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Viscosity solutions for a model of contact line motion
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This paper considers a free boundary problem that describes the motion of contact lines of a liquid
droplet on a flat surface. The elliptic nature of the equation for droplet shape and the monotonic
dependence of contact line velocity on contact angle allows us to introduce a notion of “viscosity”
solutions for this problem. Unlike similar free boundary problems, a comparison principle is only
available for a modified short-time approximation because of the constraint that conserves volume.
We use this modified problem to construct viscosity solutions to the original problem under a weak
geometric restriction on the free boundary shape. We also prove uniqueness provided there is an
upper bound on front velocity.

1. Introduction

This paper is concerned with solutions of the free boundary problem in RN × [0,∞),

−∆u(·, t) = λ(t; u) in {u(·, t) > 0},∫
{u(·,t)>0}

u(x, t) dx = V0,

V = F(|Du|) on ∂{u > 0},
u(·, 0) = u0,

(P )

where F : R+ → R is continuous and strictly increasing. Here V = V (x, t) denotes the outward
normal velocity of the free boundary ∂{u > 0} of u at (x, t). In spatial dimension N = 2, this
problem describes the motion of a liquid droplet on a planar surface whose free surface height
is u(x, t) and volume is V0 [Gr, Ho, G1]. In this context the positive phase {u > 0} denotes
the wet region and the free boundary denotes the contact line between the drop and the surface.
The first equation in (P ) defines the shape of a quasi-static droplet. The second equation is a
volume conservation condition which is enforced by a suitable choice of the Lagrange multiplier
λ(t; u) (which is physically the hydrostatic pressure). The third equation in (P ) defines the contact
line motion by a relationship between the free boundary normal velocity V = ut/|Du| and the
“apparent” contact angle |Du|.
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The initial condition for the evolution is specified by an open, bounded set Ω0 ⊂ RN and
volume V0. The initial droplet shape u0 : RN → R+ is the smallest (weak) solution of{

−∆u0 = λ0 > 0 in Ω0,

u0 = 0 in RN − Ω̄0,
(1)

where by linearity λ0 > 0 can be chosen to satisfy any volume constraint. Also, given λ0 > 0, u0 is
uniquely determined by

u0 := inf{v : −∆v > λ0 in Ω0, v > 0 in RN }.

Many formulas for the constitutive velocity relation F appear in the literature (e.g. [T]). The
present paper focuses on the most widely used one [V, C]),

F(|Du|) := |Du|3 − 1. (2)

The techniques which we use for global existence of solutions, however, only rely on the fact that
F is continuous and strictly increasing.

The free boundary problem (P ) has been used as a fundamental model for contact line motion
for the last 30 years. Mathematical understanding of this problem has been slowly accruing in the
form of numerical methods [G1, Hu], stability calculations [Ho] and homogenized dynamics [G2].
On the other hand, very little is known for (P ) in terms of rigorous analysis. To the best of our
knowledge the short-time existence of classical solutions has not been established. Furthermore,
no notion of weak or generalized solutions has yet been put forth. There are, however, compelling
reasons to consider non-classical solutions to this free boundary problem. Numerical (and even
physical) experiments indicate that the free boundary evolution with initially convex positive phase
develops corners (see Figure 1). Of course, other more standard topological singularities of the
positive phase, such as splitting and reconnection, are possible as well (in fact we demonstrate this
must happen for certain initial data, see Lemma B.6). Our results address only the former type of
singularity. There is a good reason for this: during splitting of the free boundary, for example, the
model itself breaks down since separate volume constraints for each connected component would
be required. While there may be a more general model that admits changes in topology, we do not
address this here.

initial data

FIG. 1. Development of a nonsmooth corner in the free boundary, using the numerical method in [G1].

Originally invented by Crandall and Lions [CL] for Hamilton–Jacobi equations, viscosity
solutions allow for singularities of their level sets, and enjoy strong stability properties under various
limits. The notion of viscosity solutions has been applied to a variety of free boundary problems that
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satisfy a comparison principle, which states that if one solution is smaller than the other at one time,
then the order is preserved for later times (see, e.g., [K2]). For example, in [K1] a notion of viscosity
solutions was introduced for Hele–Shaw and Stefan problems with zero surface tension.

In this paper we define a notion of “viscosity” solutions for problem (P ) (see Section 3), and we
show that it is well-posed in the sense of existence and uniqueness of solutions. Furthermore, under
a moderate geometric restriction (see condition (I ) in Section 3.3 and Appendix B), solutions will
exist for all time. Below is the summary of the main result (see Theorem 3.8 and Corollary 6.4):

THEOREM 1.1 Suppose Ω0 is star-shaped with respect to a ball B it contains. Then the following
holds:

(a) A solution of (P ) exists in Rn × [0, T ] for some maximal time T > 0.
(b) At the maximal time T , the ball B is not entirely in the support of u.
(c) If the velocity function F is bounded, the solution is unique, at least until the time when B is

not entirely in the support of u.

In our case, solutions of (P ) do not satisfy a comparison principle directly since the Lagrange
multiplier λ(t; u) is time-dependent, thus a straightforward definition of viscosity solutions is more
difficult. In particular, the comparison principle we employ only holds for discrete time intervals of
an approximating problem (P )Mn (see Section 3) which relaxes the constraint and fixes λ over small
time intervals.

The paper is organized as follows. In Section 2 we define viscosity solutions for problem (P )

and a modified problem (P )M which puts an upper bound on the free boundary velocity. We also
outline the strategy for constructing solutions of (P ) by approximating problems (P )Mn . In Section 3
the small-time-approximation problem (P̃ ) is defined, and a comparison principle and existence
theorem for this problem are given. We also introduce a geometric restriction (I ) and discuss
settings for which it is satisfied to yield global-in-time existence. In Section 4 we use the results
of Section 3 to show existence of a weak solution for (P )Mn , and derive regularity properties for
uMn . In Section 5 we use the equicontinuity of the approximating sequence {uMn } to show that it
converges to a viscosity solution as n,M → ∞. In Section 6 we prove that uM can be obtained
as the local uniform limit of the whole sequence {uMn } as n → ∞, and the solution uM of (P )M

is unique. In Appendix A we prove the comparison principle and the existence result for solutions
of (P̃ ) stated in Section 3. Finally, in Appendix B we show that the geometric restriction (I ) holds
for all times when the initial data is (a) symmetric with respect to two axes or (b) symmetric with
respect to one axis and convex in two dimensions.

2. Definitions and preliminaries

Consider a domain D ⊂ RN and a time interval I ⊂ R+. For a nonnegative real-valued function
u(x, t) defined for (x, t) ∈ D × I , we will use the notation

Ω(u) = {(x, t) ∈ D × I : u(x, t) > 0}, Ωt (u) = {x ∈ D : u(x, t) > 0},
Γ (u) = ∂Ω(u)− ∂(D × I ), Γt (u) = ∂Ωt (u)− ∂D.

We call Ω(u) and Γ (u) respectively the positive phase and the free boundary of u.
For x ∈ RN we also denote by Br(x) the ball of radius r with center x in RN .
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2.1 Viscosity solutions

We first define the notion of viscosity solutions for problem (P ), with open, bounded initial positive
phase Ω0 and initial shape given by (1).

DEFINITION 2.1 A nonnegative function u(x, t) in Q := RN × [0,∞) is a viscosity solution of
(P ) in Q with initial positive phase Ω0 and volume V0 if the following is true:

1. u is continuous with u(·, 0) = u0(x).
2. At each t > 0, −∆u = λ(t; u) in Ωt (u) where λ(t) := λ(t; u) is chosen such that∫

u(x, t) dx =
∫
u0(x) dx = V0.

3. For every φ ∈ C2,1(Q) such that u−φ has a local maximum inΩ(u)∩{t 6 t0} at (x0, t0) ∈ Γ (u)

with |Dφ|(x0, t0) 6= 0,
(φt − |Dφ|(|Dφ|

3
− 1))(x0, t0) 6 0.

4. For every φ ∈ C2,1(Q) such that u−φ has a local minimum inΩ(u)∩{t 6 t0} at (x0, t0) ∈ Γ (u)

with |Dφ|(x0, t0) 6= 0,
(φt − |Dφ|(|Dφ|

3
− 1))(x0, t0) > 0.

