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This paper is concerned with the motion of an incompressible, viscous fluid in a Hele–Shaw cell.
The free surface is moving under the influence of gravity and the fluid is modelled using a modified
Darcy law for Stokesian fluids.

We combine results from the theory of quasilinear elliptic equations, analytic semigroups and
Fourier multipliers to prove existence of a unique classical solution to the corresponding moving
boundary problem.
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1. Introduction

Starting from a non-Newtonian Darcy law as presented in [9], we derive a mathematical model
for the flow of a Stokesian fluid1 located between the plates of a vertical Hele–Shaw cell. The
pressure on the bottom of the cell is assumed to be constant. The corresponding mathematical setting
is a fully nonlinear coupled system consisting of a quasilinear elliptic Dirichlet problem for the
velocity potential and an evolution equation for the free boundary, i.e. the interface separating the
fluid from the air. The contact angle problem is avoided by considering periodic flows only. The
Newtonian case, studied in [3]–[7] in various contexts, is also included in this model. Our setting
is general enough to embrace shear thinning fluids, like Oldroyd-B or power law fluids, as well as
shear thickening fluids.

We shall attack this problem by transforming it into a problem on a fixed manifold S1
× (0, 1).

This will be done in Section 1. In Section 2 we identify the new setting with an abstract Cauchy
problem on the unit circle S1:

∂tf +Φ(f ) = 0, f (0) = f0.

Our analysis shows that Φ is a pseudodifferential operator of first order with a symbol depending
nonlinearly on the function f modelling the free boundary. Moreover, the operator f 7→ Φ(f ) is
fully nonlinear, in the sense that its nonlinear part is of first order as well. Nevertheless, we prove
that given any positive constant c, the Fréchet derivative −∂Φ(c) generates a strongly continuous

1 In a Stokesian fluid the stress tensor is a continuous function of the deformation. A Newtonian fluid is a linear Stokesian
fluid. In particular, the viscosity µ is constant in this case.
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analytic semigroup inL(h1+α(S1))with dense domain h2+α(S1). Working with small Hölder spaces
hm+α(S1), m ∈ N and α ∈ (0, 1), is a significant advantage, because hm1+α1(S1) is dense and
compactly embedded in hm2+α2(S1) provided m1 + α1 > m2 + α2. It is known that this property
does not hold for the usual Hölder spaces.

The main result, a well-posedness result for the full flow, is proved in Section 3 and is based on
a multiplier theorem for periodic Besov spaces. This theorem generalizes a result of Arendt and Bu
presented in [2]. As in [2], our multiplier theorem is also based on Marcinkiewicz type conditions.

1.1 The mathematical model

Given a positive function f ∈ C1(R), which is bounded away from 0, we define the set

Ω̃f := {(x, y) ∈ R2 : 0 < y < f (x)},

and denote the components of its boundary by

Γ̃f := {(x, f (x)) : x ∈ R}, Γ̃0 := R× {0}.

x

y

Ω̃f

Γ̃f

0

ν

Γ̃0

The domain Ω̃f consists of a Stokesian fluid at pressure p and we denote by v the velocity field
inside the fluid’s body. The motion of the fluid is governed by the following modified version of
Darcy’s law:

v = −
Du

µ(|Du|2)

(cf. [9]), where

u(x, y) =
p(x, y)

g · ρ
+ y, (x, y) ∈ Ω̃f ,

is the so-called velocity potential or piezometric heat, g is the gravity acceleration, ρ is the density
of the fluid and Du = (∂1u, ∂2u) is the gradient of u. The effective viscosity µ is defined (see [9])
by

1
µ(r)

:= cµ

∫ 1

−1

s2

µ̃(rs2)
ds

for all r > 0, where cµ is a positive constant. Denoting by µ ∈ C∞([0,∞), (0,∞)) the viscosity
of the fluid, we have assumed that the mapping r 7→ h(r) := rµ2(r) is invertible. This is true for
example if µ(r)+ 2rµ′(r) > 0 for all r > 0. The mapping µ̃ is defined by µ̃ := µ ◦ h−1.

We assume the fluid is incompressible (div v = 0), thus we get

div
(

Du

µ(|Du|2)

)
= 0 in Ω̃f . (1)
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On the boundary component Γ̃0 the velocity potential is known, namely

u(x, 0) =
p(x, 0)
g · ρ

=: b(x), x ∈ R. (2)

Moreover, we assume that the fluid is surrounded by air at atmospheric pressure, normalized to be
zero. Then p(x, f (x)) = 0 for x ∈ R, and so

u(x, f (x)) = f (x), x ∈ R. (3)

Set F(t, z) = y − f (t, x) for z = (x, y) ∈ R and t > 0. Then the interface Γ̃f can be described by
the conservative property that F is identically equal to zero on Γ̃f . Differentiating with respect to
the time variable t we get

d
dt
F (t, z) = −∂tf (t, x)+ (−fx, 1) · z′.

Replacing z′ by −Du/µ(|Du|2), we obtain

∂tf +

√
1+ ∂xf 2

µ(|Du|2)
∂νu = 0 on Γ̃f , (4)

with ν denoting the outer normal of Γ̃f . Finally, we set

f (0, · ) = f0, (5)

where f0 corresponds to the initial surface. We shall make the following periodicity requirement on
f and u:

f (t, x + 2π) = f (t, x), ∀x ∈ R, t > 0,

u(x + 2π, y) = u(x, y), ∀(x, y) ∈ Ω̃f (t), t > 0.

