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Via della Ricerca Scientifica, 00133 Roma, Italy

E-mail: braides@mat.uniroma2.it

CATERINA IDA ZEPPIERI

SISSA, Via Beirut 2, 34014 Trieste, Italy
E-mail: zeppieri@sissa.it

[Received 28 September 2007]

The combined effect of fine heterogeneities and small gradient perturbations is analyzed by means of
an asymptotic development by Γ -convergence for a family of energies related to (one-dimensional)
phase transformations. We show that multi-scale effects add up to the usual sharp-interface limit,
due to the homogenization of microscopic interfaces, internal and external boundary layers, optimal
arrangements of microscopic oscillations, etc. Several regimes are analyzed depending on the “size”
of the heterogeneity (small or large perturbations of a homogeneous situation) and their relative
period as compared with the characteristic length of the phase transitions (slow or fast oscillations).
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1. Introduction

The object of this paper is the study of the asymptotic behavior of a family of nonconvex energies
of the form ∫

Ω

(
W
(
x

δ
, u

)
+ ε2|∇u|2

)
dx

(possibly with a volume constraint on u), where W is a periodic perturbation of a double-well
potential W with wells in ±1, the unperturbed situation being the one studied in the seminal papers
by Modica and Mortola [9, 8]. The combined descriptions obtained by homogenization with respect
to the variable δ and by a sharp-interface limit as ε → 0 are not sufficient in this case to fully
describe the behavior of these energies at all scales, and a more complex multi-scale analysis
is needed. In fact, minimal sequences tend to develop microscopic interfaces by following the
oscillating minimal set of W; such interfaces are possible in the case of slow oscillations (δ � ε),
while are asymptotically damped in the case of fast oscillations (δ � ε). Note that, in contrast
to [9], the latter case is the only one where minimizing sequences are strongly compact in L1, while
only weak compactness holds in the other cases. In their turn, optimal arrangements of microscopic
interfaces for small perturbations of W tend to oscillate between the states ±1, while for large
perturbations of W their average tends to be 0. As a consequence, sharp interfaces are developed
only in the first case. Additional effects are due to boundary terms, to the interaction between
neighboring microscopic interfaces through internal boundary layers, to the asymptotically damped
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interfaces in the case of fast oscillations, and to the optimal arrangements of microscopic interfaces
in the case of large perturbations. Such a complex multi-scale analysis can be captured by looking
at the development by Γ -convergence of the energies above. In this paper we focus on a prototypic
one-dimensional case which we believe already contains the main features of the general case.

The prototypical energies we have in mind are governed by three different parameters: ε > 0,
the characteristic length of the phase transitions; k ∈ (0, 1), the perturbation from the phases of a
given double-well potential; δ > 0, the period of this perturbation. More precisely, for any choice
of the function δ = δ(ε), with δ→ 0 as ε→ 0, we consider the family of functionals

F kε (u) =
∫ 1

0

(
W k

(
x

δ
, u

)
+ ε2(u′)2

)
dx, (1.1)

where W k : R×R→ [0,+∞) is 1-periodic in its first variable and on the periodicity cell (0, 1) is
defined as

W k(y, s) :=
{
W(s − k) if y ∈ (0, 1/2),
W(s + k) if y ∈ (1/2, 1),

with W(t) = min{(t − 1)2, (t + 1)2}. A first relevant simplification to the general situation is due
to this special choice of the double-well potential W k and to the related fact that its minimal value
does not oscillate, being always equal to zero. A step in the direction of removing this simplified
hypothesis is represented by a model recently proposed in [5] by Dirr, Lucia and Novaga (see
also [6]). They consider a perturbation of the Modica–Mortola energy by a rapidly oscillating field
with zero average; specifically,

Fε(u) =
∫

Ω

(W(u)

ε
+ ε|∇u|2 + 1

εγ
g

(
x

εγ

)
u

)
dx,

where g is a 1-periodic function and W a general double-well potential. Then for γ > 0 both the
amplitude and the frequency of g become large (for ε small) and the infimum of the energy can even
tend to −∞ as ε → 0. Hence, in this case, to fit in the framework of Γ -convergence, the authors
need to introduce an additive renormalization to the energies. In our model we do not encounter the
difficulty arising from this renormalization; moreover, our particular choice permits us to detail a
higher-order asymptotic analysis that is not pursued in [5].

Coming back to our model, a first observation is that for k = 0, W k ≡ W and (1.1) reduces to

Fε(u) =
∫ 1

0
(W(u)+ ε2(u′)2) dx,

for which a Γ -development (with respect to strong L2-convergence) is given by the Modica–
Mortola Theorem [9, 8] and can be (formally) written as

Fε(u)
Γ=
∫ 1

0
W(u) dx + εCW#(S(u))+ o(ε), (1.2)

where S(u) denotes the set of discontinuity points of u and CW := 2
∫ 1
−1
√
W(s) ds, with the

constraint u ∈ BV ((0, 1); {±1}) given as understood for the second term of the development.
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Since the above Γ -development is stable under adding a volume constraint, one may prescribe
the “volume” of the phases and address, for instance, the study of the minimum problems

mε = min
{
Fε(u) :

∫ 1

0
u dx = d

}
, (1.3)

with |d| < 1, to exclude the trivial case of constant minimizers. Then, since the minimizers of
CW#S(u) are only the two functions ± sign(x − (1 − d)/2), one deduces the convergence of a
minimizer for (1.3) to one of these functions. In addition, we have the development of minimum
values

mε = εCW + o(ε) as ε→ 0.

Moreover, in this case it is possible to compute that the next meaningful scaling is εe−1/2ε and thus
one may further write

mε = εCW + εe−1/2εC̃W + o(εe−1/2ε) as ε→ 0.

However, the minimizers being essentially uniquely characterized by the analysis at order ε, this
last information only provides a better approximation of the minimum values mε.

For k > 0 we are dealing with a multi-scale energy. In this case, the spatial discontinuity of the
potential makes the zero set of W k oscillate on a δ-scale and induces the presence of microscopic
oscillations whose final effect depends on the mutual vanishing rate of ε and δ.

As a particular case of a multi-dimensional model introduced in [7] by Francfort and Müller, we
find that the energies F kε Γ -converge to a homogeneous functional

F k` (u) =
∫ 1

0
W k
` (u) dx, where ` := lim

ε→0

δ(ε)

ε
. (1.4)

If ` = +∞, i.e., δ � ε (slow oscillations), the phenomenon due to periodic oscillations is dominant
while the gradient perturbation turns out to be irrelevant in the limit. One has W k∞ ≡ W k

hom, where
W k

hom is given by the well-known cell formula of nonlinear scalar homogenization, which only
involves the potential W k (see (3.2)).

If ` ∈ (0,+∞), i.e., ε ∼ δ, oscillations and phase transitions interact and the singular pertur-
bation contributes to the definition of the “effective potential” W k

` (see (3.3)).
If ` = 0, i.e., δ � ε ( fast oscillations), oscillations of u on a δ-scale are “forbidden” and W k

0 is
simply (the convex envelope of) the average of W k over the period (see (3.4)–(3.5)).

In Section 3.1 (and Section 6) we show that F k` is degenerate for any choice of k and `, so
that a higher-order asymptotic analysis for F kε is needed (note that for k > 1, F k` is strictly convex,
which explains our choice of k ∈ (0, 1)). Since we are interested in describing how the two different
parameters ε and δ interact in the creation of the various scales occurring in the Γ -development,
we mainly focus on the two extreme regimes δ � ε and δ � ε. Nonetheless, for the sake of
completeness, in Section 6 we briefly discuss also the “critical” case δ ∼ ε.

A direct computation gives that for ` = +∞, minW k∞ = 0 = W k∞(s) for every s with |s| 6 1,
so that F k∞ has a large set of minimizers. Then in Section 4 we turn to the analysis of the scaled
energies

1

λ
(1)∞ (ε)

F kε , (1.5)
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with λ(1)∞ a suitable positive function, vanishing as ε → 0. The Modica–Mortola scale analysis
performed at the micro δ-level suggests that a minimizing sequence for (1.1) must oscillate on that
scale making optimal transitions on an ε-layer (as, for instance, in Fig. 1).

x0

1 + k

1 − k

ε

δ

FIG. 1. Microscopic phase transitions.

In Section 4.1 we show that we may have four different types of optimal transitions characterized
by three different energy contributions depending on the parameter k. More precisely, if these energy
contributions εCki (i = 1, 2, 3) are associated to each transition as in Fig. 2, we prove that Ck3 > Ck1
and Ck3 > Ck2 for every k ∈ (0, 1), while Ck1 < Ck2 if and only if k < 1/2 (see Remark 4.1). Hence,
we have two different regimes for k: k < 1/2, which we call the regime of small perturbations, and
k > 1/2, the regime of large perturbations.

δ
2

3
2 δ 5

2 δδ 2δ
x

1 − k

1 + k

−1 + k

−1 − k

0

ε Ck
1

ε Ck
1

ε Ck
2

ε Ck
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1
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FIG. 2. Different types of optimal transitions with their energy contribution, for k < 1/2.

Since each of these transitions carries an energy contribution of order ε, the next relevant scaling
for the energy turns out to be

λ(1)∞ (ε) = ε/δ. (1.6)
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The asymptotic behavior of (1.5) is analyzed in Theorem 4.2 which establishes that

δ

ε
F kε (u)

Γ−→
∫ 1

0
ψk(u) dx =: F k(1)(u) (1.7)

(with respect to the weak L2-convergence) with ψk as in Fig. 3.

00 11 −1−1

ψk , k 6 1
2

s s

ψk , k > 1
2

2Ck12Ck1

2Ck2

FIG. 3. The function ψk .

A first interesting observation is that the presence of microscopic phase transitions, with the
consequent distribution of the energy of a minimizing sequence on its whole domain, leads to a
Γ -limit which is again a bulk energy. This represents a difference from the Modica–Mortola result
in which the energy of an optimal transition concentrates on a small layer, thus yielding a first-order
energy of surface type.

From the point of view of the construction of a recovery sequence for (1.7), Theorem 4.2
asserts that if we are in the regime of small perturbation, i.e., k < 1/2, any state |u| 6 1 can
be approximated by mixing, in the right proportion, on a suitable meso-scale, minimal optimal
transitions, i.e., with average 1 and average −1. If instead we are in the case of large perturbations,
i.e., k > 1/2, the minimal transitions are those with average 0 which then only permit one to
approximate the state u = 0. To obtain a nonzero state we are then forced to mix minimal transitions
with “expensive” ones. Moreover, (1.7) suggests that the characterization of the asymptotic behavior
of sequences of minimizers, as well as the development for the minimum values, can be improved
for k < 1/2. In fact, for k < 1/2, ψk ≡ 2Ck1 so that again the Γ -limit only provides the information
that the weak limit of sequences of minimizers can be any function v ∈ L2(0, 1) such that |v| 6 1
a.e. Hence, in Section 4.3.1 we consider the scaled functionals

F kε − ε
δ

minF k(1)

λ
(2)∞ (ε)

= F kε − ε
δ

minψk

λ
(2)∞ (ε)

= F kε − ε
δ

2Ck1
λ
(2)∞ (ε)

,

for a suitable scaling λ(2)∞ (ε).
We observe that F kε − ε

δ
2Ck1 is infinitesimal on a sequence whose qualitative behavior is as in

Fig. 4.
Moreover, since a microscopic optimal transition is a solution of an optimal-profile problem

stated on a δ/ε-interval, on any δ-period we have to consider an extra exponentially small
contribution due to the interaction between two neighboring microscopic phase transitions. The
total energy of a minimizing sequence for F kε − ε

δ
2Ck1 turns out to be of order

ε + ε
δ
e−δ/2ε.
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x

1

−1

ε

ε
δ
Ck

1︷ ︸︸ ︷

εCk
2

FIG. 4. A transition between the two “oscillating phases” 1 and −1.

Then the natural assumption δ � e−δ/2ε (notice that the converse inequality would be quite
restrictive for the possible choices of δ) leads to

λ(2)∞ (ε) = ε,

which is the scale of the transitions between the “oscillating states” around 1 and −1.
In terms of Γ -convergence, Lemma 4.6 and Theorem 4.7 assert that

F kε (u)− ε
δ

2Ck1
λ
(2)∞ (ε)

= 1
ε
F kε (u)−

1
δ

2Ck1
Γ−→ (Ck2 − Ck1 )#(S(u))− Ck1 (1.8)

for u ∈ BV ((0, 1); {±1}). The extra Ck1 is a boundary-layer term that would disappear under some
periodicity assumptions. Hence, at scale ε we get in the limit a surface energy of Modica–Mortola
type but now with the convergence of minimizing sequences being only weak.

The combined computations of (1.4), (1.7) and (1.8) are formally summarized by the following
development:

F kε (u)
Γ=
∫ 1

0
W k

hom(u) dx + ε
δ

2Ck1 + ε((Ck2 − Ck1 )#(S(u))− Ck1 )+O
(
ε

δ
e−δ/2ε

)
. (1.9)

We are also able to explicitly compute the optimal-profile problem energy, thus giving an accurate
estimate for the errorO((ε/δ)e−ε/2δ) (see (4.46)). A comparison between (1.2) and (1.9) shows that
the interaction between periodic oscillations and phase transitions gives rise to two new scales that
cannot be observed by a separate analysis of these two phenomena. These scales are ε/δ, which is
the scale of the microscopic interfacial energy, and (ε/δ)e−δ/2ε, which is the scale of the interaction
of microscopic interfaces.

In the case of large perturbations k > 1/2 and slowly oscillating potentials ` = +∞, ψk has
the unique minimizer s = 0 (see Fig. 3 or Fig. 5). Nonetheless, we may add an integral constraint to
the problem, which in turn allows us to add an affine perturbation to the energies without changing
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FIG. 5. The function ψk − rk .

their minimizer. The nonstrict convexity of the function ψk makes it possible to determine a Γ -
development for F kε in this case as well. More precisely, in Section 4.3.2 we consider the functionals
(d ∈ (0, 1) fixed)

F kε (u)

λ
(1)∞
−
∫ 1

0
rk(u) dx = δ

ε
F kε (u)−

∫ 1

0
rk(u) dx for u such that

∫ 1

0
u dx = d, (1.10)

where rk is the affine perturbation chosen in such a way that ψk(s) − rk(s) > 0 for every |s| 6 1
and ψk(s)− rk(s) = 0 for every 0 < s < 1 (see Fig. 5).

A minimizing sequence for (1.10) (or equivalently for F kε with the same constraint) is forced
to mix minimal optimal transitions with average 0 with more expensive transitions with average 1,
thus yielding a degenerate Γ -limit having a large set of minimizers. The scale analysis for this
case is quite complex and in particular highlights the presence of the new scale ε2/δ2 which takes
into account the interaction between these two different types of microscopic phase transitions (see
Theorem 4.10). What happens is that for any fixed ε > 0 a minimizer for (1.10) is the result of
a suitable mixture of oscillations with average sε > 0 (sε → 0 as ε → 0) and oscillations with
average 1+ sε (see Fig. 6).

sε

1 + k + sε

1 − k + sε

1 + sε

δ

xε
−1 + k + sε

FIG. 6. A minimizing sequence in the case of large perturbations k > 1/2.

Loosely speaking, using these two averages (instead of 0 and 1), a minimizer can satisfy the
volume constraint using a smaller proportion of energetically expensive transitions.
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For k > 1/2, we establish the Γ -development

F kε (u)
Γ=
∫ 1

0
W k

hom(u) dx + ε
δ

∫ 1

0
ψk(u) dx − ε

2

δ2 (C
k
1 − Ck2 )2 − ε

Ck1 + Ck2
2

+O
(
ε

δ
e−δ/2ε

)
,

where the term at scale ε accounts now only for the effect of the external boundary layers. Moreover,
the above development is valid under some additional assumption on δ, needed, in this case, to get
the compatibility of the Γ -limit procedure with the imposed integral constraint (see Remark 4.9).
Finally, in Theorem 4.13 we carefully estimate the error O((ε/δ)e−δ/2ε

)
.

For small perturbations k < 1/2 and fast oscillating potentials ` = 0, a direct computation
shows that minW k

0 = k2 = W k
0 (s) for every |s| 6 1. Thus, in Section 5 we determine the scaling

λ
(1)
0 (ε) in order to study the asymptotic behavior of the family of scaled functionals

F kε − k2

λ
(1)
0 (ε)

.

We prove that, upon choosing δ sufficiently small, the presence of small scale heterogeneities does
not essentially affect the Γ -convergence process at first order. Specifically, we show that even if
F kε (v) − k2 ≡ 0 for v = ±1 (as follows immediately from the definition of W k), in this case it is
more energetically convenient to oscillate “around ±1” than to be identically ±1, and the cost of
these oscillations has a development in terms of powers of δ2/ε2 (see Fig. 7).

1

−1

ε

δ

δ2

ε2

vε

FIG. 7. The qualitative behavior of a minimizer for F kε .

Then, since the presence of the singular gradient perturbation introduces ε as the length for the
layer of a transition between the two “oscillating phases” ±1, we find that the contribution of a
minimizing sequence for F k(0)ε − k2 is of order

ε + δ
2

ε2 .

We only focus on the case δ � ε3/2, which yields

λ
(1)
0 (ε) = ε,
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since we expect to obtain constant Γ -limits for other choices of the scaling λ(1)0 (ε). We also notice
that the asymptotic analysis for the “critical case” δ ' ε3/2 yields a Γ -limit of Modica–Mortola
type. Nonetheless, it seems that in this case the two phenomena of oscillations and phase transition
may interact in a nontrivial way, thus introducing some technical difficulties to the problem.

Under the assumption δ � ε3/2, in Theorem 5.1 we prove that

F kε (u)− k2

λ
(1)
0 (ε)

= F kε (u)− k2

ε

Γ−→ C
(W

k−k2)
#(S(u))

for u ∈ BV ((0, 1); {±1}) with

W
k
(s) :=

∫ 1

0
W k(y, s) dy and C

(W
k−k2)

:= 2
∫ 1

−1

√
W
k
(s)− k2 ds.

