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Variational models for peeling problems

FRANCESCO MADDALENA†

Dipartimento di Matematica, Politecnico di Bari, via Re David 200, 70125 Bari, Italy

DANILO PERCIVALE‡

Dipartimento di Ingegneria della Produzione Termoenergetica e Modelli Matematici,
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We study variational models for flexural beams and plates interacting with a rigid substrate through
an adhesive layer. The general structure of the minimizers is investigated and some properties
characterizing the system’s dependence on the load and the material stiffnesses are discussed.

Introduction

Adhesion phenomena constitute a very challenging area of research from both the theoretical and
applied points of view. The physics underlying the adhesion crucially depends on the properties
at the microscale level of the material constituting the adhesive (usually polymers in the case of
artificial adhesives) and the properties of the surfaces of the jointed bodies. In recent years the
problems posed by the miniaturization technology, as in the case of microelectromechanical systems
(MEMS) (see the review [22]) or, more generally by nanotechnology, as well as the understanding
of the role played by adhesion and elasticity in biophysics (see [8], [12], [6]) have pointed out the
need of rational accurate models capturing the essentials of the complex phenomena involved in the
adhesion problems. At the macroscopic level the energy of peeling off a deformable material body
from a rigid substrate (i.e. another material body assumed to be rigid) incorporates an adhesion
energy and an elastic energy. Indeed, starting from the essential analysis of J. Eriksen carried out
in [4, Chapter 7.3], the problem of peeling off a thin (extensible or inextensible) tape has been
investigated in the context of continuum mechanics by using a variational formulation (see [16], [5],
[2], [7], [17], [18]), and more recently also the dynamics of these phenomena has been investigated
(see [13]). Much of these works assume a membrane-like behavior for the elastic body and consider
the adhesion energy as a linear function of the measure of the detached zone.

In this paper we study, in the classical setting of calculus of variations, the peeling problem for
flexural elastic beams and plates. In particular, we consider a linear elastic behavior of the Bernoulli–
Navier beam and the Kirchhoff–Love plate and we assume the adhesion energy is modeled by a
continuous monotone function of the measure of the detached zone. In the case of elastic beams
we get a detailed characterization of the structure of the minimizers which allows us to study the
quasistatic evolution of the system when an increasing load is supposed to act. In the case of elastic
plates we get two key estimates which characterize the regimes of the system in which the plate
is completely detached or completely bonded, in dependence on the value of the load. In both the
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problems it is seen that a crucial role is played by the growth exponent affecting the constitutive
assumption characterizing the adhesive material, which can be thought of as synthesizing the
macroscopic counterpart of the peculiarities at the microscale. Indeed, different choices of the
exponent lead to different behaviors of the system.

1. Preliminaries and notation

In this paper H 2(Ω) will denote the Sobolev space of functions u : Ω → R whose weak second
partial derivatives are in L2(Ω). Moreover, let BV (Ω) be the space of functions with bounded
variation, i.e. u ∈ L1(Ω) whose partial derivatives in the sense of distributions are measures with
finite total variation inΩ (see [1], [11]). Now we recall that the perimeter PΩ(E) of a set E relative
toΩ is defined as the total variation of the measureD1E∩Ω , where 1E∩Ω denotes the characteristic
function of the set E ∩Ω . Finally, we introduce the perimeter of E relative to the closed set R2

\Ω ,
namely

PR2\Ω(E) = inf{PG(E) | G open, (R2
\Ω) ⊂ G}.

2. Peeling off elastic beams

In the following we shall consider the case of a linearly elastic flexural beam, under the Bernoulli–
Navier hypothesis, interacting with a rigid foundation which occupies the lower half space y 6 0
through a thin adhesion layer. Let the beam occupy the interval [0, L] in its reference configuration
and let u : [0, L]→ R be the displacement function measuring the vertical deflection of the beam.
The elastic potential energy is given by

We(u) =
1
2

∫ L

0
kb|u

′′
|
2 dx, (1)

where kb = EI denotes the flexural rigidity of the beam, E is the Young modulus and I is the
inertia moment of the cross section. In order to model the energy released by detachment between
the beam and the rigid substrate let us introduce the set

