
Interfaces and Free Boundaries 10 (2008), 483–502

Long-time asymptotics of Hele–Shaw flow for perturbed balls
with injection and suction
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We discuss long-time behaviour of Hele–Shaw flow with injection and suction for domains that
are small perturbations of balls. An evolution equation for the motion of these domains is derived
and linearised. We use spectral properties of the linearisation to show that in the case of injection,
perturbations of balls decay algebraically. For classical Hele–Shaw flow, convergence turns out to
be faster if low Richardson moments vanish. If for the three-dimensional case surface tension is
included, all liquid can be removed by suction if the suction point and the geometric centre coincide
and the ratio of suction speed and surface tension is small enough. An arbitrarily large portion of
the liquid can be removed if the initial domain is sufficiently close to a ball. The main tools are the
principle of linearised stability and H. Amann’s theory of abstract quasilinear parabolic evolution
equations.
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1. Introduction

In the problem of Hele–Shaw flow with injection or suction at a single point one seeks both a family
of moving domains t 7→ Ω(t) ⊆ RN , 0 ∈ Ω(t), parameterised by time t , and two functions
v(·, t) : Ω(t)→ RN and p(·, t) : Ω(t)→ R such that

div v = µδ in Ω(t), (1.1)
v = −∇p in Ω(t). (1.2)

The family t 7→ Ω(t) models a liquid domain that moves under influence of injection or suction at
the origin. Here v and p are the velocity and pressure field, respectively, µ stands for the injection
speed if µ > 0, or the suction speed if µ < 0, and δ is the delta distribution. The evolution of the
boundary Γ (t) is specified by the requirement that its normal velocity vn is given by

vn = v · n. (1.3)

To get a well-defined free boundary problem, a boundary condition has to be added. Here we shall
discuss two possibilities.

• Classical Hele–Shaw flow, where
p = 0 on Γ (t). (1.4)
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It is well known that for this problem only the injection case µ > 0 is well-posed. By an
appropriate scaling of time we can assume µ = 1.
• Hele–Shaw flow with surface tension, where

p = −γ κ on Γ (t). (1.5)

Here, κ(·, t) : Γ (t)→ R stands for the mean curvature of the moving boundary t 7→ Γ (t) (taken
negative if Ω(t) is convex) and γ is a positive constant. For this problem both the injection and
the suction case will be studied.

Equations (1.1) and (1.2) give
∆p = −µδ. (1.6)

Together with (1.4) or (1.5), this forms a Dirichlet problem for any time t . On Γ (t) we have, by
(1.2) and (1.3),

vn = −
∂p

∂n
. (1.7)

Besides liquid flow in a Hele–Shaw cell [8], the model and variations of it describe the growth of
tumors [5] and porous media flow [10, 11].

For similar problems, Escher and Simonett [10, 13, 12] proved existence of short-time solutions
t 7→ Ω(t). For the problem (1.1)–(1.4) weak solutions have been investigated by Gustafsson [16]
and Begehr and Gilbert [4]. For the suction problem for (1.1)–(1.3), (1.5), Tian [23] proved that if
the geometric centre and the suction point do not coincide, then the solution breaks down before
all liquid is sucked out or the domain becomes unbounded with zero area. Prokert [22] proved
short-time existence and uniqueness of solutions for the problem with γ > 0 and µ = 0. Global
existence and exponential decay are proved for this problem in the same paper and in [15] for the
case where the initial domain is sufficiently close to a ball. The main tools are linearisation around
the equilibrium and energy estimates. In [14] a similar result has been proved for the two-phase
problem. In [6] an evolution equation for a conformal mapping in the complex plane is derived to
prove a corresponding result for the exterior problem in two dimensions.

Let σN be the area of the unit sphere SN−1 in RN . We will assume that the initial domain Ω(0)
has the same volume as the unit ball BN in RN , i.e. |Ω(0)| = σN/N . The volume V (t) of the
domain satisfies

V (t) =
σN

N
+ µt, (1.8)

because of
dV
dt
=

d
dt

∫
Ω(t)

dx =
∫
Γ (t)

vn dσ =
∫
Ω(t)

div v dx = µ.

Note that for negative µ, our problem can only make sense if

t 6 Tµ := −
σN

µN
. (1.9)

By radial symmetry, if Ω(0) = BN then Ω(t) = sN,µ(t)BN , where

sN,µ(t) =
N

√
µNt

σN
+ 1.
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In order to prove stability of these solutions, we rescale by a factor sN,µ(t) such that BN becomes a
stationary solution. Star-shaped perturbations of this stationary solution are described by means of
a small function r(·, t) : SN−1

→ R.
This paper is organised as follows. In Section 2 we derive a nonlinear nonlocal parabolic

evolution equation for r(t). For the classical Hele–Shaw problem the evolution operator can be
treated as autonomous after introducing a new time variable. The linearisation of the evolution
operator around the stationary solution is of first order and essentially given by the Dirichlet-to-
Neumann operator for the Laplacian on BN . For the problem with surface tension, only the case
N = 3 can be treated as autonomous. The linearisation is a third order polynomial in the Dirichlet-
to-Neumann operator.

The spectral properties of the linearised operator for classical Hele–Shaw flow in little Hölder
spaces are discussed in Section 3. Based on the spectrum, a global existence result is proved and
it is shown that r(t) decays algebraically. Here we use the principle of linearised stability (see
[19]). In Section 4 we show that convergence is faster for domains for which low Richardson
moments vanish. This is done by discussing the linearisation of the evolution operator restricted
to the corresponding invariant manifolds.

From Section 5 on we restrict our attention to the problem with surface tension in R3. For the
case of injection, we prove existence of small solutions for all t > 0. In the case of suction, we find
that all liquid can be removed under the conditions that suction takes place in the geometric centre
of the liquid domain and the ratio |µ|/γ is small enough. This gives a partial answer to a problem
posed in 1993 [17]. Furthermore, we get decay properties that show that the liquid domain vanishes
“as a round point”. In Section 6 we prove the following stability result: an arbitrarily large portion
of liquid can be removed if the initial domain is close enough to a ball. There we use the fact that
the evolution induces a semiflow on appropriate function spaces.

In future research we intend to discuss the problem with surface tension forN 6= 3. The problem
is not autonomous and therefore the principle of linearised stability cannot be used. We plan to study
long-time asymptotics of Stokes flow with injection and suction.

