Interfaces and Free Boundaries 11 (2009), 119[–137](#page-18-0)

A moving boundary problem for periodic Stokesian Hele–Shaw flows

JOACHIM ESCHER AND BOGDAN-VASILE MATIOC

Institute of Applied Mathematics, Leibniz University of Hannover, Welfengarten 1, D-30167 Hannover, Germany E-mail: escher@ifam.uni-hannover.de, matioc@ifam.uni-hannover.de

[Received 10 October 2007 and in revised form 17 July 2008]

This paper is concerned with the motion of an incompressible, viscous fluid in a Hele–Shaw cell. The free surface is moving under the influence of gravity and the fluid is modelled using a modified Darcy law for Stokesian fluids.

We combine results from the theory of quasilinear elliptic equations, analytic semigroups and Fourier multipliers to prove existence of a unique classical solution to the corresponding moving boundary problem.

2000 Mathematics Subject Classification: 35J65, 35K55, 35R95, 42A45.

Keywords: Quasilinear elliptic equation, nonlinear parabolic equation, non-Newtonian fluid, Hele– Shaw flow.

1. Introduction

Starting from a non-Newtonian Darcy law as presented in [\[9\]](#page-18-1), we derive a mathematical model for the flow of a Stokesian fluid^{[1](#page-0-0)} located between the plates of a vertical Hele–Shaw cell. The pressure on the bottom of the cell is assumed to be constant. The corresponding mathematical setting is a fully nonlinear coupled system consisting of a quasilinear elliptic Dirichlet problem for the *velocity potential* and an evolution equation for the free boundary, i.e. the *interface* separating the fluid from the air. The contact angle problem is avoided by considering periodic flows only. The Newtonian case, studied in [\[3\]](#page-18-2)–[\[7\]](#page-18-3) in various contexts, is also included in this model. Our setting is general enough to embrace shear thinning fluids, like Oldroyd-B or power law fluids, as well as shear thickening fluids.

We shall attack this problem by transforming it into a problem on a fixed manifold $\mathbb{S}^1 \times (0, 1)$. This will be done in Section 1. In Section 2 we identify the new setting with an abstract Cauchy problem on the unit circle \mathbb{S}^1 :

$$
\partial_t f + \Phi(f) = 0, \quad f(0) = f_0.
$$

Our analysis shows that Φ is a pseudodifferential operator of first order with a symbol depending nonlinearly on the function f modelling the free boundary. Moreover, the operator $f \mapsto \Phi(f)$ is fully nonlinear, in the sense that its nonlinear part is of first order as well. Nevertheless, we prove that given any positive constant c, the Fréchet derivative $-\partial \Phi(c)$ generates a strongly continuous

¹ In a *Stokesian* fluid the stress tensor is a continuous function of the deformation. A *Newtonian* fluid is a linear Stokesian fluid. In particular, the viscosity μ is constant in this case.

analytic semigroup in $\mathcal{L}(h^{1+\alpha}(\mathbb{S}^1))$ with dense domain $h^{2+\alpha}(\mathbb{S}^1)$. Working with small Hölder spaces $h^{m+\alpha}(\mathbb{S}^1), m \in \mathbb{N}$ and $\alpha \in (0, 1)$, is a significant advantage, because $h^{m_1+\alpha_1}(\mathbb{S}^1)$ is dense and compactly embedded in $h^{m_2+\alpha_2}(\mathbb{S}^1)$ provided $m_1+\alpha_1 > m_2+\alpha_2$. It is known that this property does not hold for the usual Hölder spaces.

The main result, a well-posedness result for the full flow, is proved in Section 3 and is based on a multiplier theorem for periodic Besov spaces. This theorem generalizes a result of Arendt and Bu presented in [\[2\]](#page-18-4). As in [\[2\]](#page-18-4), our multiplier theorem is also based on Marcinkiewicz type conditions.

1.1 *The mathematical model*

Given a positive function $f \in C^1(\mathbb{R})$, which is bounded away from 0, we define the set

$$
\widetilde{\Omega}_f := \{ (x, y) \in \mathbb{R}^2 \, : \, 0 < y < f(x) \},
$$

and denote the components of its boundary by

The domain $\widetilde{\Omega}_f$ consists of a Stokesian fluid at pressure p and we denote by v the velocity field inside the fluid's body. The motion of the fluid is governed by the following modified version of Darcy's law:

$$
v = -\frac{Du}{\overline{\mu}(|Du|^2)}
$$

 $(cf. [9])$ $(cf. [9])$ $(cf. [9])$, where

$$
u(x, y) = \frac{p(x, y)}{g \cdot \rho} + y, \quad (x, y) \in \widetilde{\Omega}_f,
$$

is the so-called *velocity potential* or *piezometric heat*, g is the gravity acceleration, ρ is the density of the fluid and $Du = (\partial_1 u, \partial_2 u)$ is the gradient of u. The effective viscosity $\overline{\mu}$ is defined (see [\[9\]](#page-18-1)) by

$$
\frac{1}{\overline{\mu}(r)} := c_{\mu} \int_{-1}^{1} \frac{s^2}{\widetilde{\mu}(rs^2)} ds
$$

for all $r \ge 0$, where c_{μ} is a positive constant. Denoting by $\mu \in C^{\infty}([0,\infty), (0,\infty))$ the viscosity of the fluid, we have assumed that the mapping $r \mapsto h(r) := r\mu^2(r)$ is invertible. This is true for example if $\mu(r) + 2r\mu'(r) > 0$ for all $r \ge 0$. The mapping $\tilde{\mu}$ is defined by $\tilde{\mu} := \mu \circ h^{-1}$.
We assume the fluid is incompressible $(\text{div } \mu = 0)$, thus we get

We assume the fluid is incompressible (div $v = 0$), thus we get

$$
\operatorname{div}\left(\frac{Du}{\overline{\mu}(|Du|^2)}\right) = 0 \quad \text{in } \widetilde{\Omega}_f. \tag{1}
$$

On the boundary component \widetilde{F}_0 the velocity potential is known, namely

$$
u(x, 0) = \frac{p(x, 0)}{g \cdot \rho} =: b(x), \quad x \in \mathbb{R}.
$$
 (2)

Moreover, we assume that the fluid is surrounded by air at atmospheric pressure, normalized to be zero. Then $p(x, f(x)) = 0$ for $x \in \mathbb{R}$, and so

$$
u(x, f(x)) = f(x), \quad x \in \mathbb{R}.\tag{3}
$$

Set $F(t, z) = y - f(t, x)$ for $z = (x, y) \in \mathbb{R}$ and $t \ge 0$. Then the interface \widetilde{F}_f can be described by the conservative property that F is identically equal to zero on Γ_f . Differentiating with respect to the time variable \vec{t} we get

$$
\frac{\mathrm{d}}{\mathrm{d}t}F(t,z)=-\partial_t f(t,x)+(-f_x,1)\cdot z'.
$$

Replacing z' by $-Du/\overline{\mu}(|Du|^2)$, we obtain

$$
\partial_t f + \frac{\sqrt{1 + \partial_x f^2}}{\overline{\mu}(|Du|^2)} \partial_v u = 0 \quad \text{on } \widetilde{\varGamma}_f,
$$
 (4)

with *ν* denoting the outer normal of \widetilde{F}_f . Finally, we set

$$
f(0, \cdot) = f_0,\tag{5}
$$

where f_0 corresponds to the initial surface. We shall make the following periodicity requirement on f and u :

$$
f(t, x + 2\pi) = f(t, x), \quad \forall x \in \mathbb{R}, t \ge 0,
$$

$$
u(x + 2\pi, y) = u(x, y), \quad \forall (x, y) \in \widetilde{\Omega}_{f(t)}, t \ge 0.
$$

Thus, instead of (1) – (5) we study

$$
\operatorname{div}\left(\frac{Du}{\overline{\mu}(|Du|^2)}\right) = 0 \quad \text{in } \Omega_{f(t)}, t \ge 0,
$$

\n
$$
u = b \quad \text{on } \Gamma_0, \quad t \ge 0,
$$

\n
$$
u = f \quad \text{on } \Gamma_{f(t)}, t \ge 0,
$$

\n
$$
\partial_t f(t, \cdot) + \frac{\sqrt{1 + \partial_x f^2(t, \cdot)}}{\overline{\mu}(|Du(\cdot, f(t, \cdot))]^2} \partial_v u(\cdot, f(t, \cdot)) = 0 \quad \text{on } \mathbb{S}^1, \quad t > 0,
$$

\n
$$
f(0, \cdot) = f_0 \quad \text{on } \mathbb{S}^1,
$$

where

$$
\Omega_{f(t)} := \{(x, y) \in \mathbb{S}^1 \times \mathbb{R} : 0 < y < f(t, x)\},
$$

$$
\Gamma_{f(t)} := \{(x, f(t, x)) : x \in \mathbb{S}^1\}, \quad \Gamma_0 = \mathbb{S}^1 \times \{0\}.
$$

for $t \geq 0$, and \mathbb{S}^1 is the unit circle. For the sake of simplicity, we identify periodic functions on R with functions on \mathbb{S}^1 , and periodic functions in the x variable on $\widetilde{\Omega}_f$ with functions on Ω_f , for positive functions f on \mathbb{S}^1 .