Σu = {x ∈ [0, L] | u(x) > 0}

and let |Σu| be the Lebesgue measure of Σu. We define the adhesion potential as

Wa(u) = ϑ(L
−1
|Σu|), (2)

where ϑ : R+ → R is assumed to be continuous and strictly increasing with ϑ(0) = 0. Let us
assume the beam is subjected to a given load f applied at the right end x = L. Then the load
potential takes the form

Wl(u) = −f u(L). (3)

Therefore the total potential energy is given by

F(u) = We(u)+Wa(u)+Wl(u)

and so, according to the Gibbs Principle, stable equilibrium configurations of the beam are
minimizers of the functional

F(u) =
1
2

∫ L

0
kb|u

′′
|
2 dx + ϑ(L−1

|Σu|)− f u(L) (4)
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among the functions u ∈ A = {u ∈ H 2(0, L) | u(0) = 0, u(x) > 0}. It is worth noticing that
if f 6 0 then u ≡ 0 is the only trivial minimizer and therefore we will assume without loss of
generality that f > 0.

We are going to apply the direct methods of the calculus of variations to establish the existence
of solutions for this minimization problem.

LEMMA 2.1 (Lower semicontinuity of Wa) The functionalWa defined in (2) is sequentially weakly
lower semicontinuous in H 2(0, L), i.e. if {uk}k∈N converges weakly to u in H 2(0, L), then

Wa(u) 6 lim inf
k→∞

Wa(uk).

Proof. Let uk ⇀ u in H 2(0, L), with uk > 0 for every k ∈ N. Then u > 0 and uk → u uniformly
in [0, L]. Therefore we have

lim inf
k→∞

|Σuk | > |Σu|.

Then by virtue of the monotonicity and continuity properties of ϑ , we get

lim inf
k→∞

ϑ(L−1
|Σuk |) = sup

j∈N
inf
k>j

ϑ(L−1
|Σuk |) > sup

j∈N
ϑ( inf
k>j

L−1
|Σuk |)

= ϑ(lim inf
k→∞

L−1
|Σuk |) > ϑ(L−1

|Σu|). 2

THEOREM 2.2 (Existence of minimizers) F admits a minimum in A.

Proof. Let us observe that We and Wl are trivially l.s.c. Then by Lemma 2.1 we deduce the lower
semicontinuity of F , and a standard compactness argument yields the result. 2

2.1 Structure of the minimizers

In this section we focus on the essential properties of the solutions of the problem of minimizing
the functional F given by (4) in the class A, for a given value of the load f .

PROPOSITION 2.3 Let u ∈ argminF . Then there exists ξ ∈ [0, L] such that Σu = [ξ, L]. In
particular, u′(ξ) = 0 and u(x) = 0 in [0, ξ ].

Proof. Let us observe that, since u is continuous, Σu is open in [0, L]. Moreover we claim that
there is no interval ]α, β[ with 0 < α < β < L such that ]α, β[ ⊃ Σu. Indeed, if this were not true,
we could take ũ ∈ A defined as follows:

ũ(x) =

{
u(x) if x ∈ [0, L] \ (α, β),
0 if x ∈ (α, β),

to obtain the inequality F(ũ) < F(u), which yields a contradiction since u is a minimizer. Finally,
u′(ξ) = 0 since u ∈ H 2(0, L). 2

The previous results allow us to state that if u ∈ A minimizes F then it can be completely
characterized in a form which depends on the detachment variable ξ , as we are going to prove
in the following theorem.
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THEOREM 2.4 Let u ∈ argminF . Then

u(x) =
f

kb
(x − ξ̄ )2

(
−
x

6
+
L

2
−
ξ̄

3

)
1[ξ,L](x) (5)

where ξ̄ is a global minimizer of

F(ξ) = ϑ

(
1−

ξ

L

)
−
f 2L3

6kb

(
1−

ξ

L

)3

(6)

in [0, L].

