In particular, U = 0 in
{x1 = 0}. Moreover, LU = 0 in {x1 > 0}, because this holds for uλ in every compact set K ⊂⊂
{x1 > 0} for λ small enough.

Furthermore, in {x1 > 0}, we have either U > 0 or U ≡ 0. In fact, if U(x̄, t̄) = 0 at some
point (x̄, t̄) ∈ {x1 > 0}, then U ≡ 0 in {x1 > 0} ∩ {t 6 t̄} by the strong maximum principle. Then,
definingA := {x1 > 0}∩{t > t̄}, we see that U ∈ Lip(1, 1/2) and U > 0 and LU = 0 inA. Since,
in addition, U = 0 on ∂pA we apply Lemma 3.3 to conclude that U ≡ 0 in A and thus in {x1 > 0}.

Now, since U ≡ 0 in {x1 > 0} contradicts the nondegeneracy assumption, we infer U > 0 in
{x1 > 0}.

Next, as in the proof of Theorem 7.1, we deduce that

U(x, t) = α(e1,M)x
+

1 + o(|x| + |t |
1/2) in {x1 > 0} ∩ {t 6 0}. (7.8)
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In addition, in the present situation we apply Theorem 6.3 to obtain |∇U | 6 α(e1,M) and then
deduce that U 6 α(e1,M)x1 in {x1 > 0}.

We now define V := α(e1,M)x1 − U and L̃V = div F̃ (∇V ) − Vt with F̃ (p) =

−F(α(e1,M)e1 − p). Then L̃V = 0 and V > 0 in {x1 > 0}, and V = 0 on {x1 = 0}. Thus,
an argument similar to the one applied before to U allows us to deduce that in {x1 > 0} either
V > 0 or V ≡ 0.

If we had V > 0 in {x1 > 0}, then the application of Lemma 3.4 would contradict (7.8).
Therefore, U = α(e1,M)x

+

1 in RN+1, which implies the result. 2

8. Viscosity solutions

In this section we prove that the limit functions are viscosity supersolutions and viscosity
subsolutions of the free boundary problem (P ) under suitable assumptions (Theorems 8.1 and 8.2).
We refer to Remarks 8.2 to 8.4 for a discussion of our assumptions.

The notion of viscosity solution for a general class of free boundary problems of evolution type
(including the Stefan problem) was introduced in [2–4] in order to study the regularity properties of
the free boundary. There, the authors used classical subsolutions and supersolutions as test functions
to define viscosity solutions (see also [16] for a discussion and for an equivalent concept of viscosity
solution).

In the same spirit as in [2–4], a notion of viscosity solution was introduced in [15] for the linear
version of the free boundary problem (P ) considered in the present paper. We here generalize the
definition in [15] to quasilinear problems.

We notice that the free boundary condition in the free boundary problem (P ) does not involve
the speed of the free boundary as occurred in the class of free boundary problems considered in
[2–4]. In fact, the free boundary condition in problem (P ) is of the type of the conditions appearing
in the class of elliptic free boundary problems considered in [10–12] (see [16] for equivalent notions
of viscosity solutions of such elliptic free boundary problems).

We start the section with some definitions, which extend naturally to any domain in RN+1.

DEFINITION 8.1 Let Q̃ := B̃ × (T1, T2), B̃ a ball in RN , and let v be a continuous function in ¯̃Q.
Then v is called a classical subsolution (resp. supersolution) to (P ) in Q̃ if

(1) Lv > 0 (resp. 6 0) in Ω+ := Q̃ ∩ {v > 0}.
(2) v is nonnegative, v ∈ C2,1(Ω+).
(3) For any (x, t) ∈ ∂Ω+ ∩ Q̃, ∇v+(x, t) 6= 0 and

v+ν > α(ν,M) (resp. v+ν 6 α(ν,M)),

where ν := ∇v+/|∇v+|.

We say that v is a classical solution to (P ) in Q̃ if it is both a classical subsolution and a classical
supersolution to (P ) in Q̃.

DEFINITION 8.2 Let u be a continuous, nonnegative function in Q̃. Then u is called a viscosity
subsolution (resp. supersolution) to (P ) in Q̃ if, for every subcylinder Q ⊂⊂ Q̃ and for every v
which is a classical supersolution (resp. subsolution) to (P ) in Q,

u 6 v (resp. u > v) on ∂pQ
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and
v > 0 on {u > 0} ∩ ∂pQ (resp. u > 0 on {v > 0} ∩ ∂pQ)

implies that u 6 v (resp. u > v) in Q.
The function u is called a viscosity solution to (P ) if it is both a viscosity subsolution and a

viscosity supersolution to (P ).