Given $m \in \mathbb{N}$ and $\alpha \in (0, 1)$, we define the so-called little Hölder space $h^{m+\alpha}(\mathbb{S}^1)$ as the closure of $C^{\infty}(\mathbb{S}^1)$ in $C^{m+\alpha}(\mathbb{S}^1)$. If f is a positive function in $C(\mathbb{S}^1)$, then we denote by $buc^{m+\alpha}(\Omega_f)$ the closure of $BUC^{\infty}(\Omega_f)$ in the Hölder space $BUC^{m+\alpha}(\Omega_f)$. The notation $BUC^{m+\alpha}(\Omega_f)$ stands for the space of all maps from Ω_f to R which have bounded and uniformly continuous derivatives up to order m, and in addition uniformly α -Hölder continuous derivatives of order m.

Throughout this paper we fix $\alpha \in (0, 1)$ and we define

$$
\mathcal{U} := \{ f \in C^{2+\alpha}(\mathbb{S}^1) : \min_{x \in \mathbb{S}^1} f(x) > 0 \}, \quad \mathcal{V} := \mathcal{U} \cap h^{2+\alpha}(\mathbb{S}^1).
$$

A pair (u, f) is called a *classical Hölder solution* of [\(6\)](#page-2-1) on [0, T], $T > 0$, if

$$
f \in C([0, T], V) \cap C^{1}([0, T], h^{1+\alpha}(\mathbb{S}^{1})),
$$

$$
u(\cdot, t) \in buc^{2+\alpha}(\Omega_{f(t)}), \quad t \in [0, T],
$$

and (u, f) satisfies the equations in [\(6\)](#page-2-1) pointwise. Suppose there exist two positive constants m_u and M_{μ} such that

$$
(A_1) \t m\mu \leq \overline{\mu}(r) \leq M\mu, \t \forall r \geq 0,(A_2) \t m\mu \leq \overline{\mu}(r) - 2r\overline{\mu}'(r) \leq M\mu, \t \forall r \geq 0.
$$

Our main result reads as follows.

THEOREM 1.1 Assume (A_1) and (A_2) hold true. Then we have:

- (a) Let c and b be two positive constants. There exists an open neighbourhood $\mathcal O$ of c in $\mathcal V$ such that, for each $f_0 \in \mathcal{O}$, problem [\(6\)](#page-2-1) has a classical Hölder solution (u, f) on an interval [0, T], $T > 0$. Moreover, there exists a constant $\gamma \in (0, 1)$ such that $f \in C^{\gamma}_{\gamma}((0, T], h^{2+\alpha}(\mathbb{S}^1)).$
- (b) Let (u_1, f_1) and (u_2, f_2) be solutions of [\(6\)](#page-2-1) with $f_1 \in C^{\gamma}(\mathfrak{g}(0, T], h^{2+\alpha}(\mathbb{S}^1)), \gamma \in (0, 1),$ and $f_2 \in C^{\delta}_\delta((0,T], h^{2+\alpha}(\mathbb{S}^1))), \delta \in (0,1)$. If $f_1([0,T]) \subset \mathcal{O}$ and $f_2([0,T]) \subset \mathcal{O}$, then $(u_1, f_1) = (u_2, f_2).$

For the definition of the weighted Hölder spaces $C_\gamma^{\gamma}((0, T], h^{2+\alpha}(\mathbb{S}^1)), \gamma \in (0, 1)$ see [\[10\]](#page-18-5). If the viscosity μ is decreasing then the Stokesian fluid is called *shear thinning*. If μ is increasing then the fluid is called *shear thickening*. Notice that, if μ is constant, then $\overline{\mu}$ is also constant. Moreover, if μ is a strictly decreasing or strictly increasing function of its argument, then so is $\overline{\mu}$. The conditions $(A₁)$ and $(A₂)$ ensure that at great velocities the fluid behaves like a Newtonian fluid.

We now look for conditions on μ which imply (A_1) and (A_2) . We remark that (A_1) and (A_2) are satisfied iff there exist positive constants c and C with

$$
c \leq \frac{1}{\overline{\mu}(r)} \leq C, \quad \forall r \geq 0,
$$

$$
c \leq \frac{1}{\overline{\mu}(r)} + 2r\left(\frac{1}{\overline{\mu}}\right)'(r) \leq C, \quad \forall r \geq 0.
$$

Using the definition of $\overline{\mu}$ we compute

$$
\frac{1}{\overline{\mu}(r)} + 2r\left(\frac{1}{\overline{\mu}}\right)'(r) = c_{\mu} \int_{-1}^{1} s^2 \left[\frac{1}{\widetilde{\mu}(rs^2)} + 2(rs^2)\left(\frac{1}{\widetilde{\mu}}\right)'(rs^2)\right] ds,
$$

hence (A_1) and (A_2) are satisfied if there exist positive constants \tilde{c} and \tilde{C} with

$$
\widetilde{c} \leq \frac{1}{\widetilde{\mu}(r)} \leq \widetilde{C}, \quad \forall r \geq 0,
$$

$$
\widetilde{c} \leq \frac{1}{\widetilde{\mu}(r)} + 2r\left(\frac{1}{\widetilde{\mu}}\right)'(r) \leq \widetilde{C}, \quad \forall r \geq 0.
$$

Further we compute

$$
\frac{1}{\tilde{\mu}(r)} + 2r \left(\frac{1}{\tilde{\mu}}\right)'(r) = \frac{1}{\mu^2(h^{-1}(r))} \left(\mu(h^{-1}(r)) - 2r\mu'(h^{-1}(r))(h^{-1})'(r)\right)
$$
\n
$$
h^{-1} \underline{\underline{\psi}} = s \frac{1}{\mu^2(s)} \left(\mu(s) - 2h(s)\mu'(s)\frac{1}{h'(s)}\right)
$$
\n
$$
= \frac{1}{\mu^2(s)} \left(\mu(s) - 2s\mu^2(s)\mu'(s)\frac{1}{\mu^2(s) + 2s\mu(s)\mu'(s)}\right)
$$
\n
$$
= \frac{1}{\mu(s) + 2s\mu'(s)},
$$

thus, (A_1) and (A_2) hold if there exist positive constants \overline{c} and \overline{C} such that

$$
(V_1) \quad \overline{c} \leq \mu(r) \leq \overline{C},
$$

\n
$$
(V_2) \quad \overline{c} \leq \mu(r) + 2r\mu'(r) \leq \overline{C},
$$

for all $r \geq 0$. The class of fluids with viscosity satisfying (V_1) and (V_2) is quite large.

For *Oldroyd-B fluids*, e.g. blood, the viscosity is given by

$$
\mu(r) = \nu_{\infty} + (\nu_0 - \nu_{\infty}) \frac{1 + \ln(1 + \lambda r)}{1 + \lambda r}, \quad r \ge 0,
$$

where $\lambda > 0$ is a material constant and $\nu_0 > \nu_\infty > 0$. The conditions (V_1) and (V_2) hold if $(e^{2} + 1)v_{\infty} > v_{0}$. Also, various variants of *power law fluids* belong to this class:

$$
\mu(r) = \nu_{\infty} + \nu_0 (1 + r^2)^{s/4}
$$
 or $\mu(r) = \nu_{\infty} + \nu_0 (1 + r)^{s/2}$,

for all $r \ge 0$, where v_0 and v_{∞} are positive and $s \le 0$. In this case (V_1) and (V_2) hold if $-1 \le s \le 0$. Notice that the above examples are all shear thinning fluids. We now give an example of a shear thickening fluid which can be considered in our model. If

$$
\mu(r) = \mu_0 \frac{\gamma r + r_0}{r + r_0}, \quad \forall r \geqslant 0,
$$

with $r_0 > 0$, $\gamma \ge 1$ and $\mu_0 > 0$, then (V_1) and (V_2) hold for any choice of the parameters r_0 , μ_0 and γ .

1.2 *The transformed problem*

For simplification we introduce first the operator $Q: C^2(\Omega_f) \to C(\Omega_f)$ with

$$
Qu := \text{div}\left(\frac{Du}{\overline{\mu}(|Du|^2)}\right), \quad u \in C^2(\Omega_f).
$$

In order to solve the problem we transfer it onto a fixed reference manifold. Let $\Omega := \mathbb{S}^1 \times (0, 1)$. For $f \in \mathcal{U}$ we define $\phi_f \in \text{Diff}^{2+\alpha}(\Omega, \Omega_f)$ by

$$
\phi_f(x, y) = (x, (1 - y)f(x)), \quad (x, y) \in \Omega.
$$

Defining the push-forward and pull-back operators induced by ϕ_f ,

$$
\phi_f^* : BUC(\Omega_f) \to BUC(\Omega), \quad u \mapsto u \circ \phi_f,
$$

$$
\phi_*^f : BUC(\Omega) \to BUC(\Omega_f), \quad v \mapsto v \circ \phi_f^{-1},
$$

we introduce the transformed operators $A(f)$ and B, acting on $BUC^2(\Omega)$ and $U \times BUC^{2+\alpha}(\Omega)$ respectively by

$$
\mathcal{A}(f) := \phi_f^* \circ \mathcal{Q} \circ \phi_*^f,
$$

$$
\mathcal{B}(f, v)(x) := \frac{D(\phi_*^f v)}{\overline{\mu}(|D(\phi_*^f v)|^2)}(x, f(x)) \cdot n(x), \quad x \in \mathbb{S}^1,
$$

with $n(x) := (-f'(x), 1), x \in \mathbb{S}^1$.