Proof. If u ∈ argminF then by Proposition 2.3, for some 0 < ξ < L the total energy takes the
form

F(u) =
1
2

∫ L

ξ

kb|u
′′
|
2 dx + ϑ

(
1−

ξ

L

)
− f u(L). (7)

Then u minimizes

1
2

∫ L

ξ

kb|v
′′
|
2 dx − f v(L) (8)

among all v ∈ H 2(ξ, L) such that v > 0 and v(ξ) = v′(ξ) = 0. By taking into account that f > 0,
it is readily seen that any minimizer of (7) among all such v is nonnegative, and therefore standard
first variation of (7) shows that  v

′′′′(x) = 0 ∀x ∈ (ξ, L) ,

v(ξ) = v′(ξ) = 0,
v′′(L) = 0, v′′′(L) = −f/kb.

(9)

It is easy to check that the unique solution u of (9) is given by

u(x) =
f

kb
(x − ξ)2

(
−
x

6
+
L

2
−
ξ

3

)
, x > ξ. (10)

By substituting (10) in (7) we obtain the minimum energy in dependence on the free boundary point
ξ ∈ [0, L], that is,

F(ξ) = F(u) = ϑ
(

1−
ξ

L

)
−
f 2L3

6kb

(
1−

ξ

L

)3

, (11)

hence
minF = min{F(ξ) | ξ ∈ [0, L]}, (12)

thus completing the proof. 2

Then a complete understanding of the analytical properties of the energy minimizers leads to study
the minimization problem

min{F(ξ) | ξ ∈ [0, L]}, (13)

and the value of ξ minimizing F fully characterizes the detachment regionΣu = [ξ, L], for a given
value of the load f .
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For the sake of convenience and to simplify notations, we introduce the normalized variable
ζ = 1− ξ/L, and so, after changing variable, (6) becomes

G(ζ) = ϑ(ζ )−
f 2L3

6kb
ζ 3 (14)

with ζ ∈ [0, 1].
Since the uniqueness of ζ minimizingG given by (14) depends on the constitutive choice of the

adhesion potential ϑ , we wish to say a few words about this uniqueness question. Obviously, strict
convexity of G leads to uniqueness of the minimum ζ . Otherwise, different choices of ϑ may lead
to multiple minima. Indeed, if for instance we take

ϑ(ζ ) =
f 2L3

6kb

(
ζ 3
+ ζ 2

(
ζ −

1
2

)2)
,

which satisfies the assumptions of monotonicity and vanishing at zero, it is easy to see that the
function G in (14) has two different minima, at ζ = 0 and ζ = 1/2. Therefore, to study stable
equilibrium configurations one has to choose a suitable form of the adhesion potential. In particular,
we shall assume a power law for ϑ and, in the next section, we will focus on suitable growth of ϑ
with the aim of distinguishing between stable and metastable configurations.

2.2 Growth conditions and stability analysis

We claim that different growth assumptions on ϑ give rise to different constitutive properties of the
peeling model. In particular, we can characterize the stability of the equilibrium configurations in
dependence on the growth properties of ϑ .

PROPOSITION 2.5 Let α ∈ (0, 3], and assume that for every ζ ∈ [0, 1],

ϑ(ζ ) = c|ζ |α

for some constant c > 0. Set fcr =
√

6ckb/L3. Then, for 0 6 f < fcr, G(ζ) achieves its minimum
at ζ = 0, and for f > fcr it achieves its minimum at ζ = 1.

Proof. We see that, for 0 < α 6 1,

G′′(ζ ) = cα(α − 1)ζα−2
−
f 2L3

kb
ζ 6 0 ∀ζ ∈ [0, 1].

HenceG(ζ) is concave and for 0 6 f < fcr we haveG(1) > 0, and so the minimum point is ζ = 0,
since G(0) = 0. If f > fcr, then G(1) < 0, and so the minimum point is ζ = 1. If 1 < α < 3, then
G(ζ) has two critical points, namely ζ = 0 and ζ = ζ̄ with

ζ̄ =

(
2αckb
f 2L3

)1/(3−α)

, G′(ζ̄ ) = 0, G′′(ζ̄ ) < 0.

