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Level set approach for fractional mean curvature flows
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This paper is concerned with the study of a geometric flow whose law involves a singular integral
operator. This operator is used to define a non-local mean curvature of a set. Moreover, the associated
flow appears in two important applications: dislocation dynamics and phasefield theory for fractional
reaction-diffusion equations. It is defined by using the level set method. The main results of this
paper are: on one hand, the proper level set formulation of the geometric flow; on the other hand,
stability and comparison results for the geometric equation associated with the flow.
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1. Introduction

In this paper, we define a geometric flow whose law is non-local. We recall that a geometric flow of
a set Ω is a family {Ωt }t>0 such that the velocity of a point x ∈ ∂Ωt along its outer normal n(x)
is a given function of x and n(x) for instance. In our case, this velocity does not only depend on
x and n(x) but also on a fractional mean curvature at x. Our motivation comes from two different
problems: dislocation dynamics and phasefield theory for fractional reaction-diffusion equations.

1.1 Motivation and existing results

Mathematical study of non-local moving fronts recently attracted a lot of attention (see in particular
[12] and references therein). An important application is the study of dislocation dynamics [3].

Dislocation dynamics. Dislocations are linear defects in crystals and the study of their motion
gives rise to the study of a non-local geometric flow. In recent years, several papers were dedicated
to this problem. We next briefly recall the results contained in those papers.

A dislocation creates an elastic field in the whole space R3 and this field creates a force (called
the Peach–Koehler force) that acts not only on the dislocation that created it (self-force) but also
on all dislocations in the material. We restrict ourselves here to the case of a single curve. We also
assume that this curve moves in a plane (called the slip plane).

The level set approach [24, 13, 16] is a general method for constructing moving interfaces. It
consists in representing Ωt as zero level sets of functions u(t, ·). The geometric law satisfied by
the interface ∂Ωt is thus translated into an evolution equation satisfied by u. This approach is used
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in [3] to describe the dynamics of a dislocation line. If ∂Ωt is the zero level set of a function u(t, ·),
the following non-local eikonal equation is obtained:

∂tu = (c1(x)+ κ[x, u])|Du|

where c1 is an external force and κ[x, u] is the Peach–Koehler force applied to the curve (N = 2 in
this application).

We briefly mentioned above that the Peach–Koehler force is created by the curve. Let us be a
bit more specific. This force is computed through the resolution of an elliptic equation on a half
space (corresponding to the law of linear elasticity). This equation is supplemented with Dirichlet
boundary conditions. On one hand, the boundary datum equals the indicator function of the interior
of the curve. On the other hand, loosely speaking, the force on the curve equals the normal derivative
of the solution of the elliptic equation. Hence, the integral operator which defines the Peach–Koehler
force is a Dirichet-to-Neumann operator associated with an elliptic equation. In particular, the
operator is singular.

In order to define solutions for small times, the authors of [3] consider a physically relevant
regularized problem and κ[x, u] reduces to∫

{z : u(z)>0}
c0(z) dz

with c0 ∈ W
1,1(RN ). The major technical difficulty of this paper is that c0 does not have a constant

sign, and consequently solutions corresponding to ordered initial data are not ordered; in other
words, the comparison principle does not hold true. In particular, this is one of the reasons why
solutions are constructed for small times. If c1 is assumed to be large enough, Alvarez, Cardaliaguet
and Monneau [2] managed to prove the existence and uniqueness for large times.

The difficulty related to the comparison principle is circumvented in [19] by assuming that the
negative part of c0 is concentrated at the origin. The Peach–Koehler force κ[x, u] (in the case of a
single dislocation line) is defined in [19] as∫

sign(u(x + z)− u(x))c0(z) dz =
∫
{z : u(x+z)>u(x)}

c0(z) dz−
∫
{z : u(x+z)<u(x)}

c0(z) dz (1)

where sign(r) equals 1 if r > 0 and −1 if r < 0. After an approximation procedure, the problem
can be reduced to the study of

∂tU =

[
c1(x)+

∫
(U(x + z)− U(x))c0(z) dz

]
|DU |

where c0 is smooth, non-negative and of finite mass. We used the letter U instead of u in order to
emphasize the fact that a change of unknown function is needed in order to reduce the study of the
original equation to the study of this new one.

A second important remark is that solving such non-local eikonal equations does not permit one
to construct a geometric flow properly. More precisely, if the initial front ∂Ω0 is described with
two different initial functions u0 and v0, it is not sure that the zero level sets of the corresponding
solutions u and v coincide. In other words, the invariance principle does not hold true.

Still assuming that the negative part of c0 is concentrated at the origin, a good geometric
definition of the flow is obtained in [17] by considering a formulation “à la Slepčev” of the geometric
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flow. The equation now becomes

∂tu =

[
c1(x)+

∫
{z : u(t,x+z)>u(t,x)}

c0(z) dz
]
|Du|. (2)

We point out that, with such a formulation, we cannot deal with singular potentials c0.
Notice that in [17], several fronts move, and they are interacting. The motion of a single front

is a special case. Eventually, existence results of very weak solutions in a very general setting are
obtained in [5] and uniqueness is studied in [6].

In [15], it is proved that if c0(z) is smooth and regular near the origin and behaves exactly like
|z|−N−1 at infinity, then a proper rescaling of (2) converges towards the mean curvature motion (see
Proposition 1 and Theorem 4 below).

We finally mention that Caffarelli and Souganidis [11] consider a Bence–Merriman–Osher
scheme with kernels associated with the fractional heat equation (that is, the heat equation where
the usual Laplacian is replaced with the fractional one). They prove that this scheme approximates
the geometric flow at stake in this paper.

Phasefield theory for fractional reaction-diffusion equations. Our second main motivation comes
from phasefield theory for fractional reaction-diffusion equations [21]. If one considers for instance
stochastic Ising models with Kac potentials with very slow decay at infinity (like a power law with
proper exponent), then the study of the resulting mean field equation (after proper rescaling) is
closely related to phasefield theory for fractional reaction-diffusion equations such as

∂tu
ε
+ (−∆)α/2uε +

1
ε1+α f (u

ε) = 0

where (−∆)α/2 denotes the fractional Laplacian with α ∈ (0, 1) (in the case presented here) and f
is a bistable non-linearity. In particular, it is essential in the analysis to deal with singular potentials.
Indeed, we have to be able to treat the case where

c0(z) =
1

|z|N+α

with α ∈ (0, 1). It is also convenient to use the notion of generalized flows introduced by Barles
and Souganidis [9] in order to develop a phasefield theory for such reaction-diffusion equations. See
[21] for further details and [18] for analogous problems.

1.2 A new formulation

The main contributions of this paper are the following:

• to give a proper level set formulation of dislocation dynamics for singular interaction potentials; in
particular, sufficient conditions on the singularity to get stability results and comparison principles
are exhibited;
• to shed light on the fact that the integral operator measures in a non-local way the curvature of

the interface;
• to study the geometric flow in detail: consistency of the definition, equivalent definition in terms

of generalized flows, motion of bounded sets etc.
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Because ν(dz) = c0(z) dz is singular, we cannot define κ[x, u] as in (2). Indeed, we must
compensate the singularity as is commonly done in order to get a proper integral representation
of the fractional Laplacian. We recall that the fractional Laplacian can be defined as follows:

(−∆)α/2u(x) = −cN (α)

∫
(u(x + z)− u(x))

dz
|z|N+α

where cN (α) is a given positive constant depending on N, α. Notice that if α < 1 and u is Lipschitz
continuous at x and u is globally bounded, the integral is well defined. If α > 1, the integral is not
convergent in the neighbourhood of z = 0. In this case, the fractional Laplacian is defined either by
considering the principal value of the previous singular integral or by writing

(−∆)α/2u(x) = −cN (α)

∫
(u(x + z)− u(x)−Du(x) · z1B(z))

dz
|z|N+α

where 1B(z) denotes the indicator function of the unit ball B. Notice that we have used the fact that
the singular measure

ν(dz) =
dz
|z|N+α

(3)

(with α ∈ (0, 2)) is even in order to get (at least formally)∫
(Du(x) · z1B(z))

dz
|z|N+α

= 0.