2. The evolution equation for the domain

In this section we derive a nonlinear nonlocal evolution equation describing the motion of the
domain, in a rescaled version. Furthermore, we determine the linearisation of the evolution operator
in terms of the Dirichlet-to-Neumann mapping.

Consider moving domains Ω(t) that can be described by a continuous function R : SN−1
×

[0,∞)→ (−1,∞) such that

Ω(t) = ΩR(·,t) := {x ∈ RN \ {0} : |x| < 1+ R(x/|x|, t)} ∪ {0}.

Sometimes we will write R(t) instead of R(·, t). Define

r(t) =
1+ R(t)
sN,µ(t)

− 1. (2.1)

From this we get
Ωr(t) = sN,µ(t)

−1ΩR(t).

We derive an evolution equation for perturbations r of the stationary solution r(t) ≡ 0, and
investigate long-time behaviour.
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Now we shall consider the problem for fixed time and suppress the argument t . Define

ΓR := ∂ΩR = {(1+ R(ξ))ξ : ξ ∈ SN−1
}.

Let z̃(R) = z̃(R, ·) : SN−1
→ ΓR be the mapping given by

z̃(R, ξ) = (1+ R(ξ))ξ.

The free boundary problem (1.1)–(1.4) or (1.1)–(1.3), (1.5) respectively translates into the following
evolution equation for R:

∂R

∂t
(ξ) = −

∇p(z̃(R, ξ)) · n(R, ξ)

n(R, ξ) · ξ
, ξ ∈ SN−1, (2.2)

where n(R) = n(R, ·) maps an element ξ ∈ SN−1 to the exterior unit normal vector on ΓR at the
point z̃(R, ξ). For this we refer to [21, Chapter 3]. We shall write this evolution equation in terms
of r .

Define Φ : RN → R by

Φ(x) :=


−

1
2π

ln |x|, N = 2,

1
(N − 2)σN |x|N−2 −

1
(N − 2)σN

, N > 3,
(2.3)

and U : ΩR → R by
U = p − µΦ.

Because ∆Φ = −δ we have

∆U = 0 in Ω(t),
U = −γ κR − µΦ on Γ (t).

Here κR : ΓR → R stands for the mean curvature of ΓR . From

∇Φ(x) = −
1

σN |x|N
x,

(2.1) and (2.2) we get

∂R

∂t
(ξ) = −

∇U(z̃(R, ξ)) · n(r, ξ)

n(r, ξ) · ξ
+

µ

σN s
N−1
N,µ (1+ r(ξ))

N−1
, (2.4)

since r(ξ) > −1 and n(R, ξ) = n(r, ξ). Define u : Ωr → R by

u(x) = U(sN,µx).

Then ∆u = 0 and on Γr ,

u(x) = −γ κR(sN,µx)− µΦ(sN,µx) = −γ s
−1
N,µκr(x)− µs

2−N
N,µ Φ(x)+ µCN ,
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for some function CN depending on t . Let Λr : Ωr → R and Gr : Ωr → R be the harmonic
functions that satisfy

Λr = Φ on Γr , Gr = κr on Γr .

Then
u = −γ s−1

N,µGr − µs
2−N
N,µ Λr + µCN .

We have

∇U(z̃(R)) = s−1
N,µ∇u(z̃(r)) = −γ s

−2
N,µ∇Gr(z̃(r))− µs

1−N
N,µ ∇Λr(z̃(r)).

Using
s′N,µ =

µ

σN
s1−N
N,µ

we find from (2.4) that

∂r

∂t
(ξ) =

γ

sN,µ(t)3
∇Gr(z̃(r, ξ)) · n(r, ξ)

n(r, ξ) · ξ

+
µ

sN,µ(t)N

(
∇Λr(z̃(r, ξ)) · n(r, ξ)

n(r, ξ) · ξ
+

1
σN (1+ r(ξ))N−1 −

1+ r(ξ)
σN

)
. (2.5)

In order to transform our free boundary problems to the fixed reference domain BN , the right-
hand side has to be written in terms of operators on function spaces on BN and SN−1. For k ∈ N0
and α ∈ (0, 1), let the little Hölder spaces hk,α(K) on a compact domainK be defined as the closure
of C∞(K) in the Hölder spaces Ck,α(K). These spaces have the property that hk,α(K) is dense in
hk
′,α′(K) if k′ + α′ < k + α.

By [19, Theorem 0.3.2] there exists an extension operator E ∈ L(Ck,α(SN−1), Ck,α(BN )) for
k ∈ {0, 1, 2} and α ∈ [0, 1), with the property

E(r)|SN−1= r. (2.6)

Introduce the mapping z : C2,α(SN−1)→ (C2,α(BN ))N as

z(r, x) = (1+ E(r, x))x,

where z(r, ·) = z(r) and E(r, ·) = E(r).

LEMMA 2.1 There exists a δ > 0 such that if ‖r‖C2,α(SN−1) < δ then z(r) : BN → Ωr is bijective.

Proof. This follows from the mean value theorem. A complete proof is given in [25, Lemma 2.2]. 2

Define J : C2,α(SN−1)→ (C1,α(BN ))N×N by

J (r) =
∂z(r)

∂x
. (2.7)

Again J (r, ·) = J (r).

LEMMA 2.2 There exists a δ > 0 such that if r ∈ C2,α(SN−1) satisfies ‖r‖C2,α(SN−1) < δ,

then J (r, x) is an invertible matrix for every x ∈ BN and x 7→ J (r, x)−1
∈ (C1,α(BN ))N×N .

Furthermore, z(r)−1
∈ (C2,α(Ωr))

N .
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Proof. This follows from the fact that the Hölder spaces are Banach algebras. For more detail we
refer to [25, Lemma 2.3]. 2

We denote the components of J (r)−1 by j i,k(r). By Lemmas 2.1 and 2.2, we see that there exists
a neighbourhood U of 0 in C2,α(SN−1) and two mappings A : U → L(C2,α(BN ), C0,α(BN )) and
Q : U → L(C2,α(BN ), (C1,α(BN ))N ) such that

A(r)u = (∆(u ◦ z(r)−1)) ◦ z(r) =
∑
i,k,l

j i,l(r)
∂

∂xi

(
j k,l(r)

∂u

∂xk

)
(2.8)

and
Q(r)u = (∇(u ◦ z(r)−1)) ◦ z(r) =

∑
i,k

j k,i(r)
∂u

∂xk
ei, (2.9)

where ei is the i-th unit vector in RN . Let P : U → L(C2,α(BN ), C0,α(BN ) × C2,α(SN−1)) be
defined by

P(r)u =
(
A(r)u
Tr u

)
. (2.10)

Because P(0) is invertible, P(r) is invertible as well for small r . Let φ : U → C2,α(SN−1) be

φ(r, x) = Φ((1+ r(x))x), (2.11)

where φ(r, ·) = φ(r) andΦ : RN → R is defined by (2.3). Introduce κ(r) as the function that maps
an element ξ ∈ SN−1 to the curvature of Γr at z(r, ξ).