For 0 < f < fcr we have G(1) > 0 and the minimum is at ζ = 0, while for f > fcr, G(1) < 0,
and so the minimum is at ζ = 1. Finally, if α = 3 then G′′(ζ ) = ζ(6c − f 2L3/kb), and thus, by a
convexity argument, we obtain the result. 2
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PROPOSITION 2.6 Let α > 3 and assume that for every ζ ∈ [0, 1],

ϑ(ζ ) = c|ζ |α

for some constant c > 0. Set f αcr =
√

2αckb/L3. Then for every 0 < f < f αcr there exists a
unique ζ̄ ∈ (0, 1) such that G(ζ) achieves its minimum at ζ̄ . For every f > f αcr , G(ζ) achieves its
minimum at ζ = 1.

Proof. We see that

G′(ζ ) = ζ 2
(
αcζα−3

−
f 2L3

2kb

)
and so G′(ζ ) = 0 for ζ = 0 and for ζ = ζ̄ with

ζ̄ =

(
f 2L3

2αckb

)1/(α−3)

. (15)

Clearly, it is easy to verify that ζ̄ ∈ (0, 1) for 0 < f < f αcr . Moreover, G′′(ζ̄ ) > 0 and G(ζ̄ ) < 0,
and therefore ζ̄ ∈ (0, 1) is the absolute minimizer of G. Finally, for f > f αcr , G(ζ) is decreasing in
[0, 1], and so the minimum is at ζ = 1. 2

REMARK 2.7 It is easy to check that a slight generalization of Proposition 2.5 leads to stating that
for 1 < α < 3, if the adhesive has any constitutive function ϑ such that c1ζ

α < ϑ(ζ ) < c2ζ
α for

some positive 0 < c1 < c2, then for 0 6 f <
√

6c1kb/L3 the minimum of G is attained at ζ = 0.

The above results allow us to single out two different regimes of behavior of the mechanical
system, according to the constitutive assumptions on the adhesive material. In the case of slow
growth condition, by Proposition 2.5 the system exhibits a catastrophe-like behavior depending on
the critical value fcr. Indeed, when f = fcr, the beam can be completely attached to or completely
detached from the rigid support, the two configurations being energetically equivalent. In other
words, we have a bifurcation of the equilibrium and no partial detachment is allowed. In the case of
fast growth condition, Proposition 2.6 tells us that, for every value of the force f , the minimizer u
of (4) is a stable equilibrium configuration of the beam and the free boundary ξ is a continuous and
increasing function of f . Furthermore, by looking at (15) we notice that ζ̄ = O(f 2/(α−3)), while a
simple computation gives, for the maximum elastic displacement, the relation

umax =
f (L− ξ)3

3kb
= O(f ).

Therefore, for α sufficiently large, if an equilibrium configuration has u 6= 0 and ξ 6= 1 and we let
f increase quasistatically, then the elastic maximum displacement umax becomes very large, before
the variation of ξ becomes appreciable. Since beyond certain values of the maximum displacement
the material fails to behave elastically, we are led to study constitutive models which take into
account phenomena beyond the elastic range; this will be the subject of [10] where we will consider
an elastic-plastic energetic model for the beam (see [14], [15]). Finally, we remark that a more
complex behavior of the system, regarding the mechanical stability, can be captured by assuming
for ϑ varying growth law like, for instance, those of hardening or softening type.



PEELING 509

2.3 General load conditions

In this section we assume the beam is loaded with a vertical force and an end moment. Before
studying the combined effect, we now assume that the beam is subjected to a moment M acting at
the end x = L. Then

Wl(u) = −Mu
′(L).

We set
F̃ = We +Wa −Mu

′(L).

Analogously to the previous section, we can prove the following result.

THEOREM 2.8 Let u ∈ argmin F̃ . Then

u(x) =
M

2kb
(x − ξ̄ )2, (16)

where ξ̄ is a global minimizer of

F(u) = ϑ

(
1−

ξ

L

)
−
M2L

2kb

(
1−

ξ

L

)
. (17)

Proof. If u ∈ argmin F̃ , then

F(u) =
1
2

∫ L

ξ

kb|u
′′
|
2 dx + ϑ

(
1−

ξ

L

)
−Mu′(L).