Note that classical solutions of (P ) are also viscosity solutions.
One can similarly define viscosity solutions of a problem which has an imposed upper bound on

velocity, 
−∆u(·, t) = λ(t; u) in {u > 0},∫
{u>0}

u dx = V0,

V =
ut

|Du|
= min(|Du|3 − 1,M) on ∂{u > 0}.

(P )M

Since the upper bound is arbitrary, there is no loss of generality in the physical problem where one
expects finite speeds. This modification considerably simplifies our analysis of proving uniqueness
in Section 6.

Note that (P ) does not satisfy a comparison principle: since Ωs ⊂ Ωt implies λ(t) 6 λ(s), one
cannot use the maximum principle to conclude that u(x, t) 6 u(x, s). Therefore the usual viscosity
solution approach must be modified. To do this, we consider the “discrete time approximation”
problem 

−∆uMn (·, t) = λn,M(ktn) in {uMn > 0} ∩ [ktn, (k + 1)tn),

V = min(F (|DuMn |),M) on ∂{uMn > 0},

uM(x, 0) = u0(x),

(P )Mn

where tn := 2−n and λn,M(ktn) is chosen so that∫
uMn (·, ktn) dx = V0 for k = 0, 1, 2, . . . . (2.1)

This problem will satisfy the desired comparison principle in each time interval [ktn, (k + 1)tn).
Note that if Γt (un) and uMn change continuously in time, then by (2.1),

uMn (x, ktn) =
λn,M(ktn)

λn,M((k − 1)tn)
lim
t↑ktn

uMn (x, t). (2.2)
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To construct a viscosity solution of (P ), we first construct the solution uMn of (P )Mn by finding a
viscosity solution in [ktn, (k+1)tn) on each interval and restart at t = (k+1)tn using (2.2). We will
then show that uMn and Ωt (uMn ) converge uniformly as n,M go to infinity to a viscosity solution of
the original problem.

3. The small-time problem and a comparison principle

As a small-time approximation of (P ), we consider
−∆u(·, t) = λ in {u > 0},

V =
ut

|Du|
= F(|Du|) on ∂{u > 0},

(P̃ )

where λ is a prescribed constant, rather than determined by an additional constraint. For purposes of
this section only, we allow F : [0,∞)→ R to be any continuous, increasing function. In particular,
if F is replaced with min(F,M), then a solution uMn of (P )Mn will also solve (P̃ ) with λ = λ(ktn)
on intervals [ktn, (k + 1)tn).

Let Q = RN × (0,∞).

DEFINITION 3.1 A nonnegative upper semicontinuous function u defined in Q is a viscosity
subsolution of (P̃ ) if

(a) for each a < T < b the set Ω(u) ∩ {t 6 T } is bounded;
(b) for every φ ∈ C2,1(Q) such that u− φ has a local maximum inΩ(u)∩ {t 6 t0} ∩Q at (x0, t0),

(i) −∆φ(x0, t0) 6 λ when u(x0, t0) > 0,
(ii) (φt − |Dφ|F(|Dφ|))(x0, t0) 6 0 if (x0, t0) ∈ Γ (u) when −∆φ(x0, t0) > λ.

Note that because u is only upper semicontinuous there may be points of Γ (u) at which u is positive.

DEFINITION 3.2 A nonnegative lower semicontinuous function v defined in Q is a viscosity
supersolution of (P̃ ) if for every φ ∈ C2,1(Q) such that v− φ has a local minimum in Q∩ {t 6 t0}

at (x0, t0),

(i) −∆φ(x0, t0) > λ if v(x0, t0) > 0,
(ii) if (x0, t0) ∈ Γ (v), |Dφ|(x0, t0) 6= 0 and −∆φ(x0, t0) < λ, then (φt − |Dφ|F(|Dφ|))(x0, t0)

> 0.

For a nonnegative real-valued function f (x, t) in a cylindrical domain D × (a, b) we define

f ∗(x, t) := lim sup
(ξ,s)∈D×(a,b)→(x,t)

f (ξ, s), f∗(x, t) := lim inf
(ξ,s)∈D×(a,b)→(x,t)

f (ξ, s).

DEFINITION 3.3 A lower semicontinuous function u is a viscosity solution of (P̃ ) if u is a viscosity
supersolution and u∗ is a viscosity subsolution of (P̃ ). Moreover, u is a viscosity solution of (P̃ )
with initial positive phase Ω0 if Ω0(u

∗) = Ω0(u) = Ω0.

For later use we show that free boundaries of solutions of (P̃ ) do not “jump” at any positive
time.

LEMMA 3.4 Let v solve (P̃ ) in Q. Then for x0 ∈ Γt0(v) with t0 > 0, there exist xn ∈ Γtn(v) with
tn < t0 such that xn→ x0 and tn→ t0 as n→∞.
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Proof. Suppose otherwise. Then there exists r > 0 and a sequence of tk converging to t0 such that
for large k, either (i) v(·, tk) = 0 in Br(x0) or (ii) Br(x0) ⊂ Ωtk (v).

First note that, due to Definition 3.1(a), M = supRn×[0,∞) v is finite. If (i) holds, we construct a
barrier function φ(x, t) in Σ := Br+2(x0)× [tk, t0] such that

−∆φ(·, t) = 2λ in Br+2(x0)− Br(t)(x0),

φ(·, t) = 0 on ∂Br(t)(x0),

φ(·, t) = M on ∂Br+2(x0),

where r(t) = r + (t0 − t)/(2(t0 − tk)). (Note that r(t) is positive for tk 6 t 6 t0.) Since r(t) ∈
[r, r + 1] for t ∈ [tk, t0], we have |Dφ| 6 C0 = C0(M, r) on ∂Br(t)(x0), and thus

φt − |Dφ|F(|Dφ|) > (2(t0 − tk))−1
− C0F(C0) on ∂Br(t)(x0).

Hence if tk is sufficiently close to t0, then φ is a supersolution of (P̃ ) in Σ with φ ∈ C2,1(Ω̄(φ)).
Using Definition 3.1, one can check that v 6 φ in Σ and in particular x0 lies in the interior of the
zero set of v(·, t0), a contradiction.

If (ii) holds, we construct the barrier ϕ(x, t) in Σ such that

−∆ϕ(·, t) = λ in Br(t)(x0), ϕ(·, t) = 0 in RN − Br(t)(x0)

where r(t) is given above. If tk is sufficiently close to t0, then ϕ is a subsolution of (P̃ ) in Σ with
ϕ ∈ C2,1(Ω̄(ϕ)) and with smooth positive phase. Hence using Definition 3.2, one can check that
v > ϕ in Σ and in particular x0 lies in the interior of Ωt0(v), a contradiction. 2

3.1 Convolutions

An important set of tools for the subsequent analysis are the inf- and sup-convolutions over space
balls. These are employed to obtain larger or smaller sub- and supersolutions from existing sub- and
supersolutions.

LEMMA 3.5 (a) If u is a viscosity subsolution of (P̃ ), then the sup-convolution

ũ(x, t) := sup
y∈Br−ct (x)

u(y, t)

is a viscosity subsolution of (P̃ ) with F(|Du|) replaced by F(|Du|)− c, as long as r − ct > 0.
(b) If u is a supersolution of (P̃ ) then the inf-convolution

ũ(x, t) := inf
y∈Br−ct (x)

u(y, t)

is a viscosity supersolution of (P̃ )with F(|Du|) replaced by F(|Du|)+c, as long as r−ct > 0.

Proof. We only prove (a).
First suppose ũ(·, t) − φ(·, t) has a local maximum at x0 ∈ Ωt (ũ). By the definition of ũ,

u(·, t)−φ(·+(x0−y0), t) has a local maximum at y0, where y0 ∈ Br−ct (x0) and ũ(x0, t) = u(y0, t).
Since u is a viscosity solution of (P̃ ), it follows that −∆φ(x0, t) 6 λ. Hence our claim is proved.
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Next suppose that ũ(·, t)−φ(·, t) has a local maximum zero in Ω̄(ũ)∩{t 6 t0} at (x0, t0) ∈ Γ (ũ)

with |Dφ|(x0, t0) 6= 0. By definition of ũ, the function u− φ̃, where

φ̃(x, t) := φ(x + (1− c|x0 − y0|
−1(t − t0))(x0 − y0), t),

has a local maximum in Ω̄(u) ∩ {t 6 t0} at (y0, t0) ∈ Γ (u), where |y0 − x0| = r − ct0 and
ũ(x0, t) = u(y0, t). Note that Br−ct0(y0) lies in Ωt0(ũ) and touches Γt0(ũ) at x0. Since ũ touches φ
from below, it follows that y0 − x0 is parallel to the direction of Dφ(x0, t0). Since u is a viscosity
solution of (P̃ ), it follows that

φ̃t

|Dφ̃|
(y0, t0) =

φt

|Dφ|
(x0, t0)+ c 6 F(|Dφ̃|)(y0, t0) = F(|Dφ|)(x0, t0). 2

3.2 Comparison principle

Here we state the comparison principle for viscosity solutions of (P̃ ).