We can choose U such that we can define E : U → L(C2,α(SN−1), C1,α(SN−1)) and l : U →
C2,α(SN−1) by

(E(r)ψ)(ξ) = −
Tr
(
Q(r)

[
P(r)−1[ 0

ψ

]])
(ξ) · n(r, ξ)

n(r, ξ) · ξ

and
l(r) =

1
σN (1+ r)N−1 −

1+ r
σN

.

Now (2.5) gets the form

∂r

∂t
=

γ

sN,µ(t)3
F1(r)+

µ

sN,µ(t)N
F2(r), (2.12)

where
F1(r) = −E(r)κ(r) and F2(r) = −E(r)φ(r)+ l(r).

Introduce a new time variable τ = τ(t) such that τ(0) = 0 and

dτ

dt
=

1
sN,µ(t)N

=
1

µNt
σN
+ 1

,

thus

τ(t) =
σN

µN
ln
(
µNt

σN
+ 1

)
. (2.13)
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• For the classical Hele–Shaw flow (γ = 0, µ = 1) we get an autonomous evolution equation

∂r̄

∂τ
= F2(r̄), where r̄(τ ) = r(t). (2.14)

• For the problem with surface tension, only the equation for N = 3 becomes autonomous. In this
case we get

∂r̄

∂τ
= Fγ,µ(r̄) := γF1(r̄)+ µF2(r̄). (2.15)

In the following we will write r instead of r̄ .

LEMMA 2.3 (i) There exists a neighbourhood U of zero in h2,α(SN−1) such that the operator
E : U → L(C2,α(SN−1), C1,α(SN−1)) is analytic.

(ii) There exists a neighbourhood U1 of zero in h4,α(SN−1) such that the operator F1 : U1 →

h1,α(SN−1) is analytic.
(iii) There exists a neighbourhood U2 of zero in h2,α(SN−1) such that the operator F2 : U2 →

h1,α(SN−1) is analytic.

Proof. This can be obtained in the same way as was done in [21, Chapter 3] for Sobolev spaces.
The proof is based on the fact that all components of E can be expressed in terms of z, the fact that
compositions and inversion of analytic operators in Banach algebras are analytic, and the implicit
function theorem. For more details we refer to [25, Chapter 2] and [24, Lemma 2.3]. 2

The next step is finding the linearisation of the evolution operators around zero.

LEMMA 2.4 The Fréchet derivative of F2 at 0 satisfies

F ′2(0)[h] = −
1
σN
Nh−

N

σN
h, (2.16)

where N : C2,α(SN−1)→ C1,α(SN−1) is the Dirichlet-to-Neumann operator on the unit ball given
by

Nh = Tr∇P(0)−1
(

0
h

)
· n(0).

Proof. Let Π : U → C2,α(BN ) be defined by

Π(r) = P(r)−1
(

0
−φ(r)

)
.

From A(r)Π(r) = 0, Π(0) = 0 and φ′(0)[h] = − 1
σN
h we get

Π ′(0)[h] =
1
σN
P(0)−1

(
0
h

)
.

We can write F2(r) as

F2(r) = −
Q(r)Π(r) · n(r)

n(r) · I
+

1
σN (1+ r)N−1 −

1+ r
σN

.
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From a Taylor expansion we get

F ′2(0)[h] = −
TrQ(0)Π ′(0)[h] · n(0)

n(0) · I
−
N

σN
h = −Tr∇Π ′(0)[h] · n(0)−

N

σN
h,

where I is the identity. 2

LEMMA 2.5 The Fréchet derivative of F1 at 0 satisfies

F ′1(0)[h] = N (κ ′(0)[h]) = N (∆0r + (N − 1)r) = N (−N 2r − (N − 2)N r + (N − 1)r). (2.17)

Proof. From [21, Chapter 6] we have

κ ′(0)[h] = ∆0h+ (N − 1)h,

where ∆0 denotes the Laplace–Beltrami operator on the unit sphere. From [20] we have

∆0r = −N 2r − (N − 2)N r.

The proof can be completed as for Lemma 2.4. 2

3. The spectrum of the linearisation and stability for the nonlinear autonomous evolution in
the case of classical Hele–Shaw flow

In this section we apply the principle of linearised stability to the evolution equation (2.14) for
the classical Hele–Shaw problem, in order to derive a stability result for the stationary solution
r ≡ 0. For this purpose we study the spectral properties of the operator F ′2(0) : h2,α(SN−1) →

h1,α(SN−1) given by (2.16). First we find the eigenvalues and eigenfunctions of the Dirichlet-to-
Neumann operator N : h2,α(SN−1)→ h1,α(SN−1).

We start by defining HN
k as the vector space of harmonic homogeneous polynomials of degree

k in N variables. Spherical harmonics are defined as the restriction of these polynomials to the unit
sphere,

SNk = {q|SN−1 : q ∈ HN
k }.

The dimensions dim SNk =: ν(N, k) are finite. In particular, ν(2, k) = 2 for k 6= 0, ν(2, 0) = 1 and
ν(3, k) = 2k + 1. For each SNk we can choose an orthonormal basis with respect to the L2(SN−1)-
inner product,

SNk = 〈s
N
k,1, . . . , s

N
k,ν(N,k)〉.

We shall often suppress the index N in sNk,j . It is well known that

N s = ks (3.1)

for s ∈ SNk ([20, Lemma 1]). The spherical harmonics

∞⋃
k=0

{sk,1, . . . , sk,ν(N,k)}

form an orthonormal basis for L2(SN−1). Therefore, from (2.16) we get the following result.
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COROLLARY 3.1 The set of eigenvalues ofN : h2,α(SN−1)→ h1,α(SN−1) is N0. The eigenspace
corresponding to the eigenvalue k ∈ N0 is SNk . The point spectrum of F ′2(0) is therefore

π(F ′2(0)) =
{
−
N

σN
,−
N + 1
σN

,−
N + 2
σN

, . . .