REMARK 8.1 If u is a classical subsolution (resp. supersolution) to (P ) in Q̃ then u is a viscosity
subsolution (resp. supersolution) to (P ) in Q̃. In fact, this can be seen by reasoning as in the proofs
of Theorems 8.1 and 8.2.

DEFINITION 8.3 Let u be a continuous nonnegative function in a domain D ⊂ RN+1. We say that
a point (x0, t0) ∈ D ∩ ∂{u > 0} is a regular point from the right (resp. left) if there exist τ > 0 and
y0 ∈ RN , with |x0 − y0| = τ , such that PF τ (y0, t0) ⊂ {u > 0} (resp. PF τ (y0, t0) ⊂ {u ≡ 0}◦).
Here we have set PF τ (y0, t0) = {(x, t) : |x − y0|

2
+ (t0 − t) < τ 2, t < t0}.

We first obtain

THEOREM 8.1 Let uεj be nonnegative solutions to (Pεj ) in a domain D ⊂ RN+1 such that
uεj → u uniformly on compact subsets of D and εj → 0. Assume one of the following conditions
is satisfied:

(1) Assumption (2.6) holds.
(2) For every point (x, t) ∈ D ∩ ∂{u > 0} which is regular from the right,

lim inf
r→0+

|Q−r (x, t) ∩ {u ≡ 0}|
|Q−r (x, t)|

> 0.

Then u is a viscosity supersolution to (P ) in D.

Proof. We will modify the proof of Theorem 4.1 in [15]. Let Q ⊂⊂ D be a cylinder which will be
assumed to be B1(0)× (0, T ), and let v be a classical subsolution to (P ) in Q satisfying u > v on
∂pQ and u > 0 on {v > 0} ∩ ∂pQ. We will show that u > v in Q.

If {v > 0} ∩ ∂pQ = ∅ then v = 0 on ∂pQ and therefore v ≡ 0 and u > v in Q.
If {v > 0} ∩ ∂pQ 6= ∅, it follows from the continuity of u and v that u > 0 in {v > 0} ∩Q for

0 6 t 6 t̄ for some small t̄ > 0. It is not hard to see that u > 0 in {v > 0} ∩ Q for 0 6 t 6 s

implies u > v in Q ∩ {0 6 t 6 s}. We set

t0 = sup
{
0 < s < T : u > 0 in {v > 0} ∩Q ∩ {0 6 t < s}

}
,

and we will get a contradiction assuming t0 < T . We have t0 > 0 and u > v in Q ∩ {0 6 t 6 t0}.
In addition, there exists a sequence (xn, tn)→ (x0, t0) ∈ Q such that u(xn, tn) = 0 and (xn, tn) ∈
{v > 0} ∩ Q. Then u(x0, t0) = v(x0, t0) = 0 and (x0, t0) ∈ ∂{v > 0} ∩ Q. Since v is a classical
subsolution to (P ), there exists a sequence yn → x0 such that 0 < v(yn, t0) 6 u(yn, t0), so that we
have proved

u > v in Q ∩ {0 6 t 6 t0}, (x0, t0) ∈ ∂{u > 0} ∩ ∂{v > 0} ∩Q.

Now for λ > 0 set

uλ(x, t) :=
1
λ
u(x0 + λx, t0 + λ

2t), vλ(x, t) :=
1
λ
v(x0 + λx, t0 + λ

2t).
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Since u, v ∈ Lip(1, 1/2) in Q and uλ(0, 0) = vλ(0, 0) = 0, there exist a sequence λn → 0 and
u0, v0 ∈ Lip(1, 1/2) in RN+1 such that vλn → v0 and uλn → u0 uniformly on compact subsets of
RN+1. Since v is a classical subsolution to (P ), if we assume that ∇v+(x0, t0)/|∇v

+(x0, t0)| = e1
and we set ᾱ = |∇v+(x0, t0)|, we see that

v0(x, t) = ᾱx
+

1 , ᾱ > α(e1,M).