Therefore, arguing as in the proof of Theorem 2.4, we can say that u satisfies the following
equations: 

u′′′′(x) = 0 ∀x ∈ (ξ, L) ,

u(ξ) = u′(ξ) = 0,
u′′(L) = M/kb,

u′′′(L) = 0.

(18)

The solution of (18) is

u(x) =
M

2kb
(x − ξ)2, (19)

and so the minimum of the energy in dependence on the free boundary ξ ∈ [0, L] is given by

F(ξ) = F̃(u) = ϑ
(

1−
ξ

L

)
−
M2L

2kb

(
1−

ξ

L

)
.

Finally, minimizing with respect to ξ we obtain the result. 2

The same analysis carried out in Section 2.2 leads to study the function G : [0, 1]→ R given by

G(ζ) = ϑ(ζ )−
M2L

2kb
ζ (20)
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obtained as (14). As in Section 2.2 we assume that ϑ(ζ ) = c|ζ |α for some c > 0 and we discuss the
stability conditions by varying α. In this case, for α ∈ ]0, 1] the minimum ofG is achieved at ζ = 0
or ζ = 1 and so the system exhibits a catastrophe-like behavior. Specifically for 0 < α < 1, G has
the minimum at ζ = 0, while for α = 1 the minimum point is ζ = 0 if M 6 Mcr =

√
2ckb/L,

and ζ = 1 if M > Mcr. Obviously for M = Mcr we have a bifurcation point. If α > 1 then the
minimum point of G is ζ = 0 for every value of M .

Finally, when the load condition is given by assigning both the force and the moment at x = L,
the previous results allow us to conclude that the stability analysis falls in the range of Section 2.2,
and so if the adhesive is modeled by the constitutive law ϑ(ζ ) = |ζ |α , the critical threshold is α = 3.
Indeed, roughly speaking, the moment offers a low order contribution, as we have just observed.

2.4 Local minimizers

The stability analysis carried out in the previous section involves only global minimizers of F .
However, a careful analysis of a quasistatic evolution of the mechanical system requires detecting
the presence of local minimizers, which we are going to study in this section.

DEFINITION 2.9 We say that u ∈ A is a local minimizer of F if there exists δ > 0 such that for
every v ∈ A with ‖v − u‖H 2 < δ we have F(u) 6 F(v).

The main result of this section is the following

THEOREM 2.10 A function u ∈ A is a local minimizer of F if either u ≡ 0 or

u(x) =
f

6kb
(3L− 2ξ̄ − x)(x − ξ̄ )21(ξ̄ ,L] (21)

where ξ̄ ∈ [0, L) is a local minimizer of the function

ξ 7→ ϑ

(
1−

ξ

L

)
−
f 2L3

6kb

(
1−

ξ

L

)3

. (22)

The proof of the above theorem requires some preliminary lemmas.

LEMMA 2.11 Assume that u ∈ A is a local minimizer of F such that u 6≡ 0. Then there exists a
unique ξ ∈ [0, L) such that Σu = (ξ, L).

Proof. Since u ∈ H 2(0, L) we have u′ ≡ 0 on the set ∂Σu; moreover continuity of u implies that
Σu is a countable union of pairwise disjoint open intervals,

Σu =

∞⋃
j=1

(aj , bj ) (23)

and u(aj ) = u(bj ) = u′(aj ) = u′(bj ) = 0. Suppose now that bj 6= L for some j and choose ε > 0
such that ε‖u‖H 2 6 δ. Then by taking v = u−εu1(aj ,bj ) we have ‖v−u‖H 2 6 δ andF(v) < F(u),
a contradiction. 2

LEMMA 2.12 Assume that u ∈ A is a local minimizer of F . Then either u ≡ 0 or u(L) > 0.
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Proof. If u is a local minimizer then

0 6 F(u+ εu)− F(u) =
(
εkb + ε

2 kb

2

)∫ L

0
|u′′|2 − εf u(L) (24)

and arbitrariness of ε yields

kb

∫ L

0
|u′′|2 = f u(L). (25)

If u(L) = 0 then u′′ ≡ 0 and by recalling the definition of A we get u ≡ 0. 2

LEMMA 2.13 Assume that u ∈ A is a local minimizer of F and that u 6≡ 0. Then

u(x) =
f

6kb
(3L− 2ξ − x)(x − ξ)21(ξ,L] (26)

for a suitable ξ ∈ [0, L).