As far as the fractional mean curvature is concerned, we must compensate the singularity of
the measure ν in a geometrical way. We explain how to do it when ν(dz) = c0(z) dz with c0(z) =

|z|−N−α . Hence, we start from (1). We use the fact that c0 is even in order to get (formally)

ν{z ∈ RN : Du(x) · z > 0} = ν{z ∈ RN : Du(x) · z < 0}.

Straightforward computations yield∫
sign(u(x + z)− u(x))c0(z) dz

= ν{z : u(x + z) > u(x), Du(x) · z 6 0} − ν{z : u(x + z) < u(x), Du(x) · z > 0}.

We thus define an integral operator κ[x, u] for a general singular non-negative measure ν as follows:

κ[x, u] = ν{z : u(x + z) > u(x),Du(x) · z 6 0} − ν{z : u(x + z) < u(x),Du(x) · z > 0}. (4)

We explain below in detail (see Lemma 2) the rigorous links between the different formulations we
have considered up to now.

Notice that this definition makes sense even if ν is not even. We recall that the fractional
Laplacian is a Lévy operator. Since Lévy operators [4] are defined for singular (Lévy) measures
that are not necessarily even, it seems to be relevant to define fractional mean curvature for singular
measures that are not necessarily even.

We can say that this singular integral operator measures in a non-local way the curvature of the
“curve” {u = u(x)}. Indeed, loosely speaking, we can say that in (4) the first (resp. second) part
measures how concave (resp. convex) the set Ω = {z : u(x + z) > u(x)} is “near x”. Moreover, we
prove (see Proposition 2 below) that, when ν is given by (3), the function (1− α)κ[x, u] converges
as α ∈ (0, 1) goes to 1 towards the classical mean curvature of {u = u(x)} at x. This is why we
refer to κ[x, u] as the fractional mean curvature of the curve {u = u(x)} at point x.
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The variational case. When the singular measure ν(dz) has the form

ν(dz) = −(∇ ·G(z)) dz

for a vector field G, the previous singular integral operator can be written as follows:

κ[x, u] =
∫
{z : u(x+z)=u(x)}

(
G(z) ·

∇u(x + z)

|∇u(x + z)|

)
σ(dz)− bG

(
∇u(x)

|∇u(x)|

)
·
∇u(x)

|∇u(x)|
(5)

where σ denotes the surface measure on the “curve” {z : u(x + z) = u(x)} and where bG =∫
{z :∇u(x)·z=0}G(z) σ (dz) is a vector field on RN .

Remark that the example we gave above is of this form. Indeed,

dz
|z|N+α

= −
1
α

(
∇ ·

z

|z|N+α

)
dz.

It is quite clear from this new formula that the singular integral operator is geometric (in the sense
that it only depends on the curve and not and its parametrization u) and “fractional”.

After this work was finished, we have been told that non-local minimal surfaces are being
studied by Caffarelli, Roquejoffre and Savin [10]. Loosely speaking, they study sets whose indicator
functions minimize a fractional Sobolev norm ‖ ·‖Hα , α ∈ (0, 1). They prove in particular that local
minimizers are viscosity solutions of κ[x, u] = 0.

Comments and related work. We gave two different formulations in the case of singular potentials.
We think that formulation (4) is the proper one in order to get a complete level set formulation of the
geometric flow even if formulation (5) is somehow more intuitive since it only involves the curve
itself. In particular, the approach proposed by Slepčev [26] can be adapted (see (14) below).

The level set equation we study has the form

∂tu = µ(D̂u)[c1(x)+ κ[x, u]]|Du| in (0,+∞)× RN (6)

supplemented with the initial condition

u(0, x) = u0(x) in RN (7)

where p̂ denotes p/|p| if p 6= 0, µ denotes the mobility vector field, and c1(x) is a driving force.
Equation (6) is a non-linear non-local Hamilton–Jacobi equation. A lot of papers are dedicated

to the study of such equations. In our case, the main technical issues are the definition of viscosity
solutions, the proof of their stability and the proof of a strong uniqueness result. We use some ideas
from [26] and combine them with the ones from [7], even if the results of those two papers do not
apply to our equation.

From a physical point of view and as far as dislocation dynamics is concerned, the measure
ν(dz) = c0(z) dz should be ν(dz) = g(z/|z|)|z|−N−1 dz, but in this case, the fractional mean
curvature is not well defined (see Remark 1). It is also physically relevant to say that close to the
dislocation line, in the core of the dislocation, the potential should be regularized. On the other
hand, it is important to assume that ν(dz) ∼ g(z/|z|)|z|−N−1 dz as |z| → +∞ since this prescribes
the long range interaction between dislocation lines. Another way to understand this difficulty is
to say that in the core of the dislocation, the potential is very singular and the singularity should
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be compensated at a higher (second) order. On one hand, this can explain the loss of the inclusion
principle for such flows (if one can define them for large times). On the other hand, one can think
that in this case, the first term in such an expansion should be a mean curvature term. This can make
sense since curvature terms are commonly used to describe dislocation dynamics. It may be relevant
to add one in (6). However, we choose not to do so in order to avoid technicalities and keep clear
some important points in the proof of the stability result and the comparison principle.

In order to better understand properties of the fractional mean curvature flow, a deterministic
zero-sum repeated game is constructed in [20] in the spirit of [23, 22].

Organization of the article. In Section 2, we first give the precise assumptions we make on data.
We next give the definition(s) of the fractional mean curvature κ[x, ·]. In Section 3, we first give
the definition of viscosity solutions for (6), we then state and prove stability results. We next obtain
strong uniqueness results by establishing comparison principles. We also construct solutions of (6)
by Perron’s method. We finally give two convergence results which explain in which limit one
recovers the classical mean curvature equation. In Section 4, we verify that the zero levet set of the
solution u we have constructed in the previous section only depends on the zero level set of the
initial condition. This provides a level set formulation of the geometric flow. In the last section, we
give an alternative geometric definition of the flow in terms of generalized flows in the sense of [9].

Notation. SN−1 denotes the unit sphere of RN . The ball of radius δ centred at x is denoted by
Bδ(x). If x = 0, we simply write Bδ and if moreover δ = 1, we write B. If p ∈ RN \ {0}, p̂ denotes
p/|p|. If A is a subset of Rd with d = N,N + 1 for instance, then Ac denotes Rd \ A. For two
subsets A and B, A t B denotes A ∪ B and means that A ∩ B = ∅. The function 1A(z) equals 1 if
z ∈ A and 0 if not.

2. Preliminaries

In this section, we make precise the assumptions we need on data and we give several definitions of
the fractional mean curvature.

2.1 Assumptions

Here are the assumptions we make on the singular measure throughout the paper.

ASSUMPTIONS

(A1) The mobility function µ : SN−1
→ (0,+∞) is continuous.

(A2) The driving force c1 : RN → R is Lipschitz continuous.
(A3) The singular measure ν is a non-negative Radon measure satisfying

for all δ > 0, ν(RN \ Bδ) < +∞,
for all r > 0, e ∈ SN−1, ν{z ∈ B : r|z · e| 6 |z− (z · e)e|2} < +∞,

δν(RN \ Bδ)→ 0 as δ→ 0,
for all e ∈ SN−1, rν{z ∈ B : r|z · e| 6 |z− (z · e)e|2} → 0 as r → 0

(8)

(Bδ denotes the ball of radius δ centred at the origin and B = B1), and the last limit is uniform
with respect to unit vectors e ∈ SN−1.