In addition, u0(0, 0) = 0, and moreover u0 > v0 when t < 0, so that Lu0 = 0 in {x1 > 0, t < 0}.
We also notice that

div F̃ (∇w0)− w0t = 0 in {x1 > 0, t < 0}, w0 := u0 − v0, F̃ (p) := F(p + ᾱe1). (8.1)

There are two possibilities depending on whether the following assertion holds or not:

There is a δ < 0 such that u0 − v0 > 0 when x1 > 0 and δ < t < 0. (8.2)

Suppose that (8.2) does not hold. Then there is a sequence (xn, tn) in {x1 > 0, t < 0} such that
tn → 0 and (u0 − v0)(xn, tn) = 0. Making use of (8.1) and of Remark 3.2 we apply the strong
maximum principle (Thm. 5, Chap. 3 in [26]) to u0 − v0 to conclude

u0 ≡ v0 = ᾱx
+

1 in {x1 > 0, t 6 0},

implying that
1
λn
(u− v)(λne1 + x0, t0)→ 0 as n→∞. (8.3)

We write (x, t) = (x1, x
′, t) and for small ρ, r > 0 we define

E = {f (x′, t) < x1 < f (x′, t)+ ρ, |x′ − x′0| < r, |t − t0| < r2
},

where f is a C2,1 function in a neighborhood of (x′0, t0) such that for a small r0 > 0,

Br0(x0, t0) ∩ ∂{v > 0} = Br0(x0, t0) ∩ {(x, t) : x1 = f (x
′, t)}

and
Br0(x0, t0) ∩ {v > 0} = Br0(x0, t0) ∩ {(x, t) : x1 > f (x′, t)}.

If r, ρ are small enough, then E ⊂ {v > 0}. Observe that Lu = 0 in E ∩ {t < t0} with u ∈
C2,1(E ∩ {t < t0}), and Lv > 0 in E with v ∈ C2,1(E). Then, in E ∩ {t < t0}, L̂(u− v) 6 0 for a
linear uniformly parabolic operator L̂. In fact, in E ∩ {t < t0}, we have

0 >
N∑

i,j=1

(
∂Fi

∂pj
(∇u)∂xixj u−

∂Fi

∂pj
(∇v)∂xixj v

)
− ∂t (u− v)

=

N∑
i,j=1

aij (x, t)∂xixj (u− v)+

N∑
i,j=1

(
∂Fi

∂pj
(∇u)−

∂Fi

∂pj
(∇v)

)
∂xixj v − ∂t (u− v), (8.4)

where aij (x, t) := ∂Fi
∂pj
(∇u). Now, fix (x, t) ∈ E ∩ {t < t0} and write, for s ∈ [0, 1],

h(s) :=
N∑

i,j=1

∂Fi

∂pj
(∇v + s(∇u−∇v))∂xixj v.
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Since F ∈ C2, we have h ∈ C1. Hence the second expression in the last line in (8.4) can be written
as

h(1)− h(0) =
∫ 1

0
h′(s) ds =

N∑
k=1

bk(x, t)∂xk (u− v),

with

bk(x, t) :=
N∑

i,j=1

∫ 1

0

∂2Fi

∂pj∂pk
(∇v + s(∇u−∇v))∂xixj v ds.

Then, since∇v, ∂xixj v,∇u ∈ L
∞(E∩{t < t0}) and F ∈ C2, we see that aij , bk ∈ L∞(E∩{t < t0})

and u− v satisfies

L̂(u− v) :=
N∑

i,j=1

aij (x, t)∂xixj (u− v)+

N∑
k=1

bk(x, t)∂xk (u− v)− ∂t (u− v) 6 0 (8.5)

in E ∩ {t < t0}. Now, the strong maximum principle implies that u− v is positive in E ∩ {t < t0}.
We then observe that, since (u− v)(x0, t0) = 0, and ∂E = ∂{v > 0} ∈ C2,1 in a neighborhood

of (x0, t0) with ∇v+(x0, t0)/|∇v
+(x0, t0)| = e1, we can apply Lemma 2.6 in [25] at (x0, t0) to

conclude
lim inf
λ→0+

(u− v)(λe1 + x0, t0)

λ
> C > 0,

which contradicts (8.3).
Hence necessarily (8.2) holds. Recalling (8.1) and Remark 3.2, we apply Theorem A.1 to deduce

that
(u0 − v0)(x, t) = σx

+

1 + o(|x| + |t |
1/2)

when x1 > 0, t < 0 for some σ > 0. That is,

u0(x, t) = αx
+

1 + o(|x| + |t |
1/2) in {x1 > 0, t < 0} with α > ᾱ.