In this case the equi-coercivity at scale ε improves to strong-L2 equi-coercivity, as for the Modica–
Mortola functional, so we may (a posteriori) compute also the “zero-order” Γ -limit with respect to
strong L2-convergence, obtaining

F k0 (u) =
∫ 1

0
W
k
(u) dx.

Thus, for δ � ε3/2 and k < 1/2 we find that a Γ -development for F kε (with respect to strong
L2-convergence) is given by

F kε (u)
Γ=
∫ 1

0
W
k
(u) dx + εC

(W
k−k2)

#(S(u))+O
(
δ2

ε2

)
.

The above development in particular shows that in this case we may formally first perform the
homogenization procedure for fixed ε by letting δ → 0, and then apply the Modica–Mortola
Theorem to ∫ 1

0
(W

k
(u)− k2 + ε2(u′)2) dx.

Theorem 5.3 states that in this case the scale analysis performed for k < 1/2 applies unchanged for
k > 1/2, thus yielding an analogous Γ -convergence result.

Finally, the case of potentials oscillating on the phase transition characteristic length scale, i.e.,
the case δ ∼ ε, can also be described by a development, taking into account that optimal sequences
still have the form described in Fig. 7, with finite oscillations around ±1 (or around two explicitly
computed positive values for the case of large perturbations with a positive volume constraint; see
(6.1)), now neither following the zeroes of W k as for slow oscillations, nor asymptotically dumped
as for fast oscillations. This case is briefly described in the last section.

2. Development by Γ -convergence

For the reader’s convenience and in order to fix notation, in this section we recall the notion of
development by Γ -convergence (or in brief, Γ -development) and the related terminology. For an
introduction to the subject, we refer the reader to the classical paper by Anzellotti and Baldo [2] and
to the more recent work by Braides and Truskinovsky [4].
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The procedure leading to a development by Γ -convergence is aimed at a better characterization
of the asymptotic behavior of a family of minimum problems when the Γ -limit is degenerate.
Specifically, if (Fε) is a given family of equi-coercive microscopic energies, the fundamental
property of Γ -convergence can be sketched as

Fε
Γ−→ F (0) ⇒

{
mε := minFε → m(0) := minF (0),
{limits of minimizers of Fε} ⊆ argmin(F (0)),

where argmin(F (0)) := {u : F (0)(u) = m(0)} and the inclusion may be proper. Hence, in general the
description given by F (0) may fail to completely characterize the asymptotic behavior of the family
(Fε). Then the idea is that the computation of the Γ -limit F (0), the zero-order Γ -limit, is only the
first step in the description of the asymptotic behavior of Fε, as it may be necessary to refine the
above limit procedure to select those minimizers of F (0) which are actually limits of minimizing
sequences of Fε.

The most intuitive refinement procedure of standard Γ -convergence is the iteration of the
successive Γ -limits. Once a Γ -limit F (0) of a family (Fε) is computed, and the next meaningful
scale λ(1)(ε) (by a scale we mean a function λ(1)(ε) > 0 such that λ(1)(ε) → 0 as ε → 0) is
conjectured, we may look at the Γ -limit of the scaled family of energies

F (1)ε (u) := Fε(u)−m(0)
λ(1)(ε)

,

and, if it exists, we denote it by F (1), the first-order Γ -limit (or, if more meaningful, the Γ -limit
at order λ(1)(ε)). Notice that the domain of F (1) is, by definition, a subset of the set of minimum
points of F (0), i.e., dom(F (1)) ⊆ argmin(F (0)). If F (1) is not trivial (which is the case if the scale
λ(1)(ε) is “meaningful”), then the iterated application of the property of convergence of minima for
Γ -converging sequences leads to a development of the minimum values

mε = m(0) + λ(1)(ε)m(1) + o(λ(1)(ε)) as ε→ 0,

where m(1) := minF (1). It is also clear that the minimizers for F (1)ε are exactly those for Fε; then
we deduce that the limit of minimizers not only minimizes F (0) but also F (1). Loosely speaking, we
have

{limits of minimizers of Fε} ⊆ argmin(F (1)) ⊆ argmin(F (0)),

thus we have actually made a selection from minimum points of F (0). The combined computation
of the zero-order and first-order Γ -limit as above is formally written as the Γ -development

Fε
Γ= F (0) + λ(1)(ε)F (1) + o(λ(1)(ε)),

with o(λ(1)(ε)) meaning that the next relevant scale is of higher order than λ(1)(ε) as ε→ 0.
If necessary, this procedure can be iterated to obtain other scales λ(2)(ε), λ(3)(ε), etc., and

consequently other terms in the development. This may provide a considerable improvement of the
description of the minimizing sequences, and in some cases may give a complete characterization
of the asymptotic behavior of (Fε). Moreover, we remark that since in the applications one would
like to construct “theories” operative at small but finite ε, a development by Γ -convergence can also
be viewed as the simplest way to bring a small scale back into the problem (see [4]).
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3. Zero-order Γ -limit

In what follows, our notation will be consistent with that introduced in Section 2.
Our energy is a particular one-dimensional version of a more general multi-dimensional energy

introduced by Francfort and Müller [7]. Thus, having in mind the idea of a Γ -development for (1.1),
in this section we adapt to our setting the Γ -convergence results of Theorems 2.1 and 2.3 in [7].
Those two results are summarized in the following theorem.

THEOREM 3.1 Let δ = δ(ε) > 0 be such that δ→ 0 as ε→ 0 and set

` := lim
ε→0

δ(ε)

ε
.

Then the family of functionals F kε : L2(0, 1)→ (0,+∞] defined by

F kε (u) =




∫ 1

0

(
W k

(
x

δ
, u

)
+ ε2(u′)2

)
dx if u ∈ W 1,2(0, 1),

+∞ otherwise,

Γ -converges with respect to weak L2-convergence to the homogeneous functional defined on
L2(0, 1) by

F
k(0)
` (u) =

∫ 1

0
W k
` (u) dx. (3.1)

The integrand W k
` depends on ` in the following way:

(1) if ` = +∞, then

W k∞(s) = inf
{∫ 1

0
W k(x, v) dx : v ∈ L2(0, 1),

∫ 1

0
v dx = s

}
; (3.2)

(2) if ` ∈ (0,+∞), then

W k
` (s) = inf

n∈N
inf
{
−
∫ n

0

(
W k(x, v)+ 1

`2 (v
′)2
)

dx : v ∈ W 1,2(0, n), −
∫ n

0
v dx = s

}
; (3.3)

(3) if ` = 0, then

W k
0 (s) = (W

k
)∗∗(s), (3.4)

where

W
k
(s) =

∫ 1

0
W k(y, s) dy (3.5)

and (W
k
)∗∗ is the convex envelope of W

k
.

REMARK 3.2 From the definition of W k , a priori we only know that the family (F kε ) is equi-
coercive with respect to weak L2-convergence (for any choice of δ = δ(ε)); for this reason, in
Theorem 3.1, the Γ -limit is computed, in each regime, with respect to that convergence.
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3.1 The effective potential W k
`

The starting point of our analysis is a complete characterization of the zero-order Γ -limit F k(0)` .
Then, recalling the definition of our given W k , in this section we compute the explicit expression
for the effective potential W k

` . Here we only treat the cases ` = +∞ and ` = 0; since the case
` ∈ (0,+∞) needs a different investigation involving some of the techniques developed in the next
sections, we refer the reader to Section 6 for that case.

If ` = +∞, Theorem 3.1 asserts that W k∞ is given in terms of the cell formula (3.2), which is
equivalent to

W k∞(s) = min
{∫ 1

0
(W k)∗∗(x, v) dx : v ∈ L2(0, 1),

∫ 1

0
v dx = s

}
,

where the convexification is taken with respect to the second variable. Thus by using Jensen’s
inequality it is easy to check that

W k∞(s) = min
{

1
2
W ∗∗(s1 − k)+ 1

2
W ∗∗(s2 + k) : s1 + s2 = 2s

}
.

Finally, a straightforward calculation gives

W k∞(s) = W ∗∗(s) =
{

0 if |s| 6 1,
(|s| − 1)2 if |s| > 1.

(3.6)

If ` = 0, then trivially

W
k
(s) = 1

2
(W k(s − k)+W k(s + k)) =

{
s2 + (1− k)2 if |s| 6 k,

(|s| − 1)2 + k2 if |s| > k,

hence by a direct computation we get

W k
0 (s) =

{
k2 if |s| 6 1,
(|s| − 1)2 + k2 if |s| > 1,

(3.7)

for k 6 1/2, while

W k
0 (s) =





s2 + (1− k)2 if |s| 6 k − 1/2,
(2k − 1)|s| − k + 3/4 if k − 1/2 < |s| < k + 1/2,
(|s| − 1)2 + k2 if |s| > k + 1/2,

(3.8)

for k > 1/2.
Now, the effective potential W k

` has a large set of minimizers for both ` = +∞ and ` = 0,
k 6 1/2; more precisely, W k

` (s) = minW k
` for every s such that |s| 6 1. At this point some scale

analysis must be performed for both ` = +∞ and ` = 0, k 6 1/2, to understand what the next
relevant scaling is. We expect this scaling to depend on the regime ` and on the parameter k as well
but, not to overburden notation, we only indicate the dependence on ` so that in what follows we
denote the first meaningful scaling by λ(1)` (ε).
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FIG. 8. The effective potential W k
0 for k < 1/2 and k > 1/2.

Finally, as for the remaining case ` = 0, k > 1/2, we want to point out that the nonstrict
convexity of W k

0 (see Fig. 8) permits us to determine an asymptotic development for F kε in this
case too by adding an integral constraint to the problem, which in turn allows one to add an affine
perturbation to the energies without changing their minimizers (see Section 5, and also Section
4.3.2).

4. δ � ε: the case of slow oscillations

In this section we treat the case when the scale of oscillation δ is much larger than the scale of the
transition layer ε, i.e., the case ` = +∞.

In order to guess what the first meaningful scale λ(1)∞ (ε) is, we start by performing a preliminary
qualitative scale analysis. Using the same argument proposed to examine the Modica–Mortola
model [8, 9] we estimate the order of mkε := minF kε as ε → 0. To this end, we focus on a single
δ-interval; to fix ideas, say the interval (0, δ). Now, when we come to minimize F kε , on one hand
the term

∫ δ
0 W

k(x/δ, u) dx favors those configurations which take values close to the (varying) zero
set of W k , i.e., close to (at least) two different constant values: one chosen in {1+ k,−1+ k} when
x ∈ (0, δ/2), and the other chosen in {1−k,−1−k}when x ∈ (δ/2, δ). In other words, the potential
term in the energy favors a phenomenon of phase separation. On the other hand, the gradient term
ε2 ∫ δ

0 (u
′)2 dx penalizes spatial inhomogeneities, thus inducing a phase transition phenomenon as

well. When ε is small the first term prevails, and the minimum of
∫ δ

0

(
W k

(
x

δ
, u

)
+ ε2(u′)2

)
dx

is attained at a function which takes “mainly” values close to the set {1 + k,−1 + k} in (0, δ/2)
and close to {1− k,−1− k} in (δ/2, δ), but which also makes a transition on a “thin” layer around
δ/2. Then a scaling argument (see e.g. [1] and [3, Chapter 6]) proves that the transition between
two different zeroes chosen as above actually occurs in a layer of thickness of order ε (recall that
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δ � ε) and gives an energy contribution of order ε. Clearly the previous heuristics can be repeated
on each δ-interval, thus yielding a total energy contribution of order ε/δ. Hence, we claim that
λ
(1)∞ (ε) = ε/δ, and the proof of this claim will be made rigorous with Theorem 4.2.

4.1 Estimate for the phase-transition energy

We now move the first step towards a rigorous justification of the qualitative argument discussed
in the previous section. In what follows, we make use of some well-known facts relating to the
so-called optimal-profile problem in the Modica–Mortola model. For a detailed treatment of the
one-dimensional case, we refer the reader to [1, Section 3a] or [3, Remark 6.1].

We want to find an explicit formula for the phase-transition energy; for this purpose we set

W k
1 (s) := W(s − k), W k

2 (s) := W(s + k),
and for any fixed ε > 0, we let x1, x2 ∈ R be such that x1 < x2, x2 − x1 6 δ/2 and δ/2 ∈ (x1, x2).
We start by estimating the contribution of the integration on (x1, x2) in F kε (u) in terms of z1 :=
u(x1) and z2 := u(x2). After setting v(x) := u(εx), we have

∫ x2

x1

(
W k

(
x

δ
, u

)
+ ε2(u′)2

)
dx

= ε
(∫ δ/2

x1

(
1
ε
W k

1 (u)+ ε(u′)2
)

dx +
∫ x2

δ/2

(
1
ε
W k

2 (u)+ ε(u′)2
)

dx
)

= ε
(∫ δ/2ε

x1/ε
(W k

1 (v)+ (v′)2) dx +
∫ x2/ε

δ/2ε
(W k

2 (v)+ (v′)2) dx
)
. (4.1)

By the change of variable y = x − δ/2ε, (4.1) becomes

ε

(∫ 0

−T1

(W k
1 (z)+ (z′)2) dy +

∫ T2

0
(W k

2 (z)+ (z′)2) dy
)
,

with T1 := (δ − 2x1)/2ε, T2 := (2x2 − δ)/2ε and z(y) := v(y + δ/2ε). Hence, a lower bound for
the energy of a transition between the values z1, z2 is given by

ε inf
T1,T2>0

inf
{∫ 0

−T1

(W k
1 (z)+ (z′)2) dy +

∫ T2

0
(W k

2 (z)+ (z′)2) dy :

z ∈ W 1,2(−T1, T2), z(−T1) = z1, z(T2) = z2

}
. (4.2)

Now let Zki be the set of zeroes of W k
i for i = 1, 2, i.e.,

Zk1 = {−1+ k, 1+ k}, Zk2 = {−1− k,−1+ k};
if zi ∈ Zki (i = 1, 2) we know that

inf
T1>0

inf
{∫ 0

−T1

(W k
1 (z)+ (z′)2) dy : z ∈ W 1,2(−T1, 0), z(−T1) = z1, z(0) = z0

}

= inf
{∫ 0

−∞
(W k

1 (z)+ (z′)2) dy : z ∈ W 1,2
loc (−∞, 0), z(−∞) = z1, z(0) = z0

}
(4.3)
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and

inf
T2>0

inf
{∫ T2

0
(W k

2 (z)+ (z′)2) dy : z ∈ W 1,2(0, T2), z(0) = z0, z(T2) = z2

}

= inf
{∫ +∞

0
(W k

2 (z)+ (z′)2) dy : z ∈ W 1,2
loc (0,+∞), z(0) = z0, z(+∞) = z2

}
(4.4)

where z(−∞) and z(+∞) are understood as the existence of the corresponding limits. Then it is
easy to check that (4.2) can be rewritten in terms of the two optimal profile problems (4.3) and (4.4),
as

ε inf
z0

{
inf
{∫ 0

−∞
(W k

1 (z)+ (z′)2) dy : z ∈ W 1,2
loc (−∞, 0), z(−∞) = z1, z(0) = z0

}

+ inf
{∫ +∞

0
(W k

2 (z)+ (z′)2) dy : z ∈ W 1,2
loc (0,+∞), z(0) = z0, z(+∞) = z2

}}
,

and finally as

ε inf
z0

{
2
∣∣∣∣
∫ z0

z1

√
W k

1 (s) ds
∣∣∣∣+ 2

∣∣∣∣
∫ z2

z0

√
W k

2 (s) ds
∣∣∣∣
}
. (4.5)

Hence, if for every ζ1, ζ2 ∈ R, we set

CW k (ζ1, ζ2) := inf
z0

{
2
∣∣∣∣
∫ z0

ζ1

√
W k

1 (s) ds
∣∣∣∣+ 2

∣∣∣∣
∫ ζ2

z0

√
W k

2 (s) ds
∣∣∣∣
}
, (4.6)

we have ∫ x2

x1

(
W k

(
x

δ
, u

)
+ ε2(u′)2

)
dx > εCW k (z1, z2). (4.7)

Finally, recalling the definition of the potential W k , in order to explicitly compute CW k (z1, z2) we
have to distinguish three cases.

Case 1: z1 = 1+ k, z2 = 1− k.

Ck1 := CW k (1+ k, 1− k) = inf
z0

{
2
∫ 1+k

z0

√
W k

1 (s) ds + 2
∫ z0

1−k

√
W k

2 (s) ds
}

= 2
∫ 1+k

1

√
W k

1 (s) ds + 2
∫ 1

1−k

√
W k

2 (s) ds = 2k2.

Moreover, it is immediate that CW k (−1+ k,−1− k) = Ck1 .

Case 2: z1 = −1+ k, z2 = 1− k.

Ck2 := CW k (−1+ k, 1− k) = inf
z0

{
2
∫ z0

−1+k

√
W k

1 (s) ds + 2
∫ 1−k

z0

√
W k

2 (s) ds
}

= 2
∫ 0

−1+k

√
W k

1 (s) ds + 2
∫ 1−k

0

√
W k

2 (s) ds = 2(1− k)2.
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Case 3: z1 = 1+ k, z2 = −1− k.

Ck3 := CW k (1+ k,−1− k) = inf
z0

{
2
∫ k+1

z0

√
W k

1 (s) ds + 2
∫ z0

−1−k

√
W k

2 (s) ds
}

= 2
∫ k+1

1

√
W k

1 (s) ds + 2
∫ 1

−k−1

√
W k

2 (s) ds = 2(1+ k2).

REMARK 4.1 The constant Ck3 is greater than both Ck1 and Ck2 for every k ∈ (0, 1), i.e., the
transition between the two extreme zeroes 1 + k and −1 − k is always energetically unfavorable,
while

Ck1 < Ck2 ⇔ k < 1/2, (4.8)

or in other words, the transition from 1+ k to 1− k (or equivalently from−1+ k to−1− k) is more
convenient than the one from −1+ k to 1− k if and only if k < 1/2.