Transformation of [\(6\)](#page-2-1) to Ω yields

$$
\mathcal{A}(f)v = 0 \quad \text{in } \Omega \times [0, \infty),
$$

\n
$$
v = f \quad \text{on } \Gamma_0 \times [0, \infty),
$$

\n
$$
v = b \quad \text{on } \Gamma_1 \times [0, \infty),
$$

\n
$$
\partial_t f + \mathcal{B}(f, v) = 0 \quad \text{on } \Gamma_0 \times (0, \infty),
$$

\n
$$
f(0) = f_0,
$$
\n(7)

where $v := \phi_f^* u$. A pair (v, f) is called a *classical Hölder solution* of [\(7\)](#page-5-0) on [0, T], $T > 0$, if

$$
f \in C([0, T], V) \cap C^1([0, T], h^{1+\alpha}(\mathbb{S}^1)),
$$

$$
v(\cdot, t) \in buc^{2+\alpha}(\Omega), \quad t \in [0, T],
$$

and (v, f) satisfies the equations in [\(7\)](#page-5-0) pointwise.

LEMMA 1.2 Let $f_0 \in V$ and $b \in h^{2+\alpha}(\mathbb{S}^1)$ be given.

(a) If (u, f) is a classical Hölder solution of [\(6\)](#page-2-1), then (ϕ_f^*u, f) is a classical Hölder solution of [\(7\)](#page-5-0).

(b) If (v, f) is a classical Hölder solution of [\(7\)](#page-5-0), then $(\phi_*^f v, f)$ is a classical Hölder solution of [\(6\)](#page-2-1).

Proof. The main difficulty is to show that $\phi_*^f(buc^{\alpha}(\Omega)) = buc^{\alpha}(\Omega_f)$ for each $f \in \mathcal{V}$. We show just the inclusion $\phi_*^f(buc^{\alpha}(\Omega)) \subset buc^{\alpha}(\Omega_f)$. The proof of $\phi_f^*(buc^{\alpha}(\Omega_f)) \subset buc^{\alpha}(\Omega)$ is similar.

Let $f \in V$ and $v \in buc^{\alpha}(\Omega)$. We find two sequences $(f_m) \subset C^{\infty}(\mathbb{S}^1)$ and $(v_n) \subset BUC^{\infty}(\Omega)$ such that $f_m \searrow f$ in $C^{\alpha}(\mathbb{S}^1)$ and $v_n \to v$ in $BUC^{\alpha}(\Omega)$. Let $u := \phi_*^f v$. We show that each neighbourhood of u in $BUC^{\alpha}(\Omega_f)$ contains a function $u_{n,m}$, $n, m \in \mathbb{N}$, where

$$
u_{n,m}(x, y) = v_n(\phi_{f_m}^{-1}(x, y)) = v_n\bigg(x, 1 - \frac{y}{f_m(x)}\bigg), \quad (x, y) \in \Omega_f.
$$

are smooth functions on Ω_f . The functions $u_{n,m}$, $n, m \in \mathbb{N}$, are well-defined because $f_m \geq f$ for all $m \in \mathbb{N}$. First we have

$$
|u_{n,m}(x, y) - u(x, y)| = |v_n(\phi_{f_m}^{-1}(x, y)) - v(\phi_f^{-1}(x, y))| \le ||\partial v_n||_0 \frac{||f_m - f||_0}{\min f} + ||v_n - v||_0
$$

for all $(x, y) \in \Omega_f$. Let now (x, y) and (x', y') be two different points in Ω_f . We have

$$
\begin{split} |(u_{n,m}-u)(x,y)-(u_{n,m}-u)(x',y')|\\ &=|v_n(\phi_{f_m}^{-1}(x,y))-v(\phi_f^{-1}(x,y))-v_n(\phi_{f_m}^{-1}(x',y'))+v(\phi_{f_m}^{-1}(x',y'))|\\ &\leq |v_n(\phi_f^{-1}(x,y))-v(\phi_f^{-1}(x,y))-v_n(\phi_f^{-1}(x',y'))+v(\phi_f^{-1}(x',y'))|\\ &\quad+|v_n(\phi_{f_m}^{-1}(x,y))-v_n(\phi_f^{-1}(x,y))-v_n(\phi_{f_m}^{-1}(x',y'))+v_n(\phi_f^{-1}(x',y'))|\\ &\leq ||v_n-v||_{BUC^{\alpha}(\Omega)}\cdot |\phi_f^{-1}(x,y)-\phi_f^{-1}(x',y')|^{\alpha}\\ &\quad+|v_n(\phi_{f_m}^{-1}(x,y))-v_n(\phi_f^{-1}(x,y))-v_n(\phi_{f_m}^{-1}(x',y'))+v_n(\phi_f^{-1}(x',y'))|. \end{split}
$$

Since

$$
\frac{|\phi_f^{-1}(x, y) - \phi_f^{-1}(x', y')|}{|(x, y) - (x', y')|} \leq 1 + \frac{|y'/f(x') - y/f(x)|}{|(x, y) - (x', y')|} \leq 1 + \frac{1}{\min f} + \frac{\|f\|_0 \cdot \|f'\|_0}{\min f^2},
$$

it remains to estimate the second term on the right hand side. Using the mean value theorem we obtain

$$
|v_n(\phi_{f_m}^{-1}(x, y)) - v_n(\phi_f^{-1}(x, y)) - v_n(\phi_{f_m}^{-1}(x', y')) + v_n(\phi_f^{-1}(x', y'))|
$$

\n
$$
= \left| \int_0^1 \partial v_n(t\phi_{f_m}^{-1}(x, y) + (1 - t)\phi_{f_m}^{-1}(x', y')) dt \cdot (\phi_{f_m}^{-1}(x, y) - \phi_{f_m}^{-1}(x', y'))
$$

\n
$$
- \int_0^1 \partial v_n(t\phi_f^{-1}(x, y) + (1 - t)\phi_f^{-1}(x', y')) dt \cdot (\phi_f^{-1}(x, y) - \phi_f^{-1}(x', y')) \right|
$$

\n
$$
\leq ||\partial v_n||_0 \left| \frac{y'}{f_m(x')} - \frac{y}{f_m(x)} - \frac{y'}{f(x')} + \frac{y}{f(x)} \right|
$$

\n
$$
+ \int_0^1 ||\partial^2 v_n||_0 \left| \frac{ty}{f(x)} + \frac{(1 - t)y'}{f(x')} - \frac{ty}{f_m(x)} - \frac{(1 - t)y'}{f_m(x')} \right| dt |\phi_f^{-1}(x, y) - \phi_f^{-1}(x', y')|
$$

\n
$$
\leq ||\partial v_n||_0 \left| \frac{y'}{f_m(x')} - \frac{y}{f_m(x)} - \frac{y'}{f(x')} + \frac{y}{f(x)} \right|
$$

\n
$$
+ ||\partial^2 v_n||_0 \frac{||f||_0||f_m - f||_0}{\min f^2} |\phi_f^{-1}(x, y) - \phi_f^{-1}(x', y')|.
$$

Using the estimates

$$
\frac{\left|\frac{y'}{f_m(x')}-\frac{y}{f_m(x)}-\frac{y'}{f(x')}+\frac{y}{f(x)}\right|}{|(x,y)-(x',y')|^{\alpha}} \leq ||f||_0^{1-\alpha} \cdot \frac{||f_m-f||_0}{\min f^2} + ||f||_0 \cdot \frac{||f_m-f||_{C^{\alpha}(\mathbb{S}^1)}}{\min f^2} + ||f||_0 \cdot ||f_m||_{C^{\alpha}(\mathbb{S}^1)} + ||f||_{C^{\alpha}(\mathbb{S}^1)} \cdot ||f_m||_0}{\min f^4},
$$

$$
\frac{\left|(x-x', \frac{y'}{f(x')}-\frac{y}{f(x)}\right)|}{|(x,y)-(x',y')|^{\alpha}} \leq (2\pi)^{1-\alpha} + \frac{||f||_0^{1-\alpha}}{\min f} + \frac{||f||_0 \cdot ||f||_{C^{\alpha}(\mathbb{S}^1)}}{\min f^2}
$$

we obtain the desired conclusion. \Box

2. The abstract Cauchy problem

We have already noticed that the conditions (A_1) and (A_2) on $\overline{\mu}$ imply the existence of two positive constants c and C such that

$$
c \leqslant \frac{1}{\overline{\mu}(r)} \leqslant C, \quad \forall r \geqslant 0,
$$
\n⁽⁸⁾

$$
c \leq \frac{1}{\overline{\mu}(r)} - \frac{2r\overline{\mu}'(r)}{\overline{\mu}^2(r)} \leq C, \quad \forall r \geq 0.
$$
 (9)

Under these assumptions the quasilinear operator Q is uniformly elliptic in \mathbb{R}^2 . For $u \in C^2(\Omega_f)$ we compute

$$
Qu = a_{ij}(Du)u_{ij},
$$

and the coefficients $(a_{ij})_{1\leq i,j\leq 2}$ are

$$
a_{ij}(p) = \frac{\delta_{ij}}{\overline{\mu}(|p|^2)} - \frac{2p_i p_j \overline{\mu}'(|p|^2)}{\overline{\mu}^2(|p|^2)}, \quad p = (p_1, p_2) \in \mathbb{R}^2.
$$