}
and the eigenspace for the eigenvalue −(N + k)/σN is SNk .

Now we will prove that all elements of the spectrum of F ′2(0) : h2,α(SN−1)→ h1,α(SN−1) are
eigenvalues, by showing that the resolvent (λI−F ′2(0))

−1 : h1,α(SN−1)→ h1,α(SN−1) is compact
for suitable λ ∈ C.

LEMMA 3.2 The spectrum of F ′2(0) : h2,α(SN−1)→ h1,α(SN−1) consists entirely of eigenvalues:

σ(F ′2(0)) = π(F
′

2(0)) =
{
−
N

σN
,−
N + 1
σN

,−
N + 2
σN

, . . .

}
.

Proof. By [9, Appendix B, Theorems B.3 and B.4] we see that F ′2(0) generates an analytic
semigroup on h1,α(SN−1) with dense domain of definition h2,α(SN−1). This implies that the
resolvent set of F ′2(0) is not empty. From the compactness of the embedding h2,α(SN−1) ↪→

h1,α(SN−1) ([1, Theorem 8.6]) we get existence of a λ ∈ C such that

(λI − F ′2(0))
−1 : h1,α(SN−1)→ h1,α(SN−1)

is compact. From [18, Theorem III.6.29] we get the desired result. 2

THEOREM 3.3 Let 0 < λ0 < N/σN . There exists a δ > 0 and an M > 0 such that the problem

∂r

∂τ
= F2(r)

with r(0) = r0 ∈ h2,α(SN−1) and ‖r0‖C2,α(SN−1) < δ has a solution r ∈ C([0,∞), h2,α(SN−1)) ∩

C1([0,∞), h1,α(SN−1)) satisfying

‖r(τ )‖C2,α(SN−1) 6 Me−λ0τ‖r0‖C2,α(SN−1).

Proof. As mentioned before, F ′2(0) generates an analytic semigroup on h1,α(SN−1) with dense
domain of definition h2,α(SN−1). Because of Lemma 3.2 the spectrum is left of the imaginary axis
and it has distance −N/σN to it. Therefore we can apply [19, Theorem 9.1.2] to show the global
existence of r in time and the estimate. 2

Combining the above with (2.13) we get the following estimate for the nonautonomous problem
(2.12):

‖r(t)‖C2,α(SN−1) 6 M

(
Nt

σN
+ 1

)−ζ
‖r0‖C2,α(SN−1)

for ζ = λ0σN/N .
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4. Faster convergence in absence of low-order moments

In this section we show for classical Hele–Shaw flow that if the integrals of harmonic polynomials
with low degrees over the moving domain vanish, then convergence to the equilibrium will be faster.

Let K ∈ N0 and define

MN
K =

{
r ∈ h2,α(SN−1) :

∫
Ωr

dx =
σN

N
∧

∫
Ωr

h(x) dx = 0 ∀h ∈
K⋃
j=1

HN
j

}
.

We have r ∈ MN
K if and only if the volume of the corresponding domain Ωr is equal to the volume

of the unit ball and the Richardson moments of order 1, . . . , K vanish.

LEMMA 4.1 Let r be a solution of (2.14). If r(0) is in MN
K then r(t) ∈ MN

K for all t > 0.

Proof. It follows from our choice of scaling that if the initial domain Ωr(0) has the same volume
as the unit ball, then this will also be the case for Ωr(t) for all t > 0. Let h be harmonic, R(t) =
sN,µ(t)(1+ r(t))− 1, and let p and v be the solutions of (1.1)–(1.4) on the corresponding domains
ΩR(t). From Green’s identities, (1.3), (1.4), (1.6) and (1.7) it follows that

d
dt

∫
ΩR(t)

h dx =
∫
ΓR(t)

hv · n dx = −
∫
ΓR(t)

h
∂p

∂n
dx = −

∫
ΓR(t)

h∆p = h(0).

This means that integrals of harmonic homogeneous polynomials of nonzero degree over ΩR(t) are
constant in t . This completes the proof. 2

Let hk,j be the harmonic homogeneous polynomials that satisfy

hk,j |SN−1 = sk,j .

For K,L ∈ N0 define the Banach spaces

h
L,α
K (SN−1) = {r ∈ hL,α(SN−1) : (r, sk,j )L2(SN−1) = 0, k 6 K},

the index set
IK = {(k, j) : 0 6 k 6 K, 1 6 j 6 ν(N, k)}

and the map fK : h2,α(SN−1)→ RIK by

fK(r)k,j =

∫
Ωr

hk,j dx −
√
σN

N
δk,0.

Note that if we choose h0,0 = 1/
√
σN then fK(r) = 0 for r ∈ MN

K . Let PK : h2,α(SN−1) →

h
2,α
K (SN−1) be the orthogonal projection onto h2,α

K (SN−1) with respect to the L2-inner product and
define φK : h2,α(SN−1)→ RIK × h2,α

K (SN−1) by

φK(r) =

(
fK(r)

PKr

)
.

Because hk,j (x) = |x|ksk,j (x/|x|) we have

fK(r)k,j =

∫
SN−1

(1+ r(ϕ))k+N

k +N
sk,j (ϕ) dϕ −

√
σN

N
δk,0,
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where ϕ = x/|x| ∈ SN−1. The operators fK : h2,α(SN−1) → RIK are analytic, and Fréchet
differentiation leads to

f ′K(0)[r]k,j = (r, sk,j )L2(SN−1).

By linearity of PK we have

φ′K(0)[r] =
(
f ′K(0)[r]
PKr

)
.

It is easy to see that φ′K(0) : h2,α(SN−1)→ RIK ×h2,α
K (SN−1) is bijective. By the implicit function

theorem, φK is a diffeomorphism in a neighbourhood of 0 in h2,α(SN−1). There exists an open
neighbourhood V of the origin in h2,α

K (SN−1) and an analytic operator ψK : V → MN
K defined by

ψK(r) = φ
−1
K (0, r).

By straightforward calculation we see that ψ ′K(0) is the identity on V . Let GK : h2,α
K (SN−1) →

h1,α(SN−1) be the restriction of F2 to h2,α
K (SN−1). It is easy to see that

G′K(0) =
(
−

1
σN
N −

N

σN
I
)∣∣∣∣
h

2,α
K (SN−1)

.

LEMMA 4.2 The spectrum of G′K(0) consists entirely of eigenvalues and is equal to

σ(G′K(0)) = σ(F
′

2(0)) \
{
−
N

σN
,−
N + 1
σN

, . . . ,−
N +K

σN

}
.