DEFINITION 3.6 We say that a pair of functions u0, v0 : D̄ → [0,∞) are (strictly) separated
(denoted by u0 ≺ v0) in D if

(i) the support of u0, supp(u0) = {u0 > 0}, restricted to D̄ is compact,
(ii) the functions are strictly ordered in the support of u0:

u0(x) < v0(x) in {u0 > 0}.

Variations of the following theorem, whose proof is deferred to Appendix A, will be used later
in the paper.

THEOREM 3.7 (Comparison principle) Let u, v be respectively viscosity sub- and supersolutions
of (P̃ ) in Σ = D× (a, b) with u(·, 0) ≺ v(·, 0) in D. If u(·, t) < v(·, t) on ∂D for a < t < b, then
u(·, t) ≺ v(·, t) in D for t ∈ [0, T ).

3.3 A geometric restriction and global existence

As discussed in the introduction, one cannot expect viscosity solutions to exist for all time in every
circumstance. This fact will be encoded into a restriction on the shape of the positive phase, which
is the following: We say that a domain Ω ⊂ RN is star-shaped with respect to a point p0 ∈ Ω if
the line segments connecting p0 to boundary points q ∈ ∂Ω lie in Ω .

The following theorem, whose proof is deferred to Appendix A, establishes existence for small
times of star-shaped solutions to problem (P̃ ). We will later prove short-time existence for the full
problem as well.

THEOREM 3.8 There exists a viscosity solution of (P̃ ) in Q with initial positive phase Ω0 if Ω0
is star-shaped with respect to Br(0) for some r > 0.

For long time existence for the full problem (P ), we need to ensure that star-shapedness is
preserved. Below we prove this is true provided the free boundary does not collapse in on the
“center”; that is, there must always be some ball in Ωt so that Ωt is star-shaped with respect to
points in that ball. In particular, this allows us to side-step issues involved with topological changes,
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such as when the free boundary pinches off. The precise requirement is the following: there exists
r > 0 so that solutions v(x, t) satisfy{

Ω0(v) is star-shaped with respect to Br(0),
Br(0) ⊂ Ωt (v).

(I )

We will in general invoke requirement (I ) when referring to approximating solutions uMn (see
Definition 4.1), but we could just as well suppose that (I ) holds for the limits as n,M → ∞,
that is, for viscosity solutions to the full problem. We briefly detail some natural cases where (I ) is
expected to hold:

1. If the free boundary is expanding, then Br(0) will always be in Ωt (uMn ), and therefore the free
boundary will always be star-shaped. Conversely, a contracting free boundary would still satisfy
(I ) with possibly different r up to the point at which Br(0) was entirely outside the positive
phase.

2. A convex positive phase is star-shaped with respect to every ball, and therefore remains that way
if it is contracting. In other words, convexity is preserved for strictly contracting free boundaries.
We also suspect, but cannot prove, that this is the case for expanding free boundaries.

3. If the initial data has certain symmetries, (I ) is guaranteed for all times. Details of this are given
in Appendix B.

4. Since there is a lower bound on the free boundary velocity, Br(0) will at least stay inside Ωt for
a short time. For short-time existence, we can therefore always assume (I ) holds, so long as the
initial data is star-shaped.

We will now prove that star-shapedness is preserved as long as (I ) holds in problem (P̃ ), and
later observe the same is true for the full problem. Therefore if (I ) is preserved by the evolution, we
will be able to obtain global existence and uniqueness.

LEMMA 3.9 Suppose that v solves (P̃ ) with F(|Dv|) = min(|Dv|3 − 1,M) and condition (I ) is
satisfied. Then Ωt (v) is star-shaped for all t > 0.

Proof. Let x0 ∈ Br(0). We claim that for all x,

v(x, t) 6 (1+ ε)2v
(
x − x0

1+ ε
+ x0, t

)
for any ε > 0. (3.1)

For t ∈ [0, c/(2M + 2)] define

ṽ(x, t) = inf
y∈Bcε−(2M+2)εt (x)

(1+ ε)2v
(
y − x0

1+ ε
+ x0, t

)
(3.2)

where c (which only depends on r) is chosen small enough so that v ≺ ṽ at t = 0.
Notice this is just an inf-convolution of a rescaled version of v, which is easily checked to be a

supersolution, so Lemma 3.5 applies. Therefore,

ṽt

|Dṽ|
= (1+ ε)min(|Dv|3 − 1,M)+ (2M + 2)ε

> (1+ ε)min((1− 3ε)|Dṽ|3 − 1,M)+ (2M + 2)ε > min(|Dṽ|3 − 1,M).
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Moreover, −∆ṽ(·, t) > λ in Ωt (ṽ) due to Lemma 3.5. Hence ṽ is a supersolution of (P̃ ). Now
Theorem 3.7 applies to v and ṽ in RN×[0, c/(2M+2)] to yield v 6 ṽ for 0 6 t 6 t1 := c/(2M+2),
which yields (3.1). Since ε > 0 in (3.1) is arbitrary, it follows that v(·, t) satisfies (I ) if t ∈ [0, t1].
One can repeat this process indefinitely on time intervals of length c/(2M + 2). 2

4. Construction of the approximating sequence

Our next goal is to construct solutions uMn of the approximating problem (P )Mn with star-shaped
initial positive phase Ω0 and initial volume V0, under condition (I ). By definition of (P )Mn , uMn is
in general discontinuous in time at the endpoints of the time intervals Ik := [ktn, (k + 1)tn), and as
mentioned before the comparison principle only holds for uMn in small time intervals Ik and thus a
conventional notion of viscosity solutions will not apply. It is therefore necessary to first establish a
weak notion of solutions for (P )Mn .

DEFINITION 4.1 uMn is a weak solution of (P )Mn with initial positive phase Ω0 and volume V0 for
0 6 t 6 (l + 1)tn where l ∈ N if the following holds for k = 0, 1, . . . , l:

(i) uMn (·, 0) = u0,
(ii) uMn (·, t + ktn) is a viscosity solution of (P̃ ) in (0, tn] with initial positive phase Ωktn(u

M
n ) and

λ = λn,M(ktn), where λn,M(ktn) satisfies (2.1),
(iii) Ωktn(u

M
n ) is continuous from below, that is,

d(Ωt (u
M
n ),Ωktn(u

M
n ))→ 0 as t ↑ ktn.

Note that due to Lemma 3.9, uMn has its positive phase star-shaped in space with respect to Br(0)
as long as Br(0) lies in Ωt (uMn ). It follows that the family of domains {Ωt (uMn )}n,t is uniformly
Lipschitz in space if they are uniformly bounded (see Remark below Lemma 4.4). Using this fact,
in Proposition 4.5 we will show that for weak solutions uMn satisfying (I ), Ω(uMn ) is uniformly
Hölder continuous in time. This establishes equicontinuity for the family of functions {uMn } needed
to obtain convergence to a solution of (P )M in Section 5.

First we give an upper bound for λ(ktn) in terms of the circumradius of Ωktn(u
M
n ).

LEMMA 4.2 Suppose uMn exists and satisfies (I ) with r > 0 for 0 6 t 6 ktn. Then for x0 in
Γktn(u

M
n ), λ(ktn) 6 C0/|x0|, where C0 only depends on r , V0 and N .

Proof. Due to Lemma 3.9, uMn is star-shaped with respect to Br(0). Therefore Ωktn(u
M
n ) contains a

cone with vertex x0, axis parallel to x0 and bottom Br(0)∩ {x · x0 = 0}. It follows that the function
f (x) solving

−∆f = 1 in Ωktn(u
M
n ), f = 0 on Γktn(u

M
n )

is larger than the superpositions of h(x − krx0/|x0|), k = 1, . . . , |x0|/2r, where h solves −∆h = 1
in Br/2(0) with h = 0 on ∂Br/2(0). Thus∫

f (x) dx >
|x0|

2r

∫
h(x) dx > C|x0|r

N+2.