4.2 First-order Γ -limit

We are now ready to state the Γ -convergence result for the family of scaled functionals

F k(1)ε (u) := F kε (u)

λ
(1)∞ (ε)

= δ

ε
F kε (u) =





∫ 1

0

(
δ

ε
W k

(
x

δ
, u

)
+ εδ(u′)2

)
dx if u ∈ W 1,2(0, 1),

+∞ otherwise.
(4.9)

Note that to ease notation, in F k(1)ε we omit the dependence on `.

THEOREM 4.2 The family of functionals F k(1)ε defined in (4.9) Γ -converges with respect to weak
L2-convergence to the integral functional defined on L2(0, 1) by

F k(1)(u) =




∫ 1

0
ψk(u) dx if u ∈ L2(0, 1) and |u| 6 1 a.e.,

+∞ otherwise,

where

ψk(s) =
{

2Ck1 if k 6 1/2,
2(Ck1 − Ck2 )|s| + 2Ck2 if k > 1/2.

(4.10)

Before proving this we need some preliminary results.
In the following proposition, η is the small positive parameter that we will let go to zero in the

Γ -limit procedure.

PROPOSITION 4.3 (i) The family of functionals Gkη defined on L2(−1/4, 1/4) by

Gkη(u) =





∫ 1/4

−1/4

(
1
η
W k(x, u)+ η(u′)2

)
dx if u ∈ W 1,2(−1/4, 1/4),

+∞ otherwise,
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Γ -converges with respect to strong L2-convergence to the functional defined on L2(−1/4, 1/4)
by

Gk(u) =





CW (#(S(u))− 1)+ CW k (u(0+), u(0−))
if u ∈ BV ((−1/4, 1/4);Zk1 ∪ Zk2) and W k(x, u) = 0 a.e.,

+∞ otherwise,

where CW := 2
∫ 1
−1
√
W(s) ds and u(0+), u(0−) are the values taken a.e. by u on (0, r) and

(−r, 0), respectively, for r > 0 small enough.
(ii) (Compatibility with integral constraint) Let s ∈ R and let Gk,sη be defined on L2 (−1/4, 1/4)

by

Gk,sη (u) =
{
Gkη(u) if u ∈ W 1,2 (−1/4, 1/4) and −

∫ 1/4
−1/4 u dx = s,

+∞ otherwise.

Then the family of functionals Gk,sη Γ -converges with respect to strong L2-convergence to the
functional defined on L2 (−1/4, 1/4) by

Gk,s(u) =
{
Gk(u) if u ∈ L2(−1/4, 1/4) and −

∫ 1/4
−1/4 u dx = s,

+∞ otherwise.

Proof. The proofs of (i) and (ii) exactly follow the lines of those of Theorems 6.4 and 6.6 in [3],
with the only difference that now the zero set of the potential W k varies with x, being equal to Zk1
in (0, 1/4) and to Zk2 in (−1/4, 0), thus forcing sequences with equi-bounded energy to make an
additional transition in an η-neighborhood of x = 0. 2

COROLLARY 4.4 (convergence of minimum problems) For any fixed η > 0 and for every s ∈ R,
let ϕkη be the function defined as

ϕkη(s) := min
{∫ 1/4

−1/4

(
1
η
W k(x, u)+ η(u′)2

)
dx : u ∈ W 1,2(−1/4, 1/4), −

∫ 1/4

−1/4
u dx = s

}
. (4.11)

Then for every s ∈ R,
lim
η→0

ϕkη(s) = ϕk(s)

where

ϕk(s) =





Ck1 if s = −1 or 1,
Ck2 if s = 0,
Ck3 if 0 < |s| < 1, k 6 1/2,
Ck2 + CW if 0 < |s| < 1, k > 1/2,
+∞ if |s| > 1.

Proof. We first observe that

minGk,±1 = Ck1 , minGk,0 = Ck2 ,

minGk,s =
{
Ck1 + CW = Ck3 if k 6 1/2
Ck2 + CW if k > 1/2

for 0 < |s| < 1,
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while the set of functions u : (−1/4, 1/4)→ R such that

u ∈ BV ((0, 1/4);Zk1), u ∈ BV ((−1/4, 0);Zk2) and −
∫ 1/4

−1/4
u = s with |s| > 1

is empty. Then, since Gk,sη
Γ−→ Gk,s and (Gk,sη ) is equi-coercive with respect to strong L2-

convergence, the desired result follows immediately from the general property of convergence of
minimum values. 2

PROPOSITION 4.5 Let ϕkη be the function defined as in (4.11). Then

(i) ϕkη(s) 6 c for some c > 0 independent of η and for every s such that |s| 6 1;
(ii) if |s| 6 1 and vsη is a minimizing function for ϕkη(s) (i.e., a test function for which ϕkη(s) =∫ 1/4

−1/4(
1
η
W k(x, vsη) + η(vsη ′)2) dx), then there exists a constant M > 0, independent of η, such

that ‖vsη‖∞ 6 M .

Proof. (i) For every s with |s| 6 1, we exhibit a function vsη such that −
∫ 1/4
−1/4 v

s
η dx = s and for

which ∫ 1/4

−1/4

(
1
η
W k(x, vsη)+ η(vsη ′)2

)
dx 6 c

for some c > 0.
For later references, we treat in detail the cases s = 0 and s = ±1, while in the case 0 < |s| < 1

we only give the idea of the construction of vsη.
We start with s = 0; then as v0

η we take the function defined by

v0
η(x) :=

{
v0,−
η (x) if −1/4 6 x 6 0,
v0,+
η (x) if 0 < x 6 1/4,

where v0,−
η , v0,+

η respectively solve

min
v∈W 1,2(−1/4,0)

v(0)=0

∫ 0

−1/4

(
1
η
(v−1+k)2+η(v′)2

)
dx, min

v∈W 1,2(0,1/4)
v(0)=0

∫ 1/4

0

(
1
η
(v+1−k)2+η(v′)2

)
dx;

or equivalently, the associated Cauchy problems
{
η2v′′ − v + 1− k = 0 in (−1/4, 0),
v(0) = 0, v′(−1/4) = 0,

{
η2v′′ − v − 1+ k = 0 in (0, 1/4),
v(0) = 0, v′(1/4) = 0.

Hence, by directly solving the above equations we get

v0
η(x) =





1− k + (k − 1) cosh
(
x

η

)
+ (k − 1) sinh

(
x

η

)
tanh

(
1

4η

)
if −1/4 6 x 6 0,

−1+ k − (k − 1) cosh
(
x

η

)
+ (k − 1) sinh

(
x

η

)
tanh

(
1

4η

)
if 0 6 x 6 1/4,

(4.12)
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FIG. 9. The functions v0
η and v1

η .

and thus immediately ∫ 1/4

−1/4
v0
η dx = 0.

Moreover, a straightforward calculation gives
∫ 1/4

−1/4

(
1
η
W k(x, v0

η)+ η((v0
η)
′)2
)

dx = Ck2 tanh
(

1
4η

)
,

and finally

ϕkη(0) 6 Ck2 tanh
(

1
4η

)
< Ck2 for all η > 0.

If s = 1, we proceed as above, now taking as a minimizing function for ϕkη(1),

v1
η(x) :=

{
v1,−
η (x) if −1/4 6 x 6 0,
v1,+
η (x) if 0 < x 6 1/4,

where v1,−
η , v1,+

η are respectively solutions to

min
v∈W 1,2(−1/4,0)

v(0)=1

∫ 0

−1/4

(
1
η
(v−1+k)2+η(v′)2

)
dx, min

v∈W 1,2(0,1/4)
v(0)=1

∫ 1/4

0

(
1
η
(v−1−k)2+η(v′)2

)
dx,

or to
{
η2v′′ − v + 1− k = 0 in (−1/4, 0),
v(0) = 1, v′(−1/4) = 0,

{
η2v′′ − v + 1+ k = 0 in (0, 1/4),
v(0) = 1, v′(1/4) = 0.
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Hence, we find

v1
η(x) =





1− k + k cosh
(
x

η

)
+ k sinh

(
x

η

)
tanh

(
1

4η

)
if −1/4 6 x 6 0,

1+ k − k cosh
(
x

η

)
+ k sinh

(
x

η

)
tanh

(
1

4η

)
if 0 6 x 6 1/4,

(4.13)

and we have

−
∫ 1/4

−1/4
v1
η dx = 1.

Then a direct computation gives

ϕkη(1) 6
∫ 1/4

−1/4

(
1
η
W k(x, v1

η)+ η((v1
η)
′)2
)

dx = Ck1 tanh
(

1
4η

)
< Ck1 for all η > 0.

Notice that if s = −1, we simply take v−1
η := v1

η − 2.

k

− 1
4

1
4

x

1 − k

1 + k

−1 + k

0
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η

FIG. 10. The function vsη .

We now turn to the case 0 < |s| < 1 and we sketch the proof for s > 0, the one for s < 0 being
analogous. In this case a test function vsη can be obtained as in Fig. 10 by suitably modifying v1

η
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and combining it, for instance, with an optimal transition vkη between the two zeroes of the potential
W k

1 , 1+ k and −1+ k. More precisely, vkη is defined by

vkη(x) := v
(
x − s/4
η

)
+ k, s

4
− x0

2
6 x 6 s

4
+ x0

2
,

where v is the solution to the optimal profile problem

inf
{∫ +∞

−∞
(W(u)+ (u′)2) dx : u(−∞) = 1, u(+∞) = −1

}
.

Then, as it can be easily checked that the energy contribution of the linear modification to v1
η and vkη

is (exponentially) small as η→ 0, we get

ϕkη(s) 6 Ck1 + CW + o(1) as η→ 0,

and thus ϕkη is bounded.
We remark that the last construction is not “optimal” since the bound on ϕkη can be improved for

0 < |s| < 1 to
ϕkη(s) 6 min{Ck3 , Ck2 + CW } for all η > 0.

(ii) Let |s| 6 1 and let vsη ∈ W 1,2(−1/4, 1/4) be a minimizing function for ϕkη(s). We argue by
contradiction, supposing the existence of a point x′ ∈ (−1/4, 1/4) such that

vsη(x
′) > M > 3(1+ k). (4.14)

To fix ideas, and without loss of generality, we may additionally assume that x′ ∈ (0, 1/4).
Now, appealing to (i) we have for instance

ϕkη(s) =
∫ 1/4

−1/4

(
1
η
W k(x, vsη)+ η(vsη ′)2

)
dx 6 Ck3

and from this we deduce that the restriction of vsη to (0, 1/4) converges in measure to Zk1 as η→ 0.
In fact, for any fixed σ > 0,

|{x ∈ (0, 1/4) : dist(vsη(x), Z
k
1) > σ }|min{W(τ) : | |τ | − 1| > η} 6 Ck3η→ 0 as η→ 0.

Thus, for sufficiently small η > 0 there exists x′′ ∈ (0, 1/4) such that

min{|vsη(x′′)− (1+ k)|, |vsη(x′′)− (−1+ k)|} 6 σ.

We may suppose that |vsη(x′′)− (1+ k)| 6 σ , and get

vsη(x
′′) 6 2(1+ k), (4.15)

having also chosen σ = 1+ k.



82 A. BRAIDES AND C. I. ZEPPIERI

Finally, using the so-called Modica–Mortola trick together with (4.14) and (4.15), we get

ϕkη(s) >
∫ 1/4

0

(
1
η
W k

1 (v
s
η)+ η((vsη)′)2

)
dx > 2

∫ vsη(x
′)

vsη(x
′′)

√
W k

1 (s) ds

>

∫ M

2(1+k)
2(s − 1− k) ds = M2 − 2M(1+ k) > 3(1+ k)2 > Ck3

and thus a contradiction.
Notice that if vsη converges in measure to the constant −1 + k, then since −1 + k < 1 + k, the

same argument again applies to yield the conclusion. 2

In all that follows, the letter C will stand for a generic strictly positive constant which may vary
from line to line and expression to expression within the same formula.

Proof of Theorem 4.2. Step 1: Γ -liminf inequality. We have to prove that if uε ⇀ u in L2(0, 1),
then F k(1)(u) 6 lim infε→0 F

k(1)
ε (uε). Notice that if moreover supε F

k(1)
ε (uε) < +∞ then, by the

definition of F k(1)ε , |u| 6 1 a.e.
By virtue of the nonnegative character of W k , we have

F k(1)ε (uε) =
∫ 1

0

(
δ

ε
W k

(
x

δ
, uε

)
+ εδ(u′ε)2

)
dx

>
[2/δ−1/2]∑

i=1

∫ (2i+1)δ/4

(2i−1)δ/4

(
δ

ε
W k

(
x

δ
, uε

)
+ εδ(u′ε)2

)
dx;

then, by the change of variable x = δt+ (δ/2)i, denoting by [r] the integer part of r ∈ R and setting

viε(t) := uε(δ(t + i/2)), i = 1, . . . , [2/δ − 1/2],

we get

F k(1)ε (uε) >
[2/δ−1/2]∑

i=1

δ

∫ 1/4

−1/4

(
δ

ε
W k

(
t + i

2
, viε

)
+ ε
δ
((viε)

′)2
)

dt

=
∑

i even
δ

∫ 1/4

−1/4

(
δ

ε
W k(t, viε)+

ε

δ
((viε)

′)2
)

dt

+
∑

i odd

δ

∫ 3/4

1/4

(
δ

ε
W k(t, wiε)+

ε

δ
((wiε)

′)2
)

dt,

where wiε(t) := viε(t − 1/2). We observe that

min
{∫ 1/4

−1/4

(
δ

ε
W k(t, v)+ ε

δ
(v′)2

)
dt : −

∫ 1/4

−1/4
v dt = s

}

= min
{∫ 3/4

1/4

(
δ

ε
W k(t, v)+ ε

δ
(v′)2

)
dt : −

∫ 3/4

1/4
v dt = s

}
,
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and as a consequence we find

F k(1)ε (uε) >
[2/δ−1/2]∑

i=1

δmin
{∫ 1/4

−1/4

(
δ

ε
W k (t, v)+ ε

δ
(v′)2

)
dt : −

∫ 1/4

−1/4
v dt = −

∫ (2i+1)δ/4

(2i−1)δ/4
uε dt

}
.

(4.16)
Hence, by using the notation introduced in Corollary 4.4, (4.16) becomes

F k(1)ε (uε) > 2
[2/δ−1/2]∑

i=1

δ

2
ϕkε/δ

(
−
∫ (2i+1)δ/4

(2i−1)δ/4
uε dt

)
,

and if we define ũε : (0, 1)→ R as

ũε(x) :=
[2/δ−1/2]∑

i=1

(
−
∫ (2i+1)δ/4

(2i−1)δ/4
uε dt

)
χ((2i−1)δ/4,(2i+1)δ/4)(x),

we finally have, using the uniform boundedness of ϕkε/δ ,

lim inf
ε→0

F k(1)ε (uε) > 2 lim inf
ε→0

∫ 1

0
ϕkε/δ(ũε) dx.

Note, moreover, that ũε ⇀ u in L2(0, 1).
Now our goal is to estimate ϕkε/δ from below. To this end we first consider the case |s| > 1. On

one hand (see also (3.6)), for every s ∈ R we have

ϕkε/δ(s) > inf
{
δ

ε

∫ 1/4

−1/4
W k(t, v) dt : −

∫ 1/4

−1/4
v dt = s

}

= δ

ε
min

{
1
4
W ∗∗(s1 + k)+ 1

4
W ∗∗(s2 − k) : s1 + s2 = 2s

}
= δ

ε

W ∗∗(s)
2

,

so in particular

ϕkε/δ(s) > δ

ε

(|s| − 1)2

2
for all s such that |s| > 1. (4.17)

On the other hand, for any fixed η > 0 there exist σ, ε0 > 0 such that

ϕkε/δ(s) > Ck1 − η2 for all s ∈ (1, 1+ σ) and ε < ε0, (4.18)

which can be proved by the following argument. If (4.18) does not hold we can find two sequences
sn→ 1 and εn→ 0 for which

ϕkεn/δ(εn)(sn) < Ck1 − η2
0 (4.19)

for every n ∈ N and for some η0 > 0. Appealing to Corollary 4.4 we can also deduce

Ck1 = ϕk(1) 6 lim inf
n→+∞ϕ

k
εn/δ(εn)

(sn),

and combining it with (4.19) we find a contradiction. Note that, by symmetry, (4.18) also holds true
for every s ∈ (−1 − σ,−1). Hence, combining (4.17) and (4.18) we deduce that for every η > 0
and for any sufficiently small ε > 0,

ϕkε/δ(s) > (Ck1 − η2) ∨
(
δ

ε

(|s| − 1)2

2

)
for all s such that |s| > 1. (4.20)
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Now it remains to estimate ϕkε/δ for |s| 6 1. To this end, for any fixed η > 0, consider the set

Aεη := {t ∈ (−1/4, 1/4) : dist(vsε(t), Z
k(t)) > η},

where vsε is a minimizing function for ϕkε/δ(s) and

Zk(t) :=
{
Zk2 if t ∈ (−1/4, 0),
Zk1 if t ∈ (0, 1/4).

Then, arguing as in the proof of Proposition 4.5(ii), we deduce that the measure of Aεη tends to zero
as ε→ 0. In fact, we have

|Aεη|min{W(τ) : | |τ | − 1| > η} 6 ε

δ
Ck3 → 0 as ε→ 0.