Now for λ > 0 set
(u0)λ(x, t) =

1
λ
u0(λx, λ

2t).

There exist a sequence λ̄n → 0 and u00 ∈ Lip(1, 1/2) in RN+1 such that (u0)λ̄n → u00 uniformly
on compact subsets of RN+1. We have

u00(x, t) = αx
+

1 in {x1 > 0, t < 0}.

We now apply Corollary A.1 to u00 in {x1 < 0, t < 0} to get

u00(x, t) = α̃x
−

1 + o(|x| + |t |
1/2) in {x1 < 0, t < 0}

for some α̃ > 0. We consider

(u00)λ(x, t) =
1
λ
u00(λx, λ

2t).

There is a sequence λ̃n → 0 and u000 ∈ Lip(1, 1/2) in RN+1 such that (u00)λ̃n → u000 uniformly
on compact subsets of RN+1, and moreover

u000(x, t) = αx
+

1 + α̃x
−

1 for t 6 0.
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Applying Lemma 4.3 three times we find a sequence ε000
j → 0 and solutions uε

000
j to (Pε000

j
) in

Q1(0, 0) such that uε
000
j → u000 uniformly on compact subsets of Q1(0, 0).

In case (2.6) holds, we apply either Theorem 5.1 or Theorem 5.2 to u000 in a neighborhood of
some point (0, t̄) with t̄ < 0. Now assume (2.6) does not hold. Since (x0, t0) is a regular point from
the right,

lim inf
r→0+

|Q−r (x0, t0) ∩ {u ≡ 0}|
|Q−r (x0, t0)|

> 0.

This implies that α̃ = 0, and thus we can apply Theorem 5.1. In any case we deduce that

α 6 α(e1,M).

But we have α > ᾱ > α(e1,M), which is a contradiction. 2

Finally, we get

THEOREM 8.2 Let uεj be nonnegative solutions to (Pεj ) in a domain D ⊂ RN+1 such that
uεj → u uniformly on compact subsets of D and εj → 0. Assume that u is nondegenerate at
every regular point from the left in D ∩ ∂{u > 0}. Then u is a viscosity subsolution to (P ) in D.

Proof. We will modify the proof of Theorem 4.2 in [15]. Let Q ⊂⊂ D be a cylinder which will
be assumed to be B1(0) × (0, T ), and let v be a classical supersolution to (P ) in Q satisfying
v > u on ∂pQ and v > 0 on {u > 0} ∩ ∂pQ. We will show that v > u in Q.

If {u > 0} ∩ ∂pQ = ∅ the result follows easily. If not, we proceed as in Theorem 8.1: we define

t0 = sup{0 < s < T : v > 0 in {u > 0} ∩Q ∩ {0 6 t < s}},

and we will get a contradiction, assuming t0 < T .
From the definition of t0, it follows that t0 > 0 and v > u in Q ∩ {0 6 t 6 t0}. In addition,

there exists a sequence (xn, tn)→ (x0, t0) ∈ Q̄ such that v(xn, tn) = 0 and (xn, tn) ∈ {u > 0} ∩Q.
Clearly, u(x0, t0) = v(x0, t0) = 0 and (x0, t0) ∈ ∂{u > 0} ∩Q. If (x0, t0) ∈ {v ≡ 0}◦ then, for δ
small, we have u = v = 0 in Bδ(x0, t0) ∩ {t < t0}, which contradicts our hypothesis. Thus,

v > u in Q ∩ {0 6 t 6 t0}, (x0, t0) ∈ ∂{u > 0} ∩ ∂{v > 0} ∩Q.

We consider uλ, vλ as in Theorem 8.1. There exist a sequence λn→ 0 and u0, v0 such that vλn → v0
and uλn → u0 uniformly on compact subsets of RN+1. We have

v0(x, t) = ᾱx
+

1 , 0 < ᾱ 6 α(e1,M),

where ᾱ = |∇v+(x0, t0)| and we have assumed that ∇v+(x0, t0)/|∇v
+(x0, t0)| = e1.

In addition, u0(0, 0) = 0 and v0 > u0 when t 6 0, and thus

u0(x, t) ≡ 0 in {x1 6 0, t 6 0}.