Multiplying by λ(ktn) and noting the definition of V0, we can obtain the desired bound. 2

LEMMA 4.3 Suppose uMn satisfies (I ), with r > 0 independent of n and M , for 0 6 t 6 T .
Define R(t, n,M) := sup{|x| : x ∈ Ωt (uMn )}. Then R(t, n,M) 6 R(T ) for t < T , where R(T ) is
independent of n,M .
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Proof. Let f solve −∆f = 2C0 in B1(0) with f = 0 on ∂B1(0), where C0 is as given in
Lemma 4.2. Let A be the value of |Df |3 on ∂B1(0) (note that f is radially symmetric). Next define

h(x, t) := R(t)f
(

x

R(t)

)
with R(t) = R(0)+ At,

where R(0) is large enough such that BR(0)(0) contains Ω̄0. Note that

−∆h =
2C0

R(t)
in BR(t)(0)

with h = 0 in ∂BR(t)(0) and

ht

|Dh|
= R′(t) > |Dh|3 > |Dh|3 − 1 on Γt (h). (4.1)

We claim that Ωt (uMn ) is always strictly contained in BR(t)(0). To see this, suppose otherwise.
Then due to the definition of uMn and Lemma 3.4, Γt (uMn ) intersects ∂BR(t)(0) from inside of the ball
for the first time at t = t0 ∈ (ktn, (k + 1)tn]. Choose the smallest ball BR(0) containing Ωktn(u

M
n ).

If R(ktn)/2 6 R 6 R(ktn), then λ(t0) = λ(ktn) and by Lemma 4.2, λ(ktn) 6 C0/R(t0) and thus
uMn (·, t0) 6 h(·, t0). This and (4.1) imply that h is a supersolution of (P̃ ) with λ = λ(ktn) on
(ktn, (k + 1)tn), and Theorem 3.7 leads to a contradiction.

Hence R < R(ktn)/2 and

−∆uMn (·, t) = λ(ktn) 6 C0/R for t ∈ (ktn, (k + 1)tn]. (4.2)

Again Theorem 3.7 yields uMn 6 h̃ in RN × (ktn, (k + 1)tn], where

h̃(x, t) := (R + A(t − ktn))f (x/(R + A(t − ktn))).

Since
{h̃(·, t) > 0} = BR+At (0) ⊂ BR(ktn) on [ktn, (k + 1)tn] if Atn 6 R(ktn)/2,

we obtain a contradiction for sufficiently small n. 2

REMARK Lemma 4.3 and the star-shapedness of Ωt (uMn ) imply that for each t > 0, Ωt (uMn ) is
a Lipschitz domain (i.e. its boundary is locally the graph of a Lipschitz function), whose Lipschitz
constant is uniformly bounded for 0 6 t 6 T independently of n and M . This yields the following
proposition:

PROPOSITION 4.4 Suppose uMn satisfies (I ) for 0 6 t 6 T with r = r(T ) > 0. Then the
distance function dMn (·, t) to Γ (uMn ) is locally uniformly Hölder continuous in time for 0 6 t 6 T ,
independently of M and n.

Proof. Due to the previous lemma, Ωt (uMn ) ⊂ BR(t)(0). Moreover, for x0 ∈ Γt0(u
M
n ) with t0 ∈

(ktn, (k + 1)tn], there is a cone that touches the free boundary on which uMn is zero:

uMn (·, t0) = 0 in C :=
{
y :

y − x0

|y − x0|
·
x0

|x0|
>

|x0|√
r2 + |x0|2

}
.
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Let BR(0) be the smallest ball which contains Ωktn(u
M
n ). Due to Lemma 4.2, λ(ktn) 6 C0/R.

Moreover, arguing as in the proof of Lemma 4.3 it follows that Ωt (uMn ) ⊂ BR+At (0) for t > ktn,
where A only depends on r, V0 and N .

Note that, by (I ), |x0| > r . Fix 0 < m� |x0|, 1 and let g solve

−∆g = C0/(R − 1) in BR+1(0)− (C +mx0),

with g = 0 on the boundary. Then for any l > 0,

sup
x∈Bl((1+m)x0)

g(x) 6 C0l
α, (4.3)

where C0 = C0(N) and 0 < α < 1 only depends on R, r and N . Note that, since Ωt (uMn ) is
star-shaped and the normal velocity of Γ (uMn ) is greater than −1, Ωt (uMn ) does not shrink more
than distance 1/A from Ωktn(u

M
n ) by t = ktn + 1/A. Lemma 4.2 now yields, if we choose A > 1,

−∆uMn (·, t) 6 C0/(R − 1) for ktn 6 t 6 ktn + 1/A.

Due to (4.2), it follows that

uMn (x, t) 6 g(x) for ktn 6 t 6 ktn + 1/A (4.4)

as long as uMn ((1+m)x0, t) = 0.
Next we construct a barrier φ(x, t) of the form

−∆φ(·, t) = C0/R in (B2m/|x0| − Br(t))((1+m)x0),

φ(·, t) = 0 on ∂Br(t)((1+m)x0),

φ(·, t) = C0(2m/|x0|)
α on ∂B2m/|x0|((1+m)x0)

where C0 is as given in (4.3) and

r(t) = m/|x0| − C1m
3α−3(t − t0) with C1 = c(N)C

3
0

in the domain

S := (B2m/|x0| − Br(t))((1+m)x0)× [t0, t1], t1 := t0 + (2|x0|C1)
−1m4−3α.

It then follows that, on ∂Br(t)((1+m)x0)× [t0, t1], φ satisfies

φt/|Dφ| > |Dφ|
3 > |Dφ|3 − 1

if c(N) is a sufficiently large dimensional constant. Due to (4.4), Theorem 3.7 applies to uMn and φ
in S as long as uMn ((m + 1)x0, t) = 0. But uMn ((m + 1)x0, t) = 0 as long as uMn 6 φ. Thus we
conclude that uMn 6 φ in S.

In particular, the above argument shows that for anym > 0, if x0 ∈ Γt0(u
M
n ), then for anym > 0,

Γ (uMn ) does not reach (1 + m)x0 until t1 = t0 + C(r, T ,N)m
4−3α . On the other hand, a parallel

argument, based on the fact that V = |DuMn |
3
−1 > −1, shows that Γ (uMn ) does not reach (1−m)x0

until t1 = t0 − m. Since m > 0 can be chosen arbitrarily small, we can conclude that Γ (uMn ) for
t 6 T is Hölder continuous in time with Hölder constant 1/(4− 3α), where α = α(r, T ,N).
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Let now x be arbitrary. For times t1 < t2, choose x2 ∈ Γt2(u
M
n ) so that |x − x2| = d(x, t2),

and choose x1 to be the unique point on Γt1(u
M
n ) parallel to x2. Using the Hölder continuity proved

above, we have

d(x, t1) 6 |x − x1| 6 |x2 − x1| + |x − x2| 6 C(r, T ,N)|t2 − t1|
α
+ d(x, t2)

so that d(x, t1) − d(x, t2) 6 C(r, T ,N)|t2 − t1|
α . We can analogously show d(x, t2) − d(x, t1) 6

C(r, T ,N)|t2 − t1|
α , which verifies uniform Hölder continuity. 2

We now prove the main result of this section.

THEOREM 4.5 (Existence of uMn ) Suppose any weak solution uMn of (P )Mn in Rn × [0, t0], t0 6 T ,
satisfies (I ) for 0 6 t 6 t0, with r = r(T ) > 0. Then there exists a weak solution uMn of (P )Mn
with initial positive phaseΩ0 and volume V0 for 0 6 t 6 T . Moreover,Ωt (uMn ) is star-shaped with
respect to Br(0) and Γt (uMn ) is locally uniformly Hölder continuous in time, independently of n
and M .