Thus, instead of (1)–(5) we study

div
(

Du

µ(|Du|2)

)
= 0 in Ωf (t), t > 0,

u = b on Γ0, t > 0,
u = f on Γf (t), t > 0,

∂tf (t, · )+

√
1+ ∂xf 2(t, · )

µ(|Du( · , f (t, · ))|2)
∂νu( · , f (t, · )) = 0 on S1, t > 0,

f (0, · ) = f0 on S1,

(6)

where

Ωf (t) := {(x, y) ∈ S1
× R : 0 < y < f (t, x)},

Γf (t) := {(x, f (t, x)) : x ∈ S1
}, Γ0 = S1

× {0}.
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for t > 0, and S1 is the unit circle. For the sake of simplicity, we identify periodic functions on
R with functions on S1, and periodic functions in the x variable on Ω̃f with functions on Ωf , for
positive functions f on S1.

Givenm ∈ N and α ∈ (0, 1), we define the so-called little Hölder space hm+α(S1) as the closure
of C∞(S1) in Cm+α(S1). If f is a positive function in C(S1), then we denote by bucm+α(Ωf ) the
closure of BUC∞(Ωf ) in the Hölder space BUCm+α(Ωf ). The notation BUCm+α(Ωf ) stands for
the space of all maps from Ωf to R which have bounded and uniformly continuous derivatives up
to order m, and in addition uniformly α-Hölder continuous derivatives of order m.

Throughout this paper we fix α ∈ (0, 1) and we define

U := {f ∈ C2+α(S1) : min
x∈S1

f (x) > 0}, V := U ∩ h2+α(S1).

A pair (u, f ) is called a classical Hölder solution of (6) on [0, T ], T > 0, if

f ∈ C([0, T ],V) ∩ C1([0, T ], h1+α(S1)),

u( · , t) ∈ buc2+α(Ωf (t)), t ∈ [0, T ],

and (u, f ) satisfies the equations in (6) pointwise. Suppose there exist two positive constants mµ
and Mµ such that

(A1) mµ 6 µ(r) 6 Mµ, ∀r > 0,
(A2) mµ 6 µ(r)− 2rµ′(r) 6 Mµ, ∀r > 0.

Our main result reads as follows.

THEOREM 1.1 Assume (A1) and (A2) hold true. Then we have:

(a) Let c and b be two positive constants. There exists an open neighbourhoodO of c in V such that,
for each f0 ∈ O, problem (6) has a classical Hölder solution (u, f ) on an interval [0, T ], T > 0.
Moreover, there exists a constant γ ∈ (0, 1) such that f ∈ Cγγ ((0, T ], h2+α(S1)).

(b) Let (u1, f1) and (u2, f2) be solutions of (6) with f1 ∈ C
γ
γ ((0, T ], h2+α(S1)), γ ∈ (0, 1),

and f2 ∈ C
δ
δ ((0, T ], h2+α(S1))), δ ∈ (0, 1). If f1([0, T ]) ⊂ O and f2([0, T ]) ⊂ O, then

(u1, f1) = (u2, f2).

For the definition of the weighted Hölder spaces Cγγ ((0, T ], h2+α(S1)), γ ∈ (0, 1) see [10]. If
the viscosity µ is decreasing then the Stokesian fluid is called shear thinning. If µ is increasing then
the fluid is called shear thickening. Notice that, if µ is constant, then µ is also constant. Moreover, if
µ is a strictly decreasing or strictly increasing function of its argument, then so is µ. The conditions
(A1) and (A2) ensure that at great velocities the fluid behaves like a Newtonian fluid.

We now look for conditions on µ which imply (A1) and (A2). We remark that (A1) and (A2)

are satisfied iff there exist positive constants c and C with

c 6
1
µ(r)

6 C, ∀r > 0,

c 6
1
µ(r)

+ 2r
(

1
µ

)′
(r) 6 C, ∀ r > 0.
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Using the definition of µ we compute

1
µ(r)

+ 2r
(

1
µ

)′
(r) = cµ

∫ 1

−1
s2
[

1
µ̃(rs2)

+ 2(rs2)

(
1
µ̃

)′
(rs2)

]
ds,

hence (A1) and (A2) are satisfied if there exist positive constants c̃ and C̃ with

c̃ 6
1
µ̃(r)

6 C̃, ∀r > 0,

c̃ 6
1
µ̃(r)

+ 2r
(

1
µ̃

)′
(r) 6 C̃, ∀r > 0.

Further we compute

1
µ̃(r)

+ 2r
(

1
µ̃

)′
(r) =

1
µ2(h−1(r))

(
µ(h−1(r))− 2rµ′(h−1(r))(h−1)′(r)

)
h−1(r)=s
=

1
µ2(s)

(
µ(s)− 2h(s)µ′(s)

1
h′(s)

)
=

1
µ2(s)

(
µ(s)− 2sµ2(s)µ′(s)

1
µ2(s)+ 2sµ(s)µ′(s)

)
=

1
µ(s)+ 2sµ′(s)

,

thus, (A1) and (A2) hold if there exist positive constants c and C such that

(V1) c 6 µ(r) 6 C,

(V2) c 6 µ(r)+ 2rµ′(r) 6 C,

for all r > 0. The class of fluids with viscosity satisfying (V1) and (V2) is quite large.
For Oldroyd-B fluids, e.g. blood, the viscosity is given by

µ(r) = ν∞ + (ν0 − ν∞)
1+ ln(1+ λr)

1+ λr
, r > 0,

where λ > 0 is a material constant and ν0 > ν∞ > 0. The conditions (V1) and (V2) hold if
(e2
+ 1)ν∞ > ν0. Also, various variants of power law fluids belong to this class:

µ(r) = ν∞ + ν0(1+ r2)s/4 or µ(r) = ν∞ + ν0(1+ r)s/2,

for all r > 0,where ν0 and ν∞ are positive and s 6 0. In this case (V1) and (V2) hold if−1 6 s 6 0.
Notice that the above examples are all shear thinning fluids. We now give an example of a shear
thickening fluid which can be considered in our model. If

µ(r) = µ0
γ r + r0

r + r0
, ∀r > 0,

with r0 > 0, γ > 1 and µ0 > 0, then (V1) and (V2) hold for any choice of the parameters r0, µ0
and γ.
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1.2 The transformed problem

For simplification we introduce first the operator Q : C2(Ωf )→ C(Ωf ) with

Qu := div
(

Du

µ(|Du|2)

)
, u ∈ C2(Ωf ).