Actually, the eigenvalues of $(a_{ij})_{1\leq i,j\leq 2}$ are

$$
\lambda_1(p) = \frac{1}{\overline{\mu}(|p|^2)}, \quad \lambda_2(p) = \frac{1}{\overline{\mu}(|p|^2)} - \frac{2|p|^2 \overline{\mu}'(|p|^2)}{\overline{\mu}^2(|p|^2)},
$$

and we have

$$
c|\xi|^2 \leq a_{ij}(p)\xi_i\xi_j \leq C|\xi|^2, \quad \forall \xi = (\xi_1, \xi_2) \in \mathbb{R}^2, \ p \in \mathbb{R}^2.
$$

LEMMA 2.1 Given $f \in \mathcal{U}$, we have

$$
\mathcal{A}(f)v = b_{ij}(y, f, Dv)v_{ij} + b(y, f, Dv)v_2 \quad \text{for } v \in BUC^2(\Omega),
$$

where, using the notation

$$
D_f v := \left(v_1 + \frac{(1 - y)f'}{f}v_2, -\frac{1}{f}v_2\right) \quad \text{for } f \in \mathcal{U}, \ v \in BUC^2(\Omega) \text{ and } y \in [0, 1],
$$

we have

$$
b_{11}(y, f, Dv) = a_{11}(D_f v),
$$

\n
$$
b_{12}(y, f, Dv) = b_{21}(y, f, Dv) = \frac{(1 - y)f'}{f}a_{11}(D_f v) - \frac{1}{f}a_{12}(D_f v),
$$

\n
$$
b_{22}(y, f, Dv) = \frac{(1 - y)^2 f'^2}{f^2}a_{11}(D_f v) - \frac{2(1 - y)f'}{f^2}a_{12}(D_f v) + \frac{1}{f^2}a_{22}(D_f v),
$$

\n
$$
b(y, f, Dv) = (1 - y)\left(\frac{f''}{f} - \frac{2f'^2}{f^2}\right)a_{11}(D_f v) + \frac{2f'}{f^2}a_{12}(D_f v).
$$

Proof. This follows by direct computation. \Box

Given $f \in \mathcal{U}$, the quasilinear operator $\mathcal{A}(f)$ is uniformly elliptic. Indeed, for $(y, p) \in [0, 1] \times \mathbb{R}^2$ and $\xi = (\xi_1, \xi_2) \in \mathbb{R}^2$ we have

$$
b_{ij}(y, f, p)\xi_i\xi_j = a_{11}\left(p_1 + \frac{(1-y)f'}{f}p_2, -\frac{1}{f}p_2\right)\left(\xi_1 + \frac{(1-y)f'}{f}\xi_2\right)^2
$$

+
$$
2a_{12}\left(p_1 + \frac{(1-y)f'}{f}p_2, -\frac{1}{f}p_2\right)\left(\xi_1 + \frac{(1-y)f'}{f}\xi_2\right)\left(-\frac{\xi_2}{f}\right)
$$

+
$$
a_{22}\left(p_1 + \frac{(1-y)f'}{f}p_2, -\frac{1}{f}p_2\right)\left(-\frac{\xi_2}{f}\right)^2,
$$

and the assertion follows from [\(8\)](#page-7-0) and [\(9\)](#page-7-1) upon taking also into account that ϕ_f is a diffeomorphism.

Using maximum principle arguments and Morrey and De Giorgi–Nash type estimates as in [\[8\]](#page-18-6) one can show that, given

$$
f \in \mathcal{U}
$$
, $q_1, q_2, q_3, g, b \in C^{2+\alpha}(\mathbb{S}^1)$, $\sigma \in [0, 1]$,

there exist constants $\delta > 0$, $\beta \in (0, 1)$ and $M > 0$ such that every solution $v \in BUC^2(\Omega)$ of the Dirichlet problem

$$
\mathcal{A}(f+q_1)v = 0 \qquad \text{in } \Omega, \nv = \sigma g + q_2 \quad \text{on } \Gamma_0, \nv = \sigma b + q_3 \quad \text{on } \Gamma_1
$$
\n(10)

satisfies the estimate

$$
||v||_{BUC^{1+\beta}(\Omega)} \leqslant M
$$

provided $||q_i||_{C^{2+\alpha}(\mathbb{S}^1)} \le \delta$ for $i \in \{1, 2, 3\}$. This a priori estimate allows an application of the techniques developed in Chapter 10 of [\[8\]](#page-18-6) to derive the following existence, uniqueness and regularity result.

LEMMA 2.2 Let $f \in V$ and $b \in h^{2+\alpha}(\mathbb{S}^1)$. Then there exists a unique solution $\mathcal{T}(f) \in$ $buc^{2+\alpha}(\Omega)$ of the Dirichlet problem

$$
\begin{aligned}\n\mathcal{A}(f)u &= 0 &\text{in } \Omega, \\
u &= f &\text{on } \Gamma_0, \\
u &= b &\text{on } \Gamma_1.\n\end{aligned}
$$
\n(11)

The mapping $[\mathcal{V} \ni f \mapsto \mathcal{T}(f) \in buc^{2+\alpha}(\Omega)]$ is smooth.

128 J. ESCHER AND B.-V. MATIOC

We fix $b \in h^{2+\alpha}(\mathbb{S}^1)$. Replacing v in the fourth equation of [\(7\)](#page-5-0) by $\mathcal{T}(f)$, the unique solution to [\(11\)](#page-8-0), we reduce the full problem ([7](#page-5-0)) into an abstract Cauchy problem over \mathbb{S}^1 ,

$$
\partial_t f + \Phi(f) = 0, \qquad f(0) = f_0,\tag{12}
$$

where $\Phi(f) := \mathcal{B}(f, \mathcal{T}(f))$. The operator Φ is a pseudodifferential operator of the first order, with a symbol depending nonlinearly on the variable f. Further we show that $\Phi \in$ $C^{\infty}(h^{2+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1))$ and compute the derivative $\partial \Phi(c)$ in the special case $c, b \in \mathbb{R}_{>0}$.

The restriction of the operator B defined in Section 1 to the set $V \times buc^{2+\alpha}(\mathbb{S}^1)$ satisfies

$$
\mathcal{B}(f,v) = -\frac{1}{\overline{\mu}(|\gamma_0 D_f v|^2)} \left(f' \gamma_0 v_1 + \frac{1}{f} (1 + f'^2) \gamma_0 v_2 \right) \quad \text{for } (f,v) \in \mathcal{V} \times buc^{2+\alpha}(\Omega),
$$

where γ_0 is the trace operator on Γ_0 . Together with the relation

$$
|\gamma_0 D_f v|^2 = \gamma_0 v_1^2 + 2 \frac{f'}{f} \gamma_0 v_1 v_2 + \frac{1 + f'^2}{f^2} \gamma_0 v_2^2
$$

we conclude that the operator β defined above is smooth. More precisely, we have:

LEMMA 2.3 The mapping $\mathcal{B}: \mathcal{V} \times buc^{2+\alpha}(\Omega) \to h^{1+\alpha}(\mathbb{S}^1)$ is smooth. The Fréchet derivative of B at $(f, v) \in V \times buc^{\tilde{2}+\alpha}(\Omega)$ is given by

$$
\partial B(f, v)[h, u] = -\frac{1}{\mu} (|\gamma_0 D_f v|^2) \left[f' \gamma_0 u_1 + h' \gamma_0 v_1 + \frac{1}{f} (1 + f'^2) \gamma_0 u_2 \right. \\ - \left(\frac{h}{f^2} - \frac{2f'h'}{f} + \frac{hf'^2}{f^2} \right) \gamma_0 v_2 \right] \\ - 2 \left(\frac{1}{\mu} \right)' (|\gamma_0 D_f v|^2) \left(f' \gamma_0 v_1 + \frac{1}{f} (1 + f'^2) \gamma_0 v_2 \right) \left[\gamma_0 v_1 u_1 + \frac{h'}{f} \gamma_0 v_1 v_2 \right. \\ + \frac{f'}{f} \gamma_0 u_1 v_2 + \frac{f'}{f} \gamma_0 v_1 u_2 - \frac{f'h}{f^2} \gamma_0 v_1 v_2 + \frac{f'h'}{f^2} \gamma_0 v_2^2 + \frac{f'^2}{f^2} \gamma_0 v_2 u_2 \right. \\ - \frac{hf'^2}{f^3} \gamma_0 v_2^2 + \frac{1}{f^2} \gamma_0 v_2 u_2 - \frac{h}{f^3} \gamma_0 v_2^2 \right]
$$

for all $[h, u] \in h^{2+\alpha}(\mathbb{S}^1) \times buc^{2+\alpha}(\Omega)$.

Combining Lemmas [2.2](#page-8-1) and [2.3](#page-9-0) we conclude that $\Phi \in C^{\infty}(\mathcal{V}, h^{1+\alpha}(\mathbb{S}^1))$. Since

$$
\Phi(f) = \mathcal{B} \circ [f \mapsto (f, \mathcal{T}(f))],
$$

the chain rule implies that $\partial \Phi(f) = \partial \mathcal{B}(f, \mathcal{T}(f)) \circ (\mathrm{id}_{h^{2+\alpha}(\mathbb{S}^1)}, \partial \mathcal{T}(f))$ for $f \in \mathcal{V}$. We are thus left with the task of computing the derivative $\partial T(f)$.