Proof. We use induction on l. Suppose we have constructed uMn in RN × [0, ltn]. Due to
Proposition 4.4, Ωt (uMn ) uniformly converges to Ωltn(u

M
n ) as t → ltn. Since Ωltn(u

M
n ) is star-

shaped, λ(ltn) and uMn (·, ltn) are well-defined and continuous in space. Due to Theorem 3.8 there
exists a viscosity solution uMn of (P̃ ) with λ = λ(ltn) in (ltn, (l + 1)tn] with initial positive phase
Ωltn(u

M
n ). Now the induction can be continued to show that uMn can be found for 0 6 t 6 T . The

rest of the theorem is due to Lemma 3.9 and Proposition 4.4. 2

5. Convergence of uMn and existence of uM and u

In this section we prove the existence of the viscosity solution u of our original problem (P ), by
passing to limits in n and M , and verifying that the result is a viscosity solution. First we fix M and
send n → ∞. Due to Theorem 4.5, for 0 6 t 6 T the signed distance function dMn (·, t) to the set
Γt (u

M
n ) is locally uniformly Lipschitz continuous in space and locally uniformly Hölder continuous

in time, independently of n and M . Hence due to Arzelà–Ascoli, dMn converges locally uniformly
to dM in Rn × [0, T ] along a subsequence. It then follows that

(a) ΩM
t := {dM(·, t) > 0} is star-shaped with respect to Br(0),

(b) ΓMt := {dM(·, t) = 0}, and the limiting distance function dM(·, t) = 0 is locally Lipschitz in
space and locally uniformly Hölder continuous in time,

(c) ΩM
0 = Ω0.

Let uM(x, t) solve
−∆uM(·, t) = λ(t; uM) in ΩM

t

with zero boundary data on ΓMt , where λ(t; uM) is the volume preserving constant such that∫
uM(x, t) dx = V0.

Then uM(·, 0) = u0.

PROPOSITION 5.1 uM(x, t) is a viscosity solution of (P )M in Rn × [0, T ] with initial positive
phase Ω0 and volume V0.
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Proof. First observe that λn,M(ktn) converges to λ(t; uM), locally uniformly in time, because
Ωt (u

M
n ) locally uniformly converges toΩt (uM) and Γt (uMn ) is locally uniformly Hölder continuous

in time independently of n (in the sense of the corresponding distance function). Therefore uMn
locally uniformly converges to uM .

Now, suppose uM − φ has a local maximum zero in Ω̄(uM) ∩ (Br(x0)× [t0 − r, t0]) for some
r > 0 at (x0, t0) ∈ Γ (u

M) with φ ∈ C2,1(Q) and |Dφ|(x0, t0) 6= 0. Assume that, for some ε > 0,

(φt/|Dφ| −min(|Dφ|3 − 1,M))(x0, t0) > ε. (5.1)

We may assume that this maximum is strict in Br(x0) × [t0 − r, t0]—otherwise one can replace φ
by φ + ε(x − x0)

4
+ ε(t − t0)

2 to make it strict. Since φ is smooth with |Dφ|(x0, t0) 6= 0, we may
assume that a space-time ball of radius r , BN+1

r (P0) with P0 ∈ RN+1, lies in the zero set of uM and
touches Γ (uM) at (x0, t0) (see Figure 2). Moreover due to (6.1) the outward normal vector ν of the
ball BN+1

r (P0) at (x0, t0) is given by ν = (ν1, b) ∈ RN × R, where |ν1| = 1 and the slope b of the
ball at (x0, t0) satisfies

b > min(|Dφ|3 − 1,M)(x0, t0)+ ε.

( x 0 t 0),

MΓ u( )

B
N+1

  

ν

Γ ( φ)

M > 0u

0>φ

FIG. 2. Exterior ball BN+1
r (P0) at the contact point P0.

Let us tilt and shift the ball so that the new ball B̃N+1 passes through (x0 − aν1, t0) with slope
b − ε/2 for a � ε. Note that if a is small compared to ε and τ , then

d(B̃N+1
∩ {t = t0 − τ },Ω(u

M)) > O(ε). (5.2)

Now let us choose a, τ, δ such that a � τ � δ � r, ε and define h(x, t) in the domain

Σ := (1+ a)B̃N+1
∩ [t0 − τ, t0]

such that 
−∆xh(x, t) = λ(t0)+ δ in ((1+ a)B̃N+1

− B̃N+1) ∩ [t0 − τ, t0],

h(x, t) = φ(x, t) on (1+ a)(∂B̃N+1) ∩ [t0 − τ, t0],

h(x, t) = 0 in B̃N+1
∩ [t0 − τ, t0].

Since φ is smooth with |Dφ|(x0, t0) 6= 0, if r is chosen small enough then (5.1) yields

ht/|Dh| > min(|Dh|3 − 1,M) on Γ (h) ∩Σ. (5.3)
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Moreover, due to (5.2), uM ≺ h on the parabolic boundary of Σ . Since uMn and Ω(uMn ) locally
uniformly converge to uM and Ω(uM), it follows that uMn crosses h from below for the first time at
(yn, sn) in Σ with sn ∈ (ktn, (k + 1)tn] for some k ∈ N, for sufficiently large n. This contradicts
Theorem 3.7 if n is large enough that λn,M(ktn) 6 λ(t0)+ δ.

The above arguments prove that uM is a viscosity subsolution of (P )M . A parallel argument
would similarly prove that uM is a viscosity supersolution of (P )M . 2

So far we have proved the existence of viscosity solutions of (P )M . By a similar process, we can
send M →∞ to obtain the most general existence result.

THEOREM 5.2 Suppose uMn satisfies (I ) for 0 6 t 6 T with r = r(T ). Then, along a subsequence,
uM and Ω(uM) locally uniformly converge to u and Ω(u) in Rn × [0, T ] as M → ∞. The limit
function u is a viscosity solution of (P ) in Rn×[0, T ] with initial positive phaseΩ0 and volume V0.

COROLLARY 5.3 Suppose uMn satisfies (I ) for 0 6 t 6 T with r = r(T ). Then there exists a
viscosity solution u of (P ) in RN × [0, T ] with initial positive phaseΩ0 and volume V0. Moreover,
Ω(u) is star-shaped in space with respect to Br(0), and Γ (u) is Lipschitz continuous in space and
Hölder continuous in time.

Since Ω(u) is only Lipschitz, difficulties arise in the analysis due to the lack of upper bound on
the free boundary velocity. For this reason we will prove a uniqueness result for only the modified
problem (P )M in the next section.

6. Uniqueness of uM

In this section we show that uM given in Corollary 5.3 is the unique viscosity solution of (P )M .
Recall that uMn is a weak solution of (P )Mn with initial positive phase Ω0 and volume V0.

PROPOSITION 6.1 Suppose uMn satisfies (I ) for 0 6 t 6 T with r = r(T ). Then for k > n and
0 6 t 6 T , there exists A > 0 depending only on r , M ,T and the spatial dimension N such that

An(t)
−2N−2uMk (An(t)x, t) 6 uMn (x, t) 6 A(t)2N+2uMk (x/An(t), t),

where An(t) := 1+ AeAt tn.

Proof. For simplicity we set r = 1/2. A parallel argument holds for the general case.
Let A = C0M , where C0 is a sufficiently large constant which depends on L, the Lipschitz

constant associated with the domain Ωltn(u
M
k ). Note that, due to Lemmas 3.9 and 4.2, L =

L(r, T ,N).
For each t ∈ [0, 1/((6N + 6)A)], we claim that

(1+ An)−2N−2uMk ((1+ An)x, t) ≺ u
M
n (x, t) ≺ (1+ An)

2N+2uMk ((1+ An)
−1x, t) (6.1)

where An = Atn. At t = 0 the inequality is true due to the star-shaped initial data. Suppose the
second inequality in (6.1) is violated for the first time at t = t0 ∈ (0, 1/((6N + 6)A)].

By (6.1),

(1+ Atn)−1Ωt (u
M
k ) ⊆ Ωt (u

M
n ) ⊆ (1+ Atn)Ωt (u

M
k ) for 0 6 t 6 t0.

Thus by definition of λn,M and λk,M ,

(1+ Atn)−Nλn,M(ltn) 6 λk,M(ltn) 6 (1+ Atn)Nλn,M(ltn)

for any ltn 6 t0, l = 0, 1, . . . .
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We claim that for any x ∈ Ωt (uMk ),

d(Ωltn(u
M
k ), x) 6 Atn for ltn 6 t 6 (l + 1)tn. (6.2)

To verify (6.2), pick any point x0 such that d(Ωltn(u
k
M), x0) = Atn. Since Ωltn(u

k
M) is Lipschitz

with Lipschitz constant L, there is a ball

B := B2M(x0) ⊂ {u
M
k (·, ltn) = 0}

which touches Γltn(u
M
k ). Let us define

Λ := sup
(l−1)tn6mtk6(l+1)tn

λk,M(mtk).