In order to solve the problem we transfer it onto a fixed reference manifold. Let Ω := S1
× (0, 1).

For f ∈ U we define φf ∈ Diff 2+α(Ω,Ωf ) by

φf (x, y) = (x, (1− y)f (x)), (x, y) ∈ Ω.

Defining the push-forward and pull-back operators induced by φf ,

φ∗f : BUC(Ωf )→ BUC(Ω), u 7→ u ◦ φf ,

φ
f
∗ : BUC(Ω)→ BUC(Ωf ), v 7→ v ◦ φ−1

f ,

we introduce the transformed operators A(f ) and B, acting on BUC2(Ω) and U × BUC2+α(Ω)

respectively by

A(f ) := φ∗f ◦Q ◦ φ
f
∗ ,

B(f, v)(x) :=
D(φ

f
∗ v)

µ(|D(φ
f
∗ v)|

2)
(x, f (x)) · n(x), x ∈ S1,

with n(x) := (−f ′(x), 1), x ∈ S1.

Transformation of (6) to Ω yields

A(f )v = 0 in Ω × [0,∞),
v = f on Γ0 × [0,∞),
v = b on Γ1 × [0,∞),

∂tf + B(f, v) = 0 on Γ0 × (0,∞),
f (0) = f0,

(7)

where v := φ∗f u. A pair (v, f ) is called a classical Hölder solution of (7) on [0, T ], T > 0, if

f ∈ C([0, T ],V) ∩ C1([0, T ], h1+α(S1)),

v( · , t) ∈ buc2+α(Ω), t ∈ [0, T ],

and (v, f ) satisfies the equations in (7) pointwise.

LEMMA 1.2 Let f0 ∈ V and b ∈ h2+α(S1) be given.

(a) If (u, f ) is a classical Hölder solution of (6), then (φ∗f u, f ) is a classical Hölder solution of (7).

(b) If (v, f ) is a classical Hölder solution of (7), then (φf∗ v, f ) is a classical Hölder solution of (6).
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Proof. The main difficulty is to show that φf∗ (bucα(Ω)) = bucα(Ωf ) for each f ∈ V. We show
just the inclusion φf∗ (bucα(Ω)) ⊂ bucα(Ωf ). The proof of φ∗f (buc

α(Ωf )) ⊂ buc
α(Ω) is similar.

Let f ∈ V and v ∈ bucα(Ω). We find two sequences (fm) ⊂ C∞(S1) and (vn) ⊂ BUC∞(Ω)
such that fm ↘ f in Cα(S1) and vn → v in BUCα(Ω). Let u := φ

f
∗ v. We show that each

neighbourhood of u in BUCα(Ωf ) contains a function un,m, n,m ∈ N, where

un,m(x, y) = vn(φ
−1
fm
(x, y)) = vn

(
x, 1−

y

fm(x)

)
, (x, y) ∈ Ωf .

are smooth functions on Ωf . The functions un,m, n,m ∈ N, are well-defined because fm > f for
all m ∈ N. First we have

|un,m(x, y)− u(x, y)| = |vn(φ
−1
fm
(x, y))− v(φ−1

f (x, y))| 6 ‖∂vn‖0
‖fm − f ‖0

min f
+ ‖vn − v‖0

for all (x, y) ∈ Ωf . Let now (x, y) and (x′, y′) be two different points in Ωf . We have

|(un,m − u)(x, y)− (un,m − u)(x
′, y′)|

= |vn(φ
−1
fm
(x, y))− v(φ−1

f (x, y))− vn(φ
−1
fm
(x′, y′))+ v(φ−1

fm
(x′, y′))|

6 |vn(φ
−1
f (x, y))− v(φ−1

f (x, y))− vn(φ
−1
f (x′, y′))+ v(φ−1

f (x′, y′))|

+ |vn(φ
−1
fm
(x, y))− vn(φ

−1
f (x, y))− vn(φ

−1
fm
(x′, y′))+ vn(φ

−1
f (x′, y′))|

6 ‖vn − v‖BUCα(Ω) · |φ
−1
f (x, y)− φ−1

f (x′, y′)|α

+ |vn(φ
−1
fm
(x, y))− vn(φ

−1
f (x, y))− vn(φ

−1
fm
(x′, y′))+ vn(φ

−1
f (x′, y′))|.

Since

|φ−1
f (x, y)− φ−1

f (x′, y′)|

|(x, y)− (x′, y′)|
6 1+

|y′/f (x′)− y/f (x)|

|(x, y)− (x′, y′)|
6 1+

1
min f

+
‖f ‖0 · ‖f

′
‖0

min f 2 ,

it remains to estimate the second term on the right hand side. Using the mean value theorem we
obtain

|vn(φ
−1
fm
(x, y))− vn(φ

−1
f (x, y))− vn(φ

−1
fm
(x′, y′))+ vn(φ

−1
f (x′, y′))|

=

∣∣∣∣∫ 1

0
∂vn(tφ

−1
fm
(x, y)+ (1− t)φ−1

fm
(x′, y′)) dt · (φ−1

fm
(x, y)− φ−1

fm
(x′, y′))

−

∫ 1

0
∂vn(tφ

−1
f (x, y)+ (1− t)φ−1

f (x′, y′)) dt · (φ−1
f (x, y)− φ−1

f (x′, y′))

∣∣∣∣
6 ‖∂vn‖0

∣∣∣∣ y′

fm(x′)
−

y

fm(x)
−

y′

f (x′)
+

y

f (x)

∣∣∣∣
+

∫ 1

0
‖∂2vn‖0

∣∣∣∣ tyf (x) + (1− t)y′f (x′)
−

ty

fm(x)
−
(1− t)y′

fm(x′)