LEMMA 2.4 Given $f \in V$ and $h \in h^{2+\alpha}(\mathbb{S}^1)$ the mapping $\partial \mathcal{T}(f)[h]$ is the unique solution of the linear Dirichlet problem

$$
b_{ij}w_{ij} + bw_{2} + D_{f}w \bigg[u_{11}\partial a_{11}(D_{f}u) + 2u_{12}\bigg(\frac{(1-y)f'}{f}\partial a_{11}(D_{f}u) - \frac{1}{f}\partial a_{12}(D_{f}u)\bigg) + u_{22}\bigg(\frac{(1-y)^{2}f'^{2}}{f^{2}}\partial a_{11}(D_{f}u) - 2\frac{(1-y)f'}{f^{2}}\partial a_{12}(D_{f}u) + \frac{1}{f^{2}}\partial a_{22}(D_{f}u)\bigg) + u_{2}\bigg((1-y)\bigg(\frac{f''}{f} - 2\frac{f'^{2}}{f^{2}}\bigg)\partial a_{11}(D_{f}u) + 2\frac{f'}{f^{2}}\partial a_{12}(D_{f}u)\bigg)\bigg] = -u_{2}\bigg((1-y)\frac{fh' - f'h}{f^{2}}, \frac{h}{f^{2}}\bigg) \cdot \bigg[u_{11}\partial a_{11}(D_{f}u) + 2u_{12}\bigg(\frac{(1-y)f'}{f}\partial a_{11}(D_{f}u) - \frac{1}{f}\partial a_{12}(D_{f}u)\bigg) + u_{22}\bigg(\frac{(1-y)^{2}f'^{2}}{f^{2}}\partial a_{11}(D_{f}u) - 2\frac{(1-y)f'}{f^{2}}\partial a_{12}(D_{f}u) + \frac{1}{f^{2}}\partial a_{22}(D_{f}u)\bigg) + u_{2}\bigg((1-y)\bigg(\frac{f''}{f} - 2\frac{f'^{2}}{f^{2}}\bigg)\partial a_{11}(D_{f}u) + 2\frac{f'}{f^{2}}\partial a_{12}(D_{f}u)\bigg)\bigg] - 2u_{12}\bigg((1-y)\frac{fh' - f'h}{f^{2}}a_{11}(D_{f}u) + \frac{h}{f^{2}}a_{12}(D_{f}u)\bigg) - 2u_{22}\bigg(\frac{(1-y)^{2}(f'h' - f'^{2}h)}{f^{3}}a_{11}(D_{f}u) - (1-y)\frac{fh' - 2f'h}{f^{3}}a_{12}(D_{f}u) - \frac{h}{f^{3}}a_{22}(D_{f}u)\bigg) - u_{2}\bigg((1-y)\bigg(\
$$

where $u := \mathcal{T}(f)$ and $b_{ij} = b_{ij}(y, f, Du)$, $b = b(y, f, Du)$ are the coefficients of $\mathcal{A}(f)$.

Our next goal is to compute $\partial \Phi(c)$ when c and b are positive constant functions. More precisely, we would like to know how it acts on Fourier series. The solution $T(c)$ of the Dirichlet problem [\(11\)](#page-8-0) is

$$
T(c)(x, y) = (1 - y)c + yb, \quad (x, y) \in \Omega.
$$

Given $(h, u) \in h^{2+\alpha}(\mathbb{S}^1) \times buc^{2+\alpha}(\Omega)$, we therefore get

$$
\partial \mathcal{B}(c, \mathcal{T}(c))[h, u] = -\frac{1}{c}\zeta \gamma_0 u_2 + \frac{b-c}{c^2}\zeta h,
$$

where

$$
\zeta := \frac{1}{\overline{\mu}} \left(\left(\frac{b-c}{c} \right)^2 \right) + 2 \left(\frac{b-c}{c} \right)^2 \left(\frac{1}{\overline{\mu}} \right)' \left(\left(\frac{b-c}{c} \right)^2 \right) > 0.
$$

Consequently,

$$
\partial \Phi(c)[h] = -\frac{1}{c}\zeta \gamma_0 w_2 + \frac{b-c}{c^2}\zeta h,
$$

where $w := \partial T(c)[h] \in buc^{2+\alpha}(\Omega)$ denotes the solution of the linear Dirichlet problem

$$
w_{11} + \beta^2 w_{22} = \frac{c - b}{c} (1 - y) h'' \quad \text{in } \Omega, \nw = h \quad \text{on } \Gamma_0, \nw = 0 \quad \text{on } \Gamma_1,
$$
\n(13)

and where

$$
\beta^2 := \frac{1}{c^2} \left(1 - 2 \left(\frac{c-b}{c} \right)^2 \frac{\overline{\mu}' \left(\left(\frac{c-b}{c} \right)^2 \right)}{\overline{\mu} \left(\left(\frac{c-b}{c} \right)^2 \right)} \right) > 0.
$$

We now expand h and w in the following way:

$$
h(x) = \sum_{k \in \mathbb{Z}} c_k e^{ikx}, \quad w(x, y) = \sum_{k \in \mathbb{Z}} C_k(y) e^{ikx}.
$$

Substituting these expressions into equations [\(13\)](#page-10-0) and comparing the coefficients of e^{ikx} for every k, we get the following equations for $C_k(y)$:

$$
\beta^{2}C_{k}'' - k^{2}C_{k} = \frac{b-c}{c}k^{2}c_{k}(1-y), \quad 0 < y < 1,
$$

\n
$$
C_{k}(0) = c_{k},
$$

\n
$$
C_{k}(1) = 0,
$$
\n(14)

for $k \in \mathbb{Z} \setminus \{0\}$, and

$$
C''_0 = 0, \quad 0 < y < 1,
$$
\n
$$
C_0(0) = c_0,
$$
\n
$$
C_0(1) = 0.
$$
\n
$$
(15)
$$

One can easily verify that the solution of [\(15\)](#page-11-0) is $C_0(y) = (1 - y)c_0$. The solutions of [\(14\)](#page-11-1) are given by

$$
C_k(y) = c_k d_k(y)
$$

with

$$
d_k(y) = \frac{c-b}{c}(1-y) + \frac{b}{c}\left(\frac{e^{ky/\beta}}{1-e^{2k/\beta}} + \frac{e^{-ky/\beta}}{1-e^{-2k/\beta}}\right).
$$

Thus we obtain

$$
w(x, y) = (1 - y)c_0 + \sum_{k \in \mathbb{Z} \setminus \{0\}} d_k(y)c_k e^{ikx}, \quad \forall (x, y) \in \Omega,
$$
 (16)

and

$$
\partial \Phi(c) \left[\sum_{k \in \mathbb{Z}} c_k e^{ikx} \right] = \sum_{k \in \mathbb{Z}} \lambda_k c_k e^{ikx} \tag{17}
$$

for all $h = \sum_{k \in \mathbb{Z}} c_k e^{ikx} \in h^{2+\alpha}(\mathbb{S}^1)$, with

$$
\lambda_0 := \frac{b\zeta}{c^2}, \quad \lambda_k = \frac{b\zeta}{\beta c^2} k \frac{e^{2k/\beta} + 1}{e^{2k/\beta} - 1}, \quad k \neq 0.
$$
 (18)

Notice that equations [\(14\)](#page-11-1) and [\(15\)](#page-11-0) have been obtained formally by differentiating w with respect to the variables x and y. Thus, it remains to show that the mapping w , given by [\(16\)](#page-11-2), is the solution of the Dirichlet problem [\(13\)](#page-10-0). Since $h \in h^{2+\alpha}(\mathbb{S}^1)$, there is a positive constant L such that

$$
|c_k| \leqslant \frac{L}{k^2}, \quad \forall k \in \mathbb{Z} \setminus \{0\}.
$$

The functions d_k , $k \in \mathbb{Z} \setminus \{0\}$, are uniformly bounded on [0, 1], i.e.

$$
M:=\sup_{k\in\mathbb{Z}\setminus\{0\}}\max_{[0,1]}|d_k|<\infty.
$$

Therefore $w \in BUC(\Omega)$. Let \overline{w} denote the solution of [\(13\)](#page-10-0). Pick further a sequence $(h_p)_p \subset$ $C^{\infty}(\mathbb{S}^1)$ which converges to h in $C^{2+\alpha}(\mathbb{S}^1)$, and denote by $w_p \in BUC^{\infty}(\Omega)$ the solution of [\(13\)](#page-10-0) which corresponds to h_p . Then

$$
w_p \to \overline{w} \quad \text{in } BUC^{2+\alpha}(\Omega). \tag{19}
$$

Using the Fourier expansions

$$
h_p = \sum_{k \in \mathbb{Z}} c_{p,k} e^{ikx},
$$

we find for each $l \in \mathbb{N}$ a constant $L_{p,l} > 0$ such that

$$
|k|^l |c_{p,k}| \leqslant L_{p,l}, \quad \forall k \in \mathbb{Z},
$$

and, as before, we obtain

$$
w_p(x, y) = (1 - y)c_{p,0} + \sum_{k \in \mathbb{Z} \setminus \{0\}} d_k(y)c_{p,k}e^{ikx}, \quad \forall (x, y) \in \Omega.
$$

Notice that these Fourier series are smooth for all p. Fix now $y \in [0, 1]$. Given $p \in \mathbb{N}$, we have

$$
w_p(x, y) - w(x, y) = (1 - y)(c_{p,0} - c_0) + \sum_{k \in \mathbb{Z} \setminus \{0\}} d_k(y)(c_{p,k} - c_k)e^{ikx},
$$

and so

$$
||w_p(\cdot y) - w(\cdot y)||_{L^2(\mathbb{S}^1)}^2 = (1 - y)^2 (c_{p,0} - c_0)^2 + \sum_{k \in \mathbb{Z} \setminus \{0\}} d_k^2(y) |c_{p,k} - c_k|^2
$$

$$
\leq M^2 \sum_{k \in \mathbb{Z}} |c_{p,k} - c_k|^2 = M^2 ||h_p - h||_{L^2(\mathbb{S}^1)}^2.
$$

Observing $h_p \to h$ in $C^{2+\alpha}(\mathbb{S}^1)$ and invoking [\(19\)](#page-12-0), we see that the previous inequality implies that

$$
w(\cdot, y) = \overline{w}(\cdot, y) \quad \text{in } L^2(\mathbb{S}^1)
$$

for all $y \in [0, 1]$. Using the continuity of w and \overline{w} , we conclude that $w = \overline{w}$, and formula [\(17\)](#page-11-3) is proved.