Proof. This is proved in [25, Lemma 4.4]. The proof is based on the fact that F ′2(0) respects the
decomposition

h2,α(SN−1) = h
2,α
K (SN−1)⊕

K⊕
k=1

SNk . 2

THEOREM 4.3 Let 0 < λ0 < (N +K + 1)/σN . There exists a δ > 0 and an M > 0 such that the
problem

∂r

∂τ
= F2(r)

with r(0) = r0 ∈ MN
K and ‖r0‖C2,α(SN−1) < δ has a solution r ∈ C([0,∞), h2,α(SN−1)) ∩

C1([0,∞), h1,α(SN−1)) satisfying

‖r(τ )‖C2,α(SN−1) 6 Me−λ0τ‖r0‖C2,α(SN−1).

Proof. Existence follows from Theorem 3.3. Note that if r ∈ MN
K then

ψK(PKr) = r.

We have
∂(PKr)
∂τ

= PK
(
∂r

∂τ

)
= PK(F2(r)) = (PK ◦ F2 ◦ ψK)(PKr).
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This is an evolution equation for PKr . Linearising the evolution operator PK ◦ F2 ◦ ψK :
h

2,α
K (SN−1) ∩ U → h

1,α
K (SN−1) around zero leads to

(PK ◦ F2 ◦ ψK)
′(0) = G′K(0).

G′K(0) is sectorial because F ′2(0) is sectorial. By Lemma 4.2 and [19, Theorem 9.1.2] we get

‖r(τ )‖C2,α(SN−1) = ‖(ψK ◦ PK)r(τ )‖C2,α(SN−1) 6 C‖PKr(τ )‖C2,α(SN−1)

6 Ce−λ0τ‖PKr0‖C2,α(SN−1) 6 Ce−λ0τ‖r0‖C2,α(SN−1). 2

Combining the above with (2.13) we get the following estimate for the nonautonomous problem
(2.12):

‖r(t)‖C2,α(SN−1) 6 M

(
Nt

σN
+ 1

)−ζ
‖r0‖C2,α(SN−1)

for ζ = λ0σN/N .

5. The spectrum of the linearisation and stability for N = 3 in the case of Hele–Shaw flow
with surface tension

In this section we apply the principle of linearised stability (see [19]) to the evolution equation
(2.15) for the three-dimensional problem with surface tension in order to derive a stability result for
the injection case. For the suction case we will derive stability if the suction point is the geometric
centre of the initial domain and the quotient of suction speed and γ is small enough. We need to
study the spectral properties of the operator F ′γ,µ(0) : h4,α(S2)→ h1,α(S2) given by

F ′γ,µ(0)[h] = γN (−N 2h−Nh+ 2h)−
µ

4π
(Nh+ 3h). (5.1)

For each γ > 0 and µ ∈ R \ {0} introduce

gk = γ k(−k
2
− k + 2)−

µ

4π
(k + 3).

The following lemma is a simple consequence of (3.1) and (5.1).

LEMMA 5.1 The point spectrum of F ′γ,µ(0) : h4,α(S2)→ h1,α(S2) is

π(F ′γ,µ(0)) = {g0, g1, g2, . . .}.

The eigenspace for the eigenvalue gk is S3
k . If µ > 0 then all eigenvalues of F ′γ,µ(0) : h4,α(S2)→

h1,α(S2) are negative. If µ < 0 then the eigenvalues g0 and g1 are positive. All other eigenvalues
are negative if

|µ|/γ = −µ/γ < 32π/5. (5.2)

For two Banach spaces X and Y such that X ↪→ Y we define H(X, Y ) as the collection of
operatorsA ∈ L(X, Y ) for which−A is the infinitesimal generator of a strongly continuous analytic
semigroup.
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LEMMA 5.2 We have −F ′γ,µ(0) ∈ H(h4,α(S2), h1,α(S2)).

Proof. See Appendix A. 2

LEMMA 5.3 The spectrum of F ′γ,µ(0) : h4,α(S2)→ h1,α(S2) consists entirely of eigenvalues and

σ(F ′γ,µ(0)) = {g0, g1, g2, . . .}.

The resolvent (λI − F ′γ,µ(0))−1 : h1,α(S2)→ h1,α(S2) is compact for all λ /∈ σ(F ′γ,µ(0)).
Proof. This follows from Lemma 5.2 and the same reasoning as in the proof of Lemma 3.2. 2

THEOREM 5.4 Let µ > 0 and 0 < λ0 < 3µ/(4π). There exists a δ > 0 and an M > 0 such that
the problem

∂r

∂τ
= Fγ,µ(r)

with r(0) = r0 ∈ h4,α(S2) and ‖r0‖C4,α(S2) < δ has a solution r ∈ C([0,∞), h4,α(S2)) ∩

C1([0,∞), h1,α(S2)) satisfying

‖r(τ )‖C4,α(S2) 6 Me−λ0τ‖r0‖C4,α(S2).

Proof. In Lemma 5.2 we saw thatF ′γ,µ(0) is sectorial. Note that−3µ/(4π) is the largest eigenvalue
of F ′γ,µ(0). The theorem follows from Lemma 2.3, Lemma 5.3 and [19, Theorem 9.1.2]. 2

If we combine this estimate with (2.13) we get for the nonautonomous problem (2.12) the estimate

‖r(t)‖C4,α(S2) 6 M

(
3µt
4π
+ 1

)−ζ
‖r0‖C4,α(S2)

for ζ = 4πλ0/(3µ).
The case µ < 0 is more complicated. We need some extra conditions for certain Richardson

moments of the initial domain in order to get results similar to Theorem 5.4. Note that r ∈ M3
1 if

and only if the corresponding domain Ωr has the volume of the unit ball and its geometric centre is
at the origin.

LEMMA 5.5 Suppose that r satisfies (2.15). If r0 ∈ M3
1 then r(t) ∈ M3

1 for all t > 0.