(A4) The initial datum u0 : RN → R is bounded and Lipschitz continuous.
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We point out that the set {z ∈ B : r|z · e| 6 |z − (z · e)e|2} appearing in the second and the fourth
lines of (8) is the region between an upward and downward (with respect to vector e) parabola.

Even if the assumptions on the singular measure look technical at first glance, they are quite
natural in the sense that they imply several important properties:

• the measure is bounded away from the origin;
• the singularity at the origin (if any) is a weak singularity in the sense that the fractional mean

curvature of regular curves can be defined; if the reader thinks of the example given in (3), this
means that we choose α < 1;
• the parabolas {z : rzN = |z′|2} (which are the model regular curves for us) can be handled even

when they degenerate (r → 0).

EXAMPLE 1 The Standing Example for the singular measure is

νSE(dz) = g
(
z

|z|

)
dz
|z|N+α

with g : SN−1
→ (0,+∞) continuous and α ∈ (0, 1). The measure in (3) corresponds to the

isotropic case (g ≡ 1).

2.2 Fractional mean curvature

In this subsection, we make precise the definition of fractional mean curvature. Our definition
extends the ones given in [15, 17] where ν(dz) = c0(z) dz to the case of singular measures.

Let us define the fractional curvature of a smooth curve Γ = {x ∈ RN : u(x) = 0} =
∂{x ∈ RN : u(x) > 0} associated with ν. If u is C1,1 and Du(x) 6= 0, then the following quantities
are well defined (see Lemma 1 below):

κ∗[x, Γ ] = κ∗[x, u] = κ∗+[x, u]− κ−∗ [x, u],

κ∗[x, Γ ] = κ∗[x, u] = κ+∗ [x, u]− κ∗−[x, u],
(9)

where
κ+∗ [x, u] = ν{z : u(x + z) > u(x), Du(x) · z < 0},

κ−∗ [x, u] = ν{z : u(x + z) < u(x), Du(x) · z > 0},
(10)

and

κ∗+[x, u] = ν{z : u(x + z) > u(x), Du(x) · z 6 0},
κ∗−[x, u] = ν{z : u(x + z) 6 u(x), Du(x) · z > 0}.

We will see later (see Lemma 3 below) that these functions are semicontinuous, which explains our
choice of notation. In order to understand the way these quantities are related to the geometry of the
curve {u = u(x)}, it is convenient to write for instance

κ+∗ [x, u] = ν{z : 0 < −Du(x) · z < u(x + z)− u(x)−Du(x) · z}.

As shown in Figure 1, κ+∗ [x, u] measures how concave the curve is near x, and κ−∗ [x, u] how convex
it is.
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Du(t, x)

x

{u < u(x)}

Ω = {u > u(x)}

Γ = {u = u(x)}

κ−[x, u]

κ+[x, u]

FIG. 1. Fractional mean curvature of a curve

LEMMA 1 (Fractional mean curvature is finite) If u is C1,1 at a point x, i.e. there exists a constant
C = C(x) > 0 such that for all z ∈ RN ,

|u(x + z)− u(x)−Du(x) · z| 6 C|z|2

and its gradient Du(x) is not 0, then κ∗±[x, u] are finite.
If u is C1,1 at x and Du 6= 0 everywhere on {y ∈ RN : u(y) = u(x)} and ν is absolutely

continuous with respect to the Lebesgue measure, then κ∗±[x, u] are finite and

κ∗[x, u] = κ∗[x, u].

REMARK 1 One can check that this lemma is false if α = 1 in the Standing Example 1.

Proof. We only prove the first part of the lemma since the second part is clear. Since ν is bounded
on RN \ Bδ for all δ > 0, it is enough to consider

(κ∗+)
1,δ[x, u] = ν{z ∈ Bδ : u(x + z) > u(x), Du(x) · z 6 0}

= ν{z ∈ Bδ : 0 6 re · z 6 u(x + z)− u(x)+ re · z}

where r = |Du(x)| 6= 0 and e = r−1Du(x). If now zN denotes e · z and z′ = z − zNe, and if we
choose δ such that r − Cδ > 0, we can write

(κ∗+)
1,δ[x, u] 6 ν{z ∈ Bδ : 0 6 rzN 6 Cz2

N + C|z
′
|
2
}

6 ν{z ∈ Bδ : 0 6 C−1(r − Cδ)zN 6 |z′|2},

and the result now follows from (8). 2

The following lemma explains rigorously the link between (6) and (2) and the link with the
formulation used in [17] in the case where ν is a bounded measure.
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LEMMA 2 (Link with regular dislocation dynamics) Consider c0 ∈ L1(RN ) such that c0(x) =

c0(−x). Then ∫
{z : u(t,x+z)>u(t,x)}

c0(z) dz =
1
2

∫
c0 + κ∗[x, u],∫

sign∗(u(x + z)− u(x))c0(z) dz =
1
2
κ∗[x, u],∫

sign∗(u(x + z)− u(x))c0(z) dz =
1
2
κ∗[x, u],

with sign∗(r) = 1 (resp. sign∗(r) = 1) if r > 0 (resp. r > 0) and −1 if not, and with ν(dz) =
c0(z) dz.

Since the proof is elementary, we omit it.
We conclude this section by stating two results which explain the link between two special

cases of fractional mean curvature operator and the classical mean curvature operator. The first one
appears in [15, Corollary 4.2]. We state it in a special case in order to simplify the presentation.

PROPOSITION 1 (From dislocation dynamics to mean curvature flow, [15]) Assume that ν = νε

has the form

ν(dz) = νε( dz) =
1

εN+1|ln ε|
c0

(
z

ε

)
dz

with c0 even, smooth, non-negative and such that c0(z) = |z|
−N−1 for |z| > 1. Assume that u ∈

C2(RN ) and Du(x) 6= 0. Then

κ[x, u] = κε[x, u]→ C div
(
Du

|Du|

)
(x)

as ε→ 0 for some constant C > 0.

REMARK 2 In [15], general anisotropic mean curvature operators can be obtained by considering
anisotropic measures ν(dz).

This result can be compared with the following one.

PROPOSITION 2 (From fractional mean curvature to mean curvature) Assume that ν has the form

ν(dz) = να(dz) = (1− α)
dz
|z|N+α

with α ∈ (0, 1). Assume that u ∈ C2(RN ) and Du(x) 6= 0. Then

κ[x, u] = κα[x, u]→ C div
(
Du

|Du|

)
as α→ 1, α < 1, where C is some positive constant.

REMARK 3 Anisotropic mean curvature can be obtained by considering

να(dz) = (1− α)g
(
z

|z|

)
dz
|z|N+α

.
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Sketch of the proof of Proposition 2. For all η, we first choose δ such that∣∣∣∣u(x + z)− u(x)−Du(x) · z− 1
2
D2u(x)z · z

∣∣∣∣ 6 η|z|2. (11)

If e denotes −Du(x) and W(z) denotes u(x + z)− u(x)−Du(x) · z, we have

κα[x, u] = να{z ∈ RN : 0 6 e · z 6 W(z)} − να{z ∈ RN : W(z) 6 e · z 6 0}

= (1− α)
∫
{z∈Bδ : 06e·z6W(z)}

dz
|z|N+α

− (1− α)
∫
{z∈Bδ :W(z)6e·z60}

dz
|z|N+α

+O(1− α)

since |z|−N−α is a bounded measure in Bcδ .
In view of (11), it is enough to prove the result forW(z) = Bz ·z where B is a symmetricN×N

matrix. Hence we study the convergence of

Kα
= (1− α)

∫
{z∈Bδ : 06e·z6Bz·z}

dz
|z|N+α

− (1− α)
∫
{z∈Bδ :Bz·z6e·z60}

dz
|z|N+α

.