3. The proof of the main result

In this section we regard the spaces $h^{m+\alpha}(\mathbb{S}^1)$, $m = 1, 2$, as Banach spaces over the complex numbers. In order to prove Theorem 1.1 we have to show that the complexification of $-\partial \Phi(c)$, which we also denote by $-\partial \Phi(c)$, considered as an operator in $h^{1+\alpha}(\mathbb{S}^{\hat{1}})$ with domain $h^{2+\alpha}(\mathbb{S}^1)$, generates a strongly continuous analytic semigroup in $\mathcal{L}(h^{1+\alpha}(\mathbb{S}^1))$, i.e. $\partial \Phi(c) \in$ $\mathcal{H}(h^{2+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1)).$

Using the same notations as in [\[1\]](#page-18-7), we have $h^{2+\alpha}(\mathbb{S}^1) \stackrel{d}{\hookrightarrow} h^{1+\alpha}(\mathbb{S}^1)$ and, given $\kappa \geq 1$ and $\omega > 0$, we write

$$
\partial \varPhi(c) \in \mathcal{H}(h^{2+\alpha}(\mathbb{S}^1),h^{1+\alpha}(\mathbb{S}^1),\kappa,\omega)
$$

if $\omega + \partial \Phi(c) \in \mathcal{L}$ *is*($h^{2+\alpha}(\mathbb{S}^1)$, $h^{1+\alpha}(\mathbb{S}^1)$) and

$$
\kappa^{-1}\leqslant \frac{\|(\lambda+\partial \Phi(c))h\|_{h^{1+\alpha}(\mathbb{S}^1)}}{|\lambda|\, \|h\|_{h^{1+\alpha}(\mathbb{S}^1)}+\|h\|_{h^{2+\alpha}(\mathbb{S}^1)}}\leqslant \kappa,\quad h\in h^{2+\alpha}(\mathbb{S}^1)\setminus\{0\},\quad \text{Re}\,\lambda\geqslant\omega.
$$

Since

$$
\mathcal{H}(h^{2+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1)) = \bigcup_{\substack{\kappa \geq 1 \\ \omega > 0}} \mathcal{H}(h^{2+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1), \kappa, \omega),
$$

it is sufficient to show that $\partial \Phi(c) \in \mathcal{H}(h^{2+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1)), \kappa, \omega)$ for some $\kappa \geq 1$ and $\omega > 0$. In fact, it is enough to find $\kappa \geq 1$ and $\omega > 0$ such that

$$
\lambda + \partial \Phi(c) \in \mathcal{L}is(h^{2+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1)),\tag{20}
$$

$$
|\lambda| \cdot \|R(\lambda, -\partial \Phi(c))\|_{\mathcal{L}(h^{1+\alpha}(\mathbb{S}^1))} \leq \kappa,
$$
\n(21)

for all Re $\lambda \geq \omega$.

3.1 *Sobolev spaces over the unit circle*

Let us recall that the Fréchet derivative $\partial \Phi(c) \in \mathcal{L}(h^{2+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1))$ is defined by

$$
\partial \Phi(c) \sum_{k \in \mathbb{Z}} \widehat{h}(k) e^{ikx} = \sum_{k \in \mathbb{Z}} \lambda_k \widehat{h}(k) e^{ikx}
$$

for all $h = \sum_{k \in \mathbb{Z}} \widehat{h}(k)e^{ikx} \in h^{2+\alpha}(\mathbb{S}^1)$, with $(\lambda_k)_{k \in \mathbb{Z}}$ given by [\(18\)](#page-11-4). We denote here by $\widehat{h}(k)$ the *k*-th Fourier coefficient of $h \in h^{2+\alpha}(\mathbb{S}^1)$. For $r \ge 0$ we introduce the Sobolev space

$$
H^{r}(\mathbb{S}^{1}) := \left\{ f \in L^{2}(\mathbb{S}^{1}) : \sum_{k \in \mathbb{Z}} (1 + k^{2})^{r} | \widehat{f}(k) |^{2} < \infty \right\},\
$$

equipped with the scalar product $\langle f, g \rangle := \sum_{k \in \mathbb{Z}} (1 + k^2)^r \widehat{f}(k) \overline{\widehat{g}(k)}$. The smooth functions are dense in $H^r(\mathbb{S}^1)$, and the Sobolev embedding

$$
H^{m+\sigma}(\mathbb{S}^1)\hookrightarrow C^m(\mathbb{S}^1)
$$
\n⁽²²⁾

holds for all $m \in \mathbb{N}$ provided $\sigma > 1/2$.

PROPOSITION 3.1

$$
H^{m+s}(\mathbb{S}^1) \stackrel{d}{\hookrightarrow} h^{m+\alpha}(\mathbb{S}^1)
$$

for all $m \in \mathbb{N}$, $\alpha \in [0, 1]$ and $s > 3/2$.

Proof. Given $m \in \mathbb{N}$, $\alpha \in [0, 1]$ and $s > 3/2$ we have the embeddings

$$
C^{\infty}(\mathbb{S}^{1}) \subset H^{m+s}(\mathbb{S}^{1}) \hookrightarrow C^{m+\alpha}(\mathbb{S}^{1}),
$$
\n(23)

thus $h^{m+\alpha}(\mathbb{S}^1) = \overline{C^{\infty}(\mathbb{S}^1)}^{\|\cdot\|_{C^{m+\alpha}(\mathbb{S}^1)}} \subset \overline{H^{m+s}(\mathbb{S}^1)}^{\|\cdot\|_{C^{m+\alpha}(\mathbb{S}^1)}}.$

Fix now $u \in \overline{H^{m+s}(\mathbb{S}^1)}^{\|\cdot\|_{C^{m+\alpha}(\mathbb{S}^1)}}$ and choose $\varepsilon > 0$. We can find $u_0 \in H^{m+s}(\mathbb{S}^1)$ with $||u - u_0||_{C^{m+\alpha}(\mathbb{S}^1)} \le \varepsilon/2$. Due to [\(23\)](#page-13-0) there is a constant $C > 0$ such that

$$
||v||_{C^{m+\alpha}(\mathbb{S}^1)} \leq C||v||_{H^{m+s}(\mathbb{S}^1)}, \quad \forall v \in H^{m+s}(\mathbb{S}^1).
$$

Let $u_1 \in C^{\infty}(\mathbb{S}^1)$ be a smooth function with $||u_0 - u_1||_{H^{m+s}(\mathbb{S}^1)} \leq \varepsilon/2C$. Combining these last inequalities, we get $||u - u_1||_{C^{m+\alpha}(\mathbb{S}^1)} \leq \varepsilon$ and the proof is complete. \square

Let us now consider the coefficients λ_k , $k \in \mathbb{Z}$. We notice that $\lambda_k = \lambda_{-k}$ and that λ_k is positive for every $k \in \mathbb{Z}$. Moreover,

$$
\lim_{k \to \infty} \frac{\lambda_k}{k} = \frac{b\zeta}{\beta c^2}.
$$
\n(24)

We now fix

$$
\omega := 1. \tag{25}
$$

PROPOSITION 3.2 Given $r \ge 0$ and Re $\lambda \ge \omega$, we have $\lambda + \partial \Phi(c) \in \mathcal{L}$ *is*($H^{r+1}(\mathbb{S}^1)$, $H^r(\mathbb{S}^1)$).