∣∣∣∣ dt |φ−1
f (x, y)− φ−1

f (x′, y′)|

6 ‖∂vn‖0

∣∣∣∣ y′

fm(x′)
−

y

fm(x)
−

y′

f (x′)
+

y

f (x)

∣∣∣∣
+ ‖∂2vn‖0

‖f ‖0‖fm − f ‖0

min f 2 |φ−1
f (x, y)− φ−1

f (x′, y′)|.
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Using the estimates∣∣ y′

fm(x′)
−

y
fm(x)

−
y′

f (x′)
+

y
f (x)

∣∣
|(x, y)− (x′, y′)|α

6 ‖f ‖1−α0 ·
‖fm − f ‖0

min f 2 + ‖f ‖0 ·
‖fm − f ‖Cα(S1)

min f 2

+ ‖f ‖0 · ‖fm − f ‖0 ·
‖f ‖0 · ‖fm‖Cα(S1) + ‖f ‖Cα(S1) · ‖fm‖0

min f 4 ,∣∣(x − x′, y′

f (x′)
−

y
f (x)

)∣∣
|(x, y)− (x′, y′)|α

6 (2π)1−α +
‖f ‖1−α0
min f

+
‖f ‖0 · ‖f ‖Cα(S1)

min f 2

we obtain the desired conclusion. 2

2. The abstract Cauchy problem

We have already noticed that the conditions (A1) and (A2) on µ imply the existence of two positive
constants c and C such that

c 6
1
µ(r)

6 C, ∀r > 0, (8)

c 6
1
µ(r)

−
2rµ′(r)

µ2(r)
6 C, ∀r > 0. (9)

Under these assumptions the quasilinear operatorQ is uniformly elliptic in R2. For u ∈ C2(Ωf ) we
compute

Qu = aij (Du)uij ,

and the coefficients (aij )16i,j62 are

aij (p) =
δij

µ(|p|2)
−

2pipjµ′(|p|2)

µ2(|p|2)
, p = (p1, p2) ∈ R2.

Actually, the eigenvalues of (aij )16i,j62 are

λ1(p) =
1

µ(|p|2)
, λ2(p) =

1
µ(|p|2)

−
2|p|2µ′(|p|2)

µ2(|p|2)
,

and we have
c|ξ |2 6 aij (p)ξiξj 6 C|ξ |2, ∀ξ = (ξ1, ξ2) ∈ R2, p ∈ R2.

LEMMA 2.1 Given f ∈ U , we have

A(f )v = bij (y, f,Dv)vij + b(y, f,Dv)v2 for v ∈ BUC2(Ω),

where, using the notation

Df v :=
(
v1 +

(1− y)f ′

f
v2,−

1
f
v2

)
for f ∈ U , v ∈ BUC2(Ω) and y ∈ [0, 1],

we have
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b11(y, f,Dv) = a11(Df v),

b12(y, f,Dv) = b21(y, f,Dv) =
(1− y)f ′

f
a11(Df v)−

1
f
a12(Df v),

b22(y, f,Dv) =
(1− y)2f ′2

f 2 a11(Df v)−
2(1− y)f ′

f 2 a12(Df v)+
1
f 2 a22(Df v),

b(y, f,Dv) = (1− y)

(
f ′′

f
−

2f ′2

f 2

)
a11(Df v)+

2f ′

f 2 a12(Df v).

Proof. This follows by direct computation. 2

Given f ∈ U , the quasilinear operator A(f ) is uniformly elliptic. Indeed, for (y, p) ∈ [0, 1] × R2

and ξ = (ξ1, ξ2) ∈ R2 we have

bij (y, f, p)ξiξj = a11

(
p1 +

(1− y)f ′

f
p2,−

1
f
p2

)(
ξ1 +

(1− y)f ′

f
ξ2

)2

+ 2a12

(
p1 +

(1− y)f ′

f
p2,−

1
f
p2

)(
ξ1 +

(1− y)f ′

f
ξ2

)(
−
ξ2

f

)
+ a22

(
p1 +

(1− y)f ′

f
p2,−

1
f
p2

)(
−
ξ2

f

)2

,

and the assertion follows from (8) and (9) upon taking also into account that φf is a diffeomorphism.
Using maximum principle arguments and Morrey and De Giorgi–Nash type estimates as in [8]

one can show that, given

f ∈ U , q1, q2, q3, g, b ∈ C
2+α(S1), σ ∈ [0, 1],

there exist constants δ > 0, β ∈ (0, 1) and M > 0 such that every solution v ∈ BUC2(Ω) of the
Dirichlet problem

A(f + q1)v = 0 in Ω,
v = σg + q2 on Γ0,

v = σb + q3 on Γ1

(10)

satisfies the estimate
‖v‖BUC1+β (Ω) 6 M

provided ‖qi‖C2+α(S1) 6 δ for i ∈ {1, 2, 3}. This a priori estimate allows an application of
the techniques developed in Chapter 10 of [8] to derive the following existence, uniqueness and
regularity result.

LEMMA 2.2 Let f ∈ V and b ∈ h2+α(S1). Then there exists a unique solution T (f ) ∈
buc2+α(Ω) of the Dirichlet problem

A(f )u = 0 in Ω,
u = f on Γ0,

u = b on Γ1.

(11)

The mapping [V 3 f 7→ T (f ) ∈ buc2+α(Ω)] is smooth. 2
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We fix b ∈ h2+α(S1). Replacing v in the fourth equation of (7) by T (f ), the unique solution to
(11), we reduce the full problem (7) into an abstract Cauchy problem over S1,

∂tf +Φ(f ) = 0, f (0) = f0, (12)

where Φ(f ) := B(f, T (f )). The operator Φ is a pseudodifferential operator of the first
order, with a symbol depending nonlinearly on the variable f . Further we show that Φ ∈

C∞(h2+α(S1), h1+α(S1)) and compute the derivative ∂Φ(c) in the special case c, b ∈ R>0.