We next use the following system of coordinates: z1 = ê · z and z = (z1, z
′). We now write

Bz · z = b1z
2
1 + z1(b

′

1 · z
′)+ B ′z′ · z′

for some b1 ∈ R, b′1 ∈ RN−1 and an (N − 1) × (N − 1) symmetric matrix B ′. We thus want to
prove

Kα
→ |e|−1 trB ′

as α→ 1. We can assume without loss of generality that |e| = 1. For z ∈ Bδ , we have

e · z 6 Bz · z ⇒ z1 6 (1− Cδ)−1B ′z′ · z′,

z1 > (1− Cδ)−1B ′z′ · z′ ⇒ e · z > Bz · z.

Hence, it is enough to study the convergence of

K̃α
= (1− α)

∫
{(z1,z′)∈Bδ : 06z16B ′z′·z′}

dz
|z|N+α

− (1− α)
∫
{(z1,z′)∈Bδ :B ′z′·z′6z160}

dz
|z|N+α

.

If σ(dθ) denotes the measure on the sphere SN−2, we can write

K̃α
= (1− α)

∫
{(z1,z′) : |z′|6δ,06z16B ′z′·z′}

dz
|z|N+α

− (1− α)
∫
{(z1,z′) : |z′|6δ,B ′z′·z′6z160}

dz
|z|N+α

= (1− α)
∫
{θ∈SN−2 :B ′θ ·θ>0}

∫ δ

r=0

∫ r2B ′θ ·θ

z1=0

rN−2

(z2
1 + r

2)(N+α)/2
dz1 dr σ (dθ)

−(1− α)
∫
{θ∈SN−2 :B ′θ ·θ60}

∫ δ

r=0

∫ 0

z1=r2B ′θ ·θ

rN−2

(z2
1 + r

2)(N+α)/2
dz1 dr σ (dθ).

We next make the change of variables z1 = r
2τ to get

K̃α
=

∫
{θ∈SN−2:B ′θ ·θ>0}

(1− α)
∫ δ

r=0
r−α

∫ B ′θ ·θ

τ=0

1
(r2τ 2 + 1)(N+α)/2

dτ dr σ (dθ)− (. . . ).
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We finally remark that

∀r ∈ (0, δ),
∫ B ′θ ·θ

τ=0

dτ
(r2τ 2 + 1)(N+α)/2

→ B ′θ · θ as δ→ 0.

In particular, for δ small enough,

(1− η)B ′θ · θ 6
∫ B ′θ ·θ

τ=0

dτ
(r2τ 2 + 1)(N+α)/2

6 (1+ η)B ′θ · θ.

It is now easy to conclude by remarking that

(1− α)
∫ δ

0
r−α dr = δ1−α,

∫
SN−2

θ ⊗ θ σ (dθ) = CIN−1,

where I denotes the (N − 1)× (N − 1) identity matrix and C is a positive constant. 2

3. Viscosity solutions for (6)

3.1 Definitions

The viscosity solution theory introduced in [26] suggests that the good notion of solution for the
fractional equation (6) is the following one.

DEFINITION 1 (i) An upper semicontinuous function u : [0, T ]× RN is a viscosity subsolution
of (6) if for every smooth test function φ such that u − φ admits a global zero maximum at
(t, x), we have

∂tφ(t, x) 6 µ(D̂φ(t, x))
[
c1(x)+ κ

∗[x, φ(t, ·)]
]
|Dφ|(t, x) (12)

if Dφ(t, x) 6= 0, and ∂tφ(t, x) 6 0 if not.
(ii) A lower semicontinuous function u is a viscosity supersolution of (6) if for every smooth test

function φ such that u− φ admits a global minimum 0 at (t, x), we have

∂tφ(t, x) > µ(D̂φ(t, x))
[
c1(x)+ κ∗[x, φ(t, ·)]

]
|Dφ|(x0, t0) (13)

if Dφ(t, x) 6= 0, and ∂tφ(t, x) > 0 if not.
(iii) A locally bounded function u is a viscosity solution of (6) if u∗ (resp. u∗) is a subsolution (resp.

supersolution).

REMARK 4 Given δ > 0, the global extrema in Definition 1 can be assumed to be strict in a ball
of radius δ centred at (t, x). Such a result is classically expected and the reader can have a look, for
instance, at the proof of the stability result in [7].

If one uses the notation introduced in [26], the equation reads

∂tu+ F(x,Du, {z : u(x + z) > u(x)}) = 0 (14)

with, for x, p ∈ RN and K ⊂ RN ,

F(x, p,K) =

{
−µ(p̂)

[
c1(x)+ ν{K ∩ {p · z 6 0}} − ν{Kc

∩ {p · z > 0}}
]
|p| if p 6= 0,

0 if not,
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where Kc is the complementary set of K . With this notation, one can check that this non-linearity
does not satisfy Assumption (F5) of [26]. The idea is to check that Assumption (NLT) in [7] is
satisfied and stability results thus hold true.

Let us be more precise. We previously associated with κ[·, ·] the following non-local operators
(see the proof of Lemma 1):

(κ+∗ )
1,δ[x, φ] = ν{z ∈ Bδ : φ(x + z) > φ(x), z ·Dφ(x) < 0},

(κ+∗ )
2,δ[x, p, φ] = ν{z /∈ Bδ : φ(x + z) > φ(x), z · p < 0}.

(15)

In the same way, we can define

• the negative non-local curvature operators (κ−∗ )
i,δ , i = 1, 2,

• upper semicontinuous envelopes of the four integral operators (κ∗±)
i,δ , i = 1, 2,

• lower/upper semicontinuous total non-local curvature operators (κ∗)i,δ , (κ∗)i,δ , i = 1, 2.

By using the idea of Lemma 2, it is easy to see that{
(κ∗)2,δ[x, p, u] = ν{z /∈ Bδ : u(x + z) > u(x)} − ν{z /∈ Bδ : p · z > 0},

(κ∗)
2,δ[x, p, u] = ν{z /∈ Bδ : u(x + z) > u(x)} − ν{z /∈ Bδ : p · z > 0}.

(16)

We can now state an equivalent definition of viscosity solutions of (6).

DEFINITION 2 (Equivalent definition) (i) An upper semicontinuous function u : [0, T ] × RN is
a viscosity subsolution of (6) if for every smooth test function φ such that u − φ admits a
maximum 0 at (t, x) on Bδ(t, x), we have

∂tφ(t, x) 6 µ(D̂φ(t, x))
[
c1(x)+(κ

∗)1,δ[x, φ(t, ·)]+(κ∗)2,δ[x,Dφ(t, x), u(t, ·)]
]
|Dφ|(t, x)

(17)
if Dφ(t, x) 6= 0, and ∂tφ(t, x) 6 0 if not.

(ii) A lower semicontinuous function u is a viscosity supersolution of (6) if for every smooth test
function φ such that u− φ admits a global minimum 0 at (t, x), we have

∂tφ(t, x) > µ(D̂φ(t, x))
[
c1(x)+(κ∗)

1,δ[x, φ(t, ·)]+(κ∗)2,δ[x,Dφ(t, x), u(t, ·)]
]
|Dφ|(x0, t0)

(18)
if Dφ(t, x) 6= 0, and ∂tφ(t, x) > 0 if not.

(iii) A continuous function u is a viscosity solution of (6) if it is both a subsolution and
supersolution.

REMARK 5 Equivalent definitions of this type first appeared in [25] and since the proof is the
same, we omit it.

REMARK 6 Remark 4 applies to the equivalent definition too.

REMARK 7 Definition 2 seems to depend on δ. But since all these definitions are equivalent to
Definition 1, it does not depend on it. Hence, when proving that a function is a solution of (6), it is
enough to do it for a fixed δ > 0.
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3.2 Stability results

THEOREM 1 (Discontinuous stability) Assume (A1)–(A3).