Note that Λ 6 r−N by (I ).
Consider φ(x, t), a nonnegative function in Σ := 3B × [ltn, (l + 1)tn] such that for ltn 6 t 6

(l + 1)tn, 

−∆φ(·, t) = Λ in 3B −
(

2−
t − ltn

tn

)
B,

φ(·, t) = sup
Σ

uMk on ∂(3B),

φ(·, t) = 0 in
(

2−
t − ltn

tn

)
B.

Then φ is a supersolution of (P̃ ) in Σ with λ = Λ and F(|Du|) = M . Moreover, uMk ≺ φ on
the parabolic boundary of Σ , and uMk (·, t) 6 φ(·, t) as long as Ωt (uMk ) ∩ 3B ⊂ Ωt (φ). Hence
Theorem 3.7 applied to uMk and φ in each time interval (mtk, (m + 1)tk) ∩ [ltn, (l + 1)tn] yields
uMk 6 φ in Σ . In particular, x0 lies outside of Ω(uMk ) for ltn 6 t 6 (l + 1)tn. This yields (6.2).

Due to (6.2),

(1+ Atn)−2Nλk,M(mtk) 6 λl,M(ltn) 6 (1+ Atn)2Nλk,M(mtk) (6.3)

for mtk ∈ [(l − 1)tn, (l + 1)tn] ∩ [0, t0], where m, l = 0, 1, . . . .
Using (6.3) and Lemma 3.5, one can now check that for 0 6 t 6 t0 6 1/((6N + 6)A), the

function
ũMk (x, t) := (1+ Atn)2N+2 inf

x∈B
Atn−(6N+6)A2tnt

uMk ((1+ Atn)
−1x, t) (6.4)

satisfies the free boundary motion law

V >
(1+ Atn)(uMk )t
|DuMk |

+ (6N + 6)A2tn

= (1+ Atn)min[(|DuMk |
3
− 1),M]+ (6N + 6)A2tn

> min[(1+ Atn)6N+1
|DuMk |

3
− 1,M]− (6N + 2)AtnM + (6N + 6)A2tn

> min[|DũMk |
3
− 1,M]

if tn is sufficiently small. The first inequality is due to Lemma 3.5 and the last inequality holds since
A > M . (For a rigorous argument one needs to use the definition of viscosity solutions of (P̃ ). See
for example the proof of Proposition 5.5 in [CJK].)
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Observe that due to (6.3) and Lemma 3.5, for any l, m = 0, 1, . . . .

−∆ũMk (·, t) > (1+ Atn)2Nλk,M(mtk)
> λ(ltn) for t ∈ (mtk, (m+ 1)tk] ∩ [ltn, (l + 1)tn].

Note that uMn (·, 0) ≺ ũMk (·, 0) sinceΩ0 is star-shaped with respect to zero and contains B1(0). Thus
Theorem 3.7 applied to uMn and ũMn on each time interval [mtk, (m+ 1)tk] gives for 0 6 t 6 t0,

uMn (·, t) ≺ ũ
M
k (·, t) 6 (1+ Atn)2N+2uMk ((1+ Atn)

−1x, t).

This contradicts our hypothesis at t = t0. Similar arguments lead to a contradiction if we assume
that the first inequality breaks down the first time at t1 ∈ [0, 1/((6N + 6)A)]. Thus (6.1) holds for
0 6 t 6 t1 := 1/((6N + 6)A).

Next we show that for t1 6 t 6 t1(1+ 1/2),

(1+ 2Atn)−2N−2uMk ((1+ 2Atn)x, t) 6 uMn (x, t) 6 (1+ 2Atn)2N+2uMk ((1+ 2Atn)−1x, t).

For example if the second inequality breaks down, then we compare uMn with

ũMk (x, t) := (1+ 2Atn)2N+2 inf
x∈B

Atn−12(N+1)A2tnt

uMk ((1+ 2Atn)−1x, t)

using similar arguments as for (6.1). Note that due to (6.1) and the fact that Ωt (un) is star-shaped
and contains B1(0),

uMn (x, t1) ≺ (1+ Atn)
2N+2uMk ((1+ Atn)

−1x, t1) 6 ũMk (x, t1).

One can repeat the argument for each interval

[t1(1+ 1/2+ · · · + 1/n), t1(1+ 1/2+ · · · + 1/n+ 1)].

This proves the lemma since

t1(1+ 1/2+ · · · + 1/n) ∼ t1(log n). 2

Note that the proof presented above can be used as long as one of the functions being compared,
uMk in the above proof, satisfies (I ). Thus we obtain the following corollary.

COROLLARY 6.2 Suppose uMn satisfies (I ) for 0 6 t 6 T with r = r(T ). Then the whole
sequence {uMn } converges locally uniformly as n → ∞ to a viscosity solution uM of (P )M for
0 6 t 6 T with initial positive phase Ω0 and volume V0.

REMARKS 1. Besides proving the uniqueness of the limit, Proposition 6.1 provides an estimate
on differences between discrete-time approximation solutions uMn in terms of the discrete time
interval size tn.

2. Note that we need to keep track of both inequalities in the lemma in each time interval to
guarantee that λn,M(t) and λk,M(t) stay close together.

Now let v be any other viscosity solution with initial data u0 defined in the previous section.
Parallel arguments to the proof of Proposition 6.1 yield the following:
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LEMMA 6.3 Suppose uMn satisfies (I ) for 0 6 t 6 T with r = r(T ). Then for the same An(t)
given in Proposition 6.1,

(1+ An(t))−2N−2uMn ((1+ An(t))x, t) 6 v(x, t) 6 (1+ An(t))2N+2uMn

(
x

1+ An(t)
, t

)
for 0 6 t 6 T .

Applying the same argument for two viscosity solutions uM and vM of (P )M (in this case the
time step size tn > 0 is replaced by arbitrary small constants in the arguments ) yields the following
corollary.

COROLLARY 6.4 Suppose uMn satisfies (I ) for 0 6 t 6 T with r = r(T ). Then uM is the unique
viscosity solution of (P )M in Rn × [0, T ] with initial data u0.

REMARK To prove uniqueness results for the original problem (P ), one needs some type of bound
on free boundary velocity. At least for star-shaped spreading droplets, we expect solutions of (P ) to
have smooth positive phase for positive times and locally uniformly bounded free boundary velocity
for any positive time interval. Such results have been proved for the Hele–Shaw problem with zero
surface tension (see [CJK]).

Appendix A. Comparison principle and existence for (P̃ )

Here we prove Theorem 3.7 and the existence of the viscosity solutions of (P̃ ) with star-shaped
initial positive phase Ω0.

Most arguments presented here are similar to the proofs of Theorem 2.2 and Theorem 4.7 of
[K1]. We only sketch the proof below.

Sketch of the proof of Theorem 3.7. For r, δ > 0 and 0 < h� r , define the sup-convolution of u

Z(x, t) := (1+ δ) sup
|(y,s)−(x,t)|<r

u(y, (1+ δ)3s)

and the inf-convolution of v

W(x, t) := (1− δ) inf
|(y,s)−(x,t)|<r−ht

v(y, (1− δ)3s)

in the domain
Σ := D̃ × [r, r/h], D̃ := {x : x ∈ D, d(x, ∂D) > r}.

By upper semicontinuity of u − v, Z(·, r) ≺ W(·, r) for sufficiently small r, δ > 0. By our
hypothesis and the upper semicontinuity of u− v,

Z(·, t) ≺ W(·, t) on ∂D̃ for r 6 t 6 r/h

for sufficiently small δ and r . Moreover, Lemma 3.5 shows that Z and W are respectively sub- and
supersolutions of (P̃ ) in D̃ × [r, r/h].

If our theorem is not true for u and v, then Z crosses W from below for the first time at P0 :=
(x0, t0) ∈ D̃ × [r, r/h] for h � r . Due to the maximum principle of harmonic functions and
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t t 0=

H

Z>0

W>0

P0

FIG. A. Interior and exterior balls at the contact point P0.

Lemma 3.4, P0 ∈ Γ (Z) ∩ Γ (W). Note that by definition Ω(Z) and Ω(W) have respectively an
interior ball B1 and exterior ball B2 at P0 of radius r in space-time (see Figure 3).