The restriction of the operator B defined in Section 1 to the set V × buc2+α(S1) satisfies

B(f, v) = −
1

µ(|γ0Df v|2)

(
f ′γ0v1 +

1
f
(1+ f ′2)γ0v2

)
for (f, v) ∈ V × buc2+α(Ω),

where γ0 is the trace operator on Γ0. Together with the relation

|γ0Df v|
2
= γ0v

2
1 + 2

f ′

f
γ0v1v2 +

1+ f ′2

f 2 γ0v
2
2

we conclude that the operator B defined above is smooth. More precisely, we have:

LEMMA 2.3 The mapping B : V × buc2+α(Ω)→ h1+α(S1) is smooth. The Fréchet derivative of
B at (f, v) ∈ V × buc2+α(Ω) is given by

∂B(f, v)[h, u] =−
1
µ
(|γ0Df v|

2)

[
f ′γ0u1 + h

′γ0v1 +
1
f
(1+ f ′2)γ0u2

−

(
h

f 2 −
2f ′h′

f
+
hf ′2

f 2

)
γ0v2

]
− 2

(
1
µ

)′
(|γ0Df v|

2)

(
f ′γ0v1 +

1
f
(1+ f ′2)γ0v2

)[
γ0v1u1 +

h′

f
γ0v1v2

+
f ′

f
γ0u1v2 +

f ′

f
γ0v1u2 −

f ′h

f 2 γ0v1v2 +
f ′h′

f 2 γ0v
2
2 +

f ′2

f 2 γ0v2u2

−
hf ′2

f 3 γ0v
2
2 +

1
f 2 γ0v2u2 −

h

f 3 γ0v
2
2

]
for all [h, u] ∈ h2+α(S1)× buc2+α(Ω).

Combining Lemmas 2.2 and 2.3 we conclude that Φ ∈ C∞(V, h1+α(S1)). Since

Φ(f ) = B ◦ [f 7→ (f, T (f ))],

the chain rule implies that ∂Φ(f ) = ∂B(f, T (f )) ◦ (idh2+α(S1), ∂T (f )) for f ∈ V.We are thus left
with the task of computing the derivative ∂T (f ).

LEMMA 2.4 Given f ∈ V and h ∈ h2+α(S1) the mapping ∂T (f )[h] is the unique solution of the
linear Dirichlet problem
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bijwij + bw2 +Dfw

[
u11∂a11(Df u)+ 2u12

(
(1− y)f ′

f
∂a11(Df u)−

1
f
∂a12(Df u)

)
+u22

(
(1−y)2f ′2

f 2 ∂a11(Df u)−2
(1−y)f ′

f 2 ∂a12(Df u)+
1
f 2 ∂a22(Df u)

)
+u2

(
(1−y)

(
f ′′

f
−2

f ′2

f 2

)
∂a11(Df u)+2

f ′

f 2 ∂a12(Df u)

)]
= −u2

(
(1−y)

f h′−f ′h

f 2 ,
h

f 2

)
·

[
u11∂a11(Df u)+2u12

(
(1−y)f ′

f
∂a11(Df u)−

1
f
∂a12(Df u)

)
+u22

(
(1−y)2f ′2

f 2 ∂a11(Df u)−2
(1−y)f ′

f 2 ∂a12(Df u)+
1
f 2 ∂a22(Df u)

)
+u2

(
(1−y)

(
f ′′

f
−2

f ′2

f 2

)
∂a11(Df u)+2

f ′

f 2 ∂a12(Df u)

)]
−2u12

(
(1−y)

f h′−f ′h

f 2 a11(Df u)+
h

f 2 a12(Df u)

)
−2u22

(
(1−y)2(ff ′h′−f ′2h)

f 3 a11(Df u)− (1−y)
f h′−2f ′h

f 3 a12(Df u)−
h

f 3 a22(Df u)

)
−u2

(
(1−y)

(
f h′′−f ′′h

f 2 −4
ff ′h′−f ′2h

f 3

)
a11(Df u)+2

f h′−2f ′h
f 3 a12(Df u)

)
in Ω,

w = h on Γ0,

w = 0 on Γ1,

where u := T (f ) and bij = bij (y, f,Du), b = b(y, f,Du) are the coefficients of A(f ).
Our next goal is to compute ∂Φ(c)when c and b are positive constant functions. More precisely,

we would like to know how it acts on Fourier series. The solution T (c) of the Dirichlet problem
(11) is

T (c)(x, y) = (1− y)c + yb, (x, y) ∈ Ω.

Given (h, u) ∈ h2+α(S1)× buc2+α(Ω), we therefore get

∂B(c, T (c))[h, u] = −
1
c
ζγ0u2 +

b − c

c2 ζh,

where

ζ :=
1
µ

((
b − c

c

)2)
+ 2

(
b − c

c

)2( 1
µ

)′((
b − c

c

)2)
> 0.

Consequently,

∂Φ(c)[h] = −
1
c
ζγ0w2 +

b − c

c2 ζh,

where w := ∂T (c)[h] ∈ buc2+α(Ω) denotes the solution of the linear Dirichlet problem

w11 + β
2w22 =

c − b

c
(1− y)h′′ in Ω,

w = h on Γ0,

w = 0 on Γ1,

(13)
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and where

β2 :=
1
c2

(
1− 2

(
c − b

c

)2µ′
((
c−b
c

)2)
µ
((
c−b
c

)2) ) > 0.

We now expand h and w in the following way:

h(x) =
∑
k∈Z

cke
ikx, w(x, y) =

∑
k∈Z

Ck(y)e
ikx .