• Let (un)n>1 be a family of subsolutions of (6) that is locally bounded, uniformly with respect
to n. Then its relaxed upper limit u∗ is a subsolution of (6).
• If moreover un(0, x) = un0(x), then for all x ∈ RN ,

u∗(0, x) 6 u∗0(x)

where u∗0 is the relaxed upper limit of un0 .
• Let (uα)α∈A be a family of subsolutions of (6) that is locally bounded, uniformly with respect to
α ∈ A. Then ū, the upper semicontinuous envelope of supα uα , is a subsolution of (6).

Even if this result follows from ideas introduced in [7] together with classical ones, we give a
detailed proof for the sake of completeness.

Proof. We only prove the first part of the theorem since it is easy to adapt it to get a proof of the
third part. The second one is very classical and can be adapted from [1] for instance.

Consider a test function ϕ such that u∗ − ϕ attains a global maximum at (t, x). We can assume
(see Remark 4) that u∗ − ϕ attains a strict maximum at (t, x) on Bδ(t, x). Consider a subsequence
p = p(n) and (tp,xp) such that

u∗(t, x) = lim
n→+∞

up(n)(tp, xp).

Classical arguments show that up−ϕ attains a maximum on Bδ(t, x) at (sp, yp) ∈ Bδ(t, x) and that

(sp, yp)→ (t, x) and up(sp, yp)→ u∗(t, x).

Since up is a subsolution of (6), we have

∂tϕ(sp, yp) 6

µ( ̂Dϕ(sp, yp))
[
c1(yp)+ (κ

∗)1,δ[yp, ϕ(sp, ·)]+ (κ∗)2,δ[yp,Dxϕ(sp, yp), u(sp, ·)]
]
|Dϕ|(sp, yp)

if Dϕ(tp, xp) 6= 0, and ∂tϕ(tp, xp) 6 0 if not. If there exists a subsequence q of p such that
Dϕ(sq , yq) = 0, then it is easy to conclude the proof. We thus now assume thatDϕ(sp, yp) 6= 0 for
p large enough. In view of the continuity of µ and c1, the following technical lemma completes the
argument. 2

LEMMA 3 Assume that Dϕ(sp, yp) 6= 0 for p large enough.

• Assume moreover that Dϕ(t, x) 6= 0. Then

(s, y) 7→ (κ∗)1,δ[y, ϕ(s, ·)] and (s, y) 7→ (κ∗)2,δ[y,Dxϕ(s, y), up(s, ·)]

are well defined for i = 1, 2 in a neighbourhood of (t, x) and

lim sup
p

(κ∗)1,δ[yp, ϕ(sp, ·)] 6 (κ∗)1,δ[x, ϕ(t, ·)],

lim sup
p

(κ∗)2,δ[yp,Dxϕ(sp, yp), u(sp, ·)] 6 (κ∗)2,δ[x,Dxϕ(t, x), ϕ(t, ·)],

as soon as up(sp, yp)→ u(t, x) as p→+∞.
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• Assume now that Dϕ(t, x) = 0. Then, for i = 1, 2,[
(κ∗)1,δ[yp, ϕ(sp, ·)]+ (κ∗)2,δ[yp,Dϕ(sp, yp), u(sp, ·)]

]
|Dϕ|(sp, yp)→ 0 as p→+∞.

As we shall see, this lemma is a consequence of the following one.

LEMMA 4 ([26]) Let fp and gp be two sequences of measurable functions on a set U and f >
lim sup∗ fp, g > lim sup∗ gp, and ap, bp two sequences of real numbers converging to 0. Then

ν({fp > ap, gp > bp} \ {f > 0, g > 0})→ 0 as n→+∞.

We mention that in [26], the measure is not singular and there is only one sequence of
measurable functions but the reader can check that the slightly more general version we give here
can be proven with exactly the same arguments. An immediate consequence of the lemma is the
inequality

lim sup
p

ν{fp > ap, gp > bp} 6 ν{f > 0, g > 0}.

Proof of Lemma 3. Let us first assume that Dϕ(t, x) 6= 0. In this case, for (s, y) close to (t, x),
Dϕ(s, y) 6= 0 and all the integral operators we consider here are well defined (see Lemma 1). Recall
next that, for i = 1, 2, (κ∗)i,δ = (κ∗+)

i,δ
− (κ−∗ )

i,δ . Hence, it is enough to prove that

lim sup
p

(κ∗+)
1,δ[yp, ϕ(sp, ·)] 6 (κ∗+)

1,δ[x, ϕ(t, ·)],

lim inf
p

(κ−∗ )
1,δ[yp, ϕ(sp, ·)] > (κ−∗ )

1,δ[x, ϕ(t, ·)],

lim sup
p

(κ∗+)
2,δ[yp,Dxϕ(sp, yp), up(sp, ·)] 6 (κ∗+)

2,δ[x,Dxϕ(t, x), u∗(t, ·)],

lim inf
p

(κ−∗ )
2,δ[yp,Dxϕ(sp, yp), up(sp, ·)] 6 (κ−∗ )

2,δ[x,Dxϕ(t, x), u∗(t, ·)].

In order to prove the first inequality above for instance, choose fp(z) = ϕ(sp, yp+ z)−ϕ(t, x),
ap = ϕ(sp, yp)− ϕ(t, x), gp(z) = −Dϕ(sp, yp) · z, bp = 0 in Lemma 4.

We now turn to the caseDϕ(t, x) = 0. We look for δ = δp that goes to 0 as p→+∞ such that
|Du(sp, yp)| 6 Cδp and

(κ∗+)
1,δp [yp, ϕ(sp, ·)]|Dϕ(sp, yp)| → 0 and (κ−∗ )

1,δp [yp, ϕ(sp, ·)]|Dϕ(sp, yp)| → 0

as p→+∞. This is enough to conclude the proof since condition (8) implies that

(κ∗+)
2,δp [yp,Dϕ(sp, yp), u(sp, ·)]|Dϕ(sp, yp)| → 0,

(κ−∗ )
2,δp [yp,Dϕ(sp, yp), u(sp, ·)]|Dϕ(sp, yp)| → 0.

We only prove that the first limit equals zero since the argument for the second one is similar. If rp
denotes |Dϕ(sp, yp)| and ep denotes −r−1

p Dϕ(sp, yp), and zN = eP · z and z′ = z− zNep, then

(κ∗+)
1,δ[yp, ϕ(sp, ·)]|Dϕ(sp, yp)|

= rpν{z ∈ Bδp : 0 6 rpep · z 6 ϕ(sp, yp + z)− ϕ(sp, yp)+ rpep · z}

6 rpν{z ∈ Bδp : 0 6 rpzN 6 C|z′|2 + Cz2
N }

6 rpν{z ∈ Bδp : 0 6 rpzN 6 C|z′|2 + CδpzN }
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where C is a bound for the second derivatives of ϕ around (t, x). Now if we choose δp = rp/(2C),
we get

(κ∗+)
1,δ[yp, ϕ(sp, ·)]|Dϕ(sp, yp)| 6 rpν{z ∈ Bδp : 0 6 (rp/2C)zN 6 |z′|2}

6 rpν{z ∈ B : 0 6 (rp/2C)zN 6 |z′|2}

and the last limit in (8) permits us now to conclude. 2

3.3 Existence and uniqueness results

Let us first state a strong uniqueness result.

THEOREM 2 (Comparison principle) Assume (A1)–(A4). Assume moreover

(A3′) For all e ∈ SN−1 and r ∈ (0, 1)

rν{z ∈ Bδ : r|z · e| 6 |z− (z · e)e|2} → 0 as δ→ 0 (19)

uniformly in e and r ∈ (0, 1) and

ν(dz) = J (z) dz with J ∈ W 1,1(RN \ Bδ) for all δ > 0. (20)

Consider a bounded and Lipschitz continuous function u0. Let u (resp. v) be a bounded subsolution
(resp. bounded supersolution) of (6). If u(0, x) 6 u0(x) 6 v(0, x), then u 6 v on (0,+∞)× RN .

The proof is quite classical. The main difficulty is to deal with the singularity of the measure.