We also notice that

L̃w0 6 0 in {x1 > 0, t < 0}, L̃w0 = 0 in {u0 > 0}, where

w0 := v0 − u0, L̃w0 := div F̃ (∇w0)− w0t , F̃ (p) := −F(ᾱe1 − p).
(8.6)



PERTURBATION PROBLEM 475

In a similar way to Theorem 8.1, we consider two cases depending on whether the following
assertion holds or not:

There is a δ < 0 such that v0 − u0 > 0 when x1 > 0 and δ < t < 0. (8.7)

Suppose (8.7) does not hold. This implies that there is a sequence (xn, tn) in {x1 > 0, t < 0}
such that tn → 0 and (v0 − u0)(xn, tn) = 0. Making use of (8.6) and of Remark 3.2, and reasoning
as we did in Theorem 7.1 (with V ), we conclude that w0 ≡ 0 in {x1 > 0} ∩ {t < tn}, and therefore

u0 ≡ v0 = ᾱx
+

1 in {x1 > 0, t 6 0},

implying that
1
λn
(v − u)(x0 + λne1, t0)→ 0 as n→∞. (8.8)

As in Theorem 8.1, we define, for small ρ, r > 0,

E = {f (x′, t) < x1 < f (x′, t)+ ρ, |x′ − x′0| < r, |t − t0| < r2
},

where f is a C2,1 function in a neighborhood of (x′0, t0) defining ∂{v > 0} in a neighborhood of
(x0, t0) as in Theorem 8.1. If r, ρ are small enough, then E ⊂ {v > 0}.

We know that v − u > 0 in E ∩ {t < t0}. Let us show that we actually have v − u > 0 in
E ∩ {t 6 t0}. In fact, in {u > 0} ∩ {t < t0}, Lu = 0 with u ∈ C2,1 and we have Lv 6 0 in
E with v ∈ C2,1(E). Then we can argue as in (8.4) in the set {u > 0} ∩ {t < t0} to conclude
that L̂(v − u) 6 0 in {u > 0} ∩ {t < t0} for the same linear uniformly parabolic operator L̂ with
bounded coefficients defined in (8.5). Then the strong maximum principle implies that v−u > 0 in
{u > 0} ∩ {t 6 t0}, and thus v − u > 0 in E ∩ {t 6 t0}.

On the other hand, we can argue as in (8.4) to deduce that L̂εj (v − uεj ) 6 0 in E ∩ {t < t0} for
the linear uniformly parabolic operator

L̂εjU :=
N∑
i,l=1

a
εj
il (x, t)∂xixlU +

N∑
k=1

b
εj
k (x, t)∂xkU − ∂tU.

Here

a
εj
il (x, t) :=

∂Fi

∂pl
(∇uεj ), b

εj
k (x, t) :=

N∑
i,l=1

∫ 1

0

∂2Fi

∂pl∂pk
(∇v + s(∇uεj −∇v))∂xixlv ds

and so a
εj
il , b

εj
k ∈ L

∞(E ∩ {t < t0}), with bounds independent of j .
We now define cεj := supE∩{t<t0} |u

εj − u| and wεj = v − uεj + cεj . Then L̂εjwεj 6 0 in
E ∩ {t < t0}. In addition, from the discussion above we see that wεj > 0 in E ∩ {t < t0} and
moreover, for every K ⊂⊂ E, there exists cK > 0 such that wεj > cK in K ∩ {t 6 t0}.

Since, in a neighborhood of (x0, t0), ∂E = ∂{v > 0} ∈ C2,1 with ∇v+(x0, t0)/|∇v
+(x0, t0)|

= e1, there exists τ > 0 such that

PF := {(x, t) : |x − y0|
2
+ (t0 − t) < τ 2, t < t0} ⊂ E ∩ {t < t0}

with y0 = x0 + τe1. Defining

P := {(x, t) ∈ PF : |x − y0| > τ/2},
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we can follow the ideas in Lemma 2.6 in [25] and construct a smooth function w in P such that

L̂εjw > 0 in P, w 6 wεj on ∂pP, with w(x0, t0) = 0, wx1(x0, t0) > 0.

We point out that we can take the functionw independent of j , since the constants in the construction
can be chosen independent of j . We then have v − uεj + cεj > w in P , and thus

v − u > w in P,

implying

lim inf
λ→0+

1
λ
(v − u)(x0 + λe1, t0) > wx1(x0, t0) > 0,

which contradicts (8.8).
The above argument implies that necessarily (8.7) holds. Then, recalling (8.6) and Remark 3.2,

we can apply Theorem A.1 to w0 to obtain

(v0 − u0)(x, t) = σx
+

1 + o(|x| + |t |
1/2)

when x1 > 0, t < 0 for some σ > 0. That is, we have proved that

u0(x, t) = αx
+

1 + o(|x| + |t |
1/2) in {t < 0} with 0 6 α < ᾱ.