Proof. If u is a local minimizer and u 6≡ 0 then by Lemma 2.11 there exists a unique ξ ∈ [0, L)
such thatΣu = (ξ, L). Let now (a, b) ⊂⊂ (ξ, L) and ψ ∈ C2

0(a, b). Then u+ εψ > 0 in (a, b) for
|ε| small enough and |Σu+εψ | = |Σu|. Since u is a local minimizer we have

F(u+ εψ)− F(u) =
kb

2

∫ b

a

(2εψ ′′u′′ + ε2
|ψ ′′|2) > 0, (27)

and the arbitrariness of ε yields ∫ b

a

ψ ′′u′′ = 0, (28)

hence u′′′′ = 0 in (a, b), and again as (a, b) was arbitrarily chosen in (ξ, L) we have u′′′′ = 0 in the
whole (ξ, L). Since u ∈ H 2(0, L) and u ≡ 0 in [0, ξ ] it follows that u(x) = (x − ξ)2(αx + β).
By taking into account Lemma 2.12 we see that u(L) > 0 and then for every a > ξ and for every
ψ ∈ C2([a, L]) such that ψ(a) = ψ ′(a) = 0 we have u+ εψ > 0 when |ε| is small enough. This
implies that ∫ L

a

ψ ′′u′′ − fψ(L) = 0, (29)

that is, u′′(L) = 0 and u′′′(L) = −f/kb. Therefore

u(x) =
f

6kb
(3L− 2ξ − x)(x − ξ)2. (30)

2

We are now in a position to prove Theorem 2.10. Indeed, by using formula (30) it is readily seen
that when ε is suitably chosen then ‖uε − u‖H 2 < δ, where we have set

uε(x) =
f

6kb
(3L− 2ξ̄ − 2ε − x)(x − ξ̄ − ε)2. (31)

Hence u will be a local minimizer if and only if ξ̄ is a local minimizer of the function

ξ 7→ ϑ

(
1−

ξ

L

)
−
f 2L3

6kb

(
1−

ξ

L

)3

. (32)
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3. Peeling off elastic plates

In this section we shall consider the case of an elastic plate interacting with a rigid substrate
through a thin adhesive layer. So let Ω ⊂ R2 be an open bounded set, representing the reference
configuration of a Kirchhoff–Love plate. Assume that |Ω| = 1, ∂Ω ∈ Lip and Γi ⊂ ∂Ω , i = 1, 2,
are two measurable subsets of ∂Ω such that Γ1∩Γ2 = ∅ andH1(Γi),H1(∂Ω \Γi) > 0. The elastic
energy of the plate is

Je(u) =

∫
Ω

kp(|∆u|
2
− 2(1− ν) detD2u) dx,

where kp is the flexural rigidity and ν is the Poisson ratio. We assume the plate is loaded by a force
distribution f ∈ L∞(Γ2) acting perpendicular to the plane of the plate. Then the load potential is

Jl(u) = −

∫
Γ2

f u dH1.

Let ϑ : R+→ R be a continuous and increasing function with ϑ(0) = 0. The adhesion potential is

Ja(u) = ϑ(|Σu|).

We denote by ν the unit outer normal vector to ∂Ω and we introduce the function space

A =
{
v ∈ H 2(Ω)

∣∣∣∣ v > 0, v =
∂v

∂ν
= 0 in Γ1

}
(33)

and the energy functional F(u) = Je(u)+ Ja(u)+ Jl(u).
We consider here a more general formulation of the problem, so let Sym be the space of real

symmetric 2 × 2 matrices and consider a quadratic form W : Sym → [0,+∞) such that for a
suitable δ > 0,

W(A) > δ‖A‖2 ∀A ∈ Sym. (34)

We define for every v ∈ H 2(Ω) the functional

F(v) =


∫
Ω

W(D2v) dx −
∫
Γ2

f v dH1
+ ϑ(|Σv|) if v ∈ A,

+∞ otherwise in H 2(Ω).