Proof. We first prove that $\partial \Phi(c)$ is well-defined. Due to [\(24\)](#page-14-0) there is a constant $M > 0$ such that

$$
|\lambda_k| \leqslant M(1+k^2)^{1/2}, \quad \forall k \in \mathbb{Z}.
$$

Given $h = \sum_{k \in \mathbb{Z}} \widehat{h}(k) e^{ikx} \in H^{r+1}(\mathbb{S}^1)$, we have

$$
\left\|\partial\Phi(c)\sum_{k\in\mathbb{Z}}\widehat{h}(k)e^{ikx}\right\|_{H^r(\mathbb{S}^1)} = \sum_{k\in\mathbb{Z}}(1+k^2)^r|\lambda_k\widehat{h}(k)|^2 \leq M^2\sum_{k\in\mathbb{Z}}(1+k^2)^{r+1}|\widehat{h}(k)|^2
$$

$$
= M^2\left\|\sum_{k\in\mathbb{Z}}\widehat{h}(k)e^{ikx}\right\|_{H^{r+1}(\mathbb{S}^1)}.
$$

Thus $\partial \Phi(c)$ is well-defined. For Re $\lambda \geq \omega$ we have $\lambda + \lambda_k \geq 1$, and therefore $\lambda + \partial \Phi(c)$ is injective. In order to show that $\lambda + \partial \Phi(c)$ is onto, we have to show that for $h = \sum_{k \in \mathbb{Z}} \widehat{h}(k)e^{ikx} \in H^r(\mathbb{S}^1)$, the function $\sum_{k\in\mathbb{Z}}(1/(\lambda+\lambda_k))\widehat{h}(k)e^{ikx}$ is in $H^{r+1}(\mathbb{S}^1)$. Invoking again [\(24\)](#page-14-0), we find $M_\lambda > 0$ such that

$$
|\lambda + \lambda_k|^2 \geq M_\lambda (1 + k^2), \quad \forall k \in \mathbb{Z}.
$$

Now

$$
\left\| \sum_{k \in \mathbb{Z}} \frac{1}{\lambda + \lambda_k} \widehat{h}(k) e^{ikx} \right\|_{H^{r+1}(\mathbb{S}^1)} = \sum_{k \in \mathbb{Z}} (1 + k^2)^{r+1} \left| \frac{\widehat{h}(k)}{\lambda + \lambda_k} \right|^2 \le \frac{1}{M_{\lambda}} \sum_{k \in \mathbb{Z}} (1 + k^2)^r |\widehat{h}(k)|^2
$$

$$
= \frac{1}{M_{\lambda}} \left\| \sum_{k \in \mathbb{Z}} \widehat{h}(k) e^{ikx} \right\|_{H^r(\mathbb{S}^1)},
$$

and the proof is complete. \Box

Combining these two propositions we obtain the following result.

COROLLARY 3.3 Let $m \in \{1, 2\}$ and suppose $R(\lambda, -\partial \Phi(c)) \in \mathcal{L}(C^{1+\alpha}(\mathbb{S}^1), C^{m+\alpha}(\mathbb{S}^1))$ for some Re $\lambda \geq \omega$. Then $R(\lambda, -\partial \Phi(c)) \in \mathcal{L}(h^{\hat{1}+\alpha}(\mathbb{S}^1), h^{m+\alpha}(\mathbb{S}^1)).$

Proof. We prove just the case $m = 2$. The proof in the case $m = 1$ is similar. By assumption, $R(\lambda, -\partial \Phi(c)) \in \mathcal{L}(h^{1+\alpha}(\mathbb{S}^1), C^{2+\alpha}(\mathbb{S}^1)).$ Given $f \in h^{1+\alpha}(\mathbb{S}^1)$, Proposition [3.1](#page-13-1) ensures the existence of a sequence $(f_n)_n \subset H^r(\mathbb{S}^1)$, $r > 3$, such that $f_n \to f$ in $C^{1+\alpha}(\mathbb{S}^1)$. Thus

$$
R(\lambda, -\partial \Phi(c)) f_n \to R(\lambda, -\partial \Phi(c)) f \quad \text{in } C^{2+\alpha}(\mathbb{S}^1).
$$

We know that $R(\lambda, -\partial \Phi(c)) f_n \in H^{r+1}(\mathbb{S}^1)$. Consequently,

$$
R(\lambda, -\partial \Phi(c))f \in \overline{H^{r+1}(\mathbb{S}^1)}^{\|\cdot\|_{C^{2+\alpha}(\mathbb{S}^1)}} = h^{2+\alpha}(\mathbb{S}^1).
$$

3.2 *Periodic Besov spaces*

Let $(\phi_i)_{i\geq 0} \subset \mathcal{S}(\mathbb{R})$ be a sequence with the following properties:

(i) $\text{supp } \phi_0 \subset [-2, 2], \quad \text{supp } \phi_j \subset \{x : 2^{j-1} \leq |x| \leq 2^{j+1}\}, \quad j \geq 1,$ $(ii) \sum$ $j\in\mathbb{N}$ $\phi_j = 1$ in R, (iii) $\forall k \in \mathbb{N} \exists c_k > 0 : 2^{kj} || \phi_i^{(k)}$ $p_j^{(k)} \|_0 \leqslant c_k, \ \forall j \in \mathbb{N}.$

Further, let $\mathcal{D}'(\mathbb{S}^1)$ denote the topological dual of $\mathcal{D}(\mathbb{S}^1)$. The Fourier coefficients of $f \in \mathcal{D}'(\mathbb{S}^1)$ are $\widehat{f}(k) := (2\pi)^{-1} f(e^{-ikx}), k \in \mathbb{Z}$, and the series $\sum_{k \in \mathbb{Z}} \widehat{f}(k)e^{ikx}$ converges to f in $\mathcal{D}'(\mathbb{S}^1)$. The Besov spaces $B_{\infty,\infty}^s(\mathbb{S}^1)$, $s \geq 0$, are defined as follows:

$$
B_{\infty,\infty}^s(\mathbb{S}^1):=\Big\{f\in\mathcal{D}'(\mathbb{S}^1):\|f\|_{B_{\infty,\infty}^s(\mathbb{S}^1)}:=\sup_{j\in\mathbb{N}}2^{sj}\Big\|\sum_{k\in\mathbb{Z}}\phi_j(k)\widehat{f}(k)e^{ikx}\Big\|_{C(\mathbb{S}^1)}<\infty\Big\}.
$$

If $s > 0$ is not an integer, then $B_{\infty,\infty}^s(\mathbb{S}^1) = C^s(\mathbb{S}^1)$. For details see e.g. [\[11\]](#page-18-8). As one sees from previous computations, the operators $R(\lambda, -\partial \Phi(c))$ are Fourier multiplier operators. In order to prove [\(20\)](#page-13-2) and [\(21\)](#page-13-3) we can use, due to former considerations, multiplier theorems for operators between Besov spaces. Using the techniques of [\[2\]](#page-18-4), it is not difficult to prove the following generalization of a result presented there.

THEOREM 3.4 Let r, s be positive constants and let $(M_k)_{k \in \mathbb{Z}} \subset \mathbb{C}$ be a sequence satisfying the following conditions:

(i)
$$
\sup_{k \in \mathbb{Z} \setminus \{0\}} |k|^{r-s} |M_k| < \infty,
$$

\n(ii)
$$
\sup_{k \in \mathbb{Z} \setminus \{0\}} |k|^{r-s+1} |M_{k+1} - M_k| < \infty,
$$

\n(iii)
$$
\sup_{k \in \mathbb{Z} \setminus \{0\}} |k|^{r-s+2} |M_{k+2} - 2M_{k+1} + M_k| < \infty.
$$

Then the mapping

$$
\sum_{k\in\mathbb{Z}}\widehat{h}(k)e^{ikx}\mapsto \sum_{k\in\mathbb{Z}}M_k\widehat{h}(k)e^{ikx}
$$

belongs to $\mathcal{L}(B_{\infty,\infty}^s(\mathbb{S}^1), B_{\infty,\infty}^r(\mathbb{S}^1)).$

Proof. The case $r = s$ is proved in [\[2\]](#page-18-4). For $r \neq s$ the proof is similar, with obvious modifications. \Box

COROLLARY 3.5

$$
\{\lambda \in \mathbb{C} : \text{Re}\,\lambda \geqslant \omega\} \subset \rho(-\partial \Phi(c)).
$$

Proof. Fix $\lambda \in \mathbb{C}$ with Re $\lambda \geq \omega$. Due to Corollary [3.3,](#page-14-1) it is enough to show that $R(\lambda, -\partial \Phi(c)) \in$ $\mathcal{L}(C^{1+\alpha}(\mathbb{S}^1), C^{2+\alpha}(\mathbb{S}^1))$. Here $R(\lambda, -\partial \Phi(c))$ denotes the multiplier operator

$$
\sum_{k\in\mathbb{Z}}\widehat{h}(k)e^{ikx}\mapsto \sum_{k\in\mathbb{Z}}M_k^{\lambda}\widehat{h}(k)e^{ikx}
$$

with $M_k^{\lambda} = 1/(\lambda + \lambda_k)$ for $k \in \mathbb{Z}$. In order to prove this assertion, we use the previous theorem with $r := 2 + \alpha$ and $s := 1 + \alpha$. Using relation [\(24\)](#page-14-0), we obtain

$$
\lim_{|k| \to \infty} |k| |M_k^{\lambda}| = \frac{\beta c^2}{b\zeta},
$$

thus condition (i) in Theorem [3.4](#page-15-0) is satisfied. Given $k \neq 0$, we have

$$
k^2|M_{k+1}^\lambda - M_k^\lambda| = \frac{|k|}{|\lambda + \lambda_{k+1}|} \frac{|k|}{|\lambda + \lambda_k|} |\lambda_{k+1} - \lambda_k| \xrightarrow[k \to \infty]{\text{BC}^2} \frac{\beta c^2}{b \zeta},
$$

and (ii) is verified. Furthermore, we have

$$
|k|^3 |M_{k+2}^{\lambda} - 2M_{k+1}^{\lambda} - M_k^{\lambda}| = \frac{|k|}{|\lambda + \lambda_{k+2}|} \frac{|k|}{|\lambda + \lambda_{k+1}|} \frac{|k|}{|\lambda + \lambda_k|} |- \lambda(\lambda_{k+2} - 2\lambda_{k+1} + \lambda_k) + \lambda_k(\lambda_{k+1} - \lambda_{k+2}) + \lambda_{k+2}(\lambda_{k+1} - \lambda_k)|,
$$

with $(\lambda_{k+2} - 2\lambda_{k+1} + \lambda_k) \rightarrow 0$ as $|k| \rightarrow \infty$. One can easily verify that

$$
\lambda_k(\lambda_{k+1}-\lambda_{k+2})+\lambda_{k+2}(\lambda_{k+1}-\lambda_k)\xrightarrow[k\to\infty]{}\frac{b\zeta}{\beta c^2}\bigg)^2,
$$

and the proof is complete. \Box

It remains to prove assertion [\(21\)](#page-13-3). We shall make again use of Theorem [3.4,](#page-15-0) but now in the special case $r = s = 1 + \alpha$. Notice that for $k \in \mathbb{Z}$ and $\text{Re } \lambda \geq \omega$ we have

$$
\lambda + \lambda_k \ge \max\{1, \lambda, \lambda_k\}.
$$
 (26)