Proof of Theorem 2. We classically consider M = supt,x{u(t, x) − v(t, x)} and argue towards a
contradiction by assuming M > 0. We next consider the following approximation of M:

M̃ε,α = sup
t,s>0, x,y∈RN

{
u(t, x)− v(s, y)−

(t − s)2

2γ
− eKt

|x − y|2

2ε
− ηt − α|x|2

}
.

Since u and v are bounded, this supremum is attained at a point (t̃ , s̃, x̃, ỹ). We first observe that
M̃ε,α > M/2 > 0 for η and α small enough. Since u and v are bounded, this implies in particular

ηt̃ + eKt
|x̃ − ỹ|2

2ε
+ α|x̃|2 6 C0 (21)

where C0 = ‖u‖∞ + ‖v‖∞.
Classical results about penalization imply that (t̃ , s̃, x̃, ỹ) → (t̄ , t̄ , x̄, ȳ) as γ → 0 and

(t̄ , t̄ , x̄, ȳ) realizes the following supremum:

Mε,α = sup
t>0, x,y∈R

{
u(t, x)− v(t, y)− eKt

|x − y|2

2ε
− ηt − α|x|2

}
.

It is also classical [14] to get, for ε, η fixed,

α|x̄|2 → 0 as α→ 0. (22)
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We next claim that this supremum cannot be achieved at t = 0 if ε, α, η are small enough. To
see this, remark first that Mε,α > M/2 > 0 for η and α small enough, and if t̄ = 0, use the fact that
u0 is Lipschitz continuous to get

0 <
M

2
6 sup
x,y∈RN

{
u0(x)− u0(y)−

|x − y|2

2ε

}
6 sup

r>0

{
C0r −

r2

2ε

}
=

1
2
C2

0ε,

which is obviously false if ε is small enough. We conclude that, if the four parameters are small
enough, then t̃ > 0 and s̃ > 0.

Hence, we can write two viscosity inequalities. In order to clarify computations, we introduce
the function M(p) defined as follows:

M(p) =

{
µ(p̂)|p| if p 6= 0,
0 if p = 0.

It is easy to see that M is uniformly continuous and it trivially satisfies

|M(p)| 6 ‖µ‖∞|p|.

In the following, ωM denotes the modulus of continuity of M .
We now write viscosity inequalities: for all δ > 0,

η +
t̃ − s̃

γ
+KeKt̃

|x̃ − ỹ|2

2ε
6
(
c1(x̃)+ (κ

∗)1,δ[x̃, φu(t̃ , ·)]+ (κ∗)2,δ[x̃, p̃ + 2αx̃, u(t̃, ·)]
)

×M(p̃ + 2αx̃),
t̃ − s̃

γ
>
(
c1(ỹ)+ (κ∗)

1,δ[ỹ, φv(s̃, ·)]+ (κ∗)2,δ[ỹ, p̃, v(s̃, ·)]
)
M(p̃),

where p̃ = eKt̃ (x̃ − ỹ)/ε and

φu(t, x) = v(s̃, ỹ)+
(t − s̃)2

2γ
+ eKt

|x − ỹ|2

2ε
+ ηt + α|x|2,

φv(s, y) = u(t̃, x̃)−
(s − t̃ )2

2γ
− eKt̃

|y − x̃|2

2ε
− ηt̃ − α|x̃|2.

Subtracting these inequalities yields

η +KeKt̃
|x̃ − ỹ|2

2ε
6 ‖µ‖∞‖Dc1‖∞e

Kt̃ |x̃ − ỹ|
2

ε
+ ‖c1‖∞ωM(2

√
C0α)+ Tnl (23)

(we used (21)) where

Tnl =
(
(κ∗)1,δ[x̃, φu(t̃ , ·)]+ (κ∗)2,δ[x̃, p̃ + 2αx̃, u(t̃, ·)]

)
M(p̃ + 2αx̃)

−
(
(κ∗)

1,δ[ỹ, φv(s̃, ·)]+ (κ∗)2,δ[ỹ, p̃, v(s̃, ·)]
)
M(p̃).

Our task is now to find δ = δ(α, ε) so that the right hand side of this inequality is small when the
four parameters are small. We distinguish two cases.
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Assume first that there exist sequences αn→ 0 and εn→ 0 such that

p̃ = p̃n→ 0.

In this case, we simply choose δ = 1, K = 2‖µ‖∞‖Dc1‖∞ and we let n→ +∞ in (23) to get the
desired contradiction: η 6 0.

Assume now that for α and ε small enough, we have a constant Cε independent of α such that

|p̃| > Cε > 0. (24)

In this case, the following technical lemma holds true.

LEMMA 5 By using (19), we have

Tnl 6
1
ε
oδ(1)+

1
δ
ωM(2

√
C0α)+ oα(1)[ε]+ CδeKt̃

|x̃ − ỹ|2

ε

where C0 appears in (21) and Cδ only depends on J , ‖µ‖∞ and δ (we emphasize that the third term
goes to 0 as α→ 0 for fixed ε).

The proof of this lemma is postponed. We thus get (recall that p̃ = eKt̃ (x̃ − ỹ)/ε)

η+KeKt̃
|x̃ − ỹ|2

2ε
6 CeKt̃

|x̃ − ỹ|2

ε
+C

(
1+

1
δ

)
ωM(2

√
C0α)+

1
ε
oδ(1)+oα(1)[ε]+CδeKt̃

|x̃ − ỹ|2

ε

where C only depends on c1, ν and ‖u‖∞ + ‖v‖∞, and Cδ is given by the lemma. By choosing
K = 2(C + Cδ), we get

η 6 C

(
1+

1
δ

)
ωM(2

√
C0α)+

1
ε
oδ(1)+ oα(1)[ε].

By letting successively α and δ go to 0, we thus get a contradiction. This completes the proof of the
comparison principle. 2

Proof of Lemma 5. We first write

Tnl 6 ‖µ‖∞|(κ
∗)1,δ|[x̃, φu(t̃ , ·)]|p̃ + 2αx̃| + ‖µ‖∞|(κ∗)1,δ|[ỹ, φv(s̃, ·)]|p̃|

+ |(κ∗)2,δ|[x̃, u(t̃ , ·)]ωM(|2αx̃|)
+
(
(κ∗)2,δ[x̃, p̃ + 2αx̃, u(t̃, ·)]− (κ∗)2,δ[ỹ, p̃, v(s̃, ·)]

)
M(p̃).

We now estimate the right hand side of the previous inequality. We start with the first two integral
terms. First

|(κ∗)1,δ|[x̃, φu(t̃ , ·)] 6 (κ∗+)
1,δ[x̃, φu(t̃ , ·)]+ (κ−∗ )

1,δ[x̃, φu(t̃ , ·)]

6 ν{z ∈ Bδ : 0 6 −(p̃ + 2αx̃) · z 6 (α + eKt̃/(2ε))|z|2}

+ ν{z ∈ Bδ : 0 > −(p̃ + 2αx̃) · z > (α + eKt̃/(2ε))|z|2}
6 ν{z ∈ Bδ : |εp̃ + 2εαx̃| |e · z| 6 C(η)|z|2}



170 C. IMBERT

where we use (21) to ensure, for α, ε small enough,

eKt̃

2
+ αε 6

1
2
eKC0/η + 1 =: C(η).

If now rα,ε denotes |εp̃ + 2εαx̃| and we choose δ 6 rα,ε/(2C(η)), we use (19) to write

|(κ∗)1,δ|[x̃, φu(t̃ , ·)]|p̃ + 2αx̃| =
1
ε
rα,εν{z ∈ Bδ : rα,ε|e · z| 6 C(η)|z|2}

6
1
ε
rα,εν

{
z ∈ Bδ :

1
2
rα,ε|e · z| 6 C(η)|z− (e · z)e|2

}
6

2C(η)
ε

{
sup

e∈SN−1, r∈(0,1)
rν{z ∈ Bδ : r|e · z| 6 |z− (e · z)e|2}

}
=

1
ε
oδ(1).