Substituting these expressions into equations (13) and comparing the coefficients of eikx for every k,
we get the following equations for Ck(y) :

β2C′′k − k
2Ck =

b − c

c
k2ck(1− y), 0 < y < 1,

Ck(0) = ck,
Ck(1) = 0,

(14)

for k ∈ Z \ {0}, and
C′′0 = 0, 0 < y < 1,

C0(0) = c0,

C0(1) = 0.
(15)

One can easily verify that the solution of (15) is C0(y) = (1− y)c0. The solutions of (14) are given
by

Ck(y) = ckdk(y)

with

dk(y) =
c − b

c
(1− y)+

b

c

(
eky/β

1− e2k/β +
e−ky/β

1− e−2k/β

)
.

Thus we obtain

w(x, y) = (1− y)c0 +
∑

k∈Z\{0}
dk(y)cke

ikx, ∀(x, y) ∈ Ω, (16)

and
∂Φ(c)

[∑
k∈Z

cke
ikx
]
=

∑
k∈Z

λkcke
ikx (17)

for all h =
∑
k∈Z cke

ikx
∈ h2+α(S1), with

λ0 :=
bζ

c2 , λk =
bζ

βc2 k
e2k/β

+ 1
e2k/β − 1

, k 6= 0. (18)

Notice that equations (14) and (15) have been obtained formally by differentiating w with respect
to the variables x and y. Thus, it remains to show that the mapping w, given by (16), is the solution
of the Dirichlet problem (13). Since h ∈ h2+α(S1), there is a positive constant L such that

|ck| 6
L

k2 , ∀k ∈ Z \ {0}.
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The functions dk, k ∈ Z \ {0}, are uniformly bounded on [0, 1], i.e.

M := sup
k∈Z\{0}

max
[0,1]
|dk| <∞.

Therefore w ∈ BUC(Ω). Let w denote the solution of (13). Pick further a sequence (hp)p ⊂
C∞(S1) which converges to h in C2+α(S1), and denote by wp ∈ BUC∞(Ω) the solution of (13)
which corresponds to hp. Then

wp → w in BUC2+α(Ω). (19)

Using the Fourier expansions
hp =

∑
k∈Z

cp,ke
ikx,

we find for each l ∈ N a constant Lp,l > 0 such that

|k|l |cp,k| 6 Lp,l, ∀k ∈ Z,

and, as before, we obtain

wp(x, y) = (1− y)cp,0 +
∑

k∈Z\{0}
dk(y)cp,ke

ikx, ∀(x, y) ∈ Ω.

Notice that these Fourier series are smooth for all p. Fix now y ∈ [0, 1]. Given p ∈ N, we have

wp(x, y)− w(x, y) = (1− y)(cp,0 − c0)+
∑

k∈Z\{0}
dk(y)(cp,k − ck)e

ikx,

and so

‖wp( · y)− w( · y)‖
2
L2(S1)

= (1− y)2(cp,0 − c0)
2
+

∑
k∈Z\{0}

d2
k (y)|cp,k − ck|

2

6 M2
∑
k∈Z
|cp,k − ck|

2
= M2

‖hp − h‖
2
L2(S1)

.

Observing hp → h in C2+α(S1) and invoking (19), we see that the previous inequality implies that

w( · , y) = w( · , y) in L2(S1)

for all y ∈ [0, 1]. Using the continuity of w and w, we conclude that w = w, and formula (17) is
proved.

3. The proof of the main result

In this section we regard the spaces hm+α(S1), m = 1, 2, as Banach spaces over the
complex numbers. In order to prove Theorem 1.1 we have to show that the complexification of
−∂Φ(c), which we also denote by −∂Φ(c), considered as an operator in h1+α(S1) with domain
h2+α(S1), generates a strongly continuous analytic semigroup in L(h1+α(S1)), i.e. ∂Φ(c) ∈
H(h2+α(S1), h1+α(S1)).
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Using the same notations as in [1], we have h2+α(S1)
d
↪→ h1+α(S1) and, given κ > 1 and

ω > 0, we write
∂Φ(c) ∈ H(h2+α(S1), h1+α(S1), κ, ω)

if ω + ∂Φ(c) ∈ Lis(h2+α(S1), h1+α(S1)) and

κ−1 6
‖(λ+ ∂Φ(c))h‖h1+α(S1)

|λ| ‖h‖h1+α(S1) + ‖h‖h2+α(S1)

6 κ, h ∈ h2+α(S1) \ {0}, Re λ > ω.

Since
H(h2+α(S1), h1+α(S1)) =

⋃
κ>1
ω>0

H(h2+α(S1), h1+α(S1), κ, ω),

it is sufficient to show that ∂Φ(c) ∈ H(h2+α(S1), h1+α(S1)), κ, ω) for some κ > 1 and ω > 0. In
fact, it is enough to find κ > 1 and ω > 0 such that

λ+ ∂Φ(c) ∈ Lis(h2+α(S1), h1+α(S1)), (20)
|λ| · ‖R(λ,−∂Φ(c))‖L(h1+α(S1)) 6 κ, (21)

for all Re λ > ω.

3.1 Sobolev spaces over the unit circle

Let us recall that the Fréchet derivative ∂Φ(c) ∈ L(h2+α(S1), h1+α(S1)) is defined by

∂Φ(c)
∑
k∈Z

ĥ(k)eikx =
∑
k∈Z

λkĥ(k)e
ikx

for all h =
∑
k∈Z ĥ(k)e

ikx
∈ h2+α(S1), with (λk)k∈Z given by (18). We denote here by ĥ(k) the

k-th Fourier coefficient of h ∈ h2+α(S1). For r > 0 we introduce the Sobolev space

H r(S1) :=
{
f ∈ L2(S1) :

∑
k∈Z
(1+ k2)r |f̂ (k)|2 <∞

}
,

equipped with the scalar product 〈f, g〉 :=
∑
k∈Z(1 + k

2)r f̂ (k)ĝ(k). The smooth functions are
dense in H r(S1), and the Sobolev embedding

Hm+σ (S1) ↪→ Cm(S1) (22)

holds for all m ∈ N provided σ > 1/2.