Let us denote by H the tangent hyperplane to the interior ball of Z at P0. Since Z 6 W for
t 6 t0 and P0 ∈ Γ (Z) ∩ Γ (W), it follows that

B1 ∩ {t 6 t0} ⊂ Ω(Z) ∩Ω(W), B2 ∩ {t 6 t0} ⊂ {Z = 0} ∩ {W = 0}

with B̄1 ∩ B̄2 ∩ {t 6 t0} = {P0}.
Moreover, by Lemma 3.5,

Zt

|DZ|
(x, t) 6 F(|DZ|)(x, t) on Γ (Z) (A.1)

and
Wt

|DW |
(x, t) > F(|DW |)(x, t)+ h on Γ (W). (A.2)

In particular, by (A.1) the argument of Lemma 2.5 in [K1] applies for Z to show that H is not
horizontal. In particular, B1 ∩ {t = t0} and B2 ∩ {t = t0} share the same normal vector ν0, outward
with respect to B1, at P0.

Formally speaking, it follows that Zt
|DZ|

(x0, t0) <∞ and

Zt

|DZ|
(P0) 6 F(|DZ|)(P0) 6 F(|DW |)(P0) 6

Wt

|DW |
(P0)− h,

where the second inequality follows since F(r) is increasing in r and Z(·, t0) 6 W(·, t0) in a
neighborhood of x0. The above inequality says that the free boundary speed of Z is strictly less than
that of W at P0, contradicting the fact that Γ (Z) touches Γ (W) from below at P0.

For a rigorous argument one can construct radially symmetric barrier functions based on the
exterior and interior ball properties of Z and W at P0 to derive a version of (A.1) and yield a
contradiction. For details see the proof of Theorem 2.2 in [K1]. 2

Next we prove Theorem 3.8.

Proof of Theorem 3.8. We apply Perron’s method. Without loss of generality we assume that
F(r) > F(0) > −1. SinceΩ0 is star-shaped with respect toBh(0), there existC > 0 and 0 < α < 1
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such that for any r > 0 and x0 ∈ Γ0,

sup
x∈Br (x0)

u0(x) 6 Crα. (A.3)

Let us define

U1(x, t) :=

 (1− t/h
2)2u0

(
x

1− t/h2

)
for 0 6 t 6 h2,

0 for t > h2,

and
U2,r(x, t) := (1+ r)2 inf

y∈Br(t)(x)
u0((1+ r)−1y),

where r(t) := r−C1r
α−1t for 0 6 t 6 (C1)

−1rα . Note that due to (A.3), U2,r is a supersolution of
(P̃ ) for sufficiently large C1. Moreover U1(x, t) is a subsolution of (P̃ ) since F > −1 and Ω(u0)

contains Bh(0).
Let z ∈ P if and only if z(x, t) is a viscosity subsolution of (P̃ )with z(·, 0) 6 u0(x) andU1 6 z

in RN × [0,∞). Let
U(x, t) := sup{z(x, t) : z ∈ P}

Arguing as in the proof of Theorem 4.7 in [K1] shows that U∗ and U∗ are respectively viscosity
subsolution and supersolution of (P̃ ). Moreover, by Theorem 3.7, U∗ 6 U2,r for 0 6 t 6 rα for
any r > 0. In particular, U∗ = U∗ = u0 at t = 0. In other words, U∗ is a viscosity solution of (P̃ ).

2

Appendix B. Global-time existence and uniqueness for solutions with symmetry

The purpose of this section is to illustrate some examples where uMn satisfies (I ) for all t > 0 with
r = r(t). For simplicity, we set

∫
Ω0
u = 1 and Ωt (u) ⊂ B1(0).

B.1 Reflection comparison

LEMMA B.1 (Strong comparison principle) Let u, v be resp. viscosity sub- and supersolutions of
(P̃ ) inΣ = D× (a, b) with u 6 v at t = a and on ∂D× (a, b). In addition suppose that u satisfies
(I ) for a 6 t 6 b. Then u(·, t) 6 v(·, t) in D for a < t < b.

Proof. For simplicity let a = 0. Let us define

ũ(x, t) := (1+ ε)−2 sup
y∈Brε(x)

u((1+ ε)y, t).

Observe that ũ is a subsolution of (P̃ ) by Lemma 3.5. Also observe that, since Ωt (u) is star-shaped
with respect to Br(0) and −∆u = λ in Ω(u),

ũ(x, t) ≺ v(x, t) on the parabolic boundary of Σ.

Hence Theorem 3.7 shows that ũ ≺ v for 0 6 t 6 b for any ε > 0, and thus u 6 v. 2

Recall that uMn solves (P )Mn with given initial positive phase Ω0(u
M
n ) = Ω0 (see Definition 4.1).



56 K. GLASNER AND I. C. KIM

LEMMA B.2 Suppose uMn satisfies (I ) for 0 6 t 6 T . Let H be any hyperplane in Rn and let
φH (x) be the reflection of x with respect to H . Let D1 and D2 be the half-spaces in Rn determined
by H . If

uMn (x, t0) 6 uMn (φH (x), t0) in D1

then
uMn (x, t) 6 uMn (φH (x), t) in D1 for t0 < t 6 T .

Proof. Set v(x, t) := uMn (φH (x), t). Then v solves the following equation in (ktn, (k + 1)tn],
k = 1, 2, . . . : {

−∆v(·, t) = λMn (ktn) in Ω(v),

vt = |Dv|min((|Dv|3 − 1),M) on Γ (v).

Moreover, v = uMn on H = ∂D1 = ∂D2. Since uMn has a compact support in any finite time period
(Lemma 4.3), Lemma B.1 applies to uMn 6 v in D1 in (ktn, (k + 1)tn] for t0 < t 6 T . 2

COROLLARY B.3 Suppose that Ω0(u
M
n ) ⊂ BR(0), R > 1 and uMn satisfies (I ) for 0 6 t 6 T .

Then Ωt (uMn ) ⊂ B3R(0) for 0 6 t 6 T .

Proof. For x0 ∈ B3R(0)− B2R(0), define

C(x0) :=
{
y : y · x0 6 −

1
2
|x0| |y|

}
. (B.1)

If we pick a hyperplane H normal to a vector y0 ∈ C(x0) containing x0, then

uMn (φH (x), 0) = 0 6 uMn (x, 0) in D1 := {ty0 + h : t > 0, h ∈ H }.

Hence Lemma B.1 shows that uMn is increasing in the cone of directions C(x0).
Suppose Γt (uMn ) touches ∂B3R(0) for the first time at x0 at t = t0. Then (B.1) yields

(x0 + C(x0)) ∩ (B3R(0)− B2R(0)) ⊂ Ωt0(u).

Since
∫
uMn (·, ktn) dx = 1, we obtain λ 6 R−n−2. On the other hand, uMn (·, t0) = 0 outside of

B3R(0). Now comparing uMn (·, t0) with f (x) := (3R)−n − (3R)−n−2x2 yields |DuMn |(x0, t0) < 1.
Therefore the outward normal velocity of Γ (uMn ) at (x0, t0) is strictly negative, contradicting the
definition of t1. 2

For Br(x) ⊂ Ω0, let
t (x, r) := sup{t : Br(x) ⊂ Ωt (uMn )}. (B.2)

Note that, due to Lemma 3.4, Br(x) is touched by Γt (u) for the first time at t = t (x, r).

LEMMA B.4 Suppose uMn satisfies (I ) for 0 6 t 6 T . Suppose Ω0(u) is star-shaped with respect
to Br(x0) with t0 := t (x0, r) 6 T . Let y ∈ ∂Br(x0)∩Γt0(u) and let H be the hyperplane normal to
y − x0 containing x0. Then

uMn (φH (x), t) 6 uMn (x, t) in D1 × [t0, T ],

where D1 is the half-space determined by H containing Br(x0).

Proof. Note that, sinceΩt0(u
M
n ) is star-shaped with respect to Br(x0)with y0 ∈ ∂Br(x0)∩Γt0(u

M
n ),

uMn (φH (x), t0) = 0 in D1. (B.3)

Now we can conclude by applying Lemma B.2. 2
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B.2 Example 1: Two symmetric axes

Let e1, . . . , en be an orthonormal basis in Rn.

THEOREM B.5 Suppose Ω0 is star-shaped with respect to Br(0) and is symmetric with respect to
the e1-axis and e2-axis. Then for any T > 0, n and M , uMn satisfies (I ) with r = r(T ) > 0 for
0 6 t < T .