As a consequence, for any sufficiently small ε > 0 we can find t− ∈ (−1/4, 0) and t+ ∈ (0, 1/4)
such that dist(vsε(t

±), Zk(t±)) 6 η.
If one of the following inequalities holds true:

|vsε(t−)− (−1− k)| 6 η, |vsε(t+)− (1+ k)| 6 η, (4.21)

say the first, we deduce

ϕkε/δ(s) =
∫ 1/4

−1/4

(
δ

ε
W k(t, vsε)+

ε

δ
(vsε
′
)2
)

dt > CW k (−1− k + η,−1+ k − η),

with CW k (·, ·) as in (4.6), and eventually

ϕkε/δ(s) > Ck1 − Cη2. (4.22)

We will now prove that whenever 4η < |s| 6 1, at least one of the inequalities in (4.21) is fulfilled.
Arguing by contradiction we can find a number η0 > 0 and a sequence εn → 0 such that for every
n ∈ N,

|vsεn(t)−(−1−k)| > η0 for t ∈ (−1/4, 0), |vsεn(t)−(1+k)| > η0 for t ∈ (0, 1/4). (4.23)

If we set

Zk0(t) :=
{

1− k if t ∈ (−1/4, 0),
−1+ k if t ∈ (0, 1/4),

then in view of (4.23), Aεnη0 can be rewritten as

Aεnη0
= {t ∈ (−1/4, 1/4) : dist(vsεn(t), Z

k
0(t)) > η0},

and again the complement of Aεnη0 decomposes as

(Aεnη0
)c = Bεn,−η0

∪ Bεn,+η0
(4.24)
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where

Bεn,−η0
:= {t ∈ (−1/4, 0) : |vsεn(t)− (1− k)| 6 η0},

Bεn,+η0
:= {t ∈ (0, 1/4) : |vsεn(t)− (−1+ k)| 6 η0}

(4.25)

and
|Bεn,−η0

| − |Bεn,+η0
| → 0 as n→+∞. (4.26)

Without loss of generality, we can suppose s > 0; then

2η0 <

∫ 1/4

−1/4
vsεn dt =

∫

A
εn
η0

vsεn dt +
∫

(A
εn
η0 )

c

vsεn dt.

Now by (4.24), (4.25) and Proposition 4.5(ii), we deduce

2η0 <

∫

A
εn
η0

vsεn dt +
∫

B
εn,−
η0

vsεn dt +
∫

B
εn,+
η0

vsεn dt

6 M|Aεnη0
| + (η0 + (1− k))|Bεn,−η0

| + (η0 + (−1+ k))|Bεn,+η0
|

6 M|Aεnη0
| + η0/2+ (1− k)(|Bεn,−η0

| − |Bεn,+η0
|);

moreover by (4.26), for any sufficiently large n, we have

|Aεnη0
| > η0/M,

which yields a contradiction. Then for |s| 6 4η it is easy to check that

ϕkε/δ(s) > Ck2 − Cη2. (4.27)

Finally, combining (4.20), (4.22) and (4.27) we get

ϕkε/δ(s) > ψkη,δ/ε(s) :=





Ck2 − Cη2 if |s| 6 η,

Ck1 − Cη2 if η < |s| 6 1,

(Ck1 − Cη2) ∨
(
δ

ε

(|s| − 1)2

2

)
if |s| > 1,

for every s ∈ R and for every 0 < η < 1; hence

lim inf
ε→0

F k(1)ε (uε) > lim inf
ε→0

2
∫ 1

0
ψkη,δ/ε(ũε) dx.

To conclude the proof, we note that, for any fixed s ∈ R, the sequence (ψkη,δ/ε(s)) increases with
δ/ε, so in particular for every m > 0, there exists ε0 > 0 such that

ψkη,δ/ε(s) > ψkη,m(s) for all s ∈ R and ε 6 ε0.

Then

lim inf
ε→0

∫ 1

0
ψkη,δ/ε(ũε) dx > lim inf

ε→0

∫ 1

0
ψkη,m(ũε) dx

> lim inf
ε→0

∫ 1

0
(ψkη,m)

∗∗(ũε) dx >
∫ 1

0
(ψkη,m)

∗∗(u) dx,
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using the fact that ũε ⇀ u in L2(0, 1) and the L2-weak lower semicontinuity of u 7→∫ 1
0 (ψ

k
η,m)

∗∗(u) dx in the last inequality. Moreover, by the Monotone Convergence Theorem,

lim
m→+∞

∫ 1

0
(ψkη,m)

∗∗(u) dx =
∫ 1

0
lim

m→+∞(ψ
k
η,m)

∗∗(u) dx =
∫ 1

0
(ψkη )(u) dx,

where
ψkη (s) := Ck1 − Cη2 if |s| 6 1 for k 6 1/2

and

ψkη (s) =





Ck2 − Cη2 if |s| 6 η

Ck1 − Ck2
1− η |s| + C

k
2 −

Ck1 − Ck2
1− η η − Cη2 if η < |s| 6 1

for k > 1/2.

Collecting these inequalities we find that

Γ - lim inf
ε→0

F k(1)ε (u) > 2
∫ 1

0
ψkη (u) dx,

and by the arbitrariness of η,

Γ - lim inf
ε→0

F k(1)ε (u) > 2 sup
η>0

∫ 1

0
ψkη (u) dx.

Hence, again applying the Monotone Convergence Theorem we obtain the desired result for both
k 6 1/2 and k > 1/2.

Step 2: Γ -limsup inequality. To check the limsup inequality for the Γ -limit, it will suffice to deal
with the case of a constant target function u ≡ c (−1 6 c 6 1), since by repeating that construction
we can easily deal with the case of u piecewise constant and then the general case follows by density.

We start by approximating c = 1. Fix η > 0; by (4.2) and (4.5) there exist T1, T2 > 0 and
v1 ∈ W 1,2(−T1, T2) such that v1(−T1) = 1+ k, v1(T2) = 1− k and

∫ 0

−T1

(W k
1 (v1)+ (v′1)2) dx +

∫ T2

0
(W k

2 (v1)+ (v′1)2) dx 6 Ck1 +
η

2
.

Note that it is not restrictive to suppose T1 = T2 =: T . Then as a recovery sequence we can take,
for instance,

uε(x) =





1+ k if 0 < x 6 δ/4,
viε,1(x) if (4i − 3)δ/4 < x < (4i + 1)δ/4,
1+ k if (4[1/δ − 1/4]+ 1)δ/4 6 x < 1,

for i = 1, . . . , [1/δ − 1/4], where

viε,1(x) =





1+ k if (4i − 3)δ/4 < x < (2i − 1)δ/2− εT ,
v1

(
x − (2i − 1)δ/2

ε

)
if (2i − 1)δ/2− εT 6 x 6 (2i − 1)δ/2+ εT ,

1− k if (2i − 1)δ/2+ εT < x < iδ − εT ,
v1

(
iδ − x
ε

)
if iδ − εT 6 x 6 iδ + εT ,

1+ k if iδ + εT < x < (4i + 1)δ/4,

(4.28)
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for i ∈ N. In fact, recalling that ε � δ it is easy to check that uε ⇀ 1 in L2(0, 1), while

lim sup
ε→0

F k(1)ε (uε) = lim sup
ε→0

[1/δ−1/4]∑

i=1

∫ (4i+1)δ/4

(4i−3)δ/4

(
δ

ε
W k

(
x

δ
, viε,1

)
+ εδ((viε,1)′)2

)
dx

6 lim
ε→0

[
1
δ
− 1

4

]
δ(2Ck1 + η) = 2Ck1 + η for all η > 0

implies that
lim sup
ε→0

F k(1)ε (uε) 6 F k(1)(1).

If we replace 1 ± k with −1 ± k and v1 with its analogue v−1, a similar construction yields viε,−1
and consequently the Γ -limsup for c ≡ −1.

If −1 < c < 1, it is necessary to make a distinction between the cases k 6 1/2 and k > 1/2.
Let k 6 1/2 and write c as a convex combination of 1 and −1,

c = 1+ c
2
· 1+ 1− c

2
· (−1).

Now let (nν1), (n
ν
2) be two sequences of positive integers such that

nν1, n
ν
2 →+∞ and

nν1
nν2
→ 1+ c

1− c as ν → 0. (4.29)

With fixed ν > 0, for every sufficiently small ε > 0 we have (nν1 + nν2 + 1)δ � 1. We consider the
(nν1 + nν2 + 1)δ-periodic function U νε , on R+, which on (δ/4, (4(nν1 + nν2)+ 5)δ/4) is defined as

U νε (x) =





viε,1(x) if x ∈ ((4i − 3)δ/4, (4i + 1)δ/4) for i = 1, . . . , nν1,

wε(x) if x ∈ ((4nν1 + 1)δ/4, (4nν1 + 5)δ/4),

viε,−1(x) if x ∈ ((4i − 3)δ/4, (4i + 1)δ/4) for i = nν1 + 2, . . . , nν1 + nν2,
w̃ε(x) if x ∈ ((4(nν1 + nν2)+ 1)δ/4, (4(nν1 + nν2)+ 5)δ/4),

where viε,1 is as in (4.28) and viε,−1 is analogous. Moreover, wε is given by

wε(x) =





v
nν1+1
ε,1 (x) if (4nν1 + 1)δ/4 < x 6 (2nν1 + 1)δ/2+ εT ,

1− k if (2nν1 + 1)δ/2+ εT < x < (nν1 + 1)δ/2− εT ′,
v0

(
x − (nν1 + 1)δ

ε

)
if (nν1 + 1)δ − εT ′ 6 x 6 (nν1 + 1)δ + εT ′,

−1+ k if (nν1 + 1)δ + εT ′ < x < (4nν1 + 5)δ/4,

with T ′ > 0 and v0 ∈ W 1,2(−T ′, T ′) such that v0(−T ′) = 1− k, v0(T
′) = −1+ k and

∫ 0

−T ′
(W k

1 (v0)+ (v′0)2) dx +
∫ T ′

0
(W k

2 (v0)+ (v′0)2) dx 6 Ck2 +
η

2
,
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while w̃ε is defined as

w̃ε(x) =





−1+ k, (4(nν1 + nν2)+ 1)δ/4 < x < (2(nν1 + nν2)+ 1)δ/2− εT ′,
v0

(
(2(nν1 + nν2)+ 1)δ/2− x

ε

)
,

|x − (2(nν1 + nν2)+ 1)δ/2| 6 εT ′,
1− k, (2(nν1 + nν2)+ 1)δ/2+ εT ′ < x < (nν1 + nν2 + 1)δ − εT ,
v
nν1+nν2+1
ε,1 (x), (nν1 + nν2 + 1)δ − εT 6 x 6 (4(nν1 + nν2)+ 5)δ/4.

Taking uνε := U νε |(0,1), we have

lim sup
ε→0

F k(1)ε (uνε) 6 lim
ε→0

(
(2Ck1 + η)(nν1 + nν2)δ + (2Ck2 + η)δ

)[ 1
(nν1 + nν2 + 1)δ

]

= (2Ck1 + η)
nν1 + nν2

nν1 + nν2 + 1
+ (2Ck2 + η)

1
nν1 + nν2 + 1

=: ak,ν .

Moreover,
lim
ν→0

ak,ν = 2Ck1 + η,

and a standard diagonalization argument yields a positive decreasing (as ε decreases) function ν =
ν(ε) such that ν(ε)→ 0 as ε→ 0, for which

lim sup
ε→0

F k(1)ε (uν(ε)ε ) 6 2Ck1 + η.

Finally, using (4.29) and the fact that ε � δ it is easy to check that we also have uν(ε)ε ⇀ c in
L2(0, 1), and hence the Γ -limsup for −1 < c < 1 and k 6 1/2.

Let k > 1/2; now to approximate a constant c, on one hand, it is not any more “optimal” to
oscillate between 1 + k, 1 − k and −1 + k, −1 − k, because in this case the most convenient
transition is the one from 1 − k to −1 + k (see Remark 4.1). On the other hand, using convenient
transitions (following the construction made for c = 1) only permits us to approximate c = 0.
Then, for instance, to obtain a recovery sequence for 0 < c < 1 it is necessary to mix, in the
right proportion, oscillations between 1+ k, 1− k with those between 1− k, −1+ k. In this way,
following a procedure which is similar to that of the previous case, but now with

nν1
nν2
→ c

1− c as ν → 0,

it is possible to construct a sequence uε ⇀ c in L2(0, 1) such that

lim sup
ε→0

F k(1)ε (uε) 6 lim
ε→0

(
(2Ck1 + η)(nν(ε)1 + 1)δ + (2Ck2 + η)nν(ε)2 δ

)[ 1

(n
ν(ε)
1 + nν(ε)2 + 1)δ

]

= c(2Ck1 + η)+ (1− c)(2Ck2 + η) = 2(Ck1 − Ck2 ) c + 2Ck2 + η.

This concludes the proof of the Γ -limsup inequality. 2
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4.3 Second-order Γ -limit

In the spirit of studying the asymptotic behavior of the family of functionals (F kε ), Theorem 4.2
suggests that the characterization of the limit points of sequences of minimizers, as well as the
development for the minimum values mkε , can be improved for k 6 1/2. As for k > 1/2, the
functional F k(1) admits the unique minimizer u ≡ 0. Nonetheless, as we will show in Section 4.3.2,
the nonstrict convexity of ψk permits us to consider a further scaling, and thus another term in the
Γ -development, in this case as well.

Since the two cases k 6 1/2, k > 1/2 need a different handling, we discuss the second-order
asymptotic analysis for (F kε ) in two separate sections. The first one, Section 4.3.1, is devoted to the
case k 6 1/2, which is also referred to as the case of small perturbations; while the second one,
Section 4.3.2, deals with k > 1/2, the case of large perturbations.

4.3.1 k < 1/2: small perturbations. In terms of the asymptotic development for the minimum
value mkε , the combined computation of the zero-order and the first-order Γ -limit gives

mkε =
ε

δ
2Ck1 + o

(
ε

δ

)
as ε→ 0.

Then, to further improve the above development, we need to quantify the “small” error o(ε/δ), and
hence to identify the next meaningful scaling that we denote by λ(2)∞ (ε) (not to be confused with the
scaling for k > 1/2, which we will denote by λ(2)∞ (ε)).

Once λ(2)∞ (ε) is conjectured, we study the Γ -limit of the scaled functionals

F k(2)ε := F kε − ε
δ

2Ck1
λ
(2)∞ (ε)

.

To guess the second meaningful scale λ(2)∞ (ε), we first observe that in order to make F kε − ε
δ

2Ck1
vanish, a sequence must oscillate (except possibly on a finite number of δ-intervals) between 1+ k,
1− k or between −1+ k, −1− k. Hence, we focus on a δ/2-interval, for instance (δ/4, 3δ/4), and
we estimate the contribution of F kε − ε

δ
2Ck1 over this interval. We have

∫ 3δ/4

δ/4

(
W k

(
x

δ
, u

)
+ ε2(u′)2

)
dx − εCk1

= ε
(∫ 3δ/4

δ/4

(
1
ε
W k

(
x

δ
, u

)
+ ε(u′)2

)
dx − Ck1

)

= ε
(∫ 1/2

1/4

(
δ

ε
W k

1 (v)+
ε

δ
(v′)2

)
dx +

∫ 3/4

1/2

(
δ

ε
W k

2 (v)+
ε

δ
(v′)2

)
dx − Ck1

)
, (4.30)

with v(x) := u(δx). A direct minimization of (4.30) yields

εCk1

(
tanh

(
δ

4ε

)
− 1

)
= O(εe−δ/2ε) as ε→ 0,

and it is easy to check that the above minimum value is attained, for instance, at the function v(x) :=
v1
ε (1/2 − x/δ) (with v1

ε defined as in (4.12) of Proposition 4.5, with η = ε/δ). Thus, by repeating
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the previous argument over each δ/2-interval (except possibly a finite number of them) we get a first
energy contribution of order (ε/δ)e−δ/2ε. The energy (4.30) is minimized also by v(x)−2 (i.e., by a
transition with average−1), hence the total energy of a minimizing sequence may well be the result
of a finite number of transitions from oscillations with average 1 to oscillations with average−1 and
vice versa. Since each of these transitions between the “oscillating phases” ±1 gives an additional
contribution of order ε, the total energy contribution of a minimizing sequence turns out to be of
order

ε

δ
e−δ/2ε + ε.

Then λ(2)∞ (ε) = (ε/δ)e−δ/2ε if we have

ε

δ
e−δ/2ε � ε, i.e., e−δ/2ε � δ.

Loosely speaking, when this scale is relevant, we have to consider first the error that we make by
“cutting the tails” of the 1/δ infinite transitions that we are gluing together. Thus, in this case we
expect to find again a constant Γ -limit which is now given by

lim
ε→0

2Ck1 (tanh(δ/4ε)− 1)
e−δ/2ε

= −4Ck1 .

We instead get λ(2)∞ (ε) = ε if we have
e−δ/2ε � δ. (4.31)

This choice penalizes the passages from the oscillations “around 1” to those “around −1” and vice
versa. Therefore, if λ(2)∞ (ε) = ε we expect that (F k(2)ε ) Γ -converges to a surface energy which
penalizes the jumps between 1 and −1 of the limit configuration. It is worth pointing out that
assumption (4.31) covers the cases δ = εα for all α < 1, and hence seems more natural.

Since we are concerned not only with a better development formkε but also with an improvement
in the characterization of the asymptotic behavior of sequences of minimizers, we decide to focus
on the case e−δ/2ε � δ, and hence on the case

λ(2)∞ (ε) = ε.
Then we look at the scaled functionals

F k(2)ε (u) = 1
ε
F kε (u)−

1
δ

2Ck1

=





∫ 1

0

(
1
ε
W k

(
x

δ
, u

)
+ ε(u′)2

)
dx − 2Ck1

δ
if u ∈ W 1,2(0, 1),

+∞ otherwise.

(4.32)

We now come to a rigorous justification of what has only been heuristically conjectured.
We start by proving that the uniform boundedness of F k(2)ε (uε) implies, for the limit

configuration u, both the constraint u(x) ∈ {±1} a.e. and that u is piecewise constant.

LEMMA 4.6 If supε F
k(2)
ε (uε) < +∞ then, up to taking a subsequence, (uε) converges to some

function u ∈ BV ((0, 1); {±1}) with respect to weak L2-convergence.
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Proof. For fixed ε > 0, starting at 0, we partition [0, 1] into subintervals I δi , i = 1, . . . , [1/δ], of
length δ (except possibly the last of length less than δ).

Let uε be such that supε F
k(2)
ε (uε) < +∞ and set u±δ (x) := u±(x/δ), where u−, u+ are the

1-periodic functions on R+, defined on (0, 1) by

u−(t) :=
{
−1+ k if t ∈ (0, 1/2),
−1− k if t ∈ (1/2, 1),

u+(t) :=
{

1+ k if t ∈ (0, 1/2),
1− k if t ∈ (1/2, 1).