PROPOSITION 3.1
Hm+s(S1)

d
↪→ hm+α(S1)

for all m ∈ N, α ∈ [0, 1] and s > 3/2.

Proof. Given m ∈ N, α ∈ [0, 1] and s > 3/2 we have the embeddings

C∞(S1) ⊂ Hm+s(S1) ↪→ Cm+α(S1), (23)

thus hm+α(S1) = C∞(S1)
‖ · ‖

Cm+α(S1)
⊂ Hm+s(S1)

‖ · ‖
Cm+α(S1) .
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Fix now u ∈ Hm+s(S1)
‖ · ‖

Cm+α(S1) and choose ε > 0. We can find u0 ∈ Hm+s(S1) with
‖u− u0‖Cm+α(S1) 6 ε/2. Due to (23) there is a constant C > 0 such that

‖v‖Cm+α(S1) 6 C‖v‖Hm+s (S1), ∀v ∈ Hm+s(S1).

Let u1 ∈ C
∞(S1) be a smooth function with ‖u0 − u1‖Hm+s (S1) 6 ε/2C. Combining these last

inequalities, we get ‖u− u1‖Cm+α(S1) 6 ε and the proof is complete. 2

Let us now consider the coefficients λk, k ∈ Z. We notice that λk = λ−k and that λk is positive for
every k ∈ Z. Moreover,

lim
k→∞

λk

k
=
bζ

βc2 . (24)

We now fix
ω := 1. (25)

PROPOSITION 3.2 Given r > 0 and Re λ > ω, we have λ+ ∂Φ(c) ∈ Lis(H r+1(S1),H r(S1)).

Proof. We first prove that ∂Φ(c) is well-defined. Due to (24) there is a constant M > 0 such that

|λk| 6 M(1+ k2)1/2, ∀k ∈ Z.

Given h =
∑
k∈Z ĥ(k)e

ikx
∈ H r+1(S1), we have∥∥∥∂Φ(c)∑

k∈Z
ĥ(k)eikx

∥∥∥
H r (S1)

=

∑
k∈Z
(1+ k2)r |λkĥ(k)|

2 6 M2
∑
k∈Z
(1+ k2)r+1

|̂h(k)|2

= M2
∥∥∥∑
k∈Z

ĥ(k)eikx
∥∥∥
H r+1(S1)

.

Thus ∂Φ(c) is well-defined. For Re λ > ω we have λ+λk > 1, and therefore λ+∂Φ(c) is injective.
In order to show that λ + ∂Φ(c) is onto, we have to show that for h =

∑
k∈Z ĥ(k)e

ikx
∈ H r(S1),

the function
∑
k∈Z(1/(λ+ λk))̂h(k)e

ikx is in H r+1(S1). Invoking again (24), we find Mλ > 0 such
that

|λ+ λk|
2 > Mλ(1+ k2), ∀k ∈ Z.

Now ∥∥∥∥∑
k∈Z

1
λ+ λk

ĥ(k)eikx
∥∥∥∥
H r+1(S1)

=

∑
k∈Z
(1+ k2)r+1

∣∣∣∣ ĥ(k)λ+ λk

∣∣∣∣2 6
1
Mλ

∑
k∈Z
(1+ k2)r |̂h(k)|2

=
1
Mλ

∥∥∥∑
k∈Z

ĥ(k)eikx
∥∥∥
H r (S1)

,

and the proof is complete. 2

Combining these two propositions we obtain the following result.

COROLLARY 3.3 Let m ∈ {1, 2} and suppose R(λ,−∂Φ(c)) ∈ L(C1+α(S1), Cm+α(S1)) for
some Re λ > ω. Then R(λ,−∂Φ(c)) ∈ L(h1+α(S1), hm+α(S1)).
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Proof. We prove just the case m = 2. The proof in the case m = 1 is similar. By assumption,
R(λ,−∂Φ(c)) ∈ L(h1+α(S1), C2+α(S1)). Given f ∈ h1+α(S1), Proposition 3.1 ensures the
existence of a sequence (fn)n ⊂ H r(S1), r > 3, such that fn→ f in C1+α(S1). Thus

R(λ,−∂Φ(c))fn→ R(λ,−∂Φ(c))f in C2+α(S1).

We know that R(λ,−∂Φ(c))fn ∈ H r+1(S1). Consequently,

R(λ,−∂Φ(c))f ∈ H r+1(S1)
‖ · ‖

C2+α(S1)
= h2+α(S1). 2

3.2 Periodic Besov spaces

Let (φj )j>0 ⊂ S(R) be a sequence with the following properties:

(i) suppφ0 ⊂ [−2, 2], suppφj ⊂ {x : 2j−1 6 |x| 6 2j+1
}, j > 1,

(ii)
∑
j∈N

φj = 1 in R,

(iii) ∀k ∈ N ∃ck > 0 : 2kj‖φ(k)j ‖0 6 ck, ∀j ∈ N.

Further, let D′(S1) denote the topological dual of D(S1). The Fourier coefficients of f ∈ D′(S1)

are f̂ (k) := (2π)−1f (e−ikx), k ∈ Z, and the series
∑
k∈Z f̂ (k)e

ikx converges to f in D′(S1). The
Besov spaces Bs∞,∞(S1), s > 0, are defined as follows:

Bs∞,∞(S
1) :=

{
f ∈ D′(S1) : ‖f ‖Bs∞,∞(S1) := sup

j∈N
2sj
∥∥∥∑
k∈Z

φj (k)f̂ (k)e
ikx
∥∥∥
C(S1)

<∞
}
.

If s > 0 is not an integer, then Bs∞,∞(S1) = Cs(S1). For details see e.g. [11]. As one sees from
previous computations, the operators R(λ,−∂Φ(c)) are Fourier multiplier operators. In order to
prove (20) and (21) we can use, due to former considerations, multiplier theorems for operators
between Besov spaces. Using the techniques of [2], it is not difficult to prove the following
generalization of a result presented there.