(35)

Then we are interested in the minimization of the functional F . As in Lemma 2.1 we can prove
that F is lower semicontinuous with respect to the weak topology of H 2, and by using (34) it is
readily seen that a minimizer of F always exists. In this section we want to investigate qualitative
properties of such minimizers, in particular we are interested, as in the case of the elastic beam, in
establishing stability-like conditions involving thresholds of the load f characterizing equilibrium
states in which the plate is completely bonded to the substrate or completely detached; this will be
obtained in Theorems 3.4 and 3.5 below. The role played by the exponent α = 2 is worth noticing,
whereas in the case of the beam the critical value was α = 3. As in the case of the elastic beam, this
analysis depends on the constitutive behavior of the adhesive layer through the growth assumptions
on ϑ .

We proceed by proving some preliminary results. The next lemma establishes the so called
compliance identity enjoyed by the minimizers of F .
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LEMMA 3.1 Let u ∈ argminF . Then

2
∫
Ω

W(D2u) dx =
∫
Γ2

f u dH1. (36)

Proof. Let 0 < |t | < 1. Then (1+ t)u ∈ A and

0 6 F((1+ t)u)− F(u) = (1+ t)2
∫
Ω

W(D2u) dx −
∫
Ω

W(D2u) dx − t
∫
Γ2

f u dH1

= 2t
∫
Ω

W(D2u) dx + t2
∫
Ω

W(D2u) dx − t
∫
Γ2

f u dH1. (37)

Hence
t

|t |

(
2
∫
Ω

W(D2u) dx −
∫
Γ2

f u dH1
)

> −|t |
∫
Ω

W(D2u) dx, (38)

that is, ∣∣∣∣2 ∫
Ω

W(D2u) dx −
∫
Γ2

f u dH1
∣∣∣∣ 6 |t |

∫
Ω

W(D2u) dx, (39)

and the conclusion follows by letting t → 0. 2

For every s ∈ [0,H1(∂Ω)) we define

ρ(s) = sup
{
PR2\Ω(E)

PΩ(E)

∣∣∣∣ E ⊂ Ω, PΩ(E) > 0, PR2\Ω(E) 6 s

}
(40)

and we recall the following result whose proof can be found in [11].

PROPOSITION 3.2 Let w ∈ BV (Ω) with H1({x ∈ ∂Ω | w(x) 6= 0}) 6 s. Then∫
∂Ω

|w| dH1 6 ρ(s)

∫
Ω

|Dw|. (41)

Moreover, the constant ρ(s) is best possible.

Based on the previous results we are going to prove the following statement.

LEMMA 3.3 Let u ∈ argmin F and let

Λ =
1

4
√
π
ρ(H1(∂Ω \ Γ1))(1+ ρ(H1(∂Ω \ Γ1))). (42)

Then
‖D2u‖L2(Ω) 6

Λ

δ
|Σu| ‖f ‖∞. (43)

Proof. By (34) and Lemma 3.1 we get via the Hölder inequality∫
Ω

|D2u|2 dx 6
1
2δ
‖f ‖∞

∫
∂Ω

|u| dH1, (44)

and since u ∈ A,

H1({x ∈ ∂Ω | u(x) 6= 0}) 6 H1(∂Ω \ Γ1) < H1(∂Ω).
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Hence, by applying Proposition 3.2 and (44) we obtain∫
Ω

|D2u|2 dx 6
1
2δ
‖f ‖∞ρ(H1(∂Ω \ Γ1))

∫
Σu

|∇u| dx

6
1
2δ
|Σu|

1/2
‖f ‖∞ρ(H1(∂Ω \ Γ1))

(∫
Σu

|∇u|2 dx
)1/2

. (45)

A well known result about best constants in Sobolev inequalities (see again [11, p. 189]) yields