REMARK Due to Lemma B.2, Ωt (uMn ) stays symmetric with respect to the e1-axis and e2-axis.

Proof. Define t0 := t (0, r) > 0. If t0 = ∞ then we are done, so suppose t0 is finite. Then Br(0) ⊂
Ω(u0) and Γt0(u

M
n ) touches B̄r(0) at some point x0 ∈ ∂Br(0).

e
1

e
2

H 1

x0

FIG. 4. Parallel hyperplanes bounding Ωt (uMn ).

Let ν := −x0 and let H be the hyperplane which is orthogonal to ν. Let D1 be the half-space
bounded by H which does not contain Br(0). Note that up to t = t0, Ωt (uMn ) is star-shaped with
respect to Br(0). Hence uMn (·, t0) = 0 in D1. By symmetry, uMn (·, t0) = 0 in the reflected image
of D1 with respect to the e1-axis and e2-axis. Thus Ωt0(u

M
n ) lies between two parallel hyperplanes

with distance at most 2r (see Figure 4). Recall that due to Corollary B.3,Ωt (uMn ) ⊂ BR(0) for some
R > 0. Thus it follows that

Vol(Ωt0(u
M
n )) 6 C(n)Rn−1r.

Recall that Ωt0(u
M
n ) = 0 in D1. If we choose r sufficiently small it follows that |DuMn |(x0, t0) > 1

(a detailed argument is given in the proof of Theorem B.7, Case 1). This means that Ω(uMn ) is
strictly expanding at (x0, t0), contradicting the definition of t0. 2

The above theorem in particular states that if a droplet with two symmetry axes satisfies (I ) initially,
then it never changes its topology at a later time, however thin and long it is. On the contrary, we
will show below that a dumbbell-shaped droplet changes its topology in finite time.

LEMMA B.6 Suppose uMn solves (P )Mn with initial positive phase

Ω0 := B1(−3e1) ∪ B1(3e1) ∪ {x = (x1, x
′) : |x′| 6 r, |x1| 6 3}.

If r is smaller than a dimensional constant, then Ω(uMn ) changes its topology before t = 1/2.



58 K. GLASNER AND I. C. KIM

Proof. First observe that, since the free boundary velocity is greater than −1, for 0 6 t 6 1/2 we
have B1/2(±3e1) ⊂ Ωt (u

M
n ). Hence λ(uMn ; t) < C(n) for 0 6 t 6 1/2 and some C(n) > 1. Pick

T = T (n) sufficiently small so that Ωt (uMn ) ⊂ B10(0) for 0 6 t 6 T . Now one can compare uMn
with

h(x, t) := C(n)min[(|x|2 − 100)+, (r(t)x4
1 − 34

|x′|2 + 34r2)+]

where r(t) := (1 − (10C(n))3t)−1/3 for 0 6 t 6 t0 := (10C(n))−4. One can choose C(n)
sufficiently large such that t0 6 T .

Observe thatΩ(u0) ⊂ Ω0(h) and−∆h(·, t) > C(n). Also a straightforward computation yields

ht = 4C(n)r ′(t)x3
1 > |Dh|(−1/2+ |Dh|3) on Γt (h)

for 0 6 t 6 t0, if 0 6 r 6 4−4.
Hence if we set

h̃(x, t) := inf
y∈Bt/2(x)

h(y, t),

then h̃ is a supersolution of (P̃ ) with λ = C(n). Now Theorem 3.7 yields uMn ≺ h̃ in Rn × [0, t0].
If r 6 1

2 t0 then it follows that Ωt0(h̃) is no longer simply connected, and therefore neither is
Ωt0(u

M
n ) (a change of topology occurred before t = t0 6 1/2.) 2

B.3 Example 2: One axis symmetry with convexity

Here we set the dimension N = 2.

THEOREM B.7 Suppose Ω0 ⊂ R2 is convex and symmetric with respect to the e1-axis. Then for
any T > 0, n and M , uMn satisfies (I ) with r = r(T ) > 0 for 0 6 t 6 T .

Proof. Let
S := {Br(y) ⊂ Ω̄0 : y ∈ Ω0 ∩ {x = (x1, 0, . . . , 0)}.

Then for each ball in S there is the first time Γt (uMn ) touches the ball. Let t0 be the supremum
of these times. Then Γt0(u

M
n ) touches y0 ∈ ∂Br(x0) for some Br(x0) ⊂ S. We may assume that

(y0 − x0) · e1 6 0. Let l0 be the line normal to y0 − x0 with y0 ∈ l.
First assume that Br(x1) ⊂ Ω0, where x1 := x0 + r

1/2e1. Then when the free boundary hits
the boundary of Br(x1) for the first time at t = t1 6 t0 it does not cross Br(x0). Therefore the first
touching point y1 ∈ ∂Br(x1) satisfies (y1 − x1) · e1 > 0. Let l1 be the line normal to y1 − x1 with
y1 ∈ l1 and let e1 point to the right, horizontally.

By the above, uMn (·, t0) = 0 on the left side of l0. Moreover, uMn (·, t1) = 0 on the right side of l1.
By symmetry, uMn (·, t1) = 0 on the right side of l̃1, the reflection of l1 with respect to the e1-axis
(see Figure 5). Let θ0 be the angle between l0 and e1, and θ1 be the angle between l1 and e1.

Case 1: θ1 < r1/2. By the above argument uMn (·, t1) = 0 outside of the cone of angle r1/2 along
the e1-axis. Since Ωt (uMn ) ⊂ BR(0) for some R, Ωt (uMn ) is contained in a cone of angle r1/2 and
height 6R. Let λ0 := λ(t1; uMn ) = λ0 and

h(x) :=
λ0

2
([3Rr1/2]2

− (x2)
2).

Since −∆h = λ0 and
Ωt1(u

M
n ) ⊂ Ω(h) = {x : |x2| 6 3Rr1/2

},
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e 1

0l

l 1

FIG. E. The lines l0, l1 and their reflections.

we have uMn 6 h. Thus∫
uMn (·, t1) dx 6

∫
Ωt1 (u

M
n )

h(x) dx 6 (λ0R
2r)Vol(Ωt1(u

M
n )) 6 λ0(3Rr1/2)3.

Since
∫
uMn (·, ktn) dx = 1, we obtain λ0 > (3Rr1/2)−3 if r < (3R)−6. Note that Br(x1) ⊂

Ωt1(u
M
n ), and thus

uMn (·, t1) > f (x) = (3R)−3r1/2
−
(3Rr1/2)−3

2
(x − x1)

2.

In particular, |DuMn |(y1, t1) > |Df |(y1) = (3R)−3r−1/2 > 1 if r < (3R)−6. This contradicts the
fact that the outward normal velocity of Γ (uMn ) at (x1, t1) is nonnegative.

Case 2: θ1 > r1/2. Note that, up to t = t1, Ωt (uMn ) is star-shaped with respect to both Br(x0) and
Br(x1). Hence Ωt (uMn ) contains the strip

Σ := {x : x ∈ Br(z), z = x0 + te1, t ∈ [0, r1/2]}.

Let φ be the reflection with respect to the line parallel to e2 and going through x1. Then

uMn (φ(x), t1) 6 uMn (x, t1) in D3 := {x : (x − x1) · e1 6 0}.

Hence, by Lemma B.1 we have

uMn (φ(x), t0) 6 uMn (x, t0). (B.4)

If we combine (B.4) with the fact that uMn (x, t0) = 0 on the right hand side of l0, then it follows that
Ωt0(u

M
n ) is contained in the channel of width at most 2r1/2 and height 6R. Now the same argument

as in Case 1 yields a contradiction if r < (3R)−6.

Lastly, suppose

y1 ∈ Br(x0 + τe1) ∩ ∂Ω0 for some τ ∈ [0, r1/2).
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Let l3 be the line parallel to e2 containing y1. Since Ω0 is convex and symmetric with respect to the
e1-axis, we have u0(x) = 0 on the right side of l3. Therefore Lemma B.1 implies that for t > 0,

uMn (·, t) 6 uMn (φ(x), t) on the right side of l3,

where φ(x) is the reflection of x with respect to l3. Now one can proceed as in Case 2 to derive a
contradiction. 2

REMARK One class of initial configurations covered by the above theorem are circular sectors

Ω(u0) = {re
iθ : 0 6 r 6 R, 0 6 θ 6 θ0}.
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