(4.33)

The first step of the proof consists in showing that for any fixed η > 0, if Iδη is the set of all indices
i in {1, . . . , [1/δ]} such that

min
{
−
∫

I δi

∣∣uε − u−δ
∣∣ dx, −

∫

I δi

∣∣uε − u+δ
∣∣ dx

}
6 η, (4.34)

then
lim
ε→0

δ#(Iδη) = 1. (4.35)

In other words, for every η > 0, (4.34) is satisfied on a “large” number of intervals I δi (provided
that ε is sufficiently small). In order to prove (4.35), we estimate the cardinality of the family J δ

η of
indices i for which

min
{
−
∫

I δi

∣∣uε − u−δ
∣∣ dx,−

∫

I δi

∣∣uε − u+δ
∣∣ dx

}
> η.

Before starting our computation, we notice that the statement

there exists M > 0 such that |uε(x)| 6 M for all x ∈ I δi (4.36)

holds true, with the same constant M (e.g., M = 2), except for at most a bounded number of
indices i. In fact, arguing as in the proof of Proposition 4.5(ii), one can easily deduce the above
statement from the uniform boundedness of F k(2)ε (uε). So from now on, we focus on those intervals
I δi in which (4.36) is satisfied.

If i ∈ J δ
η then

η < −
∫

I δi

|uε − u+δ | dx =
1
δ

∫

{x∈I δi :|uε−u+δ |6η/2}
|uε − u+δ | dx +

1
δ

∫

{x∈I δi :|uε−u+δ |>η/2}
|uε − u+δ | dx

6 η

2
+ c(M)

δ

∣∣∣∣
{
x ∈ I δi : |uε − u+δ | >

η

2

}∣∣∣∣,

hence ∣∣∣∣
{
x ∈ I δi : |uε − u+δ | >

η

2

}∣∣∣∣ > c(M, η)δ.

The same conclusion also holds with u−δ replacing u+δ . As a consequence,
∫

I δi

W k

(
x

δ
, uε

)
dx > Cδ for every i ∈ J δ

η ,

and this implies
F kε (uε) > #(J δ

η )Cδ. (4.37)
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By hypothesis F k(2)ε (uε) 6 C, and therefore

F kε (uε) 6 εC + ε
δ

2Ck1 = O
(
ε

δ

)
as ε→ 0. (4.38)

Combining (4.37) and (4.38) we get

δ#(J δ
η )→ 0 as ε→ 0,

and hence the desired result follows.
Let Nε be the overall number of transitions of uε between 1+ k± η and −1− k± η; 1+ k± η

and −1 + k ± η; 1 − k ± η and −1 − k ± η; and 1 − k ± η and −1 + k ± η. From now on
we refer to these transitions as the expensive transitions. To conclude the proof we notice that the
most convenient of these transitions is the one from −1 + k + η to 1 − k − η and, in terms of
F
k(0)
ε , it costs at least ε(Ck2 − Cη2). Now, recalling that Ck2 > Ck1 , for sufficiently small η we have
Ck2 > Ck1 − Cη2, and thus from the uniform boundedness of F k(2)ε (uε) we deduce that Nε 6 N for
some N ∈ N. As a consequence, (a subsequence of) uε makes a number of expensive transitions
which is actually independent of ε; we denote this number by N . Let Sε = {tε1 , . . . , tεN−1} (with
tεn < tεn+1, n = 1, . . . , N − 2) be a set of points dividing (0, 1) into N subintervals each containing
only one expensive transition for uε. Passing to further subsequences if necessary, we can suppose
that

tεn → tn as ε→ 0 for n = 1, . . . , N − 1.

Then, for fixed σ > 0, if we consider the N intervals

J nσ = (tn + σ, tn+1 − σ), n = 0, . . . , N − 1 (with t0 = 0, tN = 1)

we see that
J nσ ∩ Sε = ∅ (4.39)

for sufficiently small ε and for every n = 0, . . . , N − 1. By virtue of (4.39), applying to J nσ the
result established in the first part of the proof, we find that, for instance,

lim sup
ε→0

∫

J nσ

|uε − u+δ | dx 6 Cη. (4.40)

On the other hand, by weak compactness we have uε ⇀ u in L2(J nσ ), while u+δ ⇀ 1 in L2(J nσ )

from (4.33); thus by the weak lower semicontinuity of the L1-norm we deduce
∫

J nσ

|u− 1| dx 6 lim inf
ε→0

∫

J nσ

|uε − u+δ | dx,

and combining this with (4.40) we find
∫

J nσ

|u− 1| dx 6 Cη for all η, σ > 0.

Finally, by the arbitrariness of η and σ it follows that u ≡ 1 on J n = (tn, tn+1). Thus by repeating
the above argument on all intervals J n (n = 0, . . . , N − 1), which form a partition of [0, 1], we get
the conclusion. 2

In the remainder of this section, we work under the additional assumption 1/δ ∈ N. This assumption
will in some cases be essential, as it permits us not to consider the effects due to boundary mismatch,
while, at other points, it will provide only some technical help.
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THEOREM 4.7 Let δ be such that δ � e−δ/2ε and 1/δ ∈ N. The family of functionals F k(2)ε defined
in (4.32) Γ -converges with respect to weak L2-convergence to the functional defined on L2(0, 1)
by

F k(2)(u) =
{
(Ck2 − Ck1 )#(S(u))− Ck1 if u ∈ BV ((0, 1); {±1}),
+∞ otherwise.

Proof. Step 1: Γ -liminf inequality. We have to prove that if uε ⇀ u in L2(0, 1) and
supε F

k(2)
ε (uε) < +∞, then F k(2)(u) 6 lim infε→0 F

k(2)
ε (uε).

By Lemma 4.6 we already know that u ∈ BV ((0, 1); {±1}); set N := #(S(u)). For fixed ε > 0,
we consider the partition of (δ/4, 1− δ/4) into subintervals I δi := ((2i − 1)δ/4, (2i + 1)δ/4) with
i = 1, . . . , 2/δ − 1 and we rewrite F k(2)ε (uε) as

F k(2)ε (uε) =
∫ δ/4

0

(
1
ε
W k

1 (uε)+ ε(u′ε)2
)

dx +
2/δ−1∑

i=1

(
1
ε
F kε (uε; I δi )− Ck1

)

+
∫ 1

1−δ/4

(
1
ε
W k

2 (uε)+ ε(u′ε)2
)

dx − Ck1 ,

where

F kε (uε; I δi ) :=
∫ (2i+1)δ/4

(2i−1)δ/4

(
W k

(
x

δ
, uε

)
+ ε2(u′ε)2

)
dx.

By a straightforward calculation we find that

min
v∈W 1,2(I δi )

(
1
ε
F kε (v; I δi )− Ck1

)
= Ck1

(
tanh

(
δ

4ε

)
− 1

)
= O(e−δ/2ε) as ε→ 0

for every i = 1, . . . , 2/δ − 1, and the minimum is attained at

uiε,1(x) =
{
v1
ε (i/2− x/δ) if i is odd
v1
ε (x/δ − i/2) if i is even

for x ∈ I δi , i = 1, . . . , 2/δ − 1, (4.41)

where v1
ε is as in (4.13) with η = ε/δ.

If N = 0, since

F k(2)ε (uε) >
2/δ−1∑

i=1

(
1
ε
F k(0)ε (uε; I δi )− Ck1

)
− Ck1 (4.42)

we obtain the assertion by simply taking the minimum of each term on the right hand side of (4.42)
and recalling that by hypothesis limε→0 e

−δ/2ε/δ = 0. If N > 0, let Nε be as in Lemma 4.6. Then,
as already observed, Nε is bounded and moreover

lim inf
ε→0

Nε > N. (4.43)

To get the liminf inequality for the Γ -limit we need a lower bound for the energy of the expensive
transitions. We first estimate the measure of the set where a transition between two zeroes of W k

may occur. Let η be a positive number and set

J δi := {t ∈ I δi : dist(uε, Z
k,δ
i (t)) > η},
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where

Z
k,δ
i (t) :=

{
Zk1 if t ∈ ((2i − 1)δ/4, iδ/2)
Zk2 if t ∈ (iδ/2, (2i + 1)δ/4)

if i is odd,

while

Z
k,δ
i (t) :=

{
Zk2 if t ∈ ((2i − 1)δ/4, iδ/2)
Zk1 if t ∈ (iδ/2, (2i + 1)δ/4)

if i is even.

We have
1
ε
F kε (uε; I δi ) > 1

ε
F kε (uε; J δi ) > Cη2 |J δi |

ε

and from supε F
k(2)
ε (uε) < +∞ we deduce that, for every i, |J δi | = O(ε) as ε tends to zero. Hence

we can conclude that an expensive transition may only be of two different types.

Type 1: the transition entirely occurs in an interval I δi0 for some i0; in this case we have

1
ε
F kε (uε; I δi0) > CW k (1− k − η,−1+ k + η) > Ck2 − Cη2. (4.44)

Type 2: the transition occurs between two adjacent intervals I δi0 , I
δ
i0+1 for some i0; in this case we

have

1
ε
F kε (uε; I δi0)+

1
ε
F kε (uε; I δi0+1) > CW k

1
(1+ k − η,−1+ k + η) (= CW k

2
(1− k − η,−1− k + η))

> CW −Cη2. (4.45)

So if we letN j
ε (j = 1, 2) denote the number of expensive transitions of type j , thenNε = N1

ε+N2
ε .

By combining (4.44) and (4.45) we find that

F k(2)ε (uε) >
(

2
δ
− 1−N1

ε − 2N2
ε

)
Ck1

(
tanh

(
δ

4ε

)
− 1

)

+N1
ε (C

k
2 − Ck1 − Cη2)+N2

ε (CW − 2Ck1 − Cη2)− Ck1
> 2
δ
Ck1

(
tanh

(
δ

4ε

)
− 1

)
+Nε(Ck2 − Ck1 − Cη2)− Ck1 ,

using the fact that CW = 2 and 2 > Ck1 + Ck2 in the last inequality. Finally, passing to the liminf, in
view of (4.43) we get

lim inf
ε→0

F k(2)ε (uε) > N(Ck2 − Ck1 − Cη2)− Ck1 for all η > 0,

and thus letting η go to zero yields the Γ -liminf inequality.

Step 2: Γ -limsup inequality. Let x0 ∈ (0, 1). To check the limsup inequality, it will suffice to deal
with the case

u(x) =
{
−1 if x < x0,

1 if x > x0.

Let uiε,1 be as in (4.41) and set uiε,−1 := uiε,1 − 2 for i = 1, . . . , 2/δ − 1. As a recovery sequence
we take
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uε(x) =





u1
ε,1(δ/4) if x ∈ (0, δ/4),
uiε,1(x) if x ∈ ((2i − 1)δ/4, (2i + 1)δ/4) for i = 1, . . . , 2[x0/δ]− 2,
ŵε(x) if x ∈ ((4[x0/δ]− 3)δ/4, (4[x0/δ]+ 3)δ/4),
uiε,−1(x) if x ∈ ((2i − 1)δ/4, (2i + 1)δ/4) for i = 2[x0/δ]+ 2, . . . , 2/δ − 1,

u
2/δ−1
ε,−1 (1− δ/4) if x ∈ (1− δ/4, 1),

with

ŵε(x) =





u
2[x0/δ]−1
ε,1 (x) if (4[x0/δ]− 3)δ/4 < x 6 (4[x0/δ]− 1)δ/4− ε,
lε(x) if (4[x0/δ]− 1)δ/4− ε < x < (4[x0/δ]− 1)δ/4+ ε,
v0
ε (x/δ − [x0/δ]) if (4[x0/δ]− 1)δ/4+ ε 6 x 6 (4[x0/δ]+ 1)δ/4− ε,
lε(x − δ/2)− 2 if (4[x0/δ]+ 1)δ/4− ε < x 6 (4[x0/δ]+ 1)δ/4+ ε,
u

2[x0/δ]+1
ε,−1 (x) if (4[x0/δ]+ 1)δ/4+ ε < x < (4[x0/δ]+ 3)δ/4,

where v0
ε , v1

ε are as in (4.12) and (4.13) respectively and lε is the linear function defined by

lε(x) := v0
ε (ε/δ − 1/4)− v1

ε (ε/δ − 1/4)
2ε

(
x −

(
4
[
x0

δ

]
− 1

)
δ

4
+ ε

)
+ v0

ε

(
ε

δ
− 1

4

)
.

(
4
[ x0

δ

] − 3
) δ

4
(
4
[ x0

δ

] − 1
) δ

4
(
4
[ x0

δ

] + 1
) δ

4
(
4
[ x0

δ

] + 3
) δ

4
x

1

−1

2ε2ε

1 − k

1 + k

−1 − k

−1 + k

lε

ŵε

FIG. 11. The joining transition ŵε .

In fact, it is easy to check that uε ⇀ u in L2(0, 1) and that the energy contribution due to the linear,
joining function lε is of order e−δ/2ε. Then

lim sup
ε→0

F k(2)ε (uε) = lim sup
ε→0

(∫ 1−δ/4

δ/4

(
1
ε
W k

(
x

δ
, uε

)
+ ε(u′ε)2

)
dx − 2Ck1

δ

)

6 lim sup
ε→0

((
2
δ
− 4

)
Ck1 tanh

(
δ

4ε

)
+ 2Ck1 tanh

(
δ

4ε

)
+ Ck2 tanh

(
δ

4ε

)
− 2Ck1

δ

)

= (Ck2 − Ck1 )− Ck1 = F k(2)(u),
and this completes the proof. 2
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REMARK 4.8 In view of Theorem 4.7, in this case, ε is not only the scale of macroscopic phase
transitions but also that of external boundary layers. In the latter case the negative sign is explained
by a missing (half) transition of the recovery sequence in the intervals (0, δ/4) and (1− δ/4, 1).

The Γ -convergence results stated in Theorems 3.1, 4.2 and 4.7 are formally summarized by the
Γ -development

F kε (u)
Γ=
∫ 1

0
W ∗∗(u) dx + ε

δ
2Ck1 + ε((Ck2 − Ck1 )#(S(u))− Ck1 )−

ε

δ
e−δ/2ε 4Ck1

+O(εe−δ/2ε). (4.46)

4.3.2 k > 1/2: large perturbations. For k > 1/2 Theorem 4.2 states that F k(1)ε
Γ−→ F k(1) where

F k(1)(u) =
∫ 1

0
ψk(u) dx

with ψk(s) = 2(Ck1 − Ck2 )|s| + 2Ck2 for |s| 6 1. In this case, min|s|61 ψ
k(s) = ψk(0) = 2Ck2 and

F k(1) has the unique minimizer u = 0. As is customary, to obtain a nontrivial behavior we add the
constraint ∫ 1

0
vε = d (4.47)

with d 6= 0; to fix ideas, let d ∈ (0, 1).

REMARK 4.9 The zero-order and first-order Γ -limits for the Modica–Mortola functionals are
stable by adding the “volume” constraint (4.47) (see [8], and [3, Proposition 6.6, Theorem 6.7]
for the one-dimensional case). In our case, since we are dealing with a variant of the Modica–
Mortola model and with the different scaling ε/δ, and since moreover integral constraints may
not be automatically compatible with the refinement process of the computation of higher-order
Γ -limits, we actually need to prove that (under some additional hypotheses) the Γ -convergence
result stated in Theorem 4.2 is compatible with the integral constraint. We notice that since the
equality (4.47) is closed for the weak L2-convergence, the liminf inequality is trivial. To check the
limsup inequality it again suffices to deal with piecewise constant functions (satisfying (4.47)). For
simplicity we only detail the case of the constant target function u = d.

Let (uε) be a sequence mixing oscillations “around 1” with oscillations “around 0” as in
Theorem 4.2, Step 2. Then, setting dε := ∫ 1

0 uε dx, we have

dε = n1
ε

δ

2

(
1+O

(
ε

δ

))
+ n0

ε

δ

2
O

(
ε

δ

)
with 0 6 n0

ε, n
1
ε 6 2

δ
, n0

ε + n1
ε =

2
δ
,

where, for fixed ε > 0, n1
ε and n0

ε are the numbers of transitions of uε between 1 + k, 1 − k and
between 1 − k,−1 + k, respectively. Hence if we let n1

ε vary from 0 to 2/δ, then dε goes from
dε ' 0 to dε ' 1 (for ε small). Moreover, the difference between two values of dε corresponding to
two consecutive values of n1

ε is of order δ. Thus, we may choose n0
ε, n

1
ε in such a way that uε is a

recovery sequence for d, and we have

|d − dε| 6 O(δ) as ε→ 0. (4.48)
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Now starting from uε we want to construct a sequence (vε) such that

vε ⇀ d in L2(0, 1),
∫ 1

0
vε dx = d and F k(1)ε (vε)→

∫ 1

0
ψk(u) dx.

To this end, we focus on a δ/2-interval of type ((2i − 1)δ/4, (2i + 1)δ/4) with i odd (the case of
i even can be treated similarly) and we suppose that on this interval uε = viε,1, where viε,1 is as in
(4.28). Passing to a subsequence we can always assume that d − dε has a constant sign, say dε 6 d.
Then we define vε on the interval ((2i−1)δ/4, (2i+1)δ/4) in the following way (see also Fig. 12):

vε(x) :=





− 2(d − dε)δ
(δ/4− εT )2

∣∣∣∣x − (4i − 1)
δ

8
+ εT

2

∣∣∣∣+
(d − dε)δ
(δ/4− εT ) + 1+ k

if (2i − 1)δ/4 6 x 6 iδ/2− εT ,
viε,1(x) if iδ/2− εT 6 x 6 (2i + 1)δ/4.

O(ε)

O(δ)
T

|T | = (d − dε)
δ
2

1 + k

x

1 − k

vε

(2i − 1) δ
4 i δ

2 (2i + 1) δ
4

FIG. 12. The recovery sequence vε on the interval ((2i − 1)δ/4, (2i + 1)δ/4).