Proof. It is easy to check that if Ωr(0) has the volume of the unit ball, then so does Ωr(t) for all
t . Let R(t) = sN (t)(1 + r(t)) − 1 and let p and v be the solutions of (1.1)–(1.3), (1.5) on ΩR(t).
We shall use the following identity for the curvature κR(t) and the Laplace–Beltrami operator ∆R(t)
of ΓR(t):

κR(t) = (∆R(t)x) · nR(t), (5.3)

where nR(t) is the outer normal on ΓR(t) and x : ΓR(t) → R3 stands for the identity. This is proved
in [7, Chapter 2]. Let xj denote the j -th component of x. By Green’s second identity, (1.2), (1.5),
(1.6) and the symmetry of the Laplace–Beltrami operator we have

d
dt

∫
ΩR(t)

xj dx =
∫
ΓR(t)

xj (v, n) dx =
∫
ΓR(t)

−xj
∂p

∂n
dx = −

∫
ΓR(t)

p
∂xj

∂n
dx

= γ

∫
ΓR(t)

κR(t)nj dx = γ
∫
ΓR(t)

∆R(t)xj dx = 0.

The lemma follows from this. 2
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THEOREM 5.6 Let µ < 0 be such that (5.2) holds and let 0 < λ0 < 5µ/(4π) + 8γ . There exists
a δ > 0 and an M > 0 such that the problem

∂r

∂τ
= Fγ,µ(r) (5.4)

with r(0) = r0 ∈ h
4,α(S2) ∩ M3

1 and ‖r0‖C4,α(S2) < δ has a solution r ∈ C([0,∞), h4,α(S2)) ∩

C1([0,∞), h1,α(S2)) satisfying

‖r(τ )‖C4,α(S2) 6 Me−λ0τ‖r0‖C4,α(S2).

Proof. Introduce
G1,γ,µ = Fγ,µ|h4,α

1 (S2)
,

with h4,α
1 (S2) as defined in Section 4. We get

G′1,γ,µ(0) = F
′
γ,µ(0)|h4,α

1 (S2)
.

Because F ′γ,µ(0) is invariant with respect to the decomposition hk,α(S2) = h
k,α
1 (S2)⊕ S3

0 ⊕ S
3
1 , we

find
σ(G′1,γ,µ(0)) = {g2, g3, g4, . . .}.

The operator G′1,γ,µ(0) is sectorial because F ′γ,µ(0) is sectorial (see Lemma 5.2). Let φ1 :

h4,α(S2) → R × R3
× h

4,α
1 (S2) be defined as in Section 4. We showed that there exists a

neighbourhood V ⊆ h
4,α
1 (S2) of zero such that {0} × {0} × V ⊆ φ1(U) and an analytic mapping

ψ1 : V → M3
1 given by

ψ1(r̃) = φ
−1(0, 0, r̃).

Assume for the moment that r is a solution to (5.4) and r(t) ∈ M3
1 ∩ U . Then r̃ = P1r satisfies

∂r̃

∂τ
= (P1 ◦ Fγ,µ ◦ ψ1)(r̃). (5.5)

We will discuss the solvability of (5.5) first. Analogously to Section 4, we find that the linearisation
around zero of the evolution operator on the right-hand side is

(P1 ◦ Fγ,µ ◦ ψ1)
′(0) = G′1,γ,µ(0).

From [19, Theorem 9.1.2], we get a δ > 0 such that if r̃0 = P1r0 ∈ h
4,α
1 (S2) with ‖r̃0‖C4,α(S2) < δ,

then the problem (5.5) with r̃(0) = r̃0 has a unique solution r̃ ∈ C([0,∞), h4,α
1 (S2)) ∩

C1([0,∞), h1,α
1 (S2)). Furthermore, there exists an M ′ > 0 independent of r̃0 such that

‖r̃(τ )‖C4,α(S2) 6 M ′e−λ0τ‖r̃0‖C4,α(S2).

Set
r = ψ1(r̃).
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Then
∂r

∂τ
= ψ ′1(r̃)

[
∂r̃

∂τ

]
= ψ ′1(P1r)[P1Fγ,µ(r)].

Because ψ1(P1r) = r for all r ∈ M3
1 ∩ U , we have

ψ ′1(P1r)[P1h] = h

for all h ∈ TrM3
1 . By Lemma 5.5 we have Fγ,µ(r) ∈ TrM3

1 and therefore

∂r

∂τ
= Fγ,µ(r).

There exists a δ > 0 and an M > 0 such that for r0 ∈ M3
1 with ‖r0‖C4,α(S2) < δ we have

‖r(τ )‖C4,α(S2) 6 Me−λ0τ‖r0‖C4,α(S2).

This estimate follows exactly in the same way as in the proof of Theorem 4.3. This proves the
theorem. 2

If we combine this estimate with (2.13) we get for the nonautonomous problem (2.12) the estimate

‖r(t)‖C4,α(S2) 6 M

(
3µt
4π
+ 1

)ζ
‖r0‖C4,α(S2)

for ζ = −4πλ0/(3µ) and t ∈ [0, Tµ).

6. Stability for perturbations of the suction point

If the suction point is not at the geometric centre of the initial domain we cannot derive a result like
Theorem 5.6. As shown in [23], the solution either becomes unbounded or breaks down before all
liquid is sucked out. In this section we show that for the problem with surface tension an arbitrarily
large portion of the liquid can be removed if r0 is sufficiently small. We do not need to restrict
ourselves to the case r0 ∈ M3

1 .

LEMMA 6.1 Let µ < 0, α1 ∈ (0, α), β ∈ (α, 1) and assume that (5.2) holds. There exists a
neighbourhood U of 0 in h3,β(S2) such that the problem

∂r

∂τ
= Fγ,µ(r)

has for each r(0) = r0 ∈ U ∩ h4,α1(S2) a unique maximal solution

r ∈ C([0, T +(r0)), h4,α1(S2)) ∩ C0,η([0, T +(r0)), h1,α(S2)),

where η = 1− (α − α1)/3. The mapping (r0, τ ) 7→ r(τ ) is a semiflow on U ∩ h4,α1(S2).

Proof. According to [12, Lemma 3.1], there exists a neighbourhood Û of 0 in h2,β(S2) and

κ1 ∈ Cω(Û ,L(h3,α(S2), h1,α(S2))), κ2 ∈ Cω(Û , h1,β(S2))



498 E. VONDENHOFF

such that
κ(r) = κ1(r)r + κ2(r).

From (5.3), we see that κ1 is a quasilinear differential operator of second order and κ2 is of first
order. Therefore there exists a small neighbourhood U ⊂ Û of 0 in h3,β(S2) such that

κ1 ∈ Cω(U ,L(h4,α(S2), h2,α(S2)))

and
κ2 ∈ Cω(U , h2,β(S2)).