Now consider (u0)λ for λ > 0. There is a sequence λ̄n → 0 and u00 ∈ Lip (1, 1/2) in RN+1

such that (u0)λ̄n → u00 uniformly on compact subsets of RN+1. We have

u00(x, t) = αx
+

1 in {t 6 0}

with ᾱ > α > 0. Since (x0, t0) is a regular point from the left, u is nondegenerate at (x0, t0), and
therefore α > 0.

Applying Lemma 4.3 twice we find a sequence ε00
j → 0 and solutions uε

00
j to (Pε00

j
) inQ1(0, 0)

such that uε
00
j → u00 uniformly on compact subsets of Q1(0, 0). We now apply Theorem 5.1 to

u00 in a neighborhood of some point (0, t̄) with t̄ < 0 and deduce that α = α(e1,M). Since
α < ᾱ 6 α(e1,M), we get a contradiction, thus proving the theorem. 2

REMARK 8.2 We point out that limit functions with regular points from the left that are degenerate
do exist. This can be seen, for instance, with the following example. For simplicity we consider the
heat operator.

Let O ⊂ RN be a smooth bounded domain, T > 0, and let u be smooth in O× [0, T ] such that

∆u− ∂tu = 0 in O × (0, T ),
u = 0 in O × [0, t0],

u > 0 in O × (t0, T ],

for some 0 < t0 < T . Set uε = u + ε for ε > 0, and D = O × (0, T ). Then u = limε→0 u
ε, with

uε nonnegative solutions to
∆uε − ∂tu

ε
= βε(u

ε) in D.
We now observe that D ∩ ∂{u > 0} = O × {t0}. Moreover, for any x0 ∈ O, we see that (x0, t0)

is a regular point from the left, and it is a degenerate free boundary point, in the sense that (7.2) in
Definition 7.2 is not satisfied.
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REMARK 8.3 Let us now present an example of a limit function having regular points from the
left that are degenerate, for which the conclusion of Theorem 8.2 does not hold. For simplicity we
consider the heat operator, and we let N = 1 and M =

∫
β = 1/2.

In Q = (−1, 1)× (0, 3/4) define

v(x, t) = χ{x+t>1}(exp(x + t − 1)− 1)+ χ{−x+t>1}(exp(−x + t − 1)− 1)

(i.e., colliding traveling waves before singularity develops, see Figure 1 in [28]).
Then v is a classical supersolution to (P ) in Q according to Definition 8.1. Observe that

v > e1/4
− 1 = c0 > 0 on ∂pQ ∩ {t > 1/4}.

Now let u be a solution of the heat equation in some bounded domainD ⊂ R2, withQ ⊂⊂ D, such
that

u = 0 on D ∩ {t 6 1/4}, 0 < u < c0 on D ∩ {t > 1/4}

(u is a limit function of nonnegative solutions to problems (Pε) chosen as in Remark 8.2).
Then, by construction, v > u on ∂pQ and v > 0 on {u > 0} ∩ ∂pQ. But it is not true that v > u

in Q, since u(0, t) > 0 = v(0, t) for t > 1/4.

REMARK 8.4 Our assumptions in Theorem 8.2 exclude regular points from the left that are
degenerate. In fact, we want to avoid situations like the one in Remark 8.3 where the result fails
to hold. However, our assumptions in Theorem 8.2 do not exclude free boundary points with other
types of singular behavior—points that can certainly be present in limit functions. For an example
of a free boundary point with another type of singular behavior see, for instance, Section 1 in [17],
where a self-similar limit function with an extinction point is constructed for the heat operator.

REMARK 8.5 In the recent work [1], under a certain flatness condition on the free boundary in
some space direction, the free boundary was proved to be smooth in the case of the heat operator. In
particular, Corollary 8.5 in [1] says that, in the case of the heat operator, if (7.7) holds at (x0, t0) ∈

D ∩ ∂{u > 0} (and thus u is nondegenerate at (x0, t0)), then the free boundary is a smooth surface
in a neighborhood of (x0, t0).