A straightforward computation gives

δ

ε

∣∣∣∣
∫ (2i+1)δ/4

(2i−1)δ/4

(
W k

(
x

ε
, uε

)
−W k

(
x

ε
, vε

))
dx
∣∣∣∣

= δ

ε

∫ iδ/2−εT

(2i−1)δ/4

(
− 2(d − dε)δ
(δ/4− εT )2

∣∣∣∣x − (4i − 1)
δ

8
+ εT

2

∣∣∣∣+
(d − dε)δ
(δ/4− εT )

)2

dx

= 1
3
(d − dε)2δ3

(δ/4− εT )ε , (4.49)

and
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δε

∣∣∣∣
∫ (2i+1)δ/4

(2i−1)δ/4
((u′ε)2 − (v′ε)2) dx

∣∣∣∣ = δε
∫ iδ/2−εT

(2i−1)δ/4

4(d − dε)2δ2

(δ/4− εT )4 dx

= δε 4(d − dε)2δ2

(δ/4− εT )4 (δ/4− εT ). (4.50)

Since we want a recovery sequence satisfying the volume constraint (4.47), we repeat the above
construction (and a similar one for v1

ε,0) on each interval of length δ/2, thus obtaining a sequence
vε such that ∫ 1

0
vε(x) dx =

∫ 1

0
uε(x)+ 2

δ
(d − dε) δ2 = dε + d − dε = d.

Then, in view of (4.48)–(4.50) we get

F k(1)ε (uε)− F k(1)ε (vε) = O
(
δ3

ε

)
as ε→ 0.

which proves the desired convergence under the assumption δ � ε1/3.

We now consider the family of integral functionals given by

Fk(1)ε (u) := F k(1)ε (u)−
∫ 1

0
l(u) dx (4.51)

where l is a linear function. By the stability of Γ -convergence under continuous perturbations, we
know that (4.51) Γ -converges to

Fk(1)(u) = F k(1)(u)−
∫ 1

0
l(u) dx

for any u ∈ L2(0, 1) such that |u| 6 1 a.e. and, under the additional hypothesis δ � ε1/3,
satisfying the integral constraint (4.47). Since Fk(1)ε differs from F

k(1)
ε by a constant, information

on minimizing sequences for F k(1)ε (satisfying (4.47)) can be recovered from information on those
minimizing Fk(1)ε .

Notice that in view of the nonstrict convexity of ψk , it is possible to choose the function l in
such a way that ψk(s)− l(s) attains its minimum on a large set. In fact, choosing for instance

l(s) = rk(s) := 2(Ck1 − Ck2 )s + 2Ck2 ,

by virtue of (4.10) we have

ψk(s)− rk(s) > 0 if |s| 6 1 and ψk(s)− rk(s) = 0 if 0 < s < 1.

Thus minFk(1) = 0 = Fk(1)(u) for any u ∈ L2(0, 1) with 0 6 u 6 1 a.e. and
∫ 1

0 u dx = d. This
means that Fk(1)ε Γ -converges to a “degenerate” functional. Hence, we may look for a meaningful
scaling for (4.51) and consider

Fk(2)ε (u) := F
k(1)
ε (u)

λ̄
(2)∞ (ε)

.
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Theorem 4.2, Step 2, combined with the choices l ≡ rk and d ∈ (0, 1), suggests that in this case the
relevant transitions are those from 1+ k to 1− k and those from 1− k to−1+ k (i.e., the transitions
with average 1 and 0, respectively).

Arguing as for k < 1/2, since the passage from oscillations around 1 to oscillations around 0
seems, at a first approximation, energetically negligible, one could guess that (under the usual
assumption δ � e−δ/2ε) the next meaningful scaling is δ which now takes into account only the
external-boundary-layer effect (see Remark 4.8). A more accurate scale analysis (performed in
Theorem 4.10 below) shows that the interaction between these two different types of microscopic
phase transitions gives rise to an extra scale that has to be compared with δ. This scale, which turns
out to be ε/δ, takes into account the fact that we are mixing periodic phase transitions with different
energy contribution. What happens is that for any fixed ε > 0 a minimizer vε will be the result of a
suitable mixture of oscillations (i.e., periodic transitions) with average sε > 0 (sε → 0 as ε → 0)
and oscillations with average 1+sε. Loosely speaking, using these two averages (instead of 0 and 1),
since vε has to satisfy the integral constraint (4.47), we can use a smaller proportion of energetically
expensive transitions.

Note that if δ � ε/δ, then the argument in Remark 4.9 for the compatibility of the integral
constraint (4.47) with the Γ -limit of (1/δ)Fk(1)ε (u) cannot be applied. We then turn our attention to
the case δ � ε/δ, for which we have λ̄(2)∞ = ε/δ and consequently

Fk(2)ε (u) =





δ2

ε2

∫ 1

0

(
W k

(
x

δ
, u

)
+ ε2(u′)2

)
dx − δ

ε

∫ 1

0
rk(u) dx

if u ∈ W 1,2(0, 1),
∫ 1

0 u = d,
+∞ otherwise.

(4.52)

We prove the following result.

THEOREM 4.10 Let δ be such that δ � ε1/2 and 1/δ ∈ N. The family of functionals Fk(2)ε defined
by (4.52) Γ -converges with respect to weak L2-convergence to the functional defined on L2(0, 1)
by

Fk(2)(u) =
{
−(Ck1 − Ck2 )2 if u ∈ L2(0, 1), 0 6 u 6 1 a.e., and

∫ 1
0 u = d,

+∞ otherwise.

Before proving the above statement, we need a refinement of the bound on ϕkη in Theorem 4.2,
Step 1, which will be the key ingredient in the proof of Theorem 4.10.

LEMMA 4.11 Let ϕkη be defined as in Corollary 4.4. Then

ϕkη(s) =





s2

2η
+ Ck2 tanh

(
1

4η

)
if |s| 6 c

√
η,

(|s| − 1)2

2η
+ Ck1 tanh

(
1

4η

)
if |s| > 1− c√η,

(4.53)

for some positive constant c independent of η.

Proof. We handle the case of |s| 6 c
√
η only (with c suitably chosen), the proof of the other case

being analogous. We start by estimating ϕkη from above. By definition, we trivially have
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ϕkη(s) 6 min
{∫ 1/4

−1/4

(
1
η
W k(x, u)+ η(u′)2

)
dx : u ∈ W 1,2(−1/4, 1/4),

−
∫ 1/4

−1/4
u dx = s, ‖u‖∞ 6 k

}

= min
{∫ 1/4

−1/4

(
1
η
Wk(x, u)+ η(u′)2

)
dx : u ∈ W 1,2(−1/4, 1/4), −

∫ 1/4

−1/4
u dx = s

}
(4.54)

where

Wk(x, u) :=
{
(u− 1+ k)2 if −1/4 6 x 6 0,
(u+ 1− k)2 if 0 6 x 6 1/4.

(4.55)

Following the Lagrange Multipliers Method we explicitly determine the minimum value (4.54) by
means of the auxiliary minimum problem

Mk
η (λ) := min

{∫ 1/4

−1/4

(
1
η
Wk(x, u)+ η(u′)2 + λu

)
dx : u ∈ W 1,2(−1/4, 1/4)

}
, (4.56)

with λ ∈ R. Taking into account the definition (4.55) of Wk , it is easy to check that Mk
η (λ) can be

equivalently expressed as

min
u0

{
min

{∫ 0

−1/4

(
1
η
(u− 1+ k)2 + η(u′)2 + λu

)
dx : u ∈ W 1,2(−1/4, 0), u(0) = u0

}

+min
{∫ 1/4

0

(
1
η
(u+ 1− k)2 + η(u′)2 + λu

)
dx : u ∈ W 1,2(0, 1/4), u(0) = u0

}}
.

Then, by a straightforward computation relying on the associated Euler–Lagrange equations, we
find that the minimum (4.56) is attained at

uλη(x) =





1− k − λη
2
+ (k − 1) cosh

(
x

η

)
+ (k − 1) sinh

(
x

η

)
tanh

(
1

4η

)
, −1/4 6 x 6 0,

−1+ k − λη
2
− (k − 1) cosh

(
x

η

)
+ (k − 1) sinh

(
x

η

)
tanh

(
1

4η

)
, 0 6 x 6 1/4.

(4.57)
Moreover, in (4.57) the dependence on λ can be rewritten in terms of s by imposing the integral
constraint ∫ 1/4

−1/4
uλη(x) dx = s

2
,

which gives λ = −2s/η. Notice that u−2s/η
η = v0

η + s, with v0
η as in (4.12). Finally, evaluating the

energy in (4.54) at u−2s/η
η , by a direct computation we get

ϕkη(s) 6 s2

2η
+ Ck2 tanh

(
1

4η

)
. (4.58)

Now we want to prove that there exists a constant c > 0 such that for |s| 6 c
√
η, (4.58) is an

equality. In particular, we show that if vsη is a minimizing function for ϕkη(s), then ‖vsη‖∞ < k. To
this end, we additionally assume that s > 0 (the case s < 0 being symmetric).
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To start, we claim that supposing vsη(0) = k yields a contradiction. In fact, on one hand we have

ϕkη(s) > min
{∫ 0

−1/4

(
1
η
(u− 1+ k)2 + η(u′)2

)
dx : u ∈ W 1,2(−1/4, 0), u(0) = k

}

+ min
{∫ 1/4

0

(
1
η
(u+ 1− k)2 + η(u′)2

)
dx : u ∈ W 1,2(0, 1/4), u(0) = k

}

= tanh
(

1
4η

)
+ (2k − 1)2 tanh

(
1

4η

)

= 1+ (2k − 1)2 + (1+ (2k − 1)2)
(

tanh
(

1
4η

)
− 1

)

= Ck1 + Ck2 + o(1) as η→ 0. (4.59)

On the other hand, from (4.58), if 0 < s 6 c
√
η, we also find

ϕkη(s) 6 c/2+ Ck2 + o(1). (4.60)

As a consequence if we choose c < 2Ck1 , combining (4.59) and (4.60) we get a contradiction, and
the claim follows.

It is easy to check that the case vsη(0) = k is the most “convenient” one (in terms of the minimum
problem defining ϕkη) among those for which the function vsη does not satisfy ‖vsη‖ < k. So in
particular this excludes the existence of a point xη ∈ (−1/4, 1/4), xη 6= 0, such that vsη(xη) > k.
Moreover, the additional hypothesis s > 0 combined with the previous argument also excludes
vsη(xη) 6 −k for some xη ∈ (−1/4, 1/4), which would clearly be even more unfavorable. This
concludes the proof of the lemma for s > 0. 2

Proof of Theorem 4.10. Step 1: Γ -liminf inequality. We prove that if uε ⇀ u in L2(0, 1) and
supε Fk(2)ε (uε) < +∞, then Fk(2)(u) 6 lim infε→0 Fk(2)ε (uε). Notice that, in view of the definition
of Fk(2)ε , we immediately have 0 6 u 6 1 a.e.

We start by writing Fk(2)ε as the sum of three terms,

Fk(2)ε (uε) = δ2

ε2

∫ δ/4

0
(W k

1 (uε)+ ε2(u′ε)2) dx − δ
ε

∫ δ/4

0
rk(uε) dx

+
2/δ−1∑

i=1

(
δ2

ε2

∫ (2i+1)δ/4

(2i−1)δ/4

(
W k

(
x

δ
, uε

)
+ ε2(u′ε)2

)
dx − δ

ε

∫ (2i+1)δ/4

(2i−1)δ/4
rk(uε) dx

)

+ δ
2

ε2

∫ 1

1−δ/4
(W k

2 (uε)+ ε2(u′ε)2) dx − δ
ε

∫ 1

1−δ/4
rk(uε) dx,

and we set

I 1
ε := δ2

ε2

∫ δ/4

0
(W k

1 (uε)+ ε2(u′ε)2) dx − δ
ε

∫ δ/4

0
rk(uε) dx,

I 2
ε := δ2

ε2

∫ 1

1−δ/4
(W k

2 (uε)+ ε2(u′ε)2) dx − δ
ε

∫ 1

1−δ/4
rk(uε) dx.
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Hence

lim inf
ε→0

Fk(2)ε (uε) > lim inf
ε→0

I 1
ε + lim inf

ε→0
I 2
ε

+ lim inf
ε→0

2/δ−1∑

i=1

(
δ2

ε2

∫ (2i+1)δ/4

(2i−1)δ/4

(
W k

(
x

δ
, uε

)
+ ε2(u′ε)2

)
dx − δ

ε

∫ (2i+1)δ/4

(2i−1)δ/4
rk(uε) dx

)
.

We now claim that
lim inf
ε→0

I 1
ε > 0 and lim inf

ε→0
I 2
ε > 0.

We prove this claim only for I 1
ε , the proof for I 2

ε being analogous. Let ūε := −∫ δ/40 uε dx. Then,
recalling that δ � ε,

lim inf
ε→0

I 1
ε > lim inf

ε→0

δ2

4ε

(
δ

ε
(W k

1 )
∗∗(ūε)− rk(ūε)

)
> lim inf

ε→0

δ2

4ε
((W k

1 )
∗∗(ūε)− rk(ūε))

> lim inf
ε→0

δ2

4ε
min
s∈R

((W k
1 )
∗∗(s)− rk(s)) = lim inf

ε→0

δ2

ε
(−7k2 + 5k − 1) = 0

where the last equality follows by hypothesis. Thus we get

lim inf
ε→0

Fk(2)ε (uε)

> lim inf
ε→0

2/δ−1∑

i=1

(
δ2

ε2

∫ (2i+1)δ/4

(2i−1)δ/4

(
W k

(
x

δ
, uε

)
+ ε2(u′ε)2

)
dx − δ

ε

∫ (2i+1)δ/4

(2i−1)δ/4
rk(uε) dx

)

> lim inf
ε→0

δ

ε

2/δ−1∑

i=1

δ

2

(∫ (2i+1)δ/4

(2i−1)δ/4
2
(

1
ε
W k

(
x

δ
, uε

)
+ ε(u′ε)2

)
dx −−

∫ (2i+1)δ/4

(2i−1)δ/4
rk(uε) dx

)

> lim inf
ε→0

δ

ε

2/δ−1∑

i=1

δ

2
(2ϕkε/δ(ũε)− rk(ũε)),

with ϕkε/δ as in Step 1 of Theorem 4.2 and ũε : (0, 1)→ R defined by

ũε(x) :=
2/δ−1∑

i=1

(
−
∫ (2i+1)δ/4

(2i−1)δ/4
uε dt

)
χ((2i−1)δ/4,(2i+1)δ/4)(x).

Notice that by virtue of Lemma 4.11,

2ϕkε/δ(0)− rk(0) = O(e−δ/2ε) as ε→ 0.

Then in view of the definition of ũε we deduce that

lim
ε→0

δ

ε

∫ δ/4

0
(2ϕkε/δ(ũε)− rk(ũε)) dx = lim

ε→0

δ

ε

∫ 1

1−δ/4
(2ϕkε/δ(ũε)− rk(ũε)) dx = 0,
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and consequently

lim inf
ε→0

Fk(2)ε (uε) > lim inf
ε→0

δ

ε

∫ 1

0
(2ϕkε/δ(ũε)− rk(ũε)) dx.

So now we need to estimate the function 2ϕkε/δ(s) − rk(s) from below. Since the estimate on ϕkε/δ
already established in Theorem 4.2, Step 1 is too coarse to be used at this scale, we need to refine
it. By means of Lemma 4.11, we start by improving this estimate in a neighborhood of s = 0. To
this end, for (small) fixed σ > 0 we consider those s such that |s| < σ and we denote by vsε a
minimizing function for ϕkε/δ(s). Arguing as in Lemma 4.11, for ‖vsε‖∞ < k we have

ϕkε/δ(s) =
δ

2ε
s2 + Ck2 tanh

(
δ

4ε

)
,

while for ‖vsε‖∞ > k it is easily seen that the combined argument of Theorem 4.2, Step 1 and
Lemma 4.11 yields

ϕkε/δ(s) > Ck1 + Ck2 − Cσ 2.

Thus, for every s such that |s| < σ we have

ϕkε/δ(s) > min
{
δ

2ε
s2 + Ck2 tanh

(
δ

4ε

)
, Ck1 + Ck2 − Cσ 2

}

=




δ

2ε
s2 + Ck2 tanh

(
δ

4ε

)
if |s| < s0

ε,σ ,

Ck1 + Ck2 − Cσ 2 if s0
ε,σ < |s| < σ,

(4.61)

with

s0
ε,σ :=

√
ε

δ

(
2Ck2

(
1− tanh

(
δ

4ε

))
+ 2Ck1 − 2Cσ 2

)1/2

= O
(√

ε

δ

)
as ε→ 0.

A similar analysis can be performed for σ < |s| 6 1, giving

ϕkε/δ(s) > min
{
δ

2ε
(|s| − 1)2 + Ck1 tanh

(
δ

4ε

)
, Ck1 + Ck2 − Cσ 2

}

=




δ

2ε
(|s| − 1)2 + Ck1 tanh

(
δ

4ε

)
if s1

ε,σ 6 |s| 6 1,

Ck1 + Ck2 − Cσ 2 if σ 6 s < s1
ε,σ ,

(4.62)

with

s1
ε,σ := 1−

√
ε

δ

(
2Ck1

(
1− tanh

(
δ

4ε

))
+ 2Ck1 − 2Cσ 2

)1/2

.

Hence, combinng (4.61), (4.62) and Lemma 4.11 (for |s| > 1), for every s ∈ R we derive the
following estimate:

ϕkε/δ(s) > φkδ/ε,σ (s) :=





δ

2ε
s2 + Ck2 tanh

(
δ

4ε

)
if |s| < s0

ε,σ ,

Ck1 + Ck2 − Cσ 2 if s0
ε,σ < |s| < s1

ε,σ ,

δ

2ε
(|s| − 1)2 + Ck1 tanh

(
δ

4ε

)
if |s| > s1

ε,σ .
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0 1−1

φk
δ/ε,σ

s

Ck
1 + Ck

2 − Cσ2

Ck
1 tanh( δ

4ε
)

Ck
2 tanh( δ

4ε
)

s0
ε,σ−s0

ε,σ s1
ε,σ−s1

ε,σ

O(
√

ε
δ

)

FIG. 13. The function φkδ/ε,σ .