THEOREM 3.4 Let r, s be positive constants and let (Mk)k∈Z ⊂ C be a sequence satisfying the
following conditions:

(i) sup
k∈Z\{0}

|k|r−s |Mk| <∞,

(ii) sup
k∈Z\{0}

|k|r−s+1
|Mk+1 −Mk| <∞,

(iii) sup
k∈Z\{0}

|k|r−s+2
|Mk+2 − 2Mk+1 +Mk| <∞.

Then the mapping ∑
k∈Z

ĥ(k)eikx 7→
∑
k∈Z

Mkĥ(k)e
ikx

belongs to L(Bs∞,∞(S1), Br∞,∞(S1)).

Proof. The case r = s is proved in [2]. For r 6= s the proof is similar, with obvious modifications. 2
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COROLLARY 3.5
{λ ∈ C : Re λ > ω} ⊂ ρ(−∂Φ(c)).

Proof. Fix λ ∈ C with Re λ > ω. Due to Corollary 3.3, it is enough to show that R(λ,−∂Φ(c)) ∈
L(C1+α(S1), C2+α(S1)). Here R(λ,−∂Φ(c)) denotes the multiplier operator∑

k∈Z
ĥ(k)eikx 7→

∑
k∈Z

Mλ
k ĥ(k)e

ikx

withMλ
k = 1/(λ+λk) for k ∈ Z. In order to prove this assertion, we use the previous theorem with

r := 2+ α and s := 1+ α. Using relation (24), we obtain

lim
|k|→∞

|k| |Mλ
k | =

βc2

bζ
,

thus condition (i) in Theorem 3.4 is satisfied. Given k 6= 0, we have

k2
|Mλ

k+1 −M
λ
k | =

|k|

|λ+ λk+1|

|k|

|λ+ λk|
|λk+1 − λk| −−−−→

|k|→∞

βc2

bζ
,

and (ii) is verified. Furthermore, we have

|k|3|Mλ
k+2 − 2Mλ

k+1 −M
λ
k | =

|k|

|λ+ λk+2|

|k|

|λ+ λk+1|

|k|

|λ+ λk|
| − λ(λk+2 − 2λk+1 + λk)

+ λk(λk+1 − λk+2)+ λk+2(λk+1 − λk)|,

with (λk+2 − 2λk+1 + λk)→ 0 as |k| → ∞. One can easily verify that

λk(λk+1 − λk+2)+ λk+2(λk+1 − λk) −−−−→
|k|→∞

2
(
bζ

βc2

)2

,

and the proof is complete. 2

It remains to prove assertion (21). We shall make again use of Theorem 3.4, but now in the special
case r = s = 1+ α. Notice that for k ∈ Z and Re λ > ω we have

λ+ λk > max{1, λ, λk}. (26)

COROLLARY 3.6 There exists κ > 1 such that

|λ| · ‖R(λ,−∂Φ(c))‖L(h1+α(S1)) 6 κ

for all Re λ > ω.

Proof. Let λ ∈ C with Re λ > ω. Then |λ|R(λ,−∂Φ(c)) belongs to L(h1+α(S1)). We regard
|λ|R(λ,−∂Φ(c)) as a multiplier operator,∑

k∈Z
ĥ(k)eikx 7→

∑
k∈Z

Mλ
k ĥ(k)e

ikx,
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with
Mλ
k =

|λ|

λ+ λk
, ∀k ∈ Z,

and we wish to find positive real numbers s1, s2 and s3 such that

(i) sup
k∈Z
|Mλ

k | 6 s1,

(ii) sup
k∈Z
|k| |Mλ

k+1 −M
λ
k | 6 s2,

(iii) sup
k∈Z
|k|2|Mλ

k+2 − 2Mλ
k+1 +M

λ
k | 6 s3,

for all Re λ > ω. The existence of such constants is equivalent to the uniform boundedness of the
family {|λ|R(λ,−∂Φ(c))}Re λ>ω ⊂ L(h1+α(S1)). For details see [2]. From relation (26) we obtain

|Mλ
k | =

|λ|

|λ+ λk|
6 1

for all k ∈ Z and Re λ > ω. We also have

|k| |Mλ
k+1 −M

λ
k | =

|λ|

|λ+ λk+1|

|k|

|λ+ λk|
|λk+1 − λk| 6

|k|

λk
|λk+1 − λk|,

which, together with (24), implies estimate (ii). Further,

|k|2|Mλ
k+2 − 2Mλ

k+1 −M
λ
k | =

|λ|

|λ+ λk+2|

|k|

|λ+ λk+1|

|k|

|λ+ λk|
| − λ(λk+2 − 2λk+1 + λk)

+ λk(λk+1 − λk+2)+ λk+2(λk+1 − λk)|

6
|k|

λk
|k| |λk+2 − 2λk+1 + λk|

+
|k|

λk+1

|k|

λk
|λk(λk+1 − λk+2)+ λk+2(λk+1 − λk)|.

The relation
|k| |λk+2 − 2λk+1 + λk| −−−−→

|k|→∞
0

completes the proof. 2

We have proved that for every positive constant c, the complexification of the derivative
∂Φ(c) generates a strongly continuous analytic semigroup in L(h1+α(S1)), i.e. it belongs
to H(h2+α(S1), h1+α(S1)). It is known that H(h2+α(S1), h1+α(S1)) is an open subset in
L(h2+α(S1), h1+α(S1)) (see [1]), and because ∂Φ is continuous, there is a neighbourhood O of
c in V such that the complexification of ∂Φ(f0) is an element of H(h2+α(S1), h1+α(S1)) for all
f0 ∈ O. The proof of Theorem 1.1 is now similar to the proof of Theorem 8.1.1 in [10].
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