Since αx̃ → 0 (see (21)), we choose for instance

δ 6
ε|p̃|

4C(η)
.

Arguing similarly, we get

|(κ∗)
1,δ
|[ỹ, φv(s̃, ·)]|p̃| 6

1
ε
oδ(1).

As far as the third integral term is concerned, we simply write

|(κ∗)2,δ|[x̃, u(t̃ , ·)]ωM(|2αx̃|) 6 ν(Bcδ )ωM(|2αx̃|) 6
1
δ
ωM(2

√
C0α)

(we used (21)). We now turn to the last two integral terms. In view of (16), we can write

T̃nl = (κ
∗)2,δ[x̃, p̃ + 2αx̃, u(t̃, ·)]− (κ∗)2,δ[ỹ, p̃, v(s̃, ·)]

= ν{z /∈ Bδ : u(t̃, x̃ + z) > u(t̃, x̃)} − ν{z /∈ Bδ : v(s̃, ỹ + z) > v(s̃, ỹ)}

−ν{z /∈ Bδ : (p̃ + 2αx̃) · z > 0} + ν{z /∈ Bδ : p̃ · z > 0}.

Now, we use (20) to get

T̃nl =

∫
Bcδ

J (z− x̃)1{u(t̃,·)>u(t̃,x̃)}(z) dz−
∫
Bcδ

J (z− ỹ)1{v(s̃,·)>u(s̃,ỹ)}(z) dz+ oα(1).

Remark next that the definition of (t̃ , s̃, x̃, ỹ) implies the following inequality: for all z ∈ RN ,

u(t̃, z)− u(t̃, x̃) 6 v(s̃, z)− v(s̃, ỹ)+ α(|z|2 − |x̃|2)− eKt̃
|x̃ − ỹ|2

2ε
.

This implies that for |z| 6 Rα,ε, we have

1{u(t̃,·)>u(t̃,x̃)}(z) 6 1{v(s̃,·)>u(s̃,ỹ)}(z)
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where

R2
α,ε =

1
α

(
α|x̃|2 + eKt̃

|x̃ − ỹ|2

2ε

)
=

1
α

(
oα(1)+

εC2
ε

4C(η)

)
>

εC2
ε

8C(η)α

where Cε appears in (24). We have used (22) here. Hence, we have

T̃nl 6
∫
|z|>Rα,ε

J (z− x̃) dz+
∫
z∈Bcδ

|J (z− x̃)− J (z− ỹ)| dz

6
∫
|z̃|>
√
εCε/(2

√
8C(η)α)

J (z̃) dz̃+ Cδ|x̃ − ỹ| = oα(1)[ε]+ Cδ|x̃ − ỹ|

where we have used (22) once again. It is now easy to conclude the proof. 2

We now turn to the existence result.

THEOREM 3 (Existence) Assume (A1)–(A4) and (A3′). Then there exists a unique bounded
uniformly continuous viscosity solution u of (6), (7).

Proof. We first construct a solution for regular initial data. Precisely, we first assume that u0 ∈

C2
b(R

N ) (the function and its first and second derivatives are bounded).
Because we can apply Perron’s method, it is enough to construct a subsolution and a

supersolution u± to (6) such that (u+)∗(0, x) = (u−)∗(0, x) = u0(x). We assert that u±(t, x) =
u0(x)±Ct are respectively a supersolution and a subsolution of (6) for C large enough. To see this,
we first prove that there exists C0 = C0(‖D

2u0‖∞) such that for all x ∈ RN with Du0(x) 6= 0, we
have

(|κ∗|[x, u0]+ |κ∗|[x, u0])|Du0(x)| 6 C0. (25)

In order to prove this estimate, we simply write, for x such that Du0(x) 6= 0,

((κ∗+)
1,δ[x, u0]+ (κ∗−)

1,δ[x, u0])|Du0(x)| 6 2ν
{
z ∈ Bδ : r|e · z| 6

1
2
‖D2u0‖∞|z|

2
}
r

6 2ν{z ∈ Bδ : r|e · z| 6 C|z− (e · z)e|2}r 6 Cν

where r = |Du0(x)|, C = max(‖Du0‖∞, 1), e = Du0(x)/r , δ = r/(2C) and Cν is given by (8).
On the other hand,

((κ∗+)
2,δ[x, u0]+ (κ∗−)

2,δ[x, u0])|Du0(x)| 6
Cν

δ
r = 2CνC.

We thus get estimate (25).
If now u0 is not regular, we approximate it with un0 ∈ C

2
b(R

N ) and prove that the corresponding
sequence of solutions un converges locally uniformly towards a solution u. Since this is very
classical, we omit the details (see for instance [1]). 2

We now explain in which limit one recovers the mean curvature flow. To do so, we state two
convergence results. Their proofs rely on Propositions 1 and 2. The first one (Theorem 4) appears
in [15] and the second one can be proved by using Proposition 2.

THEOREM 4 ([15]) Assume that µ ≡ 1, c1 ≡ 0, u0 is Lipschitz continuous and bounded and

ν(dz) = νε(dz) =
1

εN+1|ln ε|
c0

(
z

ε

)
dz
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with c0 even, smooth, non-negative and such that c0(z) = |z|
−N−1 for |z| > 1. Then the viscosity

solution uε of (6), (7) converges locally uniformly as ε→ 0 towards the viscosity solution u of

∂tu = C|Du| div
(
Du

|Du|

)
(C is a positive constant) supplemented with the initial condition (7).

THEOREM 5 Assume that µ ≡ 1, c1 ≡ 0, u0 is Lipschitz continuous and bounded and

ν(dz) = να(dz) = (1− α)
dz
|z|N+α

with α ∈ (0, 1). Then the viscosity solution uα of (6), (7) converges locally uniformly as α → 1
towards the viscosity solution u of

∂tu = C|Du| div
(
Du

|Du|

)
(C is a positive constant) supplemented with the initial condition (7).

4. The level set approach

In the previous section, we constructed a unique solution of (6) in the case of singular measures
satisfying (A3) and (A3′) and for bounded Lipschitz continuous initial data (see (A4)). In the present
section, we explain how to define a geometric flow by using these solutions of (6). Precisely, we first
prove (Theorem 6) that if u and v are solutions of (6) associated with two different initial data u0 and
v0 that have the same zero level sets, then so have u and v. Hence, the geometric flow is obtained by
considering the zero level sets of the solution u of (6) for any (Lipschitz continuous) initial datum.
We also describe (Theorem 7) the maximal and minimal discontinuous solutions of (6) associated
with an important class of discontinuous initial data.

THEOREM 6 (Consistency of the definition) Assume (A1)–(A3) and (A3′). Let u0 and v0 be two
bounded Lipschitz continuous functions and consider the viscosity solutions u, v associated with
these initial conditions. If

{x ∈ RN : u0(x) > 0} = {x ∈ RN : v0(x) > 0},
{x ∈ RN : u0(x) < 0} = {x ∈ RN : v0(x) < 0},

then, for all times t > 0,

{x ∈ RN : u(t, x) > 0} = {x ∈ RN : v(t, x) > 0},
{x ∈ RN : u(t, x) < 0} = {x ∈ RN : v(t, x) < 0}.

In view of the techniques used to prove the consistency of the definition of local geometric fronts
(see for instance [8]), it is clear that this result is a straightforward consequence of the following
proposition.

PROPOSITION 3 (Equation (6) is geometric) Let u : [0,+∞)×RN be a bounded subsolution of (6)
and θ : R→ R an upper semicontinuous non-decreasing function. Then θ(u) is also a subsolution
of (6).
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Such a proposition is classical by now. It is proved by regularizing θ (in a proper way) with a
strictly increasing function θn, by remarking that κ∗[x, θn(u)] = κ∗[x, u] in this case, and by using
discontinuous stability. Details are left to the reader.