As a consequence we get

lim inf
ε→0

Fk(2)ε (uε) > lim inf
ε→0

δ

ε

∫ 1

0
(2φkδ/ε,σ (ũε)− rk(ũε)) dx

> lim inf
ε→0

δ

ε

∫ 1

0
(2(φkδ/ε,σ )

∗∗(ũε)− rk(ũε)) dx,

where

(φkδ/ε,σ )
∗∗(s) =





δ

2ε
s2 + Ck2 tanh

(
δ

4ε

)
if |s| 6 s̄ε,

(Ck1 − Ck2 ) tanh
(
δ

4ε

)
|s| + Ck2 tanh

(
δ

4ε

)
− ε

2δ
(Ck1 − Ck2 )2 tanh2

(
δ

4ε

)

if s̄ε < |s| < 1+ s̄ε,
δ

2ε
(|s| − 1)2 + Ck1 tanh

(
δ

4ε

)
if |s| > 1+ s̄ε,

with s̄ε := (ε/δ)(Ck1 − Ck2 ) tanh(δ/4ε). Since the sequence ((δ/ε)(2(φkδ/ε,σ )
∗∗(s)− rk(s))) in-

creases with δ/ε, for any fixed m > 0 there exists ε0 > 0 such that

δ

ε
(2(φkδ/ε,σ )

∗∗(s)− rk(s)) > m(2(φkm,σ )
∗∗(s)− rk(s)) for all ε < ε0.

Then by lower semicontinuity,

lim inf
ε→0

Fk(2)ε (uε) > lim inf
ε→0

m

∫ 1

0
(2(φkm,σ )

∗∗(ũε)− rk(ũε)) dx > m

∫ 1

0
(2(φkm,σ )

∗∗(u)− rk(u)) dx.
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Finally, since it can be easily checked that

lim
m→+∞m(2(φ

k
m,σ )

∗∗(s)− rk(s)) = f (s) :=
{

0 if s = 0, 1,
−(Ck1 − Ck2 )2 if 0 < s < 1,

a direct application of the Monotone Convergence Theorem gives

lim inf
ε→0

Fk(2)ε (uε) >
∫ 1

0
f (u) dx;

thus we have
lim inf
ε→0

Fk(2)ε (uε) > −(Ck1 − Ck2 )2,
proving the Γ -liminf inequality.

In view of the analysis performed above, to better explain the presence of the scaling
λ̄
(2)∞ (ε) = ε/δ, we remark that the final effect of subtracting rk from the original potential W k is

that of considering, in place of

δ

ε
s2 + 2Ck2 tanh

(
δ

4ε

)
,

δ

ε
(s − 1)2 + 2Ck1 tanh

(
δ

4ε

)
,

the two parabolas

δ

ε
s2 − 2(Ck1 − Ck2 )s + 2Ck2

(
tanh

(
δ

4ε

)
− 1

)
,

δ

ε
(s − 1)2 − 2(Ck1 − Ck2 )(s − 1)+ 2Ck1

(
tanh

(
δ

4ε

)
− 1

)

with vertices respectively at

V0 ≡
(
ε

δ
(Ck1 − Ck2 );−

ε

δ
(Ck1 − Ck2 )2 + 2Ck2

(
tanh

(
δ

4ε

)
− 1

))
,

V1 ≡
(
ε

δ
(Ck1 − Ck2 )+ 1; −ε

δ
(Ck1 − Ck2 )2 + 2Ck1

(
tanh

(
δ

4ε

)
− 1

))
.

(4.63)

Then, for instance, from

−ε
δ
(Ck1 − Ck2 )2 + 2Ck2

(
tanh

(
δ

4ε

)
− 1

)
= O

(
ε

δ

)
+O(e−δ/2ε) = O

(
ε

δ

)
as ε→ 0

we deduce that the correction due to the translation by rk is actually visible at scale ε/δ.

Step 2: Γ -limsup inequality. To prove the limsup inequality, it is enough to deal with constant
target functions, since the case of piecewise constants can be treated similarly; then the general case
follows by density. Since the (constant) target function has to satisfy the volume constraint, we only
deal with the case u ≡ d .

Let v0
ε , v1

ε be respectively as in (4.12), (4.13) with η = ε/δ, and set vsεε := v0
ε + sε, v1+sε

ε :=
v1
ε + sε, with sε = (ε/δ)(Ck1 − Ck2 ). Then it is easy to check that vsεε and v1+sε

ε are minimizing
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functions for ϕkε/δ(sε) and ϕkε/δ(1 + sε), respectively (see also the proof of Lemma 4.11), while in
view of (4.63) we get

2ϕkε/δ(sε)− rk(sε) = −
ε

δ
(Ck1 − Ck2 )2 + 2Ck2

(
tanh

(
δ

4ε

)
− 1

)
,

2ϕkε/δ(1+ sε)− rk(1+ sε) = −
ε

δ
(Ck1 − Ck2 )2 + 2Ck1

(
tanh

(
δ

4ε

)
− 1

)
.

(4.64)

Now, arguing as in the proof of Theorem 4.2, Step 2, we consider two sequences of positive integers
(nν1), (n

ν
2) such that

nν1, n
ν
2 →+∞ and

nν1
nν2
→ d

1− d as ν → 0. (4.65)

For fixed ν > 0, for any sufficiently small ε > 0 we have (nν1 + nν2 + 2)δ � 1. We consider the
(nν1 + nν2 + 2)δ-periodic function uνε , on R+, which on (δ/4, (4(nν1 + nν2 + 1)+ 5)δ/4) is defined as

uνε(x) :=





u
1+sε
ε (x), x ∈ (δ/4, (4nν1 + 1)δ/4),
zε(x), x ∈ ((4nν1 + 1)δ/4, (4nν1 + 5)δ/4),
u
sε
ε (x), x ∈ ((4nν1 + 5)δ/4, (4(nν1 + nν2)+ 5)δ/4),
zε((4nν1 + 2nν2 + 5)δ/2− x), x ∈ ((4(nν1 + nν2)+ 5)δ/4), (4(nν1 + nν2 + 1)+ 5)δ/4)),

where

u1+sε
ε (x) :=





v1+sε
ε

(
i − 1

2
− x
δ

)
, x ∈ ((4i − 3)δ/4, (4i − 1)δ/4),

v1+sε
ε

(
x

δ
− i
)
, x ∈ ((4i − 1)δ/4, (4i + 1)δ/4),

i = 1, . . . , nν1,

and

usεε (x) :=





vsεε

(
i − 1

2
− x
δ

)
, x ∈ ((4i − 3) δ4 , (4i − 1)δ/4),

vsεε

(
x

δ
− i
)
, x ∈ ((4i − 1)δ/4, (4i + 1)δ/4),

i = nν1 + 1, . . . , nν1 + nν2 + 1.

The joining transition zε is defined as follows:

zε(x) :=





v1+sε
ε

(
nν1 +

1
2
− x
δ

)
, x ∈ ((4nν1 + 1)δ/4, x′ε),

x

δ
+ qε, x ∈ (x′ε, x′′ε ),

vsεε

(
x

δ
− nν1 − 1

)
, x ∈ (x′′ε , (4nν1 + 5)δ/4),

with qε (and consequently x′ε, x′′ε ) chosen in such a way that
∫ (4nν1+5)δ/4

(4nν1+1)δ/4
zε(x) dx =

∫ (4nν1+3)δ/4

(4nν1+1)δ/4
v1+sε
ε

(
nν1 +

1
2
− x
δ

)
dx +

∫ (4nν1+5)δ/4

(4nν1+3)δ/4
vsεε

(
x

δ
− nν1 − 1

)
dx.

(4.66)
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1 − k + sε

v
1+sε
ε

v
sε
ε

y = x
δ

+ qε

y = x
δ

+ q
ε

FIG. 14. The mismatch between v1+sε
ε and vsεε .

In fact, if we set

I (qε) :=
∫ (4nν1+5)δ/4

(4nν1+1)δ/4
zε(x) dx,

it can be checked (see also Fig. 14) that for qε := 1−k+sε+(k − 1)(cosh(δ/4ε))−1−(4nν1+3)/4,

I (qε) >
∫ (4nν1+3)δ/4

(4nν1+1)δ/4
v1+sε
ε

(
nν1 +

1
2
− x
δ

)
dx +

∫ (4nν1+5)δ/4

(4nν1+3)δ/4
vsεε

(
x

δ
− nν1 − 1

)
dx,

while for q
ε

:= 1− k + sε − (k − 1)(cosh(δ/4ε))−1 − (4nν1 + 3)/4 we have

I (q
ε
) 6

∫ (4nν1+3)δ/4

(4nν1+1)δ/4
v1+sε
ε

(
nν1 +

1
2
− x
δ

)
dx +

∫ (4nν1+5)δ/4

(4nν1+3)δ/4
vsεε

(
x

δ
− nν1 − 1

)
dx.

Hence by the continuity of I there exists qε ∈ (qε, qε) for which (4.66) is satisfied.
We notice that x′′ε − x′ε = 2δe−δ/4ε and it can be proved that the energy contribution due to the

linear modification in zε is of order δe−δ/4ε too.
With an abuse of notation we now denote by uνε the restriction of uνε to the interval (0, 1); then

by virtue of (4.64),

lim
ε→0

Fk(2)ε (uνε) = lim
ε→0

(
−(Ck1 − Ck2 )2(nν1 + nν2)δ + nν1δ 2Ck1

(
tanh

(
δ

4ε

)
− 1

)
δ

ε

+ nν2δ 2Ck2

(
tanh

(
δ

4ε

)
− 1

)
δ

ε
+O(δe−δ/4ε)

)[
1

(nν1 + nν2 + 2)δ

]

= −(Ck1 − Ck2 )2
nν1 + nν2

nν1 + nν2 + 2
.

Since

lim
ν→0
−(Ck1 − Ck2 )2

nν1 + nν2
nν1 + nν2 + 2

= −(Ck1 − Ck2 )2,
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a diagonalization argument yields a positive increasing function ν = ν(ε) such that ν(ε) → 0 as
ε→ 0 and

lim
ε→0

Fk(2)ε (uν(ε)ε ) = −(Ck1 − Ck2 )2.

Moreover, by using (4.64) it is easy to check that also uν(ε)ε ⇀ d in L2(0, 1). Finally, starting from
u
ν(ε)
ε a similar construction to that described in Remark 4.9, together with the assumption δ � ε1/2,

yields a recovery sequence (uε) also satisfying
∫ 1

0 uε dx = d, and hence the limsup inequality. 2

Theorem 4.10 shows that the second-order Γ -limit Fk(2) gives little information on the asymptotic
behavior of minimizing sequences. Moreover, the next meaningful scaling is λ̄(3)∞ (ε) = δ and takes
into account only the energy contribution of a minimizing sequence at the boundary. Thus we may
consider

Fk(3)ε (u) := 1
δ
Fk(1)ε (u)+ ε

δ2 (C
k
1 − Ck2 )2. (4.67)

The analysis of this energy and the one at the next scale will actually be a refinement of the one in
the previous theorem, so that in the end Theorem 4.10 and Theorems 4.12 and 4.13 together give a
description of the effect of oscillations at a scale δ, which spans three different energetic scales.

THEOREM 4.12 Let δ be such that δ � ε1/2 and 1/δ ∈ N. The family of functionals Fk(3)ε defined
by (4.67) Γ -converges with respect to weak L2-convergence to the functional defined on L2(0, 1)
by

Fk(2)(u) =
{
−(Ck1 + Ck2 )/2 if u ∈ L2(0, 1), 0 6 u 6 1 a.e., and

∫ 1
0 u = d,

+∞, otherwise.

Proof. The proof follows the one for the previous scale, the main difference being to modify the
recovery sequence so that uε(x) = 1+ k + sε on (0, δ/4) and uε(x) = 1− k + sε on (1− δ/4, 1).
Note that this is compatible with the construction in the proof of Theorem 4.10. 2

The scale analysis performed in Theorem 4.10 suggests that the next meaningful scaling could be
e−δ/2ε as well as εe−δ/4ε, as the higher-order energy contribution in terms of the scaled energyFk(3)ε

is
1
ε
e−δ/2ε + e−δ/4ε.

Then, if
1
ε
e−δ/2ε � e−δ/4ε, i.e., e−δ/4ε � ε,

we deduce that λ̄(4)∞ (ε) = e−δ/2ε and, as a consequence, the following Γ -convergence result for the
scaled family

Fk(4)ε (u) := F
k(1)
ε (u)+ ε

δ
(Ck1 − Ck2 )2 + δ

Ck1+Ck2
2

e−δ/2ε
. (4.68)

THEOREM 4.13 Let ε be such that ε � e−δ/4ε and 1/δ ∈ N. The family of functionals Fk(4)ε

defined by (4.68) Γ -converges with respect to weak L2-convergence to the functional defined on
L2(0, 1) by

Fk(4)(u) =
{

4(Ck2 − Ck1 )d − 4Ck2 if u ∈ L2(0, 1), 0̧ 6 u 6 1 a.e., and
∫ 1

0 u = d,
+∞ otherwise.
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Proof. The proof is a refinement of the computations in the proof of Theorem 4.10, with the
boundary modifications hinted at in the proof of Theorem 4.12. We remark that at this scale we
see the correction due to the difference between the values of the ordinates of the vertices of the two
parabolas (4.63). Loosely speaking, this is the scale of the energy contributions due to the periodic
optimal transitions with average 1+ sε and with average sε, which, in the limit, give rise to

lim
ε→0

2Ck1 (tanh(δ/4ε)− 1)
e−δ/2ε

= −4Ck1 , lim
ε→0

2Ck2 (tanh(δ/4ε)− 1)
e−δ/2ε

= −4Ck2 ,

respectively. Hence, we get the limit energy

4(Ck2 − Ck1 )d − 4Ck2

with a recovery sequence that in order to preserve the integral constraint is a suitable combination
of the two types of oscillations as above. 2

We notice that unfortunately the assumption ε � e−δ/4ε together with δ � ε1/2 (see Theorem 4.10)
is quite restrictive since it essentially reduces δ to be of type γ ε|log ε| with 0 < γ < 4.

The last remark in this section is that actually λ̄(5)∞ (ε)� εe−δ/4ε since a more accurate analysis
shows that the choice of the linear function, joining the two different types of transitions in Theorem
4.10, Step 2, is not optimal and can be improved to obtain an energy contribution of higher order.
Finally, if

Fk(5)ε (u) := F
k(1)
ε (u)+ ε

δ
(Ck1 − Ck2 )2 + δ

Ck1+Ck2
2 − e−δ/2ε4((Ck2 − Ck1 )d − 4Ck2 )

λ̄
(5)∞ (ε)

we conjecture that Fk(5)ε
Γ−→ Fk(5) with

Fk(5)(u) =
{
Ck#(S(u)) if u ∈ BV ((0, 1); {0, 1}), and

∫ 1
0 u = d,

+∞ otherwise,

and Ck a positive constant.
Summing up, in the case of large perturbations, by virtue of Theorems 4.2, 4.10, 4.12 and 4.13

we have established the following development by Γ -convergence:

F kε (u)
Γ=
∫ 1

0
W ∗∗(u) dx + ε

δ

∫ 1

0
ψk(u) dx − ε

2

δ2 (C
k
1 − Ck2 )2 − ε

Ck1 + Ck2
2

(4.69)

+ ε
δ
e−δ/2ε(4(Ck2 − Ck1 )d − 4Ck2 )+ o

(
ε2

δ
e−δ/4ε

)

(with restrictions on ε and δ for the higher-order terms).
We conclude by noticing that (4.46) and (4.69) turn out to coincide for k = 1/2.

5. δ � ε: the case of fast oscillations

In this section we treat the case when the scale of oscillation δ is much smaller than the scale of
the transition layer ε. In particular, we show that in this case, up to choosing δ sufficiently small,
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the presence of small-scale heterogeneities does not essentially affect the Γ -convergence process at
first order either.

We recall that for k 6 1/2 Theorem 3.1 asserts that F kε
Γ−→ F

k(0)
0 with F k(0)0 (u) = ∫ 1

0 W
k
0 (u) dx

and minF k(0)0 = k2 = F
k(0)
0 (u) for every u ∈ L2(0, 1) with |u| 6 1 a.e. Thus we are now

interested in determining the scaling λ(1)0 (ε), to study the asymptotic behavior of the family of
scaled functionals

I k(1)ε (u) := F kε (u)− k2

λ
(1)
0 (ε)

.

To this end, we perform a first heuristic scale analysis. For simplicity we assume that 1/δ ∈ N.
Then we notice that, for instance, v̄ε = 1 is a minimizing sequence for (F kε ) as F kε (v̄ε) = k2.
Nevertheless, we want to show that for any (small) fixed ε > 0, v̄ε is not an absolute minimizer
for F kε . In fact,

minF kε 6 min
{
F kε : u(0) = u(1) = 1

}

6 min
{

1
δ

∫ δ

0

(
W k

(
x

δ
, u

)
+ ε2(u′)2

)
dx : u(0) = u(δ) = 1

}

6 min
{

1
δ

∫ δ/2

0
((u− 1− k)2 + ε2(u′)2) dx

+ 1
δ

∫ δ/2

0
((u− 1+ k)2 + ε2(u′)2) dx : u(0) = u(δ) = 1

}

6 min
{

2
δ

∫ δ/2

0
((u− 1− k)2 + ε2(u′)2) dx : u(0) = u

(
δ

2

)
= 1

}
(5.1)

= 4k2 ε

δ
tanh

(
δ

4ε

)
= k2 − k2

48
δ2

ε2 +
k2

1920
δ4

ε4 +O
(
δ6

ε6

)
as ε→ 0, (5.2)

and the minimum (5.1) is attained at

v(x) := 1+ k − k cosh
(
δ − 4x

4ε

)(
cosh

(
δ

4ε

))−1

.