Combining this with Lemma 2.3 we can choose U such that

r 7→ E(r)κ1(r) ∈ Cω(U ,L(h4,α(S2), h1,α(S2))).

By [12, Remark 3.3] we have
E(0)κ1(0) = N 3

+ p(N ),
where p is a polynomial of degree 2 and therefore from Lemma 5.2 we get

E(0)κ1(0) ∈ H(h4,α(S2), h1,α(S2)),

because E(0)κ1(0) is in highest order equal to −F ′γ,µ(0). By [3, Theorem I.1.3.1], the set
H(h4,α(S2), h1,α(S2)) is open in L(h4,α(S2), h1,α(S2)). This implies that we can choose U such
that

r 7→ γ E(r)κ1(r) ∈ Cω(U ,H(h4,α(S2), h1,α(S2))). (6.1)

By Lemma 2.3, we can choose U such that

r 7→ γ E(r)κ2(r)+ µE(r)φ(r)+ µl(r) ∈ Cω(U , h1,β(S2)). (6.2)

Because little Hölder spaces satisfy

(h4,α(S2), h1,α(S2))01−(α−α1)/3,∞ = h
4,α1(S2),

the result follows from (6.1), (6.2) and [2, Theorem 12.1]. 2

THEOREM 6.2 Let T > 0, η ∈ (0, 1) and µ < 0 be such that (5.2) holds. Define

α1 = α + 3(η − 1).

There exists a δ > 0 such that the problem

∂r

∂τ
= Fγ,µ(r)

with r(0) = r0 ∈ h4,α1(S2) and ‖r0‖C4,α1 (S2) < δ has a solution r ∈ C([0, T ), h4,α1(S2)) ∩

C0,η([0, T ), h1,α(S2)).

Proof. From the semiflow property proved in Lemma 6.1 we see that the set

V = {(r0, τ ) ∈ U × (0,∞) : τ < T +(r0)}

is open in h4,α1(S2)× (0,∞). Since T +(0) = ∞, the point (0, T ) is in V . Therefore there exists a
neighbourhood Ũ of zero in h4,α1(S2) such that T +(r0) > T for all r0 ∈ Ũ . 2

Note that by the same reasoning one can show that for any T > 0 and r̂ ∈ U ∩ h4,α1(S2) with
T +(r̂) = ∞ there exists a neighbourhood Ũ of r̂ in h4,α1(S2) such that if r0 ∈ Ũ then T +(r0) > T .
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Appendix A. Proof of Lemma 5.2

The structure of this proof is as follows. We relateN 3 to a Fourier multiplier operator N̂ 3
0 on R2. The

operator −N̂ 3
0 generates an analytic semigroup. Using techniques from [13], [12] and [9] together

with additional perturbation arguments we see that N 3
∈ H(h4,α(S2), h1,α(S2)). Since −F ′γ,µ(0)

is in highest order equal to N 3 the lemma follows.

1. Let (Ti, Ξi)Mi=1 be an atlas of S2, with Ξi(Ti) = Ũi and 0 ∈ Ũi . Define

Ui = Ũi × (0, %)

for some % < 1,
Wi = {x ∈ B3 : 1− % < |x| < 1, x/|x| ∈ Ti}

and Xi : Wi → Ui by
Xi(x) = (Ξi(x/|x|), 1− |x|).

Let Âi : h2,α(Ui)→ h0,α(Ui) and Q̂i : h2,α(Ui)→ h1,α(Ũi) be

Âip = ∆(p ◦ Xi) ◦ X−1
i , Q̂ip =

∂

∂n
(p ◦ Xi) ◦ X−1

i = −
∂p

∂x3
,

where n is the normal on S2 and

hk,α(Ui) := C∞(Ui)
Ck,α(Ui )

.

From now on we restrict our attention to one chart and omit the index i in Ũi , Ui , Âi and Q̂i . There
exist functions âjk , âj ∈ C∞(U) such that

Â =
3∑

j,k=1

âjk
∂2

∂xj∂xk
−

3∑
j=1

âj
∂

∂xj
.

Define

Â0 = −1+
3∑

j,k=1

âjk(0)
∂2

∂xj∂xk
.

Note that â33(0) = 1 and â13(0) = â23(0) = â31(0) = â32(0) = 0. Let Tr denote the trace operator
for functions on the halfspace R3

+ = {x ∈ R3 : x3 > 0)}. Define R̂0 : h1,α(R2
× {0})→ h1,α(R3

+)

as the solution operator R̂0g = u of the problem{
−Â0u = 0 in R3

+,

Tr u = g in R2
× {0}.

Define the operator N̂0 by
N̂0 = Q̂R̂0.

From (4.10) in [13] we get
FN̂0F−1

=Mf (·,1), (A.1)
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where F denotes Fourier transform, f : R2
× R→ R is defined by

f (x, y) =

√√√√y2 +

2∑
j,k=1

âjk(0)xjxk,

and Mf (·,1) stands for multiplication with the function f (·, 1). As (f (x, y))3 is positively homo-
geneous and its derivatives are bounded on |x|2+y2

= 1, N̂ 3
0 ∈ H(h

4,α(R2
×{0}), h1,α(R2

×{0}))
(see [10, Theorem A.2]). In [12, Corollary 5.2], the same strategy is used for a different operator.

2. The next step is relating N̂ 3
0 to N 3 if the chart domains are small. The following statement

holds true. For any ε > 0 and ζ ∈ (0, α) there is a % > 0, an atlas (Ti, Ξi)Mi=1, a partition of unity
(ψi)

M
i=1 subordinate to (Wi)

M
i=1, and a C > 0 such that for l ∈ {1, 2, 3} and N̂0 constructed from

the atlas as described above we have, for all p ∈ hl+1,α(S2),

‖X∗(ψNp)− N̂0X∗(ψp)‖Cl,α(R2) 6 ε‖X∗(ψp)‖Cl+1,α(R2) + C‖p‖Cl+1,ζ (S2). (A.2)

To see this, we argue as in the proof of Theorem B.4 in [9] and choose % sufficiently small,
depending on ε. Here and below we identify Cl,α(R2) and Cl,α(R2

× {0}). Functions X∗(ψp) can
be extended to the entire R2 because of the smoothness of the partition of unity. Recall that

X∗f := f ◦ X−1.