Thanks to Theorem 6, we can define a geometric flow in the following way. Given (Γ0,D
+

0 ,D
−

0 )

such that Γ0 is closed, D±0 are open and RN = Γ0 tD
+

0 tD
−

0 , we can write

D+0 = {x ∈ RN : u0(x) > 0}, D−0 = {x ∈ RN : u0(x) < 0}, Γ0 = {x ∈ RN : u0(x) = 0}

for some bounded Lipschitz continuous function u0 (for instance the signed distance function). If
u is the solution of (6) with the initial condition u(0, x) = u0(x) for x ∈ RN , then Theorem 6
precisely says that the sets

D+t = {x ∈ RN : u(t, x) > 0}, D−t = {x ∈ RN : u(t, x) < 0}, Γt = {x ∈ RN : u(t, x) = 0}

do not depend on the choice of u0.
The next theorem states that there exists a maximal subsolution and a minimal supersolution of

(6) associated with the apropriate discontinuous initial data.

THEOREM 7 (Maximal subsolution and minimal supersolution) Assume (A1)–(A3) and (A3′).
Then the function 1D+t ∪Γt − 1D−t (resp. 1D+t − 1D−t ∪Γt ) is the maximal subsolution (resp. minimal
supersolution) of (6) subject to the initial datum 1D+0 ∪Γ0

− 1D−0 (resp. 1D+0 − 1D−0 ∪Γ0
).

This result is a consequence of Proposition 3 together with discontinuous stability and the
comparison principle. See [8, p. 445] for details.

We conclude this section by showing that a bounded front propagates with finite speed.

PROPOSITION 4 (Evolution of bounded sets) Assume (A1)–(A3) and (A3′). Let Ω0 be a bounded
open set of RN , i.e. there exists R > 0 such that Ω0 ⊂ BR . Then the level set evolution
(Γt ,D

+
t ,D

−
t ) of (∂Ω0,Ω0, (Ω̄0)

c) satisfies D+t ∪ Γt ⊂ B̄R+Ct with

C = ‖c1‖∞ − inf
e∈SN−1

ν{z ∈ RN : 0 6 e · z 6 |z|2}

as long as R + Ct > 0.

REMARK 8 Another consequence of this proposition is that, if there is no driving force (c1 = 0),
then the set shrinks till it disappears.

Proof. The proof consists in constructing a supersolution of (6), (7). It is easy to check that C is
chosen such that

u(t, x) = Ct +
√
ε2 + R2 −

√
ε2 + |x|2

is a supersolution of (6). Since B̄R = {x ∈ RN : u(0, x) > 0}, we conclude that D+t ∪ Γt ⊂

{x ∈ RN : u(t, x) > 0} = B̄Rε(t) with Rε(t) =
√
(Ct +

√
ε2 + R2)2 − ε2. Hence, D+t ∪ Γt ⊂⋂

ε>0 B̄Rε(t) = B̄R+Ct . 2

5. Generalized flows

In this section, we follow [9] and give an equivalent definition of the flow by, roughly speaking,
replacing smooth test functions with smooth test fronts.
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In order to give this equivalent definition, we use the geometrical non-linearities we partially
introduced in Section 2. For all x, p ∈ RN and any closed set F ⊂ RN and open set O ⊂ RN , set

F∗(x, p,F) =
{
−µ(p̂)

[
c1(x)+ ν(F ∩ {p · z 6 0})− ν(Fc ∩ {p · z > 0}

]
|p| if p 6= 0,

0 if not,

F ∗(x, p,O) =
{
−µ(p̂)

[
c1(x)+ ν(O ∩ {p · z < 0})− ν(Oc ∩ {p · z > 0}

]
|p| if p 6= 0,

0 if not.

We can now give the definition of a generalized flow.

DEFINITION 3 The family (Ot )t∈(0,T ) of open subsets of RN (resp. (Ft )t∈(0,T ) of closed subsets
of RN ) is a generalized superflow (resp. subflow) of (6) if for all (t0, x0) ∈ (0,+∞)× RN , r > 0,
h > 0, and for any smooth function φ : (0;+∞)× RN → R such that

1. ∂tφ + F ∗(x,Dφ, {z : φ(t, x + z) > φ(t, x)}) 6 −δφ in [t0, t0 + h]× B̄(x0, r)

(resp. ∂tφ + F∗(x,Dφ, {z : φ(t, x + z) > φ(t, x)}) > −δφ in [t0, t0 + h]× B̄(x0, r))
2. Dφ 6= 0 in {(s, y) ∈ [t0, t0 + h]× B̄(x0, r) : φ(s, y) = 0},
3. {y ∈ RN : φ(t0, y) > 0} ⊂ O1

t0

(resp. {y ∈ RN : φ(t0, y) 6 0} ⊂ RN \ Ft0 ),
4. {y /∈ B̄(x0, r) : φ(s, y) > 0} ⊂ O1

s for all s ∈ [t0, t0 + h]
(resp. {y /∈ B̄(x0, r) : φ(s, y) 6 0} ⊂ RN \ Fs for all s ∈ [t0, t0 + h]),

we have {y ∈ B̄(x0, r) : φ(t0 + h, y) > 0} ⊂ O1
t0+h

(resp. {y ∈ B̄(x0, r) : φ(t0 + h, y) < 0} ⊂
RN \ Ft0+h).

Loosely speaking, for generalized superflows, condition 1 says that in a prescribed
neighbourhood V of (t0, x0), the normal velocity of the test front {φ > 0} is strictly smaller than
the one of the front O; condition 2 asserts that the front {φ = 0} is smooth in V; conditions 3 and 4
assert that the test front is inside the frontO outside V . The conclusion is that the test front is inside
the neighbourhood O at time t + h.

REMARK 9 As far as local geometric fronts are concerned, conditions 3 and 4 require that the test
front is inside O on the parabolic boundary of the neighbourhood. Here, because the front is not
local, the test front has to be inside O everywhere outside the neighbourhood.

The next theorem asserts that Definition 3 of the flow coincides with the level set formulation of
Section 4.

THEOREM 8 (Generalized flows and level set approach) Assume (A1)–(A3) and (A3′). Let
(Ot )t∈(0,T ) be a family of open subsets of RN (resp. (Ft )t∈(0,T ) of closed subsets of RN ) such
that

⋃
t∈(0,T ){t} × Ot is open in [0, T ] × RN (resp.

⋃
t∈(0,T ){t} × Ft is closed in [0, T ] × RN ).

Then (Ot )t∈(0,T ) (resp. (Ft )t∈(0,T )) is a generalized superflow (resp. subflow) of (6) if and only if
χ(t, x) = 1Ot (x) − 1RN\Ot (x) (resp. χ(t, x) = 1Ft (x) − 1RN\Ft (x)) is a viscosity supersolution
(resp. subsolution) of (6), (7).

Since the proof of [9] can be readily adapted, we omit it. We give a straightforward corollary of
Theorems 7 and 8 that is used in [21].

COROLLARY 1 (Abstract method) Assume (A1)–(A3) and (A3′). Assume that (Ot )t and (Ft )t are
respectively a generalized superflow and generalized subflow and suppose there exist two open sets
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D+0 ,D
−

0 such that RN = ∂O0 t D
+

0 t D
−

0 and D+0 ⊂ O0 and D−0 ⊂ F
c
0 . Then if (Γt ,D+t ,D

−
t )

denotes the level set evolution of (∂O0,D
+

0 ,D
−

0 ), we have, for all times t > 0,

D+t ⊂ Ot ⊂ D+t ∪ Γt , D−t ⊂ Fct ⊂ D−t ⊂ Γt .

REMARK 10 One can check that under the assumptions of the previous corollary, we have in fact
D+0 = O0 and D−0 = F

c
0 .
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