Hence the previous computations show that it is more energetically convenient to “oscillate
around 1” than to be identically 1. Clearly, the same conclusion still applies to the constant phase
−1. Thus a minimizing sequence may well be the result of a combination (on a suitable scale)
of oscillations around 1 with oscillations around −1. Finally, as the presence of the singular
perturbation in the gradient introduces ε as the length for the layer of a transition between the
two “oscillating phases” ±1, we deduce that the contribution of a minimizing sequence in terms of
the energy F kε − k2 is (at least) of order

ε + δ
2

ε2 .

This section will be entirely devoted to the case δ � ε3/2, which yields

λ
(1)
0 (ε) = ε,

since in view of (5.2) we expect to obtain constant Γ -limits for other choices of the scaling λ(1)0 .
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We remark that also the asymptotic analysis for the “critical case” δ ' ε3/2 (or more generally,
δ ' ε(2n+1)/2n for some n ∈ N) yields a Γ -limit of Modica–Mortola type. Nonetheless, it seems
that in this case the two phenomena of oscillations and phase transition may interact in a nontrivial
way, thus introducing some additional issues that will not be developed here.

THEOREM 5.1 Let k < 1/2 and let δ be such that

δ � ε3/2. (5.3)

Then the functionals I kε defined on L2(0, 1) by

I kε (u) :=




∫ 1

0

(
1
ε

(
W k

(
x

δ
, u

)
− k2

)
+ ε(u′)2

)
dx if u ∈ W 1,2(0, 1),

+∞, otherwise,

Γ -converge with respect to strong L2-convergence to the functional

I k(u) =
{
C
(W

k−k2)
#(S(u)) if u ∈ BV ((0, 1); {±1}),

+∞ otherwise,

with W
k

as in (3.5) and

C
(W

k−k2)
:= 2

∫ 1

−1

√
W
k
(s)− k2 ds = 2(1− k)2 + (2k − 1) ln(1− 2k).

Proof. Step 1: Γ -liminf inequality. Let uε → u in L2(0, 1) be such that supε I
k
ε (uε) < +∞; for

fixed ε > 0 define the set J δ and, on J δ , the function vε by

J δ :=
[1/δ]⋃

i=1

((i − 1)δ, iδ), vε(x) :=
[1/δ]∑

i=1

uiεχ((i−1)δ,iδ)(x)

with

uiε := −
∫ iδ

(i−1)δ
uε dt for i = 1, . . . , [1/δ].

By the Jensen Inequality it is immediate to check that

‖vε‖L2(J δ) 6 ‖uε‖L2(J δ), (5.4)

while from the Poincaré Inequality and its scaling properties we have

‖uε − vε‖L2(J δ) 6 δ‖u′ε‖L2(J δ). (5.5)

A first estimate gives

I kε (uε) >
∫

J δ

(
1
ε

(
W k

(
x

δ
, uε

)
− k2

)
+ ε(u′ε)2

)
dx − k

2

ε

∫ 1

δ[1/δ]
dx,
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hence

lim inf
ε→0

I kε (uε) > lim inf
ε→0

∫

J δ

(
1
ε

(
W k

(
x

δ
, uε

)
− k2

)
+ ε(u′ε)2

)
dx.

We now claim that

lim
ε→0

1
ε

∫

J δ

(
W k

(
x

δ
, uε

)
−W k

(uε)

)
dx = 0. (5.6)

To prove this claim we first remark that W k(y, ·) has the following local Lipschitz property:

|W k(y, s1)−W k(y, s2)| 6 (2(k+1)+|s1|+|s2|)|s1−s2| for a.e. y ∈ R and s1, s2 ∈ R. (5.7)

By a simple averaging over (0, 1) it immediately follows that (5.7) is also satisfied byW
k
. Moreover,

by the definition of vε and the 1-periodicity of W k(·, s),
∫

J δ
W k

(
x

δ
, uε

)
dx =

[1/δ]∑

i=1

∫ iδ

(i−1)δ
W k

(
x

δ
, uiε

)
dx =

[1/δ]∑

i=1

∫ δ

0
W k

(
x

δ
, uiε

)
dx

=
[1/δ]∑

i=1

δ

∫ 1

0
W k(x, uiε) dx =

[1/δ]∑

i=1

δW
k
(uiε) =

∫

J δ
W
k
(vε) dx.

Then, by adding and subtracting 1/ε
∫
J δ
W k( x

δ
, vε) dx in (5.6), by virtue of (5.7) and the local

Lipschitz continuity of W
k

we have

1
ε

∣∣∣∣
∫

J δ

(
W k

(
x

δ
, uε

)
−W k

(uε)

)
dx
∣∣∣∣

6 1
ε

∫

J δ

∣∣∣∣W k

(
x

δ
, uε

)
−W k

(
x

δ
, vε

)∣∣∣∣ dx + 1
ε

∫

J δ
|W k

(uε)−W k
(vε)| dx

6 2
ε

∫

J δ
(2(k + 1)+ |uε| + |vε|)|uε − vε| dx

6 1
ε
C(1+ ‖uε‖L2(J δ) + ‖vε‖L2(J δ))‖uε − vε‖L2(J δ) 6 C

δ

ε
‖u′ε‖L2(0,1), (5.8)

where we have used (5.4) and (5.5) in the last inequality. Recalling that supε I
k
ε (uε) < +∞ in

particular implies

‖u′ε‖L2(0,1) 6 C

ε1/2 , (5.9)

and by combining (5.8), (5.9) and invoking hypothesis (5.3) we get the claim.
As a consequence,

lim inf
ε→0

I kε (uε) > lim inf
ε→0

∫ δ[1/δ]

0

(
1
ε
(W

k
(uε)− k2)+ ε(u′ε)2

)
dx, (5.10)

so that we reduce to the case of a sequence of functionals with a homogeneous, double-well
potential, with wells at ±1. Moreover, up to a slight modification of the proof of the Modica–
Mortola compactness result, (5.10) implies that if (uε) is such that supε I

k
ε (uε) < +∞, then
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uε → u inL2(0, 1), with u ∈ BV ((0, 1); {±1}). Finally, a direct application of the Modica–Mortola
Theorem yields

lim inf
ε→0

I kε (uε) > lim inf
ε→0

∫ a

0

(
1
ε
(W

k
(uε)− k2)+ ε(u′ε)2

)
dx

>
(

2
∫ 1

−1

√
W
k
(s)− k2 ds

)
#(S(u) ∩ (0, a))

for any fixed a ∈ (0, 1). Then, passing to the sup over a ∈ (0, 1), we get the Γ -liminf inequality.

Step 2: Γ -limsup inequality. We have to construct a recovery sequence for u ∈ BV (0, 1) with
u ∈ {±1} a.e.; it will suffice to approximate

u(x) =
{
−1 if x < x0,

1 if x > x0,
(5.11)

with x0 ∈ (0, 1).
We show that the limsup inequality easily follows from the limsup inequality for the functionals

∫ 1

0

(
1
ε
(W

k
(u)− k2)+ ε(u′)2

)
dx. (5.12)

To this end, arguing as in the Modica–Mortola construction, for any fixed η > 0 we can find a
number T > 0 and a function v ∈ W 1,2(−T , T ) such that v(−T ) = −1, v(T ) = 1 and

∫ T

−T
(W

k
(v)− k2 + (v′)2) dx 6 2

∫ 1

−1

√
W
k
(s)− k2 ds + η. (5.13)

Then, recalling that δ � ε, we see that a recovery sequence for (5.11)–(5.12) is given by

uε(x) =





−1 if x < xδ0 − εT ,
v((x − xδ0)/ε) if xδ0 − εT 6 x 6 xδ0 + εT ,
1 if x > xδ0 + εT ,

with xδ0 = [x0/δ]δ. We claim that (uε) is also a recovery sequence for I kε . First we find

I kε (uε) =
∫ xδ0+εT

xδ0−εT

(
1
ε

(
W k

(
x

δ
, uε

)
− k2

)
+ ε(u′ε)2

)
dx =

∫ T

−T

(
W k

(
ε

δ
x, v

)
− k2 + (v′)2

)
dx.

The next step is to prove that

lim
ε→0

∫ T

−T
W k

(
ε

δ
x, v

)
dx =

∫ T

−T
W
k
(v) dx. (5.14)

Setting

W k
ε (x) := W k

(
ε

δ
x, v

)
for a.e. x ∈ (−T , T ),
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we have
0 6 W k

ε 6 2((k + 1)2 + |v|2) a.e. in (−T , T ),
from which we deduce ‖W k

ε ‖L1(−T ,T ) 6 C and that (W k
ε ) is equi-integrable on (−T , T ). Then by

applying the Dunford–Pettis Criterion, upon passing to a subsequence (not relabeled) we have

W k
ε ⇀ f in L1(−T , T ), (5.15)

while by the Lebesgue Theorem,

f (x) = lim
r→0+

−
∫ x+r

x−r
f (y) dy for a.e. x ∈ (−T , T ).

Moreover, (5.15) implies in particular that, for x ∈ (−T , T ) and for sufficiently small r > 0,

lim
ε→0
−
∫ x+r

x−r
W k
ε (y) dy = −

∫ x+r

x−r
f (y) dy,

and consequently

lim
r→0+

lim
ε→0
−
∫ x+r

x−r
W k
ε (y) dy = f (x) for a.e. x ∈ (−T , T ).

On the other hand,

−
∫ x+r

x−r
W k
ε (y) dy = −

∫ x+r

x−r
W k

(
ε

δ
y, v

)
dy −−

∫ x+r

x−r
W k

(
ε

δ
y, v(x)

)
dy

+−
∫ x+r

x−r
W k

(
ε

δ
y, v(x)

)
dy (5.16)

with
∣∣∣∣−
∫ x+r

x−r

(
W k

(
ε

δ
y, v

)
−W k

(
ε

δ
y, v(x)

))
dy
∣∣∣∣ 6 −

∫ x+r

x−r
(2(k + 1)+ |v(x)| + |v|)|v − v(x)| dy

and

lim
ε→0
−
∫ x+r

x−r
W k

(
ε

δ
y, v(x)

)
dy = −

∫ x+r

x−r
W
k
(v(x)) dy = W k

(v(x)).

Letting in (5.16) first ε→ 0, then r → 0, we obtain f (x) = W k
(v(x)) for a.e. x ∈ (−T , T ); hence,

from (5.15) we get (5.14). Finally, combining (5.14) and (5.13) gives

lim sup
ε→0

I kε (uε) 6 2
∫ 1

−1

√
W
k
(s)− k2 ds + η = I k(u)+ η,

and the conclusion follows by the arbitrariness of η. 2

REMARK 5.2 The above theorem states that formally we may first perform the homogenization
procedure for fixed ε, by letting δ → 0, and then apply the Modica–Mortola Theorem to the
functionals ∫ 1

0
(W

k
(u)− k2 + ε2(u′)2) dx.
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Since just as for the Modica–Mortola functionals, the equi-coercivity at scale ε improves to
strong-L2 equi-coercivity, we may (a posteriori) also compute the zero-order Γ -limit with respect
to strong L2-convergence, obtaining

F
k(0)
0 (u) =

∫ 1

0
W
k
(u) dx.

Thus, for δ � ε3/2 and k < 1/2 we find that a Γ -development for F kε with respect to weak
L2-convergence is given by

F kε (u) =
∫ 1

0
(W

k
)∗∗(u) dx + εC

(W
k−k2)

#(S(u))+O
(
δ2

ε2

)
, (5.17)

while a Γ -development with respect to strong L2-convergence is

F kε (u) =
∫ 1

0
W
k
(u) dx + εC

(W
k−k2)

#(S(u))+O
(
δ2

ε2

)
. (5.18)

The last part of this section is devoted to the case k > 1/2. In this regime, for the zero-order Γ -
limit we have minF k(0)0 = (1−k)2 and the minimum is attained at u = 0 (see Fig. 8). Nevertheless,
since the effective potential W k

0 is not strictly convex, we may proceed as in Section 4.3.2. Thus,
setting

τ k(s) := (2k − 1)s − k + 3/4

we can consider, for instance, the family of functionals

F kε (u)−
∫ 1

0
τ k(u) dx, (5.19)

which, under the assumption
∫ 1

0
u dx = d ∈ (k − 1/2, k + 1/2), (5.20)

only differs from F kε by a constant.
Now it is immediate to prove that the Γ -convergence result stated in Theorem 3.1 preserves the

integral constraint (5.20) and hence that (5.19) Γ -converges to the functional
∫ 1

0
(W k

0 (u)− τ k(u)) dx, u ∈ L2(0, 1),
∫ 1

0
u dx = d,

which vanishes at any function u ∈ L2(0, 1) with |u − k| 6 1/2 a.e. and such that
∫ 1

0 u dx = d.
Moreover, a similar scale analysis to that performed for k 6 1/2 also applies in this case, leading to
the following result.

THEOREM 5.3 Let k > 1/2 and choose δ satisfying (5.3). Then the functionals Ikε defined on
L2(0, 1) by

Ikε (u) :=




∫ 1

0

(
1
ε

(
W k

(
x

δ
, u

)
− τ k(u)

)
+ ε(u′)2

)
dx if u ∈ W 1,2(0, 1) and

∫ 1
0 u = d,

+∞ otherwise,
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Γ -converge with respect to strong L2-convergence to the functional

Ik(u) =
{
C
(W

k−τ k)#(S(u)) if u ∈ BV ((0, 1); {k ± 1/2}) and
∫ 1

0 u = d,
+∞ otherwise,

where C
(W

k−τ k) := 2
∫ k+1/2
k−1/2

√
W
k
(s)− τ k(s) ds = 1/2.

Proof. The proof exactly follows the lines of that for k < 1/2, while a recovery sequence
satisfying (5.20) can be obtained by a carefully chosen translation of a recovery sequence for the
nonconstrained problem (see, e.g., [3, Theorem 6.7]). 2

To conclude this section we notice that the energy contribution of an optimal transition is continuous
in k, i.e.,

lim
k→ 1

2
− C(W k−k2)

= lim
k→ 1

2
+ C(W k−τ k) =

1
2
,

hence the result for k = 1/2 is described by both Theorem 5.1 and Theorem 5.3.

6. δ ∼ ε: the critical case

In this last section we briefly outline the case when the scale of oscillation δ is of the same order
as the scale of the transition layer ε. In this case the zero-order Γ -limit’s energy density W k

` is
described by the asymptotic formula (3.3). By optimizing the procedure leading to (5.2), we get

W k
` (s) =





2Ck1
`

tanh
(
`

4

)
, |s| 6 1,

(|s| − 1)2 + 2Ck1
`

tanh
(
`

4

)
, |s| > 1,

for k 6 1/2, while

W k
` (s) =





s2 + 2Ck2
`

tanh
(
`

4

)
, |s| < (k − 1

2 )
4
`

tanh( `4 ),

(2k − 1)
4
`

tanh
(
`

4

)
|s| +

(
(1− k)2 − (2k − 1)2

`
tanh

(
`

4

))
4
`

tanh
(
`

4

)
,

(k − 1
2 )

4
`

tanh( `4 ) 6 |s| 6 (k − 1
2 )

4
`

tanh( `4 )+ 1,

(|s| − 1)2 + 2Ck1
`

tanh
(
`

4

)
, |s| > (k − 1

2 )
4
`

tanh( `4 )+ 1,

(6.1)
for k > 1/2. Note that these potentials have the same form of the potentials W k

0 for k 6 1/2 and
for k > 1/2 (see Fig. 8). Moreover, recalling that Ck1 = 2k2, Ck2 = 2(k − 1)2 and (3.6)–(3.8) it
is immediate to check that for every fixed k ∈ (0, 1) the effective potential W k

` is continuous with
respect to ` in the extreme regimes; i.e., W k

` → W k∞ as `→∞ and W k
` → W k

0 as `→ 0.
The behavior of minimizing sequences in the case k 6 1/2 can be pictured as in Fig. 7, where

the oscillations are not dumped as ε → 0. The same picture also holds in the case k > 1/2 but
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now the oscillations are “around” (k − 1/2)(4/`) tanh(`/4) and (k − 1/2)(4/`) tanh(`/4) + 1 if a
positive volume constraint is added. In both cases oscillations of the ground states do not reach the
minimum values forW k , thus preventing the degenerate situation of the case k > 1/2 and ` = +∞
(see Fig. 6), and hence the subsequent effects are at scale ε and are due to phase transitions and
boundary layers. Note that the bulk contribution due to oscillations is now at scale 1 and is included
in the definition of W k

` . We state the first-order Γ -convergence result for the case k < 1/2 only,
the other one being analogous upon addition of an integral constraint in the spirit of the previous
analyses of Section 4.3.2 and Section 5.

It can be proved that there exists a unique 1-periodic function v+` (the ground state) minimizing
the problem, giving W k

` (1) with average 1 and max v+` −min v+` < 2. Note that by the symmetries
of the problem, v−` := v+` − 2 is a minimizer for W k

` (−1).
The surface tension for the first-order Γ -limit is then defined by

C
k,s
` = inf

n∈N
inf
{

1
2n

∫ n

−n

(
W k(y, v)+ 1

`2 (v
′)2
)

dy − 2Ck1
`

tanh
(
`

4

)
:

v ∈ W 1,2(−n, n), v(±n) = v±` (±n)
}
,

and the corresponding boundary-layer energy by

C
k,b
` = inf

n∈N
inf
{

1
n

∫ n

0

(
W k(y, v)+ 1

`2 (v
′)2
)

dy − 2Ck1
`

tanh
(
`

4

)
:

v ∈ W 1,2(0, n), v(n) = v+` (n)
}
.

The first-order Γ -limit can then be stated as follows.

THEOREM 6.1 Let k < 1/2 and 1/δ ∈ N. Then the functionals H k
ε defined on L2(0, 1) by

H k
ε (u) :=





∫ 1

0

(
1
ε

(
W k

(
x

δ
, u

)
− 2Ck1

`
tanh

(
`

4

))
+ ε(u′)2

)
dx if u ∈ W 1,2(0, 1),

+∞ otherwise,

Γ -converge with respect to weak L2-convergence to the functional

H k(u) =
{
C
k,s
` #(S(u))− 2Ck,b` if u ∈ BV ((0, 1); {±1}),
+∞ otherwise.

We omit the proof, which follows the one for the case ` = 0.
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