We want to show that for fixed ζ ∈ (0, α) and ε > 0, we can derive from (A.2) that there is a C > 0
and an atlas such that for all p ∈ h4,α(S2),

‖X∗(ψN 3p)− N̂ 3
0X∗(ψp)‖C1,α(R2) 6 ε‖X∗(ψp)‖C4,α(R2) + C‖p‖C4,ζ (S2). (A.3)

First we show that there exists a constant C′ independent of p such that

‖X∗(ψNp)‖C3,α(R2) 6 C′(‖X∗(ψp)‖C4,α(R2) + ‖p‖C4,ζ (S2)) (A.4)

and
‖X∗(ψN 2p)‖C2,α(R2) 6 C′(‖X∗(ψp)‖C4,α(R2) + ‖p‖C4,ζ (S2)). (A.5)

Estimate (A.4) follows if we apply (A.2) with ε = 1 and l = 3 together with the boundedness of
N̂0 : hk+1,α(R2

×{0})→ hk,α(R2
×{0}). Estimate (A.5) follows in a similar way from (A.2), (A.4)

and the boundedness of N : hk+1,α(S2)→ hk,α(S2). Let ε > 0. Let η > 0 be a small number to be
chosen later. We have

‖X∗(ψN 3p)− N̂ 3
0X∗(ψp)‖C1,α(R2) 6 ‖X∗(ψN 3p)− N̂0X∗(ψN 2p)‖C1,α(R2)

+‖N̂0X∗(ψN 2p)− N̂ 2
0X∗(ψNp)‖C1,α(R2)

+‖N̂ 2
0X∗(ψNp)− N̂

3
0X∗(ψp)‖C1,α(R2).

The three terms on the right can be estimated separately. We denote by Cη constants depending on
η while C denotes constants independent of η. Applying (A.2) to N 2p with l = 1 and (A.5) we get
for the first term the estimate

‖X∗(ψN 3p)− N̂0X∗(ψN 2p)‖C1,α(R2) 6 η‖X∗(ψN 2p)‖C2,α(R2) + Cη‖N 2p‖C2,ζ (S2)

6 ηC‖X∗(ψp)‖C4,α(R2) + Cη‖p‖C4,ζ (S2).
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The other terms can be estimated in a similar way. Finally,

‖X∗(ψN 3p)− N̂ 3
0X∗(ψp)‖C1,α(R2) 6 ηC‖X∗(ψp)‖C4,α(R2) + Cη‖p‖C4,ζ (S2).

We take η = ε/C and get the desired result (A.3).

3. Now we prove that for all λ > 0,

λI +N 3 : h4,α(S2)→ h1,α(S2)

is an isomorphism. Note that

λI +N 3
= (

3√
λ I +N )( 3√

λe2πi/3I +N )( 3√
λ e−2πi/3I +N ). (A.6)

We have surjectivity of µI + N : hk+1,α(S2) → hk,α(S2) for µ ∈ C \ −N0 and for all k ∈ N.
Surjectivity of λI +N 3 : h4,α(S2)→ h1,α(S2) follows if we apply this result for k = 1, 2, 3 and
µ =

3√
λ,

3√
λ e2πi/3,

3√
λ e−2πi/3.

4. There exist C > 0 and λ∗ > 0 such that for all r ∈ h4,α(S2) and λ ∈ C with Re λ > λ∗ we
have

|λ| ‖r‖h1,α(S2) + ‖r‖h4,α(S2) 6 C‖(λI +N 3)r‖h1,α(S2). (A.7)

This can be obtained from (A.3) via exactly the same procedure that is used in [9, proof of Theorem
B.4]. The estimate (A.7) and the fact that

λ∗I +N 3 : h4,α(S2)→ h1,α(S2)

is an isomorphism imply that N 3
∈ H(h4,α(S2), h1,α(S2)) (see [3, Remark I.1.2.1(a)]).
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20. MÜLLER, C. Spherical Harmonics. Lecture Notes in Math. 17, Springer, Berlin (1966). Zbl 0138.05101
MR 0199449

21. PROKERT, G. Parabolic evolution equations for quasistationary free boundary problems in capillary fluid
mechanics. Dissertation, Technische Univ. Eindhoven, Eindhoven (1997). Zbl 0896.35145 MR 1454616

22. PROKERT, G. Existence results for Hele–Shaw flow driven by surface tension. Eur. J. Appl. Math. 9
(1998), 195–221. Zbl 0919.35005 MR 1630665

23. TIAN, F. R. On the breakdown of Hele–Shaw solutions with nonzero surface tension. J. Nonlinear Sci. 5
(1995), 479–484. Zbl 0862.35093 MR 1361783

24. VONDENHOFF, E. Asymptotic behaviour of injection and suction for Hele–Shaw flow in R3 with surface
tension near balls. CASA-Report 06-42, Technische Univ. Eindhoven, Eindhoven (2006).

25. VONDENHOFF, E. Long-time behaviour of classical Hele–Shaw flows with injection near expanding
balls. CASA-Report 06-19, Technische Univ. Eindhoven, Eindhoven (2006).

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0777.53012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1215267
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0476.35080&format=complete
http://www.ams.org/mathscinet-getitem?mr=0650455
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1102.350481&format=complete
http://www.ams.org/mathscinet-getitem?mr=2205149
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0842.35083&format=complete
http://www.ams.org/mathscinet-getitem?mr=1356871
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0857.76086&format=complete
http://www.ams.org/mathscinet-getitem?mr=1397432
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1023.35527&format=complete
http://www.ams.org/mathscinet-getitem?mr=1441859
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0888.35142&format=complete
http://www.ams.org/mathscinet-getitem?mr=1466667
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0896.35142&format=complete
http://www.ams.org/mathscinet-getitem?mr=1607952
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1072.35208&format=complete
http://www.ams.org/mathscinet-getitem?mr=1895715
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0605.76043&format=complete
http://www.ams.org/mathscinet-getitem?mr=0777468
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0836.47009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1335452
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0816.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1329547
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0138.05101&format=complete
http://www.ams.org/mathscinet-getitem?mr=0199449
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0896.35145&format=complete
http://www.ams.org/mathscinet-getitem?mr=1454616
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0919.35005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1630665
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0862.35093&format=complete
http://www.ams.org/mathscinet-getitem?mr=1361783

	Introduction
	The evolution equation for the domain
	The spectrum of the linearisation and stability for the nonlinear autonomous evolution in the case of classical Hele--Shaw flow
	Faster convergence in absence of low-order moments
	The spectrum of the linearisation and stability for N=3 in the case of Hele--Shaw flow with surface tension
	Stability for perturbations of the suction point
	Proof of Lemma 5.2 