Appendix A

In this section we obtain results on asymptotic developments for nonnegative functions U satisfying
either LU 6 0 or LU > 0, which are used throughout the paper. These results are modifications of
Lemma A1 and Corollary A1 in [14].

For ν ∈ SN−1 and τ > 0, we define

Cντ := Q−τ (0, 0) ∩ {〈x, ν〉 > 0},

and we first prove

THEOREM A.1 Let U ∈ Lip(1, 1/2) in Cντ with Ut ∈ L2
loc(C

ν
τ ) for some τ > 0. Assume that

U > 0 and LU 6 0 in Cντ , and that U(0, 0) = 0. Then, in Cντ , U has the asymptotic development

U(x, t) = α〈x, ν〉 + o(|x| + |t |1/2)

with some α > 0.
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Proof. We assume τ > 1 and ν = e1 and we write Cτ := Ce1
τ . Let

εk := sup{ε : U(x, t) > εx1 in C2−k }.

Then εk is a nondecreasing sequence and it is bounded from above by the Lipschitz seminorm of U
in the space variables. Let α := limk→∞ εk . Then U(x, t) > αx1 + o(|x| + |t |

1/2) in C1. Assume
that there is a sequence (xk, tk) ∈ C1 with rk := max{|xk|, |tk|1/2} → 0 such that

U(xk, tk)− αxk1 > δ0rk

for some δ0 > 0 and let

Uk(x, t) :=
U(rkx, r

2
k t)

rk
.

SinceU ∈ Lip(1, 1/2) it follows that there exists a nonnegative function V ∈ Lip(1, 1/2) in C1 such
that, for a subsequence, Uk → V uniformly in C1. From the construction we have V − αx1 > 0 in
C1 and, in addition, there is a point (x̄, t̄) ∈ ∂pC1 ∩ {x1 > 0} and ε > 0 such that

V − αx1 > δ0/2 on ∂pC1 ∩ Bε(x̄, t̄).

We can take ε small enough so that Bε(x̄, t̄) ⊂ {x1 > 0}.
Recalling Remark 3.2, we define F̃ (p) := F(p + αe1) and let w be a solution of

L̃w := div F̃ (∇w)− wt = 0 in C1,

with smooth boundary data such that

w = 0 on ∂pC1 \ Bε/2(x̄, t̄),

w = δ0/2 on ∂pC1 ∩ Bε/4(x̄, t̄),

0 6 w 6 δ0/2 on ∂pC1 ∩ Bε/2(x̄, t̄).

Then w ∈ C2,1(C1) ∩ C(C1), w > 0 in Cσ for some σ > 0, and w(0, 0) = 0, and therefore from
Lemma 3.4 it follows that

w(x, t) > µx1 in Cγ
for some small µ, γ > 0. Letting

ck := sup
C1

|V − Uk| and Ũk := Uk − αx1,

and observing that L̃Ũk 6 0, we deduce from Lemma 3.2 that Ũk > w − ck in C1, and thus

Ũk > µx1 − ck in Cγ . (A.1)

We also notice that
Ũk > 0 on {x1 = 0}. (A.2)

Now let Ω be a smooth domain such that B3γ /4(0) ∩ {x1 > 0} ⊂ Ω ⊂ Bγ (0) ∩ {x1 > 0} (and
thus B3γ /4(0) ∩ {x1 = 0} ⊂ ∂Ω), and let Dγ := Ω × (−γ 2, 0] (notice that C3γ /4 ⊂ Dγ ⊂ Cγ ).
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Next, let wk ∈ C2,1(Dγ ) be such that L̃wk = 0 in Dγ and wk = ψ(µx1 − ck) on ∂pDγ , with ψ a
smooth function satisfying

ψ ≡ 0 in Qγ /4(0, 0), ψ ≡ 1 in RN+1
\Qγ /2(0, 0), 0 6 ψ 6 1.

By combining (A.1) and (A.2) it follows that Ũk > wk on ∂pDγ . Then we apply Lemma 3.2 to infer
that Ũk > wk in Dγ .

Moreover, wk → µx1 uniformly in Dγ , and

∇wk → µe1 uniformly in Dγ .

This implies that, in Cγ /4,

Uk(x, t)− αx1 = Ũk(x, t) > wk(x, t) >
µ

2
x1

if k is large enough. This is in contradiction with the definition of α and hence

U(x, t) = αx1 + o(|x| + |t |
1/2) in C1.