‖∇u‖L2(Ω) 6
1

2
√
π
(‖D2u‖L1(Ω) + ‖∇u‖L1(∂Ω)), (46)

and applying again Proposition 3.2 and the Hölder inequality we deduce from (45) and (46) that∫
Ω

|D2u|2 dx 6
1
2δ
|Σu|

1/2
‖f ‖∞ρ(H1(∂Ω \ Γ1))‖∇u‖L2(Ω)

6
1

4δ
√
π
|Σu|

1/2
‖f ‖∞ρ(H1(∂Ω \ Γ1))(‖D

2u‖L1(Ω) + ‖∇u‖L1(∂Ω))

6
Λ

δ
|Σu|

1/2
‖f ‖∞‖D

2u‖L1(Ω) =
Λ

δ
|Σu|

1/2
‖f ‖∞‖D

2u‖L1(Σu)

6
Λ

δ
|Σu|‖f ‖∞‖D

2u‖L2(Ω).

In view of (42), this yields

‖D2u‖L2(Ω) 6
Λ

δ
|Σu| ‖f ‖∞. 2

We are now in a position to state and prove the main results of this section. More precisely, in the
following two theorems we shall obtain precise estimates on the force f and on the growth exponent
α characterizing stable equilibrium configurations of the plate.

THEOREM 3.4 Assume that ϑ(τ) > λτ 2 for some λ > 0. Then there exists K > 0 such that if

‖f ‖∞ < K

then u ∈ argminF if and only if u ≡ 0 a.e.

Proof. Assume u ∈ argminF . Since W is a quadratic form there exists a suitable γ > 0 such that
W(A) 6 γ ‖A‖2 for every A ∈ Sym. Then by Lemma 3.1 and minimality, we get

F(u) = −
∫
Ω

W(D2u) dx + ϑ(|Σu|) > −γ
∫
Ω

|D2u|2 dx + ϑ(|Σu|). (47)

Let

‖f ‖∞ < K =
δ

Λ

√
λ

γ
.

Then, by Lemma 3.3, we obtain

0 = F(0) > F(u) > |Σu|
2
(
−γ

Λ2

δ2 ‖f ‖
2
∞ + λ

)
,

which easily implies |Σu| = 0 and so u ≡ 0 a.e. 2
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THEOREM 3.5 Assume that ϑ(τ) > λτα with 0 < α < 2. Let u ∈ argmin F and let K =
(δ/Λ)

√
λ/γ . Then the following implications hold true:

(i) If ‖f ‖∞ < K then |Σu| = 0.
(ii) If ‖f ‖∞ = K then either |Σu| = 0 or |Σu| = 1.

(iii) If |Σu| = 1 then ‖f ‖∞ > K .

Proof. By the same argument of the previous proof we deduce

λ|Σu|
2
(
−

1
K2 ‖f ‖

2
∞ + |Σu|

α−2
)

6 0. (48)

To prove the first assertion note that if |Σu| 6= 0, then since 0 < α < 2, (48) implies |Σu| 6 1 and
‖f ‖∞ > K . The second assertion follows by observing that if ‖f ‖∞ = K , then (48) becomes

λ|Σu|
2(−1+ |Σu|α−2) 6 0,

from which we get the result. Finally, by substituting |Σu| = 1 in (48), we get

λ

(
−

1
K2 ‖f ‖

2
∞ + 1

)
6 0,

which proves the last statement. 2

We point out that the condition ‖f ‖∞ = K defines a bifurcation point for which the material system
exhibits a catastrophe-like behavior. For this value of the load, both the states of plate: bonded and
completely detached, are admissible. Therefore, by increasing the load starting from the value K ,
we can expect two possible scenarios. If |Σu| = 0 the system will expend energy on deforming the
plate and breaking the adhesive, whereas if |Σu| = 1 the only further energy will be expended on
the elastic deformation of the plate.

Finally, notice that K = (δ/Λ)
√
λ/γ plays the role of a threshold on the force f . As in the case

of elastic beam studied in Section 2, where the analogous parameter is denoted by fcr, K depends
on the elastic stiffness of the plate through the ratio δ/

√
γ , on the stiffness of the adhesive layer

through
√
λ, and on a geometric parameter Λ.
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