COROLLARY 3.6 There exists $\kappa \geq 1$ such that

$$
|\lambda| \cdot ||R(\lambda, -\partial \Phi(c))||_{\mathcal{L}(h^{1+\alpha}(\mathbb{S}^1))} \leq \kappa
$$

for all Re $\lambda \geqslant \omega$.

Proof. Let $\lambda \in \mathbb{C}$ with Re $\lambda \geq \omega$. Then $|\lambda| R(\lambda, -\partial \Phi(c))$ belongs to $\mathcal{L}(h^{1+\alpha}(\mathbb{S}^1))$. We regard $|\lambda| R(\lambda, -\partial \Phi(c))$ as a multiplier operator,

$$
\sum_{k\in\mathbb{Z}}\widehat{h}(k)e^{ikx}\mapsto \sum_{k\in\mathbb{Z}}M_k^{\lambda}\widehat{h}(k)e^{ikx},
$$

with

$$
M_k^{\lambda} = \frac{|\lambda|}{\lambda + \lambda_k}, \quad \forall k \in \mathbb{Z},
$$

and we wish to find positive real numbers s_1 , s_2 and s_3 such that

(i)
$$
\sup_{k \in \mathbb{Z}} |M_k^{\lambda}| \leq s_1,
$$

\n(ii)
$$
\sup_{k \in \mathbb{Z}} |k| |M_{k+1}^{\lambda} - M_k^{\lambda}| \leq s_2,
$$

\n(iii)
$$
\sup_{k \in \mathbb{Z}} |k|^2 |M_{k+2}^{\lambda} - 2M_{k+1}^{\lambda} + M_k^{\lambda}| \leq s_3,
$$

for all Re $\lambda \geq \omega$. The existence of such constants is equivalent to the uniform boundedness of the family $\{|\lambda| R(\lambda, -\partial \Phi(c))\}_{\text{Re }\lambda \geq \omega} \subset \mathcal{L}(h^{1+\alpha}(\mathbb{S}^1))$. For details see [\[2\]](#page-18-4). From relation [\(26\)](#page-16-0) we obtain

$$
|M^\lambda_k|=\frac{|\lambda|}{|\lambda+\lambda_k|}\leqslant 1
$$

for all $k \in \mathbb{Z}$ and $\text{Re } \lambda \geq \omega$. We also have

$$
|k| \, |M_{k+1}^{\lambda} - M_k^{\lambda}| = \frac{|\lambda|}{|\lambda + \lambda_{k+1}|} \, \frac{|k|}{|\lambda + \lambda_k|} |\lambda_{k+1} - \lambda_k| \leq \frac{|k|}{\lambda_k} |\lambda_{k+1} - \lambda_k|,
$$

which, together with (24) , implies estimate (ii). Further,

$$
|k|^2 |M_{k+2}^{\lambda} - 2M_{k+1}^{\lambda} - M_k^{\lambda}| = \frac{|\lambda|}{|\lambda + \lambda_{k+2}|} \frac{|k|}{|\lambda + \lambda_{k+1}|} \frac{|k|}{|\lambda + \lambda_k|} | - \lambda(\lambda_{k+2} - 2\lambda_{k+1} + \lambda_k) + \lambda_k(\lambda_{k+1} - \lambda_{k+2}) + \lambda_{k+2}(\lambda_{k+1} - \lambda_k)|
$$

$$
\leq \frac{|k|}{\lambda_k} |k| |\lambda_{k+2} - 2\lambda_{k+1} + \lambda_k| + \frac{|k|}{\lambda_k} \frac{|k|}{|\lambda_k(\lambda_{k+1} - \lambda_{k+2}) + \lambda_{k+2}(\lambda_{k+1} - \lambda_k)|}.
$$

The relation

$$
|k| |\lambda_{k+2} - 2\lambda_{k+1} + \lambda_k| \xrightarrow[k]{} 0
$$

completes the proof. \Box

We have proved that for every positive constant c , the complexification of the derivative $\partial \Phi(c)$ generates a strongly continuous analytic semigroup in $\mathcal{L}(h^{1+\alpha}(\mathbb{S}^1))$, i.e. it belongs to $\mathcal{H}(h^{\bar{2}+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1))$. It is known that $\mathcal{H}(h^{2+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1))$ is an open subset in $\mathcal{L}(h^{2+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1))$ (see [\[1\]](#page-18-7)), and because $\partial \Phi$ is continuous, there is a neighbourhood $\mathcal O$ of c in V such that the complexification of $\partial \Phi(f_0)$ is an element of $\mathcal{H}(h^{2+\alpha}(\mathbb{S}^1), h^{1+\alpha}(\mathbb{S}^1))$ for all $f_0 \in \mathcal{O}$. The proof of Theorem 1.1 is now similar to the proof of Theorem 8.1.1 in [\[10\]](#page-18-5).

Acknowledgements

We are grateful to the anonymous referees for several helpful remarks, which improved the quality of the paper.

REFERENCES

- 1. AMANN, H. *Linear and Quasilinear Parabolic Problems*. Volume I, Birkhauser, Basel (1995). ¨ [Zbl 0819.35001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0819.35001&format=complete) [MR 1345385](http://www.ams.org/mathscinet-getitem?mr=1345385)
- 2. ARENDT, W., & BU, S. Operator-valued Fourier multipliers on periodic Besov spaces and applications. *Proc. Edinburgh Math. Soc.* 47 (2004), 15–33. [Zbl 1083.42009](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1083.42009&format=complete) [MR 2064734](http://www.ams.org/mathscinet-getitem?mr=2064734)
- 3. ESCHER, J. On moving boundaries in deformable media. *Adv. Math. Sci. Appl.* 7 (1997), 275–316. [Zbl 0884.35174](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0884.35174&format=complete) [MR 1454668](http://www.ams.org/mathscinet-getitem?mr=1454668)
- 4. ESCHER, J., & PROKERT, G. Stability of the equilibria for spatially periodic flows in porous media. *Nonlinear Anal.* 45 (2001), 1061–1080. [Zbl 0986.35017](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0986.35017&format=complete) [MR 1846423](http://www.ams.org/mathscinet-getitem?mr=1846423)
- 5. ESCHER, J., & SIMONETT, G. Maximal regularity for a free boundary problem. *Nonlinear Differential Equations Appl.* 2 (1991), 463–510. [Zbl 0842.35083](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0842.35083&format=complete) [MR 1356871](http://www.ams.org/mathscinet-getitem?mr=1356871)
- 6. ESCHER, J., & SIMONETT, G. Analyticity of the interface in a free boundary problem, *Math. Ann.* 305 (1996), 439–459. [Zbl 0857.76086](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0857.76086&format=complete) [MR 1397432](http://www.ams.org/mathscinet-getitem?mr=1397432)
- 7. ESCHER, J., & SIMONETT, G. Classical solutions of multidimensional Hele–Shaw models. *SIAM J. Math. Anal.* 28 (1997), 1028–1047. [Zbl 0888.35142](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0888.35142&format=complete) [MR 1466667](http://www.ams.org/mathscinet-getitem?mr=1466667)
- 8. GILBARG, D., & TRUDINGER, N. S. *Elliptic Partial Differential Equations of Second Order*. Springer, New York (1977). [Zbl 0361.35003](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0361.35003&format=complete) [MR 0473443](http://www.ams.org/mathscinet-getitem?mr=0473443)
- 9. KONDIC, L., PALFFY-MAHORNY, P., & SHELLEY, M. J. Models of non-Newtonian Hele–Shaw flow. *Phys. Rev. E* 54 (1996), R4536–R4539.
- 10. LUNARDI, A. *Analytic Semigroups and Optimal Regularity in Parabolic Problems*. Birkhauser, Basel ¨ (1995). [Zbl 0816.35001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0816.35001&format=complete) [MR 1329547](http://www.ams.org/mathscinet-getitem?mr=1329547)
- 11. SCHMEISSER, H.-J., & TRIEBEL, H. *Topics in Fourier Analysis and Function Spaces*. Wiley, New York (1987). [Zbl 0661.46025](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0661.46025&format=complete) [MR 0891189](http://www.ams.org/mathscinet-getitem?mr=0891189)