Since U > 0 in Cτ and τ > 1, we apply Lemma 3.4 to deduce that α > 0, thus concluding the
proof. 2

As a consequence we obtain

COROLLARY A.1 Let U ∈ Lip(1, 1/2) be nonnegative in Cντ with Ut ∈ L2
loc(C

ν
τ ) for some τ > 0.

Assume that LU > 0 in Cντ and that U ≡ 0 on {〈x, ν〉 = 0}. Then, in Cντ , U has the asymptotic
development

U(x, t) = β〈x, ν〉 + o(|x| + |t |1/2)

with some β > 0.

Proof. Let V (x, t) := 2L〈x, ν〉−U(x, t)where L is the Lipschitz constant of U with respect to the
space variables. Defining F̃ (p) = −F(2Lν − p), we observe that L̃V := div F̃ (∇V ) − ∂tV 6 0
in Cντ . Together with Remark 3.2, this implies that V satisfies the assumptions of Theorem A.1. 2

Appendix B

For the sake of completeness we devote this appendix to briefly review how equation (1.1) appears
in combustion theory and derive equation (Pε) as well. For more details we refer to the classical
literature on the subject [6, 7, 8]. See also [27].

Let us first recall how equation (1.1) appears in the description of the propagation of curved
premixed equi-diffusional deflagration flames with high activation energy. In fact, we consider
a situation in which we have a homogeneous mixture of one fuel and one oxidizer. The model
under consideration is based on isobaric and constant-density approximations, in which pressure
and density fluctuations are neglected so that the reaction-diffusion equations for the combustion
variables (temperature and mass fraction of the reactant) decouple from the equations involving
the hydrodynamic variables (density, pressure and velocity). We thus obtain a system for the
temperature T and the mass fraction of the reactant Y of the form{

∂tT + v · ∇T − div(DT∇T ) = Yf (T ),
∂tY + v · ∇Y − div(DY∇Y ) = −Yf (T ),

(B.1)
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where v is a specified velocity field andDT ,DY are positive constants (DT is the thermal diffusivity
and DY the mass diffusivity).

We next consider v = 0 together with the hypothesis of equi-diffusion (i.e., DT = DY ). Then a
suitable change of variables allows us to assume that DT = DY = 1 and system (B.1) becomes{

∂tT −∆T = Yf (T ),

∂tY −∆Y = −Yf (T ).
(B.2)

We introduce the function H = T + Y , which by (B.2) satisfies ∆H − ∂tH = 0. Assuming
that we work in the whole space and that H(x, 0) = 1, we obtain H ≡ 1 and therefore we get the
equation

∆u− ∂tu = β(u), (B.3)

for u := Y = 1− T , with β(s) = sf (1− s).
The function f involves a constant E called the activation energy. In the present situation, the

limit analysis of flame propagation for very large E can be done by considering (B.3) with a family
of reaction functions βε, chosen as in Section 1, and then letting ε→ 0 (see [27]).

A natural extension to the above model consists in allowing nonlinear diffusion (cf. [27,
Sect. 15]). In fact, it is natural in the theories of thermal propagation and combustion to consider
nonlinearities of quasilinear type—where different nonlinearities reflect properties of the particular
medium under consideration (see for instance [9] and the survey paper [20], as well as their
references; see also [21]).

Thus, we propose to study the above model replacing in (B.1) the linear lawsDT∇T andDY∇Y
by more general nonlinear ones of the form FT (∇T ) and FY (∇Y ). We then obtain the system{

∂tT + v · ∇T − div(FT (∇T )) = Yf (T ),
∂tY + v · ∇Y − div(FY (∇Y )) = −Yf (T ).

We assume again v = 0 and a single diffusion law (i.e., FT = FY = F ) and we get{
∂tT − div(F (∇T )) = Yf (T ),
∂tY − div(F (∇Y )) = −Yf (T ). (B.4)

Considering as before the function H = T + Y and assuming that H(x, 0) = 1 and F(−p) =
−F(p), we find again that H ≡ 1, since now, by (B.4), H satisfies an equation of the type∑
i,j=1 aij (x, t)∂xixjH +

∑
k=1 bk(x, t)∂xkH − ∂tH = 0 (here we use arguments similar to those

in (8.5)).
Thus, the equation for u := Y = 1 − T of interest in the high activation energy analysis now

reads
divF(∇u)− ∂tu = βε(u),

with βε as in Section 1.
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